WO2021108933A1 - Moveable robotic cell for the production of pieces and enclosures printed on site by means of a multi-axis 3d printing system, and operating method - Google Patents

Moveable robotic cell for the production of pieces and enclosures printed on site by means of a multi-axis 3d printing system, and operating method Download PDF

Info

Publication number
WO2021108933A1
WO2021108933A1 PCT/CL2019/050130 CL2019050130W WO2021108933A1 WO 2021108933 A1 WO2021108933 A1 WO 2021108933A1 CL 2019050130 W CL2019050130 W CL 2019050130W WO 2021108933 A1 WO2021108933 A1 WO 2021108933A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed
mobile robotic
robotic cell
contour
self
Prior art date
Application number
PCT/CL2019/050130
Other languages
Spanish (es)
French (fr)
Inventor
Luis Felipe GONZÁLEZ BÖHME
Rodrigo Hernán GARCÍA ALVARADO
Francisco Javier QUITRAL ZAPATA
Alejandro MARTÍNEZ ROCAMORA
Fernando Alfredo AUAT CHEEIN
Original Assignee
Universidad Técnica Federico Santa María
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Técnica Federico Santa María filed Critical Universidad Técnica Federico Santa María
Priority to PCT/CL2019/050130 priority Critical patent/WO2021108933A1/en
Publication of WO2021108933A1 publication Critical patent/WO2021108933A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing

Definitions

  • the present invention refers to a mobile robotic cell for the manufacture of parts and enclosures printed on site by means of a multi-axis 3D printing system and operation method, which allows to generate double helical trajectories for the simultaneous deposition of continuous filaments of a mortar of cement, polymer, biomaterial or other similar material that does not require formwork to shape or contain it while it solidifies. More specifically to a mobile robotic cell, which is zenithal connectable to external sources of material and energy, as well as external control devices, whose self-supporting structure is self-leveling and which contains a multi-axis actuator device that is reprogrammable, automatically controlled and programmable.
  • Printed construction also known as 3D printing construction, consists of the additive manufacturing of buildings and construction components by means of the computer-controlled mechanical deposition of filaments of a mortar material in a plastic state, generally with a high content of cement, fine grains. of aggregates, usually between 2 and 3 mm in diameter, accelerators and other specific additives, which reproduces the contour of the piece to be printed, in its horizontal and vertical extension, in successive superimposed layers that adhere to each other consecutively, forming a resistant continuum that progressively solidifies, preserving its shape and position without the help of formwork.
  • the threshold of time in which each cement mortar filament best adheres to the lower filament, in successive overlapping layers, without crushing each other too much, or overturning or crumbling is a crucial parameter in the programming and control of the speeds and accelerations of deposition and pumping of mortar, especially in the impression of pieces of great horizontal extension or of rooms.
  • the composition of the mortar, the number of superimposed layers and their respective weight are also determining factors in the programming and control of the 3D printing process with cement mortar. Less frequent, until now, is the construction printed with mortar of polymer materials, biomaterials and other composite materials.
  • the shape and orientation of the nozzle through which the mortar is extruded are also essential to determine the effective reach of the tool, especially if the part to be printed contains pre-installed reinforcement or ducts, likewise if the angle that the walls of the piece form with the ground is different from ninety degrees and, in some cases, also if it is sought to expedite the exit of the mortar filament from the nozzle, reducing the friction produced by the vertical orientation of the nozzle.
  • the printed construction process can occur on site, that is, on the construction site, to manufacture buildings in their final location or in a workshop, to prefabricate construction components that will eventually be put into service in a place other than where they were printed.
  • the conventional way of manufacturing walls, columns, slab components and other parts using 3D printing is to print from the bottom up, layer by layer, the contour of the piece with a continuous mortar filament and the trim of the piece with another or the same filament, to form a structuring weft of the piece.
  • slab components can be prefabricated, preferably in the workshop, by printing them in a vertical position, as if they were hollow walls or bricks that are finally knocked down to be put into service, laid in their final position and orientation. You can also use the printed contour of the piece so that it acts as a formwork and once its walls harden and acquire sufficient strength, fill the interior of the piece with the same or another appropriate material to improve its mechanical resistance, insulation acoustic or thermal insulation.
  • Both the contour and trim mortar can also contain natural or synthetic fibers to improve their mechanical resistance.
  • supply and extraction ducts for water, electricity, gases and other means can also be installed before, during or after manufacturing the part, as allowed by the printed construction system used.
  • the same condition applies to installing windowsills and lintels, for example, to form the openings of doors and windows, before or during the 3D printing process of the walls that make up an enclosure.
  • the reinforcement of the piece must be anchored to the foundation, as well as to the adjacent pieces, if any, in order to obtain a continuous resistance, solidly based on the ground and in solidarity with the rest of the building.
  • the choice of the printed construction system used is vitally important, especially if it will not be possible to modify the position or orientation of the part during the 3D printing process, as is generally the case in construction printed on site.
  • Cartesian Cartesian
  • cylindrical Cartesian
  • articulated The Cartesian system of printed construction is fundamentally composed of a gantry.
  • the links of its kinematic chain are connected by at least three prismatic joints (translational) oriented each one in one of the directions of the X, Y and Z axes of the Cartesian coordinate system.
  • Your workspace is in the shape of a rectangular prism (orthohedron) and is completely contained by the supporting structure of the printed building system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the cylindrical system of printed construction is essentially composed of a cantilevered rotating arm.
  • the links of its kinematic chain are connected by a joint of revolution (rotational) around the vertical axis Z, a prismatic joint (translational) also in the direction of the vertical axis Z and a prismatic joint (translational) in the direction of one of the horizontal X or Y axes of the Cartesian coordinate system.
  • Your workspace is in the shape of an incomplete cylinder - if the joint of revolution around the vertical Z axis does not reach 360 angular degrees - or complete - if the joint of revolution around the vertical Z axis does reach or exceed 360 angular degrees-, which partially or totally contains the printed construction system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the parallel system of printed construction also known as Delta, is essentially composed of three concurrent articulated arms.
  • the links of the kinematic chain of each arm are connected by either a prismatic (translational) joint in the direction of the vertical axis Z, or a joint of revolution (rotational) around one of the horizontal axes X or Y and two universal (rotational) joints around one of the horizontal X or Y axes and around the vertical Z axis.
  • Your workspace is roughly shaped like the lower hemisphere of a sphere or an inverted umbrella and is completely contained by the structure supporting structure of the printed construction system itself.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation.
  • the articulated system of printed construction is essentially composed of a manipulator robot.
  • the links of its kinematic chain are connected by six joints of revolution (rotational), each around one of the X, Y or Z axes of the Cartesian coordinate system.
  • Your workspace is roughly shaped like an incomplete or complete sphere, containing either partially or fully the proper printed construction system.
  • the conventional nozzle through which the material is extruded moves with three degrees of freedom and is oriented with three degrees of freedom.
  • Cartesian and parallel systems of printed construction take up more space for installation and operation than cylindrical and articulated systems, mainly due to the need to install larger and more robust support systems on site and sometimes also additional guidance systems.
  • Cylindrical and articulated systems of printed construction although generally self-supporting, can only print around them, unless additional support and guidance systems are installed on site that allow them to move horizontally or vertically.
  • cylindrical and articulated systems cannot fully imprint their surroundings, without being enclosed within their own printed work.
  • the need to install additional guidance systems on site for the horizontal or vertical movement of a printed construction system limits the possibilities of operating simultaneously with a plurality of replicas of the system, or subsequently repositioning the same system in different places. of a construction site.
  • the topology of the conventional nozzle path through which the mortar is extruded, in all kinds of printed construction system described herein, forms a simple helix that advances vertically, to deposit a continuous filament of the material.
  • Invention patent KR101914524 B1 dated 01.02.2018, by Ghang Lee, entitled “3D mobile concrete building 3d printing system”, discloses a mobile 3D printing system for concrete buildings, with less space limitation than conventional technology.
  • the mobile concrete building 3D printing system according to the present invention can manufacture a wall by extruding concrete using a 3D printing method.
  • a working position is recognized by a reference point, installed in a predetermined position, and the wall can be formed in various ways.
  • the printing system can include software and hardware systems.
  • the software system can process 3D models of the desired reinforced concrete element in multiple layers.
  • the software system can use the individual layer to control the operation of the hardware system to print the desired reinforced concrete element, layer by layer.
  • the hardware system can provide a concrete nozzle, a reinforcing material nozzle, as well as dispensing mechanisms to print the materials at the desired locations and / or at the desired times for the individual layer being printed.
  • the hardware system can also include motion control mechanisms that allow the position of the nozzles to move side to side, up and down, and zoom in or out relative to the item being printed as desired during the process. of impression.
  • the room 3D printer is used for on-site printing at a construction site and comprises a joist body, and a drive mechanism and a travel mechanism that are arranged in the joist body and are connected to each other, a concrete discharge assembly that is connected with the displacement mechanism and is configured to discharge concrete in the displacement process of the displacement mechanism to complete the construction of the body of the room wall, a lifting mechanism to increase the height of the room 3D printer, and an automatic control mechanism to automatically control the displacement of the concrete discharge assembly.
  • the room 3D printer can be used to print the room with reinforced concrete on the construction site, so the degree of automation of room construction is high, the cost is low, and the working efficiency is high.
  • said multi-axis actuator device is composed of a set of three vertical linear displacement tables that support a circular guide, on which it rotates around its center a rotating diametrical beam that supports on its lower face two independent horizontal linear displacement axes, with two carriages on which two manipulator robots mounted in an inverted position move and that manipulate two interchangeable nozzles, which have a key electronically controlled passage and connected to two flexible hoses for material transport, through which a mortar of cement, polymer, biomaterial or other similar material descends, which is pumped from the outside of the mobile robotic cell, to be extruded into filaments that are deposited in successive layers superimposed, according to a design of trajectories computed previous tional that reproduces the outline of the piece or of the enclosure in all its horizontal and vertical extension; and an operation method that allows to generate double helical trajectories of simultaneous deposition of continuous mortar filaments,
  • a first objective of the invention is to provide a mobile robotic cell for the manufacture of parts and enclosures printed on site by means of a multi-axis 3D printing system, which comprises a self-supporting structure, composed of three concurrent beams in a hollow axis zenith node , arranged radially in a horizontal plane every 120 angular degrees, whose peripheral ends are respectively provided with a lifting handle, whose hole is provided to hook and hoist the mobile robotic cell by means of a crane with a three-leg strap or a three-leg yoke jacks, where the peripheral end of each beam it is attached to a self-leveling telescopic pillar that rests on a base that can optionally be anchored to the ground, and together they support pipes that protect cables and power, control and other hoses; a feeding apparatus, consisting of a semi-rigid external hose for material transport, which is connected by a hose coupling to an extension tube with fixing flange that runs vertically through a hollow shaft rotary connector and
  • a second objective of the invention is to provide a method to operate a mobile robotic cell, for the manufacture of printed parts and enclosures on site. by means of a multi-axis 3D printing system, which comprises the steps of: a) positioning the mobile robotic cell in a planned place of a construction site, with its supply apparatus and pipeline duly connected to a mortar pump, a generator of electricity or an installed electrical network, an external controller and compressor, to operate the three self-leveling telescopic pillars and level its self-supporting structure and to operate its multi-axis actuator device, by means of a program executed from an external or remote computer, and start 3D printing on site of the contour of a piece or an enclosure; b) actuate the two manipulator robots to position and orient the two interchangeable nozzles, at two points preferably distal to the contour of the piece ready to be printed, to start with each one, in the same direction of advance, the deposition of continuous filaments of mortar in successive layers superimposed, according to a previous computational trajectory design, which reproduces the contour
  • Figure 1 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in an initial stage of manufacturing a printed part on site or in a workshop.
  • Figure 2 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a printed part on site or in the workshop.
  • Figure 3 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a printed part on site or in the workshop.
  • Figure 4 describes a partial front view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part on site or in a workshop.
  • Figure 5 describes a partial front view of the mobile robotized cell of printed construction of the invention in an intermediate stage of manufacturing a printed part on site or in a workshop.
  • Figure 6 describes a partial front view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a printed part on site or in the workshop.
  • Figure 7 describes a partial side view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part on site or in a workshop.
  • Figure 8 describes a partial side view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a printed part on site or in the workshop.
  • Figure 9 describes a partial side view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a printed part on site or in the workshop.
  • Figure 10 describes a plan view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part on site or in the workshop.
  • Figure 11 describes a plan view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a printed part on site or in the workshop.
  • Figure 12 describes a plan view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a printed part on site or in the workshop.
  • Figure 13 describes an isometric view of the self-supporting structure of the mobile robotized cell of printed construction of the invention.
  • Figure 14 depicts an exploded isometric view of the feeding apparatus of the mobile robotized cell of printed construction of the invention.
  • Figure 15 depicts an exploded top isometric view of the rotating diametral beam of the mobile robotized cell of printed construction of the invention.
  • Figure 16 depicts an exploded bottom isometric view of the rotating diametral beam of the mobile robotized cell of printed construction of the invention.
  • Figure 17 depicts an exploded isometric view of the circular guide of the printed construction mobile robotized cell of the invention.
  • Figure 18 describes an exploded isometric view of one of the three vertical linear displacement tables of the mobile robotized cell of printed construction of the invention.
  • Figure 19 describes a first example of a wall obtained from a double helical trajectory of 3D printing of its contour.
  • Figure 20 depicts a second example of a printed wall with structuring weft pattern.
  • Figure 21 depicts a third example of a solid infill printed wall.
  • Figure 22 describes a fourth example of a printed slab component and reinforcement inside.
  • Figure 23 describes a fifth example of a printed slab component, with reinforcement inside and solid filling.
  • the first objective of the invention is to have a mobile robotic cell for the manufacture of parts and enclosures printed on site by means of a reprogrammable 3D printing multi-axis system, automatically controlled and programmable in all its degrees of freedom from an external or remote computer.
  • the mobile robotic cell itself is transferable in a single piece, by air, land or water, to the site of a construction site, positionable by means of a crane in the required place of said work, including any level of a building under construction, to proceed to 3D printing.
  • the mobile robotic cell can be supported on slabs and scaffolding, it is leveled by activating its three self-leveling telescopic pillars and is fed from a zenith with material, from a mortar pump, with electrical energy, from an electricity generator or an installed electrical network, with signals control, from an external controller, and with hydraulic or pneumatic energy, from an external compressor, without the need to obstruct other construction tasks in its environment at ground level.
  • a mobile robotic cell is the main physical component for the manufacture of parts and enclosures printed on site through a proposed multi-axis 3D printing system.
  • the mobile robotic cell itself is an autonomous, scalable and replicable functional unit, which can be applied in isolation or simultaneously to print parts and enclosures of a building on site, or to print prefabricated construction components in the workshop, and is composed of a self-supporting structure, a feeding apparatus and a multi-axis actuator apparatus.
  • the self-supporting structure itself is an open frame composed of three concurrent beams in a hollow axis zenith node, respectively attached to three electrically, hydraulically or pneumatically actuated self-leveling telescopic pillars, which can be extended and retracted independently and controlled, to level the Mobile robotic cell in a suitable position to carry out 3D printing and with bases that can optionally be anchored to the ground.
  • the mechanical purpose of the hollow shaft zenith node is to prevent rotation and displacement in any direction of each member of the self-supporting structure with respect to the other; all the members of the self-supporting structure -including the hollow shaft zenith node itself- of a size and robustness to be defined according to specifications to adequately resist the forces to which the self-supporting structure will be subjected in its commissioning.
  • the operational purpose of the hollow shaft zenith node is to let in and out of the mobile robotic cell a semi-rigid external hose for material transport and a plurality of power and control cables that feed and communicate two servomotors of a rotating diametral beam, two axes independent horizontal linear displacement machines, two robot manipulators mounted on their carriages and two electronically controlled stopcocks that are integrated into the two interchangeable nozzles.
  • the mechanical purpose of the self-supporting structure is to constitute the support and support of the power supply apparatus, the multi-axis actuator and tubing apparatus that protects power, control and other cables and hoses.
  • the operational purpose of the self-supporting structure is to act as a transport cage for the mobile robotic cell, by including three lifting handles arranged respectively on the upper faces of the peripheral ends of its three beams, which serve to hook and hoist the robotic cell.
  • mobile using a crane with a three-leg strap or a three-tap yoke.
  • the feeding device itself is a device for conveying material, diverting and twisting cables and hoses, composed of a semi-rigid external hose for material transport, which is connected by means of a hose coupling to an extension tube with a fixing flange, which vertically traverses a hollow shaft rotary connector (such as the H-Through Hole Slip Ring or the SENRING TM Gas & Flow Passage Hollow Shaft Rotary Union) and connects to a bifurcated rotary distributor, to whose two openings discharge, two flexible hoses are connected respectively to transport the material that lead the mortar to two interchangeable nozzles with electronically controlled stopcocks, respectively mounted on the flange of two manipulator robots that reproduce a previous computational trajectory design that reproduces the contour of the part or of the enclosure in all its horizontal and vertical extension.
  • a hollow shaft rotary connector such as the H-Through Hole Slip Ring or the SENRING TM Gas & Flow Passage Hollow Shaft Rotary Union
  • the extension tube with fixing flange to which the external semi-rigid hose for material transport is coupled is securely attached to the upper edge of an inner drum of the hollow shaft rotary connector, preventing the external semi-rigid hose for material transport from twisting and allowing an outer drum of the hollow shaft rotary connector to rotate integrally with a rotary diametrical beam that simultaneously displaces the two manipulative robots in circular motion.
  • a protective bellows covers the semi-rigid external hose for material transport and mainly the plurality of power and control cables, preventing them from deviating from their vertical axis or becoming entangled when the assembly made up of the rotating diametral beam and a circular guide moves in vertical direction.
  • the multi-axis actuator device itself is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer and is composed of a set of three vertical linear displacement tables that hold and they simultaneously displace, with one degree of freedom, a circular guide on which a rotating diametrical beam rotates around its center, with one degree of freedom, which supports two independent horizontal linear displacement axes on its lower face, with two carriages on which move, with one degree of freedom respectively, two manipulative robots with six degrees of freedom, mounted in an inverted position.
  • the rotating diametral beam itself comprises two independent horizontal linear displacement axes with drive by motorized pinion and rack and guiding system by skates and guides, respectively arranged in each half of the longitudinal extension of said rotating diametric beam, and two servomotors respectively equipped with a set of drive pinion and V-bearings, arranged symmetrically at both ends of said rotating diametral beam, acting simultaneously on a circular guide consisting of a double-edged V-guide ring with internal rack (such as, for example, HDRTs HEPCOMOTION TM Heavy Duty Ring Guides and Track Systems).
  • Said circular guide is supported by three clamps that are respectively secured to three tables with vertical linear displacement, respectively arranged on the inner face of the three self-leveling telescopic pillars of the self-supporting structure of the mobile robotic cell.
  • Each vertical linear travel table itself is driven by a pair of twin pinions and a pair of toothed guide rails (such as LEANTECHNIK TM Double Lifting Columns).
  • the plurality of power and control cables of the set made up of the rotating diametrical beam, the two independent horizontal linear displacement axes and the two manipulator robots, as well as the three vertical linear displacement tables, are duly guided and protected by trays and horizontal and vertical energy chains.
  • the mobile robotic cell (100) for the manufacture of parts and enclosures printed on site by means of a multi-axis 3D printing system which is described in different stages of operation, in Figures 1 to 3, is composed of a self-supporting structure (10), a power supply device (20) and a multi-axis actuator device (30), which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer , in the process of printing a printed part (40); furthermore, it is described in progressive operation in a first front view in Figures 4 to 6, in a second side view in Figures 7 to 9, and in a third plan view in Figures 10 to 12.
  • the self-supporting structure (10), which is described in figure 13, is composed of three concurrent beams (12) in a hollow axis zenith node (11), arranged radially in a horizontal plane every 120 angular degrees, whose peripheral ends are respectively provided with a lifting handle (13), the hole of which is provided to hook and hoist the mobile robotic cell (100) by means of a crane with a three-leg strap or a three-tap yoke, not shown; the peripheral end of each beam (12) is attached to a self-leveling telescopic pillar (14) that rests on a base (15) that can optionally be anchored to the ground;
  • the feeding apparatus (20) which is described in Figure 14; It consists of a semi-rigid external hose for material transport (21), which can come from a mortar pump, which is connected by means of a hose coupling (22) to an extension tube with a fixing flange (23), which is bolts to an inner drum of a hollow shaft rotary connector (24), which is a rotating device used to transfer electrical, hydraulic or pneumatic power, control or data circuits, analog or digital, and also media such as vacuum , refrigerant fluids, steam and others, from one or multiple fixed inlets - in this case arranged on the inner drum - towards one or multiple rotating outlets - in this case arranged on an outer drum - and which derives a plurality of power cables and control (25) that feed and communicate two servomotors (31 j), two motorized pinions (31 b) and two manipulator robots (31 g), which are detailed in figures 15 and 16, towards the electricity generator or the network electrical i Installed and External Controller, which are not shown
  • the extension tube with fixing flange (23) runs vertically through the hollow shaft rotary connector (24) and is connected at its lower end to a bifurcated rotary distributor (26), to whose two discharge ports two flexible hoses are connected for material transport (27), which lead the mortar towards two interchangeable nozzles (28) with electronically controlled stopcocks (not shown), mounted on the flange of the two manipulator robots (31 g); and in where a protective bellows (29) covers the semi-rigid external hose for material transport (21) and mainly the plurality of power and control cables (25), preventing them from deviating from their vertical axis or becoming entangled when the assembly composed of the rotating diametrical beam (31), which is described in figures 15 and 16, a circular guide (32), which is described in figure 17, and three vertical linear displacement tables (33), which are described in an example in Figure 18, moves in the vertical direction.
  • the multi-axis actuator apparatus (30) which is described in detail in Figures 15 to 18; It is composed of a rotating diametral beam (31) that rotates around its center on a circular guide (32), which moves on three vertical linear displacement tables (33), each one arranged on the inside face of each pillar telescopic self-leveling (14) of the mobile robotic cell (100).
  • the rotating diametrical beam (31) supports on its lower face two independent horizontal linear displacement axes, each one composed of a carriage (31 a) that is driven by a motorized pinion (31 b) and a rack (31 c) and guided by four skids (31 d) on two guides (31 e) parallel to each other, and on each carriage (31 a) a manipulator robot (31 g) is mounted in an inverted position, with all its power and control cables (25) protected by a horizontal cable chain (31 f), which are described in addition in Figures 15 and 16.
  • the circular guide (32) which is described in Figure 17; It consists of a double V-edged guide ring (32a) with internal rack (32b), comprising three supports (32c) arranged radially in a horizontal plane every 120 angular degrees, which fit exactly in three jaws (32d) that are secured respectively with bolts to three vertical linear displacement tables (33), arranged respectively on the inside face of the three pillars telescopic self-leveling (14), where each vertical linear displacement table (33) comprises a motor-reducer (33a), a pair of twin pinions (33b), a pair of twin skids (33c), a pair of guide rails serrations (33d), a vertical cable chain (33e) and a vertical cable tray (33f), which are described in figure 18.
  • the printed part (40) which is described in Figures 19 to 23; illustrates a first example of a wall obtained from a double helical trajectory of 3D printing of its contour, figure 19; a second example of a printed wall with structuring weft decoration (40a), Figure 20; a third example of a printed wall with solid infill (40b), figure 21; a fourth example of a printed slab component and reinforcement (40c) therein, figure 22; and fifth example of a printed slab component, with reinforcement (40c) inside and solid filling (40b), figure 23.
  • a second objective of the invention is to provide an operating method of the mobile robotic cell (100), which requires the following steps: a) Bringing the mobile robotic cell (100) to the construction site or the destination workshop, with its multi-axis actuator device (30) duly secured in its transport position; b) Hook its three lifting handles (13) with a three-leg strap or a three-socket yoke coupled to a crane; c) Positioning the mobile robotic cell (100) in a planned place of a construction site to perform 3D printing on site of parts or enclosures of a building; d) Optionally, anchor the bases (15) of the self-supporting structure (10) of the mobile robotic cell (100) to the ground; e) Connect the power supply apparatus (20) of the mobile robotic cell (100) to a source of material such as, for example, a mortar pump and also to a power generator or installed power grid and external controller, not shown; f) Connect power, control and other cables and hoses that come out of the pipe (16) that supports the self-supporting structure
  • the mobile robotic cell (100) is positioned in a planned place of the construction site, its device is connected supply (20) and pipe (16) to a mortar pump, an electricity generator or an installed electrical network, an external controller and compressor, its three self-leveling telescopic pillars (14) are actuated, to level its self-supporting structure (10 ) and its multi-axis actuator apparatus (30) is activated, by means of a program executed from an external or remote computer, to start the 3D printing of the contour of the wall (40) in successive superimposed layers.
  • the synchronized multi-axis movement of the set of three vertical linear displacement tables (33), the rotating diametrical beam (31), the two carriages (31 a) and the two manipulator robots (31 g), allows the joint advance of
  • the two interchangeable nozzles (28) describe the topology of an ascending double helix, which can reduce the time elapsed between the deposition of each successive layer and prevent too fast an initial setting from preventing consecutive layers of mortar from adhering properly to each other.
  • a wall (40) printed with a structuring weft pattern (40a) there are multiple ways to proceed, whether one of the two manipulator robots (31 g) prints the outline, while the other prints the lining with a structuring weft (40a) of the wall (40), or that both manipulator robots (31 g) print the contour and the structuring weft lining (40a) alternately.
  • one of the two manipulator robots (31 g) prints the contour of the wall (40), while the other manipulator robot (31 g) fills the interior of the wall (40) with a certain delay, in such a way that the walls that form the successive overlapping layers of the contour progressively reach sufficient height and strength to contain the solid filling (40b).
  • an external tool can be used with a hose for transport. of material connected to an additional source.
  • both manipulator robots (31 g) print the contour of the cross section of the printed slab component (40), in position vertical, as if it were a wall or a hollow brick that will later be lowered to put it into service, laid in its final position and orientation.
  • the reinforcement (40c) is installed inside the slab component (40), after it has been completely printed.
  • a printed slab component (40), with reinforcement (40c) inside and solid filling (40b) the latter is poured inside the slab component (40) after having installed the reinforcement (40c), once the walls of the printed slab component (40) have reached sufficient strength to contain the solid filler (40b).
  • the truss bars (40c) can be prestressed prior to pouring the solid filler (40b) into the printed slab component (40).
  • the two manipulator robots (31 g) can respectively print the wall internal and external wall of the contour of said enclosure, because topologically it is the same as printing the contour of a wall (40).
  • Sills and lintels can be installed during the 3D printing process to form door, window and other openings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)

