WO2021107337A1 - 강화학습 기반의 사기 대출 분류시스템 및 방법 - Google Patents

강화학습 기반의 사기 대출 분류시스템 및 방법 Download PDF

Info

Publication number
WO2021107337A1
WO2021107337A1 PCT/KR2020/011165 KR2020011165W WO2021107337A1 WO 2021107337 A1 WO2021107337 A1 WO 2021107337A1 KR 2020011165 W KR2020011165 W KR 2020011165W WO 2021107337 A1 WO2021107337 A1 WO 2021107337A1
Authority
WO
WIPO (PCT)
Prior art keywords
loan
information
fraudulent
reward
normal
Prior art date
Application number
PCT/KR2020/011165
Other languages
English (en)
French (fr)
Inventor
노철균
민예린
르팜투옌
Original Assignee
주식회사 애자일소다
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 애자일소다 filed Critical 주식회사 애자일소다
Priority to JP2020558929A priority Critical patent/JP7111934B2/ja
Publication of WO2021107337A1 publication Critical patent/WO2021107337A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0207Discounts or incentives, e.g. coupons or rebates

Definitions

  • the present invention relates to a reinforcement learning-based fraudulent loan classification system and method, and more particularly, to a reinforcement learning-based fraudulent loan classification system and method for screening a fraudulent loan using reinforcement learning.
  • the cost structure for calculating the cost to be borne by the automobile buyer is too complex and difficult for the automobile buyer to understand, so the task of subscribing to the automobile financial product is delegated to the automobile dealer.
  • the debtor who uses the car loan service of the second capital company may increase the economic burden due to the high interest rate.
  • the conventional loan service has a problem in that it is difficult to distinguish between a normal loan and a fraudulent loan by performing a loan eligibility test based on a rule base according to a loan rule set in advance by a financial company or a capital company.
  • reinforcement learning is a learning method that deals with an agent that interacts with the environment and achieves a goal, and is widely used in the fields of robots and artificial intelligence.
  • Reinforcement learning aims to find out what actions the reinforcement learning agent, the subject of learning, must do to receive more rewards.
  • the agent sequentially selects an action as the time step passes, and receives a reward based on the impact of the action on the environment.
  • FIG. 1 is a block diagram showing the configuration of a reinforcement learning apparatus according to the prior art.
  • the agent 10 determines an action (or action) a through learning of a reinforcement learning model. Learning, each action a affects the next state S, and the degree of success can be measured as a reward r.
  • the reward is a reward score for an action (action) determined by the agent 10 according to a certain state when learning through the reinforcement learning model, and is a reward score for the decision-making of the agent 10 according to learning. It's kind of feedback.
  • the agent 10 takes an action to maximize the future reward through reinforcement learning.
  • the reinforcement learning apparatus has a problem in that it has no choice but to have a single behavior pattern to achieve the goal by conducting learning based on a reward uniformly determined in relation to goal achievement in a given environment.
  • an object of the present invention is to provide a reinforcement learning-based fraudulent loan classification system and method for selecting a vehicle fraudulent loan using reinforcement learning.
  • an embodiment of the present invention is a reinforcement learning-based fraudulent loan classification system.
  • the vehicle relay trader information, categorical data or unstructured data information is abbreviated and standardized, and the probability value of normal loan and fraudulent loan date for the loan information through a pre-stored analysis program using the abbreviated and standardized input variables
  • Each of the probability values is calculated, and the prediction result classified as the higher probability value among the calculated probability values -
  • the prediction result is a normal loan if the probability value of a normal loan is high, and a fraudulent loan if the probability value of a fraudulent loan is high.
  • loan classification agent and comparing the classified prediction result with the actual result of the loan information, wherein the actual result is result information indicating whether the input loan information is a normal loan or a fraudulent loan. Reward classified according to whether the prediction result is correct or not. and a reward classification unit that provides information to the fraudulent loan classification agent.
  • the reward information according to the embodiment provides '+ loan amount', otherwise, '-loan amount' as reward information for loan information in which the actual result is a normal loan, if the predicted result is a normal loan, With respect to loan information whose result is a fraudulent loan, if the prediction result is a fraudulent loan, '+ loan amount' and if wrong, '-loan amount' is provided as reward information, and the fraudulent loan classification agent uses the provided reward information as a probability value of loan information It is characterized in that reinforcement learning is performed by reflecting the calculation.
  • one embodiment of the present invention is a reinforcement learning-based fraudulent loan classification system, when any loan information is input from the information input unit, borrower information, loan conditions, vehicle information, vehicle relay trader through an embedding technique Information, categorical data, or unstructured data information is abbreviated and standardized, and the probability value of a normal loan and the probability value of a fraudulent loan for the loan information are calculated through a pre-stored analysis program using the abbreviated and standardized input variable, respectively, , a prediction result classified as a higher probability value among the calculated probability values -
  • the prediction result is a normal loan if the probability value of a normal loan is high, and a fraudulent loan if the probability value of a fraudulent loan is high - a fraudulent loan classification agent outputting; and comparing the classified prediction result with the actual result of the loan information, wherein the actual result is result information indicating whether the input loan information is a normal loan or a fraudulent loan. Reward classified according to whether the prediction result is correct or not. and a reward
  • the reward information according to the embodiment provides '+ loan amount', otherwise, '-2 * loan amount' as reward information for loan information in which the actual result is a normal loan, if the predicted result is a normal loan, , with respect to loan information whose actual result is a fraudulent loan, if the prediction result is correct as a fraudulent loan, '3 * loan amount', otherwise '-8 * loan amount' is provided as reward information, and the fraudulent loan classification agent provides the provided reward information is reflected in the probability value calculation of loan information to perform reinforcement learning.
  • the reward information according to the embodiment is that, when the actual result is a normal loan, 'loan amount * preset index value' if the expected result is correct, and '-loan amount * preset index value' as reward information. characterized.
  • loan amount according to the embodiment is characterized in that it is converted and reflected in a scale ranging from '0' to '1'.
  • an embodiment of the present invention is a reinforcement learning-based fraudulent loan classification method, a) when arbitrary loan information is input from the information input unit, the fraudulent loan classification agent uses the embedding technique to determine borrower information, loan conditions, The information of vehicle information, vehicle relay trader information, categorical data or unstructured data is abbreviated and standardized, and the probability value and fraud of a normal loan for the loan information through a pre-stored analysis program using the abbreviated and standardized input variables Each of the loan probability values is calculated, and the prediction result classified by the higher probability value among the calculated probability values - In this case, the prediction result is a normal loan if the probability value of a normal loan is high, and a fraudulent loan if the probability value of a fraudulent loan is high - is output to do; b) The prediction result by comparing the prediction result classified by the fraudulent loan classification agent with the actual result of the loan information by the reward classification unit - In this case, the actual result is the result information in which the input loan information indicates a normal loan or
  • the reward information according to the embodiment provides '+ loan amount', otherwise, '-loan amount' as reward information for loan information in which the actual result is a normal loan, if the predicted result is a normal loan, With respect to loan information in which the result is a fraudulent loan, if the prediction result is correct as a fraudulent loan, '+ loan amount' and if wrong, '-loan amount' is provided as reward information.
  • an embodiment of the present invention is a reinforcement learning-based fraudulent loan classification method, a) when arbitrary loan information is input from the information input unit, the fraudulent loan classification agent uses the embedding technique to determine borrower information, loan conditions, The information of vehicle information, vehicle relay trader information, categorical data or unstructured data is abbreviated and standardized, and the probability value and fraud of a normal loan for the loan information through a pre-stored analysis program using the abbreviated and standardized input variables Each of the loan probability values is calculated, and the prediction result classified by the higher probability value among the calculated probability values - In this case, the prediction result is a normal loan if the probability value of a normal loan is high, and a fraudulent loan if the probability value of a fraudulent loan is high - is output to do; b) The prediction result by comparing the prediction result classified by the fraudulent loan classification agent with the actual result of the loan information by the reward classification unit - In this case, the actual result is the result information in which the input loan information indicates a normal loan or
  • the reward information according to the embodiment provides '+ loan amount', otherwise, '-2 * loan amount' as reward information for loan information in which the actual result is a normal loan, if the predicted result is a normal loan, , with respect to loan information in which the actual result is a fraudulent loan, '3 * loan amount' if the prediction result is correct as a fraudulent loan, and '-8 * loan amount' if it is wrong.
  • the reward information according to the embodiment is that, when the actual result is a normal loan, 'loan amount * preset index value' if the expected result is correct, and '-loan amount * preset index value' as reward information. characterized.
