WO2021107277A1 - Feco nanochain, method of preparing same, and electromagnetic wave-absorbing body - Google Patents

Feco nanochain, method of preparing same, and electromagnetic wave-absorbing body Download PDF

Info

Publication number
WO2021107277A1
WO2021107277A1 PCT/KR2020/002922 KR2020002922W WO2021107277A1 WO 2021107277 A1 WO2021107277 A1 WO 2021107277A1 KR 2020002922 W KR2020002922 W KR 2020002922W WO 2021107277 A1 WO2021107277 A1 WO 2021107277A1
Authority
WO
WIPO (PCT)
Prior art keywords
feco
nanochain
electromagnetic wave
present
linear structure
Prior art date
Application number
PCT/KR2020/002922
Other languages
French (fr)
Korean (ko)
Inventor
정재원
박병진
양상선
이상복
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2021107277A1 publication Critical patent/WO2021107277A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma

Definitions

  • the present invention relates to a FeCo nanochain, a method for manufacturing the same, and an electromagnetic wave absorber including the same.
  • electromagnetic wave absorbers are widely used in electromagnetic wave compatibility (EMC) and antenna electromagnetic wave measurement facilities for precise and reliable electromagnetic wave measurement in the industrial field, and in the field of military-related weapon systems, stealth (RCS) It is used to reduce unnecessary electromagnetic waves so that they are not radiated around the function and high-power electromagnetic wave radiation equipment.
  • EMC electromagnetic wave compatibility
  • RCS stealth
  • a general electromagnetic wave absorber converts unnecessary electromagnetic wave energy into thermal energy to extinguish it.
  • an electromagnetic wave absorber using magnetic materials when incident waves are incident from the outside, reflects unnecessary reflected waves at the interface and converts unnecessary electromagnetic wave energy into thermal energy from the inside. It is destroyed by heat conversion, and the required electromagnetic waves (Transmitted waves) are transmitted.
  • the electromagnetic wave absorber using a shielding material uses a conductive material such as metal to convert unnecessary electromagnetic waves incident from the outside into high-frequency currents to shield electromagnetic interference.
  • the most important characteristic is the electromagnetic wave absorption ability, and the material and shape of the electromagnetic wave absorber are different for each frequency band.
  • electromagnetic wave absorbers are broadly classified into three types: magnetic absorbers, dielectric absorbers, and conductive absorbers.
  • magnetic absorbers which is a magnetic absorber
  • dielectric absorbers which is a magnetic absorber
  • conductive absorbers ferrite, which is a magnetic absorber, has a flat plate structure and has high absorption and durability.
  • the installation cost is high and the width of the absorption area is limited.
  • the electromagnetic wave absorber used in the low band of about 30 MHz to 1 GHz is composed of a plate-shaped ferrite panel absorber. These ferrites are representative magnetic loss materials. Mn-Zn ferrite and Ni-Zn ferrite, which are soft magnetic ferrites, have high magnetic losses that affect their ability to absorb electromagnetic waves, but their magnetic losses sharply decrease in the GHz band. It does not function as a good electromagnetic wave absorber. Accordingly, the electromagnetic wave absorber used in the high band of 1 GHz to 40 GHz or more is formed in the structure of a pyramid-shaped absorber containing carbon fibers.
  • the electromagnetic wave absorber used in the broadband of 30 MHz to 40 GHz or higher is provided in a complex structure in which the absorber is combined in a pyramid shape including carbon fibers on the upper part of the ferrite panel absorber used in the low band.
  • the pyramid-shaped absorber used as such an existing broadband frequency absorber is produced by impregnating polyurethane foam with a carbon powder solution to form a surface coating, followed by molding.
  • an electromagnetic wave absorber that overcomes the problems of the conventional electromagnetic wave absorber, reduces the harmfulness of the human body due to dust generation, and improves durability by improving the physical properties of the electromagnetic wave absorber.
  • Korean Patent Laid-Open No. 10-2018-0084351 discloses an invention related to a polymer-based broadband electromagnetic wave shielding film, specifically comprising a polymer and a filler dispersed in the polymer, wherein the filler is multilayer graphene; nanotubes positioned between or on the surface of the multilayer graphene and connected to the graphene; and a nanostructure including a metal oxide connected to the nanotube, an electromagnetic wave shielding film is disclosed.
  • the above technology has problems in that the process for manufacturing a filler is not simple, it is difficult to manufacture a filler of a desired standard, and furthermore, it is difficult to uniformly disperse the filler in the polymer.
  • the inventors of the present invention have led to the present invention by studying FeCo nanochains that can be simply manufactured, particularly FeCo nanochains that can be used as an electromagnetic wave absorber, and a manufacturing method thereof.
  • An object of the present invention is to provide a FeCo nano-chain in which a plurality of nanoparticles are fused to each other on a particle surface to form a one-dimensional linear structure, a method for manufacturing the same, and an electromagnetic wave absorber including the same.
  • a plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm.
  • It provides a method for manufacturing a one-dimensional linear structure of FeCo nanochains comprising the; forming FeCo nanochains through thermal plasma synthesis.
  • a plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm to provide an electromagnetic wave absorber including FeCo nanochains.
  • a magnetic material having high permeability in a high frequency band can be provided, and it can be manufactured by a simple method, and when applied to an electromagnetic wave absorber, excellent effects can be obtained.
  • FIG. 1 is a schematic diagram showing a one-dimensional linear structure of a FeCo nanochain according to the present invention
  • the present invention provides a FeCo nanochain characterized in that a plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm.
  • the FeCo nanochain of the present invention is a FeCo nanochain that forms a one-dimensional linear structure as a plurality of nanoparticles are fused on the particle surface through mutual collision during the manufacturing process, and each nanoparticle diameter is 30 nm to 500 It is characterized in that it is nm. Since the FeCo nanochain of the present invention has a one-dimensional linear structure, it has shape magnetic anisotropy, which has the effect of improving the magnetic resonance frequency compared to the spherical particles. As the magnetic resonance frequency is improved, high permeability can be exhibited compared to spherical particles even in high frequency bands (several GHz or more), and as a result, electromagnetic wave absorption characteristics can be improved at high frequencies.
  • each of the nanoparticles of the FeCo nanochain of the present invention is less than 30 nm, the particle radius is too small and the surface area to volume is high, so the weight ratio of the particles that can be contained per unit volume is very small, so the electromagnetic wave absorption characteristics are small If the diameter exceeds 500 nm, there is a problem in that it is difficult to separate from the non-reacted micropowder in the thermal plasma method synthesis process because the particles are heavy.
  • the aspect ratio of the FeCo nanochain of the present invention is 1.5 to 15. If the aspect ratio is less than 1.5, there is a problem in that the magnetic permeability is insignificant due to low shape magnetic anisotropy, and when it exceeds 15, there is a problem in that the dielectric constant is excessively high because the particles have excessively high electronic conductivity in the particles.
  • the FeCo nanochain according to the present invention further comprises a dielectric inorganic coating on the surface.
  • the nanochain according to the present invention can control the dielectric constant by further including a dielectric inorganic coating on the surface, and ultimately, when the FeCo nanochain according to the present invention is used as a configuration of an electromagnetic wave absorber, excellent absorption performance in a broad band is obtained. There is an effect that can be exerted.
  • the dielectric inorganic coating may be a coating of various components, but in the case of silica, since TEOS obtained as a by-product in the silicone resin manufacturing process is used as a raw material, it has the advantage of being inexpensive and easy to use in the process.
