WO2021109111A1 - 通信装置、终端设备及通信方法 - Google Patents

通信装置、终端设备及通信方法 Download PDF

Info

Publication number
WO2021109111A1
WO2021109111A1 PCT/CN2019/123583 CN2019123583W WO2021109111A1 WO 2021109111 A1 WO2021109111 A1 WO 2021109111A1 CN 2019123583 W CN2019123583 W CN 2019123583W WO 2021109111 A1 WO2021109111 A1 WO 2021109111A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
bandwidth
duplexer
uplink
downlink
Prior art date
Application number
PCT/CN2019/123583
Other languages
English (en)
French (fr)
Inventor
刘烨
甘剑松
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980100376.0A priority Critical patent/CN114402534B/zh
Priority to EP19955129.2A priority patent/EP4060902A4/en
Priority to PCT/CN2019/123583 priority patent/WO2021109111A1/zh
Publication of WO2021109111A1 publication Critical patent/WO2021109111A1/zh
Priority to US17/831,751 priority patent/US20220303103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the embodiments of the present application relate to communication technology, and in particular, to a communication device, terminal device, and communication method.
  • the frequency division duplexing (FDD) frequency band of 700 MHz supports the symmetrical frequency spectrum of 45 MHz for the uplink and the downlink.
  • the uplink (UL) frequency band is 703MHz-748MHz
  • the downlink (DL) frequency band is 758MHz-803MHz.
  • Tx transmit
  • Rx receive
  • the transmit filter and receive filter in the duplexer are difficult to achieve the 10MHz spectrum suppression requirement.
  • the UE uses a duplexer to solve the above-mentioned problems.
  • the bandwidth of the receiving filter and the transmitting filter of each duplexer are both 30MHz.
  • the 30MHz bandwidth of the receiving filter in the two duplexers is spliced into a 45MHz bandwidth.
  • There is an overlap area of 15MHz in the middle which is composed of two duplexers.
  • the 30MHz bandwidth of the transmitting filter in the device is spliced into a 45MHz bandwidth, and there is an overlapping area of 15MHz in the middle.
  • duplexers cannot fully utilize the spectrum resources of the operator in some scenarios, and there is a problem of spectrum waste, and the peak rate of the UE is limited.
  • the embodiments of the present application provide a communication device, terminal equipment, and communication method, so as to improve the utilization rate of spectrum resources.
  • an embodiment of the present application provides a communication device, including: a first duplexer, a second duplexer, and a first switch; wherein, the first output terminal of the first switch is connected to the first switch.
  • the input terminal of a duplexer, the second output terminal of the first switch is connected to the input terminal of the second duplexer; when the first switch is switched to the first output terminal, the first double The branch where the duplexer is located is connected; when the first switch is switched to the second output terminal, the branch where the second duplexer is located is connected; wherein, the transmit filter of the first duplexer corresponds to the first The uplink frequency band, the receiving filter of the first duplexer corresponds to the first downlink frequency band, the bandwidth of the first downlink frequency band is greater than the bandwidth of the first uplink frequency band; the transmission filter of the second duplexer The receiver corresponds to a second uplink frequency band, the receiving filter of the second duplexer corresponds to a second downlink frequency band, and the bandwidth of the second downlink
  • the communication device is provided with two duplexers, the transmitting filters of the two duplexers are respectively set to correspond to two different uplink frequency bands, and the receiving filters of the two duplexers are respectively set to correspond to two different uplink frequency bands.
  • the corresponding downstream frequency band of the receiving filter is larger than the corresponding upstream frequency band of the transmitting filter. Therefore, no matter which of the two duplexers is located on the branch of the switch, It can realize the transmission and reception filtering in the case of asymmetrical uplink bandwidth and downlink bandwidth, such as the asymmetrical uplink and downlink bandwidth of the 700MHz frequency band (n28). In this way, using the communication device provided by the embodiment of the invention, the downlink bandwidth is not limited by the size of the uplink bandwidth.
  • the spectrum resources of the downlink bandwidth can be fully utilized, thereby improving the utilization of spectrum resources.
  • the larger downlink frequency band in each duplexer in the duplexer provided by the embodiment of the present invention can provide a higher downlink peak rate for user equipment, while the smaller uplink frequency band can ensure that the out-of-band frequency band can be satisfied.
  • Digital TV digital TV, DTV
  • the bandwidths of the first downlink frequency band and the second downlink frequency band are the same.
  • the first uplink frequency band is 703MHz-733MHz
  • the second uplink frequency band is 718MHz-748MHz
  • the first downlink frequency band and the second downlink frequency band are 758MHz-803MHz.
  • the receiving filter of the first duplexer and the receiving filter of the second duplexer are full-bandwidth filters.
  • it further includes: a power amplifier PA; the output terminal of the PA is connected to the input terminal of the first switch.
  • it further includes: a second switch and an antenna; the output terminal of the first duplexer is connected to the first input terminal of the second switch, and the second duplexer The output terminal is connected to the second input terminal of the second switch; the output terminal of the second switch is connected to the antenna.
  • the communication device uses the PA to amplify the power of the signal and then transmits it to the first duplexer or the second duplexer, and then cooperates with the second switch to transmit the signal to the antenna.
  • it further includes: a first antenna and a second antenna; the output end of the first duplexer is connected to the first antenna, and the output end of the second duplexer is connected to the The second antenna.
  • the first duplexer and the first antenna of the communication device are located on the same branch to realize the transmission and reception of one signal, and the second duplexer and the second antenna are located on the same branch to realize the transmission and reception of another signal.
  • an embodiment of the present application provides a communication method using the communication device according to any one of the above-mentioned first aspects, including: receiving carrier configuration information, wherein the carrier configuration information includes a carrier configured for a terminal device When the carrier configuration information corresponds to the first uplink frequency band, the first switch is switched to the first output terminal; and when the carrier configuration information corresponds to the For the second upstream frequency band, the first switch is switched to the second output terminal.
  • the terminal equipment configures the connection status and carrier bandwidth of the branch where the two duplexers in the communication device are located on the basis of the carrier and uplink resources configured by the access network device, as well as the related parameters of uplink and downlink transmission, Ensure the uplink and downlink transmission performance when the uplink bandwidth and the downlink bandwidth are asymmetric.
  • the downlink bandwidth is not limited by the size of the uplink bandwidth.
  • the spectrum resources of the downlink bandwidth can be fully utilized, thereby improving the utilization of spectrum resources.
  • the larger downlink frequency band in each duplexer based on the duplexer can provide user equipment with a higher downlink peak rate, while the smaller uplink frequency band can ensure that the out-of-band DTV spurious index protection can be met. Claim.
  • the method further includes: receiving scheduling information, wherein the scheduling information indicates an uplink resource, and when the first switch is switched to the first output terminal, the bandwidth of the uplink resource is less than the bandwidth of the uplink resource.
  • the bandwidth of the first uplink frequency band, when the first switch is switched to the second output terminal, the bandwidth of the uplink resource is smaller than the bandwidth of the second uplink frequency band; and a signal is sent on the uplink resource.
  • the first downlink frequency band is the same as the second downlink frequency band; the first downlink frequency band includes a plurality of sub-bands, and each sub-band of the plurality of sub-bands corresponds to at least one Sensitivity index; the bandwidth and/or frequency of the carrier configured for the terminal device corresponds to one of the multiple sub-bands; the method further includes: determining according to at least one sensitivity index corresponding to the one sub-band The sensitivity index of the communication device.
  • the carrier includes an uplink carrier, the bandwidth of the uplink carrier is within the bandwidth of a downlink mapped carrier, and the bandwidth of the downlink mapped carrier is based on the first downlink frequency band or the second downlink frequency band.
  • the frequency band and the default transceiver frequency interval are obtained.
  • an embodiment of the present application provides a terminal device, including: the communication device according to any one of the foregoing first aspects.
  • a terminal device including one or more processors, and the one or more processors are configured to execute one or more programs in a memory, so that the terminal device implements any of the above-mentioned second aspects. The method described in one item.
