WO2021107598A1 - 비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커 - Google Patents

비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커 Download PDF

Info

Publication number
WO2021107598A1
WO2021107598A1 PCT/KR2020/016827 KR2020016827W WO2021107598A1 WO 2021107598 A1 WO2021107598 A1 WO 2021107598A1 KR 2020016827 W KR2020016827 W KR 2020016827W WO 2021107598 A1 WO2021107598 A1 WO 2021107598A1
Authority
WO
WIPO (PCT)
Prior art keywords
mycobacterium
treatment
tuberculous
predicting
infected
Prior art date
Application number
PCT/KR2020/016827
Other languages
English (en)
French (fr)
Inventor
신성재
박지해
김크은산
고원중
전병우
김수영
Original Assignee
주식회사 큐라티스
연세대학교 산학협력단
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 큐라티스, 연세대학교 산학협력단, 사회복지법인 삼성생명공익재단 filed Critical 주식회사 큐라티스
Publication of WO2021107598A1 publication Critical patent/WO2021107598A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8818Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/26Infectious diseases, e.g. generalised sepsis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a biomarker for predicting therapeutic responsiveness after infection with non-tuberculous mycobacteria, and a kit or predicting method for the prediction.
  • Mycobacterium includes not only species that cause serious diseases in humans and animals, such as tuberculosis, tuberculosis bovine tuberculosis, and leprosy, but also fungal species called opportunistic bacteria, and parasitic objects found in the natural environment. About 72 species such as saprophytic species are known so far, of which 25 are known to be related to human diseases. These Mycobacterium genus are not easily dyed with commonly used dyeing solutions, but once dyed, they are also called acid-fighting bacteria because they are not easily decolorized even when treated with alcohol or hydrochloric acid.
  • Nontuberculous mycobacteria refers to mycobacteria other than Mycobacterium tuberculosis complex and Mycobacterium leprae.
  • MAC Mycobacterium avium complex
  • MAB Mycobacterium abscessus
  • M. abscessus subspecies Absesu. s M. abscessus subspecies abscessus
  • M. abscessus subspecies massiliense M. abscessus subspecies massiliense
  • One object of the present invention is to provide a biomarker composition for predicting treatment responsiveness as a prognosis after infection with non-tuberculous mycobacteria.
  • Another object of the present invention is to provide a kit for predicting treatment responsiveness as a prognosis after infection with non-tuberculous mycobacteria.
  • Another object of the present invention is to provide a method for predicting treatment responsiveness as a prognosis after infection with non-tuberculous mycobacteria.
  • biomarker composition for predicting therapeutic responsiveness of a patient infected with non-tuberculous mycobacterium, comprising a metabolite.
  • the "treatment” refers to an approach for obtaining a beneficial or desirable clinical result, and for the purposes of the present invention, the beneficial or desired clinical result is, but not limited to, alleviation of symptoms, reduction of the scope of disease. , stabilizing (i.e. not exacerbating) the disease state, delaying or reducing the rate of disease progression, amelioration or temporary alleviation and amelioration (partial or total) of the disease state, whether detectable or undetectable. and may mean increasing survival compared to the expected survival rate in the absence of treatment.
  • Treatment refers to both therapeutic treatment and prophylactic or prophylactic measures. Such treatments include the treatment required for the disorder being prevented as well as the disorder that has already occurred. "Palliating" a disease means that the extent and/or undesirable clinical signs of the disease state are reduced and/or the time course of progression is delayed or prolonged, compared to no treatment. means to lose
  • prediction of therapeutic responsiveness refers to predicting whether a patient will respond favorably or unfavorably to a therapeutic agent for the treatment of non-tuberculous mycobacterium infection, or predicting the risk of resistance to the therapeutic agent. It means predicting the prognosis of the patient after treatment, that is, positive outcome, survival, or disease-free survival.
  • the biomarker for predicting treatment responsiveness according to the present invention may provide information for selecting the most appropriate treatment modality for a non-tuberculous mycobacterium-infected patient.
  • the treatment may be performed using an antibiotic, wherein the antibiotic may be rifampin, isoniazid, ethambutol, pyrazinamide (PZA), quinolone, or aminoglycoside, but is not limited thereto.
  • the quinolone antibiotic is nalidixic acid, marbofloxacin, oxolinic acid, moxifloxacin, trovafloxacin, gatifloxacin, Flumequine, prulifloxacin, gemifloxacin, ciprofloxacin, sitafloxacin, or clinafloxacin, etc., but may not be limited thereto.
  • aminoglycoside antibiotics include streptomycin, neomycin, framycetin, gentamycin, novobiocin, kanamycin, and amica. It may be syn (amikacin), sisomycin (sisomycin) or spectinomycin (spectinomycin), but is not limited thereto.
  • the metabolite refers to a sample of biological origin, that is, a metabolite obtained from a biological sample
  • the biological sample refers to a biological body fluid, tissue or cell, for example, whole blood, leukocyte. (leukocytes), peripheral blood mononuclear cells, buffy coat, plasma, serum, sputum, tears, mucus, nasal washes, nasal aspirate, breath, urine, semen, saliva, peritoneal washings, ascites, cystic fluid , meningeal fluid, amniotic fluid, glandular fluid, pancreatic fluid, lymph fluid, pleural fluid, nipple aspirate, bronchial aspirate ( One selected from the group consisting of bronchial aspirate, synovial fluid, joint aspirate, organ secretions, cell, cell extract, and cerebrospinal fluid. It may be more than, but preferably whole blood (whole blood), plasma (plasma) or serum (serum) may be, and more of bronchial
  • the non-tuberculous mycobacteria are Mycobacterium avium (M. avium), Mycobacterium abscessus (M. abscessus), Mycobacterium flavesense (M. flavescence), Mycobacterium Rum africanum (M. africanum), Mycobacterium bovis (M. bovis), Mycobacterium cellone (M. chelonae), Mycobacterium cellatum (M. celatum), Mycobacterium portuitum (M. fortuitum), Mycobacterium gordonae (M. gordonae), Mycobacterium gastri (M. gastri), Mycobacterium haemophilum (M.
  • Mycobacterium intracellulare M. intracellulare
  • mycobacterium kansasii M. kansasii
  • mycobacterium malmoens M. malmoense
  • mycobacterium marinum M. marinum
  • mycobacterium sulgai M) szulgai
  • Mycobacterium terrae M. terrae
  • Mycobacterium scrofulaceum M. scrofulaceum
  • Mycobacterium Ulcerans M. ulcerans
  • Mycobacterium simiae M. simiae
  • Mycobacterium xenopi M. xenopi
  • M. xenopi is preferably selected from the group consisting of, but is not limited thereto.
  • whole blood, plasma or serum may be pretreated to detect the metabolite.
  • it may include filtration, distillation, extraction, separation, concentration, inactivation of interfering components, addition of reagents, and the like.
  • the metabolite may include a substance produced by metabolism and metabolic processes or a substance generated by chemical metabolism by biological enzymes and molecules.
  • the metabolite is preferably a metabolite obtained from a liquid sample derived from blood, preferably serum, and specific examples include amino acids, amino acid derivatives, allantoin, N,N- Dimethylglycine (N,N-Dimethylglycine), hypoxanthine, 2-hydroxyglutaric acid, 3-hydroxybutyric acid, glycerol 3-phosphate (Glycerol 3) -phosphate), choline (Choline), lactate (Lactate) and may include one or more selected from the group consisting of malic acid (Malic acid).
  • a liquid sample derived from blood preferably serum
  • specific examples include amino acids, amino acid derivatives, allantoin, N,N- Dimethylglycine (N,N-Dimethylglycine), hypoxanthine, 2-hydroxyglutaric acid, 3-hydroxybutyric acid, glycerol 3-phosphate (Glycerol 3) -phosphate), choline (Choline), lactate (Lactate) and may include
  • the 2-hydroxyglutaric acid is preferably in the D-form, but is not limited thereto.
  • the lactate is preferably in the S-form, but is not limited thereto.
  • the malic acid is preferably in the L-form, but is not limited thereto.
  • the amino acids and their derivatives are arginine, phenylalanine, glutamate, aspartate, valine, leucine, isoleucine, and lysine.
  • tryptophan Tryptophan
  • methionine methionine
  • serine Serine
  • homoserine homoserine
  • the amino acid may be in L-form, preferably arginine, phenylalanine, glutamate, aspartate, valine, leucine ( Leucine), isoleucine, lysine, tryptophan, methionine, serine, or threonine is preferably in the L-form, but limited thereto no.
  • the metabolite is an amino acid, an amino acid derivative, N,N-dimethylglycine, hypoxanthine, 2-hydroxyglutaric acid acid), choline, and at least one selected from the group consisting of lactate, wherein the amino acid and its derivatives are phenylalanine, glutamate, aspartate, It may include at least one selected from the group consisting of valine, leucine, isoleucine, tryptophan, and methionine, and the metabolite is a patient infected by non-tuberculous mycobacteria It may be to predict treatment responsiveness in patients with nodular bronchiectatic form lung disease.
  • the metabolite may include at least one of phenylalanine and isoleucine, and the metabolite is particularly Mycobacterium avium infection among non-tuberculous mycobacteria. It may be for predicting the patient's responsiveness to treatment.
  • the metabolite may include at least one of aspartate, allantoin, and hypoxanthine, and the metabolite may include mycobacteria among non-tuberculous mycobacteria. It may be for predicting treatment responsiveness in patients with M. intracellulare infection.
  • the metabolite may include at least one selected from the group consisting of amino acids, amino acid derivatives and hypoxanthine, and the amino acids and derivatives thereof are phenylalanine, It may include one or more selected from the group consisting of glutamate, methionine, and threonine, and the metabolite may be for predicting treatment responsiveness of a non-tuberculous mycobacterium-infected male patient.
  • the metabolite may include at least one of an amino acid and N,N-dimethylglycine, and the amino acid may include phenylalanine. And, the metabolite may be for predicting the treatment responsiveness of a non-tuberculous mycobacterium-infected female patient.
  • a kit for predicting treatment responsiveness of a non-tuberculous mycobacterium-infected patient comprising a quantitative device for measuring the concentration of a metabolite.
  • the metabolite refers to a sample of biological origin, that is, a metabolite obtained from a biological sample
  • the biological sample refers to a biological body fluid, tissue or cell, for example, whole blood, leukocyte. (leukocytes), peripheral blood mononuclear cells, buffy coat, plasma, serum, sputum, tears, mucus, nasal washes, nasal aspirate, breath, urine, semen, saliva, peritoneal washings, ascites, cystic fluid , meningeal fluid, amniotic fluid, glandular fluid, pancreatic fluid, lymph fluid, pleural fluid, nipple aspirate, bronchial aspirate ( One selected from the group consisting of bronchial aspirate, synovial fluid, joint aspirate, organ secretions, cell, cell extract, and cerebrospinal fluid. It may be more than, but preferably whole blood (whole blood), plasma (plasma) or serum (serum) may be, and more of bronchial
  • whole blood, plasma or serum may be pretreated to detect the metabolite.
  • it may include filtration, distillation, extraction, separation, concentration, inactivation of interfering components, addition of reagents, and the like.
  • whole blood, plasma or serum may be pretreated to detect the metabolite.
  • it may include filtration, distillation, extraction, separation, concentration, inactivation of interfering components, addition of reagents, and the like.
  • the metabolite may include a substance produced by metabolism and metabolic processes or a substance generated by chemical metabolism by biological enzymes and molecules.
  • the metabolite is preferably a metabolite obtained from a liquid sample derived from blood, preferably serum, and specific examples include amino acids, amino acid derivatives, allantoin, N,N- Dimethylglycine (N,N-Dimethylglycine), hypoxanthine, 2-hydroxyglutaric acid, 3-hydroxybutyric acid, glycerol 3-phosphate (Glycerol 3) -phosphate), choline (Choline), lactate (Lactate) and may include one or more selected from the group consisting of malic acid (Malic acid).
  • a liquid sample derived from blood preferably serum
  • specific examples include amino acids, amino acid derivatives, allantoin, N,N- Dimethylglycine (N,N-Dimethylglycine), hypoxanthine, 2-hydroxyglutaric acid, 3-hydroxybutyric acid, glycerol 3-phosphate (Glycerol 3) -phosphate), choline (Choline), lactate (Lactate) and may include
  • the 2-hydroxyglutaric acid is preferably in the D-form, but is not limited thereto.
  • the lactate is preferably in the S-form, but is not limited thereto.
  • the malic acid is preferably in the L-form, but is not limited thereto.
  • the amino acids and their derivatives are arginine, phenylalanine, glutamate, aspartate, valine, leucine, isoleucine, and lysine.
  • tryptophan Tryptophan
  • methionine methionine
  • serine Serine
  • homoserine homoserine
  • the amino acid may be in L-form, preferably arginine, phenylalanine, glutamate, aspartate, valine, leucine ( Leucine), isoleucine, lysine, tryptophan, methionine, serine, or threonine is preferably in the L-form, but limited thereto no.
  • the metabolite is an amino acid, an amino acid derivative, N,N-dimethylglycine, hypoxanthine, 2-hydroxyglutaric acid acid), choline, and at least one selected from the group consisting of lactate, wherein the amino acid and its derivatives are phenylalanine, glutamate, aspartate, Valine, leucine, isoleucine, tryptophan, and methionine may include at least one selected from the group consisting of, the kit may include one or more selected from the group consisting of non-tuberculous mycobacteria. It may be for predicting treatment responsiveness in patients with nodular bronchiectatic form lung disease.
  • the metabolite may include at least one of phenylalanine and isoleucine
  • the kit is a non-tuberculous mycobacterium, particularly Mycobacterium avium infection patient.
  • the metabolite may include at least one of aspartate, allantoin, and hypoxanthine
  • the kit is mycobacterium among non-tuberculous mycobacteria. It may be for predicting treatment responsiveness in patients with M. intracellulare infection.
  • the metabolite may include at least one selected from the group consisting of amino acids, amino acid derivatives and hypoxanthine, and the amino acids and derivatives thereof are phenylalanine, It may include one or more selected from the group consisting of glutamate, methionine, and Threonine, and the kit may be for predicting treatment responsiveness of a non-tuberculous mycobacterium-infected male patient.
  • the metabolite may include at least one of an amino acid and N,N-dimethylglycine, and the amino acid may include phenylalanine.
  • the kit may be for predicting the treatment responsiveness of a non-tuberculous mycobacterium-infected female patient.
  • the quantitative device may be a nuclear magnetic resonance spectrometer (NMR), chromatography, or mass spectrometer, but is not limited thereto.
  • NMR nuclear magnetic resonance spectrometer
  • chromatography chromatography
  • mass spectrometer but is not limited thereto.
  • Chromatography used in the present invention is high performance liquid chromatography (HPLC), liquid-solid chromatography (Liquid-Solid Chromatography, LSC), paper chromatography (Paper Chromatography, PC), thin layer chromatography (Thin) -Layer Chromatography (TLC), Gas-Solid Chromatography (GSC), Liquid-Liquid Chromatography (LLC), Foam Chromatography (FC), Emulsion Chromatography (Emulsion) Chromatography (EC), Gas-Liquid Chromatography (GLC), Ion Chromatography (IC), Gel Filtration Chromatography (GFC) or Gel Permeation Chromatography (Gel Permeation Chromatography, GPC), but is not limited thereto, and any quantitative chromatography commonly used in the art may be used.
  • HPLC high performance liquid chromatography
  • LSC liquid-solid chromatography
  • PC Paper chromatography
  • TLC thin layer chromatography
  • GSC Gas-Solid Chromatography
  • LLC Liquid
  • the mass spectrometer may use a conventionally known mass spectrometer without any particular limitation, but specifically, for example, a Fourier transform mass spectrometer (FTMS), a Malditope mass spectrometer (MALDI-TOF MS), It may be Q-TOF MS or LTQ-Orbitrap MS, but is not limited thereto.
  • FTMS Fourier transform mass spectrometer
  • MALDI-TOF MS Malditope mass spectrometer
  • Q-TOF MS Q-TOF MS or LTQ-Orbitrap MS, but is not limited thereto.
  • the definition of non-tuberculous mycobacterium, treatment and therapeutic responsiveness overlaps with those described in the biomarker composition of the present invention, and description thereof will be omitted below in order to avoid excessive congestion of the specification.
  • it relates to a method for providing information for predicting treatment responsiveness of a patient infected with non-tuberculous mycobacteria, comprising measuring the expression level of a metabolite in a biological sample isolated from a target subject will be.
  • the "target individual” refers to an individual having a high probability of being infected, infected, or diagnosed as being infected by a non-tuberculous mycobacterium, and it means an individual whose responsiveness to treatment for the infection is uncertain.
  • the "biological sample” refers to any material, biological fluid, tissue or cell obtained from or derived from an individual, and includes whole blood, leukocytes, and peripheral blood mononuclear cells.
  • a step of pre-treating the biological sample preferably whole blood, plasma or serum may be performed prior to measuring the expression level of the metabolite.
  • the pretreatment may include, for example, filtration, distillation, extraction, separation, concentration, inactivation of interfering components, addition of reagents, and the like, but is not limited thereto.
  • the metabolite is preferably a metabolite obtained from a liquid sample derived from blood, preferably serum, and specific examples include amino acids, amino acid derivatives, allantoin, N,N- Dimethylglycine (N,N-Dimethylglycine), hypoxanthine, 2-hydroxyglutaric acid, 3-hydroxybutyric acid, glycerol 3-phosphate (Glycerol 3) -phosphate), choline (Choline), lactate (Lactate) and may include one or more selected from the group consisting of malic acid (Malic acid).
  • a liquid sample derived from blood preferably serum
  • specific examples include amino acids, amino acid derivatives, allantoin, N,N- Dimethylglycine (N,N-Dimethylglycine), hypoxanthine, 2-hydroxyglutaric acid, 3-hydroxybutyric acid, glycerol 3-phosphate (Glycerol 3) -phosphate), choline (Choline), lactate (Lactate) and may include
  • the 2-hydroxyglutaric acid is preferably in the D-form, but is not limited thereto.
  • the lactate is preferably in the S-form, but is not limited thereto.
  • the malic acid is preferably in the L-form, but is not limited thereto.
  • the amino acids and their derivatives are arginine, phenylalanine, glutamate, aspartate, valine, leucine, isoleucine, and lysine.
  • tryptophan Tryptophan
  • methionine methionine
  • serine Serine
  • homoserine homoserine
  • the amino acid may be in L-form, preferably arginine, phenylalanine, glutamate, aspartate, valine, leucine ( Leucine), isoleucine, lysine, tryptophan, methionine, serine, or threonine is preferably in the L-form, but limited thereto no.
  • the metabolite is an amino acid, an amino acid derivative, N,N-dimethylglycine, hypoxanthine, 2-hydroxyglutaric acid acid), choline, and at least one selected from the group consisting of lactate, wherein the amino acid and its derivatives are phenylalanine, glutamate, aspartate, It may include at least one selected from the group consisting of valine, leucine, isoleucine, tryptophan and methionine, and the information providing method determines the expression level of the metabolite By measuring, it is possible to predict the treatment responsiveness of patients with nodular bronchiectatic form lung disease among patients infected with non-tuberculous mycobacteria.
  • the metabolite may include at least one of phenylalanine and isoleucine
  • the method for providing information includes measuring the expression level of the metabolite, particularly mycobacteria among non-tuberculous mycobacteria. It is possible to predict the treatment responsiveness of patients with M. avium infection.
  • the metabolite may include at least one of aspartate, allantoin, and hypoxanthine, and the information providing method measures the expression level of the metabolite By doing so, it is possible to predict the treatment responsiveness of non-tuberculous mycobacteria, especially M. intracellulare infection patients.
  • the metabolite may include at least one selected from the group consisting of amino acids, amino acid derivatives and hypoxanthine, and the amino acids and derivatives thereof are phenylalanine, It may include one or more selected from the group consisting of glutamate, methionine, and threonine, and the method for providing information includes measuring the expression level of the metabolite of a male patient infected with non-tuberculous mycobacteria. predictive of treatment responsiveness.
  • the metabolite may include at least one of an amino acid and N,N-dimethylglycine, and the amino acid may include phenylalanine.
  • the information providing method can predict the treatment responsiveness of a non-tuberculous mycobacterium-infected female patient by measuring the expression level of the metabolite.
  • the expression level of the metabolite may be performed using a quantitative device.
  • the quantitative device may be a nuclear magnetic resonance spectrometer (NMR), chromatography, or mass spectrometer, but is not limited thereto.
  • Chromatography used in the present invention is high performance liquid chromatography (HPLC), liquid-solid chromatography (Liquid-Solid Chromatography, LSC), paper chromatography (Paper Chromatography, PC), thin layer chromatography (Thin) -Layer Chromatography (TLC), Gas-Solid Chromatography (GSC), Liquid-Liquid Chromatography (LLC), Foam Chromatography (FC), Emulsion Chromatography (Emulsion) Chromatography (EC), Gas-Liquid Chromatography (GLC), Ion Chromatography (IC), Gel Filtration Chromatography (GFC) or Gel Permeation Chromatography (Gel Permeation Chromatography, GPC), but is not limited thereto, and any quantitative chromatography commonly used in the art may be used.
  • HPLC high performance liquid chromatography
  • LSC liquid-solid chromatography
  • PC Paper chromatography
  • TLC thin layer chromatography
  • GSC Gas-Solid Chromatography
  • LLC Liquid
  • the mass spectrometer may use a conventionally known mass spectrometer without any particular limitation, but specifically, for example, a Fourier transform mass spectrometer (FTMS), a Malditope mass spectrometer (MALDI-TOF MS), It may be Q-TOF MS or LTQ-Orbitrap MS, but is not limited thereto.
  • FTMS Fourier transform mass spectrometer
  • MALDI-TOF MS Malditope mass spectrometer
  • Q-TOF MS Q-TOF MS or LTQ-Orbitrap MS, but is not limited thereto.
  • the expression level of the metabolite may be measured for a biological sample isolated from a target subject before, at the time of, or after the initiation of treatment for non-tuberculous mycobacterium infection.
  • the expression level of the metabolite may be measured for a biological sample isolated from a target subject before or at the start of treatment for non-tuberculous mycobacterium infection.
  • the expression level of the metabolite is 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month after the start of treatment for non-tuberculous mycobacterium infection. It may be measured for a biological sample isolated from a subject of interest after the lapse of time from 3 months.
  • the expression level of the metabolite is a biological sample isolated from a target subject before or at the time of initiation of treatment for non-tuberculous mycobacterium infection, and 10 days after initiation of treatment for non-tuberculous mycobacterium infection. 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to 3 months may be measured for a biological sample isolated from a target subject after the elapse of time.
  • the expression level is the expression level of each metabolite measured in a biological sample isolated from a target subject before treatment for non-tuberculous mycobacterium infection or at the time of initiation of treatment for non-tuberculous mycobacterium infection.
  • the expression level of the metabolite measured with respect to the biological sample of the subject of interest is increased or decreased compared to the control, predicting that the treatment responsiveness of the patient infected by the non-tuberculous mycobacteria is high. can do.
  • control group is a normal control that is not infected with a non-tuberculous mycobacterium, the median value of the patient population (or the average value of the patient) infected with a non-tuberculous mycobacterium, or among patients infected with a non-tuberculous mycobacterium. It may be the median value of a patient population with low treatment responsiveness (or the mean value of the patient), or the median value of the patient population with high treatment responsiveness among patients infected with non-tuberculous mycobacteria (or the average value of the patient).
  • arginine, phenylalanine measured in a biological sample of the subject of the present invention preferably, a biological sample isolated at the time of initiation of treatment or before treatment for non-tuberculous mycobacterium infection
  • Valine Isoleucine, Lysine, Methionine, Homoserine, Threonine, N,N-Dimethylglycine and 3-Hyd
  • the method may further include predicting that the treatment responsiveness of the non-tuberculous mycobacterium-infected patient is high.
  • the control group may be the median value (or the average value of the patient) of a patient population with low therapeutic responsiveness among patients infected with non-tuberculous mycobacteria, but is not limited thereto.
  • arginine and phenylalanine measured in a biological sample of the subject of the present invention preferably, a biological sample isolated at the time of initiation of treatment or before treatment for non-tuberculous mycobacterium infection.
  • Valine Isoleucine, Lysine, Methionine, Homoserine, Threonine, N,N-Dimethylglycine and 3-Hyd
  • the method may further include predicting that the treatment responsiveness of the non-tuberculous mycobacterium-infected patient is low.
  • the control group may be the median value (or the average value of the patient) of a patient population with high treatment responsiveness among patients infected with non-tuberculous mycobacteria, but is not limited thereto.
  • the biological sample of the subject of interest preferably 10 days to 24 months, 1 month to 12 months, 3 months to 6 months after the start of treatment for non-tuberculous mycobacterium infection, Arginine, phenylalanine, glutamate, aspartate, valine, measured in a biological sample isolated after a time period of 2 to 4 months, or 1 to 3 months;
  • Leucine, isoleucine, methionine, N,N-dimethylglycine, hypoxanthine, 2-hydroxyglutaric acid, glycerol When the expression level of one or more selected from the group consisting of 3-phosphate (Glycerol 3-phosphate), choline, lactate, and malic acid is reduced compared to the control group, patients with non-tuberculous mycobacteria infection It may further include the step of predicting that the treatment responsiveness of
  • the control group may be the median value (or the average value of the patient) of a patient population with low therapeutic responsiveness
  • the biological sample of the subject of interest preferably 10 days to 24 months, 1 month to 12 months, 3 months to 6 months after the start of treatment for non-tuberculous mycobacterium infection, Arginine, phenylalanine, glutamate, aspartate, valine, measured in a biological sample isolated after a time period of 2 to 4 months, or 1 to 3 months;
  • the expression level of one or more selected from the group consisting of 3-phosphate (Glycerol 3-phosphate), choline, lactate and malic acid is increased compared to the control group, patients with non-tuberculous mycobacteria infection It may further include the step of predicting that the therapeutic responsiveness of
  • the control group may be the median value (or the average value of the patient) of a patient population with high treatment responsiveness among
  • phenylalanine, glutamate, aspartate, valine, leucine, isoleucine measured with respect to the biological sample of the subject of interest in the present invention Isoleucine
  • Tryptophan Methionine, Threonine, N,N-Dimethylglycine
  • Hypoxanthine 2-hydroxyglutaric acid acid
  • choline lactate
  • malic acid serine
  • arginine when the expression level of one or more selected from the group consisting of a control group is reduced compared to the control group, non-tuberculous anti-acid
  • the method may further include predicting that the treatment responsiveness of the fungal infection patient is high.
  • the expression level is the expression level of each metabolite measured in a biological sample isolated from a subject before treatment for a non-tuberculous mycobacterium infection or at the time of initiation of treatment for a non-tuberculous mycobacterium infection, 10 after the start of treatment for a non-tuberculous mycobacterium infection.
  • Expression level of the same metabolite measured in a biological sample isolated from a subject of interest after a time period of days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to 3 months may be a ratio of
  • the control group may be the median value (or the average value of the patient) of a patient population with low therapeutic responsiveness among patients infected with non-tuberculous mycobacteria, but is not limited thereto.
