WO2021109037A1 - 混合自动重传请求harq反馈的方法和通信装置 - Google Patents

混合自动重传请求harq反馈的方法和通信装置 Download PDF

Info

Publication number
WO2021109037A1
WO2021109037A1 PCT/CN2019/123096 CN2019123096W WO2021109037A1 WO 2021109037 A1 WO2021109037 A1 WO 2021109037A1 CN 2019123096 W CN2019123096 W CN 2019123096W WO 2021109037 A1 WO2021109037 A1 WO 2021109037A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
scheduling signaling
downlink data
rnti
unicast
Prior art date
Application number
PCT/CN2019/123096
Other languages
English (en)
French (fr)
Inventor
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/123096 priority Critical patent/WO2021109037A1/zh
Priority to CN201980102595.2A priority patent/CN114747236B/zh
Publication of WO2021109037A1 publication Critical patent/WO2021109037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present application relates to the field of wireless communication, and more specifically, to a method and communication device for HARQ feedback of hybrid automatic repeat request.
  • the receiving end after receiving the downlink data sent by the sending end, the receiving end needs to send the hybrid automatic repeat request (HARQ) feedback information determined according to the decoding result to the sending end. If the transmission is successful this time, an acknowledgement (ACK) is fed back; if the transmission fails this time, a negative-acknowledgement (NACK) or no feedback is fed back. If the HARQ feedback information received by the sender is NACK, the sender retransmits the downlink data.
  • HARQ hybrid automatic repeat request
  • Broadcast mode and multicast mode are data transmission modes proposed to improve transmission efficiency.
  • Broadcast mode means that the data sent by the sender can be received by all receivers.
  • Multicast mode means that the data sent by the sender can only be received by the receiver in a specific group.
  • all receivers in the broadcast mode are allocated the same feedback channel, that is, all receivers send HARQ feedback information on the same feedback channel.
  • the channel conditions of different receivers may be different.
  • a receiver with better channel conditions can be assigned a smaller feedback channel, and a receiver with poor channel conditions should be assigned a larger feedback channel. Therefore, the existing solution for allocating feedback channels to the receiving end in the broadcast mode cannot be adapted to the receiving end with different channel conditions.
  • the existing solutions for allocating feedback channels to the receiving end in the multicast mode also have similar problems.
  • the present application provides a HARQ feedback method, in the case of sending HARQ feedback information of broadcast multicast data on a unicast feedback channel, in order to achieve the purpose of saving resources.
  • a HARQ feedback method includes: receiving first downlink data, where the first downlink data is broadcast multicast data; and sending the first downlink data on a unicast feedback channel. HARQ feedback information.
  • the terminal device sends the HARQ feedback information of the broadcast/multicast data on the unicast feedback channel, which can reduce the waste of resources caused by sending the HARQ feedback information of the broadcast/multicast data on a separate feedback channel.
  • the network device can identify which terminal device sent the multiple HARQ feedback information received.
  • the method further includes: receiving first scheduling signaling, the first scheduling signaling indicating a first scheduling resource, and the first scheduling resource is the first download
  • the first scheduling signaling is unicast scheduling signaling; wherein, receiving the first downlink data includes: receiving the first downlink data on the first scheduling resource.
  • the network device uses unicast to send scheduling signaling indicating the transmission resources of the broadcast and multicast data to the terminal device, which can reduce the occurrence of missed detection by the terminal device to a certain extent.
  • the scheduling signaling also indicates the unicast feedback channel. Therefore, the network device does not need to additionally instruct the terminal device to send the HARQ feedback information of the broadcast multicast data on the unicast feedback channel.
  • the receiving the first scheduling signaling includes: determining the first scheduling signaling according to a first radio network temporary identity (RNTI), the The first RNTI is associated with a second RNTI, the first RNTI is a unicast RNTI, and the second RNTI is a broadcast/multicast RNTI; the receiving of the first downlink data includes: determining the first downlink according to the second RNTI data.
  • RNTI radio network temporary identity
  • the first RNTI associated with the broadcast/multicast RNTI as the scrambling code to receive the first scheduling signaling, it can be determined that the resource indicated by the first scheduling signaling is the broadcast/multicast data being transmitted. Avoid the problem of scrambling code errors when the terminal equipment uses the unicast RNTI as the scrambling code to receive the first scheduling signaling.
  • the method further includes: receiving configuration information, where the configuration information includes the first RNTI, or the first RNTI and the second RNTI.
  • the first scheduling signaling further includes first indication information, and the first indication information indicates that the first downlink data is to be transmitted on the first scheduling resource.
  • the receiving the first scheduling signaling includes: detecting a first scheduling channel in a predefined search space; receiving the first scheduling channel on the first scheduling channel Signaling.
  • detecting the first scheduling channel in a predefined search space includes: determining the predefined search space according to a predefined set of control resources; To detect the first scheduling channel in the search space.
  • the method further includes: receiving second scheduling signaling, where the second scheduling signaling indicates a second scheduling resource, and the second scheduling resource is the first downlink
  • the second scheduling signaling is broadcast scheduling signaling or multicast scheduling signaling; wherein, receiving the first downlink data includes: receiving the first downlink data on the second scheduling resource;
  • sending the HARQ feedback information of the first downlink data on the unicast feedback channel includes: sending the first downlink data on the unicast feedback channel according to the order of the second scheduling signaling on the time unit HARQ feedback information.
  • the network device sends the scheduling signaling of the transmission resource of the broadcast multicast data to the terminal device in a broadcast manner, which can save signaling overhead.
  • the method further includes: receiving third scheduling signaling and a downlink assignment index (downlink assignment index, DAI) corresponding to the third scheduling signaling, the third The scheduling signaling indicates the third scheduling resource, the third scheduling resource is the transmission resource of the second downlink data, the second downlink data is unicast data, the third scheduling signaling is unicast scheduling signaling, and the DAI is transmitted according to The order of the second scheduling signaling and the third scheduling signaling accumulates the scheduling signaling; wherein, the first downlink is sent on the unicast feedback channel according to the order of the second scheduling signaling in time units
  • the HARQ feedback information of the data includes: sending the HARQ of the first downlink data on the unicast feedback channel according to the order of the second scheduling signaling and the third scheduling signaling in time units and the value of the DAI Feedback.
  • the network device indicates the transmission resources for transmitting broadcast and multicast data by sending broadcast scheduling signaling or multicast scheduling signaling to the terminal device, and each time a broadcast scheduling signaling or multicast scheduling signaling is sent, the DAI counter Will add 1. Therefore, the HARQ feedback information of broadcast and multicast data can be sent on the unicast feedback channel, and at the same time, the air interface signaling for the network equipment to send scheduling signaling is saved.
  • a HARQ feedback method includes: sending first downlink data in a broadcast or multicast manner; and receiving a feedback from the first terminal device on a unicast feedback channel of the first terminal device. HARQ feedback information of the first downlink data.
  • the terminal device sends the HARQ feedback information of the broadcast/multicast data on the unicast feedback channel, which can reduce the waste of resources caused by sending the HARQ feedback information of the broadcast/multicast data on a separate feedback channel.
  • the network device can identify which terminal device sent the multiple HARQ feedback information received.
  • the method further includes: sending a first scheduling signaling to the first terminal device in a unicast manner, the first scheduling signaling indicating the first scheduling resource ,
  • the first scheduling resource is a transmission resource of the first downlink data; wherein, sending the first downlink data in a broadcast or multicast manner includes: sending in a broadcast or multicast manner on the first scheduling resource The first downlink data.
  • the network device uses unicast to send scheduling signaling indicating the transmission resources of the broadcast and multicast data to the terminal device, which can reduce the occurrence of missed detection by the terminal device to a certain extent.
  • the scheduling signaling also indicates the unicast feedback channel. Therefore, the network device does not need to additionally instruct the terminal device to send the HARQ feedback information of the broadcast multicast data on the unicast feedback channel.
  • the sending the first scheduling signaling to the first terminal device in a unicast manner includes: scrambling the first terminal device by using the first wireless network temporary identifier RNTI Scheduling signaling, the first RNTI is associated with a second RNTI, the first RNTI is a unicast RNTI, and the second RNTI is a broadcast/multicast RNTI; the first schedule is sent to the first terminal device in a unicast manner Signaling; sending the first downlink data in a broadcast or multicast manner includes: scrambling the first downlink data by using the second RNTI; and sending the first downlink data in a broadcast or multicast manner.
  • the first RNTI associated with the broadcast/multicast RNTI as the scrambling code to receive the first scheduling signaling, it can be determined that the resource indicated by the first scheduling signaling is the broadcast/multicast data being transmitted. Avoid the problem of scrambling code errors when the terminal equipment uses the unicast RNTI as the scrambling code to receive the first scheduling signaling.
  • the method further includes: sending configuration information to the first terminal device, where the configuration information includes the first RNTI, or, the first RNTI and the second RNTI RNTI.
  • the first scheduling signaling further includes first indication information, and the first indication information indicates that the first downlink data is to be transmitted on the first scheduling resource.
  • the sending the first scheduling signaling to the first terminal device in a unicast manner includes: unicasting to the first terminal device on the first scheduling channel The first terminal device sends the first scheduling signaling, and the first scheduling channel is detected in a predefined search space.
  • the predefined search space is determined according to a predefined set of control resources.
  • the method further includes: sending a second scheduling signaling in a broadcast or multicast manner, the second scheduling signaling indicating a second scheduling resource, and the second scheduling signaling
  • the scheduling resource is the transmission resource of the first downlink data; wherein, sending the first downlink data in a broadcast or multicast manner includes: sending the first downlink data in a broadcast or multicast manner on the second scheduling resource. Row data.
  • the network device sends the scheduling signaling of the transmission resource of the broadcast multicast data to the terminal device in a broadcast manner, which can save signaling overhead.
  • the method further includes: sending a third scheduling signaling and a downlink allocation index corresponding to the third scheduling signaling to the first terminal device in a unicast manner DAI, the third scheduling signaling indicates a third scheduling resource, the third scheduling resource is a transmission resource for second downlink data, the second downlink data is unicast data, and the third scheduling signaling is unicast scheduling signaling ,
  • the DAI accumulates the scheduling signaling according to the order in which the second scheduling signaling and the third scheduling signaling are sent.
  • the network device indicates the transmission resources for transmitting broadcast and multicast data by sending broadcast scheduling signaling or multicast scheduling signaling to the terminal device, and each time a broadcast scheduling signaling or multicast scheduling signaling is sent, the DAI counter Will add 1. Therefore, the HARQ feedback information of broadcast multicast data can be sent on the unicast feedback channel, and at the same time, the air interface signaling for the network equipment to send scheduling signaling is saved.
  • a communication device which includes various modules or units for executing the method in the first aspect and any one of the possible implementation manners of the first aspect.
  • a communication device which includes modules or units for executing the method in the second aspect and any one of the possible implementation manners of the second aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions or data in the memory to implement the foregoing first aspect and the method in any one of the possible implementation manners of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions or data in the memory to implement the foregoing second aspect and the method in any one of the possible implementation manners of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and send a signal through the output circuit, so that the processor executes any one of the first aspect to the second aspect and the first aspect to the second aspect. The method in the way.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, receive signals through a receiver, and transmit signals through a transmitter to execute any one of the first aspect to the second aspect and any one of the first aspect to the second aspect. In the method.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the above eighth aspect may be one or more chips.
  • the processor in the processing device can be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory, and the memory may Integrated in the processor, can be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also referred to as code, or instruction), which when the computer program is executed, causes the first to second aspects to be executed. Aspect and the method in any one of the possible implementation manners of the first aspect to the second aspect.
  • a computer-readable storage medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first aspect To the method in the second aspect and any one of the possible implementation manners of the first aspect to the second aspect.
  • a computer program also called code, or instruction
  • a communication system including: the aforementioned network device, and/or, a terminal device.
  • Fig. 1 is a schematic diagram of a communication system of a method provided in an embodiment of the present application.
  • Figure 2 is a schematic diagram of a broadcast multicast HARQ feedback method provided by an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a HARQ feedback method provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a method for receiving broadcast multicast data provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a HARQ feedback method provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a HARQ feedback method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a HARQ feedback method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a HARQ feedback method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a HARQ feedback method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a HARQ feedback method provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system new wireless access Access technology
  • NR new radio access technology
  • 6G next-generation communications
  • the 5G mobile communication system can be non-standalone (NSA) or standalone (SA).
  • the technical solution provided in this application can also be applied to machine type communication (MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), and device to device (device to device, D2D) networks , Machine to Machine (M2M) network, Internet of Things (IoT) network or other networks.
  • the IoT network may include, for example, the Internet of Vehicles.
  • vehicle-to-other devices vehicle-to-X, V2X, X can represent anything
  • the V2X may include: vehicle-to-vehicle (V2V) communication.
  • Infrastructure vehicle to infrastructure, V2I) communication, vehicle to pedestrian communication (V2P), or vehicle to network (V2N) communication, etc.
  • the network device may be any device that has a wireless transceiver function.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be 5G, such as NR ,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) The function of the layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • a CU can be divided into network equipment in an access network (radio access network, RAN), or a CU can be divided into network equipment in a core network (core network, CN), which is not limited in the embodiment of the application .
  • the terminal equipment may be referred to as user equipment (UE), terminal (terminal), mobile station (MS), mobile terminal (mobile terminal), etc.; the terminal equipment may also be referred to as user equipment (UE), terminal (terminal), mobile station (MS), and mobile terminal (mobile terminal).
  • a radio access network (RAN) communicates with one or more core networks.
  • the terminal device can also be called an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, vehicles with communication capabilities, wearable devices, and terminal devices in the future 5G network.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Fig. 1 is a schematic diagram of a communication system suitable for the method provided in the embodiment of the present application.
  • the communication system may include at least one network device, such as the network device 110 shown in FIG. 1, and the communication system 100 may include one or more terminal devices, such as the terminal device 120 and the terminal shown in FIG. Equipment 130.
  • the network device can use unicast mode, multicast mode or broadcast mode to send downlink data to the terminal device.
  • the so-called unicast mode means that only one terminal device can receive the downlink data sent by a network device, or in other words, only one terminal device is allowed to receive it.
  • the network device 110 sends downlink data to the terminal device 120 in a unicast mode. In this case, only the terminal device 120 can receive the downlink data sent by the network device 110.
  • the so-called multicast mode refers to the downlink data sent by network equipment, which can only be received by specific terminal equipment.
  • multimedia multicast service data sent by a network device can only be received by terminal devices that have subscribed to the service data or terminal devices that are interested in the service data.
  • the network device 110 sends downlink data in a multicast mode. If the terminal device 120 subscribes to the downlink data or is interested in the downlink data, the terminal device 120 can receive the downlink data; otherwise, the terminal device 120 The downlink data cannot be received.
  • the so-called broadcast mode refers to the downlink data sent by the network device, which can be received by all terminal devices within the coverage of the network device. For example, in FIG. 1, the downlink data sent by the network device 110 in the broadcast mode can be received by both the terminal device 120 and the terminal device 130.
  • each network device can use unicast mode, multicast mode or broadcast mode to send downlink data to different terminal devices.
  • the network equipment uses different RNTIs to scramble the scheduling signaling indicating different transmission resources.
  • the terminal equipment uses the corresponding RNTI as the scrambling code to receive the scheduling signaling.
  • the network equipment uses different RNTIs to scramble the downlink data sent in different ways, and correspondingly, the terminal equipment uses the corresponding RNTI as the scrambling code to receive the downlink data.
  • a network device configures different cell radio network temporary identities (C-RNTI) for different terminal devices, and there is a one-to-one correspondence between each terminal device and the C-RNTI configured by the network device Relationship.
  • the network equipment uses the C-RNTI to scramble the scheduling signaling indicating the transmission resource of the unicast downlink data.
  • the terminal device uses the C-RNTI configured by the network device as the scrambling code to receive the scheduling signaling. If the terminal equipment successfully receives the scheduling signaling with the C-RNTI allocated by the network equipment, it is considered that the scheduling signaling is sent by the network equipment for the terminal equipment.
  • the network equipment uses C-RNTI to scramble the unicast downlink data.
  • the terminal equipment uses the C-RNTI as the scrambling code to receive unicast downlink data transmitted on the transmission resource indicated by the scheduling signaling.