  • a computer-readable storage medium which stores a computer program or instruction, and the computer program or instruction is used to implement the method according to any one of the above-mentioned second aspects.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of an access network device provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • Embodiment 4 is a schematic structural diagram of Embodiment 1 of a communication device according to an embodiment of the application;
  • Embodiment 2 of a communication device according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of Embodiment 3 of a communication device according to an embodiment of the application.
  • FIG. 7 is a flowchart of an embodiment of a communication method according to an embodiment of the application.
  • Fig. 8 exemplarily shows a schematic diagram of carrier configuration
  • Fig. 9 exemplarily shows another schematic diagram of carrier configuration.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the embodiment of the present application provides a communication system.
  • the communication system may include an access network device and at least one terminal device.
  • the access network device can establish a wireless connection with each terminal device, and the terminal devices can establish a wireless connection.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the application.
  • the access network device is an access network device 11, and at least one terminal device is a terminal device 21, a terminal device 22, a terminal device 23, and The terminal device 24, wherein a wireless connection can be established between the access network device 11 and the terminal device 21, a wireless connection can be established between the access network device 11 and the terminal device 22, and a wireless connection can be established between the terminal device 21 and the terminal device 23,
  • the terminal device 21 and the terminal device 24 can establish a wireless connection.
  • the access network equipment and terminal equipment included in the communication system shown in FIG. 1 are only examples, and the connection mode between the access network equipment and the terminal equipment is also only an example.
  • the type and number of network elements included in the communication system, and the connection relationship between the network elements are not limited thereto.
  • the communication system may be a communication system that supports fourth-generation (4G) access technology, such as long-term evolution (LTE) access technology; or, the communication system may also support fifth-generation (fifth generation) access technology.
  • 4G fourth-generation
  • 5G fifth-generation
  • 3G third generation
  • UMTS universal mobile telecommunications system
  • the communication system may also be a communication system supporting multiple wireless technologies, such as a communication system supporting LTE technology and NR technology.
  • the communication system can also be applied to future-oriented communication technologies.
  • the access network device in the embodiment of the present application may be a device used on the access network side to support terminal devices to access the communication system.
  • the access network device may be called a base station (BS), for example, it may be 2G access
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network in the 3G access technology communication system controller
  • eNB evolved base station
  • gNB next generation nodeB
  • TRP transmission reception point
  • relay node relay node
  • access point access point
  • the terminal device (terminal device) in the embodiment of the present application may be a device that provides voice or data connectivity to the user.
  • the terminal equipment may be called user equipment (UE), mobile station (mobile station), subscriber unit (subscriber unit), station (station), terminal equipment (terminal equipment, TE), or terminal, etc.
  • the terminal equipment can be a cellular phone, a vehicle-mounted wireless communication device, a personal digital assistant (PDA), a wireless modem (modem), a handheld device, a laptop computer, and a cordless phone. (cordless phone), wireless local loop (WLL) station, tablet computer (pad), etc.
  • PDA personal digital assistant
  • modem wireless modem
  • WLL wireless local loop
  • pad tablet computer
  • devices that can access the wireless communication network, communicate with the wireless network side, or communicate with other objects through the wireless network can all be the terminal devices in the embodiments of the present application, such as intelligent transportation.
  • the terminal equipment can be statically fixed or mobile.
  • FIG. 2 is a schematic structural diagram of an access network device provided by an embodiment of the application. For the structure of the access network device, refer to FIG. 2.
  • the access network device includes at least one processor 111, at least one memory 112, at least one transceiver 113, at least one network interface 114, and one or more antennas 115.
  • the processor 111, the memory 112, the transceiver 113, and the network interface 114 are connected, for example, by a bus. In the embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment. .
  • the antenna 115 is connected to the transceiver 113.
  • the network interface 114 is used to connect the access network device to other communication devices through a communication link.
  • the network interface 114 may include a network interface between the access network device and a core network element, such as an S1 interface, and the network interface 114 may Including the network interface between the access network equipment and other network equipment (such as other access network equipment or core network network element), such as X2 or Xn interface.
  • a core network element such as an S1 interface
  • the network interface 114 may Including the network interface between the access network equipment and other network equipment (such as other access network equipment or core network network element), such as X2 or Xn interface.
  • the processor 111 is mainly used to process communication protocols and communication data, and to control the entire access network equipment, execute software programs, and process data of the software programs, for example, to support the access network equipment to execute the description in the embodiment action.
  • the access network equipment may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire access network equipment, execute software programs, and process software. Program data.
  • the processor 111 in FIG. 2 can integrate the functions of a baseband processor and a central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the access network equipment may include multiple baseband processors to adapt to different network standards, the access network equipment may include multiple central processors to enhance its processing capabilities, and the various components of the access network equipment may Connected by various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory is mainly used to store software programs and data.
  • the memory 112 may exist independently and is connected to the processor 111.
  • the memory 112 may be integrated with the processor 111, for example, integrated in one chip.
  • the memory 112 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 111 controls the execution.
  • Various types of computer program codes that are executed can also be regarded as drivers of the processor 111.
  • Figure 2 shows only one memory and one processor. In actual access network equipment, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the transceiver 113 may be used to support the reception or transmission of radio frequency signals between the access network device and the terminal device, and the transceiver 113 may be connected to the antenna 115.
  • the transceiver 113 includes a transmitter Tx and a receiver Rx. Specifically, one or more antennas 115 can receive radio frequency signals, and the receiver Rx of the transceiver 113 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 111, so that the processor 111 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 113 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 111, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through a Or multiple antennas 115 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and the digital-to-analog conversion processing
  • the order of precedence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver 113 may also be referred to as a transceiving unit, a transceiver, a transceiving device, and so on.
  • the device used to implement the receiving function in the transceiver unit can be regarded as the receiving unit
  • the device used to implement the transmitting function in the transceiver unit can be regarded as the transmitting unit. That is, the transceiver unit includes a receiving unit and a transmitting unit, and the receiving unit is also It can be called a receiver, an input port, a receiving circuit, etc., and a sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of the application. Refer to Figure 3 for the structure of the terminal device.
  • the terminal device includes at least one processor 211, at least one transceiver 212, and at least one memory 213.
  • the processor 211, the memory 213, and the transceiver 212 are connected.
  • the terminal device may further include an output device 214, an input device 215, and one or more antennas 216.
  • the antenna 216 is connected to the transceiver 212, and the output device 214 and the input device 215 are connected to the processor 211.
  • the transceiver 212, the memory 213, and the antenna 216 can refer to the related description in FIG. 2 to implement similar functions.
  • the processor 211 may be a baseband processor or a CPU, and the baseband processor and the CPU may be integrated or separated.