  • silica coating is preferable in that a high-performance composite having various material functions can be obtained by mixing various types of metal alkoxides during the coating process.
  • the dielectric inorganic coating is not limited to silica, and various inorganic coatings having insulating properties and dielectric properties can be applied. (eg TiO2, Al2O3, ZnO, etc.)
  • the thickness of the inorganic dielectric coating coated on the FeCo nanochain of the present invention is preferably 2 nm to 200 nm.
  • the dielectric inorganic coating controls the dielectric constant and ultimately, when the FeCo nanochain according to the present invention is used as the composition of the electromagnetic wave absorber, in that it enables excellent absorption performance in a broad band, when the thickness is less than 2 nm, the dielectric constant control There is a problem that cannot be sufficiently performed, and when the thickness exceeds 200 nm, the dielectric constant becomes excessively high due to a thick coating layer, thereby lowering the electromagnetic wave absorption characteristics.
  • the FeCo nanochain of the present invention can be used as an electromagnetic wave absorber.
  • the magnetic particles for electromagnetic wave absorbers in the tens to tens of GHz band should have a one-dimensional or two-dimensional shape anisotropy rather than a spherical structure, and also have high saturation magnetization according to Sneok's limit.
  • FeCo has a saturation magnetization of 2.45T when Fe is 65wt%, indicating the highest saturation magnetization value among materials known to date.
  • the nanochain structure has a high aspect ratio, so the magnetic resonance frequency is higher than that of spherical particles due to shape magnetic anisotropy. high and consequently high permeability at high frequencies.
  • the FeCo nanochain structure of the present invention has a high saturation magnetization value of 2.3 T or more based on the FeCo composition, and at the same time has a nanochain structure, so it has a high resonance frequency due to shape magnetic anisotropy. have Therefore, it is very suitable as a material as a filler for electromagnetic wave absorbers applicable in a band of several to several tens of GHz.
  • It provides a method for manufacturing a one-dimensional linear structure of FeCo nanochains comprising the; forming FeCo nanochains through thermal plasma synthesis.
  • the manufacturing method of the present invention includes introducing a mixed powder of iron and cobalt or an alloy powder of iron and cobalt into a plasma region.
  • a mixed powder of iron and cobalt or an alloy powder of iron and cobalt is a raw material for FeCo nanochains, and when they are introduced into the plasma region, a one-dimensional linear structure is formed through collision and fusion processes.
  • a one-dimensional linear structure is formed only when iron and cobalt components are introduced into the plasma region together.
  • a spherical structure is formed instead of a one-dimensional linear structure of iron. .
  • the manufacturing method of the present invention is a step in which the raw materials introduced into the plasma region form FeCo nanochains through a thermal plasma synthesis method. Since the thermal plasma synthesis method is a known technique, a detailed description thereof will be omitted. However, in this case, in the manufacturing method of the present invention, the thermal plasma synthesis method is performed under an internal pressure condition of 0.2 bar to 3 bar in an inert argon gas or argon and hydrogen mixed gas atmosphere in order to produce a one-dimensional linear structure of FeCo nanochain. It is preferable When a reactive gas such as nitrogen is used instead of argon, a compound other than pure FeCo is generated, which can significantly lower absorption characteristics. When the pressure condition of 0.2 to 3 bar is exceeded, plasma is unstable and synthesis is difficult. There is this.
  • the manufacturing method of the present invention can manufacture a one-dimensional linear structure of FeCo nanochains by performing the manufacturing by the above method.
  • the manufacturing method of the present invention may further include the step of forming a dielectric inorganic coating layer on the surface of the FeCo nano-chain through the above steps, wherein the dielectric inorganic coating layer may be formed by various methods, It is possible to form a uniform coating layer and coating curing time according to the solvent concentration at a low temperature, and to achieve mass production, the process is not complicated, including drying of the solvent, and mass production is possible in a short time. It is preferable to be
  • the solution process means, for example, dispersing the FeCo nano-chains prepared in a mixed solvent of water and alcohol, introducing ammonia as a catalyst, and introducing TEOS to perform coating through a sol-gel process.
  • a mixed solvent of water and alcohol introducing ammonia as a catalyst
  • introducing TEOS to perform coating through a sol-gel process.
  • the dielectric inorganic coating may be a coating of various components, but in the case of silica, since TEOS obtained as a by-product in the silicone resin manufacturing process is used as a raw material, it has the advantage of being inexpensive and easy to use in the process.
  • silica coating is preferable in that a high-performance composite having various material functions can be obtained by mixing various types of metal alkoxides during the coating process.
  • the dielectric inorganic coating is not limited to silica, and various inorganic coatings having insulating properties and dielectric properties can be applied. (eg TiO2, Al2O3, ZnO, etc.)
  • the thickness of the inorganic dielectric coating coated on the FeCo nanochain of the present invention is preferably 2 nm to 200 nm.
  • the dielectric inorganic coating controls the dielectric constant and ultimately, when the FeCo nanochain according to the present invention is used as the composition of the electromagnetic wave absorber, in that it enables excellent absorption performance in a broad band, when the thickness is less than 2 nm, the dielectric constant control There is a problem that cannot be sufficiently performed, and when the thickness exceeds 200 nm, the dielectric constant becomes excessively high due to a thick coating layer, thereby lowering the electromagnetic wave absorption characteristics.
  • the weight ratio of iron and cobalt used as raw materials in the production method of the present invention is preferably 7:3 to 4:6.
  • the weight ratio of iron and cobalt is out of the above range, there is a problem in that the saturation magnetization value is lowered due to the low Co content, or the Co particles are separately formed because the Co content is too high.
  • the manufacturing method of the present invention can manufacture a one-dimensional linear structure of FeCo nanochains by a simple method, and since the manufactured FeCo nanochains have excellent electromagnetic wave absorption performance in a broad band, it can be applied to various application fields such as national defense.
  • the present invention provides an electromagnetic wave absorber comprising FeCo nano-chains in which a plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm.
  • the electromagnetic wave absorber of the present invention has a very simple manufacturing process, has a high surface area (surface area effect), and is a bulk material consisting of hundreds of millions of nanomaterial particles or more compared to the conventional electromagnetic wave absorber in the form of a nanorod, which is difficult to manufacture.
  • Excellent optical and physical properties based on the expressed quantum size effect have advantages that can be expected as an electromagnetic wave absorber.
  • FIG. 2 is an SEM photograph of a case where only Fe was used as a raw material and a Fe:Co ratio of 6:4 among the following experimental examples.
  • PL-35 equipment of TEKNA Plasma System of Canada was used, and argon gas was flowed at a flow rate of 80, 15, and 5 lpm as sheath gas, central gas, and carrier gas, respectively.
  • Plasma was ignited under the condition of 2.5 kW and stabilized by increasing the output to 28 kW, and then, using a powder feeder, the raw material powder was injected into the thermal plasma formation area in the chamber together with the carrier gas at a feeding rate of 5 g/min.
  • the raw material powder is CIP (carbonyl iron powder) powder (BASF) having an average particle size of 5 ⁇ m and pure Co powder having an average particle size of 1 ⁇ m in a weight ratio of 7:3, 6:4, 5:5, 4:6, It was prepared by mixing at a mixing ratio of 3:7.