  • the treatment responsiveness of the non-tuberculous mycobacterium-infected patient is predicted to be high It may further include the step of
  • the expression level is the expression level of each metabolite measured in a biological sample isolated from a subject before treatment for a non-tuberculous mycobacterium infection or at the time of initiation of treatment for a non-tuberculous mycobacterium infection, 10 after the start of treatment for a non-tuberculous mycobacterium infection
  • Expression level of the same metabolite measured in a biological sample isolated from a subject of interest after a time period of days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to 3 months may be a ratio of
  • the control group may be the median value (or the average value of the patient) of a patient population with low therapeutic responsiveness among patients in
  • phenylalanine, glutamate, aspartate, valine, leucine, isoleucine measured with respect to the biological sample of the subject of interest in the present invention Isoleucine
  • Tryptophan Methionine, Threonine, N,N-Dimethylglycine
  • Hypoxanthine 2-hydroxyglutaric acid acid
  • choline lactate
  • malic acid and serine
  • serine Serine
  • the method may further include predicting that the infected patient has a low therapeutic responsiveness, wherein the expression level is each metabolite measured in a biological sample isolated from the subject prior to or at the time of initiation of treatment for non-tuberculous mycobacterium infection.
  • Time lapse of 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to 3 months after initiation of treatment for non-tuberculous mycobacterium infection with respect to the expression level of the body It may be a ratio of the expression level of the same metabolite measured in a biological sample isolated from a target subject afterward, and the control group is the median value (or the average value of a patient population with high treatment responsiveness among patients infected with non-tuberculous mycobacteria) ), but is not limited thereto.
  • the treatment responsiveness of the non-tuberculous mycobacterium-infected patient is predicted to be low It may further include the step of
  • the expression level is the expression level of each metabolite measured in a biological sample isolated from a subject before treatment for a non-tuberculous mycobacterium infection or at the time of initiation of treatment for a non-tuberculous mycobacterium infection.
  • Expression level of the same metabolite measured in a biological sample isolated from a subject of interest after a time period of days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to 3 months may be a ratio of
  • the control group may be the median value (or the average value of the patient) of a patient population with high treatment responsiveness among patients infected with non-tuberculous mycobacteria, but is not limited thereto.
  • phenylalanine, glutamate, aspartate, valine, leucine, isoleucine measured with respect to the biological sample of the subject of interest in the present invention Isoleucine
  • tryptophan methionine
  • N,N-dimethylglycine hypoxanthine
  • 2-hydroxyglutaric acid choline ( Choline)
  • lactate lactate
  • the treatment responsiveness of patients with nodular bronchiectatic form lung disease among patients infected with non-tuberculous mycobacteria is high It may further include the step of predicting.
  • control group is the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably patients with low treatment responsiveness among patients with nodular bronchiectatic form lung disease caused by non-tuberculous mycobacterium infection.
  • the control group is the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably patients with low treatment responsiveness among patients with nodular bronchiectatic form lung disease caused by non-tuberculous mycobacterium infection.
  • the control group is the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably patients with low treatment responsiveness among patients with nodular bronchiectatic form lung disease caused by non-tuberculous mycobacterium infection.
  • it is not limited thereto.
  • phenylalanine, glutamate, aspartate, valine, leucine, isoleucine measured with respect to the biological sample of the subject of interest in the present invention Isoleucine
  • tryptophan methionine
  • N,N-dimethylglycine hypoxanthine
  • 2-hydroxyglutaric acid choline ( Choline)
  • lactate lactate
  • control group is the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably patients with high treatment responsiveness among patients with nodular bronchiectatic form lung disease caused by non-tuberculous mycobacterium infection.
  • the control group is the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably patients with high treatment responsiveness among patients with nodular bronchiectatic form lung disease caused by non-tuberculous mycobacterium infection.
  • the control group is the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably patients with high treatment responsiveness among patients with nodular bronchiectatic form lung disease caused by non-tuberculous mycobacterium infection.
  • it is not limited thereto.
  • the control group may be the median value (or the average value of the patient) of a patient population with low therapeutic responsiveness among patients infected with non-tuberculous mycobacteria, preferably M. avium infected patients, but It is not limited.
  • the control group may be the median value (or the average value of the patient) of a patient population with high treatment responsiveness among patients infected with non-tuberculous mycobacteria, preferably M. avium infected patients, but It is not limited.
  • the expression level of at least one of aspartate and hypoxanthine measured with respect to the biological sample of the subject of the present invention is reduced compared to the control, or allantoin (Allantoin) ), when the expression level is increased compared to the control, predicting that the treatment responsiveness of the non-tuberculous mycobacteria, especially Mycobacterium intracellulare (M. intracellulare) infection patient is high.
  • the control group may be the median value (or the average value of the patient) of a patient population with low treatment responsiveness among patients infected with non-tuberculous mycobacteria, preferably M. intracellulare infection, It is not limited thereto.
  • the expression level of at least one of aspartate and hypoxanthine measured with respect to the biological sample of the subject of the present invention is increased compared to the control, or allantoin (Allantoin) ), when the expression level is reduced compared to the control, predicting that the treatment responsiveness of the non-tuberculous mycobacteria, especially the M. intracellulare infection patient is low.
  • the control group may be the median value (or the average value of the patient) of a patient population with high treatment responsiveness among patients infected with non-tuberculous mycobacteria, preferably M. intracellulare infection, It is not limited thereto.
  • the method may further include predicting that the treatment responsiveness of the non-tuberculous mycobacterium-infected male patient is high.
  • the control group may be the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably male patients with low treatment responsiveness, but is not limited thereto.
  • the method may further include predicting that the treatment responsiveness of the non-tuberculous mycobacterium-infected male patient is low.
  • the control group may be the median value (or the average value of the patient) of a patient population with high treatment responsiveness among patients infected with non-tuberculous mycobacteria, preferably male patients, but is not limited thereto.
  • the control group may be the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably female patients with low therapeutic responsiveness, but is not limited thereto.
  • the control group may be the median value (or the average value of the patient) of patients infected with non-tuberculous mycobacteria, preferably female patients with high treatment responsiveness, but is not limited thereto.
  • the expression level of the metabolite measured in the biological sample isolated from the subject is the expression level of the metabolite measured in the biological sample isolated from the subject before the initiation of treatment for the non-tuberculous mycobacterium infection or at the start of the treatment.
  • the method may further include predicting that the treatment responsiveness of the patient infected by the non-tuberculous mycobacterium is high when it is increased or decreased compared to the above.
  • the expression level of the metabolite measured in the biological sample isolated from the subject is the expression level of the metabolite measured in the biological sample isolated from the subject before the initiation of treatment for the non-tuberculous mycobacterium infection or at the start of the treatment.
  • the method may further include predicting that the treatment responsiveness of the patient infected by the non-tuberculous mycobacterium is low when it is increased or decreased compared to the above.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to 3 months after the start of treatment for the non-tuberculous mycobacterium infection in the present invention Phenylalanine, Glutamate, Aspartate, Valine, Leucine, Isoleucine, Tryptophan (Phenylalanine), Glutamate, Aspartate, and Tryptophan ( Tryptophan), Methionine, Threonine, N,N-Dimethylglycine, Hypoxanthine, 2-hydroxyglutaric acid, Choline ), lactate (Lactate), malic acid (Malic acid), the expression level of one or more metabolites selected from the group consisting of serine (Serine) and arginine (Arginine) before the start of treatment for the non-tuberculous mycobacterium infection, or When the expression level of the metabolite measured in the biological sample isolated from the target individual at the time of initiation of treatment is
  • the method may further include predicting that the treatment responsiveness of the patient infected with non-tuberculous mycobacteria is high.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention Phenylalanine, Glutamate, Aspartate, Valine, Leucine, Isoleucine, Tryptophan measured in a biological sample isolated from a subject after 3 months of time has elapsed (Tryptophan), methionine, Threonine, N,N-dimethylglycine, hypoxanthine, 2-hydroxyglutaric acid, choline ( Choline), lactate (Lactate), malic acid (Malic acid), the expression level of one or more metabolites selected from the group consisting of serine (Serine) and arginine (Arginine) before the start of treatment for the non-tuberculous mycobacterium infection Or, when the expression level of the metabolite measured in the biological sample isolated from the subject at the time of initiation of treatment
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention The expression level of allantoin measured in the biological sample isolated from the target subject after the lapse of 3 months is the biological sample isolated from the target subject before the start of treatment for the non-tuberculous mycobacterium infection or at the start of the treatment.
  • the method may further include predicting that the treatment responsiveness of the patient infected with non-tuberculous mycobacteria is low when the expression level of allantoin measured in the sample is reduced.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention Phenylalanine, Glutamate, Aspartate, Valine, Leucine, Isoleucine, Tryptophan measured in a biological sample isolated from a subject after 3 months of time has elapsed (Tryptophan), methionine, N,N-dimethylglycine, hypoxanthine, 2-hydroxyglutaric acid, choline and lactate (Lactate), the expression level of one or more selected from the group consisting of, the expression level of the metabolite measured in a biological sample isolated from the subject before or at the time of initiation of treatment for the non-tuberculous mycobacterium infection.
  • the method may further include predicting that the treatment responsiveness of a patient infected with a non-tuberculous mycobacterium, preferably a patient with a nodular bronchiectatic form lung disease caused by a non-tuberculous mycobacterium infection is high.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention Phenylalanine, Glutamate, Aspartate, Valine, Leucine, Isoleucine, Tryptophan measured in a biological sample isolated from a subject after 3 months of time has elapsed (Tryptophan), methionine, N,N-dimethylglycine, hypoxanthine, 2-hydroxyglutaric acid, choline and lactate (Lactate), the expression level of one or more selected from the group consisting of, the expression level of the metabolite measured in a biological sample isolated from the subject before or at the time of initiation of treatment for the non-tuberculous mycobacterium infection.
  • the method may further include predicting that the treatment responsiveness of a patient infected with a non-tuberculous mycobacterium, preferably a patient with a nodular bronchiectatic form lung disease caused by a non-tuberculous mycobacterium infection, is low.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention The expression level of at least one of phenylalanine and isoleucine, measured in a biological sample isolated from a subject after 3 months of time has elapsed, was determined before or at the time of initiation of treatment for the non-tuberculous mycobacterium infection.
  • the patient infected with non-tuberculous mycobacteria preferably, M. avium infection of the patient It may further include the step of predicting that the treatment responsiveness is high.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention The expression level of at least one of phenylalanine and isoleucine, measured in a biological sample isolated from a subject after 3 months of time has elapsed, was determined before or at the time of initiation of treatment for the non-tuberculous mycobacterium infection.
  • a patient infected with a non-tuberculous mycobacterium preferably a M. avium-infected patient
  • the method may further include predicting that the treatment responsiveness is low.
  • a patient infected with a non-tuberculous mycobacterium may further include the step of predicting that the treatment responsiveness of the infected patient is high.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention The expression level of allantoin measured in the biological sample isolated from the target subject after the lapse of 3 months is the biological sample isolated from the target subject before the start of treatment for the non-tuberculous mycobacterium infection or at the start of the treatment.
  • the treatment responsiveness of patients infected with non-tuberculous mycobacteria preferably M. intracellulare infection, is high. It may include further steps.
  • a patient infected with a non-tuberculous mycobacterium may further include the step of predicting that the treatment responsiveness of the infected patient is low.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention The expression level of allantoin measured in the biological sample isolated from the target subject after the lapse of 3 months is the biological sample isolated from the target subject before the start of treatment for the non-tuberculous mycobacterium infection or at the start of the treatment.
  • the treatment responsiveness of patients infected with non-tuberculous mycobacteria preferably M. intracellulare infection, is low. It may include further steps.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention At least one selected from the group consisting of Phenylalanine, Glutamate, Methionine, Threonine, and Hypoxanthine measured from a biological sample isolated from a subject after 3 months of time has elapsed
  • the method may further include predicting that an infected patient, preferably a male patient, is highly responsive to treatment.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention At least one selected from the group consisting of Phenylalanine, Glutamate, Methionine, Threonine, and Hypoxanthine measured from a biological sample isolated from a subject after 3 months of time has elapsed
  • the expression level is increased compared to the expression level of the metabolite measured in a biological sample isolated from the target subject before initiation of treatment for the non-tuberculous mycobacterium infection or at the time of initiation of treatment for the non-tuberculous mycobacterium infection.
  • the method may further include predicting that the infected patient, preferably a male patient, has a low therapeutic responsiveness.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention The expression level of at least one of N,N-dimethylglycine and phenylalanine measured in a biological sample isolated from the subject after 3 months of time has elapsed,
  • the expression level of the metabolite measured in a biological sample isolated from the subject before the start of treatment or at the time of initiation of treatment is decreased compared to the level of expression of the metabolite infected by the non-tuberculous mycobacterium, the therapeutic reactivity of a patient, preferably a female patient It may further include the step of predicting this high.
  • 10 days to 24 months, 1 month to 12 months, 3 months to 6 months, 2 months to 4 months, or 1 month to after the start of treatment for the non-tuberculous mycobacterium infection in the present invention The expression level of at least one of N,N-dimethylglycine and phenylalanine measured in a biological sample isolated from the subject after 3 months of time has elapsed,
  • the treatment responsiveness of a patient infected with non-tuberculous mycobacteria preferably a female patient It may further include the step of predicting this low.
  • the "high therapeutic responsiveness" refers to a favorable response to a therapeutic agent for the treatment of a non-tuberculous mycobacterium infection, a low risk or low risk of resistance to the therapeutic agent, and a negative charge of non-tuberculous mycobacteria after treatment. It may mean that this occurs, or that the survival period is increased, but is not limited thereto.
  • the "low therapeutic responsiveness” refers to a non-preferential response to a therapeutic agent for the treatment of non-tuberculous mycobacterium infection, a risk or high risk of resistance to the therapeutic agent, and a bacterial negative charge that does not occur even after treatment. It may mean that the positivity continues or the bacteria positivity occurs again after the bacteria negative change, or the survival period is shortened, but is not limited thereto.
  • the most appropriate treatment method for a non-tuberculous mycobacterium-infected patient is provided by simply, easily and accurately predicting the therapeutic responsiveness of a non-tuberculous mycobacterium-infected patient. allow you to choose
  • 1a to 1j are each in the serum samples obtained before the antibiotic treatment in the patients who succeeded in antibiotic treatment and the patients who failed the antibiotic treatment among Mycobacterium avium complex (MAC) infected patients in one embodiment of the present invention.
  • a graph comparing the expression levels of metabolites is shown.
  • FIGS 2a to 2h in one embodiment of the present invention, among patients infected with Mycobacterium avium complex (MAC), in patients who succeeded in antibacterial treatment through antibiotic treatment and patients who failed, 3 months after the start of the antibiotic treatment
  • MAC Mycobacterium avium complex
  • Figures 3a to 3g in one embodiment of the present invention among patients infected with Mycobacterium avium complex (MAC), in patients who succeeded in antibacterial treatment through antibiotic treatment and patients who failed, 3 months after the start of the antibiotic treatment
  • MAC Mycobacterium avium complex
  • 4a to 4n are each of the serum samples obtained before antibiotic treatment in patients who succeeded and failed in antibiotic treatment among Mycobacterium avium complex (MAC)-infected patients in one embodiment of the present invention. It shows a graph comparing the median of the percent ratio (%) of each metabolite concentration (T3) in the sample obtained at 3 months after the start of antibiotic treatment with respect to the metabolite concentration (T0).
  • 5a to 5n are each of the serum samples obtained before antibiotic treatment in patients who succeeded and failed in antibiotic treatment among Mycobacterium avium complex (MAC)-infected patients in one embodiment of the present invention. It shows a graph comparing the median of the percent ratio (%) of each metabolite concentration (T3) in the sample obtained at 3 months after the start of antibiotic treatment with respect to the metabolite concentration (T0).
  • Figures 6a to 6j in one embodiment of the present invention in patients who succeeded in antibiotic treatment and failed patients with bronchiectatic form lung disease caused by Mycobacterium avium complex (MAC) infection.
  • Median of the percent ratio (%) of each metabolite concentration (T3) in the sample obtained 3 months after the start of antibiotic treatment for each metabolite concentration (T0) in the serum sample obtained before antibiotic treatment A graph comparing them is shown.
  • Figures 7a to 7c in an embodiment of the present invention in patients who succeeded in antibiotic treatment and patients who failed to perform antibiotic treatment among patients with nodular bronchiectatic form lung disease caused by Mycobacterium avium complex (MAC) infection.
  • Median of the percent ratio (%) of each metabolite concentration (T3) in the sample obtained 3 months after the start of antibiotic treatment for each metabolite concentration (T0) in the serum sample obtained before antibiotic treatment A graph comparing them is shown.
  • FIGs 8a and 8b in one embodiment of the present invention, among patients infected with Mycobacterium avium (M. avium), in the patients who succeeded in negative charge through antibiotic treatment and the patients who failed, the serum samples obtained before antibiotic treatment.
  • Figures 9a to 9c in one embodiment of the present invention in patients with M. intracellulare infection in patients who succeeded in antibiotic treatment through antibiotic treatment and patients who failed, in the serum samples obtained before antibiotic treatment. It shows a graph comparing the median of the percent ratio (%) of each metabolite concentration (T3) in a sample obtained 3 months after the start of antibiotic treatment for each metabolite concentration (T0) of
  • Figures 10a to 10e in one embodiment of the present invention in the patients who succeeded and failed in antibiotic treatment among male patients infected with Mycobacterium avium complex (MAC), the serum samples obtained before antibiotic treatment.
  • a graph comparing the median of the percent ratio (%) of each metabolite concentration (T3) in a sample obtained at 3 months after the start of antibiotic treatment for each metabolite concentration (T0) is shown.
  • FIGs 11a and 11b in one embodiment of the present invention, among the female patients infected with Mycobacterium avium complex (MAC), in the patients who succeeded and failed the antibiotic treatment through antibiotic treatment, in the serum samples obtained before antibiotic treatment.
  • the present invention relates to a method for providing information for predicting the treatment responsiveness of a non-tuberculous mycobacterium-infected patient, comprising measuring the expression level of a metabolite in a biological sample isolated from a target subject. .
  • the metabolite is preferably a metabolite obtained from a liquid sample derived from blood, preferably serum, and specific examples include amino acids, amino acid derivatives, allantoin, N,N- Dimethylglycine (N,N-Dimethylglycine), hypoxanthine, 2-hydroxyglutaric acid, 3-hydroxybutyric acid, glycerol 3-phosphate (Glycerol 3) -phosphate), choline (Choline), lactate (Lactate) and may include one or more selected from the group consisting of malic acid (Malic acid).
  • a liquid sample derived from blood preferably serum
  • specific examples include amino acids, amino acid derivatives, allantoin, N,N- Dimethylglycine (N,N-Dimethylglycine), hypoxanthine, 2-hydroxyglutaric acid, 3-hydroxybutyric acid, glycerol 3-phosphate (Glycerol 3) -phosphate), choline (Choline), lactate (Lactate) and may include
  • the amino acid and its derivatives are arginine, phenylalanine, glutamate, aspartate, valine, leucine, isoleucine, lysine, It may include at least one selected from the group consisting of tryptophan, methionine, serine, homoserine, and threonine.
  • the 2-hydroxyglutaric acid is D-form
  • the lactate is S-form
  • the malic acid ( Malic acid) and amino acids may be in L-form.
  • sample quality control SQC
  • SQC sample quality control
  • the first mobile phase (A) H 2 O (v/v) and (B) acetonitrile (v/v) were used, and as the second mobile phase, (A) H 2 O (v/v, 0.1% formic acid) and (B) acetonitrile (v/v) were used, and the gradient elution of each condition was performed in the same manner as in Table 2 below with a total analysis time of 15 minutes.
  • the unit of the Ion-Source Gas 1/2 was 50/50 arbitrary units, and the unit of the Curtain Gas was 25 arbitrary units.
  • the source temperature was 500 °C
  • the ion-spray floating voltage was 5.5 kV (negative -4.5 kV)
  • the mass range was 50 ⁇ 1000 m/z.
  • Metaboanalyst (data statistic site) with the following statistical tests to compare the metabolite concentration of the success or failure of bacterial negative electrolysis with the serum sample of a patient infected with Mycobacterium avium complex (MAC) before antibiotic treatment (data statistics site) and SPSS statistical program were used to calculate data, and the results were used to distinguish between those who succeeded and those who failed due to antibiotic treatment among Mycobacterium avium complex (MAC)-infected patients before antibiotic treatment.
  • a total of 10 related metabolites were selected based on their respective p-values and fold change values, and the results are shown in Table 7 and FIGS. 1A to 1J below. However, in FIGS.
  • L-Arginine L of blood metabolites -Methionine (L-Methionine), L-isoleucine (L-isoLeucine), N,N-dimethylglycine (N,N-Dimethylglycine), L-valine (L-Valine), L-threonine (L-Threonine), L -Lysine, L-Phenylalanine, homoserine, and 3-hydroxybutyric acid had significantly increased expression levels compared to patients who failed could confirm that
  • Serum samples from patients with Mycobacterium avium complex (MAC) infection obtained 3 months after the start of antibiotic treatment, the following statistical test to compare the metabolite concentration of successful antibiotic treatment
  • Data were calculated using Metaboanalyst (data statistics site) and SPSS statistical program in two ways, and using the results, antibiotic treatment among patients with Mycobacterium avium complex (MAC) infection after antibiotic treatment
  • a total of 15 disease-related metabolites that can distinguish successful and unsuccessful people were selected based on their respective p-values and fold change values, and the results are shown in Table 8 and FIGS. 2a to 2h and 3a to 3g. shown in However, in FIGS.
  • the serum samples obtained at the time point 3 months after the start of antibiotic treatment of non-tuberculous mycobacteria-infected patients who succeeded in antibiotic treatment with antibiotic treatment L-Valine, L-Methionine, L-Arginine, N,N-Dimethylglycine, Choline among blood metabolites , hypoxanthine, glycerol 3-phosphate (Glycerol 3-phosphate), L-isoleucine (L-isoLeucine), leucine, L-glutamate (L-Glutamate), L-phenylalanine (L-Phenylalanine), L-Aspartate, S-Lactate, L-Malic acid and D-2-Hydroxyglutaric acid are It was confirmed that the expression level was significantly reduced compared to the patients who failed negative charge.
  • the metabolite concentration in the serum sample before antibiotic treatment was obtained at a time point 3 months after the start of antibiotic treatment.
  • the ratio of metabolite concentration in one sample was calculated as data using Metaboanalyst (data statistics site) and SPSS statistical program with the following two methods of statistical testing, and disease that can predict success or failure of bacterial negative charge using the result
  • a total of 14 related metabolites were selected based on their respective p-values and fold change values, and are shown in Tables 9 to 11 and FIGS. 4A to 4N and 5A to 5N.
  • Table 9 shows that, in the patient group who succeeded in negative bacterium by antibiotic treatment, the metabolite concentration (T0) in the serum sample before antibiotic treatment for each metabolite was obtained at a time point 3 months after the start of antibiotic treatment. shows the median of the percent ratio (%) (ie, T3/T0 x 100) of the metabolite concentration (T3) of It shows the median value of the percentage ratio (%) of the metabolite concentration in the sample obtained at 3 months after the start of antibiotic treatment with respect to the metabolite concentration in the sample. Table 11 shows the ratio of the median value of Table 10 to the median value of Table 9 for each metabolite. In addition, in FIGS.
  • L-Phenylalanine N,N-dimethylglycine (N,N-Dimethylglycine), hypoxanthine (Hypoxanthine), L-glutamate (L-Glutamate), D-2-hydroxyglutaric acid (D-2) -Hydroxyglutaric acid), L-Aspartate (L-Aspartate), L-Valine (L-Valine), L-Leucine (L-Leucine), Choline (Choline), L-Isoleucine (L-isoLeucine), S- It was confirmed that the expression levels of lactate (S-Lactate), L- malic acid (L-Malic acid), serine (L-Serine) and L- argin
  • Table 17 shows the ratio of the median value of Table 16 to the median value of Table 15 for each metabolite.
  • Table 26 shows the ratio of the median value of Table 25 to the median value of Table 24 for each metabolite.
  • the present invention relates to a biomarker for predicting therapeutic responsiveness after infection with non-tuberculous mycobacteria, and a kit or predicting method for the prediction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 비결핵 항산균에 의한 감염 후 치료 반응성을 예측하기 위한 바이오마커와, 상기 예측을 위한 키트 또는 예측 방법에 관한 것이다.