  • the processor 211 can be used to implement various functions for the terminal device, for example, to process communication protocols and communication data, or to control the entire terminal device, execute software programs, and process data in the software programs; or Assist in completing calculation processing tasks, such as processing graphics and images or audio processing, etc.; or the processor 211 is used to implement one or more of the above functions.
  • the output device 214 communicates with the processor 211 and can display information in a variety of ways.
  • the output device 214 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 215 communicates with the processor 211, and can accept user input in a variety of ways.
  • the input device 215 may be a mouse, a keyboard, a touch screen, a sensor, or the like.
  • the bandwidths of the receiving filter and the transmitting filter of each duplexer are both 30 MHz.
  • the maximum downlink bandwidth that can be allocated in the spectrum allocation of the China Broadcasting Network (CBN) is 40 MHz.
  • the bandwidth of the downlink frequency band can be configured as large as possible.
  • the duplexer used in the related art can only support a symmetrical uplink and downlink bandwidth of up to 30 MHz, and the bandwidth configuration of the uplink frequency band is consistent with the bandwidth of the downlink frequency band. Since the uplink signal sent by the user equipment mainly includes signaling and a small amount of data, it usually does not require a large bandwidth to complete.
  • the uplink bandwidth and downlink bandwidth with the same bandwidth may cause a waste of uplink spectrum resources, or,
  • the downlink spectrum is restricted by the duplexer and can only be allocated a maximum of 30MHz bandwidth at a time, which will cause some downlink spectrum resources to be unable to be allocated, thus reducing the utilization of spectrum resources; on the other hand, allocating uplink bandwidth and downlink bandwidth with the same bandwidth and bandwidth When it is larger, it is difficult to meet the out-of-band DTV spurious index protection requirements.
  • the embodiment of the present application proposes that asymmetric uplink and downlink bandwidths can be considered in spectrum allocation, and the uplink spectrum and the downlink spectrum can be decoupled.
  • the bandwidth of the uplink frequency band is allocated 30 MHz
  • the bandwidth of the downlink frequency band is allocated 40 MHz.
  • an embodiment of the present application provides a communication device for supporting transmission and reception filtering in the case where the uplink bandwidth and the downlink bandwidth are asymmetric.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a communication device according to an embodiment of the application.
  • the communication device may include: a first duplexer 41, a second duplexer 42 and a first switch 43.
  • the first output terminal 431 of the first switch 43 is connected to the input terminal of the first duplexer 41, and the second output terminal 432 of the first switch 43 is connected to the input terminal of the second duplexer 42.
  • the branch where the first duplexer 41 is located is connected.
  • the transmitting filter 411 of the first duplexer 41 corresponds to the first uplink frequency band
  • the receiving filter 412 of the first duplexer 41 corresponds to the first downlink frequency band
  • the bandwidth of the first downlink frequency band is greater than the bandwidth of the first uplink frequency band.
  • the transmitting filter 421 of the second duplexer 42 corresponds to the second uplink frequency band
  • the receiving filter 422 of the second duplexer 42 corresponds to the second downlink frequency band, and the bandwidth of the second downlink frequency band is greater than the bandwidth of the second uplink frequency band.
  • the bandwidths of the first downlink frequency band and the second downlink frequency band are the same.
  • the same can be understood as the bandwidth of the first downlink frequency band and the second downlink frequency band are the same, but the frequency positions of the two frequency bands are different.
  • the first downlink frequency band is 758MHz-803MHz
  • the second downlink frequency band is 703MHz-748MHz.
  • the bandwidth of each frequency band is 45 MHz, but the second downlink frequency band is located at the low frequency position, and the first downlink frequency band is located at the high frequency position.
  • the same can also be understood as the bandwidth and location of the first downlink frequency band and the second downlink frequency band are the same.
  • the first downlink frequency band and the second downlink frequency band are both 758MHz-803MHz, and the bandwidth is 45MHz.
  • the above-mentioned first uplink frequency band may refer to 703MHz-733MHz, with a bandwidth of 30MHz
  • the second uplink frequency band may refer to 718MHz-748MHz, and its bandwidth is 30MHz
  • the first downlink frequency band and the second downlink frequency band may refer to 758MHz. -803MHz, and its bandwidth is 45MHz.
  • the receiving filter 412 of the first duplexer 41 and the receiving filter 422 of the second duplexer 42 are full-bandwidth filters.
  • Full bandwidth can be understood as the entire downlink bandwidth that matches the communication standard supported by the communication system.
  • the communication device is provided with two duplexers, the transmitting filters of the two duplexers are respectively set to correspond to two different uplink frequency bands, and the receiving filters of the two duplexers are respectively set to correspond to two different uplink frequency bands.
  • the corresponding downstream frequency band of the receiving filter is larger than the corresponding upstream frequency band of the transmitting filter. Therefore, no matter which of the two duplexers is located on the branch of the switch, It can realize the transmission and reception filtering in the case of asymmetrical uplink bandwidth and downlink bandwidth, such as the asymmetrical uplink and downlink bandwidth of the 700MHz frequency band (n28). In this way, using the communication device provided by the embodiment of the invention, the downlink bandwidth is not limited by the size of the uplink bandwidth.
  • the spectrum resources of the downlink bandwidth can be fully utilized, thereby improving the utilization of spectrum resources.
  • the larger downlink frequency band in each duplexer in the duplexer provided by the embodiment of the present invention can provide a higher downlink peak rate for user equipment, while the smaller uplink frequency band can ensure that the out-of-band frequency band can be satisfied. Digital TV DTV spurious index protection requirements.
  • FIG. 5 is a schematic structural diagram of the second embodiment of the communication device according to the embodiment of the application.
  • the communication device may further include: a power amplifier (PA) 51, The second switch 52 and the antenna 53.
  • the output terminal of the PA 51 is connected to the input terminal of the first switch 43.
  • the output terminal of the first duplexer 41 is connected to the first input terminal 521 of the second switch 52, and the output of the second duplexer 42 is connected to the second input terminal 522 of the second switch 52.
  • the output terminal of the second switch 52 is connected to the antenna 53.
  • the PA 51 amplifies the power of the signal and transmits it to the first duplexer 41 or the second duplexer 42, and then cooperates with the second switch 52 to transmit the signal to the antenna 53.
  • the output terminal 432 and the second input terminal 522 switched to by the second switch 52 are connected to the branch where the second duplexer 42 is located.
  • FIG. 6 is a schematic structural diagram of Embodiment 3 of the communication device according to the embodiment of the application.
  • the communication device may further include: a first antenna 61 and a second antenna 62.
  • the output end of the first duplexer 41 is connected to the first antenna 61, and the output end of the second duplexer 42 is connected to the second antenna 62.
  • the first duplexer 41 and the first antenna 61 of the communication device are located on the same branch to realize the transmission and reception of one signal.
  • the second duplexer 42 and the second antenna 62 are located on the same branch to realize the transmission and reception of another signal. receive.
  • FIG. 7 is a flowchart of an embodiment of a communication method according to an embodiment of this application. As shown in FIG. 7, the communication method of this embodiment may include:
  • Step 701 Receive carrier configuration information.
  • the above-mentioned carrier configuration information includes the bandwidth and/or frequency of the carrier configured for the terminal equipment; when the carrier configuration information corresponds to the first uplink frequency band, the first switch in the communication device is switched to the first output terminal; when the carrier configuration information corresponds to In the second uplink frequency band, the first switch in the communication device is switched to the second output terminal.
  • the access network device configures a carrier for the terminal device, and then sends the carrier configuration information to the terminal device through a downlink signal.
  • the receiving filters in the two duplexers in the communication device correspond to the first downlink frequency band and the second downlink frequency band, respectively.
  • the bandwidths of the two are the same and the positions are different, or the bandwidths and positions of the two are the same. , Or both bandwidths are full bandwidth.
  • the downlink frequency band corresponding to the receiving filter is larger than the uplink frequency band corresponding to the transmitting filter in the same duplexer. Therefore, when determining the state of the first switch, the terminal device focuses on the configuration information of the uplink carrier in the carrier configuration information.