Abstract

The invention relates to a moveable robotic cell for the production of pieces and enclosures printed on site by means of a multi-axis 3D printing system, comprising: a self-supporting structure, formed by three beams that meet at a zenithal hollow-shaft connection point and are radially disposed every 120° in a horizontal plane, the peripheral end of each beam being respectively provided with a lifting handle and joined to a self-levelling telescopic post that rests on a base, the beams and their respective posts supporting tubes that protect cables and hoses for power, control and other elements; a feed apparatus, formed by a semi-rigid external hose for carrying material, which has two discharge openings connected to two flexible hoses for carrying material, which hoses are connected at the other end thereof to two interchangeable nozzles provided with electronically controlled shut-off valves; and a multi-axis actuator apparatus, which is a reprogrammable electromechanical system that is automatically controlled and can be programmed offline or online, in all the degrees of freedom thereof, from an external or remote computer, the apparatus moving a circular guide on which a rotary diametral beam rotates about its centre, said beam supporting two manipulator robots mounted in an inverted position, each manipulator robot having an electronically controlled interchangeable nozzle mounted on a flange thereof and said nozzle being connected to a flexible hose for carrying material. The invention also relates to an operating method.

Description

UNA CELDA ROBOTIZADA MÓVIL PARA LA FABRICACIÓN DE PIEZAS Y RECINTOS IMPRESOS EN OBRA MEDIANTE UN SISTEMA MULTI-EJE DE IMPRESIÓN 3D; Y MÉTODO OPERATIVO A MOBILE ROBOTIZED CELL FOR THE MANUFACTURE OF PRINTED PARTS AND ENCLOSURES ON SITE BY MEANS OF A 3D PRINTING MULTI-AXIS SYSTEM; AND OPERATIONAL METHOD
CAMPO DE APLICACIÓN SCOPE
La presente invención se refiere a una celda robotizada móvil para la fabricación de piezas y recintos impresos en obra mediante un sistema multi-eje de impresión 3D y método de operación, que permite generar trayectorias helicoidales dobles de deposición simultánea de filamentos continuos de un mortero de cemento, polímero, biomaterial u otro material similar que no requiera de encofrado para darle forma ni contenerlo mientras se solidifica. Más específicamente a una celda robotizada móvil, que es conectable cenitalmente a fuentes externas de material y energía, así como a dispositivos de control externos, cuya estructura autoportante es autonivelable y que contiene un aparato actuador multi-eje que es reprogramable, automáticamente controlado y programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y que está compuesto por un conjunto de tres mesas de desplazamiento lineal vertical que sostienen una guía circular, sobre la cual gira en torno a su centro una viga diametral giratoria que sostiene en su cara inferior dos ejes de desplazamiento lineal horizontal independientes, con dos carros sobre los cuales se desplazan dos robots manipuladores montados en posición invertida y que manipulan dos boquillas intercambiables, que disponen de una llave de paso controlada electrónicamente y que se conectan a dos mangueras flexibles para transporte de material, las cuales son parte de un aparato de alimentación por donde desciende el mortero que es bombeado desde el exterior de la celda robotizada móvil, para ser extrudido en filamentos que se van deponiendo en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical. The present invention refers to a mobile robotic cell for the manufacture of parts and enclosures printed on site by means of a multi-axis 3D printing system and operation method, which allows to generate double helical trajectories for the simultaneous deposition of continuous filaments of a mortar of cement, polymer, biomaterial or other similar material that does not require formwork to shape or contain it while it solidifies. More specifically to a mobile robotic cell, which is zenithal connectable to external sources of material and energy, as well as external control devices, whose self-supporting structure is self-leveling and which contains a multi-axis actuator device that is reprogrammable, automatically controlled and programmable. offline or online in all its degrees of freedom from an external or remote computer and is composed of a set of three tables with vertical linear displacement that hold a circular guide, on which a rotating diametrical beam revolves around its center that supports on its lower face two independent horizontal linear displacement axes, with two carriages on which two manipulator robots mounted in an inverted position move and that manipulate two interchangeable nozzles, which have an electronically controlled stopcock and which are connected to two flexible hoses for material transport, which are par of a feeding apparatus through which the mortar that is pumped from the outside of the mobile robotic cell descends, to be extruded into filaments that are deposited in successive superimposed layers, according to a prior computational trajectory design that reproduces the contour of the part or enclosure in all its horizontal and vertical extension.
DESCRIPCIÓN DEL ARTE PREVIO La construcción impresa, también conocida como construcción mediante impresión 3D, consiste en la fabricación aditiva de edificios y componentes constructivos mediante la deposición mecánica controlada por computador, de filamentos de un mortero de material en estado plástico, generalmente con alto contenido de cemento, granos finos de áridos, usualmente entre 2 y 3 mm de diámetro, acelerantes y otros aditivos específicos, que reproduce el contorno de la pieza a imprimir, en su extensión horizontal y vertical, en capas sucesivas superpuestas que se adhieren entre sí consecutivamente, formando un continuo resistente que se solidifica progresivamente, conservando su forma y posición sin la ayuda de encofrado. Durante el fraguado inicial, el umbral de tiempo en que cada filamento de mortero de cemento se adhiere mejor al filamento inferior, en capas sucesivas superpuestas, sin aplastarse demasiado mutuamente, ni volcarse o desmoronarse, es un parámetro crucial en la programación y control de las velocidades y aceleraciones de deposición y bombeo del mortero, especialmente en la impresión de piezas de gran extensión horizontal o de recintos. Naturalmente, la composición del mortero, el número de capas superpuestas y su respectivo peso, también son factores determinantes en la programación y control del proceso de impresión 3D con mortero de cemento. Menos frecuente, hasta ahora, es la construcción impresa con mortero de materiales polímeros, biomateriales y otros materiales compuestos. En la construcción impresa de contornos de geometría compleja, la forma y la orientación de la boquilla por donde se extruye el mortero, también son fundamentales para determinar el alcance efectivo de la herramienta, especialmente si la pieza a imprimir contiene una armadura o ductos preinstalados, igualmente si el ángulo que los muros de la pieza forman con el suelo es distinto de noventa grados y, en algunos casos, también si se busca hacer más expedita la salida del filamento de mortero desde la boquilla, disminuyendo la fricción producida por la orientación vertical de la boquilla. El proceso de construcción impresa puede ocurrir en obra, es decir en el sitio de construcción, para fabricar edificios en su emplazamiento definitivo o en taller, para prefabricar componentes constructivos que finalmente serán puestos en servicio en un lugar distinto de donde fueron impresos. El modo convencional de fabricar muros, columnas, componentes de losas y otras piezas mediante impresión 3D, es imprimir de abajo hacia arriba, capa por capa, el contorno de la pieza con un filamento de mortero continuo y el dintorno de la pieza con otro o el mismo filamento, para formar una trama estructuradora de la pieza. Por ejemplo, los componentes de losas se pueden prefabricar, preferentemente en taller, imprimiéndolos en posición vertical, como si se tratara de muros o ladrillos huecos que finalmente son abatidos para ponerlos en servicio, tendidos en su posición y orientación definitivas. También se puede utilizar el contorno impreso de la pieza para que éste actúe como un encofrado y una vez que sus paredes endurezcan y adquieran la resistencia suficiente, rellenar el interior de la pieza con el mismo u otro material apropiado para mejorar su resistencia mecánica, aislación acústica o aislación térmica. Tanto el mortero del contorno como el del dintorno pueden contener además fibras naturales o sintéticas para mejorar su resistencia mecánica. En cualquier caso, también se pueden instalar ductos de suministro y extracción de agua, electricidad, gases y otros medios, antes, durante o después de fabricar la pieza, según lo permita el sistema de construcción impresa que se emplee. La misma condición rige para instalar alféizares y dinteles, por ejemplo, para conformar los vanos de puertas y ventanas, antes o durante el proceso de impresión 3D de los muros que componen un recinto. En ciertos casos es necesario instalar una armadura de barras o mallas de acero en el interior de la pieza, con el fin de mejorar su resistencia mecánica, especialmente a las fuerzas laterales producidas, por ejemplo, por un sismo. Para ese fin, la armadura de la pieza debe quedar anclada al cimiento, así como a las piezas adyacentes si las hubiere, con el fin de obtener un continuo resistente, sólidamente fundado en el suelo y solidario con el resto del edificio. En ese caso es crítico planificar en detalle la forma y el orden cronológico en que se imprimirá la pieza y se instalará dicha armadura. Igualmente, la elección del sistema de construcción impresa que se emplee adquiere vital importancia, especialmente si no va a ser posible modificar la posición o la orientación de la pieza durante el proceso de impresión 3D, como ocurre generalmente en la construcción impresa en obra. DESCRIPTION OF PRIOR ART Printed construction, also known as 3D printing construction, consists of the additive manufacturing of buildings and construction components by means of the computer-controlled mechanical deposition of filaments of a mortar material in a plastic state, generally with a high content of cement, fine grains. of aggregates, usually between 2 and 3 mm in diameter, accelerators and other specific additives, which reproduces the contour of the piece to be printed, in its horizontal and vertical extension, in successive superimposed layers that adhere to each other consecutively, forming a resistant continuum that progressively solidifies, preserving its shape and position without the help of formwork. During the initial setting, the threshold of time in which each cement mortar filament best adheres to the lower filament, in successive overlapping layers, without crushing each other too much, or overturning or crumbling, is a crucial parameter in the programming and control of the speeds and accelerations of deposition and pumping of mortar, especially in the impression of pieces of great horizontal extension or of rooms. Naturally, the composition of the mortar, the number of superimposed layers and their respective weight are also determining factors in the programming and control of the 3D printing process with cement mortar. Less frequent, until now, is the construction printed with mortar of polymer materials, biomaterials and other composite materials. In the printed construction of complex geometry contours, the shape and orientation of the nozzle through which the mortar is extruded are also essential to determine the effective reach of the tool, especially if the part to be printed contains pre-installed reinforcement or ducts, likewise if the angle that the walls of the piece form with the ground is different from ninety degrees and, in some cases, also if it is sought to expedite the exit of the mortar filament from the nozzle, reducing the friction produced by the vertical orientation of the nozzle. The printed construction process can occur on site, that is, on the construction site, to manufacture buildings in their final location or in a workshop, to prefabricate construction components that will eventually be put into service in a place other than where they were printed. The conventional way of manufacturing walls, columns, slab components and other parts using 3D printing, is to print from the bottom up, layer by layer, the contour of the piece with a continuous mortar filament and the trim of the piece with another or the same filament, to form a structuring weft of the piece. For example, slab components can be prefabricated, preferably in the workshop, by printing them in a vertical position, as if they were hollow walls or bricks that are finally knocked down to be put into service, laid in their final position and orientation. You can also use the printed contour of the piece so that it acts as a formwork and once its walls harden and acquire sufficient strength, fill the interior of the piece with the same or another appropriate material to improve its mechanical resistance, insulation acoustic or thermal insulation. Both the contour and trim mortar can also contain natural or synthetic fibers to improve their mechanical resistance. In any case, supply and extraction ducts for water, electricity, gases and other means can also be installed before, during or after manufacturing the part, as allowed by the printed construction system used. The same condition applies to installing windowsills and lintels, for example, to form the openings of doors and windows, before or during the 3D printing process of the walls that make up an enclosure. In certain cases it is necessary to install a reinforcement of bars or steel meshes inside the piece, in order to improve its mechanical resistance, especially to the lateral forces produced, for example, by an earthquake. For this purpose, the reinforcement of the piece must be anchored to the foundation, as well as to the adjacent pieces, if any, in order to obtain a continuous resistance, solidly based on the ground and in solidarity with the rest of the building. In this case, it is critical to plan in detail the way and the chronological order in which the part will be printed and said reinforcement will be installed. Likewise, the choice of the printed construction system used is vitally important, especially if it will not be possible to modify the position or orientation of the part during the 3D printing process, as is generally the case in construction printed on site.
En general, se pueden distinguir cuatro clases de sistema de construcción impresa según su estructura mecánica y espacio de trabajo: cartesiano, cilindrico, paralelo y articulado. El sistema cartesiano de construcción impresa está compuesto fundamentalmente por un pórtico. Los eslabones de su cadena cinemática se conectan mediante, al menos, tres uniones prismáticas (traslacionales) orientadas cada una de ellas en una de las direcciones de los ejes X, Y y Z del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma de un prisma rectangular (ortoedro) y está contenido completamente por la estructura portante del sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema cilindrico de construcción impresa está compuesto fundamentalmente por un brazo giratorio voladizo. Los eslabones de su cadena cinemática se conectan mediante una unión de revolución (rotacional) en torno al eje vertical Z, una unión prismática (traslacional) también en la dirección del eje vertical Z y una unión prismática (traslacional) en la dirección de uno de los ejes horizontales X o Y del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma de un cilindro incompleto -si la unión de revolución en torno al eje vertical Z no alcanza los 360 grados angulares- o completo -si la unión de revolución en torno al eje vertical Z sí alcanza o supera los 360 grados angulares-, que contiene parcial o totalmente al sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema paralelo de construcción impresa, también conocido como Delta, está compuesto fundamentalmente por tres brazos articulados concurrentes. Los eslabones de la cadena cinemática de cada brazo se conectan mediante, ya sea una unión prismática (traslacional) en la dirección del eje vertical Z, o una unión de revolución (rotacional) en torno a uno de los ejes horizontales X o Y y dos uniones universales (rotacionales) en torno a uno de los ejes horizontales X o Y y en torno al eje vertical Z. Su espacio de trabajo tiene la forma aproximada del hemisferio inferior de una esfera o de un paraguas invertido y está contenido completamente por la estructura portante del sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y con una única orientación fija. El sistema articulado de construcción impresa está compuesto fundamentalmente por un robot manipulador. Los eslabones de su cadena cinemática se conectan mediante seis uniones de revolución (rotacionales), cada una en torno a uno de los ejes X, Y o Z del sistema de coordenadas cartesiano. Su espacio de trabajo tiene la forma aproximada de una esfera incompleta o completa, que contiene ya sea parcial o totalmente al sistema de construcción impresa propiamente tal. La boquilla convencional por donde se extruye el material se desplaza con tres grados de libertad y se orienta con tres grados de libertad. In general, four classes of printed construction system can be distinguished according to their mechanical structure and workspace: Cartesian, cylindrical, parallel and articulated. The Cartesian system of printed construction is fundamentally composed of a gantry. The links of its kinematic chain are connected by at least three prismatic joints (translational) oriented each one in one of the directions of the X, Y and Z axes of the Cartesian coordinate system. Your workspace is in the shape of a rectangular prism (orthohedron) and is completely contained by the supporting structure of the printed building system itself. The conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation. The cylindrical system of printed construction is essentially composed of a cantilevered rotating arm. The links of its kinematic chain are connected by a joint of revolution (rotational) around the vertical axis Z, a prismatic joint (translational) also in the direction of the vertical axis Z and a prismatic joint (translational) in the direction of one of the horizontal X or Y axes of the Cartesian coordinate system. Your workspace is in the shape of an incomplete cylinder - if the joint of revolution around the vertical Z axis does not reach 360 angular degrees - or complete - if the joint of revolution around the vertical Z axis does reach or exceed 360 angular degrees-, which partially or totally contains the printed construction system itself. The conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation. The parallel system of printed construction, also known as Delta, is essentially composed of three concurrent articulated arms. The links of the kinematic chain of each arm are connected by either a prismatic (translational) joint in the direction of the vertical axis Z, or a joint of revolution (rotational) around one of the horizontal axes X or Y and two universal (rotational) joints around one of the horizontal X or Y axes and around the vertical Z axis. Your workspace is roughly shaped like the lower hemisphere of a sphere or an inverted umbrella and is completely contained by the structure supporting structure of the printed construction system itself. The conventional nozzle through which the material is extruded moves with three degrees of freedom and with a single fixed orientation. The articulated system of printed construction is essentially composed of a manipulator robot. The links of its kinematic chain are connected by six joints of revolution (rotational), each around one of the X, Y or Z axes of the Cartesian coordinate system. Your workspace is roughly shaped like an incomplete or complete sphere, containing either partially or fully the proper printed construction system. The conventional nozzle through which the material is extruded moves with three degrees of freedom and is oriented with three degrees of freedom.
