WO2021107360A3 - 유사도를 판단하는 전자 장치 및 그 제어 방법 - Google Patents

유사도를 판단하는 전자 장치 및 그 제어 방법 Download PDF

Info

Publication number
WO2021107360A3
WO2021107360A3 PCT/KR2020/012648 KR2020012648W WO2021107360A3 WO 2021107360 A3 WO2021107360 A3 WO 2021107360A3 KR 2020012648 W KR2020012648 W KR 2020012648W WO 2021107360 A3 WO2021107360 A3 WO 2021107360A3
Authority
WO
WIPO (PCT)
Prior art keywords
weight
graphs
control method
respective nodes
electronic device
Prior art date
Application number
PCT/KR2020/012648
Other languages
English (en)
French (fr)
Other versions
WO2021107360A2 (ko
Inventor
이기용
양유정
서민지
Original Assignee
숙명여자대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190157373A external-priority patent/KR102337678B1/ko
Priority claimed from KR1020190157364A external-priority patent/KR102279210B1/ko
Application filed by 숙명여자대학교산학협력단 filed Critical 숙명여자대학교산학협력단
Publication of WO2021107360A2 publication Critical patent/WO2021107360A2/ko
Publication of WO2021107360A3 publication Critical patent/WO2021107360A3/ko

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

본 발명에 따른 일 실시예는, 가중치 그래프들로부터 각각의 가중치 그래프의 각각의 노드에 대한 노드-가중치 시퀀스들을 획득하는 과정; 상기 각각의 노드에 대한 노드-가중치 시퀀스들을 학습된 오토인코더 모델의 입력으로 하여 상기 각각의 노드에 대한 임베딩 벡터들을 획득하는 과정; 상기 각각의 노드에 대한 임베딩 벡터들을 이용하여 상기 각각의 가중치 그래프의 최종 임베딩 벡터들을 획득하는 과정; 및 상기 각각의 가중치 그래프를 분류함으로서 상기 가중치 그래프들의 유사 여부를 판단하는 과정을 포함하는, 그래프 유사 여부를 분석하기 위하여 기계학습을 이용한 제어 방법을 제공할 수 있다.
PCT/KR2020/012648 2019-11-29 2020-09-18 유사도를 판단하는 전자 장치 및 그 제어 방법 WO2021107360A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190157373A KR102337678B1 (ko) 2019-11-29 2019-11-29 그래프 유사 여부를 분석하기 위하여 기계학습을 이용한 전자 장치 및 그 제어 방법
KR10-2019-0157373 2019-11-29
KR10-2019-0157364 2019-11-29
KR1020190157364A KR102279210B1 (ko) 2019-11-29 2019-11-29 항목 분류 체계를 고려한 시퀀스 간 유사도를 판단하는 전자 장치 및 그 제어 방법

Publications (2)

Publication Number Publication Date
WO2021107360A2 WO2021107360A2 (ko) 2021-06-03
WO2021107360A3 true WO2021107360A3 (ko) 2021-07-22

Family

ID=76129736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012648 WO2021107360A2 (ko) 2019-11-29 2020-09-18 유사도를 판단하는 전자 장치 및 그 제어 방법

Country Status (1)

Country Link
WO (1) WO2021107360A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611451B1 (en) * 2020-06-05 2023-03-21 Google Llc Movement path detection for anomalies and patterns from sensors in a home or other environment
CN113949646B (zh) * 2021-10-15 2023-06-13 安徽大学 一种基于深度学习的Web服务QoS预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058426A1 (zh) * 2016-09-29 2018-04-05 清华大学 硬件神经网络转换方法、计算装置、编译方法和神经网络软硬件协作系统
KR20190109670A (ko) * 2018-03-09 2019-09-26 강원대학교산학협력단 신경망을 이용한 사용자 의도분석 시스템 및 방법
EP3564889A1 (en) * 2018-05-04 2019-11-06 The Boston Consulting Group, Inc. Systems and methods for learning and predicting events