Description

비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커
본 발명은 비결핵 항산균에 의한 감염 후 치료 반응성을 예측하기 위한 바이오마커와, 상기 예측을 위한 키트 또는 예측 방법에 관한 것이다.
마이코박테리움 (Mycobacterium) 속에는 결핵, 우형결핵, 나병과 같이 사람과 동물에 심각한 질병을 일으키는 균 종 (species)뿐 아니라, 기회 감염균으로 일컬어지는 균 종, 그리고 자연환경에서 볼 수 있는 사물 기생의 균 종 (saprophytic species) 등 현재까지 약 72 종(species)이 알려져 있으며, 그 중 인체 질환과 관련된 것이 25종에 이르는 것으로 알려져 있다. 이러한 마이코박테리움 속은 일반적으로 사용되는 염색액으로는 용이하게 염색되지 않지만 일단 염색되면 알코올이나 염산 등으로 처리시에도 용이하게 탈색되지 않기 때문에 항산균이라고도 불린다.
비결핵 항산균(Nontuberculous mycobacteria; NTM)은 결핵균(Mycobacterium tuberculosis complex) 및 나균(Mycobacterium leprae)을 제외한 항산균을 의미한다. 한편, 마이코박테리움 아비움 복합체(Mycobacterium avium complex; MAC)에 속하는 비결핵 항산균주 중 흔히 인간에게서 폐 질환을 일으키는 균주로는 공식적으로 대략 180 종 이상이 규명되었다. MAC는 주로 M. 아비움(M. avium)과 M. 인트라셀룰라(M. intracellulare)를 포함하고, 마이코박테리움 압세수스(Mycobacterium abscessus; MAB)는 주로 M. 압세수스 아종인 압세수스(M. abscessus subspecies abscessus)와 M. 압세수스 아종인 마실리엔시스(M. abscessus subspecies massiliense)를 포함한다. 최근 전세계적으로 비결핵 항산균에 기인한 폐 감염 보고가 증가하고 있지만, 건강한 개체군으로부터 비결핵 항산균 폐 감염 질환자를 구별하기 위한 바이오마커나, 질환에 대한 병태 생리의 연구가 부족한 실정이다.
본 발명의 일 목적은 비결핵 항산균의 감염 후 예후로, 치료 반응성을 예측하기 위한 바이오마커 조성물을 제공하고자 한다.
본 발명의 다른 목적은 비결핵 항산균의 감염 후 예후로, 치료 반응성을 예측하기 위한 키트를 제공하고자 한다.
본 발명의 또 다른 목적은 비결핵 항산균의 감염 후 예후로, 치료 반응성을 예측하는 방법을 제공하고자 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 구현 예에 따르면, 대사체를 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 바이오마커 조성물에 관한 것이다.
본 발명에서 상기 "치료"는 이롭거나 바람직한 임상적 결과를 수득하기 위한 접근을 의미하는 것으로, 본 발명의 목적을 위해서, 이롭거나 바람직한 임상적 결과는 비제한적으로, 증상의 완화, 질병 범위의 감소, 질병 상태의 안정화 (즉, 악화되지 않음), 질병 진행의 지연 또는 속도의 감소, 질병 상태의 개선 또는 일시적 완화 및 경감 (부분적이거나 전체적으로), 검출 가능 하거나 또는 검출되지 않거나의 여부를 포함할 수 있고, 치료를 받지 않았을 때 예상되는 생존율과 비교하여 생존율을 늘이는 것을 의미할 수도 있다. 치료는 치료학적 치료 및 예방적 또는 예방 조치 방법 모두를 가리킨다. 상기 치료들은 예방되는 장애뿐만 아니라 이미 발생한 장애에 있어서 요구되는 치료를 포함한다. 질병을 "완화(Palliating)"하는 것은 치료를 하지 않은 경우와 비교하여, 질병 상태의 범위 및/또는 바람직하지 않은 임상적 징후가 감소되거나 및/또는 진행의 시간적 추이(time course)가 늦춰지거나 길어지는 것을 의미한다.
본 발명에서 있어서 "치료 반응성 예측"이란, 환자가 비결핵 항산균 감염의 치료를 위한 치료제에 대해 선호적으로 또는 비선호적으로 반응할지 여부를 예측하는 것, 또는 치료제에 대한 내성의 위험성을 예측하는 것, 치료 후 환자의 예후 즉, 양전, 생존, 또는 무병생존 등을 예측하는 것을 의미한다. 본 발명에 따른 치료 반응성 예측을 위한 바이오마커는 비결핵 항산균 감염 환자에 대한 가장 적절한 치료 방식을 선택하도록 하기 위한 정보를 제공할 수 있다.
본 발명에서 상기 치료는 항생제를 사용하며 수행될 수 있고, 여기서 상기 항생제는 리팜핀, 아이소니아지드, 에탐부톨, 피라지나마이드(pyrazinamide, PZA), 퀴놀론계, 또는 아미노글라이코사이드계일 수 있으나, 이에 제한되는 것은 아니다. 여기서 상기 퀴놀론계 항생제는 날리딕스산(nalidixic acid), 마보플록사신(marbofloxacin), 옥솔린산(oxolinic acid), 목시플록사신(moxifloxacin), 트로바플록사신(trovafloxacin), 가티플록사신(gatifloxacin), 플루메퀸(flumequine), 프룰리플록사신(prulifloxacin), 제미플록사신(gemifloxacin), 시프로플록사신(ciprofloxacin), 시타플록사신(sitafloxacin) 또는 클리나플록사신(clinafloxacin) 등일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 아미노글라이코사이드계 항생제는 스트렙토마이신(streptomycin), 네오마이신(neomycin), 프라마이세틴(framycetin), 겐타마이신(gentamycin), 노보비오신(novobiocin), 가나마이신(kanamycin), 아미카신(amikacin), 시소마이신(sisomycin) 또는 스펙티노마이신(spectinomycin) 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 대사체는 생체 기원의 시료, 즉 생물학적 시료로부터 수득한 대사 물질을 말하는 것으로, 상기 생물학적 시료는 생물학적 체액, 조직 또는 세포를 의미하는 것으로, 예를 들면, 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions), 세포(cell), 세포 추출물(cell extract) 및 뇌척수액(cerebrospinal fluid) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 바람직하게는 전혈(whole blood), 혈장(plasma) 또는 혈청(serum)일 수 있고, 보다 바람직하게는 혈청(serum)일 수 있다.
본 발명에서 상기 비결핵 항산균은 마이코박테리움 아비움(M. avium), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 플라베센스(M. flavescence), 마이코박테리움 아프리카눔(M. africanum), 마이코박테리움 보비스(M. bovis), 마이코박테리움 첼로네(M. chelonae), 마이코박테리움 셀라툼(M. celatum), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 고르도네(M. gordonae), 마이코박테리움 가스트리(M. gastri), 마이코박테리움 헤모필룸(M. haemophilum), 마이코박테리움 인트라셀루라레(M. intracellulare), 마이코박테리움 칸사시이(M. kansasii), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 스줄가이(M. szulgai), 마이코박테리움 테레(M. terrae), 마이코박테리움 스크로풀라세움(M. scrofulaceum), 마이코박테리움 울서란스(M. ulcerans), 마이코박테리움 시미애(M. simiae) 및 마이코박테리움 제노피(M. xenopi)로 구성된 군으로부터 선택된 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서는 상기 대사체를 검출하기 위해 전혈, 혈장 또는 혈청을 전처리할 수 있다. 예를 들어, 여과, 증류, 추출, 분리, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있다. 또한, 상기 대사체는 대사 및 대사 과정에 의해 생산된 물질 또는 생물학적 효소 및 분자에 의한 화학적 대사작용으로 발생한 물질 등을 포함할 수 있다.
본 발명에서 상기 대사체는 혈액, 바람직하게는 혈청 기원의 액상 시료로부터 수득한 대사물질인 것이 바람직하고, 구체적인 예를 들면, 아미노산(amino acid), 아미노산 유도체, 알란토인(Allantoin), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 3-하이드록시부틸산(3-hydroxybutyric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에서 상기 2-하이드록시글루타릭산(2-hydroxyglutaric acid)은 D-형태(D-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 락테이트(Lactate)는 S-형태(S-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 말산(Malic acid)은 L-형태(L-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 아미노산 및 그 유도체는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine), 호모세린(Homoserine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에서 상기 아미노산은 L-형태(L-form)일 수 있고, 바람직하게는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine) 또는 트레오닌(Threonine)은 L-형태(L-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명의 일 예시에서 상기 대사체는 아미노산(amino acid), 아미노산 유도체, N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline) 및 락테이트(Lactate)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 상기 아미노산 및 그 유도체는 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan) 및 메티오닌(Methionine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 상기 대사체는 비결핵 항산균에 의해 감염된 환자 중 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 다른 예시에서 상기 대사체는 페닐알라닌(Phenylalanine) 및 이소류신(Isoleucine) 중 적어도 하나를 포함할 수 있고, 상기 대사체는 비결핵 항산균 중 특히 마이코박테리움 아비움(M. avium) 감염 환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아스파르테이트(Aspartate), 알란토인(Allantoin) 및 하이포잔틴(Hypoxanthine) 중 적어도 하나를 포함할 수 있고, 상기 대사체는 비결핵 항산균 중 특히 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아미노산(amino acid), 아미노산 유도체 및 하이포잔틴(Hypoxanthine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 상기 아미노산 및 그 유도체는 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 메티오닌(Methionine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 상기 대사체는 비결핵 항산균 감염 남성 환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아미노산(amino acid) 및 N,N-디메틸글라이신(N,N-Dimethylglycine) 중 적어도 하나를 포함할 수 있고, 상기 아미노산은 페닐알라닌(Phenylalanine)을 포함할 수 있으며, 상기 대사체는 비결핵 항산균 감염 여성 환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 다른 구현 예에 따르면, 대사체의 농도를 측정하는 정량 장치를 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 키트에 관한 것이다.
본 발명에서 상기 대사체는 생체 기원의 시료, 즉 생물학적 시료로부터 수득한 대사 물질을 말하는 것으로, 상기 생물학적 시료는 생물학적 체액, 조직 또는 세포를 의미하는 것으로, 예를 들면, 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions), 세포(cell), 세포 추출물(cell extract) 및 뇌척수액(cerebrospinal fluid) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 바람직하게는 전혈(whole blood), 혈장(plasma) 또는 혈청(serum)일 수 있고, 보다 바람직하게는 혈청(serum)일 수 있다.
본 발명에서는 상기 대사체를 검출하기 위해 전혈, 혈장 또는 혈청을 전처리할 수 있다. 예를 들어, 여과, 증류, 추출, 분리, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있다.
본 발명에서는 상기 대사체를 검출하기 위해 전혈, 혈장 또는 혈청을 전처리할 수 있다. 예를 들어, 여과, 증류, 추출, 분리, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있다. 또한, 상기 대사체는 대사 및 대사 과정에 의해 생산된 물질 또는 생물학적 효소 및 분자에 의한 화학적 대사작용으로 발생한 물질 등을 포함할 수 있다.
본 발명에서 상기 대사체는 혈액, 바람직하게는 혈청 기원의 액상 시료로부터 수득한 대사물질인 것이 바람직하고, 구체적인 예를 들면, 아미노산(amino acid), 아미노산 유도체, 알란토인(Allantoin), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 3-하이드록시부틸산(3-hydroxybutyric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에서 상기 2-하이드록시글루타릭산(2-hydroxyglutaric acid)은 D-형태(D-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 락테이트(Lactate)는 S-형태(S-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 말산(Malic acid)은 L-형태(L-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 아미노산 및 그 유도체는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine), 호모세린(Homoserine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에서 상기 아미노산은 L-형태(L-form)일 수 있고, 바람직하게는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine) 또는 트레오닌(Threonine)은 L-형태(L-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명의 일 예시에서 상기 대사체는 아미노산(amino acid), 아미노산 유도체, N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline) 및 락테이트(Lactate)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 상기 아미노산 및 그 유도체는 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan) 및 메티오닌(Methionine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 상기 키트는 비결핵 항산균에 의해 감염된 환자 중 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 다른 예시에서 상기 대사체는 페닐알라닌(Phenylalanine) 및 이소류신(Isoleucine) 중 적어도 하나를 포함할 수 있고, 상기 키트는 비결핵 항산균 중 특히 마이코박테리움 아비움(M. avium) 감염 환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아스파르테이트(Aspartate), 알란토인(Allantoin) 및 하이포잔틴(Hypoxanthine) 중 적어도 하나를 포함할 수 있고, 상기 키트는 비결핵 항산균 중 특히 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아미노산(amino acid), 아미노산 유도체 및 하이포잔틴(Hypoxanthine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 상기 아미노산 및 그 유도체는 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 메티오닌(Methionine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 상기 키트는 비결핵 항산균 감염 남성 환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아미노산(amino acid) 및 N,N-디메틸글라이신(N,N-Dimethylglycine) 중 적어도 하나를 포함할 수 있고, 상기 아미노산은 페닐알라닌(Phenylalanine)을 포함할 수 있으며, 상기 키트는 비결핵 항산균 감염 여성 환자의 치료 반응성을 예측하기 위한 것일 수 있다.
본 발명에서 상기 정량 장치는 핵자기 공명 분광 분석기 (NMR), 크로마토그래피 또는 질량분석기일 수 있으나, 이에 제한되지 않는다.
본 발명에서 이용되는 크로마토그래피는 고성능 액체 크로마토그래피(High Performance Liquid Chromatography, HPLC), 액체-고체 크로마토그래피(Liquid-Solid Chromatography, LSC), 종이크로마토그래피(Paper Chromatography, PC), 박층 크로마토그래피(Thin-Layer Chromatography, TLC), 기체-고체 크로마토그래피(Gas-Solid Chromatography, GSC), 액체-액체 크로마토그래피(Liquid-Liquid Chromatography, LLC), 포말 크로마토그래피(Foam Chromatography, FC), 유화 크로마토그래피(Emulsion Chromatography, EC), 기체-액체 크로마토그래피(Gas-Liquid Chromatography, GLC), 이온 크로마토그래피(Ion Chromatography, IC), 겔 여과 크로마토그래피(Gel Filtration Chromatograhy, GFC) 또는 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)를 포함하나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량용 크로마토그래피를 사용할 수 있다.
본 발명에서 상기 질량분석기는 특별한 제한없이 종래 공지된 질량 분석기를 이용할 수 있지만, 구체적으로 예를 들면, 푸리에 변환 질량분석기(FTMS, Fourier transform mass spectrometer), 말디토프 질량분석기(MALDI-TOF MS), Q-TOF MS 또는 LTQ-Orbitrap MS일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 키트에서 비결핵 항산균, 치료 및 치료 반응성에 관한 정의는 상기 본 발명의 바이오마커 조성물에 기재된 바와 중복되어 명세서의 과도한 혼잡을 피하기 위해 이하 그 기재를 생략한다.
본 발명의 또 다른 구현 예에 따르면, 목적하는 개체로부터 분리된 생물학적 시료에서 대사체의 발현 수준을 측정하는 단계를 포함하는 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법에 관한 것이다.
본 발명에서 상기 "목적하는 개체"란 비결핵 항산균에 의해 감염 가능성이 높거나 감염되었거나 감염된 것으로 진단받은 개체로, 상기 감염에 대한 치료 시 반응성이 불확실한 개체를 의미한다.
본 발명에서 상기 "생물학적 시료"는 개체로부터 얻어지거나 개체로부터 유래된 임의의 물질, 생물학적 체액, 조직 또는 세포를 의미하는 것으로, 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions), 세포(cell), 세포 추출물(cell extract) 및 뇌척수액(cerebrospinal fluid) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 바람직하게는 전혈(whole blood), 혈장(plasma) 또는 혈청(serum)일 수 있고, 보다 바람직하게는 혈청(serum)일 수 있다.
본 발명에서는 상기 대사체의 발현 수준을 측정하기에 앞서, 상기 생물학적 시료, 바람직하게는 전혈, 혈장 또는 혈청을 전처리하는 단계를 수행할 수 있다. 본 발명에서 상기 전처리로는, 예를 들어, 여과, 증류, 추출, 분리, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 대사체는 혈액, 바람직하게는 혈청 기원의 액상 시료로부터 수득한 대사물질인 것이 바람직하고, 구체적인 예를 들면, 아미노산(amino acid), 아미노산 유도체, 알란토인(Allantoin), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 3-하이드록시부틸산(3-hydroxybutyric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에서 상기 2-하이드록시글루타릭산(2-hydroxyglutaric acid)은 D-형태(D-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 락테이트(Lactate)는 S-형태(S-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 말산(Malic acid)은 L-형태(L-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명에서 상기 아미노산 및 그 유도체는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine), 호모세린(Homoserine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에서 상기 아미노산은 L-형태(L-form)일 수 있고, 바람직하게는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine) 또는 트레오닌(Threonine)은 L-형태(L-form)인 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명의 일 예시에서 상기 대사체는 아미노산(amino acid), 아미노산 유도체, N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline) 및 락테이트(Lactate)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 상기 아미노산 및 그 유도체는 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan) 및 메티오닌(Methionine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 상기 정보 제공 방법은 상기 대사체의 발현 수준을 측정함으로써 비결핵 항산균에 의해 감염된 환자 중 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자의 치료 반응성을 예측할 수 있다.
본 발명의 다른 예시에서 상기 대사체는 페닐알라닌(Phenylalanine) 및 이소류신(Isoleucine) 중 적어도 하나를 포함할 수 있고, 상기 정보 제공 방법은 상기 대사체의 발현 수준을 측정함으로써 비결핵 항산균 중 특히 마이코박테리움 아비움(M. avium) 감염 환자의 치료 반응성을 예측할 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아스파르테이트(Aspartate), 알란토인(Allantoin) 및 하이포잔틴(Hypoxanthine) 중 적어도 하나를 포함할 수 있고, 상기 정보 제공 방법은 상기 대사체의 발현 수준을 측정함으로써 비결핵 항산균 중 특히 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성을 예측할 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아미노산(amino acid), 아미노산 유도체 및 하이포잔틴(Hypoxanthine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 상기 아미노산 및 그 유도체는 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 메티오닌(Methionine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 상기 정보 제공 방법은 상기 대사체의 발현 수준을 측정함으로써 비결핵 항산균 감염 남성 환자의 치료 반응성을 예측할 수 있다.