  • the mixed raw material powder injected into the thermal plasma chamber is vaporized while passing through a high-temperature thermal plasma region (>10000 K), and then, as it cools, nucleation and growth occur to form spherical FeCo nanoparticles, and then the nanoparticles collide. and sintered on the surface to form final FeCo nano-chain particles.
  • FeCo nanochains synthesized in the gas phase are finally collected by filtering by a metal filter in a collection chamber.
  • FeCo nanochain particles were produced with a yield of about 30% by injecting raw materials at a condition of 5 g/min, and the thermal plasma synthesis process is a continuous process, so it can be continuously manufactured without a batch concept.
  • the FeCo nanochain prepared in the process of Experimental Example 1 was confirmed by TEM, and the result is shown in FIG. 3 .
  • FIG. 3 it can be confirmed that, in fact, it has a one-dimensional linear structure, which is a FeCo nanochain manufactured by the manufacturing method of the present invention.
  • FeCo nanochains were prepared in the same manner as in Experimental Example 1, but FeCo nanochains were prepared by changing the weight ratio of iron powder and cobalt powder to 3:7, 4:6, 5:5, 7:3, and as a result, was confirmed by SEM (TSCAN (MIRA3 LM)) and shown in FIG. 4 .
  • the manufactured nanochain still maintains a one-dimensional linear structure even when the weight ratio of iron and cobalt is changed in the range of 3:7 to 7:3.
  • the specimen prepared by stirring at a weight ratio of 1:1 with an epoxy resin and curing it at 180°C for 3 hours was tested using a Keysight 85051B coaxial tube and a Keysight N5222B Network Analyzer. After measuring the scattering coefficient by the coaxial tube method, the dielectric constant and the magnetic permeability were confirmed using the Keysight N1500A software, and the results are shown in FIG. 5 .
  • the real part of the permittivity of the nanochain manufactured by the method according to the present invention is 10 or more, the real part of the permeability is 1.5, and the imaginary part is excellent at the level of 0.5.
  • the FeCo nanochain was prepared by the method in which the Fe:Co weight ratio was 6:4 in the method of Experimental Example 1, and the existing materials used for comparison are as follows: BASF's carbonyl iron powder (model name EW), BASF Carbonyl iron powder (model name SQ) of the company, a nanopowder of the EW itself (CIP EW nanopowder), FeCo micropowder having an average particle diameter of 3.8 micrometers prepared by manufacturing an FeCo ingot and gas spraying. After measuring the scattering coefficient by coaxial tube method using Keysight 85051B coaxial tube and Keysight N5222B Network Analyzer, the dielectric constant and permeability were confirmed using Keysight N1500A software.
  • FIG. 6 The results of the experiment are shown in FIG. 6 . According to FIG. 6 , it can be confirmed that the FeCo nanochain according to the present invention has remarkably excellent dielectric constant and magnetic permeability compared to conventional electromagnetic wave absorber materials.
  • a known sol-gel process was used for the ceramic coating.
  • a TEOS solution was mixed with ethanol, and an aqueous ammonia (NH 4 OH) solution was mixed with distilled water, respectively, and stirred at 60° C. for 15 minutes.
  • FeCo nanochains prepared in an Fe:Co ratio of 6:4 in Experimental Example 1 were introduced into the mixed solution, and while stirring at room temperature for 45 minutes, coating the surface dielectric layer through hydrolysis reaction was performed. Thereafter, the coated nanochain was separated from the solution, and it was completely dried at a temperature of 70° C. in a vacuum chamber.
  • the nanochain dried by the above method was confirmed by TEM equipment, and the results are shown in FIG. 7 .
  • the silica coating layer is soundly formed on the surface of the actual FeCo nanochain.
  • the electromagnetic wave absorber including the FeCo nanochain of the present invention has excellent electromagnetic wave absorption performance in a wider band compared to existing materials, and thus, the FeCo nanochain of the present invention When used as this electromagnetic wave absorber, it can be confirmed that it has significantly superior performance than existing materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The object of the present invention is to provide a FeCo nanochain in which a plurality of nanoparticles are fused to one another on the surfaces thereof to form a one-dimensional linear structure; a method of preparing same; and an electromagnetic wave-absorbing body comprising same. To this end, the present invention provides a FeCo nanochain characterized in that a plurality of nanoparticles are fused to one another on the surfaces thereof to form a one-dimensional linear structure, each nanoparticle having a diameter of 30 nm to 500 nm. In addition, the present invention provides a method of preparing the FeCo nanochain having a one-dimensional linear structure. In addition, the present invention provides an electromagnetic wave-absorbing body comprising the FeCo nanochain in which a plurality of nanoparticles are fused to one another on the surfaces thereof to form a one-dimensional linear structure, each nanoparticle having a diameter of 30 nm to 500 nm. According to the present invention, it is possible to provide a magnetic material having a high permeability in a high frequency range and prepare the magnetic material by a simple method, and when the magnetic material is applied to an electromagnetic wave-absorbing body, desirable effects may be obtained.

Description

FECO 나노 체인, 이의 제조방법 및 이를 포함하는 전자파 흡수체FECO nano chain, manufacturing method thereof, and electromagnetic wave absorber including same
본 발명은 FeCo 나노 체인, 이의 제조방법, 및 이를 포함하는 전자파 흡수체에 관한 것이다.The present invention relates to a FeCo nanochain, a method for manufacturing the same, and an electromagnetic wave absorber including the same.
전기전자 부품 산업과 통신 산업의 눈부신 발전으로 가정, 산업 현장, 군 무기체계 등에 많은 기여를 하고 있으며, 이러한 전기전자 부품들은 소형화, 저전력화, 고집적화되면서 전자파에 대한 내성 약화로 인한 장비 오동작 및 기능 저하가 많이 발생되고 있다.With the remarkable development of the electrical and electronic parts industry and the telecommunication industry, it is contributing a lot to homes, industrial sites, and military weapon systems. As these electrical and electronic parts are miniaturized, low-power, and highly integrated, equipment malfunctions and functional deterioration due to weakened immunity to electromagnetic waves. is occurring a lot.
또한 국가 안보에 관련된 전술 지휘 통제 체계(C4I) 시설의 고출력 전자기파(EMP, HPM)로부터 보호하기 위한 방호 시설에 대한 연구와 국가 차원에서의 보호 시설 투자가 중장기적으로 이루어지고 있으며, 이러한 시설 내외부의 전자 장비를 보호하기 위한 전자파 흡수체(또는 차폐) 기능의 핵심 부품이 꼭 필요하다.In addition, research on protection facilities to protect against high-power electromagnetic waves (EMP, HPM) of tactical command and control system (C4I) facilities related to national security and investment in protection facilities at the national level are being carried out in the mid- to long-term. The core part of the electromagnetic wave absorber (or shielding) function to protect electronic equipment is absolutely necessary.
이러한 전자파 흡수체는 산업 분야에서 정밀하고 신뢰성 있는 전자파 측정을 위한 전자기파 적합성(EMC) 및 안테나(Antenna)의 전자파 측정 시설 등에 많이 사용되고 있으며, 군 관련 무기 체계 분야에서는 적의 레이더로부터 탐지되지 않게 스텔스(RCS) 기능과 고출력 전자파 방사 장비 주변으로 불필요한 전자파가 방사되지 않게 감소시키기 위하여 사용되고 있다.These electromagnetic wave absorbers are widely used in electromagnetic wave compatibility (EMC) and antenna electromagnetic wave measurement facilities for precise and reliable electromagnetic wave measurement in the industrial field, and in the field of military-related weapon systems, stealth (RCS) It is used to reduce unnecessary electromagnetic waves so that they are not radiated around the function and high-power electromagnetic wave radiation equipment.