  • loan amount is converted to a scale ranging from '0' to '1' and reflected.
  • the present invention has an advantage in that it is possible to minimize the occurrence of an expected loss amount due to a fraudulent loan by improving the classification of a vehicle fraud loan using reinforcement learning.
  • FIG. 1 is a block diagram showing the configuration of a reinforcement learning apparatus according to the prior art.
  • FIG. 2 is a block diagram illustrating the configuration of a reinforcement learning-based fraudulent loan classification system according to an embodiment of the present invention.
  • FIG. 3 is an exemplary diagram for explaining a classification process of the reinforcement learning-based fraudulent loan classification system according to the embodiment of FIG. 2 .
  • FIG. 4 is a flowchart illustrating a method for classifying a fraudulent loan based on reinforcement learning according to an embodiment of the present invention.
  • ... unit means a unit that processes at least one function or operation, which may be divided into hardware, software, or a combination of the two.
  • FIG. 2 is a block diagram showing the configuration of a reinforcement learning-based fraudulent loan classification system according to an embodiment of the present invention
  • FIG. 3 describes a classification process of a reinforcement learning-based fraudulent loan classification system according to the embodiment of FIG. It is an example for doing.
  • the reinforcement learning-based fraudulent loan classification system 100 is configured to include an information input unit 110 , a fraudulent loan classification agent 120 , and a reward classification unit 130 . .
  • the information input unit 110 is a configuration that provides loan information for reinforcement learning of the fraudulent loan classification agent 120, and may include an input means such as a keyboard, a storage means such as a memory, and an external terminal connected through a network. .
  • loan information is loan information to be classified by the fraudulent loan classification agent 120, and may include borrower's loan application information, vehicle sales proof information, vehicle seller information, vehicle relay trader information, or other additional information. have.
  • the information input unit 110 may provide actual result information on whether the individual loan information input for reinforcement learning is a normal loan or a fraudulent loan.
  • the fraudulent loan classification agent 120 calculates a probability value that the loan information is a normal loan and a probability value that the loan information is a fraudulent loan using a pre-stored analysis program, respectively, from among the calculated probability values If the prediction result classified as high, that is, if the probability value of a normal loan is high, the prediction result classified as a normal loan is output, and if the probability value of a fraudulent loan is high, the prediction result classified as a fraudulent loan is output.
  • the fraudulent loan classification agent 120 uses the analysis program to determine personal credit information included in the loan information and borrower information including loan details for other financial periods, loan conditions including loan amount, loan period, interest rate, vehicle information, It analyzes vehicle sales proof information, vehicle seller information, vehicle relay trader information, and the like, and calculates a probability value of a normal loan and a probability value of a fraudulent loan based on the analysis result.
  • the fraudulent loan classification agent 120 formalizes information of borrower information, loan conditions, vehicle information, vehicle relay trader information, and categorical or unstructured data rather than numeric type, thereby converting high-dimensional data into low-dimensional data. It can also be analyzed using information using the embedding technique, which is reduced to .
  • the fraudulent loan classification agent 120 may predict (or make a decision) whether the loan information is a normal loan or a fraudulent loan based on the calculated probability value.
  • the fraudulent loan classification agent 120 provides individual loan information, for example, loan information 1 210a, loan information 2 210b, loan information 3 210c, ... loan information n
  • loan information 1 210a loan information 1 210a
  • loan information 2 210b loan information 2 210b
  • loan information 3 210c loan information 3
  • loan information n loan information n
  • a decision is made based on the calculated probability value, normal A prediction value 300 or a prediction result that determines whether a loan is a loan or a fraudulent loan is output.
  • the fraudulent loan classification agent 120 determines the loan information toward the side having the larger probability value by comparing the calculated probability value for the normal loan and the probability value for the fraudulent loan.
  • the input loan information outputs a predicted value predicted as “fraudulent loan”.
  • the fraudulent loan classification agent 120 may perform reinforcement learning by reflecting the reward information provided from the reward classification unit 130 in calculating the probability value of the loan information.
  • the reward classification unit 130 inputs the predicted value 300 classified as a normal loan or a duplicate loan based on the probability value predicted by the fraudulent loan classification agent 120 through reinforcement learning as an actual result 310, that is, for reinforcement learning.
  • result information indicating normal loan or fraudulent loan of the loan information
  • the prediction result or pseudo-loan classified as 'correct' or 'wrong' for normal loan, and 'correct' or 'wrong' for fraudulent loan decision results).
  • the reward classification unit 130 rewards information 400 that determines the learning direction for the prediction value classification of the fraudulent loan classification agent 120 according to the correctness of the prediction result and the actual result of the fraudulent loan classification agent 120 . to the fraudulent loan classification agent 120 .
  • the reward information may provide the loan amount as reward information.
  • loan information in which the actual result is a normal loan if the prediction result is correct as a normal loan, '+ loan amount', otherwise, '- loan amount' is rewarded. information can be provided.
  • the reward information may provide '+ loan amount' if the prediction result is correct for the fraudulent loan, and '-loan amount' for the loan information in which the actual result is a fraudulent loan, as reward information.
  • the reward information may provide '+ loan amount' if the predicted result is correct for normal loan, '-2 * loan amount', as reward information, with respect to loan information in which the actual result is a normal loan.
  • the reward information may provide '3 * loan amount' if the prediction result is correct as a fraudulent loan, and '-8 * loan amount' as the reward information for loan information in which the actual result is a fraudulent loan.
  • the reward information may be provided by converting the reflected loan amount into a scale ranging from '0' to '1'.
  • the fraudulent loan target selection unit 120 receives loan information from the information input unit 110 ( S100 ).
  • the fraudulent loan classification agent 120 calculates a probability value that the loan information is a normal loan and a probability value that the loan information is a fraudulent loan using a pre-stored analysis program, respectively, and classifies the probability value to a higher value among the calculated probability values, that is, if the probability value of a normal loan is high It is classified as a normal loan, and if the probability value of a fraudulent loan is high, the predicted value 300 classified as a fraudulent loan is output (S200).
  • the fraudulent loan classification agent 120 analyzes the loan information input from the information input unit 110, the borrower information 220a, the loan amount (amount) 220b, and the loan period 220c included in the loan information. ), the probability value can be calculated based on information analyzed by embedding technique and information analyzed through machine learning.
  • the predicted value 300 classified from the fraudulent loan classification agent 120 is compared with the actual result 310 in the reward classification unit 130, and the predicted value 300 and the actual result 310 are According to right or wrong, the reward information for determining the learning direction for calculating the predicted value of the fraudulent loan classification agent 120 is classified (S300).
  • step S300 if the prediction result and the actual result match, the reward classification unit 130 allows a certain loan amount to be added, and if the prediction result and the actual result are different, in any information for calculating the probability value of the normal loan and the fraudulent loan
  • the reward information can be set so that a certain loan amount is subtracted or added to each other.
  • the reward information set and provided in step S300 provides '+ loan amount', otherwise, '-loan amount' as reward information for loan information in which the actual result is a normal loan, if the predicted result is a normal loan.
  • '+ loan amount' if the prediction result is correct as a fraudulent loan, '-loan amount' may be provided as reward information.
  • the reward information may be set by adding a preset index value.
  • the reward information provided in step S300 may be adjusted according to the difficulty, such as the detection of a fraudulent loan target or a fraudulent loan through a third party. If the result is correct as a normal loan, '+ loan amount', otherwise, '-2 * loan amount' can be provided as reward information.
  • loan information in which the actual result is a fraudulent loan if the prediction result is correct as a fraudulent loan, '3 * loan amount', if wrong, '-8 * loan amount' is provided as reward information. It allows the learning direction for predictive value classification to be learned in the optimal direction.
  • the reward information may be provided by converting the reflected loan amount into a scale ranging from '0' to '1' since the calculation value may be increased when the loan amount is reflected in the reward.
  • the reward information set in step S300 is provided from the reward classification unit 130 to the fraudulent loan classification agent 120 , and the fraudulent loan classification agent 120 determines the prediction result of payment information based on the reward information provided from the reward classification unit 130 .
  • Any information for, for example, borrower information (220a) included in loan information, loan amount (amount) (220b), loan period (220c), information analyzed by embedding technique, information analyzed through machine learning Reinforcement learning is performed (S400) by reflecting in the calculation of a probability value based on information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Technology Law (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