  • the terminal device when the carrier configuration information received by the terminal device is the bandwidth of the carrier, the terminal device focuses on the bandwidth of the uplink carrier which belongs to the frequency band supported by the transmission filter of the two duplexers.
  • the bandwidth of the uplink carrier is 703MHz-733MHz, and the bandwidth of the uplink carrier corresponds to the first uplink frequency band.
  • the terminal device switches the first switch in the communication device to the first output end; the bandwidth of the uplink carrier is 718MHz-748MHz At this time, the bandwidth of the uplink carrier corresponds to the second uplink frequency band, and the terminal equipment switches the first switch in the communication device to the second output end.
  • the terminal equipment when the carrier configuration information received by the terminal equipment is the frequency of the carrier, the terminal equipment focuses on the frequency of the uplink carrier which is supported by the transmission filter of the two duplexers. frequency band.
  • the frequency of the uplink carrier is 718MHz.
  • the frequency of the uplink carrier corresponds to the first uplink frequency band.
  • the terminal device switches the first switch in the communication device to the first output terminal; the frequency of the uplink carrier is 733MHz, At this time, the frequency of the uplink carrier corresponds to the second uplink frequency band, and the terminal equipment switches the first switch in the communication device to the second output terminal.
  • the terminal device when the carrier configuration information received by the terminal device is the bandwidth and frequency of the carrier, the terminal device focuses on the bandwidth and frequency of the uplink carrier. Which one of the two duplexers' transmission filtering The frequency band supported by the device. Please refer to the above description, which will not be repeated here.
  • the uplink carrier of the uplink frequency band corresponding to the transmitting filter and the downlink carrier of the downlink frequency band corresponding to the receiving filter need to follow a constraint relationship. That is, the bandwidth of the uplink carrier is within the bandwidth of the downlink mapped carrier, and the bandwidth of the downlink mapped carrier is obtained according to the first downlink frequency band or the second downlink frequency band and the default transceiver frequency interval.
  • FIG. 8 exemplarily shows a schematic diagram of carrier configuration. As shown in FIG. 8, assuming that the terminal equipment switches the first switch in the communication device to the first output terminal, the maximum uplink carrier that the terminal equipment can support at this time is The bandwidth is 703MHz-733MHz, and the maximum bandwidth of the downlink carrier is 758MHz-803MHz.
  • the bandwidth of the configured downlink carrier is 763MHz-803MHz (40MHZ in total)
  • the bandwidth of the downlink mapped carrier is 708MHZ-748MHz. Since the bandwidth of the uplink carrier needs to be within the bandwidth of the downlink mapped carrier, the terminal equipment configures the bandwidth of the uplink carrier to 708MHz- 733MHz (25MHz in total).
  • the bandwidth of the configured downlink carrier is 758MHz-798MHz (40MHz in total)
  • the bandwidth of the downlink mapped carrier is 703MHZ-743MHz. Since the bandwidth of the uplink carrier needs to be within the bandwidth of the downlink mapped carrier, the terminal equipment configures the bandwidth of the uplink carrier to 703MHz- 733MHz (30MHz in total).
  • Fig. 9 exemplarily shows another schematic diagram of carrier configuration.
  • the terminal equipment switches the first switch in the communication device to the second output terminal.
  • the terminal equipment can support the uplink carrier
  • the maximum bandwidth is 718MHz-748MHz
  • the maximum bandwidth of the downlink carrier is 758MHz-803MHz.
  • the bandwidth of the configured downlink carrier is 763MHz-803MHz (40MHz in total)
  • the bandwidth of the downlink mapped carrier is 708MHz-748MHz. Since the bandwidth of the uplink carrier needs to be within the bandwidth of the downlink mapped carrier, the terminal equipment configures the bandwidth of the uplink carrier to be 718MHz- 748MHz (30MHz in total).
  • the bandwidth of the configured downlink carrier is 758MHz-798MHz (40MHz in total)
  • the bandwidth of the downlink mapped carrier is 703MHz-743MHz. Since the bandwidth of the uplink carrier needs to be within the bandwidth of the downlink mapped carrier, the terminal equipment configures the bandwidth of the uplink carrier to be 718MHz- 743MHz (25MHz in total).
  • Step 702 Receive scheduling information.
  • the scheduling information indicates the uplink resource.
  • the bandwidth of the uplink resource is smaller than the bandwidth of the first uplink frequency band.
  • the bandwidth of the uplink resource is smaller than the bandwidth of the second uplink frequency band.
  • the maximum bandwidth of the uplink resource configured by the access network device to the terminal device cannot be greater than the bandwidth of the uplink frequency band corresponding to the transmit filter of the duplexer connected to the branch, that is, when the branch where the first duplexer is connected, The bandwidth of the uplink resource is smaller than the bandwidth of the first uplink frequency band, and when the branch where the second duplexer is located is connected, the bandwidth of the uplink resource is smaller than the bandwidth of the second uplink frequency band.
  • Terminal equipment can use the following two methods to ensure uplink and downlink transmission performance:
  • the first downlink frequency band is the same as the second downlink frequency band.
  • the same can be understood as the bandwidth and location of the first downlink frequency band and the second downlink frequency band are the same, for example, the first downlink frequency band and the second downlink frequency band are both 758MHz-803MHz.
  • the first downlink frequency band includes multiple sub-bands, and each sub-band in the multiple sub-bands corresponds to at least one sensitivity index.
  • the bandwidth and/or frequency of the carrier configured by the access network device for the terminal device corresponds to one of the multiple sub-bands.
  • the terminal equipment determines the sensitivity index of the communication device according to at least one sensitivity index corresponding to its sub-band.
  • the bandwidth of the configured downlink carrier can be divided into multiple sub-bands, and each sub-band defines at least one sensitivity index. The terminal device will relax the sensitivity index of the multiple sub-bands close to the uplink carrier to a certain extent.
  • the terminal device can limit the number of resource blocks (RB) for sending uplink data. If a terminal device can use a maximum of 50 RBs to send uplink data, and the number of RBs is limited, even if the terminal device is allocated 50 RBs, when actually sending uplink data, the number of RBs still needs to be reduced. For example, only 45 RBs can be used at most. Send upstream data. Preferably, when the terminal device switches the first switch to the second output terminal, the terminal device only needs to limit the number of RBs that send uplink data.
  • the above-mentioned number of RBs is illustrative, and the embodiment of the present application does not limit the number of RBs and the reduction amount of the number of RBs.
  • the terminal equipment can limit the maximum transmission power for sending uplink data. If the maximum transmit power of the terminal equipment can be 23dB, but considering the interference and the protection of adjacent frequency bands, the terminal equipment can only transmit to 20dB. Preferably, when the terminal device switches the first switch to the second output terminal, the terminal device only needs to limit the maximum transmission power for sending uplink data.
  • the foregoing transmission power is exemplary, and the embodiment of the present application does not limit the transmission power and the number of backoffs of the transmission power.
  • Step 703 Send a signal on the uplink resource.
  • the terminal equipment configures the connectivity status and carrier bandwidth of the branch where the two duplexers in the communication device are located on the basis of the carrier and uplink resources configured by the access network device, as well as the uplink and downlink transmissions.
  • the downlink bandwidth is not limited by the size of the uplink bandwidth.
  • the spectrum resources of the downlink bandwidth can be fully utilized, thereby increasing the spectrum resources. Utilization rate.
  • the larger downlink frequency band in each duplexer based on the duplexer can provide user equipment with a higher downlink peak rate, while the smaller uplink frequency band can ensure that the out-of-band DTV spurious index protection can be met. Claim.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware encoding processor, or executed and completed by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory mentioned in the above embodiments may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art or the part of the technical solutions can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • Including several instructions to make a computer device personal computer, server, or network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信装置、终端设备及通信方法。通信装置包括:第一双工器、第二双工器和第一切换开关;第一切换开关的第一输出端连接第一双工器的输入端,第一切换开关的第二输出端连接第二双工器的输入端;当第一切换开关切换到第一输出端,第一双工器所在支路连通;当第一切换开关切换到第二输出端时,第二双工器所在支路连通;其中,第一双工器的发射滤波器对应第一上行频带,第一双工器的接收滤波器对应第一下行频带,第一下行频带的带宽大于第一上行频带的带宽;第二双工器的发射滤波器对应第二上行频带,第二双工器的接收滤波器对应第二下行频带,第二下行频带的带宽大于第二上行频带的带宽。本申请实施例提高频谱资源利用率。