일반적인 전자파 흡수체는 전자파가 외부로부터 입사되면, 불필요한 전자파 에너지를 열 에너지로 변환하여 소멸시키는 역할을 한다. 예를 들어, 자성 물질(Magnetic materials)을 이용하는 전자파 흡수체(Microwave Absorber)는 외부로부터 전자파(Incident waves)가 입사되면, 경계면에서 불필요한 전자파(Reflected waves)를 반사시키고 불필요한 전자파 에너지를 내부에서 열 에너지로 변환(Heat Conversion)하여 소멸시키며, 필요한 전자파(Transmitted waves)는 투과시킨다. 또 다른 예로서, 차폐 물질(Shielding Materials)을 이용하는 전자파 흡수체는 금속 등의 전도성 재질을 이용하여 외부로부터 입사되는 불필요한 전자파를 고주파수 전류로 변환하여 전자파 간섭을 차폐시킨다. 이와 같은 전자파 흡수체의 성능 중 제일 중요한 특성은 전자파 흡수 능력으로, 주파수 대역별로 전자파 흡수체의 재질 및 형태를 달리하고 있다.When an electromagnetic wave is incident from the outside, a general electromagnetic wave absorber converts unnecessary electromagnetic wave energy into thermal energy to extinguish it. For example, an electromagnetic wave absorber using magnetic materials, when incident waves are incident from the outside, reflects unnecessary reflected waves at the interface and converts unnecessary electromagnetic wave energy into thermal energy from the inside. It is destroyed by heat conversion, and the required electromagnetic waves (Transmitted waves) are transmitted. As another example, the electromagnetic wave absorber using a shielding material uses a conductive material such as metal to convert unnecessary electromagnetic waves incident from the outside into high-frequency currents to shield electromagnetic interference. Among the performance of the electromagnetic wave absorber, the most important characteristic is the electromagnetic wave absorption ability, and the material and shape of the electromagnetic wave absorber are different for each frequency band.
전자파를 열 에너지로 변환하는 방식에 따라 전자파 흡수체는 자성 흡수체, 유전성 흡수체, 도전성 흡수체의 3가지로 크게 분류한다. 이 가운데 자성 흡수체인 페라이트(Ferrite)는 그 구조가 평판형으로 되어 있고, 높은 흡수율과 내구성을 가진다. 또 열에 견뎌내는 장점이 있는 반면, 설치 비용이 비싸고 흡수 영역 폭에 한계가 있다.According to the method of converting electromagnetic waves into thermal energy, electromagnetic wave absorbers are broadly classified into three types: magnetic absorbers, dielectric absorbers, and conductive absorbers. Among them, ferrite, which is a magnetic absorber, has a flat plate structure and has high absorption and durability. In addition, while it has the advantage of tolerating heat, the installation cost is high and the width of the absorption area is limited.
예를 들어, 30 MHz에서 1 GHz 가량의 저대역에 사용되는 전자파 흡수체는 판 형상의 페라이트 패널 흡수체의 구조로 구성된다. 이러한 페라이트는 대표적인 자성 손실 재료로, 연자성 페라이트인 Mn-Zn 페라이트와 Ni-Zn 페라이트는 전자파 흡수 능력에 영향을 주는 자기적 손실이 높지만, GHz 대역에서 자기 손실이 급격하게 줄기 때문에 GHz 대역의 주파수에 좋은 전자파 흡수체로서의 기능을 하지 못한다. 이에, 1 GHz 에서 40 GHz 이상의 고대역에서 사용되는 전자파 흡수체는 탄소 섬유가 포함된 피라미드 형의 흡수체의 구조로 형성된다.For example, the electromagnetic wave absorber used in the low band of about 30 MHz to 1 GHz is composed of a plate-shaped ferrite panel absorber. These ferrites are representative magnetic loss materials. Mn-Zn ferrite and Ni-Zn ferrite, which are soft magnetic ferrites, have high magnetic losses that affect their ability to absorb electromagnetic waves, but their magnetic losses sharply decrease in the GHz band. It does not function as a good electromagnetic wave absorber. Accordingly, the electromagnetic wave absorber used in the high band of 1 GHz to 40 GHz or more is formed in the structure of a pyramid-shaped absorber containing carbon fibers.
아울러, 30 MHz에서 40 GHz 이상의 광대역에서 사용되는 전자파 흡수체는 저대역에 사용되는 페라이트 패널 흡수체 상부에 탄소 섬유가 포함된 피라미드 형상으로 흡수체가 결합되는 복합형 구조로 구비된다.In addition, the electromagnetic wave absorber used in the broadband of 30 MHz to 40 GHz or higher is provided in a complex structure in which the absorber is combined in a pyramid shape including carbon fibers on the upper part of the ferrite panel absorber used in the low band.
이러한 기존의 광대역 주파수 흡수체로 사용되는 피라미드 형상의 흡수체는 발포 폴리우레탄에 카본 분말액에 함침시켜 표면 코팅이 이루어지도록 한 다음, 성형을 거쳐 생산된다.The pyramid-shaped absorber used as such an existing broadband frequency absorber is produced by impregnating polyurethane foam with a carbon powder solution to form a surface coating, followed by molding.
그러나 이러한 종래의 전자파 흡수체는 호흡기 및 암 질환을 유발하는 분진을 발생시켜 인체에 유해하며, 짧은 수명 주기에 따라 기존 제품 폐기 처리 비용이 발생되며, 환경 오염에 악영향을 미치게 된다.However, these conventional electromagnetic wave absorbers are harmful to the human body by generating dust that causes respiratory and cancer diseases, and the cost of disposing of existing products according to a short life cycle occurs, and adversely affects environmental pollution.
따라서, 이러한 종래 전자파 흡수체의 문제점을 극복하고 분진 발생으로 인한 인체의 유해성을 줄이도록 하며, 전자파 흡수체의 물성 재질을 개선시켜 내구성을 강화시키도록 하는 전자파 흡수체에 대한 요구가 높아지고 있는 실정이다.Accordingly, there is a growing demand for an electromagnetic wave absorber that overcomes the problems of the conventional electromagnetic wave absorber, reduces the harmfulness of the human body due to dust generation, and improves durability by improving the physical properties of the electromagnetic wave absorber.
예를 들어 대한민국 공개특허 제10-2018-0084351호는 고분자 기반 광대역 전자파 차폐 필름에 관한 발명으로, 구체적으로는 고분자 및 고분자에 분산된 필러를 포함하고, 상기 필러가, 다층 그래핀; 상기 다층 그래핀의 층 사이 혹은 표면에 위치하며 그래핀과 연결되어 있는 나노 튜브; 및 상기 나노 튜브에 연결되어 있는 금속 산화물을 포함하는 나노구조체를 포함하는, 전자파 차폐 필름을 개시한다. 그러나 상기 기술은 필러를 제조하는 공정이 간단하지 않고, 원하는 규격의 필러를 제조하기가 어려우며, 나아가 고분자 내에 필러를 균일하게 분산시키기 어려운 문제점이 있다.For example, Korean Patent Laid-Open No. 10-2018-0084351 discloses an invention related to a polymer-based broadband electromagnetic wave shielding film, specifically comprising a polymer and a filler dispersed in the polymer, wherein the filler is multilayer graphene; nanotubes positioned between or on the surface of the multilayer graphene and connected to the graphene; and a nanostructure including a metal oxide connected to the nanotube, an electromagnetic wave shielding film is disclosed. However, the above technology has problems in that the process for manufacturing a filler is not simple, it is difficult to manufacture a filler of a desired standard, and furthermore, it is difficult to uniformly disperse the filler in the polymer.