강화학습 기반의 사기 대출 분류시스템 및 방법을 개시한다. 본 발명은 강화학습을 이용하여 차량 사기 대출의 분류를 개선함으로써, 사기 대출로 인한 예상 손실 금액의 발생을 최소화할 수 있다. [대표도] 도 2

Description

강화학습 기반의 사기 대출 분류시스템 및 방법
본 발명은 강화학습 기반의 사기 대출 분류시스템 및 방법에 관한 발명으로서, 더욱 상세하게는 강화학습을 이용하여 사기 대출을 선별하는 강화학습 기반의 사기 대출 분류시스템 및 방법에 관한 것이다.
일반적인 자동차 금융 시장 구조에 따르면, 자동차 구매자가 부담하게 될 비용을 산정하는 비용 구조가 지나치게 복잡하여 자동차 구매자가 이해하기 어려우므로 자동차 금융 상품 가입에 따른 업무를 자동차 딜러에게 위임하고 있는 실정이다.
자동차 금융 시장에서 자동차 구매자의 비용 구조 및 자동차 딜러의 수익 구조에서는, 취급 수수료 또는 대출 상품 소개 수수료에 인해 부가적인 비용이 발생할 수 밖에 없다.
따라서 캐피탈사와 같은 금융 회사의 오토론(Auto-Loan)은 상대적으로 고금리 정책을 취하고 있다.
이로 인해, 제2 캐피탈사의 자동차 대출서비스를 이용하는 채무자는 고금리로 인해 경제적 부담이 증가할 수 있다.
또한, 채무자가 캐피탈사와 같은 제2 금융권의 대출서비스를 이용하는 경우에, 채무자의 신용등급이 하락하고 타 금융상품의 대출 부적합 요건으로 작용할 수 있으므로, 추후 경제활동에 악영향을 미친다.
중고차 매매 시장에서는, 중고차를 구매하고자 하는 채무자, 중고차의 이전 주인인 매도자, 중고차 매매를 알선하는 매매상 간에 거래가 이루어지므로 거래 주체가 다양하고, 거래대상인 중고차의 성능, 유지 상태 및 거래 시세가 일정하지 않으므로, 중고차 거래시 각별한 주의가 필요하다.
최근 소비자들의 자동차 교체 주기가 짧아지고 고가의 자동차 거래가 증가하면서 고가의 중고차 매매도 증가하여, 자동차 대출서비스에 대한 관심이 높아지는 추세이다.
이러한 대출서비스를 제공하는 과정에서, 금융사 또는 캐피탈사는 자동차 대출 사기를 방지하기 위해 채무자의 대출 적격을 직접 심사하고, 채무자의 거래 차량, 자동차 매도자 및 매매상에 대한 검증이 완료된 채무자에게 대출 서비스를 제공하는 있다.
그러나, 종래의 대출 서비스는 금융사 또는 캐피탈사에서 미리 설정한 대출 규정에 따른 룰 베이스를 기반으로 대출 적격 심사를 진행하여 정상 대출과 사기 대출을 구분하기 어려운 문제점이 있다.
한편, 강화 학습은 환경(environment)과 상호작용하며 목표를 달성하는 에이전트를 다루는 학습 방법으로서, 로봇이나 인공 지능 분야에서 많이 사용되고 있다.
이러한 강화 학습은 학습의 행동 주체인 강화 학습 에이전트(Agent)가 어떤 행동을 해야 더 많은 보상(Reward)을 받을지 알아내는 것을 목적으로 한다.
즉, 정해진 답이 없는 상태에서도 보상을 최대화시키기 위해 무엇을 할 것인가를 배우는 것으로서, 입력과 출력이 명확한 관계를 갖고 있는 상황에서 사전에 어떤 행위를 할 것인지 듣고 하는 것이 아니라, 시행착오를 거치면서 보상을 최대화시키는 것을 배우는 과정을 거친다.
또한, 에이전트는 시간 스텝이 흘러감에 따라 순차적으로 액션을 선택하게 되고, 상기 액션이 환경에 끼친 영향에 기반하여 보상(reward)을 받게 된다.
도 1은 종래 기술에 따른 강화 학습 장치의 구성을 나타낸 블록도로서, 도 1에 나타낸 바와 같이, 에이전트(10)가 강화 학습 모델의 학습을 통해 액션(Action, 또는 행동) a를 결정하는 방법을 학습시키고, 각 액션인 a는 그 다음 스테이트(state) S에 영향을 끼치며, 성공한 정도는 보상(Reward) r로 측정할 수 있다.
즉, 보상은 강화 학습 모델을 통해 학습을 진행할 경우, 어떤 스테이트(State)에 따라 에이전트(10)가 결정하는 액션(행동)에 대한 보상 점수로서, 학습에 따른 에이전트(10)의 의사 결정에 대한 일종의 피드백이다.
또한, 보상을 어떻게 책정하느냐에 따라 학습 결과에 많은 영향이 발생하므로, 강화 학습을 통해 에이전트(10)는 미래의 보상이 최대가 되도록 액션을 취하게 된다.
그러나, 종래 기술에 따른 강화 학습 장치는 주어진 환경에서 목표 달성과 관련되어 획일적으로 결정되는 보상에 기초하여 학습을 진행함으로써, 목표를 이루기 위해 하나의 행동 패턴을 가질 수 밖에 없는 문제점이 있다.
이러한 문제점을 해결하기 위하여, 본 발명은 강화학습을 이용하여 차량 사기 대출을 선별하는 강화학습 기반의 사기 대출 분류시스템 및 방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 일 실시 예는 강화학습 기반의 사기 대출 분류시스템으로서, 정보 입력부로부터 임의의 대출 정보가 입력되면, 임베딩(Embedding)기법을 통해 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 범주형 데이터 또는 비정형 데이터의 정보를 축약 및 정형화하고, 상기 축약 및 정형화한 입력 변수를 이용하여 미리 저장된 분석 프로그램을 통해 상기 대출 정보에 대한 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하며, 상기 산출된 확률값 중에서 높은 쪽의 확률값으로 분류한 예측 결과 - 이때, 예측 결과는 정상 대출일 확률값이 높으면 정상 대출이고, 사기 대출일 확률값이 높으면 사기 대출임 - 를 출력하는 사기 대출 분류 에이전트; 및 상기 분류된 예측 결과를 상기 대출 정보의 실제 결과 - 이때, 실제 결과는 입력된 대출 정보가 정상 대출 또는 사기 대출인지를 나타낸 결과 정보임 - 와 비교하여 상기 예측 결과의 맞고 틀림에 따라 분류된 리워드 정보를 상기 사기 대출 분류 에이전트로 제공하는 리워드 분류부를 포함한다.