En general, los sistemas cartesianos y paralelos de construcción impresa ocupan más espacio para su instalación y operación que los sistemas cilindricos y articulados, principalmente debido a la necesidad de instalar en obra sistemas de apoyo más grandes y robustos y a veces también sistemas de guiado adicionales. Los sistemas cilindricos y articulados de construcción impresa, aunque generalmente son autoportantes, sólo pueden imprimir a su alrededor, a menos que se instalen en obra sistemas de apoyo y guiado adicionales que les permitan desplazarse horizontalmente o verticalmente. Sin embargo, los sistemas cilindricos y articulados no pueden imprimir su entorno completamente, sin quedar encerrados dentro de su propia obra impresa. En todo caso, la necesidad de instalar en obra sistemas de guiado adicionales para el desplazamiento horizontal o vertical de un sistema de construcción impresa, limita las posibilidades de operar simultáneamente con una pluralidad de réplicas del sistema, o reposicionar subsecuentemente el mismo sistema en distintos lugares de una obra de construcción. La topología de la trayectoria convencional de la boquilla por donde se extruye el mortero, en todas las clases de sistema de construcción impresa aquí descritas, forma una hélice simple que avanza verticalmente, para deponer un filamento continuo del material. In general, Cartesian and parallel systems of printed construction take up more space for installation and operation than cylindrical and articulated systems, mainly due to the need to install larger and more robust support systems on site and sometimes also additional guidance systems. Cylindrical and articulated systems of printed construction, although generally self-supporting, can only print around them, unless additional support and guidance systems are installed on site that allow them to move horizontally or vertically. However, cylindrical and articulated systems cannot fully imprint their surroundings, without being enclosed within their own printed work. In any case, the need to install additional guidance systems on site for the horizontal or vertical movement of a printed construction system, limits the possibilities of operating simultaneously with a plurality of replicas of the system, or subsequently repositioning the same system in different places. of a construction site. The topology of the conventional nozzle path through which the mortar is extruded, in all kinds of printed construction system described herein, forms a simple helix that advances vertically, to deposit a continuous filament of the material.
La patente de invención KR101914524 B1 de fecha 02.1 1 .2018, de Ghang Lee, titulada “3D mobile concrete building 3d printing system”, divulga un sistema móvil de impresión 3D de edificios de concreto, con menos limitación de espacio que la tecnología convencional. El sistema móvil de impresión 3D de edificios de concreto, según la presente invención puede manufacturar un muro extruyendo concreto mediante un método de impresión 3D. Una posición de trabajo se reconoce mediante un punto de referencia, instalado en una posición predeterminada y el muro se puede formar en varias formas. Invention patent KR101914524 B1 dated 01.02.2018, by Ghang Lee, entitled "3D mobile concrete building 3d printing system", discloses a mobile 3D printing system for concrete buildings, with less space limitation than conventional technology. The mobile concrete building 3D printing system according to the present invention can manufacture a wall by extruding concrete using a 3D printing method. A working position is recognized by a reference point, installed in a predetermined position, and the wall can be formed in various ways.
La solicitud de patente de invención DE10342934 A1 de fecha 28.04.2005, de Helmut Kuch y otros, titulada “Moldless, geometrically-fixed, prefabricated concrete part manufacturing method, e.g. for base sections of shafts in sewage Systems, by discharging material from head to form finite volume elements, and hardening”, describe que el cuerpo que se creará se forma con una geometría definida alineando elementos de volumen finitos en las tres direcciones espaciales. Inmediatamente después de descargarse desde un cabezal que contiene boquillas de material, estos elementos de volumen se unen a todos los elementos de volumen inmediatamente adyacentes, para formar un compuesto fijo por transformación química, por ejemplo, endurecimiento. Un archivo de datos 3D-CAD se utiliza como los datos geométricos para el cuerpo. Invention patent application DE10342934 A1 dated 04.28.2005, by Helmut Kuch et al., Entitled "Moldless, geometrically-fixed, prefabricated concrete part manufacturing method, eg for base sections of shafts in sewage Systems, by discharging material from head to form finite volume elements, and hardening ”, describes that the body to be created is formed with a defined geometry by aligning finite volume elements in the three spatial directions. Immediately after being discharged from a head containing material nozzles, these volume elements are joined to all immediately adjacent volume elements, to form a fixed composite by chemical transformation, eg, hardening. A 3D-CAD data file is used as the geometric data for the body.
La solicitud de patente de invención WO2018136475 (A1 ) de fecha 26.07.2018, de Yi-Lung Mo y otros, titulada “4-dimensional printing of reinforced concrete”, describe un sistema de impresión en 4 dimensiones y un método para imprimir concreto reforzado que puede permitir que los elementos de concreto reforzado se impriman de forma libre y/o completamente automatizada sin la necesidad de encofrado, moldeado o mano de obra. El sistema de impresión puede incluir sistemas de software y hardware. El sistema de software puede procesar modelos 3D del elemento de concreto reforzado deseado en múltiples capas. El sistema de software puede utilizar la capa individual para controlar el funcionamiento del sistema de hardware para imprimir el elemento de concreto reforzado deseado, capa por capa. El sistema de hardware puede proporcionar una boquilla de hormigón, una boquilla de material de refuerzo, así como mecanismos de dispensación para imprimir los materiales en los lugares deseados y/o en los momentos deseados para la capa individual que se está imprimiendo. El sistema de hardware también puede incluir mecanismos de control de movimiento que permiten que la posición de las boquillas se mueva de lado a lado, arriba y abajo, y acercar o alejar en relación con el elemento que se está imprimiendo según se desee durante el proceso de impresión. Invention patent application WO2018136475 (A1) dated 07.26.2018, by Yi-Lung Mo et al, entitled "4-dimensional printing of reinforced concrete", describes a 4-dimensional printing system and a method for printing reinforced concrete which can allow reinforced concrete elements to be freely printed and / or fully automated without the need for formwork, molding, or labor. The printing system can include software and hardware systems. The software system can process 3D models of the desired reinforced concrete element in multiple layers. The software system can use the individual layer to control the operation of the hardware system to print the desired reinforced concrete element, layer by layer. The hardware system can provide a concrete nozzle, a reinforcing material nozzle, as well as dispensing mechanisms to print the materials at the desired locations and / or at the desired times for the individual layer being printed. The hardware system can also include motion control mechanisms that allow the position of the nozzles to move side to side, up and down, and zoom in or out relative to the item being printed as desired during the process. of impression.
La patente de invención CN105715052 (B) de fecha 22.01 .2019, de Jianping Wu, titulada “3D room printer and printing method for printing concrete at construction site and room”, describe una habitación, una impresora 3D de habitaciones y un método de impresión. La impresora 3D de habitaciones se utiliza para la impresión in situ en un lugar de construcción y comprende un cuerpo de vigueta, y un mecanismo de accionamiento y un mecanismo de desplazamiento que están dispuestos en el cuerpo de vigueta y están conectados entre sí, un conjunto de descarga de concreto que está conectado con el mecanismo de desplazamiento y está configurado para descargar concreto en el proceso de desplazamiento del mecanismo de desplazamiento para completar la construcción del cuerpo del muro de la habitación, un mecanismo de elevación para aumentar la altura de la impresora 3D de habitaciones y un mecanismo de control automático para controlar automáticamente el desplazamiento del conjunto de descarga de concreto. La impresora 3D de habitaciones se puede utilizar para imprimir la habitación con concreto reforzado en el sitio de construcción, por lo que el grado de automatización de la construcción de habitaciones es alto, el costo es bajo y la eficiencia de trabajo es alta. Invention patent CN105715052 (B) dated 01.22.2019, by Jianping Wu, entitled "3D room printer and printing method for printing concrete at construction site and room", describes a room, a room 3D printer and a printing method . The room 3D printer is used for on-site printing at a construction site and comprises a joist body, and a drive mechanism and a travel mechanism that are arranged in the joist body and are connected to each other, a concrete discharge assembly that is connected with the displacement mechanism and is configured to discharge concrete in the displacement process of the displacement mechanism to complete the construction of the body of the room wall, a lifting mechanism to increase the height of the room 3D printer, and an automatic control mechanism to automatically control the displacement of the concrete discharge assembly. The room 3D printer can be used to print the room with reinforced concrete on the construction site, so the degree of automation of room construction is high, the cost is low, and the working efficiency is high.
La solicitud de patente de invención WO2018162858 (A1 ) de fecha 13.09.2018, de Gaél Godi y otros, titulada “3D concrete printer”, describe un dispositivo de impresión 3D móvil (TDPD0) que imprime agregando material, destinado a unirse a un dispositivo de elevación (LD) con un solo cable o cadena de elevación, el dispositivo de impresión 3D móvil (TDPD0) que comprende: - un cabezal de impresión adecuado para recibir el material y deponerlo; - medios de fijación adecuados para conectar el cabezal de impresión a un dispositivo de elevación (LD); y - medios de estabilización (MS) adecuados para estabilizar la posición del cabezal de impresión mediante efecto giroscópico. Dicho dispositivo hace posible controlar la impresión de la estructura a imprimir, en particular la posición del cabezal de impresión, y reducir los costos de mano de obra y el tiempo requerido para la instalación en un dispositivo de elevación (LD) como una grúa estándar provista de un gancho. Invention patent application WO2018162858 (A1) dated 09/13/2018, by Gaél Godi et al., Entitled "3D concrete printer", describes a mobile 3D printing device (TDPD0) that prints by adding material, intended to be attached to a device lifting device (LD) with a single lifting cable or chain, the mobile 3D printing device (TDPD0) comprising: - a printing head suitable for receiving the material and depositing it; - fixing means suitable for connecting the print head to a lifting device (LD); and - stabilizing means (MS) suitable for stabilizing the position of the recording head by gyroscopic effect. Such a device makes it possible to control the printing of the structure to be printed, in particular the position of the print head, and reduce labor costs and the time required for installation on a lifting device (LD) such as a standard crane provided of a hook.
No existe en el estado de la técnica una celda robotizada móvil para la fabricación de piezas y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, que sea trasladable en una sola pieza para poder posicionarla en cualquier lugar de una obra de construcción mediante una grúa o similar, sin necesidad de instalar en obra sistemas de apoyo o guiado adicionales, que sea conectable cenitalmente a fuentes externas de material y energía, así como a dispositivos de control externos, cuya estructura autoportante sea autonivelable y contenga un aparato actuador multi-eje que sea reprogramable, automáticamente controlado y programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y que dicho aparato actuador multi-eje esté compuesto por un conjunto de tres mesas de desplazamiento lineal vertical que sostengan una guía circular, sobre la cual gire en torno a su centro una viga diametral giratoria que sostenga en su cara inferior dos ejes de desplazamiento lineal horizontal independientes, con dos carros sobre los cuales se desplacen dos robots manipuladores montados en posición invertida y que manipulen dos boquillas intercambiables, que dispongan de una llave de paso controlada electrónicamente y que se conecten a dos mangueras flexibles para transporte de material, por donde descienda un mortero de cemento, polímero, biomaterial u otro material similar, que es bombeado desde el exterior de la celda robotizada móvil, para ser extrudido en filamentos que se van deponiendo en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical; y un método de operación, que permita generar trayectorias helicoidales dobles de deposición simultánea de filamentos continuos de mortero, para reducir el tiempo transcurrido entre la deposición de cada capa sucesiva; que permita realizar simultáneamente diversas tareas, como imprimir contornos y dintornos de tramas estructuradoras, o rellenos macizos; y que permita orientar con tres grados de libertad rotacionales boquillas intercambiables, que pueden tener distintas formas, simétricas o asimétricas, para hacer más expedita la extrusión de diversos tipos de morteros y optimizar la cobertura de cada filamento. There is no mobile robotic cell in the state of the art for the manufacture of parts and enclosures printed on site by means of a multi-axis 3D printing system, which can be moved in a single piece to be able to position it anywhere on a construction site. by means of a crane or similar, without the need to install additional support or guidance systems on site, which can be connected from above to external sources of material and energy, as well as external control devices, whose self-supporting structure is self-leveling and contains a multi-actuator device. -axis that is reprogrammable, automatically controlled and programmable offline or online in all its degrees of freedom from an external or remote computer and that said multi-axis actuator device is composed of a set of three vertical linear displacement tables that support a circular guide, on which it rotates around its center a rotating diametrical beam that supports on its lower face two independent horizontal linear displacement axes, with two carriages on which two manipulator robots mounted in an inverted position move and that manipulate two interchangeable nozzles, which have a key electronically controlled passage and connected to two flexible hoses for material transport, through which a mortar of cement, polymer, biomaterial or other similar material descends, which is pumped from the outside of the mobile robotic cell, to be extruded into filaments that are deposited in successive layers superimposed, according to a design of trajectories computed previous tional that reproduces the outline of the piece or of the enclosure in all its horizontal and vertical extension; and an operation method that allows to generate double helical trajectories of simultaneous deposition of continuous mortar filaments, to reduce the time elapsed between the deposition of each successive layer; that allows several tasks to be carried out simultaneously, such as printing contours and patterning of structuring screens, or solid fills; and that allows orienting with three rotational degrees of freedom interchangeable nozzles, which can have different shapes, symmetrical or asymmetric, to make the extrusion of various types of mortars more expeditious and optimize the coverage of each filament.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