이에 본 발명의 발명자들은 간단하게 제조할 수 있는 FeCo 나노 체인, 특히 전자파 흡수체로 사용할 수 있는 FeCo 나노 체인 및 이의 제조방법을 연구하여 본 발명에 이르게 되었다.Accordingly, the inventors of the present invention have led to the present invention by studying FeCo nanochains that can be simply manufactured, particularly FeCo nanochains that can be used as an electromagnetic wave absorber, and a manufacturing method thereof.
본 발명의 목적은 복수의 나노입자가 서로 입자 표면에서 융착되어 1차원 선형 구조를 형성하는 FeCo 나노 체인, 이의 제조방법 및 이를 포함하는 전자파 흡수체를 제공하는데 있다.An object of the present invention is to provide a FeCo nano-chain in which a plurality of nanoparticles are fused to each other on a particle surface to form a one-dimensional linear structure, a method for manufacturing the same, and an electromagnetic wave absorber including the same.
이를 위하여 본 발명은 To this end, the present invention
복수의 나노입자가 서로 입자 표면에서 융착되어 1차원 선형 구조를 형성하고, 각각의 나노입자 직경은 30 nm 내지 500 nm인 것을 특징으로 하는 FeCo 나노 체인을 제공한다.A plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm.
또한, 본 발명은 Also, the present invention
철과 코발트의 혼합분말 또는 철과 코발트의 합금분말을 플라즈마 영역으로 도입하는 단계; 및introducing a mixed powder of iron and cobalt or an alloy powder of iron and cobalt into the plasma region; and
열플라즈마 합성법을 통하여 FeCo 나노 체인을 형성하는 단계;를 포함하는 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법을 제공한다.It provides a method for manufacturing a one-dimensional linear structure of FeCo nanochains comprising the; forming FeCo nanochains through thermal plasma synthesis.
나아가 본 발명은Furthermore, the present invention
복수의 나노입자가 서로 입자 표면에서 융착되어 1차원 선형 구조를 형성하고, 각각의 나노입자 직경은 30 nm 내지 500 nm인 FeCo 나노 체인을 포함하는 전자파 흡수체를 제공한다.A plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm to provide an electromagnetic wave absorber including FeCo nanochains.
본 발명에 따르면, 고주파 대역에서 고투자율을 가지는 자성 소재를 제공할 수 있고, 또한, 이를 간단한 방법으로 제조할 수 있으며, 이를 전자파 흡수체에 적용할 경우, 우수한 효과를 얻을 수 있다.According to the present invention, a magnetic material having high permeability in a high frequency band can be provided, and it can be manufactured by a simple method, and when applied to an electromagnetic wave absorber, excellent effects can be obtained.
도 1은 본 발명에 따른 FeCo 나노체인의 1차원 선형구조를 보여주는 모식도이고,1 is a schematic diagram showing a one-dimensional linear structure of a FeCo nanochain according to the present invention,
도 2는 철 만을 원료로 한 경우와, 철과 코발트를 원료로 한 경우 제조되는 구조물의 SEM 사진이고,2 is a SEM photograph of a structure manufactured when only iron is used as a raw material and when iron and cobalt are used as raw materials;
도 3은 본 발명의 제조방법으로 제조된 FeCo 나노체인의 TEM 사진이고,3 is a TEM photograph of the FeCo nanochain prepared by the manufacturing method of the present invention;
도 4는 조성비에 따라 제조되는 FeCo 나노체인의 SEM 사진이고, 4 is an SEM photograph of FeCo nanochains prepared according to the composition ratio;
도 5는 본 발명의 FeCo 나노체인의 유전율과 투자율을 보여주는 그래프이고,5 is a graph showing the dielectric constant and permeability of the FeCo nanochain of the present invention,
도 6은 본 발명의 FeCo 나노체인과 공지 물질들의 유전율과 투자율 비교 그래프이고,6 is a graph comparing the dielectric constant and permeability of the FeCo nanochain of the present invention and known materials,
도 7은 본 발명의 FeCo 나노체인 표면에 실리카 코팅층이 형성된 TEM 사진이고, 및7 is a TEM photograph in which a silica coating layer is formed on the surface of the FeCo nanochain of the present invention, and
도 8 내지 도 11은 본 발명의 FeCo 나노체인을 포함하는 전자파 흡수체의 성능을 확인할 수 있는 실험 결과 그래프이다,8 to 11 are graphs of experimental results that can confirm the performance of the electromagnetic wave absorber including the FeCo nanochain of the present invention,
본 발명은 복수의 나노입자가 서로 입자 표면에서 융착되어 1차원 선형 구조를 형성하고, 각각의 나노입자 직경은 30 nm 내지 500 nm인 것을 특징으로 하는 FeCo 나노 체인을 제공한다.The present invention provides a FeCo nanochain characterized in that a plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm.
본 발명의 FeCo 나노 체인은 제조과정에서 복수의 나노 입자가 상호간 충돌을 통하여 서로 입자 표면에서 융착함에 따라, 1차원 선형 구조를 형성하게 되는 FeCo 나노 체인으로, 각각의 나노입자 직경은 30 nm 내지 500 nm인 것을 특징으로 한다. 본 발명의 FeCo 나노 체인은 1차원 선형 구조를 갖기 때문에 형상 자기 이방성을 가지게 되며, 이로 인해 구형의 입자 대비 자기 공명 주파수 (Magnetic resonance frequency)가 향상되는 효과를 가진다. 자기 공명 주파수가 향상되어 고주파 대역 (수 GHz 이상)에서도 구형 입자 대비 높은 투자율을 나타낼 수 있으며, 결과적으로 고주파에서 전자파 흡수 특성이 향상될 수 있다.The FeCo nanochain of the present invention is a FeCo nanochain that forms a one-dimensional linear structure as a plurality of nanoparticles are fused on the particle surface through mutual collision during the manufacturing process, and each nanoparticle diameter is 30 nm to 500 It is characterized in that it is nm. Since the FeCo nanochain of the present invention has a one-dimensional linear structure, it has shape magnetic anisotropy, which has the effect of improving the magnetic resonance frequency compared to the spherical particles. As the magnetic resonance frequency is improved, high permeability can be exhibited compared to spherical particles even in high frequency bands (several GHz or more), and as a result, electromagnetic wave absorption characteristics can be improved at high frequencies.
또한, 본 발명의 FeCo 나노 체인의 각각의 나노입자의 직경이 30 nm 미만인 경우에는 입자 반경이 지나치게 작아 부피 대비 표면적이 높아 단위 부피당 함유 가능한 입자의 무게 비율이 매우 작아져 전자파 흡수 특성이 작아지는 문제점이 있으며, 그 직경이 500 nm를 초과하는 경우에는 입자가 무거워 열플라즈마법 합성과정에서 반응 미참여 마이크로 분말과의 분리가 어렵다는 문제점이 있다.In addition, when the diameter of each of the nanoparticles of the FeCo nanochain of the present invention is less than 30 nm, the particle radius is too small and the surface area to volume is high, so the weight ratio of the particles that can be contained per unit volume is very small, so the electromagnetic wave absorption characteristics are small If the diameter exceeds 500 nm, there is a problem in that it is difficult to separate from the non-reacted micropowder in the thermal plasma method synthesis process because the particles are heavy.