또한, 상기 실시 예에 따른 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '- 대출금액'을 리워드 정보로 제공하며, 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '+ 대출금액', 틀리면 '-대출금액'을 리워드 정보로 제공하고, 상기 사기 대출 분류 에이전트는 제공된 리워드 정보를 대출 정보의 확률값 산출에 반영하여 강화학습을 수행하는 것을 특징으로 한다.
또한, 본 발명이 일 실시 예는 강화학습 기반의 사기 대출 분류시스템으로서, 정보 입력부로부터 임의의 대출 정보가 입력되면, 임베딩(Embedding)기법을 통해 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 범주형 데이터 또는 비정형 데이터의 정보를 축약 및 정형화하고, 상기 축약 및 정형화한 입력 변수를 이용하여 미리 저장된 분석 프로그램을 통해 상기 대출 정보에 대한 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하며, 상기 산출된 확률값 중에서 높은 쪽의 확률값으로 분류한 예측 결과 - 이때, 예측 결과는 정상 대출일 확률값이 높으면 정상 대출이고, 사기 대출일 확률값이 높으면 사기 대출임 - 를 출력하는 사기 대출 분류 에이전트; 및 상기 분류된 예측 결과를 상기 대출 정보의 실제 결과 - 이때, 실제 결과는 입력된 대출 정보가 정상 대출 또는 사기 대출인지를 나타낸 결과 정보임 - 와 비교하여 상기 예측 결과의 맞고 틀림에 따라 분류된 리워드 정보를 상기 사기 대출 분류 에이전트로 제공하는 리워드 분류부를 포함한다.
또한, 상기 실시 예에 따른 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '-2 * 대출금액'을 리워드 정보로 제공하며, 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '3 * 대출금액', 틀리면 '-8 * 대출금액'을 리워드 정보로 제공하고, 상기 사기 대출 분류 에이전트는 제공된 리워드 정보를 대출 정보의 확률값 산출에 반영하여 강화학습을 수행하는 것을 특징으로 한다.
또한, 상기 실시 예에 따른 리워드 정보는 실제 결과가 정상 대출인 경우, 예상 결과가 맞으면 '대출금액 * 미리 설정된 지표값', 틀리면 '- 대출금액 * 미리 설정된 지표값'을 리워드 정보로 제공하는 것을 특징으로 한다.
또한, 상기 실시 예에 따른 대출금액은 '0' ~ '1' 범위의 스케일로 변환하여 반영되는 것을 특징으로 한다.
또한, 본 발명의 일 실시 예는 강화학습 기반의 사기 대출 분류방법으로서, a) 정보 입력부로부터 임의의 대출 정보가 입력되면, 사기 대출 분류 에이전트가 임베딩(Embedding)기법을 통해 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 범주형 데이터 또는 비정형 데이터의 정보를 축약 및 정형화하고, 상기 축약 및 정형화한 입력 변수를 이용하여 미리 저장된 분석 프로그램을 통해 상기 대출 정보에 대한 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하며, 상기 산출된 확률값 중에서 높은 쪽의 확률값으로 분류한 예측 결과 - 이때, 예측 결과는 정상 대출일 확률값이 높으면 정상 대출이고, 사기 대출일 확률값이 높으면 사기 대출임 - 를 출력하는 단계; b) 상기 사기 대출 분류 에이전트로부터 분류된 예측 결과를 리워드 분류부가 상기 대출 정보의 실제 결과 - 이때, 실제 결과는 입력된 대출 정보가 정상 대출 또는 사기 대출을 나타낸 결과 정보임 - 와 비교하여 상기 예측 결과의 맞고 틀림에 따라 분류된 리워드 정보를 상기 사기 대출 분류 에이전트로 제공하는 단계; 및 c) 상기 사기 대출 분류 에이전트가 상기 리워드 분류부로부터 제공된 리워드 정보를 대출 정보의 확률값 산출에 반영하여 강화학습을 수행하는 단계;를 포함한다.
또한, 상기 실시 예에 따른 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '- 대출금액'을 리워드 정보로 제공하고, 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '+ 대출금액', 틀리면 '-대출금액'을 리워드 정보로 제공하는 것을 특징으로 한다.
또한, 본 발명의 일 실시 예는 강화학습 기반의 사기 대출 분류방법으로서, a) 정보 입력부로부터 임의의 대출 정보가 입력되면, 사기 대출 분류 에이전트가 임베딩(Embedding)기법을 통해 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 범주형 데이터 또는 비정형 데이터의 정보를 축약 및 정형화하고, 상기 축약 및 정형화한 입력 변수를 이용하여 미리 저장된 분석 프로그램을 통해 상기 대출 정보에 대한 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하며, 상기 산출된 확률값 중에서 높은 쪽의 확률값으로 분류한 예측 결과 - 이때, 예측 결과는 정상 대출일 확률값이 높으면 정상 대출이고, 사기 대출일 확률값이 높으면 사기 대출임 - 를 출력하는 단계; b) 상기 사기 대출 분류 에이전트로부터 분류된 예측 결과를 리워드 분류부가 상기 대출 정보의 실제 결과 - 이때, 실제 결과는 입력된 대출 정보가 정상 대출 또는 사기 대출을 나타낸 결과 정보임 - 와 비교하여 상기 예측 결과의 맞고 틀림에 따라 분류된 리워드 정보를 상기 사기 대출 분류 에이전트로 제공하는 단계; 및 c) 상기 사기 대출 분류 에이전트가 상기 리워드 분류부로부터 제공된 리워드 정보를 대출 정보의 확률값 산출에 반영하여 강화학습을 수행하는 단계;를 포함한다.
또한, 상기 실시 예에 따른 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '-2 * 대출금액'을 리워드 정보로 제공하며, 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '3 * 대출금액', 틀리면 '-8 * 대출금액'을 리워드 정보로 제공하는 것을 특징으로 한다.