Un primer objetivo de la invención es proveer una celda robotizada móvil para la fabricación de piezas y recintos impresos en obra mediante un sistema multi- eje de impresión 3D, que comprende una estructura autoportante, compuesta por tres vigas concurrentes en un nudo cenital de eje hueco, dispuestas radialmente en un plano horizontal cada 120 grados angulares, cuyos extremos periféricos están provistos respectivamente de un asa de izado, cuyo orificio está previsto para enganchar e izar la celda robotizada móvil mediante una grúa con un estrobo de tres ramales o un yugo de tres tomas, en donde el extremo periférico de cada viga está unido a un pilar telescópico autonivelable que se apoya sobre una base que opcionalmente puede ser anclada al suelo, y en conjunto soportan tubería que protege cables y mangueras de energía, control y otros; un aparato de alimentación, compuesto por una manguera externa semirrígida para transporte de material, que se conecta mediante un acople de manguera a un tubo de extensión con brida de fijación que atraviesa verticalmente a un conector rotativo de eje hueco y se conecta a un distribuidor rotativo bifurcado, a cuyas dos bocas de descarga se conectan dos mangueras flexibles para transporte de material que en su otro extremo se conectan a dos boquillas intercambiables provistas de llaves de paso controladas electrónicamente, en donde el conector rotativo de eje hueco deriva una pluralidad de cables de poder y control desde la viga diametral giratoria hacia el nudo cenital de eje hueco, protegidos por un fuelle protector, y el tubo de extensión con brida de fijación se asegura a un tambor interior del conector rotativo de eje hueco para impedir que la manguera externa semirrígida para transporte de material se tuerza, mientras un tambor exterior del conector rotativo de eje hueco se asegura a la viga diametral giratoria para impedir que la pluralidad de cables de poder y control se tuerzan, y donde el distribuidor rotativo bifurcado impide que las dos mangueras flexibles para transporte de material se tuerzan mientras dos robots manipuladores que posicionan y orientan las boquillas intercambiables, se desplazan en movimiento circular y lineal y adoptan poses diversas para imprimir en 3D con el mortero; y un aparato actuador multi-eje, que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, que está compuesto por un conjunto de tres mesas de desplazamiento lineal vertical que sostienen una guía circular sobre la cual gira en torno a su centro una viga diametral giratoria que sostiene en su cara inferior dos ejes de desplazamiento lineal horizontal independientes, con dos carros sobre los cuales se desplazan dos robots manipuladores montados en posición invertida, que manipulan las dos boquillas intercambiables, que disponen de una llave de paso controlada electrónicamente y que se conectan a las dos mangueras flexibles para transporte de material. A first objective of the invention is to provide a mobile robotic cell for the manufacture of parts and enclosures printed on site by means of a multi-axis 3D printing system, which comprises a self-supporting structure, composed of three concurrent beams in a hollow axis zenith node , arranged radially in a horizontal plane every 120 angular degrees, whose peripheral ends are respectively provided with a lifting handle, whose hole is provided to hook and hoist the mobile robotic cell by means of a crane with a three-leg strap or a three-leg yoke jacks, where the peripheral end of each beam it is attached to a self-leveling telescopic pillar that rests on a base that can optionally be anchored to the ground, and together they support pipes that protect cables and power, control and other hoses; a feeding apparatus, consisting of a semi-rigid external hose for material transport, which is connected by a hose coupling to an extension tube with fixing flange that runs vertically through a hollow shaft rotary connector and connects to a rotary distributor bifurcated, to whose two discharge outlets are connected two flexible hoses for material transport that at their other end are connected to two interchangeable nozzles provided with electronically controlled stopcocks, where the hollow shaft rotary connector derives a plurality of cables from power and control from the rotating diametral beam to the hollow shaft zenith node, protected by a protective bellows, and the extension tube with fixing flange is secured to an inner drum of the hollow shaft rotating connector to prevent the external semi-rigid hose for material transport is twisted, while an outer drum of the hollow shaft rotary connector is secured ra to the rotating diametrical beam to prevent the plurality of power and control cables from twisting, and where the bifurcated rotary distributor prevents the two flexible hoses for material transport from twisting while two manipulator robots that position and orient the interchangeable nozzles, they move in circular and linear motion and adopt various poses to 3D print with the mortar; and a multi-axis actuator device, which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer, which is composed of a set of three tables with vertical linear displacement. that support a circular guide on which a rotating diametrical beam revolves around its center that supports two independent horizontal linear displacement axes on its lower face, with two carriages on which two manipulator robots mounted in an inverted position move, which manipulate the two interchangeable nozzles, which have an electronically controlled stopcock and which are connected to the two flexible hoses for material transport.
Un segundo objetivo de la invención es proveer un método para operar una celda robotizada móvil, para la fabricación de piezas y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, que comprende los pasos de: a) posicionar la celda robotizada móvil en un lugar previsto de una obra de construcción, con su aparato de alimentación y tubería debidamente conectados a una bomba de mortero, un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, para accionar los tres pilares telescópicos autonivelables y nivelar su estructura autoportante y para accionar su aparato actuador multi-eje, mediante un programa ejecutado desde un computador externo o remoto, e iniciar la impresión 3D en obra del contorno de una pieza o de un recinto; b) accionar los dos robots manipuladores para posicionar y orientar las dos boquillas intercambiables, en dos puntos preferentemente distales del contorno de la pieza presta a ser impresa, para iniciar con cada una, en el mismo sentido de avance, la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo, que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical y cuyo avance conjunto puede describir la topología de una hélice doble ascendente, por ejemplo, para reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí, y en donde ambas boquillas intercambiables repiten la misma trayectoria en cada capa sucesiva, o alternativamente, cada boquilla intercambiable reproduce una trayectoria diferente y realiza una tarea diferente, sin perjuicio de que, debido al propio diseño de la pieza o del recinto, la posición y orientación de cada boquilla intercambiable varíe levemente en la capa siguiente; y c) ejecutar el programa del aparato actuador multi-eje desde un computador externo o remoto, para que el conjunto de tres mesas de desplazamiento lineal vertical posicione la guía circular a la distancia vertical necesaria en cada instante requerido, la viga diametral giratoria gire en el sentido y con la aceleración y velocidad necesarias en cada instante requerido, los dos carros que componen los dos ejes de desplazamiento lineal horizontal independientes posicionen de manera independiente cada uno de los dos robots manipuladores a la distancia horizontal necesaria en cada instante requerido, y cada robot manipulador posicione y oriente de manera independiente la boquilla intercambiable que lleva montada en su brida en cada instante requerido, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical. A second objective of the invention is to provide a method to operate a mobile robotic cell, for the manufacture of printed parts and enclosures on site. by means of a multi-axis 3D printing system, which comprises the steps of: a) positioning the mobile robotic cell in a planned place of a construction site, with its supply apparatus and pipeline duly connected to a mortar pump, a generator of electricity or an installed electrical network, an external controller and compressor, to operate the three self-leveling telescopic pillars and level its self-supporting structure and to operate its multi-axis actuator device, by means of a program executed from an external or remote computer, and start 3D printing on site of the contour of a piece or an enclosure; b) actuate the two manipulator robots to position and orient the two interchangeable nozzles, at two points preferably distal to the contour of the piece ready to be printed, to start with each one, in the same direction of advance, the deposition of continuous filaments of mortar in successive layers superimposed, according to a previous computational trajectory design, which reproduces the contour of the part or the enclosure in all its horizontal and vertical extension and whose joint advance can describe the topology of an ascending double helix, for example, to reduce the time elapsed between the deposition of each successive layer and preventing too rapid an initial setting from preventing consecutive layers of mortar from adhering properly to each other, and where both interchangeable nozzles repeat the same trajectory in each successive layer, or alternately, each Interchangeable nozzle reproduces a different trajectory and performs a different task, without p erjudge that, due to the design of the part or the enclosure, the position and orientation of each interchangeable nozzle varies slightly in the next layer; and c) execute the program of the multi-axis actuator device from an external or remote computer, so that the set of three vertical linear displacement tables positions the circular guide at the necessary vertical distance at each required moment, the rotating diametrical beam rotates in the direction and with the necessary acceleration and speed at each required instant, the two carriages that make up the two independent horizontal linear displacement axes independently position each of the two manipulator robots at the necessary horizontal distance at each required instant, and each robot manipulator independently position and orient the interchangeable nozzle that is mounted on its flange at each required moment, according to a previous computational trajectory design that reproduces the contour of the piece or of the enclosure in all its horizontal and vertical extension.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 describe una vista isométrica principal de la celda robotizada móvil de construcción impresa de la invención, en una etapa inicial de fabricación de una pieza impresa en obra o bien en taller. Figure 1 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in an initial stage of manufacturing a printed part on site or in a workshop.
La figura 2 describe una vista isométrica principal de la celda robotizada móvil de construcción impresa de la invención, en una etapa intermedia de fabricación de una pieza impresa en obra o bien en taller. Figure 2 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a printed part on site or in the workshop.
La figura 3 describe una vista isométrica principal de la celda robotizada móvil de construcción impresa de la invención, en una etapa final de fabricación de una pieza impresa en obra o bien en taller. Figure 3 describes a main isometric view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a printed part on site or in the workshop.
La figura 4 describe una vista frontal parcial de la celda robotizada móvil de construcción impresa de la invención en una etapa inicial de fabricación de una pieza impresa en obra o bien en taller. Figure 4 describes a partial front view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part on site or in a workshop.
La figura 5 describe una vista frontal parcial de la celda robotizada móvil de construcción impresa de la invención en una etapa intermedia de fabricación de una pieza impresa en obra o bien en taller. Figure 5 describes a partial front view of the mobile robotized cell of printed construction of the invention in an intermediate stage of manufacturing a printed part on site or in a workshop.
La figura 6 describe una vista frontal parcial de la celda robotizada móvil de construcción impresa de la invención, en una etapa final de fabricación de una pieza impresa en obra o bien en taller. Figure 6 describes a partial front view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a printed part on site or in the workshop.
La figura 7 describe una vista lateral parcial de la celda robotizada móvil de construcción impresa de la invención en una etapa inicial de fabricación de una pieza impresa en obra o bien en taller. Figure 7 describes a partial side view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part on site or in a workshop.
La figura 8 describe una vista lateral parcial de la celda robotizada móvil de construcción impresa de la invención, en una etapa intermedia de fabricación de una pieza impresa en obra o bien en taller. La figura 9 describe una vista lateral parcial de la celda robotizada móvil de construcción impresa de la invención, en una etapa final de fabricación de una pieza impresa en obra o bien en taller. Figure 8 describes a partial side view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a printed part on site or in the workshop. Figure 9 describes a partial side view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a printed part on site or in the workshop.
La figura 10 describe una vista en planta de la celda robotizada móvil de construcción impresa de la invención en una etapa inicial de fabricación de una pieza impresa en obra o bien en taller. Figure 10 describes a plan view of the mobile robotized cell of printed construction of the invention in an initial stage of manufacturing a printed part on site or in the workshop.
La figura 11 describe una vista en planta de la celda robotizada móvil de construcción impresa de la invención, en una etapa intermedia de fabricación de una pieza impresa en obra o bien en taller. La figura 12 describe una vista en planta de la celda robotizada móvil de construcción impresa de la invención, en una etapa final de fabricación de una pieza impresa en obra o bien en taller. Figure 11 describes a plan view of the mobile robotized cell of printed construction of the invention, in an intermediate stage of manufacturing a printed part on site or in the workshop. Figure 12 describes a plan view of the mobile robotized cell of printed construction of the invention, in a final stage of manufacturing a printed part on site or in the workshop.
La figura 13 describe una vista isométrica de la estructura autoportante de la celda robotizada móvil de construcción impresa de la invención. La figura 14 describe una vista isométrica en explosión del aparato de alimentación de la celda robotizada móvil de construcción impresa de la invención. Figure 13 describes an isometric view of the self-supporting structure of the mobile robotized cell of printed construction of the invention. Figure 14 depicts an exploded isometric view of the feeding apparatus of the mobile robotized cell of printed construction of the invention.
La figura 15 describe una vista isométrica superior en explosión de la viga diametral giratoria de la celda robotizada móvil de construcción impresa de la invención. La figura 16 describe una vista isométrica inferior en explosión de la viga diametral giratoria de la celda robotizada móvil de construcción impresa de la invención. Figure 15 depicts an exploded top isometric view of the rotating diametral beam of the mobile robotized cell of printed construction of the invention. Figure 16 depicts an exploded bottom isometric view of the rotating diametral beam of the mobile robotized cell of printed construction of the invention.
La figura 17 describe una vista isométrica en explosión de la guía circular de la celda robotizada móvil de construcción impresa de la invención. La figura 18 describe una vista isométrica en explosión de una de las tres mesas de desplazamiento lineal vertical de la celda robotizada móvil de construcción impresa de la invención. Figure 17 depicts an exploded isometric view of the circular guide of the printed construction mobile robotized cell of the invention. Figure 18 describes an exploded isometric view of one of the three vertical linear displacement tables of the mobile robotized cell of printed construction of the invention.
La figura 19 describe un primer ejemplo de un muro obtenido de una trayectoria helicoidal doble de impresión 3D de su contorno. La figura 20 describe un segundo ejemplo de un muro impreso con dintorno de trama estructuradora. Figure 19 describes a first example of a wall obtained from a double helical trajectory of 3D printing of its contour. Figure 20 depicts a second example of a printed wall with structuring weft pattern.
La figura 21 describe un tercer ejemplo de un muro impreso con relleno macizo. Figure 21 depicts a third example of a solid infill printed wall.
La figura 22 describe un cuarto ejemplo de un componente de losa impreso y armadura en su interior. Figure 22 describes a fourth example of a printed slab component and reinforcement inside.
La figura 23 describe un quinto ejemplo de un componente de losa impreso, con armadura en su interior y relleno macizo. Figure 23 describes a fifth example of a printed slab component, with reinforcement inside and solid filling.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA DESCRIPTION OF A PREFERRED EMBODIMENT
El primer objetivo de la invención es disponer de una celda robotizada móvil para la fabricación de piezas y recintos impresos en obra mediante un sistema multi- eje de impresión 3D reprogramable, automáticamente controlado y programable en todos sus grados de libertad desde un computador externo o remoto. La celda robotizada móvil propiamente es trasladable en una sola pieza, por vía aérea, terrestre o acuática, hasta el sitio de una obra de construcción, posicionable mediante una grúa en el lugar requerido de dicha obra, incluyendo cualquier nivel de un edificio en construcción, para proceder a la impresión 3D. La celda robotizada móvil se puede apoyar sobre losas y andamios, se nivela accionando sus tres pilares telescópicos autonivelables y se alimenta cenitalmente con material, desde una bomba de mortero, con energía eléctrica, desde un generador de electricidad o una red eléctrica instalada, con señales de control, desde un controlador externo, y con energía hidráulica o neumática, desde un compresor externo, sin necesidad de obstaculizar a nivel de suelo otras faenas de construcción en su entorno. The first objective of the invention is to have a mobile robotic cell for the manufacture of parts and enclosures printed on site by means of a reprogrammable 3D printing multi-axis system, automatically controlled and programmable in all its degrees of freedom from an external or remote computer. . The mobile robotic cell itself is transferable in a single piece, by air, land or water, to the site of a construction site, positionable by means of a crane in the required place of said work, including any level of a building under construction, to proceed to 3D printing. The mobile robotic cell can be supported on slabs and scaffolding, it is leveled by activating its three self-leveling telescopic pillars and is fed from a zenith with material, from a mortar pump, with electrical energy, from an electricity generator or an installed electrical network, with signals control, from an external controller, and with hydraulic or pneumatic energy, from an external compressor, without the need to obstruct other construction tasks in its environment at ground level.
Una celda robotizada móvil es el principal componente físico para la fabricación de piezas y recintos impresos en obra mediante un sistema multi-eje de impresión 3D que se propone. La celda robotizada móvil propiamente es una unidad funcional autónoma, escalable y replicable, que se puede aplicar en forma aislada o simultánea para imprimir en obra piezas y recintos de un edificio, o para imprimir en taller componentes constructivos prefabricados, y está compuesta por una estructura autoportante, un aparato de alimentación y un aparato actuador multi- eje. A mobile robotic cell is the main physical component for the manufacture of parts and enclosures printed on site through a proposed multi-axis 3D printing system. The mobile robotic cell itself is an autonomous, scalable and replicable functional unit, which can be applied in isolation or simultaneously to print parts and enclosures of a building on site, or to print prefabricated construction components in the workshop, and is composed of a self-supporting structure, a feeding apparatus and a multi-axis actuator apparatus.