본 발명의 또 다른 예시에서 상기 대사체는 아미노산(amino acid) 및 N,N-디메틸글라이신(N,N-Dimethylglycine) 중 적어도 하나를 포함할 수 있고, 상기 아미노산은 페닐알라닌(Phenylalanine)을 포함할 수 있으며, 상기 정보 제공 방법은 상기 대사체의 발현 수준을 측정함으로써 비결핵 항산균 감염 여성 환자의 치료 반응성을 예측할 수 있다.
본 발명에서 상기 대사체의 발현 수준은 정량 장치를 이용하여 수행될 수 있다. 본 발명에서 상기 정량 장치는 핵자기 공명 분광 분석기 (NMR), 크로마토그래피 또는 질량분석기일 수 있으나, 이에 제한되지 않는다.
본 발명에서 이용되는 크로마토그래피는 고성능 액체 크로마토그래피(High Performance Liquid Chromatography, HPLC), 액체-고체 크로마토그래피(Liquid-Solid Chromatography, LSC), 종이크로마토그래피(Paper Chromatography, PC), 박층 크로마토그래피(Thin-Layer Chromatography, TLC), 기체-고체 크로마토그래피(Gas-Solid Chromatography, GSC), 액체-액체 크로마토그래피(Liquid-Liquid Chromatography, LLC), 포말 크로마토그래피(Foam Chromatography, FC), 유화 크로마토그래피(Emulsion Chromatography, EC), 기체-액체 크로마토그래피(Gas-Liquid Chromatography, GLC), 이온 크로마토그래피(Ion Chromatography, IC), 겔 여과 크로마토그래피(Gel Filtration Chromatograhy, GFC) 또는 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)를 포함하나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량용 크로마토그래피를 사용할 수 있다.
본 발명에서 상기 질량분석기는 특별한 제한없이 종래 공지된 질량 분석기를 이용할 수 있지만, 구체적으로 예를 들면, 푸리에 변환 질량분석기(FTMS, Fourier transform mass spectrometer), 말디토프 질량분석기(MALDI-TOF MS), Q-TOF MS 또는 LTQ-Orbitrap MS일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 대사체의 발현 수준은 비결핵 항산균 감염에 대한 치료 전, 치료 개시 시점 또는 치료 개시 후에 목적하는 개체로부터 분리된 생물학적 시료에 대하여 측정된 것일 수 있다.
본 발명의 일 예시에서 상기 대사체의 발현 수준은 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 목적하는 개체로부터 분리된 생물학적 시료에 대하여 측정된 것일 수 있다.
본 발명의 일 예시에서 상기 대사체의 발현 수준은 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에 대하여 측정된 것일 수 있다.
본 발명의 일 예시에서 상기 대사체의 발현 수준은 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 목적하는 개체로부터 분리된 생물학적 시료와, 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에 대하여 측정된 것일 수 있다.
본 발명의 일 예시에서 상기 발현 수준은 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 각 대사체의 발현 수준에 대한, 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 동일 대사체의 발현 수준의 비율일 수 있다.
본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 상기 대사체의 발현 수준이 대조군에 비하여 증가 또는 감소된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명에서 상기 "대조군"이란 비결핵 항산균에 의해 감염되지 않은 정상 대조군이거나, 비결핵 항산균에 의해 감염된 환자 모집단의 중앙값(또는 해당 환자의 평균값)이거나, 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)이거나, 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있다.
본 발명의 일 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료, 바람직하게는 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 분리된 생물학적 시료에서 측정된 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 발린(Valine), 이소류신(Isoleucine), 라이신(Lysine), 메티오닌(Methionine), 호모세린(Homoserine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine) 및 3-하이드록시부틸산(3-hydroxybutyric acid)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료, 바람직하게는 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 분리된 생물학적 시료에서 측정된 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 발린(Valine), 이소류신(Isoleucine), 라이신(Lysine), 메티오닌(Methionine), 호모세린(Homoserine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine) 및 3-하이드록시부틸산(3-hydroxybutyric acid)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료, 바람직하게는 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 분리된 생물학적 시료에서 측정된 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 메티오닌(Methionine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료, 바람직하게는 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 분리된 생물학적 시료에서 측정된 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 메티오닌(Methionine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline), 락테이트(Lactate), 말산(Malic acid), 세린(Serine) 및 아르기닌(Arginine)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 발현 수준은 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 각 대사체의 발현 수준에 대한, 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 동일 대사체의 발현 수준의 비율일 수 있고, 상기 대조군은 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 알란토인(Allantoin)의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 발현 수준은 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 각 대사체의 발현 수준에 대한, 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 동일 대사체의 발현 수준의 비율일 수 있고, 상기 대조군은 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline), 락테이트(Lactate), 말산(Malic acid), 세린(Serine 및 아르기닌(Arginine)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 발현 수준은 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 각 대사체의 발현 수준에 대한, 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 동일 대사체의 발현 수준의 비율일 수 있고, 상기 대조군은 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 알란토인(Allantoin)의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 발현 수준은 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 각 대사체의 발현 수준에 대한, 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 동일 대사체의 발현 수준의 비율일 수 있고, 상기 대조군은 비결핵 항산균에 의해 감염된 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline) 및 락테이트(Lactate)로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균에 의해 감염된 환자 중 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 비결핵 항산균 감염에 의한 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline) 및 락테이트(Lactate)로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균에 의해 감염된 환자 중 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 비결핵 항산균 감염에 의한 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine) 및 이소류신(Isoleucine) 중 적어도 하나의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 중 특히 마이코박테리움 아비움(M. avium) 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 마이코박테리움 아비움(M. avium) 감염 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine) 및 이소류신(Isoleucine) 중 적어도 하나의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 중 특히 마이코박테리움 아비움(M. avium) 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 마이코박테리움 아비움(M. avium) 감염 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 아스파르테이트(Aspartate) 및 하이포잔틴(Hypoxanthine) 중 적어도 하나의 발현 수준이 대조군에 비하여 감소되거나, 알란토인(Allantoin)의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 중 특히 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 아스파르테이트(Aspartate) 및 하이포잔틴(Hypoxanthine) 중 적어도 하나의 발현 수준이 대조군에 비하여 증가되거나, 알란토인(Allantoin)의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 중 특히 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 메티오닌(Methionine), 트레오닌(Threonine) 및 하이포잔틴(Hypoxanthine)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 감염 남성 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 남성 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 메티오닌(Methionine), 트레오닌(Threonine) 및 하이포잔틴(Hypoxanthine)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 감염 남성 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 남성 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine) 및 N,N-디메틸글라이신(N,N-Dimethylglycine) 중 적어도 하나의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 감염 여성 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 여성 환자 중 치료 반응성이 낮은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 예시로, 본 발명에서 상기 목적하는 개체의 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine) 및 N,N-디메틸글라이신(N,N-Dimethylglycine) 중 적어도 하나의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 감염 여성 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다. 여기서 상기 대조군은 비결핵 항산균에 의해 감염된 환자, 바람직하게는 여성 환자 중 치료 반응성이 높은 환자 모집단의 중앙값(또는 해당 환자의 평균값)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 대사체의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 대사체의 발현 수준에 비하여 증가 또는 감소된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 대사체의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 대사체의 발현 수준에 비하여 증가 또는 감소된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 일 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline), 락테이트(Lactate), 말산(Malic acid), 세린(Serine) 및 아르기닌(Arginine)으로 이루어진 군에서 선택된 1종 이상의 대사체의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 알란토인(Allantoin)의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 알란토인의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline), 락테이트(Lactate), 말산(Malic acid), 세린(Serine) 및 아르기닌(Arginine)으로 이루어진 군에서 선택된 1종 이상의 대사체의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 알란토인(Allantoin)의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 알란토인의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline) 및 락테이트(Lactate)로 이루어진 군에서 선택된 1종 이상의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 비결핵 항산균 감염에 의한 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline) 및 락테이트(Lactate)로 이루어진 군에서 선택된 1종 이상의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 비결핵 항산균 감염에 의한 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine) 및 이소류신(Isoleucine) 중 적어도 하나의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 마이코박테리움 아비움(M. avium) 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine) 및 이소류신(Isoleucine) 중 적어도 하나의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 마이코박테리움 아비움(M. avium) 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 아스파르테이트(Aspartate) 및 하이포잔틴(Hypoxanthine) 중 적어도 하나의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 알란토인(Allantoin)의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 아스파르테이트(Aspartate) 및 하이포잔틴(Hypoxanthine) 중 적어도 하나의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 알란토인(Allantoin)의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 메티오닌(Methionine), 트레오닌(Threonine) 및 하이포잔틴(Hypoxanthine)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 남성 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 메티오닌(Methionine), 트레오닌(Threonine) 및 하이포잔틴(Hypoxanthine)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 남성 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 N,N-디메틸글라이신(N,N-Dimethylglycine) 및 페닐알라닌(Phenylalanine) 중 적어도 하나의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 여성 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 예시로, 본 발명에서 상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월, 1 개월 내지 12 개월, 3 개월 내지 6 개월, 2 개월 내지 4 개월, 또는 1 개월 내지 3 개월의 시간 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 N,N-디메틸글라이신(N,N-Dimethylglycine) 및 페닐알라닌(Phenylalanine) 중 적어도 하나의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자, 바람직하게는 여성 환자의 치료 반응성이 낮은 것으로 예측하는 단계를 더 포함할 수 있다.
본 발명에서 상기 "치료 반응성이 높은"은 비결핵 항산균 감염의 치료를 위한 치료제에 대해 선호적으로 반응하는 것, 치료제에 대한 내성의 위험성이 없거나 낮은 것, 치료 후 비결핵 항산균의 균 음전이 발생하는 것, 또는 생존 기간이 증가하는 것 등을 의미할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 "치료 반응성이 낮은"은 비결핵 항산균 감염의 치료를 위한 치료제에 대해 비선호적으로 반응하는 것, 치료제에 대한 내성의 위험성이 있거나 높은 것, 치료하였음에도 균 음전이 발생하지 않고 균 양성이 지속되거나 균 음전 후 다시 균 양성이 발생하는 것, 또는 생존 기간이 짧아지는 것 등을 의미할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서는 목적하는 개체의 생물학적 시료에 대하여 혈액 대사체의 발현 수준을 측정함으로써 비결핵 항산균 감염 환자의 치료 반응성을 간단하고 용이하면서도 정확하게 예측하여 비결핵 항산균 감염 환자에 대한 가장 적절한 치료 방식을 선택할 수 있도록 한다.
도 1a 내지 1j는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 상기 항생제 치료 전 수득한 혈청 시료에서 각 대사체의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2a 내지 2h는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 상기 항생제 치료 시작 후 3개월이 경과한 시점에서 수득한 혈청 시료에서 각 대사체의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3a 내지 3g는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 상기 항생제 치료 시작 후 3개월이 경과한 시점에서 수득한 혈청 시료에서 각 대사체의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4a 내지 4n은 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 항생제 치료 전에 수득한 혈청 시료에서의 각 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 각 대사체 농도(T3)의 퍼센트 비율(%)의 중앙값을 비교한 그래프를 나타낸 것이다.
도 5a 내지 5n은 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 항생제 치료 전에 수득한 혈청 시료에서의 각 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 각 대사체 농도(T3)의 퍼센트 비율(%)의 중앙값을 비교한 그래프를 나타낸 것이다.
도 6a 내지 6j는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염에 의한 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 항생제 치료 전에 수득한 혈청 시료에서의 각 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 각 대사체 농도(T3)의 퍼센트 비율(%)의 중앙값을 비교한 그래프를 나타낸 것이다.
도 7a 내지 7c는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염에 의한 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 항생제 치료 전에 수득한 혈청 시료에서의 각 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 각 대사체 농도(T3)의 퍼센트 비율(%)의 중앙값을 비교한 그래프를 나타낸 것이다.
도 8a 및 8b는 본 발명의 일 실시예에서 마이코박테리움 아비움(M. avium) 감염 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 항생제 치료 전에 수득한 혈청 시료에서의 각 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 각 대사체 농도(T3)의 퍼센트 비율(%)의 중앙값을 비교한 그래프를 나타낸 것이다.
도 9a 내지 9c는 본 발명의 일 실시예에서 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 항생제 치료 전에 수득한 혈청 시료에서의 각 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 각 대사체 농도(T3)의 퍼센트 비율(%)의 중앙값을 비교한 그래프를 나타낸 것이다.
도 10a 내지 10e는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 남성 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 항생제 치료 전에 수득한 혈청 시료에서의 각 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 각 대사체 농도(T3)의 퍼센트 비율(%)의 중앙값을 비교한 그래프를 나타낸 것이다.
도 11a 및 11b는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 여성 환자 중 항생제 치료를 통해 균 음전에 성공한 환자와 실패한 환자에 있어서, 항생제 치료 전에 수득한 혈청 시료에서의 각 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 각 대사체 농도(T3)의 퍼센트 비율(%)의 중앙값을 비교한 그래프를 나타낸 것이다.
본 발명의 일 구현 예에 따르면, 목적하는 개체로부터 분리된 생물학적 시료에서 대사체의 발현 수준을 측정하는 단계를 포함하는 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법에 관한 것이다.