  • the network device configures the terminal device with a paging radio network temporary identity (P-RNTI). Further, the network equipment uses the P-RNTI to scramble the scheduling signaling indicating the transmission resource of the paging control information. Correspondingly, the terminal equipment uses the P-RNTI as the scrambling code to receive the scheduling signaling. If the terminal device successfully receives the scheduling signaling with the P-RNTI, it is considered that the downlink data transmitted on the transmission resource indicated by the scheduling signaling is paging control information. Further, the network equipment uses P-RNTI to scramble the paging control information. Correspondingly, the terminal equipment uses the P-RNTI as the scrambling code to receive the paging control information.
  • P-RNTI paging radio network temporary identity
  • the network equipment configures different multicast radio network temporary identities (groupcast-RNTI) to the terminal equipment for different multicast or broadcast downlink data, and each multicast downlink data or each multicast radio network temporary identity (groupcast-RNTI) There is a one-to-one correspondence between the broadcast downlink data and the groupcast-RNTI. Further, the network equipment uses groupcast-RNTI to scramble the scheduling signaling indicating the transmission resource of multicast downlink data or broadcast downlink data. Correspondingly, the terminal device uses the groupcast-RNTI allocated by the network device as a scrambling code to receive the scheduling signaling.
  • groupcast-RNTI multicast radio network temporary identities
  • the terminal device If the terminal device successfully receives the scheduling signaling, it is considered that the downlink data transmitted by the network device on the transmission resource indicated by the scheduling signaling is multicast downlink data or broadcast downlink data that the terminal device is interested in. Further, the terminal device uses groupcast-RNTI as a scrambling code to receive multicast downlink data or broadcast downlink data transmitted on the transmission resource indicated by the scheduling signaling.
  • the network device when the network device sends unicast downlink data to the terminal device in the unicast mode, the network device unicasts the data according to the channel quality between the terminal device and the network device.
  • the order of modulation and coding (MC) of the downlink data is adaptively adjusted.
  • the terminal device may send the HARQ feedback information determined according to the demodulation and decoding results to the network device. If the terminal device successfully receives the unicast downlink data, it sends an ACK to the network device; if the terminal device fails to receive the unicast downlink data, it sends a NACK to the network device. After the network device receives the NACK feedback from the terminal device, it retransmits the unicast downlink data to the terminal device to ensure the guarantee of the service quality requirements.
  • a network device When a network device sends multicast downlink data to a terminal device in multicast mode, or sends broadcast downlink data to a terminal device in broadcast mode, there are three ways for the terminal device to send HARQ feedback information to the network device:
  • Method 1 HARQ NACK only, that is, only NACK messages are fed back, and different terminal devices send NACKs on the same feedback channel.
  • the terminal device receives the multicast downlink data or broadcast downlink data sent by the network device, it first demodulates and decodes the multicast downlink data or broadcast downlink data. If the decoding result is wrong, that is, the multicast downlink data or broadcast downlink data is not received correctly, then NACK is sent to the network device; if the decoding result is correct, that is, the multicast downlink data or broadcast downlink data is received correctly, no Give any feedback.
  • the network device If the network device detects that the terminal device sends a NACK, it re-sends the multicast downlink data or broadcast downlink data to the terminal device.
  • Method 2 HARQ ACK only, that is, only ACK messages are fed back, and different terminal devices send ACKs on the same feedback channel.
  • the terminal device receives the multicast downlink data or broadcast downlink data sent by the network device, it first demodulates and decodes the multicast downlink data or broadcast downlink data. If the decoding result is correct, that is, if the multicast downlink data or broadcast downlink data is received correctly, an ACK will be sent to the network device; if the decoding result is incorrect, that is, the multicast downlink data or broadcast downlink data has not been received correctly, then no Give any feedback.
  • Manner 3 HARQ ACK/NACK, that is, feeding back an ACK message or a NACK message, and different terminal devices send HARQ feedback information on different feedback channels.
  • each terminal device that receives the multicast downlink data or broadcast downlink data is allocated a different feedback channel, and the network device allocates different feedback channels to different terminal devices.
  • the size of the feedback channel is the same.
  • a network device sends a physical downlink shared channel (PDSCH) instruction to terminal device #1-terminal device #7 through a physical downlink control channel (PDCCH) in time slot n.
  • PDSCH physical downlink shared channel
  • the PDSCH is a transmission resource for multicast or broadcast downlink data
  • the scheduling signaling instructs the network device to send multicast or broadcast downlink data to terminal device #1-terminal device #7 through the PDSCH in time slot n
  • terminal device #1-terminal device #7 instructs terminal device #1-terminal device #7 to send HARQ feedback information through the feedback channel allocated for each terminal device in time slot n+2, and the size of the feedback channel of terminal device #1-terminal device #7 is the same, for example, Terminal device #1 sends HARQ feedback information in symbol 1-2 of time slot n+2, terminal device #2 sends HARQ feedback information in symbol 3-4 of time slot n+2,..., terminal device #7 is in time slot Symbols 13-14 of n+2 send HARQ feedback information.
  • the terminal device sends an ACK on the feedback channel allocated by the network device for the terminal device; if the decoding is If the result is an error, the terminal device sends a NACK on the feedback channel allocated by the network device for the terminal device.
  • the terminal equipment with poor channel conditions with the network equipment may not receive the downlink data correctly; and for the terminal equipment with good channel conditions with the network equipment, the code rate Higher retransmission of downlink data can also be correctly received, so receiving downlink data with a low code rate will lead to a waste of resources, because a low code rate requires more air interface resources.
  • each terminal device since each terminal device sends an ACK on the same feedback channel, the network device cannot determine whether to retransmit the downlink data, so it is not adopted.
  • each receiving end sends HARQ feedback information on a feedback channel of the same size, and it is difficult to adapt to terminal devices with different channel conditions.
  • Terminal devices with good channel conditions with the network device can use fewer feedback channels, and terminal devices with poor channel conditions with the network device can use more feedback channels, so there is a problem of resource waste.
  • the terminal device 130 is far from the network device 110, so the channel quality between the terminal device 130 and the network device 110 is poor; and the terminal device 120 is closer to the network device 110, so the terminal device The quality of the channel between 120 and the network device 110 is better.
  • this application provides a HARQ feedback method to reduce resource waste caused by multicast downlink data or broadcast downlink data sending HARQ feedback information on a separate HARQ feedback channel, and network equipment can identify which terminal device it is The HARQ feedback information is sent, so that the order of MC is adjusted according to the channel quality between the terminal device and the network device, so as to save air interface resources.
  • "used to indicate” may include used for direct indication and used for indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain piece of information is called information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or the information to be indicated.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of the to-be-indicated information by pre-arranging (for example, protocol stipulation) whether there is a certain cell, so as to reduce the indication overhead to a certain extent.
  • the first, second, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different scheduling signaling and so on.
  • the pre-definition may be, for example, a protocol pre-defined or artificial pre-defined.
  • Pre-defined can be implemented by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices), and this application does not limit the specific implementation manners thereof.
  • saving may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c.
  • a, b, and c can be single or multiple.
  • the terminal device shown in the following embodiments can be replaced with a component (such as a chip, a chip system, or a circuit, etc.) configured in the terminal device.
  • the network device shown in the following embodiments can also be replaced with a component (such as a chip, a chip system, or a circuit, etc.) configured in the network device.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program can be run and recorded with the code of the method provided in the embodiments of the application to provide the method according to the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • broadcast/multicast described in the embodiments of this application refers to the use of broadcast or multicast to send data.
  • the broadcast and multicast data can be service data (such as streaming media, video data), or signaling data.
  • Downlink data refers to data from a network device to a terminal device.
  • downlink data can refer to data from one terminal device to another terminal device.
  • Fig. 3 shows a schematic flowchart of a HARQ feedback method provided by an embodiment of the present application. As shown in FIG. 3, the method 300 may include S310 and S320, and each step is described below.
  • S310 The network device sends first downlink data.
  • the terminal device receives the first downlink data.
  • the first downlink data is broadcast multicast data. That is, the multicast data sent by the network device in the multicast mode or the broadcast data sent in the broadcast mode, the data may be service data or signaling data. It can be understood that the broadcast/multicast data sent by the network device may be received by multiple terminal devices.
  • the embodiment of the present application does not limit the specific manner in which the network device indicates the transmission resource of the first downlink data.
  • the network device may indicate the first scheduling resource for transmitting the first downlink data by sending the first scheduling signaling to the terminal device.
  • the first scheduling signaling is unicast scheduling signaling.
  • the network device separately sends the first scheduling signaling to multiple terminal devices in a unicast manner.
  • the following takes the network device sending the first scheduling signaling to one of the multiple terminal devices as an example for description.
  • the network equipment can use the C-RNTI to scramble the unicast scheduling signaling, and further, the network equipment can use the C-RNTI to scramble the unicast downlink data.
  • the terminal equipment uses the C-RNTI as the scrambling code to receive unicast scheduling signaling and unicast downlink data.
  • the terminal equipment demodulates and decodes the unicast scheduling signaling in a unicast manner, and errors will occur.
  • the terminal device when the unicast scheduling signaling sent by the network device to the terminal device indicates the transmission resource of the first downlink data, the terminal device must determine that the transmission resource indicated by the unicast scheduling signaling received from the network device is the first downlink data transmission resource.
  • the transmission resource of row data is also the transmission resource of unicast data.
  • the embodiment of the present application does not limit the specific manner in which the terminal device determines whether the transmission resource indicated by the unicast scheduling signaling received from the network device is the transmission resource of broadcast/multicast data or the transmission resource of unicast data.
  • the network device may send configuration information to the terminal device.
  • the configuration information includes the first RNTI, or, the first RNTI and the second RNTI, the first RNTI is a unicast RNTI, and the second RNTI is a broadcast/multicast RNTI, that is, the second RNTI and the first download sent by the network device to the terminal device Row data corresponds to, and the first RNTI is associated with the second RNTI. If the terminal device uses the first RNTI as the scrambling code to successfully receive the first scheduling signaling from the network device, it can be determined that the transmission resource indicated by the first scheduling signaling is the transmission resource of the first downlink data.
  • the configuration information sent by the network device to the terminal device may only include the first RNTI. In this case, the network device does not scramble the first downlink data sent to the terminal device.
  • the configuration information sent by the network device to the terminal may also include the first RNTI and the second RNTI. In this case, the network device may send the first downlink data that is scrambled to the terminal device, or it may send the unscrambled data to the terminal device. The first downlink data.
  • the network device sends the first configuration information to the multiple terminal devices.
  • the second RNTI in the configuration information received by each terminal device is the same, that is, corresponds to the first downlink data sent by the network device; the first RNTI in the configuration information received by each terminal device may be The same or different, for example, there is a one-to-one correspondence between the first RNTI and each terminal device.
  • the network device can send the configuration information to the terminal device by establishing a radio resource control (RCC) wireless connection with the terminal device.
  • RRC radio resource control
  • Configuration information or, the network device can send the configuration information to the terminal device through a media access control (MAC) control element (CE).
  • MAC media access control
  • the configuration information sent by the network device to the terminal device includes: (1)pair-groupcast-RNTI RNTI-Value, which is defined as related to multicast broadcast RNTI Connected pair-groupcast-RNTI (an example of the first RNTI).
  • the pair-groupcast-RNTI is a unicast RNTI.
  • the terminal device can use the pair-groupcast-RNTI as a scrambling code to receive the transmission resource used to indicate the broadcast multicast data (2) groupcast-RNTI RNTI-Value, which defines the groupcast-RNTI associated with the pair-groupcast-RNTI (an example of the second RNTI).
  • the network equipment uses the first RNTI to scramble the first scheduling signaling.
  • the terminal device uses the first RNTI as a scrambling code to receive the first scheduling signaling. If the terminal device successfully receives the first scheduling signaling, the terminal device determines that the network device transmits the first downlink data on the first transmission resource indicated by the first scheduling signaling. Further, the network device may also use the second RNTI to scramble the first downlink data sent to the terminal device.
  • the terminal device uses the second RNTI as the scrambling code to receive the first downlink data. Alternatively, the network device may not scramble the first downlink data. Correspondingly, the terminal device does not perform descrambling processing on the first downlink data.
  • the network device sends unicast scheduling signaling indicating broadcast multicast PDSCH on the unicast PDCCH, and further, sends broadcast multicast data on the broadcast multicast PDSCH.
  • the terminal device uses the first RNTI to determine the unicast scheduling signaling, and further, uses the second RNTI to determine the broadcast/multicast data.
  • the manner of demodulating the unicast scheduling signaling is the same as the manner of demodulating the broadcast multicast scheduling signaling scrambled by the broadcast multicast RNTI .
  • unicast scheduling signaling may include: frequency domain resource assignment indication (frequency domain resource assignment), time domain resource assignment indication (time domain resource assignment), and modulation and coding format (modulation and coding scheme).
  • the frequency domain resource allocation indication is used to indicate the frequency domain location of the resource for the network device to transmit data.
  • the frequency domain information table of the resource for transmitting unicast data configured by the network device for the terminal device is different from the frequency domain information table of the resource for transmitting broadcast and multicast data.
  • the terminal device uses the first RNTI as the scrambling code to receive the unicast scheduling information.
  • the frequency domain resource allocation indication is calculated according to the frequency domain information table of the resource for transmitting the broadcast and multicast data.
  • the time domain resource allocation indication is used to indicate the time domain location of the resource for the network device to transmit data.
  • the time domain information table of the resources for transmitting unicast data configured by the network equipment for the terminal equipment is different from the time domain information table of the resources for transmitting broadcast and multicast data.
  • the terminal equipment uses the first RNTI as the scrambling code to receive the unicast scheduling information.
  • the time domain resource allocation indication is calculated according to the time domain information table of the resource for transmitting the broadcast and multicast data.
  • the modulation and coding format indicates the modulation and coding format used to indicate the data transmitted by the network device.
  • the modulation and coding table of unicast data configured by the network device for the terminal device is different from the modulation and coding format table of broadcast and multicast data.
  • the modulation and coding format table of broadcast and multicast data determines the modulation and coding format of the data transmitted by the network device.
  • the first scheduling signaling sent by the network device to the terminal device may also carry first indication information, where the first indication information indicates that the data transmitted on the first transmission resource indicated by the first scheduling signaling is The first downlink data.
  • the terminal device may determine, according to the first indication information, that the transmission resource indicated by the unicast scheduling signaling is the transmission resource of the broadcast multicast data.
  • the network equipment may use the C-RNTI to scramble the first scheduling signaling.
  • the terminal equipment uses the C-RNTI as the scrambling code to receive the first scheduling signaling.
  • the network device sends predefined search space (search space) configuration information to the terminal device. Further, the terminal device detects the first scheduling channel in the predefined search space. Further, the terminal device receives the first scheduling signaling on the first scheduling channel.
  • predefined search space search space
  • the terminal device may determine that the transmission resource indicated by the first scheduling signaling received on the first scheduling channel is the transmission resource of the first downlink data.
  • the network device may also send a predefined control resource set (control resource set, CORESET) configuration information to the terminal device. Further, the terminal device determines the predefined search space according to the predefined CORESET.
  • control resource set control resource set, CORESET
  • the network device may indicate the second scheduling resource for transmitting the first downlink data by sending the second scheduling signaling to the terminal device.
  • the second scheduling signaling is broadcast scheduling signaling or multicast scheduling signaling.
  • the network device sends the second scheduling signaling to multiple terminal devices in a broadcast or multicast manner.
  • S320 The terminal device sends HARQ feedback information of the first downlink data to the network device.
  • the terminal device sends the HARQ feedback information of the first downlink data to the network device on the unicast feedback channel of the terminal device.
  • the network device can send the first downlink data to multiple terminal devices, and each of the multiple terminal devices sends the HARQ of the first downlink data on the unicast feedback channel corresponding to each terminal device. Feedback.
  • the following takes one terminal device among multiple terminal devices sending HARQ feedback information to the network device as an example for description. It can be understood that other terminal devices may also use the method described below to send HARQ feedback information of the first downlink data to the network device.
  • the network device may transmit the first downlink data on the first transmission resource indicated by the first scheduling signaling, and may also transmit the first downlink data on the second transmission resource indicated by the second scheduling signaling.