이때, 본 발명의 FeCo 나노 체인의 종횡비는 1.5 내지 15인 것이 바람직하다. 만약 상기 종횡비가 1.5 미만인 경우에는 형상 자기 이방성이 낮아 투자율 향상이 미미한 문제점이 있고, 15를 초과하는 경우에는 입자들이 입자 내에서 전자 전도도가 지나치게 높아 유전율이 지나치게 높아지는 문제점이 있다.At this time, it is preferable that the aspect ratio of the FeCo nanochain of the present invention is 1.5 to 15. If the aspect ratio is less than 1.5, there is a problem in that the magnetic permeability is insignificant due to low shape magnetic anisotropy, and when it exceeds 15, there is a problem in that the dielectric constant is excessively high because the particles have excessively high electronic conductivity in the particles.
본 발명에 따른 FeCo 나노 체인은 표면에 유전성 무기 코팅을 더 포함하는 것이 바람직하다. 본 발명에 따른 나노 체인은 표면에 유전성 무기 코팅을 더 포함하여 유전율을 제어하는 것이 가능하고, 궁극적으로는 본 발명에 따른 FeCo 나노 체인을 전자파 흡수체의 구성으로 사용하는 경우, 광대역에서 우수한 흡수 성능을 발휘할 수 있는 효과가 있다.It is preferable that the FeCo nanochain according to the present invention further comprises a dielectric inorganic coating on the surface. The nanochain according to the present invention can control the dielectric constant by further including a dielectric inorganic coating on the surface, and ultimately, when the FeCo nanochain according to the present invention is used as a configuration of an electromagnetic wave absorber, excellent absorption performance in a broad band is obtained. There is an effect that can be exerted.
상기 유전성 무기 코팅은 다양한 성분의 코팅일 수 있으나, 실리카의 경우 원재료로 실리콘 수지 제조공정에서 부산물로 얻어지는 TEOS를 이용하기 때문에 가격이 싸고 공정에 이용하기 쉽다는 장점을 가진다. 또한, 코팅 공정 과정에서 다양한 종류의 메탈 알콕사이드의 혼합이 가능함으로써 재료적으로 여러 기능을 갖는 고성능 복합체를 얻을 수 있다는 점에서 실리카 코팅인 것이 바람직하다. 하지만, 유전 무기 코팅은 실리카에 한정되지 않고 절연성을 띄며 유전특성을 나타내는 다양한 무기 코팅을 적용할 수 있다. (예: TiO2, Al2O3, ZnO, 등) The dielectric inorganic coating may be a coating of various components, but in the case of silica, since TEOS obtained as a by-product in the silicone resin manufacturing process is used as a raw material, it has the advantage of being inexpensive and easy to use in the process. In addition, silica coating is preferable in that a high-performance composite having various material functions can be obtained by mixing various types of metal alkoxides during the coating process. However, the dielectric inorganic coating is not limited to silica, and various inorganic coatings having insulating properties and dielectric properties can be applied. (eg TiO2, Al2O3, ZnO, etc.)
본 발명의 FeCo 나노 체인에 코팅되는 유전성 무기 코팅의 두께는 2 nm 내지 200 nm인 것이 바람직하다. 유전성 무기 코팅은 유전율을 제어하여 궁극적으로 본 발명에 따른 FeCo 나노체인을 전자파 흡수체의 구성으로 사용하는 경우, 광대역에서 우수한 흡수 성능을 발휘할 수 있게 한다는 점에서, 그 두께가 2 nm 미만인 경우에는 유전율 제어를 충분히 수행할 수 없다는 문제점이 있고, 그 두께가 200 nm를 초과하는 경우에는 두꺼운 코팅층으로 인해 유전율이 지나치게 높아져 전자파 흡수 특성이 낮아지는 문제점이 있다. The thickness of the inorganic dielectric coating coated on the FeCo nanochain of the present invention is preferably 2 nm to 200 nm. The dielectric inorganic coating controls the dielectric constant and ultimately, when the FeCo nanochain according to the present invention is used as the composition of the electromagnetic wave absorber, in that it enables excellent absorption performance in a broad band, when the thickness is less than 2 nm, the dielectric constant control There is a problem that cannot be sufficiently performed, and when the thickness exceeds 200 nm, the dielectric constant becomes excessively high due to a thick coating layer, thereby lowering the electromagnetic wave absorption characteristics.
본 발명의 FeCo 나노체인은 전자파 흡수체로 사용될 수 있다. 수~수십 GHz 대역 전자파 흡수체용 자성 입자는 해당 주파수에서 1 이상의 높은 투자율을 가지기 위하여, 구형 구조가 아닌 1차원 혹은 2차원 형태의 형상 이방성을 가져야 하며, 또한 Sneok's limit에 따라 포화자화가 높아야 한다. FeCo는 Fe가 65wt%일 때 포화자화가 2.45T로 보고되어 현재까지 알려진 소재 중 가장 높은 포화자화 값을 나타내며, 나노체인 구조는 높은 종횡비를 가져 형상 자기 이방성에 기인하여 구형 입자 대비 자기 공명 주파수가 높고 결과적으로 고주파에서 높은 투자율을 가진다. 본 발명의 FeCo 나노체인 구조는 FeCo 조성에 기반하여 2.3 T 이상의 높은 포화자화 값을 가지며 동시에 나노체인 구조를 가져 형상자기 이방성으로 공명주파수가 높으며, 결과적으로 8 GHz 이상의 고주파에서 기존 소재 대비 높은 투자율을 가진다. 따라서, 수~수십 GHz 대역에서 적용가능한 전자파 흡수체용 필러 (filler)로 소재로써 매우 적합하다.The FeCo nanochain of the present invention can be used as an electromagnetic wave absorber. In order to have a high magnetic permeability of 1 or more at the corresponding frequency, the magnetic particles for electromagnetic wave absorbers in the tens to tens of GHz band should have a one-dimensional or two-dimensional shape anisotropy rather than a spherical structure, and also have high saturation magnetization according to Sneok's limit. FeCo has a saturation magnetization of 2.45T when Fe is 65wt%, indicating the highest saturation magnetization value among materials known to date. The nanochain structure has a high aspect ratio, so the magnetic resonance frequency is higher than that of spherical particles due to shape magnetic anisotropy. high and consequently high permeability at high frequencies. The FeCo nanochain structure of the present invention has a high saturation magnetization value of 2.3 T or more based on the FeCo composition, and at the same time has a nanochain structure, so it has a high resonance frequency due to shape magnetic anisotropy. have Therefore, it is very suitable as a material as a filler for electromagnetic wave absorbers applicable in a band of several to several tens of GHz.
또한, 본 발명은 Also, the present invention
철과 코발트의 혼합분말 또는 철과 코발트의 합금분말을 플라즈마 영역으로 도입하는 단계; 및introducing a mixed powder of iron and cobalt or an alloy powder of iron and cobalt into the plasma region; and
열플라즈마 합성법을 통하여 FeCo 나노 체인을 형성하는 단계;를 포함하는 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법을 제공한다.It provides a method for manufacturing a one-dimensional linear structure of FeCo nanochains comprising the; forming FeCo nanochains through thermal plasma synthesis.