본 발명에서 상기 대사체는 혈액, 바람직하게는 혈청 기원의 액상 시료로부터 수득한 대사물질인 것이 바람직하고, 구체적인 예를 들면, 아미노산(amino acid), 아미노산 유도체, 알란토인(Allantoin), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 3-하이드록시부틸산(3-hydroxybutyric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 여기서, 상기 아미노산 및 그 유도체는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine), 호모세린(Homoserine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 또한, 본 발명에서 상기 2-하이드록시글루타릭산(2-hydroxyglutaric acid)은 D-형태(D-form)이고, 상기 락테이트(Lactate)는 S-형태(S-form)이며, 상기 말산(Malic acid) 및 아미노산은 L-형태(L-form)일 수 있다.
이하, 본 발명을 하기의 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
실시예
[실험예 1] 항생제 치료 전 MAC 감염 환자의 시료 수집
2012년 1월부터 2016년 8월까지 기간 동안 대략 6년간 서울 삼성병원에서 수집한 마이코박테리움 아비움 복합체(Mycobacterium avium complex) (avium : 80명, intracellulare : 65명, 총 145명) 감염 환자의 항생제 치료 시작 전의 혈청 샘플을 준비하였다. 145명의 환자의 구체적인 정보는 하기 표 1과 같다. 여기서, 감염 환자의 항생제 치료에는 클라스로마이신(clarithromycin) 또는 아지스로마이신(azithromycin)을 포함하는 마크롤리드 계열의 약물, 리팜피신(rifampicin) 또는 에탐부톨(ethambutol)을 사용하였다.
MAC 환자 정보
감염 균주 항생제 치료 후 균음전 성공 (=97) 항생제 치료 후 균음전 실패 (=48) 총(=145)
M. avium 63 17 80
M. intracellulare 34 31 65
Periods* x<=30** X<=90*** 90<x**** 48 145
n, 28 35 34
폐 질환 형태
기관지 확장증형(Nodular bronchiectatic; NB) 82 32 114
26 32 24
상엽 공동형(Upper lobe cavitary; UC) 15 16 31
n, 2 3 10
나이 / 성별 Male Female Male Female
<50 2 8 x 1
>50 11 16 7 6
>60 19 38 19 15
32 65 26 22 145
* periods: 항생제 치료에 따라, 균음전 성공에 소요된 기간을 의미함
** X<=30: 항생제 치료에 의해, 30일 이내에서 균음전 성공된 경우
*** X<=90: 항생제 치료에 의해, 90일 이내에 균음전 성공된 경우
**** 90<X: 항생제 치료에 의해, 90일 초과에서 균음전 성공된 경우
[실험예 2] 항생제 치료 3개월 경과 후 MAC 감염 환자의 시료 수집2012년 1월부터 2016년 8월까지 기간 동안 대략 6년간 서울 삼성병원에서 수집한 마이코박테리움 아비움 복합체(Mycobacterium avium complex) (avium : 80명, intracellulare : 65명, 총 145명) 감염 폐 질환 환자의 항생제 치료 시작 후 3 개월이 경과한 시점에서의 혈청 샘플을 준비하였다. 단, 상기 마이코박테리움 아비움 복합체 감염 폐 질환 환자 145명 중 97명은 항생제 치료로 균 음전에 성공하였고, 48명은 균 음전에 실패하였다. 여기서, 감염 환자의 항생제 치료에는 클라스로마이신(clarithromycin) 또는 아지스로마이신(azithromycin)을 포함하는 마크롤리드 계열의 약물, 리팜피신(rifampicin) 또는 에탐부톨(ethambutol)을 사용하였다.
[실험예 3] 시료에 대한 전처리
먼저, 상기 실험예 1에서 얻어진 혈청 시료 (50 μl)에 300 μl 클로로포름, 150 μl 메탄올 (chloroform-methanol, 2:1, v/v, 4 ℃)을 첨가하고 30초 동안 섞어 주었다. 여기에 150 μl 물을 첨가하고 30 초 동안 섞은 뒤 ICE에 넣어 10 분간 방치하여 추출하였다. 이후, 원심분리기기를 이용하여 10 분간 13,000 rpm, 4 ℃에서 원심분리한 뒤 상층액(250 μl) 분리해내어 Speed vacuum (full vacuum, no temp, 5hours)을 이용하여 건조하여 이하의 대사체 분석 전까지 -20 ℃에서 보관하였다. 질량 분석기 분석을 위해 건조된 시료를 250 μl 아세토니트릴-H2O(Acetonitrile-H2O)(75:25, v/v)에 재용해 후, 존재할 가능성이 있는 불순물 제거를 위하여 필터 튜브(Filter tube)(Costar 8169)를 이용하여 여과한 후 분석을 진행하였다. 기계 품질 관리(Machinery Quality Control; MQC)로, MS/MS 기기상태를 체크하기 위하여 혈청 샘플과 같은 전 처리방법으로 건강한 사람의 혈청을 기계 품질 관리(MQC)의 샘플로 사용하여 배치 당 4회 반복 분석하였다. 시료 품질 관리(Sample Quality Control; SQC)를 위하여 각 배치 안에서 시료 간의 차이를 비교하기 위해 시료 당 20 μl씩 모아 시료 품질 관리를 제작하여 배치 당 4회 반복 분석하였다.
[실험예 4] HPLC-Triple Quad-MS를 통한 대사체 분석
혈청에서 처리한 분석 시료 내의 극성 대사체를 분석하기 위하여 크로마토그래피-텐덤 질량분석기(HPLC-MS/MS)를 이용하여 분석을 진행하였다. 사용된 장비는 Agilent 1200 HPLC와 Sciex API4000 triple quadrupole MS를 이용하였다. 친수성 상호 작용을 위한 크로마토그래피 조건으로는 Luna PFPP(2.0 x 150 mm, 3μm, Phenomenex) 컬럼을 이용하여 20 ℃에서 용매에 따른 2가지 방법으로 기울기 용리를 이용하여 극성 대사체들을 분리하였다. 첫 번째 이동상으로는 (A) H2O (v/v) 및 (B) 아세토니트릴 (v/v)을 이용하였고, 두 번째 이동상으로는 (A) H2O (v/v, 0.1% formic acid) 및 (B) 아세토니트릴 (v/v)을 이용하였으며, 각각 조건의 기울기 용리는 총 분석 시간을 15분으로 하여 아래 표 2와 동일하게 수행하였다. 분무기 가스(Ion-Source Gas 1/2) 단위는 50/50 임의 단위(arbitrary unit)이었으며, 가스 커튼(Curtain Gas)의 단위는 25 임의 단위(arbitrary unit)이었다. 소스 온도(Source temperature)는 500 ℃이고, 이온 스프레이 부유 전압(Ion-spray Floating Voltage)은 5,5 kV(negative -4.5kV)이며, 매스 범위(Mass range)는 50 ~ 1000 m/z이었다. 시료 주입은 HTC_PAL system/CTC analytics auto-sampler를 이용하여 3 μl씩 주입하였으며, 텐덤 질량 분석기 조건 (예약 다중 반응 검지법; Scheduled Multiple Reaction Monitoring, sMRM)은 아래 표 2 내지 5와 같이 수행하였다. 단, 하기 표 3 내지 6에서 m/z는 질량 대 전하비(mass to charge ratio)를 의미하고, RT는 머무름 시간(Retention time)을 의미하며, CE는 충돌 에너지(Collision energy)를 의미하고, (+)는 양이온 모드를, (-)는 음이온 모드를 의미하며, sMRM 분석을 통해 얻어진 결과는 Sciex의 정량 분석 소프트웨어(Quantitative Analysis Software)를 통하여 로우 데이터(raw data)를 계산하였고, MQC data 평균값을 이용하여 상대 표준 편차(RSD<20)이하의 대사체를 산출하였다.
시간(분) 이동상 A(%) 이동상 B(%) 유속(mL/min)
0 100 0 0.35
8 73 27 0.35
9 15 85 0.35
10 100 0 0.35
15 100 0 0.35
물 방법 (+)(Water method (+)), 대사체 21종
대사체 종류(Compounds) m/z Product ion RT CE
타이로신(L-Tyrosine) 182 77 2.8 41
시스타티오닌(L-Cystathionine) 223 134 0.9 11
베타인(Betaine) 118 58 1.32 39
티아민(Thymine) 127 110 5.43 21
오르니틴(Ornithine) 133 70 0.95 25
구아닌(Guanine) 152 110 2.2 27
히스티딘(Histidine) 156 110 1.32 12
아세틸오르니틴(N-Acetylornithine) 175 115 1.14 14
글루코사민(Glucosamine) 180 162 1.4 10
우라실(Uracil) 113 70 1.85 23
디옥시우리딘(Deoxyuridine) 229 113 6.21 11
씨티딘(Cytidine) 244 112 2.44 12
디옥시아데노신(Deoxyadenosine) 252 136 8.5 20
디옥시이노신(Deoxyinosine) 253 137 6.58 12
아데노신(Adenosine) 268 136 7.72 27
디옥시구아노신(Deoxyguanosine) 268 152 6.84 15
이노신(Inosine) 269 137 6.24 14
구아노신(Guanosine) 284 152 6.55 17
잔토신(Xanthosine) 285 153 6.97 20
싸이클릭 AMP(Cyclic AMP) 328 287 0.86 9
SAH 385 136 0.46 19
물 방법 (-)(Water method (-)), 대사체 12종
대사체 종류(Compounds) m/z Product ion RT CE
글루코스(D-Glucose) 179 89 0.92 -12
하이드록시뷰티레이트(3-hydroxybutyric acid) 103 41 0.96 -32
타우린(Taurine) 124 80 0.9 -16
안트라닐레이트(Anthranilate) 136 92 3.68 -16
하이드록시벤조에이트(p-Hydroxybenzoate) 137 93 1.6 -21
시투를린(Citrulline) 174 131 1.21 -13
하이드록시페닐파이루베이트(p-Hydroxybenzoate) 179 107 0.97 -11
마이오이노시톨(myo-Inositol) 179 161 0.94 -15
티미딘(Thymidine) 241 125 7.02 -10
우리딘(Uridine) 243 111 4.22 -12
니코티네이트(Nicotinate) 122 78 1.54 -14
우레이트(Uric acid) 167 124 1.35 -22
포름산 방법 (+)(Formic acid method (+)), 대사체 32종
대사체 종류(Compounds) m/z Product ion RT CE
세린(L-Serine) 106 60 0.9 15
프롤린(L-Proline) 116 70 1.13 21
발린(L-Valine) 118 72 1.41 15
트레오닌(L-Threonine) 120 74 0.96 15
이소류신(L-isoLeucine) 132 86 1.93 15
류신(L-Leucine) 132 86 2.3 15
아스파라긴(L-Asparagine) 133 74 0.9 17
글루타민(L-Glutamine) 147 84 0.95 23
라이신(L-Lycine) 147 84 0.74 23
글루타메이트(L-Glutamate) 148 84 1 23
메티오닌(L-Methionine) 150 104 1.8 11
페닐알라닌(L-Phenylalanine) 166 120 6.41 17
알지닌(L-Arginine) 175 70 0.8 35
트립토판(L-Tryptophan) 205 188 8.4 13
다이메틸글라이신(N,N-Dimethylglycine) 104 58 1.21 27
콜린(Choline) 104 60 0.9 19
글라이신(Glycine) 76 30 1.06 16
폴레이트(Folate) 442 295 9.58 19
아데닌(Adenine) 136 119 1.75 24
호모시스테인(Homocysteine) 136 90 1.26 15
하이포잔틴(Hypoxanthine) 137 110 2.8 29
잔틴(Xanthine) 153 110 2.5 23
알란토인(Allantoin) 159 99 1.17 13
사이토신(Cytosine) 112 95 0.98 17
호모세린(Homoserine) 120 56 1.03 27
티아민(Thiamine) 265 122 0.96 17
시스테인(Cysteine) 122 59 1.24 27
CMP 324 112 1.68 16
UMP 325 97 3 49
AMP 348 136 1.99 21
IMP 349 137 5.7 17
스펄민(Spermine) 203 112 0.53 27
포름산 방법 (-)(Formic acid method (-)), 대사체 24종
대사체 종류(Compounds) m/z Product ion RT CE
아스팔테이트(L-Aspartate) 132 88 0.96 -17
락테이트((S)-Lactate)) 89 43 1.74 -18
포스포글리세라이트(3-Phosphoglycerate) 185 97 2.11 -22
석시네이트(Succinate) 117 73 3.88 -18
말레이트(L-Malic acid) 133 115 1.78 -16
시트레이트(Citrate) 191 111 3.58 -12
하이드로글루타레이트(D-2-Hydroyglutaric acid) 147 129 1.03 -14
GTP 522 424 1.6 -30
아세틸포스페이트(Acetylphosphate) 139 79 1.65 -22
칼바모일포스페이트(Carbamoyl-phosphate) 140 79 0.9 -22
글리세라이트(Glycerate) 105 75 1.24 -15
포스포에놀파이루베이트(Phosphoenolpyruvate) 167 79 2.3 -16
디하이드록시아세톤포스페이트(Dihydroxyacetone phosphate) 169 79 1.7 -38
글리세롤 3-포스페이트(Glycerol 3-Phosphate) 171 79 1.5 -22
시키메이트(Shikimate) 173 93 1.65 -16
알란토에이트(Allontoate) 175 132 1.05 -12
디옥시리보스 1-포스페이트(Deoxyrebose 1-Phosphate) 213 79 1.6 -33
리불로스 5-포스페이트(D-Ribulose 5-Phosphate) 229 79 1.3 -48
글루코스 6-포스페이트(Glucose 6-Phosphate) 259 79 1.73 -40
프룩토스 1,6-비스포스페이트(Fructose 1,6-Bisphosphate) 339 271 0.98 -18
dGMP 346 79 2.02 -20
PRPP 389 291 1.4 -18
이타코네이트(Itaconate) 129 85 6.4 -14
프룩토스 6-포스페이트(Fructose 6-Phosphate) 259 79 1.23 -54
[실험예 5] 항생제 치료 전 시료에 있어서 치료 반응성에 따른 혈청 시료 내 대사체 분석 결과
항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 환자의 혈청 시료로, 항생제 치료를 통한 균 음전 성공 여부의 대사체 농도를 비교하기 위해 다음의 통계 검정 2가지 방법으로 Metaboanalyst(data 통계사이트)와 SPSS 통계 프로그램을 이용하여 데이터를 산출하였고, 그 결과를 이용하여 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 환자 중 항생제 치료로 인해 균 음전에 성공한 자와 실패한 자를 구분 할 수 있는 질병 관련 대사체 총 10 종을 각각의 p-value와 배수 변화(Fold change) 값을 토대로 선정하여 그 결과를 하기 표 7 및 도 1a 내지 1j에 나타내었다. 단, 도 1a 내지 1j에서, Success는 항생제 치료로 균 음전에 성공한 환자 97명의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준을 나타낸 것이고, Fail은 항생제 치료로 균 음전에 실패한 환자 48명의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
대사체 종류(Compounds) 유의성 (p-value) Fold Change
(Fail/Success)
L-아르기닌(L-Arginine) 0.02 0.81
L-메티오닌(L-Methionine) 0.0327 0.79
L-이소류신(L-isoLeucine) 0.0146 0.73
N,N-디메틸글라이신(N,N-Dimethylglycine) 0.0683 0.83
L-발린(L-Valine) 0.0546 0.88
L-트레오닌(L-Threonine) 0.0712 0.84
L-라이신(L-Lysine) 0.0843 0.84
L-페닐알라닌(L-Phenylalanine) 0.0556 0.86
호모세린(Homoserine) 0.079 0.84
3-하이드록시부틸산(3-hydroxybutyric acid) 0.076 0.49
상기 표 7 및 도 1a 내지 1j에서 보는 바와 같이, 비결핵 항산균 감염자 중 항생제 치료로 균 음전에 성공한 환자의 항생제 치료 전 혈청 시료에 있어서, 혈액 대사체 중 L-아르기닌(L-Arginine), L-메티오닌(L-Methionine), L-이소류신(L-isoLeucine), N,N-디메틸글라이신(N,N-Dimethylglycine), L-발린(L-Valine), L-트레오닌(L-Threonine), L-라이신(L-Lysine), L-페닐알라닌(L-Phenylalanine), 호모세린(Homoserine) 및 3-하이드록시부틸산(3-hydroxybutyric acid)은 균 음전에 실패한 환자에 비하여 발현 수준이 유의적으로 증가한 것을 확인할 수 있었다.
[실험예 6] 항생제 치료 개시 후 시료에 있어서 치료 반응성에 따른 혈청 시료 내 대사체 분석 결과
항생제 치료 시작 후 3개월이 경과한 시점에서 수득한 마이코박테리움 아비움 복합체(MAC) 감염 환자의 혈청 시료로, 항생제 치료를 통한 균 음전 성공 여부의 대사체 농도를 비교하기 위해 다음의 통계 검정 2가지 방법으로 Metaboanalyst(data 통계사이트)와 SPSS 통계 프로그램을 이용하여 데이터를 산출하였고, 그 결과를 이용하여 항생제 치료 후의 마이코박테리움 아비움 복합체(MAC) 감염 환자 중 항생제 치료로 인해 균 음전에 성공한 자와 실패한 자를 구분 할 수 있는 질병 관련 대사체 총 15 종을 각각의 p-value와 배수 변화(Fold change) 값을 토대로 선정하여 그 결과를 하기 표 8 및 도 2a 내지 2h 및 도 3a 내지 3g에 나타내었다. 단, 도 2a 내지 2h 및 도 3a 내지 3g에서, Success는 항생제 치료로 균 음전에 성공한 환자 97명의 항생제 치료 시작 후 3 개월이 경과 시점에서 수득한 혈청 시료에서 각 대사체의 발현 수준을 나타낸 것이고, Fail은 항생제 치료로 균 음전에 실패한 환자 48명의 항생제 치료 시작 후 3 개월이 경과 시점에서 수득한 혈청 시료에서 각 대사체의 발현 수준을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
대사체 종류(Compounds) 유의성 (p-value) Fold Change
(Fail/Success)
L-발린(L-Valine) 0.0069 1.22
L-메티오닌(L-Methionine) 0.0309 1.24
L-아르기닌(L-Arginine) 0.0279 1.24
N,N-디메틸글라이신(N,N-Dimethylglycine) 0.0044 1.24
콜린(Choline) 0.0356 1.15
하이포잔틴(Hypoxanthine) 0.0009 1.39
글리세롤 3-phosphate(Glycerol 3-phosphate) 0.0421 1.44
L-이소류신(L-isoLeucine) 0.0103 1.6
L-류신(L-Leucine) 0.0081 1.46
L-글루타메이트(L-Glutamate) 0.0011 1.61
L-페닐알라닌(L-Phenylalanine) 0.0007 1.37
L-아스파르테이트(L-Aspartate) 0.0002 2.22
S-락테이트(S-Lactate) 0.0013 1.4
L-말산(L-Malic acid) 0.0068 2.13
D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid) 0.0003 2.01
상기 표 8과 도 2a 내지 2h 및 도 3a 내지 3g에서 보는 바와 같이, 비결핵 항산균 감염자 중 항생제 치료로 균 음전에 성공한 환자의 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에 있어서, 혈액 대사체 중 L-발린(L-Valine), L-메티오닌(L-Methionine), L-아르기닌(L-Arginine), N,N-디메틸글라이신(N,N-Dimethylglycine), 콜린(Choline), 하이포잔틴(Hypoxanthine), 글리세롤 3-phosphate(Glycerol 3-phosphate), L-이소류신(L-isoLeucine), 류신(Leucine), L-글루타메이트(L-Glutamate), L-페닐알라닌(L-Phenylalanine), L-아스파르테이트(L-Aspartate), S-락테이트(S-Lactate), L-말산(L-Malic acid) 및 D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid)은 균 음전에 실패한 환자에 비하여 발현 수준이 유의적으로 감소한 것을 확인할 수 있었다.
[실험예 7] 항생제 치료 전 및 치료 후 시료에 있어서 치료 반응성에 따른 혈청 시료 내 대사체 분석 결과
마이코박테리움 아비움 복합체(MAC) 감염 환자에 있어서 항생제 치료로 균 음전 성공 여부를 예측하기 위하여, 항생제 치료 전의 혈청 시료에서의 대사체 농도에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 비율을 다음의 통계 검정 2가지 방법으로 Metaboanalyst(data 통계사이트)와 SPSS 통계 프로그램을 이용하여 데이터로 산출하였고, 그 결과를 이용하여 균 음전 성공 여부를 예측할 수 있는 질병 관련 대사체 총 14 종을 각각의 p-value와 배수 변화(Fold change) 값을 토대로 선정하여 하기 표 9 내지 11과, 도 4a 내지 4n 및 도 5a 내지 5n에 나타내었다. 단, 표 9는 항생제 치료로 균 음전에 성공한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도(T3)의 퍼센트 비율(%)(즉, T3/T0 x 100)의 중앙값을 나타낸 것이고, 표 10은 항생제 치료로 균 음전에 실패한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)의 중앙값을 나타낸 것이다. 표 11은 각 대사체 별 상기 표 9의 중앙값에 대한 상기 표 10의 중앙값의 비율 값을 나타낸 것이다. 또한, 도 4a 내지 4n 및 도 5a 내지 5n에서, Success는 항생제 치료로 균 음전에 성공한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이고, Fail은 항생제 치료로 균 음전에 실패한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
L-페닐알라닌(L-Phenylalanine) 85.6
N,N-디메틸글라이신(N,N-Dimethylglycine) 86.9
하이포잔틴(Hypoxanthine) 84.7
L-글루타메이트(L-Glutamate) 68.6
D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid) 66.6
L-아스파르테이트(L-Aspartate) 58.2
L-발린(L-Valine) 87.9
L-류신(L-Leucine) 83.7
콜린(Choline) 95.3
L-이소류신(L-isoLeucine) 95.2
S-락테이트(S-Lactate) 79.7
L-말산(L-Malic acid) 79.7
L-세린(L-Serine) 86.7
L-아르기닌(L-Arginine) 75.6
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
L-페닐알라닌(L-Phenylalanine) 115.5
N,N-디메틸글라이신(N,N-Dimethylglycine) 127.5
하이포잔틴(Hypoxanthine) 107
L-글루타메이트(L-Glutamate) 168.5
D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid) 152
L-아스파르테이트(L-Aspartate) 139.5
L-발린(L-Valine) 122.5
L-류신(L-Leucine) 117.5
콜린(Choline) 129
L-이소류신(L-isoLeucine) 140.5
S-락테이트(S-Lactate) 124
L-말산(L-Malic acid) 215
L-세린(L-Serine) 93.0
L-아르기닌(L-Arginine) 120.6
대사체 종류(Compounds) 유의성 (p-value) Fold Change
(Fail/Success)
L-페닐알라닌(L-Phenylalanine) 0.0009 1.35
N,N-디메틸글라이신(N,N-Dimethylglycine) 0.005 1.47
하이포잔틴(Hypoxanthine) 0.011 1.26
L-글루타메이트(L-Glutamate) 0.011 2.46
D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid) 0.014 2.28
L-아스파르테이트(L-Aspartate) 0.020 2.40
L-발린(L-Valine) 0.020 1.39
L-류신(L-Leucine) 0.021 1.40
콜린(Choline) 0.032 1.35
L-이소류신(L-isoLeucine) 0.037 1.48
S-락테이트(S-Lactate) 0.0678 1.56