  • the first scheduling signaling sent by the network device to the terminal device may also indicate a unicast feedback channel.
  • the terminal device sends the HARQ feedback information of the first downlink data to the network device on the unicast feedback channel indicated by the unicast scheduling signaling.
  • the network device may send to the terminal device through high-layer signaling before sending the second scheduling signaling to indicate that the terminal device is in unicast.
  • the feedback channel sends indication information of HARQ feedback information of the first downlink data.
  • the network device may send the instruction information to the terminal device by establishing an RCC wireless connection with the terminal device; or the network device may send the instruction information to the terminal device through the MAC CE.
  • the terminal device may send the HARQ feedback information of the first downlink data on the unicast feedback channel according to the order of the second scheduling signaling in the time unit.
  • the time unit may be a time slot.
  • the terminal device only receives one first downlink data, it does not need to consider the order of the second scheduling signaling on the time slot.
  • the terminal device sends the HARQ feedback information of each first downlink data in sequence according to the order of the time slot in which the transmission resource of each first downlink data is located. For example, the terminal equipment receives the first first downlink data through the second transmission resource in the time slot n, and the terminal equipment receives the second downlink data through the second transmission resource in the time slot n+4.
  • the terminal device First downlink data, the terminal device first sends the HARQ feedback information of the first downlink data on the unicast feedback channel according to the order of the time slot in which the second transmission resource is located, and then on the unicast feedback channel Send the second HARQ feedback information of the first downlink data; or, the terminal device may first send the second HARQ feedback information of the first downlink data on the unicast feedback channel, and then send the first HARQ feedback information on the unicast feedback channel. HARQ feedback information of the first downlink data.
  • the terminal device may also send the HARQ feedback information of each downlink data according to the order of the time slots in which the second scheduling signaling indicating the second transmission resource is located.
  • the terminal device can receive every second scheduling signaling sent by the network device, or some of the multiple second scheduling signaling sent by the network device that may not be received, that is, the terminal The equipment may be missed.
  • the terminal device cannot receive the first downlink data sent by the network device on the second transmission resource indicated by the missed second scheduling signaling, and thus cannot send the first downlink data.
  • HARQ feedback information for row data Therefore, if the HARQ feedback information of the first downlink data is sent only according to the order of the time slots where the second scheduling signaling is located, or only according to the order of the time slots where the second transmission resources are indicated by the second scheduling signaling, the terminal The device cannot feed back the HARQ feedback information of the first downlink data sent by the network device on the second transmission resource indicated by the missed second scheduling signaling. Furthermore, the network device cannot accurately determine whether the first downlink data needs to be retransmitted according to the received HARQ feedback information, or cannot determine which first downlink data needs to be retransmitted.
  • the terminal equipment sends the first download according to the sequence of the time slot where the second scheduling signaling is located, the time slot where the third scheduling signaling is located, and the DAI corresponding to the third scheduling signaling.
  • HARQ feedback information for row data indicates the third transmission resource
  • the third transmission resource is used to transmit the second downlink data
  • the second downlink data is unicast data
  • the DAI sends the second scheduling signaling and the third scheduling according to the network equipment
  • the order of the signaling accumulatively counts the scheduling signaling, that is, each time a network device sends a second scheduling signaling or a third scheduling signaling, the DAI counter is incremented by 1.
  • the terminal device may also send HARQ feedback information of the first downlink data according to the sorting of the time slot where the second transmission resource is located and the time slot where the third transmission resource is located, and the DAI corresponding to the third scheduling signaling.
  • sequence of the time slot where the second scheduling signaling is located may be before the time slot where the third scheduling signaling is located, or between two time slots where the third scheduling signaling is located, or in the third scheduling signaling. After the time slot where the order is located.
  • the terminal equipment sends DAI N on the unicast feedback channel.
  • DAI N is the DAI corresponding to the third scheduling signaling last sorted on the time slot
  • M is the second received by the terminal device. The number of scheduling signaling.
  • N DAI transmits downlink data corresponding to a second
  • DAI N -DAI 1 -1 transmits a HARQ NACK feedback information
  • DAI N is the DAI corresponding to the third scheduling signaling that is ranked last in the time slot
  • DAI 1 is the DAI corresponding to the third scheduling signaling that is ranked first in the time slot
  • M is the second scheduling signaling received by the terminal equipment quantity.
  • the terminal device does not send HARQ feedback of the first downlink data information if the sequence of the time slot where the second scheduling signaling received by the terminal device is located is after the time slot where the third scheduling signaling received by the terminal device is located.
  • the network device receives the HARQ feedback information of the first downlink data sent by multiple terminal devices on the unicast feedback channel of each terminal device, and if multiple HARQ feedback information is all NACK, the network device
  • the MC order of retransmission of the downlink data can be determined according to the channel condition of the terminal device with the worst channel condition with the network device.
  • the second scheduling signaling sent by the network device to the terminal device may also indicate a broadcast multicast feedback channel.
  • the terminal device may send HARQ feedback information of the first downlink data on the broadcast multicast feedback channel.
  • the terminal device sends the HARQ feedback information of the broadcast/multicast data on the unicast feedback channel, which can reduce the waste of resources caused by sending the HARQ feedback information of the broadcast/multicast data on a separate feedback channel.
  • the network device can identify which terminal device sent the multiple HARQ feedback information received. Further, in the case of receiving multiple NACKs, the network device may adaptively adjust the MC order of the retransmitted downlink data according to the channel condition between the terminal device and the network device.
  • the network device considers the channel conditions between each terminal device and the network device. Therefore, sending the HARQ feedback information of broadcast and multicast data on the unicast feedback channel can also guarantee HARQ. Feedback performance.
  • the network device interacts with one of multiple terminal devices as an example for description. But this should not constitute any limitation to this application.
  • the embodiments of the present application are also applicable to scenarios where a network device interacts with multiple terminal devices.
  • FIG. 5 is a schematic flowchart of a HARQ feedback method provided by another embodiment of the present application.
  • the embodiment shown in FIG. 5 describes in more detail the example in which the network device mentioned in S310 can indicate the first scheduling resource for transmitting the first downlink data by sending the first scheduling signaling to the terminal device.
  • the method 500 may include S510-S550, and each step is described below.
  • the network device sends configuration information of the first RNTI and the second RNTI to the terminal device.
  • the first RNTI is a unicast RNTI
  • the second RNTI is a broadcast multicast RNTI.
  • the terminal equipment can use the first RNTI as the scrambling code to receive unicast scheduling signaling sent by the network equipment, or unicast data; the terminal equipment can use the second RNTI as the scrambling code to receive the broadcast multicast scheduling signaling sent by the network equipment, or , Broadcast and multicast data.
  • the embodiment of the application does not limit the specific method for the network device to send the configuration information.
  • the network device can send the configuration information to the terminal device by establishing an RCC wireless connection with the terminal device; or the network device can use The media access control MAC CE sends the configuration information to the terminal device.
  • the first RNTI is associated with the second RNTI, that is, there is a correspondence between the first RNTI and the second RNTI.
  • the first RNTI is used to receive unicast scheduling signaling indicating the transmission resource of broadcast/multicast data
  • the second RNTI is used to receive broadcast/multicast data.
  • Table 1 shows the correspondence table between the first RNTI and the second RNTI.
  • the first RNTI 1 , the first RNTI 2, and the first RNTI 3 have a corresponding relationship with the second RNTI 1
  • the first RNTI 4 , the first RNTI 5, and the second RNTI 2 have a corresponding relationship.
  • terminal device #1 can use the first RNTI 1 as the scrambling code to receive unicast scheduling signaling, and the second RNTI 1 as the scrambling code in Receive broadcast and multicast data on the transmission resources indicated by the unicast scheduling signaling.
  • the terminal device #2 may use the first RNTI 2 as the scrambling code to receive unicast scheduling signaling, and the second RNTI 1 as the scrambling code.
  • the code receives broadcast and multicast data on the transmission resources indicated by the unicast scheduling signaling.
  • the terminal device #3 may use the first RNTI 4 as the scrambling code to receive unicast scheduling signaling, and the second RNTI 2 as the scrambling code.
  • the code receives broadcast and multicast data on the transmission resources indicated by the unicast scheduling signaling.
  • the first RNTI is a C-RNTI, that is, the first RNTI is not associated with the second RNTI.
  • S520 The network device sends the configuration information of the broadcast multicast channel to the terminal device.
  • broadcast multicast channels include unicast PDCCH and broadcast multicast PDSCH.
  • Unicast PDCCH is used to transmit unicast scheduling signaling
  • broadcast-multicast PDSCH is used to transmit broadcast-multicast data.
  • the embodiment of the application does not limit the specific method for the network device to send the configuration information.
  • the network device can send the configuration information to the terminal device by establishing an RCC wireless connection with the terminal device; or the network device can use The MAC CE sends the configuration information to the terminal device.
  • the configuration information may include: data demodulation reference signal (demodulation reference signal, DMRS) configuration, modulation and coding scheme (modulation and coding scheme, MCS) table configuration, and data time domain resource allocation table configuration.
  • DMRS demodulation reference signal
  • MCS modulation and coding scheme
  • the content of the time domain resource allocation table includes: k0 information, S information, and L information.
  • k0 represents the time distance between the resource for transmitting broadcast/multicast data and the PDCCH
  • S represents the start symbol of the resource for transmitting broadcast and multicast data, and the value ranges from 0 to 13.
  • L represents the length of broadcast and multicast data, and the value ranges from 1 to 14.
  • PDCCH is used to transmit scheduling signaling indicating broadcast multicast PDSCH.
  • S530 The network device sends the first scheduling signaling to the terminal device.
  • the first scheduling signaling is unicast scheduling signaling, the first scheduling signaling indicates a first transmission resource, the first transmission resource is used to transmit first downlink data, and the first downlink data is broadcast multicast data .
  • the network device may send the first scheduling signaling to the terminal device on the unicast PDCCH.
  • the first scheduling signaling also carries indication information for indicating the unicast HARQ feedback channel, and the indication information includes the time domain resource location, frequency domain resource location, and feedback timing information of the unicast HARQ feedback channel.
  • the network device can send the associated configuration information of the first RNTI and the second RNTI to the terminal device.
  • the terminal device may use the first RNTI as the scrambling code to receive the first scheduling signaling. If the terminal device successfully receives the first scheduling signaling, it can be determined that the data transmitted on the first transmission resource indicated by the first scheduling signaling is broadcast multicast data.
  • the network device may also send configuration information of the first RNTI and the second RNTI that are not associated to the terminal device.
  • the terminal device may use the first RNTI as a scrambling code to receive the first scheduling signaling.
  • the first scheduling signaling may also carry first indication information, where the first indication information is used to indicate that the data transmitted on the first transmission resource indicated by the first scheduling signaling is broadcast multicast data. If the terminal device successfully receives the first scheduling signaling, it can determine, according to the first indication information carried in the first scheduling signaling, that the data transmitted on the first transmission resource indicated by the first scheduling signaling is broadcast multicast data.
  • S540 The network device sends the first downlink data to the terminal device.
  • the network device sends the first downlink data to the terminal device on the first transmission resource.
  • the terminal device uses the second RNTI as the scrambling code to receive the first downlink data.
  • the terminal device sends HARQ feedback information of the first downlink data to the network device.
  • the terminal device sends the HARQ feedback information of the first downlink data to the network device on the unicast feedback channel of the terminal device.
  • the network device sends unicast scheduling signaling #1 to the terminal device on the unicast PDCCH in time slot n.
  • the unicast scheduling signaling #1 indicates PDSCH1 for transmitting unicast data and indicates the HARQ feedback channel ;
  • the network equipment sends unicast scheduling signaling #2 to the terminal equipment on the unicast PDCCH in time slot n+2, the unicast scheduling signaling #2 indicates the PDSCH2 for unicast data transmission, and indicates the HARQ feedback channel; network equipment In time slot n+3, unicast scheduling signaling #3 is sent to the terminal equipment on the unicast PDCCH.
  • the unicast scheduling signaling #3 indicates the PDSCHx for transmitting broadcast and multicast data and indicates the HARQ feedback channel; the network device is in time Slot n+6 sends unicast scheduling signaling #4 to the terminal device on the unicast PDCCH.
  • the unicast scheduling signaling #4 indicates the PDSCH4 for transmitting unicast data and indicates the HARQ feedback channel.
  • the network device sends unicast data #1 to the terminal device on PDSCH1, unicast data #2 to the terminal device on PDSCH2, and broadcast multicast data #x to the terminal device on PDSCHx, and to the terminal device on PDSCH4 Send unicast data #4.
  • the HARQ feedback information sent by the network device on the unicast feedback channel is: HARQ-1, HARQ-2, HARQ-x, HARQ-4, where HARQ-1 corresponds to the HARQ feedback information of unicast data #1, and HARQ- 2 corresponds to the HARQ feedback information of unicast data #2, HARQ-x corresponds to the HARQ feedback information of broadcast multicast data #x, and HARQ-4 corresponds to the HARQ feedback information of unicast data #4.
  • the network device indicates the transmission resource for the transmission of broadcast and multicast data by sending unicast scheduling signaling to the terminal device, and indicates the HARQ feedback channel of the broadcast and multicast data, which can reduce the appearance of the terminal device to a certain extent. Circumstances of missed inspection.
  • FIG. 7 is a schematic flowchart of a HARQ feedback method provided by another embodiment of the present application.
  • the embodiment shown in Fig. 7 describes in more detail the example in which the network device mentioned in S310 can indicate the second scheduling resource for transmitting the first downlink data by sending the second scheduling signaling to the terminal device.
  • the method 700 may include S710-S750, and each step is described below.
  • S710 The network device sends second scheduling signaling to the terminal device.
  • the second scheduling signaling indicates a second transmission resource, the second transmission resource is used to transmit first downlink data, the first downlink data is broadcast multicast data, and the second scheduling signaling is broadcast scheduling signaling or Multicast scheduling signaling.
  • the second scheduling signaling may also indicate the HARQ feedback channel of broadcast multicast data.
  • the network device sends unicast scheduling signaling on the unicast PDCCH, and sends broadcast multicast scheduling signaling on the broadcast-
  • the end time of the second transmission resource indicated by the second scheduling signaling is before the terminal device sends d symbols of the HARQ codebook carrying the HARQ feedback information.
  • the d symbols represent the time for the terminal device to demodulate the first downlink data, that is, within the d symbols, the terminal device can demodulate and decode the first downlink data, and perform HARQ feedback.
  • the value of d is based on the processing time setting of each terminal device.
  • S720 The network device sends the first downlink data to the terminal device.
  • the network device sends the first downlink data to the terminal device on the second transmission resource.
  • S730 The network device sends third scheduling signaling to the terminal device.
  • the third scheduling signaling indicates a third transmission resource, the third transmission resource is used to transmit second downlink data, the second downlink data is unicast downlink data, and the third scheduling signaling is unicast scheduling signaling.
  • the DAI counter is also incremented by 1.
  • N is the number of third scheduling signaling received by the terminal device, and N is a positive integer.
  • slot-x1 indicates that the terminal device receives the first third scheduling signaling in time slot x1
  • the corresponding DAI value is DAI-x1
  • slot-x2 indicates that the terminal device receives the second third scheduling signaling in time slot x2
  • the value corresponding to DAI is DAI-x2, and so on.
  • S710 is executed first and then S730 is executed, or S730 is executed first and then S710 is executed, or S710 is executed, S730 is executed, and then 710 is executed.
  • S740 The network device sends second downlink data to the terminal device.
  • the network device sends the second downlink data to the terminal device on the third transmission resource.
  • the terminal device sends HARQ feedback information of the first downlink data and the second downlink data to the network device.
  • the terminal device arranges the sequence information slot-y and slot-x in S710 and S730 according to the time sequence of the time slot.
  • sequence information slot-y and slot-x are arranged in the time sequence of the time slots
  • the sequence information slot-y may be before slot-x, or between slot-x, or between slot-x. after that.
  • the sequence information obtained may be: ⁇ slot-y1 ⁇ , ⁇ slot-y2 ⁇ , ..., ⁇ slot-yM ⁇ , ⁇ slot-x1 ⁇ , ⁇ slot-x2 ⁇ , ..., ⁇ slot-xN ⁇ .