La estructura autoportante propiamente es una armazón abierta compuesta por tres vigas concurrentes en un nudo cenital de eje hueco, unidas respectivamente a tres pilares telescópicos autonivelables accionados eléctrica, hidráulica o neumáticamente, que se pueden extender y retraer de manera independiente y controlada, para nivelar la celda robotizada móvil en una posición adecuada para realizar la impresión 3D y con bases que opcionalmente pueden ser ancladas al suelo. El propósito mecánico del nudo cenital de eje hueco es impedir la rotación y el desplazamiento en cualquier dirección de cada miembro de la estructura autoportante con respecto al otro; todos los miembros de la estructura autoportante -incluido el propio nudo cenital de eje hueco- de un tamaño y una robustez a ser definidos según especificaciones para resistir adecuadamente las fuerzas a las que será sometida la estructura autoportante en su puesta en servicio. El propósito operacional del nudo cenital de eje hueco es dejar entrar y salir de la celda robotizada móvil una manguera externa semirrígida para transporte de material y una pluralidad de cables de poder y control que alimentan y comunican dos servomotores de una viga diametral giratoria, dos ejes de desplazamiento lineal horizontal independientes, dos robots manipuladores montados sobre sus carros y dos llaves de paso controladas electrónicamente que están integradas en las dos boquillas intercambiables. El propósito mecánico de la estructura autoportante es constituir el apoyo y sostén del aparato de alimentación, el aparato actuador multi- eje y tubería que protege cables y mangueras de energía, control y otros. El propósito operacional de la estructura autoportante es actuar como una jaula de transporte para la celda robotizada móvil, al incluir tres asas de izado dispuestas respectivamente en las caras superiores de los extremos periféricos de sus tres vigas, que sirven para enganchar e izar la celda robotizada móvil mediante una grúa con un estrobo de tres ramales o un yugo de tres tomas. The self-supporting structure itself is an open frame composed of three concurrent beams in a hollow axis zenith node, respectively attached to three electrically, hydraulically or pneumatically actuated self-leveling telescopic pillars, which can be extended and retracted independently and controlled, to level the Mobile robotic cell in a suitable position to carry out 3D printing and with bases that can optionally be anchored to the ground. The mechanical purpose of the hollow shaft zenith node is to prevent rotation and displacement in any direction of each member of the self-supporting structure with respect to the other; all the members of the self-supporting structure -including the hollow shaft zenith node itself- of a size and robustness to be defined according to specifications to adequately resist the forces to which the self-supporting structure will be subjected in its commissioning. The operational purpose of the hollow shaft zenith node is to let in and out of the mobile robotic cell a semi-rigid external hose for material transport and a plurality of power and control cables that feed and communicate two servomotors of a rotating diametral beam, two axes independent horizontal linear displacement machines, two robot manipulators mounted on their carriages and two electronically controlled stopcocks that are integrated into the two interchangeable nozzles. The mechanical purpose of the self-supporting structure is to constitute the support and support of the power supply apparatus, the multi-axis actuator and tubing apparatus that protects power, control and other cables and hoses. The operational purpose of the self-supporting structure is to act as a transport cage for the mobile robotic cell, by including three lifting handles arranged respectively on the upper faces of the peripheral ends of its three beams, which serve to hook and hoist the robotic cell. mobile using a crane with a three-leg strap or a three-tap yoke.
El aparato de alimentación propiamente es un dispositivo transportador de material, derivador y destorcedor de cables y mangueras, compuesto por una manguera externa semirrígida para transporte de material, que se conecta mediante un acople de manguera a un tubo de extensión con brida de fijación, que atraviesa verticalmente a un conector rotativo de eje hueco (como, por ejemplo, el H-Through Hole Slip Ring o el Gas & Flow Passage Hollow Shaft Rotary Union de SENRING™) y se conecta a un distribuidor rotativo bifurcado, a cuyas dos bocas de descarga se conectan respectivamente dos mangueras flexibles para transporte de material que conducen el mortero hacia dos boquillas intercambiables con llaves de paso controladas electrónicamente, montadas respectivamente en la brida de dos robots manipuladores que reproducen un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical. El tubo de extensión con brida de fijación al que se acopla la manguera externa semirrígida para transporte de material, se asegura solidariamente al canto superior de un tambor interior del conector rotativo de eje hueco, impidiendo que la manguera externa semirrígida para transporte de material se tuerza y permitiendo que un tambor exterior del conector rotativo de eje hueco gire solidariamente con una viga diametral giratoria que desplaza en movimiento circular simultáneamente a los dos robots manipuladores. Un fuelle protector cubre la manguera externa semirrígida para transporte de material y principalmente la pluralidad de cables de poder y control, evitando que se desvíen de su eje vertical o se enreden cuando el conjunto compuesto por la viga diametral giratoria y una guía circular se desplaza en dirección vertical. The feeding device itself is a device for conveying material, diverting and twisting cables and hoses, composed of a semi-rigid external hose for material transport, which is connected by means of a hose coupling to an extension tube with a fixing flange, which vertically traverses a hollow shaft rotary connector (such as the H-Through Hole Slip Ring or the SENRING ™ Gas & Flow Passage Hollow Shaft Rotary Union) and connects to a bifurcated rotary distributor, to whose two openings discharge, two flexible hoses are connected respectively to transport the material that lead the mortar to two interchangeable nozzles with electronically controlled stopcocks, respectively mounted on the flange of two manipulator robots that reproduce a previous computational trajectory design that reproduces the contour of the part or of the enclosure in all its horizontal and vertical extension. The extension tube with fixing flange to which the external semi-rigid hose for material transport is coupled, is securely attached to the upper edge of an inner drum of the hollow shaft rotary connector, preventing the external semi-rigid hose for material transport from twisting and allowing an outer drum of the hollow shaft rotary connector to rotate integrally with a rotary diametrical beam that simultaneously displaces the two manipulative robots in circular motion. A protective bellows covers the semi-rigid external hose for material transport and mainly the plurality of power and control cables, preventing them from deviating from their vertical axis or becoming entangled when the assembly made up of the rotating diametral beam and a circular guide moves in vertical direction.
El aparato actuador multi-eje propiamente es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto y está compuesto por un conjunto de tres mesas de desplazamiento lineal vertical que sostienen y desplazan simultáneamente, con un grado de libertad, una guía circular sobre la cual gira en torno a su centro, con un grado de libertad, una viga diametral giratoria que sostiene en su cara inferior dos ejes de desplazamiento lineal horizontal independientes, con dos carros sobre los cuales se desplazan, con un grado de libertad respectivamente, dos robots manipuladores de seis grados de libertad, montados en posición invertida. La viga diametral giratoria propiamente comprende dos ejes de desplazamiento lineal horizontal independientes con accionamiento por piñón motorizado y cremallera y sistema de guiado por patines y guías, dispuestos respectivamente en cada mitad de la extensión longitudinal de dicha viga diametral giratoria, y dos servomotores equipados respectivamente con un juego de piñón impulsor y rodamientos en V, dispuestos simétricamente en ambos extremos de dicha viga diametral giratoria, que actúan simultáneamente sobre una guía circular que consiste en un anillo guía de doble canto en V con cremallera interior (como, por ejemplo, los HDRT Heavy Duty Ring Guides and Track Systems de HEPCOMOTION™). Dicha guía circular está sostenida por tres mordazas que se aseguran respectivamente a tres mesas de desplazamiento lineal vertical, dispuestas respectivamente en la cara interior de los tres pilares telescópicos autonivelables de la estructura autoportante de la celda robotizada móvil. Las tres mesas de desplazamiento lineal vertical sostienen y desplazan simultáneamente con un grado de libertad traslacional, al conjunto integrado por la guía circular, la viga diametral giratoria con los dos ejes de desplazamiento lineal horizontal independientes y los dos robots manipuladores. Cada mesa de desplazamiento lineal vertical propiamente es accionada por un par de piñones gemelos y un par de carriles-guía dentados (como, por ejemplo, las Double Lifting Columns de LEANTECHNIK™). La pluralidad de cables de poder y control del conjunto compuesto por la viga diametral giratoria, los dos ejes de desplazamiento lineal horizontal independientes y los dos robots manipuladores, así como de las tres mesas de desplazamiento lineal vertical, están debidamente conducidos y protegidos por bandejas y cadenas portacables horizontales y verticales. The multi-axis actuator device itself is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer and is composed of a set of three vertical linear displacement tables that hold and they simultaneously displace, with one degree of freedom, a circular guide on which a rotating diametrical beam rotates around its center, with one degree of freedom, which supports two independent horizontal linear displacement axes on its lower face, with two carriages on which move, with one degree of freedom respectively, two manipulative robots with six degrees of freedom, mounted in an inverted position. The rotating diametral beam itself comprises two independent horizontal linear displacement axes with drive by motorized pinion and rack and guiding system by skates and guides, respectively arranged in each half of the longitudinal extension of said rotating diametric beam, and two servomotors respectively equipped with a set of drive pinion and V-bearings, arranged symmetrically at both ends of said rotating diametral beam, acting simultaneously on a circular guide consisting of a double-edged V-guide ring with internal rack (such as, for example, HDRTs HEPCOMOTION ™ Heavy Duty Ring Guides and Track Systems). Said circular guide is supported by three clamps that are respectively secured to three tables with vertical linear displacement, respectively arranged on the inner face of the three self-leveling telescopic pillars of the self-supporting structure of the mobile robotic cell. The three tables of vertical linear displacement support and simultaneously displace with a translational degree of freedom, the assembly made up of the circular guide, the rotating diametral beam with the two independent horizontal linear displacement axes and the two manipulative robots. Each vertical linear travel table itself is driven by a pair of twin pinions and a pair of toothed guide rails (such as LEANTECHNIK ™ Double Lifting Columns). The plurality of power and control cables of the set made up of the rotating diametrical beam, the two independent horizontal linear displacement axes and the two manipulator robots, as well as the three vertical linear displacement tables, are duly guided and protected by trays and horizontal and vertical energy chains.
DESCRIPCIÓN DETALLADA DE UNA REALIZACIÓN PREFERIDA DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
La celda robotizada móvil (100) para la fabricación de piezas y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, que se describe en distintas etapas de operación, en las figuras 1 a la 3, está compuesta por una estructura autoportante (10), un aparato de alimentación (20) y un aparato actuador multi-eje (30), que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, en el proceso de impresión de una pieza impresa (40); además, se describe en operación progresiva en una primera vista frontal en las figuras 4 a la 6, en una segunda vista lateral en las figuras 7 a la 9, y en una tercera vista en planta en las figuras 10 a la 12. La estructura autoportante (10), que se describe en la figura 13, está compuesta por tres vigas (12) concurrentes en un nudo cenital de eje hueco (11 ), dispuestas radialmente en un plano horizontal cada 120 grados angulares, cuyos extremos periféricos están provistos respectivamente de un asa de izado (13), cuyo orificio está previsto para enganchar e izar la celda robotizada móvil (100) mediante una grúa con un estrobo de tres ramales o un yugo de tres tomas, que no se muestran; el extremo periférico de cada viga (12) está unido a un pilar telescópico autonivelable (14) que se apoya sobre una base (15) que opcionalmente puede ser anclada al suelo; cada viga (12), en conjunto con su correspondiente pilar telescópico autonivelable (14), soportan tubería (16) que protege cables y mangueras de energía, control y otros, que se conectan a un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, que no se muestran. The mobile robotic cell (100) for the manufacture of parts and enclosures printed on site by means of a multi-axis 3D printing system, which is described in different stages of operation, in Figures 1 to 3, is composed of a self-supporting structure (10), a power supply device (20) and a multi-axis actuator device (30), which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from an external or remote computer , in the process of printing a printed part (40); furthermore, it is described in progressive operation in a first front view in Figures 4 to 6, in a second side view in Figures 7 to 9, and in a third plan view in Figures 10 to 12. The self-supporting structure (10), which is described in figure 13, is composed of three concurrent beams (12) in a hollow axis zenith node (11), arranged radially in a horizontal plane every 120 angular degrees, whose peripheral ends are respectively provided with a lifting handle (13), the hole of which is provided to hook and hoist the mobile robotic cell (100) by means of a crane with a three-leg strap or a three-tap yoke, not shown; the peripheral end of each beam (12) is attached to a self-leveling telescopic pillar (14) that rests on a base (15) that can optionally be anchored to the ground; Each beam (12), together with its corresponding self-leveling telescopic pillar (14), support pipe (16) that protects cables and power, control and other hoses, which are connected to an electricity generator or an installed electrical network, a external controller and compressor, not shown.
El aparato de alimentación (20), que se describe en la figura 14; está compuesto por una manguera externa semirrígida para transporte de material (21 ), que puede provenir de una bomba de mortero, que se conecta mediante un acople de manguera (22) a un tubo de extensión con brida de fijación (23), que se asegura con pernos a un tambor interior de un conector rotativo de eje hueco (24), que es un dispositivo giratorio que se utiliza para transferir energía eléctrica, hidráulica o neumática, circuitos de control o datos, analógicos o digitales, y también medios como vacío, fluidos refrigerantes, vapor y otros, desde una o múltiples entradas fijas -en este caso dispuestas en el tambor interior- hacia una o múltiples salidas giratorias -en este caso dispuestas en un tambor exterior- y que deriva una pluralidad de cables de poder y control (25) que alimentan y comunican a dos servomotores (31 j), dos piñones motorizados (31 b) y dos robots manipuladores (31 g), que se detallan en las figuras 15 y 16, hacia el generador de electricidad o la red eléctrica instalada y el controlador externo, que no se muestran. El tubo de extensión con brida de fijación (23), atraviesa verticalmente al conector rotativo de eje hueco (24) y se conecta por su extremo inferior a un distribuidor rotativo bifurcado (26), a cuyas dos bocas de descarga se conectan dos mangueras flexibles para transporte de material (27), que conducen el mortero hacia dos boquillas intercambiables (28) con llaves de paso controladas electrónicamente que no se muestran, montadas en la brida de los dos robots manipuladores (31 g); y en donde un fuelle protector (29) cubre la manguera externa semirrígida para transporte de material (21 ) y principalmente la pluralidad de cables de poder y control (25), evitando que se desvíen de su eje vertical o se enreden cuando el conjunto compuesto por la viga diametral giratoria (31 ), que se describe en la figuras 15 y 16, una guía circular (32), que se describe en la figura 17, y tres mesas de desplazamiento lineal vertical (33), que se describen en un ejemplar en la figura 18, se desplaza en dirección vertical. The feeding apparatus (20), which is described in Figure 14; It consists of a semi-rigid external hose for material transport (21), which can come from a mortar pump, which is connected by means of a hose coupling (22) to an extension tube with a fixing flange (23), which is bolts to an inner drum of a hollow shaft rotary connector (24), which is a rotating device used to transfer electrical, hydraulic or pneumatic power, control or data circuits, analog or digital, and also media such as vacuum , refrigerant fluids, steam and others, from one or multiple fixed inlets - in this case arranged on the inner drum - towards one or multiple rotating outlets - in this case arranged on an outer drum - and which derives a plurality of power cables and control (25) that feed and communicate two servomotors (31 j), two motorized pinions (31 b) and two manipulator robots (31 g), which are detailed in figures 15 and 16, towards the electricity generator or the network electrical i Installed and External Controller, which are not shown. The extension tube with fixing flange (23) runs vertically through the hollow shaft rotary connector (24) and is connected at its lower end to a bifurcated rotary distributor (26), to whose two discharge ports two flexible hoses are connected for material transport (27), which lead the mortar towards two interchangeable nozzles (28) with electronically controlled stopcocks (not shown), mounted on the flange of the two manipulator robots (31 g); and in where a protective bellows (29) covers the semi-rigid external hose for material transport (21) and mainly the plurality of power and control cables (25), preventing them from deviating from their vertical axis or becoming entangled when the assembly composed of the rotating diametrical beam (31), which is described in figures 15 and 16, a circular guide (32), which is described in figure 17, and three vertical linear displacement tables (33), which are described in an example in Figure 18, moves in the vertical direction.