L-말산(L-Malic acid) 0.0793 2.70
L-세린(L-Serine) 0.4838 1.07
L-아르기닌(L-Arginine) 0.1484 1.60
상기 표 9에서 보는 바와 같이, 비결핵 항산균 감염자 중 항생제 치료로 균 음전에 성공한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), L-글루타메이트(L-Glutamate), D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid), L-아스파르테이트(L-Aspartate), L-발린(L-Valine), L-류신(L-Leucine), 콜린(Choline), L-이소류신(L-isoLeucine), S-락테이트(S-Lactate), L-말산(L-Malic acid), 세린(L-Serine) 및 L-아르기닌(L-Arginine)의 발현 수준이 유의적으로 감소한 것을 확인할 수 있었다.
상기 표 10에서 보는 바와 같이, 비결핵 항산균 감염자 중 항생제 치료로 균 음전에 실패한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), L-글루타메이트(L-Glutamate), D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid), L-아스파르테이트(L-Aspartate), L-발린(L-Valine), L-류신(L-Leucine), 콜린(Choline), L-이소류신(L-isoLeucine), S-락테이트(S-Lactate), L-말산(L-Malic acid) 및 L-아르기닌(L-Arginine)의 발현 수준이 유의적으로 증가하였고, 세린(L-Serine)은 발현 수준이 유의적으로 감소한 것을 확인할 수 있었다.
또한, 상기 표 11과, 도 4a 내지 4n 및 도 5a 내지 5n에서 보는 바와 같이, 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), L-글루타메이트(L-Glutamate), D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid), L-아스파르테이트(L-Aspartate), L-발린(L-Valine), L-류신(L-Leucine), 콜린(Choline), L-이소류신(L-isoLeucine), S-락테이트(S-Lactate), L-말산(L-Malic acid) L-세린(L-Serine) 및 L-아르기닌(L-Arginine)에 있어서, 항생제 치료 전 수득한 혈청 시료에서의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서의 발현 수준의 비율은, 비결핵 항산균 감염자 중 항생제 치료로 균 음전에 성공한 경우가 실패한 경우에 비하여 유의적으로 감소한 것을 확인할 수 있었다.
[실험예 8] 비결핵 항산균에 의해 감염된 환자 중 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자의 항생제 치료 전 및 치료 후 시료에 있어서 치료 반응성에 따른 혈청 시료 내 대사체 분석 결과
마이코박테리움 아비움 복합체(MAC) 감염 환자 중 특히 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자에 있어서 항생제 치료로 균 음전 성공 여부를 예측하기 위하여, 실험예 7과 동일한 분석을 수행하였고, 그 결과를 이용하여 균 음전 성공 여부를 예측할 수 있는 질병 관련 대사체 총 13 종을 각각의 p-value와 배수 변화(Fold change) 값을 토대로 선정하여 하기 표 12 내지 14와, 도 6a 내지 6j 및 도 7a 내지 7c에 나타내었다. 단, 표 12는 항생제 치료로 균 음전에 성공한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도(T3)의 퍼센트 비율(%)(즉, T3/T0 x 100)의 중앙값을 나타낸 것이고, 표 13은 항생제 치료로 균 음전에 실패한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)의 중앙값을 나타낸 것이다. 표 14는 각 대사체 별 상기 표 12의 중앙값에 대한 상기 표 13의 중앙값의 비율 값을 나타낸 것이다. 또한, 도 6a 내지 6j 및 도 7a 내지 7c에서, Success는 항생제 치료로 균 음전에 성공한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이고, Fail은 항생제 치료로 균 음전에 실패한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
L-페닐알라닌(L-Phenylalanine) 80.75
L-발린(L-Valine) 83.35
N,N-디메틸글라이신(N,N-Dimethylglycine) 81.55
L-류신(L-Leucine) 81.6
콜린(Choline) 93.55
D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid) 57.75
L-아스파르테이트(L-Aspartate) 46.7
하이포잔틴(Hypoxanthine) 78.85
L-이소류신(L-isoLeucine) 85.2
L-메티오닌(L-Methionine) 88.45
L-글루타메이트(L-Glutamate) 65.95
S-락테이트(S-Lactate) 75.1
L-트립토판(L-Tryptophan) 90.45
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
L-페닐알라닌(L-Phenylalanine) 112
L-발린(L-Valine) 109
N,N-디메틸글라이신(N,N-Dimethylglycine) 119.5
L-류신(L-Leucine) 108
콜린(Choline) 129
D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid) 129.5
L-아스파르테이트(L-Aspartate) 115
L-이소류신(L-isoLeucine) 134.5
L-메티오닌(L-Methionine) 104.5
S-락테이트(S-Lactate) 117.5
대사체 종류(Compounds) 유의성 (p-value) Fold Change
(Fail/Success)
L-페닐알라닌(L-Phenylalanine) 0.004 1.39
L-발린(L-Valine) 0.009 1.30
N,N-디메틸글라이신(N,N-Dimethylglycine) 0.009 1.47
L-류신(L-Leucine) 0.022 1.32
콜린(Choline) 0.025 1.37
D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid) 0.026 2.24
L-아스파르테이트(L-Aspartate) 0.027 2.46
하이포잔틴(Hypoxanthine) 0.029 1.59
L-이소류신(L-isoLeucine) 0.035 1.58
L-메티오닌(L-Methionine) 0.043 1.81
L-글루타메이트(L-Glutamate) 0.064 1.49
S-락테이트(S-Lactate) 0.074 1.56
L-트립토판(L-Tryptophan) 0.083 1.26
상기 표 12에서 보는 바와 같이, 비결핵 항산균 감염 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자 중 항생제 치료로 균 음전에 성공한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine), L-발린(L-Valine), N,N-디메틸글라이신(N,N-Dimethylglycine), L-류신(L-Leucine), 콜린(Choline), D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid), L-아스파르테이트(L-Aspartate), L-이소류신(L-isoLeucine), L-메티오닌(L-Methionine) 및 S-락테이트(S-Lactate)의 발현 수준이 유의적으로 감소한 것을 확인할 수 있었다.
상기 표 13에서 보는 바와 같이, 비결핵 항산균 감염 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자 중 항생제 치료로 균 음전에 실패한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine), L-발린(L-Valine), N,N-디메틸글라이신(N,N-Dimethylglycine), L-류신(L-Leucine), 콜린(Choline), D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid), L-아스파르테이트(L-Aspartate), L-이소류신(L-isoLeucine), L-메티오닌(L-Methionine) 및 S-락테이트(S-Lactate)의 발현 수준이 유의적으로 증가한 것을 확인할 수 있었다.
또한, 상기 표 14와, 도 6a 내지 6j 및 도 7a 내지 7c에서 보는 바와 같이, 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine), L-발린(L-Valine), N,N-디메틸글라이신(N,N-Dimethylglycine), L-류신(L-Leucine), 콜린(Choline), D-2-하이드록시글루타릭산(D-2-Hydroxyglutaric acid), L-아스파르테이트(L-Aspartate), 하이포잔틴(Hypoxanthine), L-이소류신(L-isoLeucine), L-메티오닌(L-Methionine), L-글루타메이트(L-Glutamate), S-락테이트(S-Lactate) 및 L-트립토판(L-Tryptophan)에 있어서, 항생제 치료 전 수득한 혈청 시료에서의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서의 발현 수준의 비율은, 비결핵 항산균 감염 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자 중 항생제 치료로 균 음전에 성공한 경우가 실패한 경우에 비하여 유의적으로 감소한 것을 확인할 수 있었다.
[실험예 9] 마이코박테리움 아비움(M. avium)에 의해 감염된 환자의 항생제 치료 전 및 치료 후 시료에 있어서 치료 반응성에 따른 혈청 시료 내 대사체 분석 결과
마이코박테리움 아비움(M. avium) 감염 환자에 있어서 항생제 치료로 균 음전 성공 여부를 예측하기 위하여, 실험예 7과 동일한 분석을 수행하였고, 그 결과를 이용하여 균 음전 성공 여부를 예측할 수 있는 질병 관련 대사체 총 2 종을 각각의 p-value와 배수 변화(Fold change) 값을 토대로 선정하여 하기 표 15 내지 17과, 도 8a 및 8b에 나타내었다. 단, 표 15는 항생제 치료로 균 음전에 성공한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도(T3)의 퍼센트 비율(%)(즉, T3/T0 x 100)의 중앙값을 나타낸 것이고, 표 16은 항생제 치료로 균 음전에 실패한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)의 중앙값을 나타낸 것이다. 표 17은 각 대사체 별 상기 표 15의 중앙값에 대한 상기 표 16의 중앙값의 비율 값을 나타낸 것이다. 또한, 도 8a 및 8b에서, Success는 항생제 치료로 균 음전에 성공한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이고, Fail은 항생제 치료로 균 음전에 실패한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
L-페닐알라닌(L-Phenylalanine) 71
L-이소류신(L-isoLeucine) 75.2
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
L-이소류신(L-isoLeucine) 120
대사체 종류(Compounds) 유의성 (p-value) Fold Change
(Fail/Success)
L-페닐알라닌(L-Phenylalanine) 0.035 1.56
L-이소류신(L-isoLeucine) 0.061 1.60
상기 표 15에서 보는 바와 같이, 마이코박테리움 아비움(M. avium) 감염 환자 중 항생제 치료로 균 음전에 성공한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine) 및 L-이소류신(L-isoLeucine)의 발현 수준이 유의적으로 감소한 것을 확인할 수 있었다.
상기 표 16에서 보는 바와 같이, 마이코박테리움 아비움(M. avium) 감염 환자 중 항생제 치료로 균 음전에 실패한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 L-이소류신(L-isoLeucine)의 발현 수준이 유의적으로 증가한 것을 확인할 수 있었다.
또한, 상기 표 17과, 도 8a 및 8b에서 보는 바와 같이, 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine) 및 L-이소류신(L-isoLeucine)에 있어서, 항생제 치료 전 수득한 혈청 시료에서의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서의 발현 수준의 비율은, 마이코박테리움 아비움(M. avium) 감염 환자 중 항생제 치료로 균 음전에 성공한 경우가 실패한 경우에 비하여 유의적으로 감소한 것을 확인할 수 있었다.
[실험예 10] 마이코박테리움 인트라셀루라레(M. intracellulare)에 의해 감염된 환자의 항생제 치료 전 및 치료 후 시료에 있어서 치료 반응성에 따른 혈청 시료 내 대사체 분석 결과
마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자에 있어서 항생제 치료로 균 음전 성공 여부를 예측하기 위하여, 실험예 7과 동일한 분석을 수행하였고, 그 결과를 이용하여 균 음전 성공 여부를 예측할 수 있는 질병 관련 대사체 총 3 종을 각각의 p-value와 배수 변화(Fold change) 값을 토대로 선정하여 하기 표 18 내지 19와, 도 9a 내지 9c에 나타내었다. 단, 표 18은 항생제 치료로 균 음전에 성공한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도(T3)의 퍼센트 비율(%)(즉, T3/T0 x 100)의 중앙값을 나타낸 것이고, 표 19는 항생제 치료로 균 음전에 실패한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)의 중앙값을 나타낸 것이다. 표 20은 각 대사체 별 상기 표 18의 중앙값에 대한 상기 표 19의 중앙값의 비율 값을 나타낸 것이다. 또한, 도 9a 내지 9c에서, Success는 항생제 치료로 균 음전에 성공한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이고, Fail은 항생제 치료로 균 음전에 실패한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
하이포잔틴(Hypoxanthine) 87.9
알란토인(Allantoin) 103.5
L-아스파르테이트(L-Aspartate) 80.5
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
하이포잔틴(Hypoxanthine) 119
알란토인(Allantoin) 96.3
L-아스파르테이트(L-Aspartate) 239
대사체 종류(Compounds) 유의성 (p-value) Fold Change
(Fail/Success)
하이포잔틴(Hypoxanthine) 0.041 1.49
알란토인(Allantoin) 0.075 0.89
L-아스파르테이트(L-Aspartate) 0.089 1.73
상기 표 18에서 보는 바와 같이, 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자 중 항생제 치료로 균 음전에 성공한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 하이포잔틴(Hypoxanthine) 및 L-아스파르테이트(L-Aspartate)의 발현 수준이 유의적으로 감소하였고, 알란토인(Allantoin)의 발현 수준은 유의적으로 증가한 것을 확인할 수 있었다.
상기 표 19에서 보는 바와 같이, 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자 중 항생제 치료로 균 음전에 실패한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 혈액 대사체 중 하이포잔틴(Hypoxanthine) 및 L-아스파르테이트(L-Aspartate)의 발현 수준이 유의적으로 증가하였고, 알란토인(Allantoin)의 발현 수준은 유의적으로 감소한 것을 확인할 수 있었다.
또한, 상기 표 20과, 도 9a 내지 9c에서 보는 바와 같이, 혈액 대사체 중 하이포잔틴(Hypoxanthine) 및 L-아스파르테이트(L-Aspartate)에 있어서, 항생제 치료 전 수득한 혈청 시료에서의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서의 발현 수준의 비율은, 마이코박테리움 인트라셀루라레(M. intracellulare) 감염 환자 중 항생제 치료로 균 음전에 성공한 경우가 실패한 경우에 비하여 유의적으로 감소하였고, 알란토인(Allantoin)은 유의적으로 증가한 것을 확인할 수 있었다.
[실험예 11] 비결핵 항산균에 의해 감염된 남성 환자의 항생제 치료 전 및 치료 후 시료에 있어서 치료 반응성에 따른 혈청 시료 내 대사체 분석 결과
마이코박테리움 아비움 복합체(MAC) 감염 남성 환자에 있어서, 항생제 치료로 균 음전 성공 여부를 예측하기 위하여, 실험예 7과 동일한 분석을 수행하였고, 그 결과를 이용하여 균 음전 성공 여부를 예측할 수 있는 질병 관련 대사체 총 5 종을 각각의 p-value와 배수 변화(Fold change) 값을 토대로 선정하여 하기 표 21 내지 22와, 도 10a 내지 10e에 나타내었다. 단, 표 21은 항생제 치료로 균 음전에 성공한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도(T3)의 퍼센트 비율(%)(즉, T3/T0 x 100)의 중앙값을 나타낸 것이고, 표 22는 항생제 치료로 균 음전에 실패한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)의 중앙값을 나타낸 것이다. 표 23은 각 대사체 별 상기 표 21의 중앙값에 대한 상기 표 22의 중앙값의 비율 값을 나타낸 것이다. 또한, 도 10a 내지 10e에서, Success는 항생제 치료로 균 음전에 성공한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이고, Fail은 항생제 치료로 균 음전에 실패한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
L-페닐알라닌(L-Phenylalanine) 84.8
하이포잔틴(Hypoxanthine) 87.6
L-글루타메이트(L-Glutamate) 85.6
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
L-메티오닌(L-Methionine) 163.5
L-페닐알라닌(L-Phenylalanine) 124.5
하이포잔틴(Hypoxanthine) 130
L-트레오닌(L-Threonine) 159
L-글루타메이트(L-Glutamate) 183
대사체 종류(Compounds) 유의성 (p-value) Fold Change
(Fail/Success)
L-메티오닌(L-Methionine) 0.021 1.70
L-페닐알라닌(L-Phenylalanine) 0.021 1.47
하이포잔틴(Hypoxanthine) 0.043 1.48
L-트레오닌(L-Threonine) 0.071 1.41
L-글루타메이트(L-Glutamate) 0.081 2.14
상기 표 21에서 보는 바와 같이, 마이코박테리움 아비움 복합체(MAC) 감염 남성 환자 중 항생제 치료로 균 음전에 성공한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 L-페닐알라닌(L-Phenylalanine), 하이포잔틴(Hypoxanthine), 및 L-글루타메이트(L-Glutamate)의 발현 수준이 유의적으로 감소한 것을 확인할 수 있었다.
상기 표 22에서 보는 바와 같이, 마이코박테리움 아비움(M. avium) 감염 남성 환자 중 항생제 치료로 균 음전에 실패한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 L-메티오닌(L-Methionine), L-페닐알라닌(L-Phenylalanine), 하이포잔틴(Hypoxanthine), L-트레오닌(L-Threonine) 및 L-글루타메이트(L-Glutamate)의 발현 수준이 유의적으로 증가한 것을 확인할 수 있었다.
또한, 상기 표 23과, 도 10a 내지 10e에서 보는 바와 같이, 혈액 대사체 중 L-메티오닌(L-Methionine), L-페닐알라닌(L-Phenylalanine), 하이포잔틴(Hypoxanthine), L-트레오닌(L-Threonine) 및 L-글루타메이트(L-Glutamate)에 있어서, 항생제 치료 전 수득한 혈청 시료에서의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서의 발현 수준의 비율은, 마이코박테리움 아비움(M. avium) 감염 남성 환자 중 항생제 치료로 균 음전에 성공한 경우가 실패한 경우에 비하여 유의적으로 감소한 것을 확인할 수 있었다.
[실험예 12] 비결핵 항산균에 의해 감염된 여성 환자의 항생제 치료 전 및 치료 후 시료에 있어서 치료 반응성에 따른 혈청 시료 내 대사체 분석 결과
마이코박테리움 아비움 복합체(MAC) 감염 여성 환자에 있어서, 항생제 치료로 균 음전 성공 여부를 예측하기 위하여, 실험예 7과 동일한 분석을 수행하였고, 그 결과를 이용하여 균 음전 성공 여부를 예측할 수 있는 질병 관련 대사체 총 2종을 각각의 p-value와 배수 변화(Fold change) 값을 토대로 선정하여 하기 표 24 내지 25와, 도 11a 및 11b에 나타내었다. 단, 표 24는 항생제 치료로 균 음전에 성공한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도(T0)에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도(T3)의 퍼센트 비율(%)(즉, T3/T0 x 100)의 중앙값을 나타낸 것이고, 표 25는 항생제 치료로 균 음전에 실패한 환자군에 있어서, 각 대사체 별로 항생제 치료 전의 혈청 시료에서의 대사체 농도에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)의 중앙값을 나타낸 것이다. 표 26은 각 대사체 별 상기 표 24의 중앙값에 대한 상기 표 25의 중앙값의 비율 값을 나타낸 것이다. 또한, 도 11a 및 11b에서, Success는 항생제 치료로 균 음전에 성공한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이고, Fail은 항생제 치료로 균 음전에 실패한 환자의 항생제 치료 전 혈청 샘플에서 각 대사체의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 시료에서의 대사체 농도의 퍼센트 비율(%)을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
N,N-디메틸글라이신(N,N-Dimethylglycine) 87.7
L-페닐알라닌(L-Phenylalanine) 86
대사체 종류(Compounds) Fold Change
(T3/T0 X 100)
N,N-디메틸글라이신(N,N-Dimethylglycine) 113.5
L-페닐알라닌(L-Phenylalanine) 108
대사체 종류(Compounds) 유의성 (p-value) Fold Change
(Fail/Success)
N,N-디메틸글라이신(N,N-Dimethylglycine) 0.04 1.29
L-페닐알라닌(L-Phenylalanine) 0.06 1.26
상기 표 24에서 보는 바와 같이, 마이코박테리움 아비움 복합체(MAC) 감염 여성 환자 중 항생제 치료로 균 음전에 성공한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 N,N-디메틸글라이신(N,N-Dimethylglycine) 및 L-페닐알라닌(L-Phenylalanine)의 발현 수준이 유의적으로 감소한 것을 확인할 수 있었다.
상기 표 25에서 보는 바와 같이, 마이코박테리움 아비움(M. avium) 감염 여성 환자 중 항생제 치료로 균 음전에 실패한 경우, 항생제 치료 전 혈청 시료 대비 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서 혈액 대사체 중 N,N-디메틸글라이신(N,N-Dimethylglycine) 및 L-페닐알라닌(L-Phenylalanine)의 발현 수준이 유의적으로 증가한 것을 확인할 수 있었다.
또한, 상기 표 26과, 도 11a 및 11b에서 보는 바와 같이, 혈액 대사체 중 N,N-디메틸글라이신(N,N-Dimethylglycine) 및 L-페닐알라닌(L-Phenylalanine)에 있어서, 항생제 치료 전 수득한 혈청 시료에서의 발현 수준에 대한 항생제 치료 시작 후 3 개월이 경과한 시점에서 수득한 혈청 시료에서의 발현 수준의 비율은, 마이코박테리움 아비움(M. avium) 감염 여성 환자 중 항생제 치료로 균 음전에 성공한 경우가 실패한 경우에 비하여 유의적으로 감소한 것을 확인할 수 있었다.
본 발명은 비결핵 항산균에 의한 감염 후 치료 반응성을 예측하기 위한 바이오마커와, 상기 예측을 위한 키트 또는 예측 방법에 관한 것이다.