  • the DAI-x1 value of the third scheduling signaling received by the terminal device in the time slot x1 is equal to M, it means that all the second scheduling signaling sent by the network device before the time slot x1 have been detected.
  • the HARQ feedback information combination is: ⁇ slot-y1 ⁇ , ⁇ slot-y2 ⁇ , whil, ⁇ slot-yM ⁇ , ⁇ slot-x1 ⁇ , ⁇ slot-x2 ⁇ , whil, ⁇ slot-xN ⁇ sequence
  • the DAI-x1 value of the third scheduling signaling received by the terminal device in the time slot x1 is not equal to M, for example, the DAI-x1 value is less than M, it means that the network device sends some second data before the time slot x1 If the scheduling signaling is not detected, DAI-x1-1 NACKs are set before the decoding result corresponding to ⁇ slot-x1 ⁇ .
  • the network device sends unicast scheduling signaling on the unicast PDCCH, and sends broadcast multicast scheduling signaling on the broadcast-multicast PDCCH.
  • the number of broadcast scheduling signaling received by the terminal equipment is 2, and the time slot where the broadcast scheduling signaling is located is before the time slot where the unicast scheduling signaling #1 is located, the terminal equipment can determine the two received
  • the terminal device cannot determine whether the missed detection is unicast scheduling signaling or broadcast multicast scheduling signaling, 3 NACKs are set before the decoding result of the unicast data.
  • the HARQ feedback information combination sent by the terminal device to the network device is: NACK, NACK, NACK, HARQ-1, where HARQ-1 is the decoding result corresponding to the unicast data.
  • the sequence information obtained may be: ⁇ slot-x1 ⁇ ,..., ⁇ slot-xN-1 ⁇ , ⁇ slot- y1 ⁇ , ⁇ slot-y2 ⁇ , ..., ⁇ slot-yM ⁇ , ⁇ slot-xN ⁇ .
  • the DAI value of the third scheduling signaling received by the terminal device in the time slot xN-1 is A
  • the HARQ feedback information combination is: ⁇ slot-x1 ⁇ , administrat, ⁇ slot-xN-1 ⁇ , ⁇ slot-y1 ⁇ , ⁇ slot-y2 ⁇ , whil, ⁇ slot-yM ⁇ , ⁇ slot-xN ⁇
  • BA-1 ⁇ M it means that some of the second scheduling signaling sent by the network device between time slot xN-1 and time slot xN has not been detected, then in ⁇ slot-xN-1 ⁇ and ⁇ slot -xN ⁇ Set BA-1 NACKs between the corresponding decoding results.
  • the network device sends unicast scheduling signaling on the unicast PDCCH, and sends broadcast multicast scheduling signaling on the broadcast-multicast
  • a broadcast scheduling signaling received by the terminal equipment is between the unicast scheduling signaling #2 and the unicast scheduling signaling #4, and the terminal equipment does not receive the unicast scheduling signaling #3.
  • the HARQ feedback information combination sent by the terminal device to the network device is: HARQ-1, HARQ-2, NACK, NACK, HARQ-4, where HARQ-1 is the translation corresponding to unicast data #1 The coding result, HARQ-2 is the decoding result corresponding to unicast data #2, and HARQ-4 is the decoding result corresponding to unicast data #4.
  • the sequence information obtained may be: ⁇ slot-x1 ⁇ ,..., ⁇ slot-xN ⁇ , ⁇ slot-y1 ⁇ , ⁇ Slot-y2 ⁇ , ..., ⁇ slot-yM ⁇ .
  • the terminal device cannot determine whether all the broadcast multicast scheduling signaling sent by the network device has been received, so HARQ feedback is not performed on the first downlink data.
  • the network device indicates the transmission resource for the transmission of broadcast and multicast data by sending broadcast scheduling signaling or multicast scheduling signaling to the terminal device, and each time a broadcast scheduling signaling or multicast scheduling signaling is sent ,
  • the DAI counter will increase by 1. Therefore, the HARQ feedback information of broadcast multicast data can be sent on the unicast feedback channel, and at the same time, the air interface signaling for the network equipment to send scheduling signaling is saved.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a processing unit 1100 and a transceiving unit 1200.
  • the communication device 1000 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device, or a component (such as a chip or a chip system) configured in the terminal device.
  • the communication device 1000 may correspond to the terminal equipment in the method 300, the method 500, and the method 700 according to the embodiments of the present application, and the communication device 1000 may include methods for executing the method 300 in FIG. 3 and the method in FIG. 500.
  • the unit of the method executed by the terminal device in the method 700 in FIG. 7.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding processes of the method 300 in FIG. 3, the method 500 in FIG. 5, and the method 700 in FIG. 7, respectively.
  • the processing unit 1100 can be used to execute S320 in the method 300
  • the transceiver unit 1200 can be used to execute S310 and S320 in the method 300. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the processing unit 1100 can be used to execute S540 and S550 in the method 500, and the transceiver unit 1200 can be used to execute S510-S550 in the method 500. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the processing unit 1100 can be used to execute S750 in the method 700
  • the transceiver unit 1200 can be used to execute S710-S750 in the method 700. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1200 in the communication device 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG.
  • the processing unit 1100 in 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the terminal device 2000 shown in FIG. 12.
  • the transceiver unit 1200 in the communication device 1000 can be implemented through an input/output interface, and the processing unit 1100 in the communication device 1000 can be implemented through the Implementation of a processor, microprocessor, or integrated circuit integrated on a chip or chip system.
  • the communication device 1000 may correspond to the network device in the above method embodiment, for example, it may be a network device, or a component (such as a chip or a chip system) configured in the network device.
  • the communication device 1000 may correspond to the network equipment in the method 300, the method 500, and the method 700 according to the embodiments of the present application, and the communication device 1000 may include methods for executing the method 300 in FIG. 3 and the method in FIG. 500. Units of the method executed by the network device in the method 700 in FIG. 7. In addition, each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding processes of the method 300 in FIG. 3, the method 500 in FIG. 5, and the method 700 in FIG. 7, respectively.
  • the transceiving unit 1200 can be used to execute S310-S320 in the method 300. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the processing unit 1100 can be used to execute S530-S540 in the method 500, and the transceiver unit 1200 can be used to execute S510-S550 in the method 500. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the processing unit 1100 can be used to execute S710 and S730 in the method 700, and the transceiver unit 1200 can be used to execute S710-S750 in the method 700. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1200 in the communication device 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 3200 in the network device 3000 shown in FIG.
  • the processing unit 1100 in 1000 may be implemented by at least one processor, for example, may correspond to the processor 3100 in the network device 3000 shown in FIG. 13.
  • the transceiver unit 1200 in the communication device 1000 can be implemented through an input/output interface, and the processing unit 1100 in the communication device 1000 can be implemented through the Implementation of a processor, microprocessor, or integrated circuit integrated on a chip or chip system.
  • FIG. 12 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the above-mentioned processor 2010 and the memory 2030 may be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to realize the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit 1100 in FIG. 11.
  • the aforementioned transceiver 2020 may correspond to the transceiver unit 1200 in FIG. 11, and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 12 can implement various processes involving the terminal device in the method embodiments shown in FIG. 3, FIG. 5, and FIG. 7.
  • the operations and/or functions of each module in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 may be used to execute the actions described in the foregoing method embodiments that are implemented internally by the terminal device, such as determining the first scheduling signaling.
  • the transceiver 2020 may be used to perform the actions described in the foregoing method embodiments that the terminal device sends to or receives from the network device, such as sending HARQ feedback information of the first downlink data, receiving the first downlink data, and so on.
  • the terminal device sends to or receives from the network device, such as sending HARQ feedback information of the first downlink data, receiving the first downlink data, and so on.
  • the aforementioned terminal device 2000 may also include a power source 2050, which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 3200.