El aparato actuador multi-eje (30), que se describe en detalle en las figuras 15 a la 18; está compuesto por una viga diametral giratoria (31 ) que gira en torno a su centro sobre una guía circular (32), la cual se desplaza sobre tres mesas de desplazamiento lineal vertical (33), cada una dispuesta en la cara interior de cada pilar telescópico autonivelable (14) de la celda robotizada móvil (100). La viga diametral giratoria (31 ) sostiene en su cara inferior dos ejes de desplazamiento lineal horizontal independientes, cada uno compuesto por un carro (31 a) que es accionado por un piñón motorizado (31 b) y una cremallera (31 c) y guiado por cuatro patines (31 d) sobre dos guías (31 e) paralelas entre sí, y sobre cada carro (31 a) se monta un robot manipulador (31 g) en posición invertida, con todos sus cables de poder y control (25) protegidos por una cadena portacables horizontal (31 f), que se describen complementariamente en la figuras 15 y 16. En ambos costados de la viga diametral giratoria (31 ) se dispone un riel (31 h) por donde se desplaza un balancín retráctil (31 i) que ayuda a sostener parcialmente el peso de cada manguera flexible para transporte de material (27) mientras ésta se desplaza por el espacio tridimensional cargada con el mortero, como se muestra mejor en las figuras 4 a 9. La viga diametral giratoria (31 ) propiamente, es accionada por un servomotor (31 j) y un juego de piñón impulsor y rodamientos en V (31 k), dispuestos simétricamente en ambos extremos, con todos sus cables de poder y control (25) protegidos respectivamente por una bandeja portacables horizontal (311), que se describen en la figura 15. La guía circular (32), que se describe en la figura 17; consiste en un anillo guía de doble canto en V (32a) con cremallera interior (32b), que comprende tres sopandas (32c) dispuestas radialmente en un plano horizontal cada 120 grados angulares, que encajan exactamente en tres mordazas (32d) que se aseguran respectivamente con pernos a tres mesas de desplazamiento lineal vertical (33), dispuestas respectivamente en la cara interior de los tres pilares telescópicos autonivelables (14), en donde cada mesa de desplazamiento lineal vertical (33) comprende un motor-reductor (33a), un par de piñones gemelos (33b), un par de patines gemelos (33c), un par de carriles-guía dentados (33d), una cadena portacables vertical (33e) y una bandeja portacables vertical (33f), que se describen en la figura 18. The multi-axis actuator apparatus (30), which is described in detail in Figures 15 to 18; It is composed of a rotating diametral beam (31) that rotates around its center on a circular guide (32), which moves on three vertical linear displacement tables (33), each one arranged on the inside face of each pillar telescopic self-leveling (14) of the mobile robotic cell (100). The rotating diametrical beam (31) supports on its lower face two independent horizontal linear displacement axes, each one composed of a carriage (31 a) that is driven by a motorized pinion (31 b) and a rack (31 c) and guided by four skids (31 d) on two guides (31 e) parallel to each other, and on each carriage (31 a) a manipulator robot (31 g) is mounted in an inverted position, with all its power and control cables (25) protected by a horizontal cable chain (31 f), which are described in addition in Figures 15 and 16. On both sides of the rotating diametral beam (31) there is a rail (31 h) where a retractable rocker (31 i) which helps to partially support the weight of each flexible material transport hose (27) as it travels through three-dimensional space loaded with mortar, as best shown in Figures 4 to 9. The rotating diametrical beam (31 ) itself, it is driven by a servomotor (31 j) and a set of drive pinion and V-bearings (31 k), arranged symmetrically at both ends, with all their power and control cables (25) protected respectively by a horizontal cable tray (311), which are described in the Figure 15. The circular guide (32), which is described in Figure 17; It consists of a double V-edged guide ring (32a) with internal rack (32b), comprising three supports (32c) arranged radially in a horizontal plane every 120 angular degrees, which fit exactly in three jaws (32d) that are secured respectively with bolts to three vertical linear displacement tables (33), arranged respectively on the inside face of the three pillars telescopic self-leveling (14), where each vertical linear displacement table (33) comprises a motor-reducer (33a), a pair of twin pinions (33b), a pair of twin skids (33c), a pair of guide rails serrations (33d), a vertical cable chain (33e) and a vertical cable tray (33f), which are described in figure 18.
La pieza impresa (40), que se describe en las figuras 19 a la 23; ilustra un primer ejemplo de un muro obtenido de una trayectoria helicoidal doble de impresión 3D de su contorno, figura 19; un segundo ejemplo de un muro impreso con dintorno de trama estructuradora (40a), figura 20; un tercer ejemplo de un muro impreso con relleno macizo (40b), figura 21 ; un cuarto ejemplo de un componente de losa impreso y armadura (40c) en su interior, figura 22; y quinto ejemplo de un componente de losa impreso, con armadura (40c) en su interior y relleno macizo (40b), figura 23. DESCRIPCIÓN DEL MÉTODO OPERATIVO DEL SISTEMA The printed part (40), which is described in Figures 19 to 23; illustrates a first example of a wall obtained from a double helical trajectory of 3D printing of its contour, figure 19; a second example of a printed wall with structuring weft decoration (40a), Figure 20; a third example of a printed wall with solid infill (40b), figure 21; a fourth example of a printed slab component and reinforcement (40c) therein, figure 22; and fifth example of a printed slab component, with reinforcement (40c) inside and solid filling (40b), figure 23. DESCRIPTION OF THE SYSTEM'S OPERATING METHOD
Un segundo objetivo de la invención es proporcionar un método operativo de la celda robotizada móvil (100), que requiere de los siguientes pasos: a) T rasladar la celda robotizada móvil (100) a la obra de construcción o el taller de destino, con su aparato actuador multi-eje (30) debidamente asegurado en su posición de transporte; b) Enganchar sus tres asas de izado (13) con un estrobo de tres ramales o un yugo de tres tomas acoplado a una grúa; c) Posicionar la celda robotizada móvil (100) en un lugar previsto de una obra de construcción para realizar la impresión 3D en obra de piezas o recintos de un edificio; d) Opcionalmente, anclar al suelo las bases (15) de la estructura autoportante (10) de la celda robotizada móvil (100); e) Conectar el aparato de alimentación (20) de la celda robotizada móvil (100) a una fuente de material como, por ejemplo, una bomba de mortero y también a un generador de electricidad o una red eléctrica instalada y un controlador externo, que no se muestran; f) Conectar cables y mangueras de energía, control y otros, que salen de la tubería (16) que soporta la estructura autoportante (10) de la celda robotizada móvil (100), al generador de electricidad o la red eléctrica instalada, al controlador externo y a un compresor externo, que no se muestran; g) Accionar los tres pilares telescópicos autonivelables (14) de la celda robotizada móvil (100) para nivelarla en una posición adecuada para realizar la impresión 3D. h) Liberar el aparato actuador multi-eje (30) de su posición de transporte y accionar la viga diametral giratoria (31) para orientarla en una dirección apropiada, tal que los carros (31a) desplacen los dos robots manipuladores (31 g) hasta dos puntos preferentemente distales del contorno de la pieza presta a ser impresa, accionar las tres mesas de desplazamiento lineal vertical (33) para bajar el conjunto de viga diametral giratoria (31) y guía circular (32) hasta una altura adecuada desde donde los dos robots manipuladores (31 g) posicionen y orienten adecuadamente las dos boquillas intercambiables (28) del aparato de alimentación (20) y puedan iniciar la deposición de filamentos continuos de mortero. i) Iniciar el bombeo del mortero que entra por la manguera externa semirrígida para transporte de material (21) y desciende a través del tubo de extensión con brida de fijación (23), el distribuidor rotativo bifurcado (26) y las dos mangueras flexibles para transporte de material (27), hasta salir extrudido por las dos boquillas intercambiables (28), que están montadas en la brida de los dos robots manipuladores (31 g); j) Iniciar la deposición de filamentos continuos de mortero, en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical, ejecutando el programa del aparato actuador multi-eje (30) desde un computador externo o remoto; k) Detener el proceso de impresión 3D, una vez alcanzada la altura deseada para la pieza impresa (40), o la altura máxima desde donde pueden imprimir adecuadamente los dos robots manipuladores (31 g) en la situación actual;A second objective of the invention is to provide an operating method of the mobile robotic cell (100), which requires the following steps: a) Bringing the mobile robotic cell (100) to the construction site or the destination workshop, with its multi-axis actuator device (30) duly secured in its transport position; b) Hook its three lifting handles (13) with a three-leg strap or a three-socket yoke coupled to a crane; c) Positioning the mobile robotic cell (100) in a planned place of a construction site to perform 3D printing on site of parts or enclosures of a building; d) Optionally, anchor the bases (15) of the self-supporting structure (10) of the mobile robotic cell (100) to the ground; e) Connect the power supply apparatus (20) of the mobile robotic cell (100) to a source of material such as, for example, a mortar pump and also to a power generator or installed power grid and external controller, not shown; f) Connect power, control and other cables and hoses that come out of the pipe (16) that supports the self-supporting structure (10) of the mobile robotic cell (100), to the electricity generator or the installed electrical network, to the controller external and an external compressor, not shown; g) Activate the three self-leveling telescopic pillars (14) of the mobile robotic cell (100) to level it in a suitable position for 3D printing. h) Release the multi-axis actuator device (30) from its transport position and actuate the rotating diametrical beam (31) to orient it in an appropriate direction, such that the carriages (31a) move the two manipulator robots (31 g) until two preferably distal points of the contour of the piece ready to be printed, activate the three vertical linear displacement tables (33) to lower the set of rotating diametrical beam (31) and circular guide (32) to a suitable height from where the two Handling robots (31 g) position and properly orient the two interchangeable nozzles (28) of the feeding apparatus (20) and can initiate the deposition of continuous mortar filaments. i) Start pumping the mortar that enters through the semi-rigid external hose for material transport (21) and descends through the extension tube with fixing flange (23), the bifurcated rotary distributor (26) and the two flexible hoses for material transport (27), until extruded by the two interchangeable nozzles (28), which are mounted on the flange of the two manipulator robots (31 g); j) Start the deposition of continuous mortar filaments, in successive superimposed layers, according to a previous computational trajectory design that reproduces the contour of the piece or of the room in all its horizontal and vertical extension, executing the program of the multi-axis actuator device (30) from an external or remote computer; k) Stop the 3D printing process, once the desired height for the printed part (40) has been reached, or the maximum height from which the two manipulator robots (31 g) can properly print in the current situation;
L) Desconectar el aparato de alimentación (20) de la celda robotizada móvil (100) de la bomba de mortero, del generador de electricidad o de la red eléctrica instalada y del controlador externo, que no se muestran; m) Desconectar cables y mangueras de energía, control y otros, que salen de la tubería (16) que soporta la estructura autoportante (10) de la celda robotizada móvil (100) del generador de electricidad o de la red eléctrica instalada, del controlador y el compresor externos, que no se muestran; n) Asegurar el aparato actuador multi-eje (30) en su posición de transporte; y o) Repetir el procedimiento desde el paso b). De otro modo, retirar con una grúa la celda robotizada móvil (100) de la obra de construcción. L) Disconnect the power supply apparatus (20) of the mobile robotic cell (100) of the mortar pump, of the electricity generator or of the installed electrical network and of the external controller, which are not shown; m) Disconnect power, control and other cables and hoses that come out of the pipe (16) that supports the self-supporting structure (10) of the mobile robotic cell (100) of the electricity generator or the installed electrical network, from the controller and external compressor, not shown; n) Secure the multi-axis actuator device (30) in its transport position; and o) Repeat the procedure from step b). Otherwise, remove the mobile robotic cell (100) from the construction site with a crane.
EJEMPLOS DE APLICACIONES EXAMPLES OF APPLICATIONS
En un primer ejemplo de aplicación para fabricar un muro (40) obtenido de una trayectoria helicoidal doble de impresión 3D de su contorno, se posiciona la celda robotizada móvil (100) en un lugar previsto de la obra de construcción, se conectan su aparato de alimentación (20) y tubería (16) a una bomba de mortero, un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, se accionan sus tres pilares telescópicos autonivelables (14), para nivelar su estructura autoportante (10) y se acciona su aparato actuador multi- eje (30), mediante un programa ejecutado desde un computador externo o remoto, para iniciar la impresión 3D del contorno del muro (40) en capas sucesivas superpuestas. El movimiento sincronizado multi-eje del conjunto de tres mesas de desplazamiento lineal vertical (33), la viga diametral giratoria (31 ), los dos carros (31 a) y los dos robots manipuladores (31 g), permite que el avance conjunto de las dos boquillas intercambiables (28) describa la topología de una hélice doble ascendente, que puede reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí. En un segundo ejemplo de aplicación para fabricar un muro (40) impreso con dintorno de trama estructuradora (40a), existen múltiples maneras de proceder, ya sea que uno de los dos robots manipuladores (31 g) imprima el contorno, mientras el otro imprime el dintorno con una trama estructuradora (40a) del muro (40), o que ambos robots manipuladores (31 g) impriman el contorno y el dintorno de trama estructuradora (40a) alternadamente. In a first example of application to manufacture a wall (40) obtained from a double helical trajectory of 3D printing of its contour, the mobile robotic cell (100) is positioned in a planned place of the construction site, its device is connected supply (20) and pipe (16) to a mortar pump, an electricity generator or an installed electrical network, an external controller and compressor, its three self-leveling telescopic pillars (14) are actuated, to level its self-supporting structure (10 ) and its multi-axis actuator apparatus (30) is activated, by means of a program executed from an external or remote computer, to start the 3D printing of the contour of the wall (40) in successive superimposed layers. The synchronized multi-axis movement of the set of three vertical linear displacement tables (33), the rotating diametrical beam (31), the two carriages (31 a) and the two manipulator robots (31 g), allows the joint advance of The two interchangeable nozzles (28) describe the topology of an ascending double helix, which can reduce the time elapsed between the deposition of each successive layer and prevent too fast an initial setting from preventing consecutive layers of mortar from adhering properly to each other. In a second application example to manufacture a wall (40) printed with a structuring weft pattern (40a), there are multiple ways to proceed, whether one of the two manipulator robots (31 g) prints the outline, while the other prints the lining with a structuring weft (40a) of the wall (40), or that both manipulator robots (31 g) print the contour and the structuring weft lining (40a) alternately.
En un tercer ejemplo de aplicación para fabricar muro (40) impreso con relleno macizo (40b) del mismo material que su contorno, uno de los dos robots manipuladores (31 g) imprime el contorno del muro (40), mientras el otro robot manipulador (31 g) rellena el interior del muro (40) con cierto retraso, de tal manera que las paredes que forman las capas sucesivas superpuestas del contorno alcancen progresivamente altura y resistencia suficientes para contener el relleno macizo (40b). Si se desea que el relleno macizo (40b) del muro (40) sea de otro material distinto de aquel empleado en la impresión de su contorno como, por ejemplo, concreto de azufre, entonces se puede utilizar una herramienta externa con una manguera para transporte de material conectada a una fuente adicional. In a third application example to manufacture wall (40) printed with solid fill (40b) of the same material as its contour, one of the two manipulator robots (31 g) prints the contour of the wall (40), while the other manipulator robot (31 g) fills the interior of the wall (40) with a certain delay, in such a way that the walls that form the successive overlapping layers of the contour progressively reach sufficient height and strength to contain the solid filling (40b). If it is desired that the solid filling (40b) of the wall (40) be made of another material different from that used in the impression of its contour, such as, for example, sulfur concrete, then an external tool can be used with a hose for transport. of material connected to an additional source.
En un cuarto ejemplo de aplicación para fabricar un componente de losa impreso (40) y armadura (40c) en su interior, ambos robots manipuladores (31 g) imprimen el contorno de la sección transversal del componente de losa impreso (40), en posición vertical, como si se tratara de un muro o un ladrillo hueco que posteriormente será abatido para ponerlo en servicio, tendido en su posición y orientación definitivas. La armadura (40c) se instala en el interior del componente de losa (40), después de haberlo impreso completamente. In a fourth application example to manufacture a printed slab component (40) and reinforcement (40c) inside it, both manipulator robots (31 g) print the contour of the cross section of the printed slab component (40), in position vertical, as if it were a wall or a hollow brick that will later be lowered to put it into service, laid in its final position and orientation. The reinforcement (40c) is installed inside the slab component (40), after it has been completely printed.
En un quinto ejemplo de aplicación para fabricar un componente de losa impreso (40), con armadura (40c) en su interior y relleno macizo (40b), este último se vierte en el interior del componente de losa (40) después de haber instalado la armadura (40c), una vez que las paredes del componente de losa impreso (40) hayan alcanzado la resistencia suficiente para contener el relleno macizo (40b). Opcionalmente, las barras de la armadura (40c) se pueden pretensar antes de verter el relleno macizo (40b) en el interior del componente de losa impreso (40). In a fifth application example to manufacture a printed slab component (40), with reinforcement (40c) inside and solid filling (40b), the latter is poured inside the slab component (40) after having installed the reinforcement (40c), once the walls of the printed slab component (40) have reached sufficient strength to contain the solid filler (40b). Optionally, the truss bars (40c) can be prestressed prior to pouring the solid filler (40b) into the printed slab component (40).
En un sexto ejemplo de aplicación para fabricar un recinto impreso en obra, los dos robots manipuladores (31 g) pueden imprimir respectivamente la pared interna y la pared externa del contorno de dicho recinto, debido a que topológicamente es lo mismo que imprimir el contorno de un muro (40). Alféizares y dinteles se pueden instalar durante el proceso de impresión 3D para conformar vanos de puertas, ventanas y otros. In a sixth example of application to manufacture a printed enclosure on site, the two manipulator robots (31 g) can respectively print the wall internal and external wall of the contour of said enclosure, because topologically it is the same as printing the contour of a wall (40). Sills and lintels can be installed during the 3D printing process to form door, window and other openings.