Claims (30)

  1. 아미노산(amino acid), 아미노산 유도체, 알란토인(Allantoin), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 3-하이드록시부틸산(3-hydroxybutyric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)로 이루어진 군에서 선택된 1종 이상의 대사체를 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 바이오마커 조성물.
  2. 제1항에 있어서,
    상기 아미노산 및 그 유도체는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine), 호모세린(Homoserine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 바이오마커 조성물.
  3. 제1항에 있어서,
    상기 아미노산은 L-형태(L-form)인, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 바이오마커 조성물.
  4. 제1항에 있어서,
    상기 대사체는 목적하는 개체의 전혈(whole blood), 혈장(plasma) 또는 혈청(serum) 유래인 것인, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 바이오마커 조성물.
  5. 제1항에 있어서,
    상기 비결핵 항산균은 마이코박테리움 아비움(M. avium), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 플라베센스(M. flavescence), 마이코박테리움 아프리카눔(M. africanum), 마이코박테리움 보비스(M. bovis), 마이코박테리움 첼로네(M. chelonae), 마이코박테리움 셀라툼(M. celatum), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 고르도네(M. gordonae), 마이코박테리움 가스트리(M. gastri), 마이코박테리움 헤모필룸(M. haemophilum), 마이코박테리움 인트라셀루라레(M. intracellulare), 마이코박테리움 칸사시이(M. kansasii), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 스줄가이(M. szulgai), 마이코박테리움 테레(M. terrae), 마이코박테리움 스크로풀라세움(M. scrofulaceum), 마이코박테리움 울서란스(M. ulcerans), 마이코박테리움 시미애(M. simiae) 및 마이코박테리움 제노피(M. xenopi)로 구성된 군으로부터 선택되는, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 바이오마커 조성물.
  6. 제1항에 있어서,
    상기 바이오마커 조성물은 항생제에 대한 치료 반응성을 예측하기 위한 것인, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 바이오마커 조성물.
  7. 아미노산(amino acid), 아미노산 유도체, 알란토인(Allantoin), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 3-하이드록시부틸산(3-hydroxybutyric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)로 이루어진 군에서 선택된 1종 이상의 대사체의 농도를 측정하는 정량 장치를 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 키트.
  8. 제7항에 있어서,
    상기 아미노산 및 그 유도체는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine), 호모세린(Homoserine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 키트.
  9. 제7항에 있어서,
    상기 아미노산은 L-형태(L-form)인, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 키트.
  10. 제7항에 있어서,
    상기 대사체는 목적하는 개체의 전혈(whole blood), 혈장(plasma) 또는 혈청(serum) 유래인 것인, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 키트.
  11. 제7항에 있어서,
    상기 정량 장치는 핵자기 공명 분광 분석기 (NMR), 크로마토그래피 또는 질량분석기인, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 키트.
  12. 제7항에 있어서,
    상기 비결핵 항산균은 마이코박테리움 아비움(M. avium), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 플라베센스(M. flavescence), 마이코박테리움 아프리카눔(M. africanum), 마이코박테리움 보비스(M. bovis), 마이코박테리움 첼로네(M. chelonae), 마이코박테리움 셀라툼(M. celatum), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 고르도네(M. gordonae), 마이코박테리움 가스트리(M. gastri), 마이코박테리움 헤모필룸(M. haemophilum), 마이코박테리움 인트라셀루라레(M. intracellulare), 마이코박테리움 칸사시이(M. kansasii), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 스줄가이(M. szulgai), 마이코박테리움 테레(M. terrae), 마이코박테리움 스크로풀라세움(M. scrofulaceum), 마이코박테리움 울서란스(M. ulcerans), 마이코박테리움 시미애(M. simiae) 및 마이코박테리움 제노피(M. xenopi)로 구성된 군으로부터 선택되는, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 키트.
  13. 제7항에 있어서,
    상기 키트는 항생제에 대한 치료 반응성을 예측하기 위한 것인, 비결핵 항산균의 감염 환자의 치료 반응성 예측용 키트.
  14. 아미노산(amino acid), 아미노산 유도체, 알란토인(Allantoin), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 3-하이드록시부틸산(3-hydroxybutyric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)로 이루어진 군에서 선택된 1종 이상의 대사체의 발현 수준을 측정하는 단계를 포함하는 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  15. 제14항에 있어서,
    상기 생물학적 시료는 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions), 세포(cell), 세포 추출물(cell extract) 및 뇌척수액(cerebrospinal fluid) 등으로 이루어진 군에서 선택된 1종 이상인, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  16. 제14항에 있어서,
    상기 대사체의 발현 수준을 측정하기에 앞서, 상기 생물학적 시료를 여과, 증류, 추출, 분리, 농축, 방해 성분의 불활성화 또는 시약의 첨가의 전처리하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  17. 제14항에 있어서,
    상기 아미노산 및 그 유도체는 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 라이신(Lysine), 트립토판(Tryptophan), 메티오닌(Methionine), 세린(Serine), 호모세린(Homoserine) 및 트레오닌(Threonine)으로 이루어진 군에서 선택된 1종 이상을 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  18. 제14항에 있어서,
    상기 아미노산은 L-형태(L-form)인, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  19. 제14항에 있어서,
    상기 대사체의 발현 수준을 측정하는 단계는 핵자기 공명 분광 분석기 (NMR), 크로마토그래피 또는 질량분석기인 정량 장치를 이용하여 수행되는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  20. 제17항에 있어서,
    상기 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline), 락테이트(Lactate), 말산(Malic acid), 세린(Serine) 및 아르기닌(Arginine)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  21. 제17항에 있어서,
    상기 생물학적 시료에 대하여 측정된 알란토인(Allantoin)의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  22. 제17항에 있어서,
    상기 생물학적 시료는 비결핵 항산균 감염에 대한 치료 전 또는 치료 개시 시점에서 분리된 것이고,
    상기 생물학적 시료에 대하여 측정된 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 발린(Valine), 이소류신(Isoleucine), 라이신(Lysine), 메티오닌(Methionine), 호모세린(Homoserine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine) 및 3-하이드록시부틸산(3-hydroxybutyric acid)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 증가된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  23. 제17항에 있어서,
    상기 생물학적 시료는 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월의 시간 경과 후 분리된 것이고,
    상기 생물학적 시료에 대하여 측정된 아르기닌(Arginine), 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 메티오닌(Methionine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 글리세롤 3-포스페이트(Glycerol 3-phosphate), 콜린(Choline), 락테이트(Lactate) 및 말산(Malic acid)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 비결핵 항산균 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  24. 제17항에 있어서,
    상기 비결핵 항산균 감염 환자는 비결핵 항산균에 의해 감염된 기관지 확장증형 (nodular bronchiectatic form) 폐 질환자이고,
    상기 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline) 및 락테이트(Lactate)로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  25. 제17항에 있어서,
    상기 비결핵 항산균은 마이코박테리움 아비움(M. avium)이고,
    상기 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine) 및 이소류신(Isoleucine) 중 적어도 하나의 발현 수준이 대조군에 비하여 감소된 경우, 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  26. 제17항에 있어서,
    상기 비결핵 항산균은 마이코박테리움 인트라셀루라레(M. intracellulare)이고,
    상기 생물학적 시료에 대하여 측정된 아스파르테이트(Aspartate) 및 하이포잔틴(Hypoxanthine) 중 적어도 하나의 발현 수준이 대조군에 비하여 감소되거나, 알란토인(Allantoin)의 발현 수준이 대조군에 비하여 증가된 경우, 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  27. 제17항에 있어서,
    상기 비결핵 항산균의 감염 환자의 성별은 남성이고,
    상기 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 메티오닌(Methionine), 트레오닌(Threonine) 및 하이포잔틴(Hypoxanthine)으로 이루어진 군에서 선택된 1종 이상의 발현 수준이 대조군에 비하여 감소된 경우, 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  28. 제17항에 있어서,
    상기 비결핵 항산균의 감염 환자의 성별은 여성이고,
    상기 생물학적 시료에 대하여 측정된 페닐알라닌(Phenylalanine) 및 N,N-디메틸글라이신(N,N-Dimethylglycine) 중 적어도 하나의 발현 수준이 대조군에 비하여 감소된 경우, 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  29. 제17항에 있어서,
    상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 페닐알라닌(Phenylalanine), 글루타메이트(Glutamate), 아스파르테이트(Aspartate), 발린(Valine), 류신(Leucine), 이소류신(Isoleucine), 트립토판(Tryptophan), 메티오닌(Methionine), 트레오닌(Threonine), N,N-디메틸글라이신(N,N-Dimethylglycine), 하이포잔틴(Hypoxanthine), 2-하이드록시글루타릭산(2-hydroxyglutaric acid), 콜린(Choline), 락테이트(Lactate), 말산(Malic acid), 세린(Serine) 및 아르기닌(Arginine)으로 이루어진 군에서 선택된 1종 이상의 대사체의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 대사체의 발현 수준에 비하여 감소된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
  30. 제17항에 있어서,
    상기 비결핵 항산균 감염에 대한 치료 개시 후 10 일 내지 24 개월 경과 후 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 알란토인(Allantoin)의 발현 수준이, 상기 비결핵 항산균 감염에 대한 치료 개시 전 또는 치료 개시 시점에서 상기 목적하는 개체로부터 분리된 생물학적 시료에서 측정된 상기 알란토인의 발현 수준에 비하여 증가된 경우, 비결핵 항산균에 의한 감염 환자의 치료 반응성이 높은 것으로 예측하는 단계를 더 포함하는, 비결핵 항산균의 감염 환자의 치료 반응성을 예측하기 위한 정보 제공 방법.
PCT/KR2020/016827 2019-11-25 2020-11-25 비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커 WO2021107598A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0151915 2019-11-25
KR20190151915 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021107598A1 true WO2021107598A1 (ko) 2021-06-03