Description

通信装置、终端设备及通信方法 技术领域
本申请实施例涉及通信技术,尤其涉及一种通信装置、终端设备及通信方法。
背景技术
新无线(new radio,NR)系统的不同频段(band)中,700MHz的频分双工(frequency division duplexing,FDD)频段支持上下行各45MHz的对称频谱,其中,上行(uplink,UL)频段为703MHz-748MHz,下行(downlink,DL)频段为758MHz-803MHz。可见,用户设备(user equipment,UE)的发射(Tx)频谱(即UL band)与接收(Rx)频谱(即DL band)相隔较近,只有10MHz(748MHz-758MHz)的间隔。双工器中的发射滤波器和接收滤波器很难实现10MHz的频谱抑制需求。
相关技术中,UE采用双双工器解决上述问题。每个双工器的接收滤波器和发射滤波器的带宽均为30MHz,由两个双工器中的接收滤波器的30MHz带宽拼接成45MHz带宽,中间有15MHz的重叠区域,由两个双工器中的发射滤波器的30MHz带宽拼接成45MHz带宽,中间有15MHz的重叠区域。
但是,上述双双工器在一些场景下无法充分利用运营商的频谱资源,存在频谱浪费的问题,而且UE的峰值速率受限。
发明内容
本申请实施例提供一种通信装置、终端设备及通信方法,以提高频谱资源利用率。
第一方面,本申请实施例提供一种通信装置,包括:第一双工器、第二双工器和第一切换开关;其中,所述第一切换开关的第一输出端连接所述第一双工器的输入端,所述第一切换开关的第二输出端连接所述第二双工器的输入端;当所述第一切换开关切换到第一输出端,所述第一双工器所在支路连通;当所述第一切换开关切换到第二输出端时,所述第二双工器所在支路连通;其中,所述第一双工器的发射滤波器对应第一上行频带,所述第一双工器的接收滤波器对应第一下行频带,所述第一下行频带的带宽大于所述第一上行频带的带宽;所述第二双工器的发射滤波器对应第二上行频带,所述第二双工器的接收滤波器对应第二下行频带,所述第二下行频带的带宽大于所述第二上行频带的带宽。
该通信装置中设置有两个双工器,该两个双工器的发射滤波器分别被设置为对应两个不同的上行频带,该两个双工器的接收滤波器分别被设置为对应两个下行频带,而在同一个双工器中,接收滤波器对应的下行频带大于发射滤波器的对应的上行频带,因此,无论切换开关将两个双工器中的哪个双工器所在的支路连通,都可以实现上行带宽和下行带宽非对称情况下的收发滤波,例如700MHz频段(n28)的上下行非对称带宽。这样,应用发明实施例提供的通信装置,下行带宽不受上行带宽的大小限制,在下行带宽大于上行带宽的场景下,可以充分利用下行带宽的频谱资源,从而提高了频谱资源利用率。另外,本发明实施例提供的双双工器中的每个双工器中较大的下行频带可以为用户设备提供更高的下行峰值速率,而较小的上行频带,可以确保能够满足带外的数字电视(digital TV,DTV)杂散指标保护要求。
在一种可能的实现方式中,所述第一下行频带与所述第二下行频带的带宽相同。
在一种可能的实现方式中,所述第一上行频带为703MHz-733MHz,所述第二上行频带为718MHz-748MHz,所述第一下行频带和所述第二下行频带为758MHz-803MHz。
在一种可能的实现方式中,所述第一双工器的接收滤波器和所述第二双工器的接收滤波器为全带宽滤波器。
在一种可能的实现方式中,还包括:功率放大器PA;所述PA的输出端连接所述第一切换开关的输入端。
在一种可能的实现方式中,还包括:第二切换开关和天线;所述第一双工器的输出端连接所述第二切换开关的第一输入端,所述第二双工器的输出端连接所述第二切换开关的第二输入端;所述第二切换开关的输出端连接所述天线。
该通信装置由PA对信号进行功率放大后输送至第一双工器或第二双工器,再配合第二切换开关,将信号输送至天线。
在一种可能的实现方式中,还包括:第一天线和第二天线;所述第一双工器的输出端连接所述第一天线,所述第二双工器的输出端连接所述第二天线。
该通信装置第一双工器和第一天线位于同一支路,实现一路信号的发送和接收,第二双工器和第二天线位于同一支路,实现另一路信号的发送和接收。
第二方面,本申请实施例提供一种应用上述第一方面中任一项所述的通信装置的通信方法,包括:接收载波配置信息,其中,所述载波配置信息包括为终端设备配置的载波的带宽和/或频点;以及,当所述载波配置信息对应于所述第一上行频带,所述第一切换开关切换到所述第一输出端;当所述载波配置信息对应于所述第二上行频带,所述第一切换开关切换到所述第二输出端。
针对上述通信装置,终端设备在接入网设备配置的载波、上行资源的基础上,配置通信装置中的两个双工器所在支路的连通状态和载波带宽,以及上下行传输的相关参数,确保上行带宽和下行带宽非对称情况下的上下行传输性能。这样,应用上述第一方面的通信装置,下行带宽不受上行带宽的大小限制,在下行带宽大于上行带宽的场景下,可以充分利用下行带宽的频谱资源,从而提高了频谱资源利用率。另外,基于双双工器中的每个双工器中较大的下行频带可以为用户设备提供更高的下行峰值速率,而较小的上行频带,可以确保能够满足带外的DTV杂散指标保护要求。
在一种可能的实现方式中,还包括:接收调度信息,其中,所述调度信息指示上行资源,当所述第一切换开关切换到所述第一输出端,所述上行资源的带宽小于所述第一上行频带的带宽,当所述第一切换开关切换到所述第二输出端,所述上行资源的带宽小于所述第二上行频带的带宽;在所述上行资源上发送信号。
在一种可能的实现方式中,所述第一下行频带与所述第二下行频带相同;所述第一下行频带包括多个子频带,所述多个子频带中的每个子频带对应至少一个灵敏度指标;所述为终端设备配置的载波的带宽和/或频点对应所述多个子频带中的一个子频带;所述方法还包括:根据所述一个子频带对应的至少一个灵敏度指标,确定所述通信装置的灵敏度指标。
在一种可能的实现方式中,所述载波包括上行载波,所述上行载波的带宽在下行映射载波带宽内,所述下行映射载波带宽是根据所述第一下行频带或所述第二下行频带以及默 认收发频率间隔得到。
第三方面,本申请实施例提供一种终端设备,包括:上述第一方面中任一项所述的通信装置。
第四方面,提供一种终端设备,包括一个或多个处理器,所述一个或多个处理器用于执行存储器中的一个或多个程序,使得所述终端设备实现如上述第二方面中任一项所述的方法。
第五方面,提供一种计算机可读存储介质,存储有计算机程序或指令,所述计算机程序或指令用于实现如上述第二方面中任一项所述的方法。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种接入网设备的结构示意图;
图3为本申请实施例提供的一种终端设备的结构示意图;
图4为本申请实施例通信装置实施例一的结构示意图;
图5为本申请实施例通信装置实施例二的结构示意图;
图6为本申请实施例通信装置实施例三的结构示意图;
图7为本申请实施例通信方法实施例的流程图;
图8示例性的示出了一种载波配置示意图;
图9示例性的示出了另一种载波配置示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请实施例保护的范围。
本申请实施例的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请实施例中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供了一种通信系统,该通信系统可以包括接入网设备和至少一个终端 设备,接入网设备可以与每个终端设备建立无线连接,终端设备之间可以建立无线连接。图1为本申请实施例提供的一种通信系统的示意图,如图1所示,接入网设备为接入网设备11,至少一个终端设备为终端设备21、终端设备22、终端设备23和终端设备24,其中,接入网设备11与终端设备21之间可以建立无线连接,接入网设备11和终端设备22之间可以建立无线连接,终端设备21和终端设备23可以建立无线连接,终端设备21和终端设备24可以建立无线连接。需要说明的是,图1所示的通信系统包含的接入网设备和终端设备仅仅是示例,接入网设备与终端设备之间的连接方式也仅是一种示例,在本申请实施例中,所述通信系统包含的网元的类型、数量,以及网元之间的连接关系不限于此。
该通信系统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如长期演进(long term evolution,LTE)接入技术;或者,该通信系统也可以是支持第五代(fifth generation,5G)接入技术通信系统,例如新无线(new radio,NR)接入技术;或者,该通信系统也可以是支持第三代(third generation,3G)接入技术的通信系统,例如(universal mobile telecommunications system,UMTS)接入技术;或者,该通信系统还可以是支持多种无线技术的通信系统,例如支持LTE技术和NR技术的通信系统。另外,该通信系统也可以适用于面向未来的通信技术。
本申请实施例中的接入网设备可以是接入网侧用于支持终端设备接入通信系统的设备,接入网设备可以称为基站(base station,BS),例如,可以是2G接入技术通信系统中的基站收发信台(base transceiver station,BTS)和基站控制器(base station controller,BSC)、3G接入技术通信系统中的节点B(node B)和无线网络控制器(radio network controller,RNC)、4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等等。
本申请实施例中的终端设备(terminal device)可以是一种向用户提供语音或者数据连通性的设备。终端设备可以称为用户设备(user equipment,UE)、移动台(mobile station)、用户单元(subscriber unit)、站台(station)、终端设备(terminal equipment,TE)、或者终端等。终端设备可以为蜂窝电话(cellular phone)、车载无线通信设备、个人数字助理(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)、无线本地环路(wireless local loop,WLL)台、平板电脑(pad)等。随着无线通信技术的发展,可以接入无线通信网络、可以与无线网络侧进行通信,或者通过无线网络与其它物体进行通信的设备都可以是本申请实施例中的终端设备,譬如,智能交通中的终端设备和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。终端设备可以是静态固定的,也可以是移动的。
图2为本申请实施例提供的一种接入网设备的结构示意图,接入网设备的结构可以参考图2。
接入网设备包括至少一个处理器111、至少一个存储器112、至少一个收发器113、至少一个网络接口114和一个或多个天线115。处理器111、存储器112、收发器113和网络接口114相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线115与收发器113相连。网络接口114用 于使得接入网设备通过通信链路,与其它通信设备相连,例如网络接口114可以包括接入网设备与核心网网元之间的网络接口,例如S1接口,网络接口114可以包括接入网设备和其他网络设备(例如其他接入网设备或者核心网网元)之间的网络接口,例如X2或者Xn接口。