또한, 상기 실시 예에 따른 리워드 정보는 실제 결과가 정상 대출인 경우, 예상 결과가 맞으면 '대출금액 * 미리 설정된 지표값', 틀리면 '- 대출금액 * 미리 설정된 지표값'을 리워드 정보로 제공하는 것을 특징으로 한다.
또한,상기 대출금액은 '0' ~ '1' 범위의 스케일로 변환하여 반영되는 것을 특징으로 한다.
본 발명은 강화학습을 이용하여 차량 사기 대출의 분류를 개선함으로써, 사기 대출로 인한 예상 손실 금액의 발생을 최소화할 수 있는 장점이 있다.
도 1은 종래 기술에 따른 강화 학습 장치의 구성을 나타낸 블록도.
도 2는 본 발명의 일 실시 예에 따른 강화학습 기반의 사기 대출 분류시스템의 구성을 나타낸 블록도.
도 3은 도 2의 실시 예에 따른 강화학습 기반의 사기 대출 분류 시스템의 분류과정을 설명하기 위한 예시도.
도 4는 본 발명의 일 실시 예에 따른 강화학습 기반의 사기 대출 분류방법을 나타낸 흐름도.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시 예에 따른 강화학습 기반의 사기 대출 분류시스템 및 방법의 바람직한 실시예를 상세하게 설명한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다는 표현은 다른 구성요소를 배제하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
또한, "‥부", "‥기", "‥모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 그 둘의 결합으로 구분될 수 있다.
도 2는 본 발명의 일 실시 예에 따른 강화학습 기반의 사기 대출 분류시스템의 구성을 나타낸 블록도이고, 도 3은 도 2의 실시 예에 따른 강화학습 기반의 사기 대출 분류 시스템의 분류과정을 설명하기 위한 예시도이다.
도 2 및 도 3을 참조하여 설명하면, 강화학습 기반의 사기 대출 분류시스템(100)은 정보 입력부(110)와, 사기 대출 분류 에이전트(120)와, 리워드 분류부(130)를 포함하여 구성된다.
정보 입력부(110)는 사기 대출 분류 에이전트(120)의 강화학습을 위한 대출 정보를 제공하는 구성으로서, 키보드 등의 입력수단, 메모리 등의 저장수단, 네트워크를 통해 연결된 외부 단말 등으로 구성될 수 있다.
또한, 대출 정보는 사기 대출 분류 에이전트(120)가 분류할 대출 정보로서, 대출자의 대출신청 정보, 차량의 매매 증빙 정보, 차량의 매도자 정보, 차량의 중계 거래자 정보 또는 기타 부가 정보 등을 포함할 수 있다.
또한, 정보 입력부(110)는 강화학습을 위해 입력된 개별 대출 정보에 대하여 정상 대출인지 또는 사기 대출인지에 대한 실제 결과 정보를 제공할 수 있다.
사기 대출 분류 에이전트(120)는 정보 입력부(110)로부터 임의의 대출 정보가 입력되면, 미리 저장된 분석 프로그램을 이용하여 대출 정보가 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하고, 산출된 확률값 중에서 높은 쪽으로 분류한 예측 결과, 즉 정상 대출일 확률값이 높으면 정상 대출로 분류한 예측 결과를 출력하고, 사기 대출일 확률값이 높으면 사기 대출로 분류한 예측 결과를 출력한다.
즉, 사기 대출 분류 에이전트(120)는 분석 프로그램을 이용하여 대출 정보에 포함된 개인 신용 정보 및 타금융기간 대출 내역을 포함한 대출자 정보, 대출금액, 대출기간, 이자율 등을 포함한 대출 조건, 차량 정보, 차량의 매매 증빙 정보, 차량의 매도자 정보, 차량의 중계 거래자 정보 등을 분석하고, 분석 결과에 기반하여 정상 대출일 확률값과 사기 대출일 확률값을 산출한다.
또한, 사기 대출 분류 에이전트(120)는 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 숫자형이 아닌 범주형 또는 비정형 데이터의 정보 축약을 통해 정형화함으로써, 고차원의 데이터를 저차원의 데이터로 줄인 임베딩(Embedding)기법을 이용한 정보 등을 이용하여 분석할 수도 있다.
또한, 사기 대출 분류 에이전트(120)는 산출된 확률값에 기반하여 대출 정보가 정상 대출인지 또는 사기 대출인지를 예측(또는 의사 결정)할 수 있다.
즉, 사기 대출 분류 에이전트(120)는 도 3에 나타낸 바와 같이, 개별 대출 정보, 예를 들면, 대출 정보 1(210a), 대출 정보 2(210b), 대출 정보 3(210c), ‥ 대출 정보 n(210n)에 대하여 대출자 정보(220a), 대출금(액)(220b), 대출기간(220c) 등에 기반한 정상 대출인지 또는 사기 대출인지 확률값을 산출하고, 산출된 확률값에 기반하여 의사 결정한 결과로서, 정상 대출인지 또는 사기 대출인지를 결정한 예측값(300) 또는 예측 결과를 출력한다.
또한, 사기 대출 분류 에이전트(120)는 산출된 정상 대출에 대한 확률값과 사기 대출에 대한 확률값의 비교를 통해 확률값이 큰 값을 갖는 쪽으로 대출 정보가 결정되도록 한다.
예를 들면, 산출된 정상 대출에 대한 확률값이 "40"이고, 사기 대출에 대한 확률값이 "60"이면, 입력된 대출 정보는 "사기 대출"로 예측한 예측값을 출력한다.
또한, 사기 대출 분류 에이전트(120)는 리워드 분류부(130)로부터 제공된 리워드 정보를 대출 정보의 확률값 산출시에 반영하여 강화학습을 수행할 수 있다.
리워드 분류부(130)는 사기 대출 분류 에이전트(120)가 강화학습을 통해 예측한 확률값에 기반하여 정상 대출 또는 중복 대출로 분류한 예측값(300)을 실제 결과(310), 즉 강화학습을 위해 입력된 대출 정보의 정상 대출 또는 사기 대출을 나타낸 결과 정보와 비교함으로써, 예를 들면, 정상 대출이 '맞다' 또는 '틀리다', 사기 대출이 '맞다' 또는 '틀리다'로 분류한 예측 결과(또는 의사 결정 결과)를 제공할 수 있다.
또한, 리워드 분류부(130)는 사기 대출 분류 에이전트(120)의 예측 결과와 실제 결과의 맞고 틀림에 따라 사기 대출 분류 에이전트(120)의 예측값 분류를 위한 학습 방향을 결정하는 리워드 정보(400)를 사기 대출 분류 에이전트(120)로 제공한다.