  • RRU 3100 may be referred to as a transceiving unit or a part of the transceiving unit, and corresponds to the transceiving unit 1100 in FIG. 11.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or receiver or receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for sending first downlink data, second downlink data, and HARQ feedback information to terminal devices.
  • the RRU 3100 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for sending first downlink data, second downlink data, and HARQ feedback information to terminal devices.
  • the 3200 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and may also be referred to as a processing unit, which may correspond to the processing unit 1200 in FIG. 11, and may be used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing resource allocation information.
  • the description in the previous method embodiment which will not be repeated here.
  • the BBU 3200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 13 can implement various processes involving network devices in the method embodiments shown in FIG. 3, FIG. 5, and FIG. 7.
  • the operations and/or functions of the various modules in the base station 3000 are to implement the corresponding procedures in the foregoing method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the base station 3000 shown in FIG. 13 is only a possible form of network equipment, and should not constitute any limitation in this application.
  • the method provided in this application can be applied to other types of network equipment.
  • it may include AAU, it may also include CU and/or DU, or it may include BBU and adaptive radio unit (ARU), or BBU; it may also be customer premises equipment (CPE), or it may be
  • AAU AAU
  • CU CU
  • DU BBU
  • BBU adaptive radio unit
  • BBU BBU
  • CPE customer premises equipment
  • the CU and/or DU can be used to perform the actions described in the previous method embodiments implemented by the network device, and the AAU can be used to perform the network device described in the previous method embodiments to send to the first terminal device or from the first terminal device.
  • An action received by a terminal device please refer to the description in the previous method embodiment, which will not be repeated here.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the foregoing method embodiments.
  • the aforementioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute FIG. 3, FIG. 5, and FIG. Fig. 7 shows the method respectively executed by the terminal device and the network device in the embodiment.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes FIGS. 3, 5, and 5 Fig. 7 shows the method respectively executed by the terminal device and the network device in the embodiment.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk, SSD
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种混合自动重传请求HARQ反馈的方法和通信装置。该方法包括:接收第一下行数据,所述第一下行数据为广播组播数据;在单播反馈信道上发送所述第一下行数据的HARQ反馈信息。终端设备在单播反馈信道上发送广播组播数据的HARQ反馈信息,可以减少在单独的反馈信道上发送广播组播数据的HARQ反馈信息带来的资源浪费。同时,由于每个终端设备都是在该终端设备的单播反馈信道上发送HARQ反馈信息,因此网络设备可以识别接收到的多个HARQ反馈信息分别是哪一个终端设备发送的,从而网络设备可以根据终端设备的信道条件对重传数据的MC阶数进行自适应调整。

Description

混合自动重传请求HARQ反馈的方法和通信装置 技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种混合自动重传请求HARQ反馈的方法和通信装置。
背景技术
在当前通信系统中,接收端接收到发送端发送的下行数据后,需要向发送端发送根据译码结果确定的混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息。若本次发送成功,则反馈确认(acknowledgement,ACK);若本次发送失败,则反馈否认确认(negative-acknowledgement,NACK)或不反馈。若发送端接收的HARQ反馈信息为NACK,发送端进行下行数据的重传。
广播模式与组播模式是为了提高传输效率提出的数据传输模式。广播模式表示,发送端发送的数据,所有接收端都可以接收到。组播模式表示,发送端发送的数据,只有特定组中的接收端可以接收到。
当前技术中,为广播模式下的所有接收端分配相同的反馈信道,即所有接收端在相同的反馈信道上发送HARQ反馈信息。不同接收端的信道条件可能不同,信道条件较好的接收端可以被分配较小的反馈信道,信道条件较差的接收端应该被分配较大的反馈信道。因此,现有的为广播模式下的接收端分配反馈信道的方案无法适应具有不同信道条件的接收端,此外,存在资源浪费的问题。现有的为组播模式下的接收端分配反馈信道的方案也存在类似的问题。
发明内容
本申请提供一种HARQ反馈的方法,在单播反馈信道上发送广播组播数据的HARQ反馈信息的情况下,以期达到节约资源的目的。
第一方面,提供了一种HARQ反馈的方法,该方法包括:接收第一下行数据,该第一下行数据为广播组播数据;在单播反馈信道上发送该第一下行数据的HARQ反馈信息。
基于上述技术方案,终端设备在单播反馈信道上发送广播组播数据的HARQ反馈信息,可以减少在单独的反馈信道上发送广播组播数据的HARQ反馈信息带来的资源浪费。同时,由于每个终端设备都是在该终端设备的单播反馈信道上发送HARQ反馈信息,因此网络设备可以识别接收到的多个HARQ反馈信息分别是哪一个终端设备发送的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收第一调度信令,该第一调度信令指示第一调度资源,该第一调度资源为该第一下行数据的传输资源,该第一调度信令为单播调度信令;其中,接收第一下行数据,包括:在该第一调度资源上接收该第一下行数据。
基于上述方案,网络设备采用单播的方式向终端设备发送指示广播组播数据的传输资源的调度信令,可以在一定程度上减少出现终端设备漏检的情况。同时,该调度信令还指示单播反馈信道,因此,网络设备不需要额外指示终端设备在单播反馈信道上发送广播组播数据的HARQ反馈信息。
结合第一方面,在第一方面的某些实现方式中,该接收第一调度信令,包括:根据第一无线网络临时标识(radio network tempory identity,RNTI)确定该第一调度信令,该第一RNTI与第二RNTI相关联,该第一RNTI为单播RNTI,该第二RNTI为广播组播RNTI;该接收第一下行数据,包括:根据该第二RNTI确定该第一下行数据。
基于上述方案,采用与广播组播RNTI相关联的第一RNTI作为扰码接收第一调度信令,可以确定该第一调度信令指示的资源上传输的是广播组播数据。避免终端设备采用单播RNTI作为扰码接收第一调度信令时出现扰码错误的问题。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收配置信息,该配置信息包括该第一RNTI,或,该第一RNTI和该第二RNTI。
结合第一方面,在第一方面的某些实现方式中,该第一调度信令还包括第一指示信息,该第一指示信息指示在该第一调度资源上传输该第一下行数据。
结合第一方面,在第一方面的某些实现方式中,该接收第一调度信令,包括:在预定义的搜索空间检测第一调度信道;在该第一调度信道上接收该第一调度信令。
结合第一方面,在第一方面的某些实现方式中,在预定义的搜索空间检测该第一调度信道,包括:根据预定义的控制资源集合确定该预定义的搜索空间;在该预定义的搜索空间检测该第一调度信道。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收第二调度信令,该第二调度信令指示第二调度资源,该第二调度资源为该第一下行数据的传输资源,该第二调度信令为广播调度信令或组播调度信令;其中,接收第一下行数据,包括:在该第二调度资源上接收该第一下行数据;其中,在单播反馈信道上发送该第一下行数据的HARQ反馈信息,包括:在该单播反馈信道上按照该第二调度信令在时间单元上的排序发送该第一下行数据的HARQ反馈信息。
基于上述方案,网络设备采用广播的方式向终端设备发送广播组播数据的传输资源的调度信令,可以节省信令开销。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:接收第三调度信令和该第三调度信令对应的下行分配索引(downlink assignment index,DAI),该第三调度信令指示第三调度资源,该第三调度资源为第二下行数据的传输资源,该第二下行数据为单播数据,该第三调度信令为单播调度信令,该DAI按照发送该第二调度信令和该第三调度信令的顺序对调度信令累计计数;其中,在该单播反馈信道上按照该第二调度信令在时间单元上的排序发送该第一下行数据的HARQ反馈信息,包括:在该单播反馈信道上按照该第二调度信令和该第三调度信令在时间单元上的排序以及该DAI的值,发送该第一下行数据的HARQ反馈信息。
基于上述方案,网络设备通过向终端设备发送广播调度信令或组播调度信令的方式指示传输广播组播数据的传输资源,并且每发送一个广播调度信令或组播调度信令,DAI计数器都会加1。因此,可以在单播反馈信道上发送广播组播数据的HARQ反馈信息,同时 还节约了网络设备发送调度信令的空口信令。
第二方面,提供了一种HARQ反馈的方法,该方法包括:以广播或组播的方式发送第一下行数据;在第一终端设备的单播反馈信道上接收来自该第一终端设备的该第一下行数据的HARQ反馈信息。
基于上述技术方案,终端设备在单播反馈信道上发送广播组播数据的HARQ反馈信息,可以减少在单独的反馈信道上发送广播组播数据的HARQ反馈信息带来的资源浪费。同时,由于每个终端设备都是在该终端设备的单播反馈信道上发送HARQ反馈信息,因此网络设备可以识别接收到的多个HARQ反馈信息分别是哪一个终端设备发送的。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:以单播的方式向该第一终端设备发送第一调度信令,该第一调度信令指示第一调度资源,该第一调度资源为该第一下行数据的传输资源;其中,以广播或组播的方式发送第一下行数据,包括:在该第一调度资源上以广播或组播的方式发送该第一下行数据。
基于上述方案,网络设备采用单播的方式向终端设备发送指示广播组播数据的传输资源的调度信令,可以在一定程度上减少出现终端设备漏检的情况。同时,该调度信令还指示单播反馈信道,因此,网络设备不需要额外指示终端设备在单播反馈信道上发送广播组播数据的HARQ反馈信息。
结合第二方面,在第二方面的某些实现方式中,该以单播的方式向该第一终端设备发送第一调度信令,包括:采用第一无线网络临时标识RNTI加扰该第一调度信令,该第一RNTI与第二RNTI相关联,该第一RNTI为单播RNTI,该第二RNTI为广播组播RNTI;以单播的方式向该第一终端设备发送该第一调度信令;该以广播或组播的方式发送第一下行数据,包括:采用该第二RNTI加扰所述第一下行数据;以广播或组播的方式发送该第一下行数据。
基于上述方案,采用与广播组播RNTI相关联的第一RNTI作为扰码接收第一调度信令,可以确定该第一调度信令指示的资源上传输的是广播组播数据。避免终端设备采用单播RNTI作为扰码接收第一调度信令时出现扰码错误的问题。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:向该第一终端设备发送配置信息,该配置信息包括该第一RNTI,或,该第一RNTI和该第二RNTI。
结合第二方面,在第二方面的某些实现方式中,该第一调度信令还包括第一指示信息,该第一指示信息指示在该第一调度资源上传输该第一下行数据。
结合第二方面,在第二方面的某些实现方式中,该以单播的方式向该第一终端设备发送第一调度信令,包括:在第一调度信道上以单播的方式向该第一终端设备发送该第一调度信令,该第一调度信道是在预定义的搜索空间检测到的。
结合第二方面,在第二方面的某些实现方式中,该预定义的搜索空间是根据预定义的控制资源集合确定的。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:以广播或组播的方式发送第二调度信令,该第二调度信令指示第二调度资源,该第二调度资源为该第一下行数据的传输资源;其中,以广播或组播的方式发送第一下行数据,包括:在该第二调度资源上以广播或组播的方式发送该第一下行数据。
基于上述方案,网络设备采用广播的方式向终端设备发送广播组播数据的传输资源的 调度信令,可以节省信令开销。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:以单播的方式向该第一终端设备发送第三调度信令和该第三调度信令对应的下行分配索引DAI,该第三调度信令指示第三调度资源,该第三调度资源为第二下行数据的传输资源,该第二下行数据为单播数据,该第三调度信令为单播调度信令,该DAI按照发送该第二调度信令和该第三调度信令的顺序对调度信令累计计数。
基于上述方案,网络设备通过向终端设备发送广播调度信令或组播调度信令的方式指示传输广播组播数据的传输资源,并且每发送一个广播调度信令或组播调度信令,DAI计数器都会加1。因此,可以在单播反馈信道上发送广播组播数据的HARQ反馈信息,同时还节约了网络设备发送调度信令的空口信令。
应理解,上文所述的第一方面可以与第二方面中提供的方法结合。
第三方面,提供了一种通信装置,包括用于执行第一方面以及第一方面中任一种可能实现方式中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括用于执行第二方面以及第二方面中任一种可能实现方式中的方法的各个模块或单元。
第五方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令或者数据,以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令或者数据,以实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发送信号,使得所述处理器执行第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚, 输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括:前述的网络设备,和/或,终端设备。
附图说明
图1是本申请实施例提供的方法的通信系统的示意图。
图2是本申请实施例提供的广播组播HARQ反馈的方法的示意图。
图3是本申请实施例提供的HARQ反馈的方法的示意性流程图。
图4是本申请实施例提供的接收广播组播数据的方法的示意图。
图5是本申请实施例提供的HARQ反馈的方法的示意性流程图。
图6是本申请实施例提供的HARQ反馈的方法的示意图。
图7是本申请实施例提供的HARQ反馈的方法的示意性流程图。
图8是本申请实施例提供的HARQ反馈的方法的示意图。
图9是本申请实施例提供的HARQ反馈的方法的示意图。
图10是本申请实施例提供的HARQ反馈的方法的示意图。
图11是本申请实施例提供的通信装置的示意性框图。
图12是本申请实施例提供的终端设备的结构示意图。
图13是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)或者下一代通信,比如6G。其中,5G移动通信系统可以是非独立组网(non-standalone,NSA)或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不做限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource  control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请实施例对此不做限定。
在本申请实施例中,终端设备可以称之为用户设备(user equipment,UE)、终端(terminal)、移动台(mobile station,MS)和移动终端(mobile terminal)等;该终端设备还可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信。该终端设备还可称为接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、具有通信功能的车辆、可穿戴设备以及未来5G网络中的终端设备等。本申请实施例对此不做限定。
图1是适用于本申请实施例提供的方法的通信系统的一示意图。
如图1所示,该通信系统可以包括至少一个网络设备,例如图1所示的网络设备110,该通信系统100可以包括一个或多个终端设备,例如图1所示的终端设备120和终端设备130。网络设备可以采用单播模式、组播模式或者广播模式向终端设备发送下行数据。所谓单播模式即网络设备发送的下行数据只有一个终端设备接收,或者说只允许一个终端设备接收。例如图1中,网络设备110以单播模式向终端设备120发送下行数据。此情况下,只有终端设备120能接收到网络设备110发送的下行数据。所谓组播模式即网络设备发送的下行数据,只有特定的终端设备可以接收到。例如,网络设备发送的多媒体组播业务数据,只有订阅了该业务数据的终端设备或者对该业务数据感兴趣的终端设备可以接收到。例如图1中,网络设备110以组播模式发送下行数据,若终端设备120订阅了该下行数据或者对该下行数据感兴趣,则终端设备120可以接收到该下行数据;反之,则终端设备120不能接收到该下行数据。所谓广播模式即网络设备发送的下行数据,在该网络设备覆盖范围内的所有终端设备都可以接收到。例如图1中,网络设备110以广播模式发送的下行数据,终端设备120和终端设备130都可以接收到。
应理解,图中仅为示意,示出了一个网络设备和两个终端设备,但这不应对本申请构成任何限定。在该通信系统中,还可以包括更多数量的终端设备和更多数量的网络设备。每个网络设备都可以采用单播模式、组播模式或者广播模式向不同的终端设备发送下行数据。
网络设备为了区别不同业务或者针对不同终端设备的不同单播下行数据,采用不同的RNTI对指示不同传输资源的调度信令进行加扰。相对应地,终端设备采用对应的RNTI 作为扰码接收调度信令。进一步地,网络设备采用不同的RNTI对以不同方式发送的下行数据加扰,相对应地,终端设备采用对应的RNTI作为扰码接收下行数据。