处理器111主要用于对通信协议以及通信数据进行处理,以及对整个接入网设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持接入网设备执行实施例中所描述的动作。接入网设备可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个接入网设备进行控制,执行软件程序,处理软件程序的数据。图2中的处理器111可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,接入网设备可以包括多个基带处理器以适应不同的网络制式,接入网设备可以包括多个中央处理器以增强其处理能力,接入网设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器112可以是独立存在,与处理器111相连。可选的,存储器112可以和处理器111集成在一起,例如集成在一个芯片之内。其中,存储器112能够存储执行本申请实施例的技术方案的程序代码,并由处理器111来控制执行,被执行的各类计算机程序代码也可被视为是处理器111的驱动程序。
图2仅示出了一个存储器和一个处理器。在实际的接入网设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器113可以用于支持接入网设备与终端设备之间射频信号的接收或者发送,收发器113可以与天线115相连。收发器113包括发射机Tx和接收机Rx。具体地,一个或多个天线115可以接收射频信号,该收发器113的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器111,以便处理器111对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器113中的发射机Tx还用于从处理器111接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线115发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器113也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送 单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图3为本申请实施例提供的一种终端设备的结构示意图。终端设备的结构可以参考图3。
终端设备包括至少一个处理器211、至少一个收发器212和至少一个存储器213。处理器211、存储器213和收发器212相连。可选的,终端设备还可以包括输出装置214、输入装置215和一个或多个天线216。天线216与收发器212相连,输出装置214、输入装置215与处理器211相连。
收发器212、存储器213以及天线216可以参考图2中的相关描述,实现类似功能。
处理器211可以是基带处理器,也可以是CPU,基带处理器和CPU可以集成在一起,或者分开。
处理器211可以用于为终端设备实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个终端设备设备进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如对图形图像处理或者音频处理等等;或者处理器211用于实现上述功能中的一种或者多种。
输出装置214和处理器211通信,可以以多种方式来显示信息。例如,输出装置214可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备、或投影仪(projector)等。输入装置215和处理器211通信,可以以多种方式接受用户的输入。例如,输入装置215可以是鼠标、键盘、触摸屏或传感器等。
相关技术中的双双工器中,每个双工器的接收滤波器和发射滤波器的带宽均为30MHz。然而,中国广播电视网络(china broadcasting network,CBN)的频谱分配中可分配的最大下行带宽为40MHz。为了为用户设备提供尽可能高的下行峰值速率,可以将下行频带的带宽配置的尽可能大。而相关技术中使用的双双工器只能支持对称的且最大为30MHz的上下行带宽,而且上行频带的带宽配置的与下行频带的带宽一致。由于用户设备发送的上行信号主要包括信令和少量数据,通常不需要很大的带宽即可完成,而如果分配带宽大小相同的上行带宽和下行带宽,可能会导致上行频谱资源的浪费,或者,下行频谱受双工器限制一次最大只能分配30MHz带宽,又会导致部分下行频谱资源无法被分配,因此降低了频谱资源利用率;另一方面,分配带宽大小相同的上行带宽和下行带宽且带宽较大时,难以满足带外的DTV杂散指标保护要求。
本申请实施例提出了可以在频谱分配上考虑非对称上下行带宽,将上行频谱和下行频谱解耦,例如上行频带的带宽分配30MHz,下行频带的带宽分配40MHz。基于该分配方案,本申请实施例提供了一种通信装置,用于支持上行带宽和下行带宽非对称情况下的收发滤波。
本申请实施例提供了一种通信装置,该通信装置可以应用于上述终端设备的收发器212中。图4为本申请实施例通信装置实施例一的结构示意图,如图4所示,该通信装置可以包括:第一双工器41、第二双工器42和第一切换开关43。其中,第一切换开关43的第一输出端431连接第一双工器41的输入端,第一切换开关43的第二输出端432连接第二双工器42的输入端。当第一切换开关43切换到第一输出端431,第一双工器41所 在支路连通。当第一切换开关43切换到第二输出端432时,第二双工器42所在支路连通。第一双工器41的发射滤波器411对应第一上行频带,第一双工器41的接收滤波器412对应第一下行频带,第一下行频带的带宽大于第一上行频带的带宽。第二双工器42的发射滤波器421对应第二上行频带,第二双工器42的接收滤波器422对应第二下行频带,第二下行频带的带宽大于第二上行频带的带宽。
可选的,上述第一下行频带与第二下行频带的带宽相同。相同可以理解为第一下行频带与第二下行频带的带宽相同,但两个频带的频率位置不同,例如,第一下行频带为758MHz-803MHz,第二下行频带为703MHz-748MHz,该两个频带的带宽均为45MHz,但第二下行频带位于低频位置,第一下行频带位于高频位置。相同也可以理解为第一下行频带与第二下行频带的带宽和位置均相同,例如,第一下行频带和第二下行频带均为758MHz-803MHz,其带宽为45MHz。
优选的,上述第一上行频带可以是指703MHz-733MHz,其带宽为30MHz,第二上行频带可以是指718MHz-748MHz,其带宽为30MHz,第一下行频带和第二下行频带可以是指758MHz-803MHz,其带宽为45MHz。
在一种可能的实现方式中,第一双工器41的接收滤波器412和第二双工器42的接收滤波器422为全带宽滤波器。全带宽可以理解为与通信系统所支持的通信制式匹配的整个下行带宽。
该通信装置中设置有两个双工器,该两个双工器的发射滤波器分别被设置为对应两个不同的上行频带,该两个双工器的接收滤波器分别被设置为对应两个下行频带,而在同一个双工器中,接收滤波器对应的下行频带大于发射滤波器的对应的上行频带,因此,无论切换开关将两个双工器中的哪个双工器所在的支路连通,都可以实现上行带宽和下行带宽非对称情况下的收发滤波,例如700MHz频段(n28)的上下行非对称带宽。这样,应用发明实施例提供的通信装置,下行带宽不受上行带宽的大小限制,在下行带宽大于上行带宽的场景下,可以充分利用下行带宽的频谱资源,从而提高了频谱资源利用率。另外,本发明实施例提供的双双工器中的每个双工器中较大的下行频带可以为用户设备提供更高的下行峰值速率,而较小的上行频带,可以确保能够满足带外的数字电视DTV杂散指标保护要求。
在图4所示通信装置的基础上,图5为本申请实施例通信装置实施例二的结构示意图,如图5所示,该通信装置还可以包括:功率放大器(power amplifier,PA)51、第二切换开关52和天线53。其中,PA 51的输出端连接第一切换开关43的输入端。第一双工器41的输出端连接第二切换开关52的第一输入端521,第二双工器42的输出端连接第二切换开关52的第二输入端522。第二切换开关52的输出端连接天线53。
该通信装置由PA 51对信号进行功率放大后输送至第一双工器41或第二双工器42,再配合第二切换开关52,将信号输送至天线53。第一切换开关43切换到的第一输出端431且第二切换开关52切换到的第一输入端521,第一双工器41所在的支路连通,第一切换开关43切换到的第二输出端432且第二切换开关52切换到的第二输入端522,第二双工器42所在的支路连通。
在图4所示通信装置的基础上,图6为本申请实施例通信装置实施例三的结构示意图,如图6所示,该通信装置还可以包括:第一天线61和第二天线62。其中,第一双工器41 的输出端连接第一天线61,第二双工器42的输出端连接第二天线62。
该通信装置第一双工器41和第一天线61位于同一支路,实现一路信号的发送和接收,第二双工器42和第二天线62位于同一支路,实现另一路信号的发送和接收。
本申请实施例提供了一种应用上述任一装置实施例中的通信装置的通信方法,该通信方法可以由包括上述通信装置的终端设备执行。图7为本申请实施例通信方法实施例的流程图,如图7所示,本实施例的通信方法可以包括:
步骤701、接收载波配置信息。
上述载波配置信息包括为终端设备配置的载波的带宽和/或频点;当载波配置信息对应于第一上行频带,通信装置中的第一切换开关切换到第一输出端;当载波配置信息对应于第二上行频带,通信装置中的第一切换开关切换到第二输出端。
接入网设备为终端设备配置载波,然后通过下行信号将载波配置信息发送给终端设备。如上所述,通信装置中的两个双工器中的接收滤波器分别对应第一下行频带和第二下行频带,可以是二者带宽相同位置不同,或者可以是二者带宽和位置均相同,或者二者的带宽均为全带宽。且接收滤波器对应的下行频带大于同一双工器中发射滤波器对应的上行频带。因此终端设备在确定第一切换开关的状态时,重点关注载波配置信息中的上行载波的配置信息。
在一种可能的实现方式中,当终端设备接收到的载波配置信息是载波的带宽时,终端设备重点关注上行载波的带宽属于两个双工器中哪一个的发射滤波器所支持的频带。例如,上行载波的带宽为703MHz-733MHz,此时上行载波的带宽对应于第一上行频带,终端设备将通信装置中的第一切换开关切换到第一输出端;上行载波的带宽为718MHz-748MHz,此时上行载波的带宽对应于第二上行频带,终端设备将通信装置中的第一切换开关切换到第二输出端。
在一种可能的实现方式中,当终端设备接收到的载波配置信息是载波的频点时,终端设备重点关注上行载波的频点属于两个双工器中哪一个的发射滤波器所支持的频带。例如,上行载波的频点为718MHz,此时上行载波的频点对应于第一上行频带,终端设备将通信装置中的第一切换开关切换到第一输出端;上行载波的频点为733MHz,此时上行载波的频点对应于第二上行频带,终端设备将通信装置中的第一切换开关切换到第二输出端。