여기서, 리워드 정보는 대출금액을 리워드 정보로 제공할 수 있는데, 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '- 대출금액'을 리워드 정보로 제공할 수 있다.
또한, 리워드 정보는 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '+ 대출금액', 틀리면 '-대출금액'을 리워드 정보로 제공할 수 있다.
또한, 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '-2 * 대출금액'을 리워드 정보로 제공할 수 있다.
또한, 리워드 정보는 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '3 * 대출금액', 틀리면 '-8 * 대출금액'을 리워드 정보로 제공할 수 있다.
또한, 리워드 정보는 대출금액이 리워드에 반영되면, 연산 값이 증가될 수 있으므로, 반영되는 대출금액을 '0' ~ '1' 범위의 스케일로 변환하여 제공할 수도 있다.
다음은 본 발명의 일 실시 예에 따른 강화학습 기반의 사기 대출 분류방법을 도 2 내지 도 4를 참조하여 설명한다.
사기 대출 대상 선별부(120)가 정보 입력부(110)로부터 대출 정보를 수신(S100)한다.
사기 대출 분류 에이전트(120)는 미리 저장된 분석 프로그램을 이용하여 대출 정보가 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하고, 산출된 확률값 중에서 높은 쪽으로 분류한 예측 결과, 즉 정상 대출일 확률값이 높으면 정상 대출로 분류하고, 사기 대출일 확률값이 높으면 사기 대출로 분류한 예측값(300)을 출력(S200)한다.
S200 단계에서, 사기 대출 분류 에이전트(120)는 정보 입력부(110)로부터 입력되는 대출 정보에 대하여 분석 프로그램이 대출 정보에 포함된 대출자 정보(220a), 대출금(액)(220b), 대출기간(220c) 임베딩(Embedding) 기법으로 분석한 정보, 기계학습을 통해 분석한 정보 등을 기반으로 확률값을 산출할 수 있다.
S200 단계를 수행한 다음, 사기 대출 분류 에이전트(120)로부터 분류된 예측 값(300)은 리워드 분류부(130)에서 실제 결과(310)와 비교하고, 예측값(300)과 실제 결과(310)의 맞고 틀림에 따라 사기 대출 분류 에이전트(120)의 예측값 산출을 위한 학습 방향을 결정하는 리워드 정보를 분류(S300)한다.
S300 단계에서, 리워드 분류부(130)는 예측 결과와 실제 결과가 맞으면, 일정 대출금액이 가산되도록 하고, 예측 결과와 실제 결과가 틀리면, 정상 대출 및 사기 대출의 확률값을 계산하기 위한 임의의 정보에 대하여 일정 대출금액이 감산 또는 가산되도록 리워드 정보를 설정할 수 있다.
또한, S300 단계에서 설정 및 제공되는 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '- 대출금액'을 리워드 정보로 제공할 수 있다.
또한, 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '+ 대출금액', 틀리면 '-대출금액'을 리워드 정보로 제공할 수도 있다.
여기서, 리워드 정보는 미리 설정된 지표값을 부가하여 설정될 수도 있다.
즉, 실제 결과가 정상 대출인 경우, 예상 결과가 맞으면 '대출금액 * 미리 설정된 지표값', 틀리면 '- 대출금액 * 미리 설정된 지표값'을 리워드 정보로 제공하여 사기 대출 분류 에이전트(120)의 예측값 분류를 위한 학습 방향이 최적의 방향으로 학습될 수 있도록 한다.
또한, S300 단계에서 제공되는 리워드 정보는 사기 대출의 적발 대상 또는 타사를 통한 사기 대출에 대한 적발 등 난이도에 따라 조정될 수 있는데, 이러한 대출 정보의 분류에서 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '-2 * 대출금액'을 리워드 정보로 제공할 수 있다.
또한, 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '3 * 대출금액', 틀리면 '-8 * 대출금액'을 리워드 정보로 제공함으로써, 사기 대출 분류 에이전트(120)의 예측값 분류를 위한 학습 방향이 최적의 방향으로 학습될 수 있도록 한다.
한편, 리워드 정보는 대출금액이 리워드에 반영되면, 연산 값이 증가될 수 있으므로, 반영되는 대출금액을 '0' ~ '1' 범위의 스케일로 변환하여 제공될 수 있다.
S300 단계에서 설정된 리워드 정보는 리워드 분류부(130)로부터 사기 대출 분류 에이전트(120)로 제공되고, 사기 대출 분류 에이전트(120)는 리워드 분류부(130)로부터 제공된 리워드 정보를 결제 정보의 예측 결과 결정을 위한 임의의 정보, 예를 들면, 대출 정보에 포함된 대출자 정보(220a), 대출금(액)(220b), 대출기간(220c) 임베딩(Embedding) 기법으로 분석한 정보, 기계학습을 통해 분석한 정보 등에 기반한 확률값의 산출시에 반영하여 강화학습을 수행(S400)한다.
따라서, 강화학습을 이용하여 차량 사기 대출의 분류를 개선함으로써, 사기 대출로 인한 예상 손실 금액의 발생을 최소화할 수 있다.
상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
또한, 본 발명의 특허청구범위에 기재된 도면번호는 설명의 명료성과 편의를 위해 기재한 것일 뿐 이에 한정되는 것은 아니며, 실시예를 설명하는 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있으며, 상술된 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있으므로, 이러한 용어들에 대한 해석은 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
[부호의 설명]
100 : 분류 시스템
110 : 정보 입력부
120 : 사기 대출 분류 에이전트
130 : 리워드 분류부