이하 본 발명의 제조방법을 각 단계별로 상세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in detail for each step.
본 발명의 제조방법은 철과 코발트의 혼합분말 또는 철과 코발트의 합금분말을 플라즈마 영역으로 도입하는 단계를 포함한다. 철과 코발트의 혼합분말 또는 철과 코발트의 합금분말은 FeCo 나노체인의 원료로, 이들이 플라즈마 영역으로 도입되면 충돌 및 융착 과정으로 통하여 1차원 선형 구조를 형성하게 된다. 단, 철과 코발트 성분이 함께 플라즈마 영역으로 도입되어야 1차원 선형 구조가 형성되고, 예를 들어 철만 플라즈마 영역으로 도입되는 경우, 철의 1차원 선형 구조가 형성되는 것이 아니라, 구형 구조가 형성이 된다.The manufacturing method of the present invention includes introducing a mixed powder of iron and cobalt or an alloy powder of iron and cobalt into a plasma region. A mixed powder of iron and cobalt or an alloy powder of iron and cobalt is a raw material for FeCo nanochains, and when they are introduced into the plasma region, a one-dimensional linear structure is formed through collision and fusion processes. However, a one-dimensional linear structure is formed only when iron and cobalt components are introduced into the plasma region together. For example, when only iron is introduced into the plasma region, a spherical structure is formed instead of a one-dimensional linear structure of iron. .
본 발명의 제조방법은 플라즈마 영역으로 도입된 상기 원료들이 열플라즈마 합성법을 통하여 FeCo 나노 체인을 형성하는 단계로, 열플라즈마 합성법은 공지의 기술이기 때문에, 이에 대한 구체적인 설명은 생략한다. 다만, 이때 본 발명의 제조방법에서 1차원 선형 구조의 FeCo 나노 체인을 제조하기 위하여 상기 열플라즈마 합성법은 비활성의 아르곤 가스 혹은 아르곤과 수소 혼합 가스 분위기에서 0.2 bar ~ 3 bar의 내부 압력 조건에서 수행되는 것이 바람직하다. 아르곤이 아닌 질소 등의 반응성 가스를 이용할 경우, 순수 FeCo가 아닌 화합물이 생성되어 흡수 특성이 현저히 낮아 질 수 있으며, 0.2~3 bar의 압력 조건을 벗어날 경우, 플라즈마가 불안정하게 형성되어 합성이 어려운 문제점이 있다.The manufacturing method of the present invention is a step in which the raw materials introduced into the plasma region form FeCo nanochains through a thermal plasma synthesis method. Since the thermal plasma synthesis method is a known technique, a detailed description thereof will be omitted. However, in this case, in the manufacturing method of the present invention, the thermal plasma synthesis method is performed under an internal pressure condition of 0.2 bar to 3 bar in an inert argon gas or argon and hydrogen mixed gas atmosphere in order to produce a one-dimensional linear structure of FeCo nanochain. it is preferable When a reactive gas such as nitrogen is used instead of argon, a compound other than pure FeCo is generated, which can significantly lower absorption characteristics. When the pressure condition of 0.2 to 3 bar is exceeded, plasma is unstable and synthesis is difficult. There is this.
본 발명의 제조방법은 상기 방법으로 제조를 수행함으로써, 1차원 선형구조의 FeCo 나노 체인을 제조할 수 있다.The manufacturing method of the present invention can manufacture a one-dimensional linear structure of FeCo nanochains by performing the manufacturing by the above method.
한편, 본 발명의 제조방법은 상기 단계들을 통하여 FeCo 나노 체인을 형성한 후, 이의 표면에 유전성 무기 코팅층을 형성하는 단계를 더 포함할 수 있으며, 이때 유전성 무기 코팅층은 다양한 방법으로 형성될 수 있으나, 낮은 온도에서 용매 농도에 따른 코팅경화 시간 및 균일한 코팅층의 형성이 가능하고, 또한 양산화를 이루기 위해서는 용매의 건조 등을 포함하여 공정이 복잡하지 않고 짧은 시간에 대량화가 가능하다는 이유로 용액공정을 통하여 수행되는 것이 바람직하다. On the other hand, the manufacturing method of the present invention may further include the step of forming a dielectric inorganic coating layer on the surface of the FeCo nano-chain through the above steps, wherein the dielectric inorganic coating layer may be formed by various methods, It is possible to form a uniform coating layer and coating curing time according to the solvent concentration at a low temperature, and to achieve mass production, the process is not complicated, including drying of the solvent, and mass production is possible in a short time. It is preferable to be
본 발명에서 용액공정이란 예를 들어, 물과 알코올의 혼합용매에 제조된 FeCo 나노 체인을 분산시키고, 이에 암모니아를 촉매로 도입하고, TEOS 등을 도입하여 졸-겔 공정을 통하여 코팅을 수행하는 것을 의미하는 것으로, 이는 공지의 공정이므로 추가적인 구체적인 설명은 생략한다.In the present invention, the solution process means, for example, dispersing the FeCo nano-chains prepared in a mixed solvent of water and alcohol, introducing ammonia as a catalyst, and introducing TEOS to perform coating through a sol-gel process. In other words, since this is a known process, an additional detailed description will be omitted.
상기 유전성 무기 코팅은 다양한 성분의 코팅일 수 있으나, 실리카의 경우 원재료로 실리콘 수지 제조공정에서 부산물로 얻어지는 TEOS를 이용하기 때문에 가격이 싸고 공정에 이용하기 쉽다는 장점을 가진다. 또한, 코팅 공정 과정에서 다양한 종류의 메탈 알콕사이드의 혼합이 가능함으로써 재료적으로 여러 기능을 갖는 고성능 복합체를 얻을 수 있다는 점에서 실리카 코팅인 것이 바람직하다. 하지만, 유전 무기 코팅은 실리카에 한정되지 않고 절연성을 띄며 유전특성을 나타내는 다양한 무기 코팅을 적용할 수 있다. (예: TiO2, Al2O3, ZnO, 등)The dielectric inorganic coating may be a coating of various components, but in the case of silica, since TEOS obtained as a by-product in the silicone resin manufacturing process is used as a raw material, it has the advantage of being inexpensive and easy to use in the process. In addition, silica coating is preferable in that a high-performance composite having various material functions can be obtained by mixing various types of metal alkoxides during the coating process. However, the dielectric inorganic coating is not limited to silica, and various inorganic coatings having insulating properties and dielectric properties can be applied. (eg TiO2, Al2O3, ZnO, etc.)
본 발명의 FeCo 나노 체인에 코팅되는 유전성 무기 코팅의 두께는 2 nm 내지 200 nm인 것이 바람직하다. 유전성 무기 코팅은 유전율을 제어하여 궁극적으로 본 발명에 따른 FeCo 나노체인을 전자파 흡수체의 구성으로 사용하는 경우, 광대역에서 우수한 흡수 성능을 발휘할 수 있게 한다는 점에서, 그 두께가 2 nm 미만인 경우에는 유전율 제어를 충분히 수행할 수 없다는 문제점이 있고, 그 두께가 200 nm를 초과하는 경우에는 두꺼운 코팅층으로 인해 유전율이 지나치게 높아져 전자파 흡수 특성이 낮아지는 문제점이 있다.The thickness of the inorganic dielectric coating coated on the FeCo nanochain of the present invention is preferably 2 nm to 200 nm. The dielectric inorganic coating controls the dielectric constant and ultimately, when the FeCo nanochain according to the present invention is used as the composition of the electromagnetic wave absorber, in that it enables excellent absorption performance in a broad band, when the thickness is less than 2 nm, the dielectric constant control There is a problem that cannot be sufficiently performed, and when the thickness exceeds 200 nm, the dielectric constant becomes excessively high due to a thick coating layer, thereby lowering the electromagnetic wave absorption characteristics.