例如,网络设备向不同的终端设备配置不同的小区无线网络临时标识(cell radio network tempory identity,C-RNTI),并且每个终端设备与网络设备为其配置的C-RNTI之间存在一一对应的关系。进一步地,网络设备采用C-RNTI对指示单播的下行数据的传输资源的调度信令加扰。相对应地,终端设备以网络设备为其配置的C-RNTI作为扰码接收该调度信令。若终端设备以网络设备为其分配的C-RNTI成功接收该调度信令,则认为该调度信令是网络设备针对该终端设备发送的。进一步地,网络设备采用C-RNTI对单播的下行数据加扰。相对应地,终端设备采用C-RNTI作为扰码接收在该调度信令指示的传输资源上传输的单播下行数据。
又例如,网络设备向终端设备配置寻呼无线网络临时标识(paging radio network tempory identity,P-RNTI)。进一步地,网络设备采用P-RNTI对指示寻呼控制信息的传输资源的调度信令加扰。相对应地,终端设备以P-RNTI作为扰码接收该调度信令。若终端设备以P-RNTI成功接收该调度信令,则认为在该调度信令指示的传输资源上传输的下行数据是寻呼控制信息。进一步地,网络设备采用P-RNTI对寻呼控制信息加扰。相对应地,终端设备采用P-RNTI作为扰码接收寻呼控制信息。
再例如,网络设备针对不同的组播或广播的下行数据,向终端设备配置不同的组播无线网络临时标识(groupcast radio network tempory identity,groupcast-RNTI),并且每个组播的下行数据或者每个广播的下行数据与groupcast-RNTI之间存在一一对应的关系。进一步地,网络设备采用groupcast-RNTI对指示组播的下行数据或广播的下行数据的传输资源的调度信令加扰。相对应地,终端设备以网络设备为其分配的groupcast-RNTI作为扰码接收该调度信令。若终端设备对该调度信令接收成功,则认为网络设备在该调度信令指示的传输资源上传输的下行数据是该终端设备感兴趣的组播的下行数据或广播的下行数据。进一步地,终端设备采用groupcast-RNTI作为扰码接收在该调度信令指示的传输资源上传输的组播的下行数据或广播的下行数据。
进一步地,为了提高网络设备下行传输的效率,在网络设备以单播模式向终端设备发送单播的下行数据的情况下,网络设备根据该终端设备与网络设备之间的信道质量情况对单播下行数据的调制和编码(modulation and coding,MC)的阶数进行自适应调整。并且,终端设备接收到网络设备发送的单播下行数据后,可以向网络设备发送根据解调和译码结果确定的HARQ反馈信息。若终端设备对该单播下行数据接收成功,则向网络设备发送ACK;若终端设备对该单播下行数据接收失败,则向网络设备发送NACK。在网络设备接收到终端设备的NACK反馈之后,则向终端设备重传该单播下行数据,以确保对业务质量要求的保证。
在网络设备以组播模式向终端设备发送组播下行数据,或者,以广播模式向终端设备发送广播下行数据的情况下,终端设备向网络设备发送HARQ反馈信息的方式有三种:
方式一:HARQ NACK only,即仅反馈NACK消息,并且不同的终端设备在相同的反馈信道上发送NACK。
即若终端设备接收到网络设备发送的组播下行数据或广播下行数据,首先对该组播下行数据或广播下行数据进行解调和译码。若译码结果为错误,即没有正确接收该组播下行 数据或广播下行数据,则向网络设备发送NACK;若译码结果为正确,即正确接收该组播下行数据或广播下行数据,则不进行任何反馈。
若网络设备检测到终端设备发送NACK,则重新向终端设备发送该组播下行数据或广播下行数据。
方式二:HARQ ACK only,即仅反馈ACK消息,并且不同的终端设备在相同的反馈信道上发送ACK。
即若终端设备接收到网络设备发送的组播下行数据或广播下行数据,首先对该组播下行数据或广播下行数据进行解调和译码。若译码结果为正确,即正确接收该组播下行数据或广播下行数据,则向网络设备发送ACK;若译码结果为错误,即没有正确接收该组播下行数据或广播下行数据,则不进行任何反馈。
方式三:HARQ ACK/NACK,即反馈ACK消息或NACK消息,并且不同的终端设备在不同的反馈信道上发送HARQ反馈信息。
即网络设备向不同终端设备发送组播下行数据或广播下行数据之前,向每个接收该组播下行数据或广播下行数据的终端设备分配不同的反馈信道,并且,网络设备为不同终端设备分配的反馈信道的大小相同。例如图2所示,网络设备通过物理下行控制信道(physical downlink control channel,PDCCH)在时隙n向终端设备#1-终端设备#7发送指示物理下行共享信道(physical downlink shared channel,PDSCH)的调度信令,该PDSCH为组播或广播下行数据的传输资源,该调度信令指示网络设备会在时隙n通过该PDSCH向终端设备#1-终端设备#7发送组播或广播下行数据,以及指示终端设备#1-终端设备#7在时隙n+2通过为每个终端设备分配的反馈信道发送HARQ反馈信息,并且终端设备#1-终端设备#7的反馈信道大小相同,例如,终端设备#1在时隙n+2的符号1-2发送HARQ反馈信息,终端设备#2在时隙n+2的符号3-4发送HARQ反馈信息,……,终端设备#7在时隙n+2的符号13-14发送HARQ反馈信息。
进一步地,若其中一个终端设备对网络设备发送的该组播下行数据或广播下行数据译码结果为正确,则该终端设备在网络设备为该终端设备分配的反馈信道上发送ACK;若译码结果为错误,则该终端设备在网络设备为该终端设备分配的反馈信道上发送NACK。
对于上述第一种方式,仅反馈NACK消息虽然一定程度上可以减少反馈信道的数量,但是由于每个终端设备在相同的反馈信道上发送NACK,网络设备无法识别是哪个终端设备反馈的NACK,因此无法根据终端设备与网络设备之间的信道质量对重传下行数据MC的阶数进行自适应调整。若重传下行数据的码率低,对于与网络设备之间的信道条件差的终端设备,有可能不能正确接收下行数据;而对于与网络设备之间的信道条件好的终端设备,对于码率更高的重传下行数据也可以正确接收,因此接收码率低的下行数据会导致资源浪费,因为低的码率需要更多的空口资源。
对于上述第二种方式,由于每个终端设备在相同的反馈信道上发送ACK,网络设备无法判断是否要重传下行数据,因此不被采纳。
对于第三种方式,每个接收端在相同大小的反馈信道上发送HARQ反馈信息,难以适应不同信道条件的终端设备。与网络设备之间的信道条件好的终端设备可以使用较少的反馈信道,与网络设备之间的信道条件差的终端设备可以使用较多的反馈信道,因此存在资源浪费的问题。如图1所示,相对来说,终端设备130距离网络设备110较远,因此终 端设备130与网络设备110之间的信道质量较差;而终端设备120距离网络设备110较近,因此终端设备120与网络设备110之间的信道质量较好。
有鉴于此,本申请提供一种HARQ反馈的方法,以期达到减少组播下行数据或广播下行数据在单独的HARQ反馈信道上发送HARQ反馈信息造成的资源浪费以及网络设备可以识别是哪一个终端设备发送HARQ反馈信息,从而根据终端设备与网络设备之间的信道质量进行MC的阶数的调整,从而节约空口资源的目的。
下面将结合附图详细说明本申请实施例提供的方法。
为了便于理解本申请实施例,在介绍本申请实施例之前,先作出以下几点说明。
第一,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示,也可以包括显式指示和隐式指示。将某一信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)是否存在某个信元来实现对待指示信息的指示,从而在一定程度上降低指示开销。
第二,在下文示出的实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的调度信令等。
第三,在本申请实施例中,预定义例如可以是协议预定义,或人为预定义。“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第五,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第六,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
第七,下文结合多个流程图详细描述了多个实施例,但应理解,这些流程图及其相应 的实施例的相关描述仅为便于理解而示例,不应对本申请构成任何限定。各流程图中的每一个步骤并不一定是必须要执行的,例如有些步骤是可以跳过的。并且,各个步骤的执行顺序也不是固定不变的,也不限于图中所示,各个步骤的执行顺序应以其功能和内在逻辑确定。下文示出的实施例以网络设备和终端设备之间的交互为例,说明了本申请实施例提供的方法。但这不应对本申请构成任何限定。例如,下文实施例中示出的终端设备可以替换为配置在终端设备中的部件(比如芯片、芯片系统或电路等)。下文实施例示出的网络设备也可以替换为配置在网络设备中的部件(比如芯片、芯片系统或电路等)。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
需要说明的是,本申请实施例中描述的广播组播,是指采用广播或者组播的的方式发送数据。广播组播数据可以是业务数据(如:流媒体、视频数据),也可以是信令数据。
下行数据:是指从网络设备到终端设备方向的数据,在边链路场景中,下行数据可以指从一个终端设备到另外一个终端设备方向的数据。
图3示出了本申请实施例提供的HARQ反馈的方法的示意性流程图。如图3所示,该方法300可以包括S310和S320,下面描述各个步骤。
S310,网络设备发送第一下行数据。相对应地,终端设备接收第一下行数据。
其中,该第一下行数据为广播组播数据。即网络设备以组播模式发送的组播数据或以广播模式发送的广播数据,该数据可以是业务数据,或者是信令数据。可以理解,网络设备发送的该广播组播数据可以被多个终端设备接收到。
本申请实施例对网络设备指示第一下行数据的传输资源的具体方式不做限定。
在一种实现方式中,网络设备可以通过向终端设备发送第一调度信令来指示传输第一下行数据的第一调度资源。其中,该第一调度信令是单播调度信令。
可以理解,网络设备采用单播的方式分别向多个终端设备发送第一调度信令。
为了便于理解和说明,下文以网络设备向多个终端设备中的其中一个终端设备发送第一调度信令为例进行说明。
如前文所述,网络设备可以采用C-RNTI对单播调度信令加扰,进一步地,网络设备可以采用C-RNTI对单播下行数据加扰。相对应地,终端设备采用C-RNTI作为扰码接收单播调度信令以及单播下行数据。在单播调度信令指示广播组播数据的传输资源的情况下,终端设备按照单播的方式解调和译码该单播调度信令会出现错误。因此,在网络设备向终端设备发送的单播调度信令指示第一下行数据的传输资源的情况下,终端设备要判断从网络设备接收的单播调度信令指示的传输资源是第一下行数据的传输资源还是单播数据的传输资源。
本申请实施例对终端设备如何判断从网络设备接收的单播调度信令指示的传输资源是广播组播数据的传输资源还是单播数据的传输资源的具体方式不做限定。
作为一个示例,网络设备可以向终端设备发送配置信息。该配置信息包括第一RNTI,或,第一RNTI和第二RNTI,第一RNTI为单播RNTI,第二RNTI为广播组播RNTI,即第二RNTI与网络设备向终端设备发送的第一下行数据相对应的,并且该第一RNTI与 第二RNTI相关联。若终端设备采用第一RNTI作为扰码成功接收来自网络设备的第一调度信令,则可以确定该第一调度信令指示的传输资源是第一下行数据的传输资源。
网络设备向终端设备发送的该配置信息可以只包括第一RNTI,在此情况下,网络设备对向终端设备发送的第一下行数据不进行加扰。网络设备向终端发送的该配置信息还可以包括第一RNTI和第二RNTI,在此情况下,网络设备可以向终端设备发送加扰的第一下行数据,也可以向终端设备发送不加扰的第一下行数据。
可以理解,在网络设备向多个终端设备发送相同的第一下行数据的情况下,网络设备向该多个终端设备发送第一该配置信息。其中,每个终端设备接收到的配置信息中的第二RNTI是相同的,即与网络设备发送的第一下行数据相对应;每个终端设备接收到的配置信息中的第一RNTI可以是相同的,或者,也可以是不同的,例如,该第一RNTI与每个终端设备之间一一对应。
本申请实施例对网络设备发送该配置信息的具体方式不做限定,例如,网络设备可以通过与终端设备之间建立无线资源控制(radio resource control,RCC)无线连接的方式,向终端设备发送该配置信息;或者,网络设备可以通过媒体访问控制(media access control,MAC)控制单元(control element,CE)向终端设备发送该配置信息。
以网络设备通过RRC信令向终端设备发送该配置信息为例进行说明,网络设备向终端设备发送的配置信息包括:(1)pair-groupcast-RNTI RNTI-Value,即定义与组播广播RNTI相关联的pair-groupcast-RNTI(第一RNTI的一例),该pair-groupcast-RNTI是单播RNTI,终端设备可以采用该pair-groupcast-RNTI作为扰码接收用于指示广播组播数据的传输资源的单播调度信令;(2)groupcast-RNTI RNTI-Value,即定义与pair-groupcast-RNTI相关联的groupcast-RNTI(第二RNTI的一例)。
进一步地,网络设备采用该第一RNTI对第一调度信令加扰。相对应地,终端设备采用该第一RNTI作为扰码接收该第一调度信令。若终端设备成功接收该第一调度信令,则终端设备确定网络设备在该第一调度信令指示的第一传输资源上传输第一下行数据。进一步地,网络设备还可以采用第二RNTI对向终端设备发送的第一下行数据加扰。相对应地,终端设备采用第二RNTI作为扰码接收该第一下行数据。或者,网络设备可以对第一下行数据不加扰。相对应地,终端设备对该第一下行数据不进行解扰处理。
如图4所示,网络设备在单播PDCCH发送指示广播组播PDSCH的单播调度信令,进一步地,在广播组播PDSCH发送广播组播数据。终端设备则使用第一RNTI确定单播调度信令,进一步地,使用第二RNTI确定广播组播数据。
可以理解,若终端设备采用第一RNTI作为扰码接收单播调度信令,则解调单播调度信令的方式与解调以广播组播RNTI加扰的广播组播调度信令的方式相同。
例如,单播调度信令可以包括:频域资源分配指示(frequency domain resource assignment)、时域资源分配指示(time domain resource assignment)以及调制编码格式(modulation and coding scheme)。
其中,频域资源分配指示用于指示网络设备传输数据的资源的频域位置。网络设备在先为终端设备配置的传输单播数据的资源的频域信息表与传输广播组播数据的资源的频域信息表不同,在终端设备以第一RNTI作为扰码接收单播调度信令的情况下,则按照传输广播组播数据的资源的频域信息表计算频域资源分配指示。时域资源分配指示用于指示 网络设备传输数据的资源的时域位置。网络设备在先为终端设备配置的传输单播数据的资源的时域信息表与传输广播组播数据的资源的时域信息表不同,在终端设备以第一RNTI作为扰码接收单播调度信令的情况下,则按照传输广播组播数据的资源的时域信息表计算时域资源分配指示。调制编码格式指示用于指示网络设备传输的数据的调制编码格式。网络设备在先为终端设备配置的单播数据的调制编码表与广播组播数据的调制编码格式表不同,在终端设备以第一RNTI作为扰码接收单播调度信令的情况下,则按照广播组播数据的调制编码格式表确定网络设备传输的数据的调制编码格式。
作为另一个示例,网络设备向终端设备发送的第一调度信令中还可以携带第一指示信息,该第一指示信息指示在该第一调度信令指示的第一传输资源上传输的数据是第一下行数据。终端设备根据该第一指示信息可以确定单播调度信令指示的传输资源是广播组播数据的传输资源。
在此情况下,网络设备可以采用C-RNTI对第一调度信令加扰。相对应地,终端设备采用C-RNTI作为扰码接收该第一调度信令。
作为再一个示例,网络设备向终端设备发送预定义的搜索空间(search space)配置信息。进一步地,终端设备在该预定义的搜索空间检测第一调度信道。进一步地,终端设备在该第一调度信道上接收第一调度信令。
终端设备可以确定在该第一调度信道上接收到的第一调度信令指示的传输资源是第一下行数据的传输资源。
可选地,网络设备还可以向终端设备发送预定义的控制资源集合(control resource set,CORESET)配置信息。进一步地,终端设备根据该预定义的CORESET确定该预定义的搜索空间。
在另一种实现方式中,网络设备可以通过向终端设备发送第二调度信令来指示传输第一下行数据的第二调度资源。其中,该第二调度信令是广播调度信令或组播调度信令。
可以理解,网络设备采用广播或组播的方式向多个终端设备发送第二调度信令。
S320,终端设备向网络设备发送第一下行数据的HARQ反馈信息。
终端设备在该终端设备的单播反馈信道上向网络设备发送第一下行数据的HARQ反馈信息。
可以理解,网络设备可以向多个终端设备发送第一下行数据,多个终端设备中的每一个终端设备都在与每一个终端设备对应的单播反馈信道上发送第一下行数据的HARQ反馈信息。
为了便于理解和说明,下文以多个终端设备中的一个终端设备向网络设备发送HARQ反馈信息为例进行说明。可以理解,其他终端设备也可以采用下文所述的方法向网络设备发送第一下行数据的HARQ反馈信息。
如前文所述,网络设备可以在第一调度信令指示的第一传输资源上传输第一下行数据,也可以在第二调度信令指示的第二传输资源上传输第一下行数据。
可以理解,网络设备向终端设备发送的第一调度信令还可以指示单播反馈信道。终端设备在该单播调度信令指示的单播反馈信道上向网络设备发送该第一下行数据的HARQ反馈信息。
在网络设备通过第二调度信令指示传输第一下行数据的传输资源情况下,网络设备可 以在发送第二调度信令之前,通过高层信令的方式向终端设备发送指示终端设备在单播反馈信道发送第一下行数据的HARQ反馈信息的指示信息。例如,网络设备可以通过与终端设备之间建立RCC无线连接的方式,向终端设备发送该指示信息;或者,网络设备可以通过MAC CE向终端设备发送该指示信息。
终端设备根据该指示信息可以在单播反馈信道上按照第二调度信令在时间单元上的排序发送第一下行数据的HARQ反馈信息。其中,该时间单元可以是时隙。
若终端设备只接收到一个第一下行数据,则不需要考虑第二调度信令在时隙上的排序。
若终端设备接收到多个第一下行数据,则按照每一个第一下行数据的传输资源所在的时隙的排序依次发送每一个第一下行数据的HARQ反馈信息。例如,终端设备通过所在的时隙为时隙n的第二传输资源接收到第一个第一下行数据,终端设备通过所在时隙为时隙n+4的第二传输资源接收到第二个第一下行数据,则终端设备按照第二传输资源所在的时隙的排序,先在单播反馈信道上发送第一个第一下行数据的HARQ反馈信息,然后在单播反馈信道上发送第二个第一下行数据的HARQ反馈信息;或者,终端设备可以先在单播反馈信道上发送第二个第一下行数据的HARQ反馈信息,然后在单播反馈信道上发送第一的第一下行数据的HARQ反馈信息。
可选地,终端设备还可以按照指示第二传输资源的第二调度信令所在的时隙的排序发送每一个下行数据的HARQ反馈信息。
可以理解,终端设备可以接收到网络设备发送的每一个第二调度信令,也可能接收不到的网络设备发送的多个第二调度信令中的某几个第二调度信令,即终端设备可能存在漏检的情况。
在终端设备存在漏检的情况下,终端设备也无法接收网络设备在被漏检的第二调度信令指示的第二传输资源上发送的第一下行数据,进而也无法发送该第一下行数据的HARQ反馈信息。因此,若仅按照第二调度信令所在的时隙的排序,或者仅按照第二调度信令指示的第二传输资源所在时隙的排序,发送第一下行数据的HARQ反馈信息,则终端设备无法反馈网络设备在被漏检的第二调度信令指示的第二传输资源上发送的第一下行数据的HARQ反馈信息。进而网络设备根据接收到的HARQ反馈信息无法准确判断是否需要重传第一下行数据,或者无法判断需要重传哪一个第一下行数据。
因此,在终端设备存在漏检的情况下,终端设备根据第二调度信令所在的时隙和第三调度信令所在的时隙的排序以及第三调度信令对应的DAI,发送第一下行数据的HARQ反馈信息。其中,第三调度信令指示第三传输资源,第三传输资源用于传输第二下行数据,该第二下行数据是单播数据,该DAI按照网络设备发送第二调度信令和第三调度信令的顺序对调度信令进行累计计数,即网络设备每发送一个第二调度信令或一个第三调度信令,DAI计数器都会加1。
可选地,终端设备还可以根据第二传输资源所在的时隙和第三传输资源所在的时隙的排序以及第三调度信令对应的DAI,发送第一下行数据的HARQ反馈信息。
可以理解,第二调度信令所在时隙的排序可能在第三调度信令所在的时隙之前,或者,在两个第三调度信令所在的时隙之间,或者,在第三调度信令所在的时隙之后。
例如,若终端设备接收到的第二调度信令在时隙上的排序先于终端设备接收到的第三 调度信令,且DAI N≠M,则终端设备在单播反馈信道上发送DAI N对应的第二下行数据的HARQ反馈信息之前,发送DAI N-1个NACK,其中,DAI N为在时隙上排序最后的第三调度信令对应的DAI,M为终端设备接收到的第二调度信令的数量。
又例如,若终端设备接收到的第二调度信令所在的时隙的排序在终端设备接收到的第三调度信令所在的时隙之间,且DAI N-DAI 1≠M+1,则终端设备在发送DAI 1对应的第二下行数据的HARQ反馈信息之后,发送DAI N对应的第二下行数据的HARQ反馈信息之前,发送DAI N-DAI 1-1个HARQ反馈信息NACK,其中,DAI N为在时隙上排序最后的第三调度信令对应的DAI,DAI 1为在时隙上排序最先的第三调度信令对应的DAI,M为终端设备接收到的第二调度信令的数量。
再例如,若终端设备接收到的第二调度信令所在的时隙的排序在终端设备接收到的第三调度信令所在的时隙之后,则终端设备不发送第一下行数据的HARQ反馈信息。
可选地,网络设备若接收到多个终端设备在每个终端设备的单播反馈信道上发送的第一下行数据的HARQ反馈信息,并且有多个HARQ反馈信息都是NACK,则网络设备可以根据与该网络设备之间的信道条件最差的终端设备的信道条件,确定重传下行数据的MC阶数。
可选地,网络设备向终端设备发送的第二调度信令还可以指示广播组播反馈信道。终端设备可以在该广播组播反馈信道上发送第一下行数据的HARQ反馈信息。