Claims (8)

  1. 정보 입력부(110)로부터 임의의 대출 정보가 입력되면, 임베딩(Embedding)기법을 통해 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 범주형 데이터 또는 비정형 데이터의 정보를 축약 및 정형화하고, 상기 축약 및 정형화한 입력 변수를 이용하여 미리 저장된 분석 프로그램을 통해 상기 대출 정보에 대한 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하며, 상기 산출된 확률값 중에서 높은 쪽의 확률값으로 분류한 예측 결과 - 이때, 예측 결과는 정상 대출일 확률값이 높으면 정상 대출이고, 사기 대출일 확률값이 높으면 사기 대출임 - 를 출력하는 사기 대출 분류 에이전트(120); 및
    상기 분류된 예측 결과를 상기 대출 정보의 실제 결과 - 이때, 실제 결과는 입력된 대출 정보가 정상 대출 또는 사기 대출인지를 나타낸 결과 정보임 - 와 비교하여 상기 예측 결과의 맞고 틀림에 따라 분류된 리워드 정보를 상기 사기 대출 분류 에이전트(120)로 제공하는 리워드 분류부(130)를 포함하되,
    상기 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '- 대출금액'을 리워드 정보로 제공하며,
    실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '+ 대출금액', 틀리면 '-대출금액'을 리워드 정보로 제공하고,
    상기 사기 대출 분류 에이전트(120)는 제공된 리워드 정보를 대출 정보의 확률값 산출에 반영하여 강화학습을 수행하는 것을 특징으로 강화학습 기반의 사기 대출 분류시스템.
  2. 정보 입력부(110)로부터 임의의 대출 정보가 입력되면, 임베딩(Embedding)기법을 통해 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 범주형 데이터 또는 비정형 데이터의 정보를 축약 및 정형화하고, 상기 축약 및 정형화한 입력 변수를 이용하여 미리 저장된 분석 프로그램을 통해 상기 대출 정보에 대한 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하며, 상기 산출된 확률값 중에서 높은 쪽의 확률값으로 분류한 예측 결과 - 이때, 예측 결과는 정상 대출일 확률값이 높으면 정상 대출이고, 사기 대출일 확률값이 높으면 사기 대출임 - 를 출력하는 사기 대출 분류 에이전트(120); 및
    상기 분류된 예측 결과를 상기 대출 정보의 실제 결과 - 이때, 실제 결과는 입력된 대출 정보가 정상 대출 또는 사기 대출인지를 나타낸 결과 정보임 - 와 비교하여 상기 예측 결과의 맞고 틀림에 따라 분류된 리워드 정보를 상기 사기 대출 분류 에이전트(120)로 제공하는 리워드 분류부(130)를 포함하되,
    상기 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '-2 * 대출금액'을 리워드 정보로 제공하며,
    실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '3 * 대출금액', 틀리면 '-8 * 대출금액'을 리워드 정보로 제공하고,
    상기 사기 대출 분류 에이전트(120)는 제공된 리워드 정보를 대출 정보의 확률값 산출에 반영하여 강화학습을 수행하는 것을 특징으로 강화학습 기반의 사기 대출 분류시스템.
  3. 제 1 항에 있어서,
    상기 리워드 정보는 실제 결과가 정상 대출인 경우, 예상 결과가 맞으면 '대출금액 * 미리 설정된 지표값', 틀리면 '- 대출금액 * 미리 설정된 지표값'을 리워드 정보로 제공하는 것을 특징으로 하는 강화학습 기반의 사기 대출 분류시스템.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 대출금액은 '0' ~ '1' 범위의 스케일로 변환하여 반영되는 것을 특징으로 하는 강화학습 기반의 사기 대출 분류시스템.
  5. a) 정보 입력부(110)로부터 임의의 대출 정보가 입력되면, 사기 대출 분류 에이전트(120)가 임베딩(Embedding)기법을 통해 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 범주형 데이터 또는 비정형 데이터의 정보를 축약 및 정형화하고, 상기 축약 및 정형화한 입력 변수를 이용하여 미리 저장된 분석 프로그램을 통해 상기 대출 정보에 대한 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하며, 상기 산출된 확률값 중에서 높은 쪽의 확률값으로 분류한 예측 결과 - 이때, 예측 결과는 정상 대출일 확률값이 높으면 정상 대출이고, 사기 대출일 확률값이 높으면 사기 대출임 - 를 출력하는 단계;
    b) 상기 사기 대출 분류 에이전트(120)로부터 분류된 예측 결과를 리워드 분류부(130)가 상기 대출 정보의 실제 결과 - 이때, 실제 결과는 입력된 대출 정보가 정상 대출 또는 사기 대출을 나타낸 결과 정보임 - 와 비교하여 상기 예측 결과의 맞고 틀림에 따라 분류된 리워드 정보를 상기 사기 대출 분류 에이전트(120)로 제공하는 단계; 및
    c) 상기 사기 대출 분류 에이전트(120)가 상기 리워드 분류부(130)로부터 제공된 리워드 정보를 대출 정보의 확률값 산출에 반영하여 강화학습을 수행하는 단계;를 포함하되,
    상기 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '- 대출금액'을 리워드 정보로 제공하고, 실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '+ 대출금액', 틀리면 '-대출금액'을 리워드 정보로 제공하는 것을 특징으로 하는 강화학습 기반의 사기 대출 분류방법.
  6. a) 정보 입력부(110)로부터 임의의 대출 정보가 입력되면, 사기 대출 분류 에이전트(120)가 임베딩(Embedding)기법을 통해 대출자 정보, 대출 조건, 차량 정보, 차량의 중계 거래자 정보, 범주형 데이터 또는 비정형 데이터의 정보를 축약 및 정형화하고, 상기 축약 및 정형화한 입력 변수를 이용하여 미리 저장된 분석 프로그램을 통해 상기 대출 정보에 대한 정상 대출일 확률값과 사기 대출일 확률값을 각각 산출하며, 상기 산출된 확률값 중에서 높은 쪽의 확률값으로 분류한 예측 결과 - 이때, 예측 결과는 정상 대출일 확률값이 높으면 정상 대출이고, 사기 대출일 확률값이 높으면 사기 대출임 - 를 출력하는 단계;
    b) 상기 사기 대출 분류 에이전트(120)로부터 분류된 예측 결과를 리워드 분류부(130)가 상기 대출 정보의 실제 결과 - 이때, 실제 결과는 입력된 대출 정보가 정상 대출 또는 사기 대출을 나타낸 결과 정보임 - 와 비교하여 상기 예측 결과의 맞고 틀림에 따라 분류된 리워드 정보를 상기 사기 대출 분류 에이전트(120)로 제공하는 단계; 및
    c) 상기 사기 대출 분류 에이전트(120)가 상기 리워드 분류부(130)로부터 제공된 리워드 정보를 대출 정보의 확률값 산출에 반영하여 강화학습을 수행하는 단계;를 포함하되,
    상기 리워드 정보는 실제 결과가 정상 대출인 대출 정보에 대하여, 예측 결과가 정상 대출로 맞으면, '+ 대출금액', 틀리면, '-2 * 대출금액'을 리워드 정보로 제공하며,
    실제 결과가 사기 대출인 대출 정보에 대하여, 예측 결과가 사기 대출로 맞으면 '3 * 대출금액', 틀리면 '-8 * 대출금액'을 리워드 정보로 제공하는 것을 특징으로 하는 강화학습 기반의 사기 대출 분류방법.
  7. 제 5 항에 있어서,
    상기 리워드 정보는 실제 결과가 정상 대출인 경우, 예상 결과가 맞으면 '대출금액 * 미리 설정된 지표값', 틀리면 '- 대출금액 * 미리 설정된 지표값'을 리워드 정보로 제공하는 것을 특징으로 하는 강화학습 기반의 사기 대출 분류방법.
  8. 제 5 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 대출금액은 '0' ~ '1' 범위의 스케일로 변환하여 반영되는 것을 특징으로 하는 강화학습 기반의 사기 대출 분류방법.
PCT/KR2020/011165 2019-11-29 2020-08-21 강화학습 기반의 사기 대출 분류시스템 및 방법 WO2021107337A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558929A JP7111934B2 (ja) 2019-11-29 2020-08-21 強化学習基盤の詐欺貸出分類システム及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190157606A KR102148880B1 (ko) 2019-11-29 2019-11-29 강화학습 기반의 사기 대출 분류시스템 및 방법
KR10-2019-0157606 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021107337A1 true WO2021107337A1 (ko) 2021-06-03