在一种可能的实现方式中,当终端设备接收到的载波配置信息是载波的带宽和频点时,终端设备重点关注上行载波的带宽和频点属于两个双工器中哪一个的发射滤波器所支持的频带。可参照上述说明,此处不再赘述。
优选的,终端设备在配置双工器中的发射滤波器和接收滤波器的频带时,发射滤波器对应的上行频带的上行载波和接收滤波器对应的下行频带的下行载波需要遵循约束关系。即上行载波的带宽在下行映射载波带宽内,下行映射载波带宽是根据第一下行频带或第二下行频带以及默认收发频率间隔得到。
图8示例性的示出了一种载波配置示意图,如图8所示,假设终端设备将通信装置中的第一切换开关切换到第一输出端,此时终端设备可以支持的上行载波的最大带宽为703MHz-733MHz,下行载波的最大带宽为758MHz-803MHz。
当配置下行载波的带宽为763MHz-803MHz(共40MHZ)时,下行映射载波带宽为 708MHZ-748MHz,由于需要满足上行载波的带宽在下行映射载波带宽内,因此终端设备配置上行载波的带宽为708MHz-733MHz(共25MHz)。
当配置下行载波的带宽为758MHz-798MHz(共40MHz)时,下行映射载波带宽为703MHZ-743MHz,由于需要满足上行载波的带宽在下行映射载波带宽内,因此终端设备配置上行载波的带宽为703MHz-733MHz(共30MHz)。
图9示例性的示出了另一种载波配置示意图,如图9所示,假设终端设备将通信装置中的第一切换开关切换到第二输出端,此时终端设备可以支持的上行载波的最大带宽为718MHz-748MHz,下行载波的最大带宽为758MHz-803MHz。
当配置下行载波的带宽为763MHz-803MHz(共40MHz)时,下行映射载波带宽为708MHz-748MHz,由于需要满足上行载波的带宽在下行映射载波带宽内,因此终端设备配置上行载波的带宽为718MHz-748MHz(共30MHz)。
当配置下行载波的带宽为758MHz-798MHz(共40MHz)时,下行映射载波带宽为703MHz-743MHz,由于需要满足上行载波的带宽在下行映射载波带宽内,因此终端设备配置上行载波的带宽为718MHz-743MHz(共25MHz)。
步骤702、接收调度信息。
调度信息指示上行资源,当通信装置中的第一切换开关切换到第一输出端,上行资源的带宽小于第一上行频带的带宽,当通信装置中的第一切换开关切换到第二输出端,上行资源的带宽小于第二上行频带的带宽。接入网设备配置给终端设备的上行资源,其最大带宽不能大于所在支路连通的双工器的发射滤波器所对应的上行频带的带宽,即第一双工器所在的支路连通时,上行资源的带宽小于第一上行频带的带宽,第二双工器所在的支路连通时,上行资源的带宽小于第二上行频带的带宽。
终端设备可以采用以下两种方法确保上下行传输性能:
一、优先保证上行传输性能
第一下行频带与第二下行频带相同。相同可以理解为第一下行频带和第二下行频带的带宽和位置都一样,例如,第一下行频带和第二下行频带均为758MHz-803MHz。第一下行频带包括多个子频带,多个子频带中的每个子频带对应至少一个灵敏度指标。接入网设备为终端设备配置的载波的带宽和/或频点对应多个子频带中的一个子频带。此时终端设备根据其子频带对应的至少一个灵敏度指标,确定通信装置的灵敏度指标。优选的,可以将配置的下行载波的带宽分成多个子频带,每个子频带定义至少一个灵敏度指标,终端设备将多个子频带中靠近上行载波者,其灵敏度指标做一定程度的放松。
二、优先保证下行传输性能
(1)终端设备可以限制发送上行数据的资源块(resource block,RB)数量。如果终端设备最大可以采用50个RB发送上行数据,通过RB数量限制,终端设备即使被分配了50个RB,在实际发送上行数据时,仍需要减少该RB数量,例如最多只能采用45个RB发送上行数据。优选的,当终端设备将第一切换开关切换到第二输出端时,终端设备才需要限制发送上行数据的RB数量。上述RB数量为示例性说明,本申请实施例并不限定RB数量和RB数量的减少量。
(2)终端设备可以限制发送上行数据的最大发射功率。如果终端设备的最大发射功率可以是23dB,但是考虑到干扰、相邻频带的保护,终端设备只能发到20dB。优选的, 当终端设备将第一切换开关切换到第二输出端时,终端设备才需要限制发送上行数据的最大发射功率。上述发射功率为示例性说明,本申请实施例并不限定发射功率和发射功率的回退数量。
步骤703、在上行资源上发送信号。
本实施例,针对上述通信装置,终端设备在接入网设备配置的载波、上行资源的基础上,配置通信装置中的两个双工器所在支路的连通状态和载波带宽,以及上下行传输的相关参数,确保上行带宽和下行带宽非对称情况下的上下行传输性能。这样,应用上述图4-6任一所示的通信装置,下行带宽不受上行带宽的大小限制,在下行带宽大于上行带宽的场景下,可以充分利用下行带宽的频谱资源,从而提高了频谱资源利用率。另外,基于双双工器中的每个双工器中较大的下行频带可以为用户设备提供更高的下行峰值速率,而较小的上行频带,可以确保能够满足带外的DTV杂散指标保护要求。
在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、特定应用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述各实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(个人计算机,服务器,或者网络设备等)执行本申请实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种通信装置,其特征在于,包括:第一双工器、第二双工器和第一切换开关;其中,
    所述第一切换开关的第一输出端连接所述第一双工器的输入端,所述第一切换开关的第二输出端连接所述第二双工器的输入端;
    当所述第一切换开关切换到第一输出端,所述第一双工器所在支路连通;当所述第一切换开关切换到第二输出端时,所述第二双工器所在支路连通;
    其中,所述第一双工器的发射滤波器对应第一上行频带,所述第一双工器的接收滤波器对应第一下行频带,所述第一下行频带的带宽大于所述第一上行频带的带宽;
    所述第二双工器的发射滤波器对应第二上行频带,所述第二双工器的接收滤波器对应第二下行频带,所述第二下行频带的带宽大于所述第二上行频带的带宽。
  2. 根据权利要求1所述的装置,其特征在于,所述第一下行频带与所述第二下行频带的带宽相同。
  3. 根据权利要求2所述的装置,其特征在于,所述第一上行频带为703MHz-733MHz,所述第二上行频带为718MHz-748MHz,所述第一下行频带和所述第二下行频带为758MHz-803MHz。
  4. 根据权利要求1-3中任一项所述的装置,其特征在于,所述第一双工器的接收滤波器和所述第二双工器的接收滤波器为全带宽滤波器。
  5. 根据权利要求1-4中任一项所述的装置,其特征在于,还包括:功率放大器PA;
    所述PA的输出端连接所述第一切换开关的输入端。
  6. 根据权利要求1-5中任一项所述的装置,其特征在于,还包括:第二切换开关和天线;
    所述第一双工器的输出端连接所述第二切换开关的第一输入端,所述第二双工器的输出端连接所述第二切换开关的第二输入端;所述第二切换开关的输出端连接所述天线。
  7. 根据权利要求1-5中任一项所述的装置,其特征在于,还包括:第一天线和第二天线;
    所述第一双工器的输出端连接所述第一天线,所述第二双工器的输出端连接所述第二天线。
  8. 一种终端设备,其特征在于,包括:权利要求1-7中任一项所述的通信装置。
  9. 一种应用权利要求1-7中任一项所述的通信装置的通信方法,其特征在于,包括:
    接收载波配置信息,其中,所述载波配置信息包括为终端设备配置的载波的带宽和/或频点;以及,
    当所述载波配置信息对应于所述第一上行频带,所述第一切换开关切换到所述第一输出端;
    当所述载波配置信息对应于所述第二上行频带,所述第一切换开关切换到所述第二输出端。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    接收调度信息,其中,所述调度信息指示上行资源,当所述第一切换开关切换到所述 第一输出端,所述上行资源的带宽小于所述第一上行频带的带宽,当所述第一切换开关切换到所述第二输出端,所述上行资源的带宽小于所述第二上行频带的带宽;
    在所述上行资源上发送信号。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一下行频带与所述第二下行频带相同;所述第一下行频带包括多个子频带,所述多个子频带中的每个子频带对应至少一个灵敏度指标;所述为终端设备配置的载波的带宽和/或频点对应所述多个子频带中的一个子频带;
    所述方法还包括:
    根据所述一个子频带对应的至少一个灵敏度指标,确定所述通信装置的灵敏度指标。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,所述载波包括上行载波,所述上行载波的带宽在下行映射载波带宽内,所述下行映射载波带宽是根据所述第一下行频带或所述第二下行频带以及默认收发频率间隔得到。
  13. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令用于实现权利要求9-12中任一项所述的方法。
PCT/CN2019/123583 2019-12-06 2019-12-06 通信装置、终端设备及通信方法 WO2021109111A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980100376.0A CN114402534B (zh) 2019-12-06 2019-12-06 通信装置、终端设备及通信方法
EP19955129.2A EP4060902A4 (en) 2019-12-06 2019-12-06 COMMUNICATION APPARATUS, TERMINAL DEVICE, AND COMMUNICATION METHOD
PCT/CN2019/123583 WO2021109111A1 (zh) 2019-12-06 2019-12-06 通信装置、终端设备及通信方法
US17/831,751 US20220303103A1 (en) 2019-12-06 2022-06-03 Communication apparatus, terminal device, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123583 WO2021109111A1 (zh) 2019-12-06 2019-12-06 通信装置、终端设备及通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/831,751 Continuation US20220303103A1 (en) 2019-12-06 2022-06-03 Communication apparatus, terminal device, and communication method