Family

ID=76130642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016827 WO2021107598A1 (ko) 2019-11-25 2020-11-25 비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커

Country Status (2)

Country Link
KR (1) KR102400827B1 (ko)
WO (1) WO2021107598A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615869B1 (ko) * 2021-11-05 2023-12-21 연세대학교 산학협력단 마이코박테리움 아비움 복합체 폐질환 환자의 정보에 따른 치료 반응 예측용 지질대사체 마커
WO2023080664A1 (ko) * 2021-11-05 2023-05-11 연세대학교 산학협력단 마이코박테리움 아비움 복합체 감염환자의 치료 반응성 예측용 대사체 마커
KR102596057B1 (ko) * 2021-11-05 2023-11-01 연세대학교 산학협력단 마이코박테리움 아비움 복합체 감염질환 진단용 지질대사체 마커
WO2023080663A1 (ko) * 2021-11-05 2023-05-11 연세대학교 산학협력단 마이코박테리움 아비움 복합체 감염질환 진단 또는 중증도 예측용 대사체 마커
KR102619913B1 (ko) * 2021-11-05 2024-01-04 연세대학교 산학협력단 마이코박테리움 아비움 복합체 감염환자의 치료 반응성 예측용 지질대사체 마커
KR102613631B1 (ko) * 2021-11-05 2023-12-15 연세대학교 산학협력단 마이코박테리움 아비움 복합체 감염증의 중증도 예측용 대사체 마커
KR20240023775A (ko) * 2022-08-16 2024-02-23 연세대학교 산학협력단 폐결핵 환자의 치료에 따라 변화된 극성대사체 마커

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748296B1 (ko) * 2014-09-04 2017-06-19 연세대학교 산학협력단 마이코박테리움 압세수스 복합체 감염 폐질환 진단용 바이오마커 조성물
KR101943487B1 (ko) * 2017-08-11 2019-01-29 사회복지법인 삼성생명공익재단 감염성 폐질환 진단 마커 및 이의 용도

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377070B1 (ko) * 2012-02-20 2014-03-20 엠앤디 (주) 결핵균 및 비결핵 항산균의 구별방법 및 조성물
KR101865898B1 (ko) * 2016-08-25 2018-06-08 솔젠트 (주) 결핵균 및 비결핵균 동시 검출용 진단키트

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748296B1 (ko) * 2014-09-04 2017-06-19 연세대학교 산학협력단 마이코박테리움 압세수스 복합체 감염 폐질환 진단용 바이오마커 조성물
KR101943487B1 (ko) * 2017-08-11 2019-01-29 사회복지법인 삼성생명공익재단 감염성 폐질환 진단 마커 및 이의 용도

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Research Report", 15 June 2012, SAMSUNG SEOUL HOSPITAL, KR, article KOH, WON-JUNG: "Identification of immunological biomarkers from patients for the efficient therapeutics in nontuberculous mycobacterial lung diseases.", pages: 1 - 32, XP009528317 *
BAMBA YUUKI, MORO HIROSHI, AOKI NOBUMASA, KOIZUMI TAKESHI, OHSHIMA YASUYOSHI, WATANABE SATOSHI, SAKAGAMI TAKURO, KOYA TOSHIYUKI, T: "Multiplex cytokine analysis in Mycobacterium avium complex lung disease: relationship between CXCL10 and poor prognostic factors", BMC INFECTIOUS DISEASES, vol. 19, no. 1, 1 December 2019 (2019-12-01), XP055815034, DOI: 10.1186/s12879-019-3888-4 *
DE BUCK JEROEN, SHAYKHUTDINOV RUSTEM, BARKEMA HERMAN W., VOGEL HANS J.: "Metabolomic Profiling in Cattle Experimentally Infected with Mycobacterium avium subsp. paratuberculosis", PLOS ONE, vol. 9, no. 11, pages e111872, XP055815032, DOI: 10.1371/journal.pone.0111872 *

Also Published As

Publication number Publication date
KR102400827B1 (ko) 2022-05-24
KR20210064097A (ko) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2021107598A1 (ko) 비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커
WO2021107548A1 (ko) 비결핵 항산균에 의한 감염 또는 감염 질환의 진단용 바이오마커
WO2021107551A1 (ko) 비결핵 항산균에 의한 감염 질환을 구별하기 위한 바이오마커
Sao Emani et al. Ergothioneine is a secreted antioxidant in Mycobacterium smegmatis
WO2021107550A1 (ko) 비결핵 항산균에 의한 감염 후 균 양성의 지속 여부 예측용 바이오마커
Havis et al. A universal stress protein that controls bacterial stress survival in Micrococcus luteus
Zhao et al. Bacterial RF3 senses chaperone function in co-translational folding
WO2023080663A1 (ko) 마이코박테리움 아비움 복합체 감염질환 진단 또는 중증도 예측용 대사체 마커
Ye et al. Improved sample preparation for untargeted metabolomics profiling of Escherichia coli
Jia et al. Rv1258c acts as a drug efflux pump and growth controlling factor in Mycobacterium tuberculosis
WO2021107549A1 (ko) 비결핵 항산균에 의한 감염 후 자발적 균 음전 예측용 바이오마커
WO2023080664A1 (ko) 마이코박테리움 아비움 복합체 감염환자의 치료 반응성 예측용 대사체 마커
KR102613631B1 (ko) 마이코박테리움 아비움 복합체 감염증의 중증도 예측용 대사체 마커
WO2024191267A1 (ko) 마이코박테리움 아비움 복합체 감염질환 진단용 대사체 마커
Kocak et al. Comparative proteomic analysis of Escherichia coli under ofloxacin stress
WO2024039142A1 (ko) 폐결핵 환자의 중증도 감별 진단 대사체 마커
Tan et al. Comparative lysine acetylome analysis of Y. pestis YfiQ/CobB mutants reveals that acetylation of SlyA Lys73 significantly promotes biofilm formation of Y. pestis
Chatterjee et al. ATP synthase, an essential enzyme in growth and multiplication is modulated by protein tyrosine phosphatase in Mycobacterium tuberculosis H37Ra
WO2024039143A1 (ko) 폐결핵 환자의 치료에 따라 변화된 극성대사체 마커
KR102619913B1 (ko) 마이코박테리움 아비움 복합체 감염환자의 치료 반응성 예측용 지질대사체 마커
KR102596057B1 (ko) 마이코박테리움 아비움 복합체 감염질환 진단용 지질대사체 마커
WO2011149280A2 (ko) 이중 실시간 중합효소연쇄반응법과 융해곡선분석을 이용하는 결핵균과 항산성비결핵균의 검출 방법
WO2020171650A1 (ko) 소변 시료 내 서로 다른 그룹 간의 대사체 차별성을 분석하는 방법
WO2023014009A1 (ko) 세포 용해 및 핵산 추출용 조성물, 이를 이용한 핵산 추출 방법 및 이를 이용한 분자진단방법
WO2019083220A1 (ko) 소변 대사체 분석을 이용한 베체트병의 진단방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893521

Country of ref document: EP

Kind code of ref document: A1