Family

ID=72265792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011165 WO2021107337A1 (ko) 2019-11-29 2020-08-21 강화학습 기반의 사기 대출 분류시스템 및 방법

Country Status (3)

Country Link
JP (1) JP7111934B2 (ko)
KR (1) KR102148880B1 (ko)
WO (1) WO2021107337A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499183B1 (ko) * 2020-11-27 2023-02-10 주식회사 국민은행 인공지능을 이용한 기업대출 사기/사기의심 상시감사지원시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110114181A (ko) * 2010-04-13 2011-10-19 고려대학교 산학협력단 예측 정확성이 향상된 대출 심사 방법
KR101990326B1 (ko) * 2018-11-28 2019-06-18 한국인터넷진흥원 감가율 자동 조정 방식의 강화 학습 방법
KR101999765B1 (ko) * 2018-01-22 2019-07-12 주식회사 닥터퀀트 데이터마이닝 기술을 이용한 금융 사기 대출 패턴화 분석 시스템 및 방법
KR102009310B1 (ko) * 2018-10-15 2019-10-21 주식회사 에이젠글로벌 이상행위 요인 분석 시스템 및 분석 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8489499B2 (en) * 2010-01-13 2013-07-16 Corelogic Solutions, Llc System and method of detecting and assessing multiple types of risks related to mortgage lending
EP3759672A4 (en) * 2018-02-27 2021-10-13 Trans Union LLC FRAUD PREVENTION EXCHANGE SYSTEM AND METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110114181A (ko) * 2010-04-13 2011-10-19 고려대학교 산학협력단 예측 정확성이 향상된 대출 심사 방법
KR101999765B1 (ko) * 2018-01-22 2019-07-12 주식회사 닥터퀀트 데이터마이닝 기술을 이용한 금융 사기 대출 패턴화 분석 시스템 및 방법
KR102009310B1 (ko) * 2018-10-15 2019-10-21 주식회사 에이젠글로벌 이상행위 요인 분석 시스템 및 분석 방법
KR101990326B1 (ko) * 2018-11-28 2019-06-18 한국인터넷진흥원 감가율 자동 조정 방식의 강화 학습 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KWON SANG HEE: "Agile Soda "Reinforcement Learning to Solve Practical Business Problems"", ZDNET KOREA, 15 November 2019 (2019-11-15), XP055815359, Retrieved from the Internet <URL:https://zdnet.co.kr/view/?no=20191114170944> [retrieved on 20210618] *

Also Published As

Publication number Publication date
JP7111934B2 (ja) 2022-08-03
KR102148880B1 (ko) 2020-08-28
JP2022515688A (ja) 2022-02-22

Similar Documents

Publication Publication Date Title
Hannoon et al. Relationship between financial technology and financial performance
Dong et al. Operations strategy for supply chain finance with asset-backed securitization: Centralization and blockchain adoption
US20230009149A1 (en) System, method and computer program for underwriting and processing of loans using machine learning
CN111192131A (zh) 金融风险预测方法、装置和电子设备
WO2020262829A1 (en) Method and apparatus for providing service to determine in real time whether fund operating regulations are violated
CN109993652A (zh) 一种借贷信用风险评估方法及装置
CN110008336B (zh) 一种基于深度学习的舆情预警方法及系统
WO2021107337A1 (ko) 강화학습 기반의 사기 대출 분류시스템 및 방법
CN110223183A (zh) 智能保险装置、方法及系统
Szepannek et al. Facing the challenges of developing fair risk scoring models
WO2020013368A1 (ko) 물품 평가 및 암호화폐 거래 지원 시스템
KR20220030445A (ko) 매출채권 거래소의 거래위험 평가 방법 및 시스템
CN110910002B (zh) 一种应收账款违约风险识别方法及系统
Molestina Vivar et al. Burned by leverage? Flows and fragility in bond mutual funds
US20220277308A1 (en) Systems and methods for determining risk of identity fraud based on multiple fraud detection models
WO2018062716A1 (ko) 자동차 관리 방법 및 이를 실행하는 서버
KR20230119356A (ko) 리스크 관리가 가능한 선정산서비스 운영방법 및 시스템
WO2019088729A1 (ko) 여신기관의 p2p 채권 매입보증 서비스 관리 시스템
Fang The Role, Responsibilities, and Arbitration of Credit Rating Agencies in Bankruptcy Proceedings: International Experience and Insights
WO2022270947A1 (ko) 투자 가이드를 제공하는 서버, 방법 및 컴퓨터 프로그램
KR102650314B1 (ko) 암호화폐 거래 데이터를 기반으로 학습된 인공지능 모델을 활용한 차익거래 발생 예측 방법, 장치 및 시스템
WO2024053796A1 (ko) 사용자 라이프 기반의 주식종목 추천장치
WO2022114888A1 (ko) 결제 처리 시스템 및 방법
KR20220030444A (ko) 매출채권 거래소의 진성거래 판별 방법 및 시스템
Calderon Neural networks and preliminary information risk assessment in an auditing environment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020558929

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892150

Country of ref document: EP

Kind code of ref document: A1