Publications (1)

Publication Number Publication Date
WO2021109111A1 true WO2021109111A1 (zh) 2021-06-10

Family

ID=76222158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123583 WO2021109111A1 (zh) 2019-12-06 2019-12-06 通信装置、终端设备及通信方法

Country Status (4)

Country Link
US (1) US20220303103A1 (zh)
EP (1) EP4060902A4 (zh)
CN (1) CN114402534B (zh)
WO (1) WO2021109111A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510297A (zh) * 2011-11-04 2012-06-20 中兴通讯股份有限公司 功率放大模块、多模射频收发器、双工器和多模终端
CN102640423A (zh) * 2009-12-03 2012-08-15 株式会社Ntt都科摩 无线电通信终端
CN104685791A (zh) * 2012-09-26 2015-06-03 美国博通公司 适配于在第一通信模式和第二通信模式下操作的收发器装置
WO2016099449A1 (en) * 2014-12-15 2016-06-23 Entropic Communications, Inc. Flexible upstream and downstream loading
US20160381687A1 (en) * 2015-06-25 2016-12-29 Samsung Electronics Co., Ltd. Communication device and electronic device including the same
CN108886349A (zh) * 2016-03-31 2018-11-23 株式会社村田制作所 频率可变滤波器、rf前端电路以及通信终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8325670B2 (en) * 2006-03-31 2012-12-04 Nextel Communications, Inc. Method, apparatus and computer-readable medium for asymmetric frequency division duplexing operation
GB2457011B (en) * 2008-01-18 2010-09-29 Toshiba Res Europ Ltd Wireless communications apparatus
US8125974B2 (en) * 2008-05-02 2012-02-28 Wi-Lan, Inc. Transmit emission control in a wireless transceiver
US8369250B1 (en) * 2009-10-07 2013-02-05 Rf Micro Devices, Inc. Multi-mode split band duplexer architecture
US8892057B2 (en) * 2011-08-23 2014-11-18 Rf Micro Devices, Inc. Carrier aggregation radio system
CN104883199A (zh) * 2015-05-12 2015-09-02 惠州Tcl移动通信有限公司 一种无线终端及其数据接收、发送方法
KR20180062979A (ko) * 2016-11-05 2018-06-11 애플 인크. 비대칭 대역폭 지원 및 동적 대역폭 조정

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640423A (zh) * 2009-12-03 2012-08-15 株式会社Ntt都科摩 无线电通信终端
CN102510297A (zh) * 2011-11-04 2012-06-20 中兴通讯股份有限公司 功率放大模块、多模射频收发器、双工器和多模终端
CN104685791A (zh) * 2012-09-26 2015-06-03 美国博通公司 适配于在第一通信模式和第二通信模式下操作的收发器装置
WO2016099449A1 (en) * 2014-12-15 2016-06-23 Entropic Communications, Inc. Flexible upstream and downstream loading
US20160381687A1 (en) * 2015-06-25 2016-12-29 Samsung Electronics Co., Ltd. Communication device and electronic device including the same
CN108886349A (zh) * 2016-03-31 2018-11-23 株式会社村田制作所 频率可变滤波器、rf前端电路以及通信终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; LTE for 700 MHz digital dividend (Release 11)", 3GPP STANDARD; 3GPP TR 36.820, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. V11.2.0, 7 January 2013 (2013-01-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 35, XP050691683 *
See also references of EP4060902A4 *

Also Published As

Publication number Publication date
US20220303103A1 (en) 2022-09-22
EP4060902A4 (en) 2022-11-30
CN114402534A (zh) 2022-04-26
CN114402534B (zh) 2023-02-03
EP4060902A1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2015154437A1 (zh) 一种支持载波聚合的方法及终端
CN109392120B (zh) 信息指示方法及相关设备
WO2021175308A1 (zh) 一种应用于多链路通信中的节能方法和通信装置
US10686918B2 (en) Media access control protocol data unit processing method and apparatus
CN103109474A (zh) 宽带传输的共存方法
CN111602445B (zh) 通信的方法、网络设备和终端设备
CN101697640A (zh) 一种基于软件无线电的无线通信用户端设备
WO2021139709A1 (zh) 一种设备到设备d2d传输方法及通信装置
US11825322B2 (en) Measurement control method, terminal, and non-transitory computer-readable storage medium
CN112398626B (zh) 一种信息传输方法、通信装置和系统
CN107426050B (zh) 数据中继传输系统及其构建方法与无线中继设备
US20220116990A1 (en) Apparatus, system, and method of suspending a wireless communication
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
WO2023124455A1 (zh) 通信控制方法、装置、射频系统、通信设备和存储介质
CN115884438A (zh) 接入点(ap)的链路禁用的装置、系统和方法
CN110035548B (zh) 通信的方法和通信设备
CN110876201A (zh) 一种上行传输方法和装置
US20230345278A1 (en) Measurement method, scheduling method, and related apparatus
WO2021109111A1 (zh) 通信装置、终端设备及通信方法
WO2020043011A1 (zh) 一种ui显示方法、终端设备及装置
WO2022267604A1 (zh) 信道检测的方法和装置
WO2021209013A1 (zh) 无线通信方法、终端设备和网络设备
WO2020082381A1 (zh) 一种接入控制方法、终端及存储介质
CN111491377B (zh) 资源分配方法、终端及基站
WO2024148504A1 (zh) 关断物理天线的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019955129

Country of ref document: EP

Effective date: 20220614

NENP Non-entry into the national phase

Ref country code: DE