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058426A1 (zh) * 2016-09-29 2018-04-05 清华大学 硬件神经网络转换方法、计算装置、编译方法和神经网络软硬件协作系统
KR20190109670A (ko) * 2018-03-09 2019-09-26 강원대학교산학협력단 신경망을 이용한 사용자 의도분석 시스템 및 방법
EP3564889A1 (en) * 2018-05-04 2019-11-06 The Boston Consulting Group, Inc. Systems and methods for learning and predicting events

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Master's thesis", 1 February 2020, SOOKMYUNG WOMEN'S UNIVERSITY GRADUATE SCHOOL : COMPUTER SCIENCE, Korea, article SEO, MIN-JI: "An LSTM Autoencoder-based Embedding Technique for Weighted Graphs", pages: 1 - 80, XP009529262 *
SEO, MINJI; LEE, KI YONG: "A Weighted Graph Embedding Technique Based on LSTM Autoencoders", PROCEEDINGS OF KOREAN SOFTWARE CONFERENCE 2019 OF THE KOREAN INSTITUTE OF INFORMATION SCIENTISTS AND ENGINEERS, 1 December 2019 (2019-12-01), Korea, pages 464 - 466, XP009529242 *
SHIMA KHOSHRAFTAR; SEDIGHEH MAHDAVI; AIJUN AN; YONGGANG HU; JUNFENG LIU: "Dynamic Graph Embedding via LSTM History Tracking", ARXIV.ORG, 5 November 2019 (2019-11-05), pages 1 - 9, XP081525405 *
YU JIN , JOSEPH F. JAJA: "Learning Graph-Level Representations with Gated Recurrent Neural Networks", ARXIV.ORG, 20 May 2018 (2018-05-20), pages 1 - 10, XP080880199 *

Also Published As

Publication number Publication date
WO2021107360A2 (ko) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2019050247A3 (ko) 클래스 인식을 위한 뉴럴 네트워크 학습 방법 및 디바이스
WO2018101722A3 (ko) 머신 러닝 기반 반도체 제조 수율 예측 시스템 및 방법
WO2017083399A3 (en) Training neural networks represented as computational graphs
MX2017013621A (es) Metodo y entorno de ejecucion para ejecutar instrucciones de programa de forma segura.
IN2015CH04673A (ko)
PH12021551336A1 (en) Automated generation of machine learning models
WO2018208360A3 (en) DESIGNING A MATERIAL FORMULATION WITH COMPLEX DATA PROCESSING
NO20181599A1 (en) Runtime parameter selection in simulations
WO2018149898A3 (en) Methods and systems for network self-optimization using deep learning
WO2020180014A3 (ko) 심층 강화 학습에 기반한 자율주행 에이전트의 학습 방법 및 시스템
EP4407946A3 (en) Automated network change system
EP3892980A4 (en) INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, LEARNING MODEL GENERATION METHOD AND PROGRAM
EP4331473A3 (en) Method and apparatus for recognizing gait task
WO2021107360A3 (ko) 유사도를 판단하는 전자 장치 및 그 제어 방법
KR20180084576A (ko) 행동-인식 연결 학습 기반 의도 이해 장치, 방법 및 그 방법을 수행하기 위한 기록 매체
WO2015127110A3 (en) Event-based inference and learning for stochastic spiking bayesian networks
EP2793175A3 (en) Optimization utilizing machine learning
WO2014031683A3 (en) Hierarchical based sequencing machine learning model
MX2016004208A (es) Método de diálogo entre una máquina, tal como un robot humanoide, y un interlocutor humano, programa informático y robot humanoide para la implementación de dicho método.
WO2016196435A3 (en) Segmentation techniques for learning user patterns to suggest applications responsive to an event on a device
WO2015134244A3 (en) Neural network adaptation to current computational resources
WO2020111754A3 (ko) 세미 슈퍼바이즈드 학습을 이용한 진단 시스템 제공방법 및 이를 이용하는 진단 시스템
WO2016128708A3 (en) Provision, configuration, and use of a telecommunications network
WO2015177338A3 (en) Method and apparatus for automated manufacture
WO2014031685A3 (en) Multiple output relaxation machine learning model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892152

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892152

Country of ref document: EP

Kind code of ref document: A2