在本申请实施例中,终端设备在单播反馈信道上发送广播组播数据的HARQ反馈信息,可以减少在单独的反馈信道上发送广播组播数据的HARQ反馈信息带来的资源浪费。同时,由于每个终端设备都是在该终端设备的单播反馈信道上发送HARQ反馈信息,因此网络设备可以识别接收到的多个HARQ反馈信息分别是哪一个终端设备发送的。进一步地,在接收到多个NACK的情况下,网络设备可以根据终端设备与网络设备之间的信道条件自适应调整重传下行数据的MC阶数。网络设备为每个终端设备配置单播反馈信道时考虑了每个终端设备与网络设备之间的信道条件,因此,在单播反馈信道上发送广播组播数据的HARQ反馈信息,还可以保证HARQ反馈的性能。
为了更好地理解本申请所提供的方法,下面结合不同的实施例和附图对上述方法做更进一步地说明。
应理解,下文示出的实施例,为了便于理解和说明,以网络设备与多个终端设备中的其中一个终端设备交互为例进行说明。但这不应对本申请构成任何限定。本申请实施例同样适用于网络设备与多个终端设备交互的场景。
图5是本申请另一实施例提供的HARQ反馈的方法的示意性流程图。图5所示的实施例对S310提及的网络设备可以通过向终端设备发送第一调度信令来指示传输第一下行数据的第一调度资源的示例做了更详细的描述。如图5所示,该方法500可以包括S510-S550,下面描述各个步骤。
S510,网络设备向终端设备发送第一RNTI和第二RNTI的配置信息。
其中,第一RNTI是单播RNTI,第二RNTI是广播组播RNTI。终端设备可以采用第一RNTI作为扰码接收网络设备发送的单播调度信令,或者,单播数据;终端设备可以采用第二RNTI作为扰码接收网络设备发送的广播组播调度信令,或者,广播组播数据。
本申请实施例对网络设备发送该配置信息的具体方式不做限定,例如,网络设备可以 通过与终端设备之间建立RCC无线连接的方式,向终端设备发送该配置信息;或者,网络设备可以通过媒体访问控制MAC CE向终端设备发送该配置信息。
在一种实现方式中,该第一RNTI与第二RNTI相关联,即第一RNTI与第二RNTI之间存在对应关系。其中,第一RNTI用于接收指示广播组播数据的传输资源的单播调度信令,第二RNTI用于接收广播组播数据。表1示出了第一RNTI与第二RNTI之间的对应关系表。
表1
Figure PCTCN2019123096-appb-000001
如表1所示,第一RNTI 1、第一RNTI 2以及第一RNTI 3与第二RNTI 1存在对应关系,第一RNTI 4、第一RNTI 5与第二RNTI 2存在对应关系。若终端设备#1接收的配置信息包括RNTI 1和第二RNTI 1,进一步地,终端设备#1可以采用第一RNTI 1作为扰码接收单播调度信令,采用第二RNTI 1作为扰码在单播调度信令指示的传输资源上接收广播组播数据。若终端设备#2接收的配置信息包括第一RNTI 2和第二RNTI 1,进一步地,终端设备#2可以采用第一RNTI 2作为扰码接收单播调度信令,采用第二RNTI 1作为扰码在单播调度信令指示的传输资源上接收广播组播数据。若终端设备#3接收的配置信息包括第一RNTI 4和第二RNTI 2,进一步地,终端设备#3可以采用第一RNTI 4作为扰码接收单播调度信令,采用第二RNTI 2作为扰码在单播调度信令指示的传输资源上接收广播组播数据。
在另一种实现方式中,第一RNTI是C-RNTI,即第一RNTI与第二RNTI不关联。
S520,网络设备向终端设备发送广播组播信道的配置信息。
其中,广播组播信道包括单播PDCCH和广播组播PDSCH。单播PDCCH用于传输单播调度信令,广播组播PDSCH用于传输广播组播数据。
本申请实施例对网络设备发送该配置信息的具体方式不做限定,例如,网络设备可以通过与终端设备之间建立RCC无线连接的方式,向终端设备发送该配置信息;或者,网络设备可以通过MAC CE向终端设备发送该配置信息。
该配置信息可以包括:数据解调参考信号(demodulation reference signal,DMRS)的配置、调制编码方案(modulation and coding scheme,MCS)表格配置以及数据时域资源分配表的配置。
其中时域资源分配表的内容包括:k0信息,S信息,L信息。k0代表传输广播组播数据的资源和PDCCH的时间距离,k0=0,表示传输广播组播数据的资源和PDCCH在一个时隙内,k0=1表示传输广播组播数据的资源所在的时隙是PDCCH所在的时隙的下一个时隙。S表示传输广播组播数据的资源的起始符号,数值从0到13。L表示广播组播数据的长度,数值从1到14。PDCCH用于传输指示广播组播PDSCH的调度信令。
S530,网络设备向终端设备发送第一调度信令。
该第一调度信令为单播调度信令,该第一调度信令指示第一传输资源,该第一传输资源用于传输第一下行数据,该第一下行数据为广播组播数据。
可以理解,网络设备可以在单播PDCCH上向终端设备发送第一调度信令。该第一调度信令还携带用于指示单播HARQ反馈信道的指示信息,该指示信息包括单播HARQ反馈信道的时域资源位置、频域资源位置、反馈时序信息。
如前文所述,网络设备可以向终端设备发送相关联的第一RNTI和第二RNTI的配置信息。在此情况下,终端设备可以采用第一RNTI作为扰码接收该第一调度信令。若终端设备成功接收该第一调度信令,则可以确定在该第一调度信令指示的第一传输资源上传输的数据是广播组播数据。
网络设备还可以向终端设备发送不关联的第一RNTI和第二RNTI的配置信息。在此情况下,终端设备可以采用该第一RNTI作为扰码接收该第一调度信令。该第一调度信令中还可以携带第一指示信息,该第一指示信息用于指示在该第一调度信令指示的第一传输资源上传输的数据是广播组播数据。若终端设备成功接收该第一调度信令,则可以根据该第一调度信令中携带的第一指示信息确定在该第一调度信令指示的第一传输资源上传输的数据是广播组播数据。
S540,网络设备向终端设备发送第一下行数据。
网络设备在第一传输资源上向终端设备发送第一下行数据。
如前文所述,若网络设备采用第二RNTI对该第一下行数据加扰,则终端设备采用第二RNTI作为扰码接收该第一下行数据。
S550,终端设备向网络设备发送第一下行数据的HARQ反馈信息。
终端设备在该终端设备的单播反馈信道上向网络设备发送第一下行数据的HARQ反馈信息。
如图6所示,网络设备在时隙n在单播PDCCH上向终端设备发送单播调度信令#1,该单播调度信令#1指示传输单播数据的PDSCH1,以及指示HARQ反馈信道;网络设备在时隙n+2在单播PDCCH上向终端设备发送单播调度信令#2,该单播调度信令#2指示传输单播数据的PDSCH2,以及指示HARQ反馈信道;网络设备在时隙n+3在单播PDCCH上向终端设备发送单播调度信令#3,该单播调度信令#3指示传输广播组播数据的PDSCHx,以及指示HARQ反馈信道;网络设备在时隙n+6在单播PDCCH上向终端设备发送单播调度信令#4,该单播调度信令#4指示传输单播数据的PDSCH4,以及指示HARQ反馈信道。
然后,网络设备在PDSCH1上向终端设备发送单播数据#1,在PDSCH2上向终端设备发送单播数据#2,在PDSCHx上向终端设备发送广播组播数据#x,在PDSCH4上向终端设备发送单播数据#4。
然后,网络设备在单播反馈信道上发送的HARQ反馈信息为:HARQ-1,HARQ-2、HARQ-x、HARQ-4,其中HARQ-1对应单播数据#1的HARQ反馈信息,HARQ-2对应单播数据#2的HARQ反馈信息,HARQ-x对应广播组播数据#x的HARQ反馈信息,HARQ-4对应单播数据#4的HARQ反馈信息。
在本申请实施例中,网络设备通过向终端设备发送单播调度信令的方式指示传输广播组播数据的传输资源,以及指示广播组播数据HARQ反馈信道,可以在一定程度上减少终端设备出现漏检的情况。
图7是本申请另一实施例提供的HARQ反馈的方法的示意性流程图。图7所示的实 施例对S310提及的网络设备可以通过向终端设备发送第二调度信令来指示传输第一下行数据的第二调度资源的示例做了更详细的描述。如图7所示,该方法700可以包括S710-S750,下面描述各个步骤。
S710,网络设备向终端设备发送第二调度信令。
该第二调度信令指示第二传输资源,该第二传输资源用于传输第一下行数据,该第一下行数据为广播组播数据,该第二调度信令是广播调度信令或组播调度信令。
该第二调度信令还可以指示广播组播数据的HARQ反馈信道。
应理解,网络设备每发送一个第二调度信令,都会默认将DAI计数器加1。默认加1可以理解为,网络设备发送的第二调度信令中并没有携带DAI,只是计数上假装本次发送的是单播调度信令。
如图8所示,终端设备在时隙n收到的单播调度信令#1指示单播PDSCH1,对应的DAI=0,指示HARQ反馈信息在时隙n+8发送;终端设备在时隙n+2收到的单播调度信令#2指示单播PDSCH2,对应的DAI=1,指示HARQ反馈信息在时隙n+8发送;终端设备在时隙n+3收到的广播组播调度信令指示广播组播PDSCHx,不涉及单播DAI计数器,但是跳过了DAI=2;终端设备在时隙n+6收到的单播调度信令#4指示单播PDSCH4,对应的DAI=3,指示HARQ反馈信息在时隙n+8发送。其中,网络设备在单播PDCCH发送单播调度信令,在广播组播PDCCH发送广播组播调度信令。
终端设备对接收到的多个第二调度信令在时隙上排序。例如,排序的序列信息为:slot-y={slot-y1},{slot-y2},……,{slot-yM}。M为终端设备接收到的第二调度信令的个数,M为正整数。{slot-y1}表示终端设备在时隙y1接收到第一个第二调度信令,{slot-y2}表示终端设备在时隙y2接收到第二个第二调度信令,以此类推。
应理解,该第二调度信令指示的第二传输资源的结束时间,在终端设备发送承载HARQ反馈信息的HARQ码本的d个符号之前。d个符号表示终端设备解调第一下行数据的时间,即,在d个符号之内,终端设备能够对第一下行数据进行解调和译码,并进行HARQ反馈。d的数值基于每个终端设备的处理时间设置。
S720,网络设备向终端设备发送第一下行数据。
网络设备在第二传输资源上向终端设备发送第一下行数据。
S730,网络设备向终端设备发送第三调度信令。
该第三调度信令指示第三传输资源,该第三传输资源用于传输第二下行数据,该第二下行数据为单播下行数据,该第三调度信令是单播调度信令。
应理解,网络设备每发送一个第三调度信令,DAI计数器同样加1。
终端设备对接收到的多个第三调度信令在时隙上排序。例如,排序的序列信息为:时隙(slot)-x={slot-x1,DAI-x1},{slot-x2,DAI-x2},……,{slot-xN,DAI-xN}。N为终端设备接收到的第三调度信令的个数,N为正整数。slot-x1表示终端设备在时隙x1接收到第一个第三调度信令,对应DAI的数值为DAI-x1,slot-x2表示终端设备在时隙x2接收到第二个第三调度信令,对应DAI的数值为DAI-x2,以此类推。
需要说明:S710和S730没有特定的先后时间关系,可以是先执行S710后执行S730,或者先执行S730后执行S710,或者执行完S710,执行S730,然后再执行710。
S740,网络设备向终端设备发送第二下行数据。
网络设备在第三传输资源上向终端设备发送第二下行数据。
S750,终端设备向网络设备发送第一下行数据和第二下行数据的HARQ反馈信息。
首先,终端设备将S710和S730中的序列信息slot-y和slot-x按照时隙的时间顺序进行排列。
可以理解,对序列信息slot-y和slot-x按照时隙的时间顺序进行排列之后,序列信息slot-y可能在slot-x之前,也可能在slot-x之间,也可能在slot-x之后。
例如,对序列信息slot-y和slot-x按照时隙的时间顺序进行排列之后,得到的序列信息可能是:{slot-y1},{slot-y2},……,{slot-yM},{slot-x1},{slot-x2},……,{slot-xN}。
在此情况下,若终端设备在时隙x1接收到的第三调度信令的DAI-x1数值等于M,则说明网络设备在时隙x1之前发送的所有的第二调度信令全部被检测到。则HARQ反馈的信息组合为:{slot-y1},{slot-y2},……,{slot-yM},{slot-x1},{slot-x2},……,{slot-xN}序列对应的调度信令指示的传输资源上发送的下行数据的译码结果。
若终端设备在时隙x1接收到的第三调度信令的DAI-x1数值不等于M,例如,该DAI-x1数值小于M,则说明网络设备在时隙x1之前发送的某几个第二调度信令没有被检测到,则在{slot-x1}对应的译码结果之前设置DAI-x1-1个NACK。
如图9所示,终端设备在时隙n收到的广播组播调度信令#1指示广播组播PDSCHy;终端设备在时隙n+1收到的广播组播调度信令#2指示广播组播PDSCHy+1;终端设备在时隙n+6收到的单播调度信令#1指示单播PDSCH1,对应的DAI=3,指示HARQ反馈信息在时隙n+8发送。其中,网络设备在单播PDCCH发送单播调度信令,在广播组播PDCCH发送广播组播调度信令。
终端设备接收到的单播调度信令#1对应的DAI=3,由此可以判断在单播调度信令#1之前可能丢失了三个单播调度信令。同时,终端设备接收到的广播调度信令的个数是2,并且广播调度信令所在的时隙在单播调度信令#1所在的时隙之前,则终端设备可以确定接收到的两个广播调度信令与DAI=0,1,2中的两个DAI相对应。但是由于3≠2,则可以判断终端设备漏检了一个调度信令。又由于终端设备无法判断漏检的是单播调度信令还是广播组播调度信令,则在单播数据的译码结果之前设置3个NACK。如图9所示,终端设备向网络设备发送的则HARQ反馈的信息组合为:NACK,NACK,NACK,HARQ-1,其中HARQ-1是单播数据对应的译码结果。
又例如,对序列信息slot-y和slot-x按照时隙的时间顺序进行排列之后,得到的序列信息可能是:{slot-x1},……,{slot-xN-1},{slot-y1},{slot-y2},……,{slot-yM},{slot-xN}。
设终端设备在时隙xN-1接收到的第三调度信令的DAI数值为A,在时隙xN接收到的第三调度信令的DAI数值为B。若B-A-1=M,则说明网络设备在时隙xN-1和时隙xN之间发送的所有第二调度信令全部被检测到,M为终端设备接收到的第二调度信令的个数,M为正整数。则HARQ反馈的信息组合为:{slot-x1},……,{slot-xN-1},{slot-y1},{slot-y2},……,{slot-yM},{slot-xN}序列对应的调度信令指示的传输资源上发送的下行数据的译码结果。
如图8所示,终端设备在时隙n+2收到的单播调度信令#2指示单播PDSCH2,对应的DAI=1,终端设备在时隙n+6收到的单播调度信令#4指示单播PDSCH4,对应的DAI=3,终端设备接收到的广播组播调度信令的个数为1。由于3-1-1=1,则可判断终端设备接收到 了网络设备发送的所有调度信令,则HARQ反馈的信息组合为:HARQ-1,HARQ-2,HARQ-x,HARQ-4。
若B-A-1≠M,则说明网络设备在时隙xN-1和时隙xN之间发送的某几个第二调度信令没有被检测到,则在{slot-xN-1}和{slot-xN}对应的译码结果之间设置B-A-1个NACK。
如图10所示,终端设备在时隙n收到的单播调度信令#1指示单播PDSCH1,对应的DAI=0,指示HARQ反馈信息在时隙n+8发送;终端设备在时隙n+1收到的单播调度信令#2指示单播PDSCH2,对应的DAI=1,指示HARQ反馈信息在时隙n+8发送;终端设备在时隙n+3收到的广播组播调度信令指示广播组播PDSCHx,不涉及单播DAI计数器,但是跳过了DAI=3;终端设备在时隙n+6收到的单播调度信令#4指示单播PDSCH4,对应的DAI=4,指示HARQ反馈信息在时隙n+8发送。其中,网络设备在单播PDCCH发送单播调度信令,在广播组播PDCCH发送广播组播调度信令。
终端设备收到的一个广播调度信令在单播调度信令#2和单播调度信令#4之间,终端设备没有接收到单播调度信令#3。单播调度信令#2对应的DAI=1,单播调度信令#4对应的DAI=4。由于4-1-1≠1,则终端设备网络设备在时隙n+1和时隙n+6之间发送的某一个调度信令没有被检测到。由于终端设备无法判断漏检是广播组播调度信令还是单播调度信令#3,则在时隙n+1接收的单播数据#2的译码结果和在时隙n+6接收的单播数据#4的译码结果之间设置两个NACK。如图10所示,终端设备向网络设备发送的则HARQ反馈的信息组合为:HARQ-1,HARQ-2,NACK,NACK,HARQ-4,其中HARQ-1是单播数据#1对应的译码结果,HARQ-2是单播数据#2对应的译码结果,HARQ-4是单播数据#4对应的译码结果。
再例如,对序列信息slot-y和slot-x按照时隙的时间顺序进行排列之后,得到的序列信息可能是:{slot-x1},……,{slot-xN},{slot-y1},{slot-y2},……,{slot-yM}。
在此情况下,终端设备无法判断是否全部接收了网络设备发送的广播组播调度信令,则对第一下行数据不进行HARQ反馈。
在本申请实施例中,网络设备通过向终端设备发送广播调度信令或组播调度信令的方式指示传输广播组播数据的传输资源,并且每发送一个广播调度信令或组播调度信令,DAI计数器都会加1。因此,可以在单播反馈信道上发送广播组播数据的HARQ反馈信息,同时还节约了网络设备发送调度信令的空口信令。
以上,结合图2至图9详细说明了本申请实施例提供的方法。以下,结合图11至图13详细说明本申请实施例提供的装置。
图11是本申请实施例提供的通信装置的示意性框图。如图11所示,该通信装置1000可以包括处理单元1100和收发单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如芯片或芯片系统)。
应理解,该通信装置1000可对应于根据本申请实施例的方法300、方法500、方法700中的终端设备,该通信装置1000可以包括用于执行图3中的方法300、图5中的方法500、图7中的方法700中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300、图5中的方法500、图7中的方法700的相应流程。
其中,当该通信装置1000用于执行图3中的方法300时,处理单元1100可用于执行方法300中的S320,收发单元1200可用于执行方法300中的S310和S320。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图5中的方法500时,处理单元1100可用于执行方法500中的S540、S550,收发单元1200可用于执行方法500中的S510-S550。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图7中的方法700时,处理单元1100可用于执行方法700中的S750,收发单元1200可用于执行方法700中的S710-S750。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图12中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图12中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如芯片或芯片系统)。
应理解,该通信装置1000可对应于根据本申请实施例的方法300、方法500、方法700中的网络设备,该通信装置1000可以包括用于执行图3中的方法300、图5中的方法500、图7中的方法700中网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300、图5中的方法500、图7中的方法700的相应流程。
当该通信装置1000用于执行图3中的方法300时,收发单元1200可用于执行方法300中的S310-S320。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图5中的方法500时,处理单元1100可用于执行方法500中的S530-S540,收发单元1200可用于执行方法500中的S510-S550。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图7中的方法700时,处理单元1100可用于执行方法700中的S710和S730,收发单元1200可用于执行方法700中的S710-S750。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元1200可通过收发器实现,例如可对应于图13中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图13中示出的 网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图12是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图11中的处理单元1100对应。
上述收发器2020可以与图11中的收发单元1200对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图12所示的终端设备2000能够实现图3、图5以及图7中所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,如确定第一调度信令等。收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作,如发送第一下行数据的HARQ反馈信息,接收第一下行数据等。具体请见前面方法实施例中的描述,此处不再赘述。
其中,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图13是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元或是收发单元的一部分,与图11中的收发单元1100对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送 单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送第一下行数据、第二下行数据,以及HARQ反馈信息等。具体请见前面方法实施例中的描述,此处不再赘述。