Claims

REIVINDICACIONES
1. Una celda robotizada móvil (100) para la fabricación de piezas (40) y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, CARACTERIZADA porque comprende: 1. A mobile robotic cell (100) for the manufacture of parts (40) and enclosures printed on site by means of a multi-axis 3D printing system, CHARACTERIZED because it comprises:
Una estructura autoportante (10), compuesta por tres vigas (12) concurrentes en un nudo cenital de eje hueco (11), dispuestas radialmente en un plano horizontal cada 120 grados angulares, cuyos extremos periféricos están provistos respectivamente de un asa de izado (13), cuyo orificio está previsto para enganchar e izar la celda robotizada móvil (100) mediante una grúa con un estrobo de tres ramales o un yugo de tres tomas, en donde el extremo periférico de cada viga (12) está unido a un pilar telescópico autonivelable (14) que se apoya sobre una base (15); A self-supporting structure (10), composed of three concurrent beams (12) in a hollow axis zenith node (11), arranged radially in a horizontal plane every 120 angular degrees, whose peripheral ends are respectively provided with a lifting handle (13 ), whose hole is intended to hook and hoist the mobile robotic cell (100) by means of a crane with a three-leg strap or a three-tapped yoke, where the peripheral end of each beam (12) is attached to a telescopic pillar self-leveling (14) resting on a base (15);
Un aparato de alimentación (20), compuesto por una manguera externa semirrígida para transporte de material (21), que se conecta mediante un acople de manguera (22) a un tubo de extensión con brida de fijación (23), que se asegura con pernos a un tambor interior de un conector rotativo de eje hueco (24), que deriva una pluralidad de cables de poder y control (25), en donde el tubo de extensión con brida de fijación (23) atraviesa verticalmente al conector rotativo de eje hueco (24) y se conecta por su extremo inferior a un distribuidor rotativo bifurcado (26), a cuyas dos bocas de descarga se conectan respectivamente dos mangueras flexibles para transporte de material (27) que conducen el mortero hacia dos boquillas intercambiables (28) con llaves paso controladas electrónicamente, y en donde un fuelle protector (29) cubre la manguera externa semirrígida para transporte de material (21) y principalmente la pluralidad de cables de poder y control (25); yA feeding device (20), composed of a semi-rigid external hose for material transport (21), which is connected by means of a hose coupling (22) to an extension tube with a fixing flange (23), which is secured with bolts to an inner drum of a hollow shaft rotary connector (24), which bypasses a plurality of power and control cables (25), wherein the clamping flange extension tube (23) vertically traverses the rotary shaft connector hollow (24) and is connected at its lower end to a bifurcated rotary distributor (26), to whose two discharge ports are respectively connected two flexible hoses for material transport (27) that lead the mortar to two interchangeable nozzles (28) with electronically controlled stopcocks, and where a protective bellows (29) covers the semi-rigid external hose for material transport (21) and mainly the plurality of power and control cables (25); Y
Un aparato actuador multi-eje (30), que es un sistema electromecánico reprogramable, automáticamente controlado, programable de manera offline u online en todos sus grados de libertad desde un computador externo o remoto, compuesto por una viga diametral giratoria (31) que gira en torno a su centro sobre una guía circular (32), la cual se desplaza sobre tres mesas de desplazamiento lineal vertical (33), cada una dispuesta en la cara interior de cada pilar telescópico autonivelable (14) de la celda robotizada móvil (100), en donde la viga diametral giratoria (31) sostiene en su cara inferior dos ejes de desplazamiento lineal horizontal independientes, cada uno compuesto por un carro (31a) que es accionado por un piñón motorizado (31b) y una cremallera (31c) y guiado por cuatro patines (31 d) sobre dos guías (31 e) paralelas entre sí, y sobre cada carro (31a) se monta un robot manipulador (31 g) en posición invertida, con todos sus cables de poder y control (25) protegidos por una cadena portacables horizontal (31 f). A multi-axis actuator device (30), which is a reprogrammable electromechanical system, automatically controlled, programmable offline or online in all its degrees of freedom from a computer external or remote, composed of a rotating diametrical beam (31) that rotates around its center on a circular guide (32), which moves on three vertical linear displacement tables (33), each one arranged on the inside face of each self-leveling telescopic pillar (14) of the mobile robotic cell (100), where the rotating diametral beam (31) supports on its lower face two independent horizontal linear displacement axes, each one composed of a carriage (31a) that is driven by a motorized pinion (31b) and a rack (31c) and guided by four runners (31 d) on two guides (31 e) parallel to each other, and on each carriage (31a) a manipulator robot (31 g) is mounted in inverted position, with all its power and control cables (25) protected by a horizontal cable chain (31 f).
2. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la base (15) opcionalmente puede ser anclada al suelo. 2. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the base (15) can optionally be anchored to the ground.
3. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque cada viga (12), en conjunto con su correspondiente pilar telescópico autonivelable (14), soportan tubería (16) que protege cables y mangueras de energía, control y otros. 3. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that each beam (12), together with its corresponding self-leveling telescopic pillar (14), support pipe (16) that protects cables and power, control and other hoses .
4. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque el tambor interior de un conector rotativo de eje hueco (24), que es un dispositivo giratorio que se utiliza para transferir energía eléctrica, hidráulica o neumática, circuitos de control o datos, analógicos o digitales, y también medios como vacío, fluidos refrigerantes, vapor y otros, desde una o múltiples entradas fijas -en este caso dispuestas en el tambor interior- hacía una o múltiples salidas giratorias -en este caso dispuestas en un tambor exterior-, deriva una pluralidad de cables de poder y control (25) que alimentan y comunican a dos servomotores (31 j), dos piñones motorizados (31b) y dos robots manipuladores (31 g), hacia un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos. 4. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the inner drum of a hollow shaft rotary connector (24), which is a rotary device used to transfer electrical, hydraulic or pneumatic energy, control circuits or data, analog or digital, and also media such as vacuum, refrigerant fluids, steam and others, from one or multiple fixed inlets -in this case arranged on the inner drum- to one or multiple rotating outputs -in this case arranged on a drum exterior-, derives a plurality of power and control cables (25) that feed and communicate two servomotors (31 j), two motorized pinions (31b) and two manipulator robots (31 g), towards an electricity generator or a network installed power supply, an external controller and compressor.
5. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque las dos mangueras flexibles para transporte de material (27), conducen el mortero hacia dos boquillas intercambiables (28) con llaves de paso controladas electrónicamente, montadas en la brida de los dos robots manipuladores (31 g). 5. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the two flexible hoses for material transport (27) lead the mortar to two interchangeable nozzles (28) with keys. electronically controlled pitch, mounted on the flange of the two robot manipulators (31 g).
6. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque el fuelle protector (29) que cubre la manguera externa semirrígida para transporte de material (21 ) y principalmente una pluralidad de cables de poder y control (25), evita que se desvíen de su eje vertical o se enreden cuando el conjunto compuesto por la viga diametral giratoria (31) y la guía circular (32) se desplaza en dirección vertical. 6. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the protective bellows (29) that covers the semi-rigid external hose for material transport (21) and mainly a plurality of power and control cables (25), prevents that deviate from their vertical axis or become entangled when the assembly consisting of the rotating diametral beam (31) and the circular guide (32) moves in a vertical direction.
7. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la viga diametral giratoria (31) sostiene en su cara inferior dos ejes de desplazamiento lineal horizontal independientes, cada uno compuesto por un carro (31a) que es accionado por un piñón motorizado (31b) y una cremallera (31c) y guiado por cuatro patines (31 d) sobre dos guías (31 e) paralelas entre sí, y sobre cada carro (31a) se monta un robot manipulador (31 g) en posición invertida, con todos sus cables de poder y control (25) protegidos por una cadena portacables horizontal (31 f), y en ambos costados de la viga diametral giratoria (31) se dispone un riel (31 h) por donde se desplaza un balancín retráctil (31 i) que ayuda a sostener parcialmente el peso de cada manguera flexible para transporte de material (27) mientras ésta se desplaza por el espacio tridimensional cargada con el mortero.7. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the rotating diametrical beam (31) supports two independent horizontal linear displacement axes on its underside, each one composed of a carriage (31a) that is driven by a motorized pinion (31b) and a rack (31c) and guided by four runners (31 d) on two guides (31 e) parallel to each other, and on each carriage (31a) a manipulator robot (31 g) is mounted in an inverted position , with all its power and control cables (25) protected by a horizontal cable chain (31 f), and on both sides of the rotating diametrical beam (31) there is a rail (31 h) where a retractable rocker moves (31 i) which helps to partially support the weight of each flexible material transport hose (27) as it moves through three-dimensional space loaded with mortar.
8. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque en ambos extremos de la viga diametral giratoria (31) están dispuestos simétricamente un servomotor (31 j) y un juego de piñón impulsor y rodamientos en V (31 k), con todos sus cables de poder y control (25) protegidos respectivamente por una bandeja portacables horizontal (311), que accionan el giro de la viga diametral giratoria (31) en torno a su centro sobre la guía circular (32). 8. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that at both ends of the rotating diametrical beam (31) a servomotor (31 j) and a set of drive pinion and V-bearings (31 k) are symmetrically arranged , with all its power and control cables (25) protected respectively by a horizontal cable tray (311), which actuate the rotation of the rotating diametrical beam (31) around its center on the circular guide (32).
9. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la guía circular (32) consiste en un anillo guía de doble canto en V (32a) con cremallera interior (32b), que comprende tres sopandas (32c) dispuestas radialmente en un plano horizontal cada 120 grados angulares, que encajan exactamente en tres mordazas (32d) que se aseguran respectivamente con pernos a tres mesas de desplazamiento lineal vertical (33), dispuestas respectivamente en la cara interior de los tres pilares telescópicos autonivelables (14), en donde cada mesa de desplazamiento lineal vertical (33) comprende un motor-reductor (33a), un par de piñones gemelos (33b), un par de patines gemelos (33c), un par de carriles-guía dentados (33d), una cadena portacables vertical (33e) y una bandeja portacables vertical (33f). 9. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the circular guide (32) consists of a double-edged V-shaped guide ring (32a) with an internal rack (32b), comprising three supports (32c) arranged radially in a horizontal plane every 120 angular degrees, which exactly fit three jaws (32d) that are secured respectively with bolts to three vertical linear displacement tables (33), respectively arranged on the inside face of the three self-leveling telescopic pillars (14), where each vertical linear displacement table (33) comprises a motor-reducer (33a), a pair of twin pinions (33b), a pair of twin runners (33c), a pair of toothed guide rails (33d), a vertical cable chain (33e) and a vertical cable tray (33f).
10. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la pieza impresa (40), es un muro obtenido de una trayectoria helicoidal doble de impresión 3D de su contorno. 10. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the printed part (40) is a wall obtained from a double helical 3D printing path of its contour.
11. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la pieza impresa (40), es un muro impreso con dintorno de trama estructuradora (40a). 11. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the printed piece (40) is a printed wall with a structuring weft pattern (40a).
12. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la pieza impresa (40), es un muro impreso con relleno macizo (40b). 12. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the printed part (40) is a printed wall with solid filling (40b).
13. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la pieza impresa (40), es un componente de losa impreso y armadura (40c) en su interior. 13. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the printed part (40) is a component of printed slab and reinforcement (40c) inside it.
14. La celda robotizada móvil (100) según la reivindicación 1 , CARACTERIZADA porque la pieza impresa (40), es un componente de losa impreso, con armadura (40c) en su interior y relleno macizo (40b). 14. The mobile robotic cell (100) according to claim 1, CHARACTERIZED in that the printed part (40) is a printed slab component, with reinforcement (40c) inside and solid filling (40b).
15. Un método para operar una celda robotizada móvil (100), para la fabricación de piezas y recintos impresos en obra mediante un sistema multi-eje de impresión 3D, CARACTERIZADO porque comprende disponer de una celda robotizada móvil (100), de acuerdo con las reivindicaciones 1 a 14; a) posicionar la celda robotizada móvil (100) en un lugar previsto de una obra de construcción, con su aparato de alimentación (20) y tubería (16) debidamente conectados a una bomba de mortero, un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, para accionar los tres pilares telescópicos autonivelables (14) y nivelar su estructura autoportante (10) y para accionar su aparato actuador multi-eje (30) mediante un programa ejecutado desde un computador externo o remoto, e iniciar la impresión del contorno de una pieza (40) o de un recinto; b) accionar los dos robots manipuladores (31 g) para posicionar y orientar las dos boquillas intercambiables (28) con llaves de paso controladas electrónicamente, en dos puntos preferentemente distales del contorno de la pieza presta a ser impresa, para iniciar con cada una, en el mismo sentido de avance, la deposición de filamentos continuos de mortero en capas sucesivas superpuestas, según un diseño de trayectorias computacional previo, que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical y cuyo avance conjunto puede describir la topología de una hélice doble ascendente para, por ejemplo, reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí, y en donde ambas boquillas intercambiables (28) repiten la misma trayectoria en cada capa sucesiva, o alternativamente, cada boquilla intercambiable (28) reproduce una trayectoria diferente y realiza una tarea diferente, sin perjuicio de que, debido al propio diseño de la pieza o del recinto, la posición y orientación de cada boquilla intercambiable (28) varíe levemente en la capa siguiente; y c) ejecutar el programa del aparato actuador multi-eje (30) desde un computador externo o remoto, para que el conjunto de tres mesas de desplazamiento lineal vertical (33), dispuestas en la cara interior de los tres pilares telescópicos autonivelables (14), posicione la guía circular (32) que soporta a la viga diametral giratoria (31) con ambos robots manipuladores (31 g) a la distancia vertical necesaria en cada instante requerido, la viga diametral giratoria (31) gire en el sentido y con la aceleración y velocidad necesarias en cada instante requerido, los carros (31a) que componen los dos ejes de desplazamiento lineal horizontal independientes posicionen de manera independiente cada uno de los dos robots manipuladores (31 g) a la distancia horizontal necesaria en cada instante requerido, y cada robot manipulador (31 g) posicione y oriente de manera independiente la boquilla intercambiable (28) que lleva montada en su brida en cada instante requerido, según un diseño de trayectorias computacional previo que reproduce el contorno de la pieza o del recinto en toda su extensión horizontal y vertical. 15. A method to operate a mobile robotic cell (100), for the manufacture of parts and enclosures printed on site by means of a multi-axis 3D printing system, CHARACTERIZED because it comprises having a mobile robotic cell (100), in accordance with claims 1 to 14; a) position the mobile robotic cell (100) in a planned place of a construction site, with its power supply device (20) and pipe (16) duly connected to a mortar pump, an electricity generator or an installed electrical network , an external controller and compressor, to operate the three self-leveling telescopic pillars (14) and level their self-supporting structure (10) and to operate their apparatus multi-axis actuator (30) by means of a program executed from an external or remote computer, and start printing the contour of a part (40) or of an enclosure; b) actuate the two manipulative robots (31 g) to position and orient the two interchangeable nozzles (28) with electronically controlled stopcocks, at two points preferably distal to the contour of the piece ready to be printed, to start with each one, in the same direction of advance, the deposition of continuous mortar filaments in successive superimposed layers, according to a previous computational trajectory design, which reproduces the contour of the piece or of the enclosure in all its horizontal and vertical extension and whose joint advance can describe the topology of an ascending double helix to, for example, reduce the time elapsed between the deposition of each successive layer and avoid that an initial set too fast prevents the consecutive layers of mortar from adhering properly to each other, and where both nozzles interchangeable (28) repeat the same trajectory in each successive layer, or alternately, each interchangeable nozzle (28) re it produces a different trajectory and performs a different task, without prejudice to the fact that, due to the design of the piece or of the enclosure, the position and orientation of each interchangeable nozzle (28) varies slightly in the next layer; and c) execute the program of the multi-axis actuator device (30) from an external or remote computer, so that the set of three vertical linear displacement tables (33), arranged on the inside of the three self-leveling telescopic pillars (14) , position the circular guide (32) that supports the rotating diametral beam (31) with both robot manipulators (31 g) at the necessary vertical distance at each required instant, the rotating diametral beam (31) rotates in the direction and with the acceleration and speed required at each required instant, the carriages (31a) that make up the two independent horizontal linear displacement axes independently position each of the two manipulator robots (31 g) at the horizontal distance required at each required instant, and each manipulator robot (31 g) independently positions and orients the interchangeable nozzle (28) that is mounted on its flange at each required instant, according to a prior computational trajectory design that reproduces the contour of the part or enclosure in all its horizontal and vertical extension.
16. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 15, CARACTERIZADO porque para fabricar un muro (40) obtenido de una trayectoria helicoidal doble de impresión 3D de su contorno, se posiciona la celda robotizada móvil (100) en un lugar previsto de la obra de construcción, se conectan su aparato de alimentación (20) y tubería (16) a una bomba de mortero, un generador de electricidad o una red eléctrica instalada, un controlador y un compresor externos, se accionan sus tres pilares telescópicos autonivelables (14), para nivelar su estructura autoportante (10) y se acciona su aparato actuador multi-eje (30), mediante un programa ejecutado desde un computador externo o remoto, para iniciar la impresión 3D del contorno del muro (40) en capas sucesivas superpuestas; el movimiento sincronizado multi-eje del conjunto de tres mesas de desplazamiento lineal vertical (33), la viga diametral giratoria (31), los dos carros (31a) y los dos robots manipuladores (31 g), permite que el avance conjunto de las dos boquillas intercambiables (28) describa la topología de una hélice doble ascendente, que puede reducir el tiempo transcurrido entre la deposición de cada capa sucesiva y evitar que un fraguado inicial demasiado rápido impida que las capas consecutivas de mortero se adhieran adecuadamente entre sí. 16. The method for operating a mobile robotic cell (100), according to claim 15, CHARACTERIZED in that to manufacture a wall (40) obtained from a double helical path of 3D printing of its contour, the mobile robotic cell is positioned ( 100) at a planned location on the construction site, its power apparatus (20) and tubing (16) are connected to a mortar pump, electricity generator or installed electrical network, external controller and compressor, Its three self-leveling telescopic pillars (14) are activated to level its self-supporting structure (10) and its multi-axis actuator device (30) is activated, by means of a program executed from an external or remote computer, to start the 3D printing of the contour of the wall (40) in successive overlapping layers; The synchronized multi-axis movement of the set of three vertical linear displacement tables (33), the rotating diametral beam (31), the two carriages (31a) and the two manipulator robots (31 g), allows the joint advance of the two interchangeable nozzles (28) describe the topology of an ascending double helix, which can reduce the time elapsed between the deposition of each successive layer and prevent too rapid an initial set from preventing consecutive layers of mortar from adhering properly to each other.
17. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 15, CARACTERIZADO porque para fabricar un muro (40) impreso con dintorno de trama estructuradora (40a), existen múltiples maneras de proceder, ya sea que uno de los dos robots manipuladores (31 g) imprima el contorno, mientras el otro imprime el dintorno con una trama estructuradora (40a) del muro (40), o que ambos robots manipuladores (31 g) impriman el contorno y el dintorno de trama estructuradora (40a) alternadamente. 17. The method for operating a mobile robotic cell (100), according to claim 15, CHARACTERIZED because to manufacture a wall (40) printed with a structuring weft pattern (40a), there are multiple ways to proceed, whether one of the two manipulator robots (31 g) print the outline, while the other prints the pattern with a structuring screen (40a) from the wall (40), or that both manipulator robots (31 g) print the outline and the structuring screen pattern (40a) alternately.
18. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 15, CARACTERIZADO porque para fabricar muro (40) impreso con relleno macizo (40b) del mismo material que su contorno, uno de los dos robots manipuladores (31 g) imprime el contorno del muro (40), mientras el otro robot manipulador (31 g) rellena el interior del muro (40) con cierto retraso, de tal manera que las paredes que forman las capas sucesivas superpuestas del contorno alcancen progresivamente altura y resistencia suficientes para contener el relleno macizo (40b). Si se desea que el relleno macizo (40b) del muro (40) sea de otro material distinto de aquel empleado en la impresión de su contorno como, por ejemplo, concreto de azufre, entonces se puede utilizar una herramienta externa con una manguera para transporte de material conectada a una fuente adicional. 18. The method for operating a mobile robotic cell (100), according to claim 15, CHARACTERIZED in that to manufacture wall (40) printed with solid filling (40b) of the same material as its contour, one of the two manipulator robots ( 31 g) prints the contour of the wall (40), while the other manipulator robot (31 g) fills the interior of the wall (40) with a certain delay, in such a way that the walls that form the successive overlapping layers of the contour progressively reach height and strength sufficient to contain the solid filling (40b). If it is desired that the solid filling (40b) of the wall (40) be made of another material different from that used in the impression of its contour, such as, for example, sulfur concrete, then an external tool can be used with a hose for transport. of material connected to an additional source.
19. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 15, CARACTERIZADO porque para fabricar un componente de losa impreso (40) y armadura (40c) en su interior, ambos robots manipuladores (31 g) imprimen el contorno de la sección transversal del componente de losa impreso (40), en posición vertical, como si se tratara de un muro o un ladrillo hueco que posteriormente será abatido para ponerlo en servicio, tendido en su posición y orientación definitivas; y la armadura (40c) se instala en el interior del componente de losa (40), después de haberlo impreso completamente. 19. The method to operate a mobile robotic cell (100), according to claim 15, CHARACTERIZED in that to manufacture a printed slab component (40) and armor (40c) inside, both manipulator robots (31 g) print the contour of the cross-section of the printed slab component (40), in a vertical position, as if it were a wall or a hollow brick that will later be folded down to put it into service, laid in its final position and orientation; and the reinforcement (40c) is installed inside the slab component (40), after it has been completely printed.
20. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 15, CARACTERIZADO porque para fabricar un componente de losa impreso (40), con armadura (40c) en su interior y relleno macizo (40b), este último se vierte en el interior del componente de losa (40) después de haber instalado la armadura (40c), una vez que las paredes del componente de losa impreso (40) hayan alcanzado la resistencia suficiente para contener el relleno macizo (40b); y opcionalmente, las barras de la armadura (40c) se pueden pretensar antes de verter el relleno macizo (40b) en el interior del componente de losa impreso (40). 20. The method for operating a mobile robotic cell (100), according to claim 15, CHARACTERIZED in that to manufacture a printed slab component (40), with reinforcement (40c) inside and solid filling (40b), this The latter is poured into the slab component (40) after the reinforcement (40c) has been installed, once the walls of the printed slab component (40) have reached sufficient strength to contain the solid filling (40b); and optionally, the reinforcement bars (40c) can be prestressed prior to pouring the solid filler (40b) into the printed slab component (40).
21. El método para operar una celda robotizada móvil (100), de acuerdo con la reivindicación 15, CARACTERIZADO porque para fabricar un recinto impreso en obra, los dos robots manipuladores (31 g) pueden imprimir respectivamente la pared interna y la pared externa del contorno de dicho recinto, debido a que topológicamente es lo mismo que imprimir el contorno de un muro (40). 21. The method for operating a mobile robotic cell (100), according to claim 15, CHARACTERIZED because to manufacture an enclosure Printed on site, the two manipulator robots (31 g) can respectively print the inner wall and the outer wall of the contour of said enclosure, because topologically it is the same as printing the contour of a wall (40).
PCT/CL2019/050130 2019-12-05 2019-12-05 Moveable robotic cell for the production of pieces and enclosures printed on site by means of a multi-axis 3d printing system, and operating method WO2021108933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050130 WO2021108933A1 (en) 2019-12-05 2019-12-05 Moveable robotic cell for the production of pieces and enclosures printed on site by means of a multi-axis 3d printing system, and operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050130 WO2021108933A1 (en) 2019-12-05 2019-12-05 Moveable robotic cell for the production of pieces and enclosures printed on site by means of a multi-axis 3d printing system, and operating method