所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图11中的处理单元1200对应,可用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述资源分配信息等。具体请见前面方法实施例中的描述,此处不再赘述。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图13所示的基站3000能够实现图3、图5以及图7所示方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图13所示出的基站3000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向第一终端设备发送或从第一终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还 可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3、图5以及图7所示实施例中终端设备和网络设备分别执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3、图5以及图7所示实施例中终端设备和网络设备分别执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终 端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据 中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种混合自动重传请求HARQ反馈的方法,其特征在于,包括:
    接收第一下行数据,所述第一下行数据为广播组播数据;
    在单播反馈信道上发送所述第一下行数据的HARQ反馈信息。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一调度信令,所述第一调度信令指示第一调度资源,所述第一调度资源为所述第一下行数据的传输资源,所述第一调度信令为单播调度信令;
    其中,接收第一下行数据,包括:
    在所述第一调度资源上接收所述第一下行数据。
  3. 如权利要求2所述的方法,其特征在于,所述接收第一调度信令,包括:
    根据第一无线网络临时标识RNTI确定所述第一调度信令,所述第一RNTI与第二RNTI相关联,所述第一RNTI为单播RNTI,所述第二RNTI为广播组播RNTI;
    所述接收第一下行数据,包括:
    根据所述第二RNTI确定所述第一下行数据。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    接收配置信息,所述配置信息包括所述第一RNTI,或,所述第一RNTI和所述第二RNTI。
  5. 如权利要求2所述的方法,其特征在于,所述第一调度信令还包括第一指示信息,所述第一指示信息指示在所述第一调度资源上传输所述第一下行数据。
  6. 如权利要求2所述的方法,其特征在于,所述接收第一调度信令,包括:
    在预定义的搜索空间检测第一调度信道;
    在所述第一调度信道上接收所述第一调度信令。
  7. 如权利要求6所述的方法,其特征在于,在预定义的搜索空间检测所述第一调度信道,包括:
    根据预定义的控制资源集合确定所述预定义的搜索空间;
    在所述预定义的搜索空间检测所述第一调度信道。
  8. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二调度信令,所述第二调度信令指示第二调度资源,所述第二调度资源为所述第一下行数据的传输资源,所述第二调度信令为广播调度信令或组播调度信令;
    其中,接收第一下行数据,包括:
    在所述第二调度资源上接收所述第一下行数据;
    其中,在单播反馈信道上发送所述第一下行数据的HARQ反馈信息,包括:
    在所述单播反馈信道上按照所述第二调度信令在时间单元上的排序发送所述第一下行数据的HARQ反馈信息。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    接收第三调度信令和所述第三调度信令对应的下行分配索引DAI,所述第三调度信令指示第三调度资源,所述第三调度资源为第二下行数据的传输资源,所述第二下行数据为 单播数据,所述第三调度信令为单播调度信令,所述DAI按照发送所述第二调度信令和所述第三调度信令的顺序对调度信令累计计数;
    其中,在所述单播反馈信道上按照所述第二调度信令在时间单元上的排序发送所述第一下行数据的HARQ反馈信息,包括:
    在所述单播反馈信道上按照所述第二调度信令和所述第三调度信令在时间单元上的排序以及所述DAI的值,发送所述第一下行数据的HARQ反馈信息。
  10. 一种混合自动重传请求HARQ反馈的方法,其特征在于,包括:
    以广播或组播的方式发送第一下行数据;
    在第一终端设备的单播反馈信道上接收来自所述第一终端设备的所述第一下行数据的HARQ反馈信息。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    以单播的方式向所述第一终端设备发送第一调度信令,所述第一调度信令指示第一调度资源,所述第一调度资源为所述第一下行数据的传输资源;
    其中,以广播或组播的方式发送第一下行数据,包括:
    在所述第一调度资源上以广播或组播的方式发送所述第一下行数据。
  12. 如权利要求11所述的方法,其特征在于,所述以单播的方式向所述第一终端设备发送第一调度信令,包括:
    采用第一无线网络临时标识RNTI加扰所述第一调度信令,所述第一RNTI与第二RNTI相关联,所述第一RNTI为单播RNTI,所述第二RNTI为广播组播RNTI;
    以单播的方式向所述第一终端设备发送所述第一调度信令;
    所述以广播或组播的方式发送第一下行数据,包括:
    采用所述第二RNTI加扰所述第一下行数据;
    以广播或组播的方式发送所述第一下行数据。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送配置信息,所述配置信息包括所述第一RNTI,或,所述第一RNTI和所述第二RNTI。
  14. 如权利要求11所述的方法,其特征在于,所述第一调度信令还包括第一指示信息,所述第一指示信息指示在所述第一调度资源上传输所述第一下行数据。
  15. 如权利要求11所述的方法,其特征在于,所述以单播的方式向第一终端设备发送第一调度信令,包括:
    在第一调度信道上以单播的方式向所述第一终端设备发送所述第一调度信令,所述第一调度信道是在预定义的搜索空间检测到的。
  16. 如权利要求15所述的方法,其特征在于,所述预定义的搜索空间是根据预定义的控制资源集合确定的。
  17. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    以广播或组播的方式发送第二调度信令,所述第二调度信令指示第二调度资源,所述第二调度资源为所述第一下行数据的传输资源;
    其中,以广播或组播的方式发送第一下行数据,包括:
    在所述第二调度资源上以广播或组播的方式发送所述第一下行数据。
  18. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    以单播的方式向所述第一终端设备发送第三调度信令和所述第三调度信令对应的下行分配索引DAI,所述第三调度信令指示第三调度资源,所述第三调度资源为第二下行数据的传输资源,所述第二下行数据为单播数据,所述第三调度信令为单播调度信令,所述DAI按照发送所述第二调度信令和所述第三调度信令的顺序对调度信令累计计数。
  19. 一种通信装置,其特征在于,包括处理单元和收发单元,
    所述收发单元用于:接收第一下行数据,所述第一下行数据为广播组播数据;
    所述收发单元还用于:在单播反馈信道上发送所述第一下行数据的HARQ反馈信息。
  20. 如权利要求19所述的通信装置,其特征在于,所述收发单元还用于:
    接收第一调度信令,所述第一调度信令指示第一调度资源,所述第一调度资源为所述第一下行数据的传输资源,所述第一调度信令为单播调度信令;
    所述收发单元具体用于:在所述第一调度资源上接收所述第一下行数据。
  21. 如权利要求20所述的通信装置,其特征在于,所述收发单元具体用于:
    根据第一无线网络临时标识RNTI确定所述第一调度信令,所述第一RNTI与第二RNTI相关联,所述第一RNTI为单播RNTI,所述第二RNTI为广播组播RNTI;
    所述收发单元具体用于:根据所述第二RNTI确定所述第一下行数据。
  22. 如权利要求21所述的通信装置,其特征在于,所述收发单元还用于:
    接收配置信息,所述配置信息包括所述第一RNTI,或,所述第一RNTI和所述第二RNTI。
  23. 如权利要求20所述的通信装置,其特征在于,所述第一调度信令还包括第一指示信息,所述第一指示信息指示在所述第一调度资源上传输所述第一下行数据。
  24. 如权利要求20所述的通信装置,其特征在于,所述处理单元用于:
    在预定义的搜索空间检测第一调度信道;
    所述收发单元具体用于:在所述第一调度信道上接收所述第一调度信令。
  25. 如权利要求24所述的通信装置,其特征在于,所述处理单元具体用于:
    根据预定义的控制资源集合确定所述预定义的搜索空间;
    在所述预定义的搜索空间检测所述第一调度信道。
  26. 如权利要求19所述的通信装置,其特征在于,所述收发单元还用于:
    接收第二调度信令,所述第二调度信令指示第二调度资源,所述第二调度资源为所述第一下行数据的传输资源,所述第二调度信令为广播调度信令或组播调度信令;
    所述收发单元具体用于:
    在所述第二调度资源上接收所述第一下行数据;
    所述收发单元具体用于:
    在所述单播反馈信道上按照所述第二调度信令在时间单元上的排序发送所述第一下行数据的HARQ反馈信息。
  27. 如权利要求26所述的通信装置,其特征在于,所述收发单元还用于:
    接收第三调度信令和所述第三调度信令对应的下行分配索引DAI,所述第三调度信令指示第三调度资源,所述第三调度资源为第二下行数据的传输资源,所述第二下行数据为单播数据,所述第三调度信令为单播调度信令,所述DAI按照发送所述第二调度信令和 所述第三调度信令的顺序对调度信令累计计数;
    所述收发单元具体用于:
    在所述单播反馈信道上按照所述第二调度信令和所述第三调度信令在时间单元上的排序以及所述DAI的值,发送所述第一下行数据的HARQ反馈信息。
  28. 一种通信装置,其特征在于,包括处理单元和收发单元,
    所述收发单元用于:以广播或组播的方式发送第一下行数据;
    所述收发单元还用于:在第一终端设备的单播反馈信道上接收来自所述第一终端设备的所述第一下行数据的HARQ反馈信息。
  29. 如权利要求28所述的通信装置,其特征在于,所述收发单元还用于:
    以单播的方式向所述第一终端设备发送第一调度信令,所述第一调度信令指示第一调度资源,所述第一调度资源为所述第一下行数据的传输资源;
    所述收发单元具体用于:
    在所述第一调度资源上以广播或组播的方式发送所述第一下行数据。
  30. 如权利要求29所述的通信装置,其特征在于,所述处理单元用于:
    采用第一无线网络临时标识RNTI加扰所述第一调度信令,所述第一RNTI与第二RNTI相关联,所述第一RNTI为单播RNTI,所述第二RNTI为广播组播RNTI;
    所述接收单元还用于:接收所述第一调度信令;
    所述处理单元还用于:采用所述第二RNTI加扰所述第一下行数据;
    所述接收单元还用于:接收所述第一下行数据。
  31. 如权利要求30所述的通信装置,其特征在于,所述收发单元还用于:
    向所述第一终端设备发送配置信息,所述配置信息包括所述第一RNTI,或,所述第一RNTI和所述第二RNTI。
  32. 如权利要求29所述的通信装置,其特征在于,所述第一调度信令还包括第一指示信息,所述第一指示信息指示在所述第一调度资源上传输所述第一下行数据。
  33. 如权利要求29所述的通信装置,其特征在于,所述收发单元具体用于:
    在第一调度信道上以单播的方式向所述第一终端设备发送所述第一调度信令,所述第一调度信道是在预定义的搜索空间检测到的。
  34. 如权利要求33所述的通信装置,其特征在于,所述预定义的搜索空间是根据预定义的控制资源集合确定的。
  35. 如权利要求28所述的通信装置,其特征在于,所述收发单元还用于:
    以广播或组播的方式发送第二调度信令,所述第二调度信令指示第二调度资源,所述第二调度资源为所述第一下行数据的传输资源;
    所述收发单元具体用于:
    在所述第二调度资源上以广播或组播的方式发送所述第一下行数据。
  36. 如权利要求35所述的通信装置,其特征在于,所述收发单元还用于:
    以单播的方式向所述第一终端设备发送第三调度信令和所述第三调度信令对应的下行分配索引DAI,所述第三调度信令指示第三调度资源,所述第三调度资源为第二下行数据的传输资源,所述第二下行数据为单播数据,所述第三调度信令为单播调度信令,所述DAI按照发送所述第二调度信令和所述第三调度信令的顺序对调度信令累计计数。
  37. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述装置执行:如权利要求1-9中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述装置执行:如权利要求10-18中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被执行时,以使得执行如权利要求1-18中任一项所述的方法。
PCT/CN2019/123096 2019-12-04 2019-12-04 混合自动重传请求harq反馈的方法和通信装置 WO2021109037A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/123096 WO2021109037A1 (zh) 2019-12-04 2019-12-04 混合自动重传请求harq反馈的方法和通信装置
CN201980102595.2A CN114747236B (zh) 2019-12-04 2019-12-04 混合自动重传请求harq反馈的方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123096 WO2021109037A1 (zh) 2019-12-04 2019-12-04 混合自动重传请求harq反馈的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2021109037A1 true WO2021109037A1 (zh) 2021-06-10

Family

ID=76221379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123096 WO2021109037A1 (zh) 2019-12-04 2019-12-04 混合自动重传请求harq反馈的方法和通信装置

Country Status (2)

Country Link
CN (1) CN114747236B (zh)
WO (1) WO2021109037A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480070A (zh) * 2006-07-04 2009-07-08 艾利森电话股份有限公司 在高速下行链路信道上的广播和多播
CN102067499B (zh) * 2008-08-22 2013-12-25 上海贝尔股份有限公司 利用单播链路来实现harq重传的方法和系统
CN103797745A (zh) * 2011-08-19 2014-05-14 Sca艾普拉控股有限公司 机器型通信网络中的多播arq
CN106470398A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 Sc-mcch发送方法、sc-ptm接收方法及其装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018133A (zh) * 2006-02-07 2007-08-15 华为技术有限公司 一种多媒体广播组播业务帧序列的生成方法
CN108039939B (zh) * 2018-01-19 2019-12-27 北京邮电大学 物联网组播业务的harq反馈方法及装置
CN110198209B (zh) * 2018-02-26 2021-10-01 华为技术有限公司 通信方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480070A (zh) * 2006-07-04 2009-07-08 艾利森电话股份有限公司 在高速下行链路信道上的广播和多播
CN102067499B (zh) * 2008-08-22 2013-12-25 上海贝尔股份有限公司 利用单播链路来实现harq重传的方法和系统
CN103797745A (zh) * 2011-08-19 2014-05-14 Sca艾普拉控股有限公司 机器型通信网络中的多播arq
CN106470398A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 Sc-mcch发送方法、sc-ptm接收方法及其装置

Also Published As

Publication number Publication date
CN114747236A (zh) 2022-07-12
CN114747236B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2020220290A1 (zh) 边链路数据的发送和接收方法以及装置
US11997686B2 (en) Transmission apparatus and method of feedback information
US20230074542A1 (en) Communication method and apparatus
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
WO2018059466A1 (zh) 传输控制信息的方法、用户设备和网络设备
US20220224453A1 (en) Method for sending hybrid automatic repeat request acknowledgement/negative acknowledgement information and apparatus
WO2021016748A1 (zh) 边链路资源选择方法以及装置
WO2022063192A1 (zh) 组播/广播业务的半持续调度方法、装置及存储介质
US20200067644A1 (en) Data feedback method and related device
US20100110879A1 (en) Method and apparatus for providing multimedia broadcast multicast service
WO2020259611A1 (zh) 一种通信方法、装置及存储介质
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
WO2021203392A1 (zh) 边链路传输方法以及装置
US20220337352A1 (en) Method for information feedback and related device
WO2018086707A1 (en) Feedback based flexible transmission scheme for contention-based urllc transmission
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2021109037A1 (zh) 混合自动重传请求harq反馈的方法和通信装置
WO2018063326A1 (en) Multicast retransmission for machine type devices
WO2021056419A1 (zh) 边链路资源的预留方法以及装置
WO2023050436A1 (zh) 信息反馈方法以及装置
WO2023205949A1 (en) Methods for new data indicator (ndi) field alignment for reliable reception of multicast traffic
WO2024031395A1 (zh) 重复传输方法、终端设备和网络设备
WO2022150976A1 (zh) 半永久性调度的反馈方法、装置、设备及存储介质
WO2022151162A1 (zh) 反馈信息的发送方法、装置、设备及存储介质
WO2019028775A1 (zh) 反馈信息的发送和接收方法、装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955227

Country of ref document: EP

Kind code of ref document: A1