Publications (1)

Publication Number Publication Date
WO2021108933A1 true WO2021108933A1 (en) 2021-06-10

Family

ID=76221287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050130 WO2021108933A1 (en) 2019-12-05 2019-12-05 Moveable robotic cell for the production of pieces and enclosures printed on site by means of a multi-axis 3d printing system, and operating method

Country Status (1)

Country Link
WO (1) WO2021108933A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279062A1 (en) * 2021-06-30 2023-01-05 CreateMe Technologies LLC Garment personalization with autonomous robots
WO2024105584A1 (en) 2022-11-14 2024-05-23 Solntsev Oleksii Autonomous hybrid system for manufacturing three-dimensional objects

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170021527A1 (en) * 2015-07-22 2017-01-26 Caterpillar Inc. Structural 3D Printing Machine
WO2017153790A1 (en) * 2016-03-08 2017-09-14 Cnc-Instruments Bt. Installation and method for producing buildings by three-dimensional printing
CN107447985A (en) * 2017-08-04 2017-12-08 北京华商陆海科技有限公司 Apparatus for building and house
CN107696675A (en) * 2017-09-26 2018-02-16 合肥工业大学 The multi-functional 3D printing robot of large space of parallel wire driven
US20180056544A1 (en) * 2016-08-29 2018-03-01 Megan A. Kreiger Scalable three dimensional printing apparatus
WO2018162858A1 (en) * 2017-03-09 2018-09-13 Université Clermont Auvergne 3d concrete printer
US10259137B2 (en) * 2014-02-21 2019-04-16 Noah Israel Spray printing construction
CN109853958A (en) * 2019-02-25 2019-06-07 西安理工大学 A kind of driving 3D printer of restructural rope
WO2020031132A1 (en) * 2018-08-10 2020-02-13 Csp S.R.L. Apparatus for the 3d printing of buildings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259137B2 (en) * 2014-02-21 2019-04-16 Noah Israel Spray printing construction
US20170021527A1 (en) * 2015-07-22 2017-01-26 Caterpillar Inc. Structural 3D Printing Machine
WO2017153790A1 (en) * 2016-03-08 2017-09-14 Cnc-Instruments Bt. Installation and method for producing buildings by three-dimensional printing
US20180056544A1 (en) * 2016-08-29 2018-03-01 Megan A. Kreiger Scalable three dimensional printing apparatus
WO2018162858A1 (en) * 2017-03-09 2018-09-13 Université Clermont Auvergne 3d concrete printer
CN107447985A (en) * 2017-08-04 2017-12-08 北京华商陆海科技有限公司 Apparatus for building and house
CN107696675A (en) * 2017-09-26 2018-02-16 合肥工业大学 The multi-functional 3D printing robot of large space of parallel wire driven
WO2020031132A1 (en) * 2018-08-10 2020-02-13 Csp S.R.L. Apparatus for the 3d printing of buildings
CN109853958A (en) * 2019-02-25 2019-06-07 西安理工大学 A kind of driving 3D printer of restructural rope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279062A1 (en) * 2021-06-30 2023-01-05 CreateMe Technologies LLC Garment personalization with autonomous robots
WO2024105584A1 (en) 2022-11-14 2024-05-23 Solntsev Oleksii Autonomous hybrid system for manufacturing three-dimensional objects

Similar Documents

Publication Publication Date Title
EP1711328B1 (en) Robotic system for automated construction
US8518308B2 (en) Automated plumbing, wiring, and reinforcement
CN101360873B (en) An automated brick laying system for constructing a building from a plurality of bricks
ES2726921B2 (en) ROBOTIZED CONSTRUCTION SYSTEM.
WO2018052469A2 (en) Method of reinforced cementitious construction by high speed extrusion printing and apparatus for using same
WO2021108933A1 (en) Moveable robotic cell for the production of pieces and enclosures printed on site by means of a multi-axis 3d printing system, and operating method
US11225013B2 (en) Method for repairing a civil engineering structure
US20170283297A1 (en) Method for 3d printing of buildings and a device for implementation thereof
CN107357294A (en) A kind of straight line wall of bricklaying robot builds algorithm by laying bricks or stones
CN107740591B (en) T-shaped wall building method of brick building robot
CN107605167A (en) Bricklaying robot right angle building wall method
ES2726918B2 (en) ROBOT FOR REFORMS AND REHABILITATIONS.
WO2021108936A1 (en) A walking robotic cell for the manufacture of buildings printed on site by means of a multi-axis 3d printing system; and method of operation
WO2021108934A1 (en) Moveable robotic cell for the production of pieces with a frame or vertical ducts pre-installed inside same and of enclosures, printed on site by means of a multi-axis 3d printing system, and operating method
WO2021108935A1 (en) Moveable robotised cell for the production of pieces with a frame or vertical ducts pre-installed inside same and of enclosures, printed on site by means of a multi-axis 3d printing system, and operating method
US20200354949A1 (en) Construction automation system and method
US11485026B2 (en) Construction automation system and method
ES2957717A1 (en) MULTIFUNCTION ADDITIVE MANUFACTURING SYSTEM, ASSOCIATED BUILDING CONSTRUCTION PROCEDURE AND ASSEMBLY PROCEDURE (Machine-translation by Google Translate, not legally binding)
Travush et al. Mathematical description of concrete laying robots
PL232803B1 (en) Rotary head for incremental forming of building structures
PL232802B1 (en) Rotary head for incremental forming of building structures
OA19503A (en) Method of reinforced cementitious construction by high speed extrusion printing and apparatus for using same.
Prusic Perimeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955384

Country of ref document: EP

Kind code of ref document: A1