한편, 본 발명의 제조방법에서 원료로 사용되는 철과 코발트의 중량비는 7:3 내지 4:6인 것이 바람직하다. 철과 코발트의 중량비가 상기 범위를 벗어나는 경우에는 Co 함량이 낮아 포화자화 값이 낮아지거나 Co 함량이 지나치게 높아 Co 입자가 따로 형성되어 나오는 문제점이 있다.On the other hand, the weight ratio of iron and cobalt used as raw materials in the production method of the present invention is preferably 7:3 to 4:6. When the weight ratio of iron and cobalt is out of the above range, there is a problem in that the saturation magnetization value is lowered due to the low Co content, or the Co particles are separately formed because the Co content is too high.
본 발명의 제조방법은 간단한 방법으로 1차원 선형 구조의 FeCo 나노 체인을 제조할 수 있으며, 제조된 FeCo 나노 체인은 광대역에서 우수한 전자파 흡수성능을 갖기 때문에, 국방 등 다양한 적용분야에 적용될 수 있다.The manufacturing method of the present invention can manufacture a one-dimensional linear structure of FeCo nanochains by a simple method, and since the manufactured FeCo nanochains have excellent electromagnetic wave absorption performance in a broad band, it can be applied to various application fields such as national defense.
나아가, 본 발명은 복수의 나노입자가 서로 입자 표면에서 융착되어 1차원 선형 구조를 형성하고, 각각의 나노입자 직경은 30 nm 내지 500 nm인 FeCo 나노 체인을 포함하는 전자파 흡수체를 제공한다.Furthermore, the present invention provides an electromagnetic wave absorber comprising FeCo nano-chains in which a plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm.
본 발명의 전자파 흡수체는 기존의 제조하기 어려운 나노로드 형태의 전자파 흡수체와 비교하여 제조공정이 매우 단순하고, 또한 높은 표면적을 가지며(표면적 효과), 나노 물질의 입자 수가 수억개 이상으로 이루어진 벌크 물질에서 발현되는 양자 크기 효과 (quantum size effect)를 기반으로 하는 우수한 광학적, 물리적 특성 등은 전자파 흡수체로서 우수한 특성을 기대할만한 장점이 있다. The electromagnetic wave absorber of the present invention has a very simple manufacturing process, has a high surface area (surface area effect), and is a bulk material consisting of hundreds of millions of nanomaterial particles or more compared to the conventional electromagnetic wave absorber in the form of a nanorod, which is difficult to manufacture. Excellent optical and physical properties based on the expressed quantum size effect have advantages that can be expected as an electromagnetic wave absorber.
이하 본 발명을 실험예를 통하여 보다 구체적으로 설명한다. 단, 이하의 실험예는 본 발명을 구체적으로 설명하고자 하는 것일 뿐, 이하의 기재에 의하여 본 발명의 권리범위가 한정 해석되는 것을 의도하는 것은 아니다.Hereinafter, the present invention will be described in more detail through experimental examples. However, the following experimental examples are only intended to specifically explain the present invention, and are not intended to limit the interpretation of the scope of the present invention by the following description.
<실험예 1><Experimental Example 1>
FeCo 나노체인의 제조Fabrication of FeCo Nanochains
본 발명의 제조방법으로 1차원 선형구조의 FeCo 나노체인이 형성되는지를 확인하기 위하여 다음과 같은 실험을 수행하였다.The following experiment was performed to confirm whether a one-dimensional linear structure of FeCo nanochain was formed by the manufacturing method of the present invention.
철 분말 만을 원료로 한 경우와 철과 코발트 분말을 원료로 하여 다음과 같은 조건으로 열플라즈마 합성을 수행하였고, 제조된 구조물을 SEM(TESCAN (MIRA3 LM))으로 확인하였고, 그 결과를 도 2에 나타내었다. 도 2는 이하의 실험예 중 Fe 만을 원료로 사용한 경우와, Fe:Co 비율이 6:4인 경우의 SEM 사진이다.In the case of using only iron powder as raw materials and iron and cobalt powder as raw materials, thermal plasma synthesis was performed under the following conditions, and the manufactured structure was confirmed by SEM (TSCAN (MIRA3 LM)), and the results are shown in FIG. indicated. FIG. 2 is an SEM photograph of a case where only Fe was used as a raw material and a Fe:Co ratio of 6:4 among the following experimental examples.
열플라즈마 합성 공정은 캐나다 TEKNA Plasma System의 PL-35 장비를 이용하였으며, sheath 가스, central 가스, carrier 가스로 아르곤 가스를 각각 80, 15, 5 lpm의 유량으로 흘려주었다. 플라즈마는 2.5 kW 조건에서 점화시켜 28 kW로 출력을 높여 안정화 시킨 후, powder feeder를 이용하여 원료 분말을 5 g/min의 feeding rate로 carrier 가스와 함께 챔버내 열플라즈마 형성 영역으로 주입해 주었다. 이 때, 원료 분말은 평균입도 5 μm의 CIP (carbonyl iron powder) 분말 (BASF社)와 평균입도 1 μm의 순수 Co 분말을 무게비로 7:3, 6:4, 5:5, 4:6, 3:7의 혼합비로하여 믹싱하여 준비하였다. 열플라즈마 챔버로 주입된 혼합 원료 분말은 고온의 열플라즈마 영역 (>10000 K)을 통과하면서 기화되고 이후 냉각되면서 핵 생성 및 성장이 이루어져 구형의 FeCo 나노 입자가 형성되며, 이후 나노 입자간 충돌이 이루어지고 표면에서 소결되어 최종 FeCo 나노 사슬 입자가 형성된다. 기상에서 합성된 FeCo 나노체인은 콜렉션 챔버에서 금속 필터에 의해 필터링되어 최종 수집된다. 본 실험에서는 5 g/min의 조건으로 원료를 주입하여 약 30%의 수율로 FeCo 나노체인 입자가 제조되었으며, 열플라즈마 합성 공정은 연속 공정으로 Batch 개념 없이 연속적으로 계속 제조가 가능하다.For the thermal plasma synthesis process, PL-35 equipment of TEKNA Plasma System of Canada was used, and argon gas was flowed at a flow rate of 80, 15, and 5 lpm as sheath gas, central gas, and carrier gas, respectively. Plasma was ignited under the condition of 2.5 kW and stabilized by increasing the output to 28 kW, and then, using a powder feeder, the raw material powder was injected into the thermal plasma formation area in the chamber together with the carrier gas at a feeding rate of 5 g/min. At this time, the raw material powder is CIP (carbonyl iron powder) powder (BASF) having an average particle size of 5 μm and pure Co powder having an average particle size of 1 μm in a weight ratio of 7:3, 6:4, 5:5, 4:6, It was prepared by mixing at a mixing ratio of 3:7. The mixed raw material powder injected into the thermal plasma chamber is vaporized while passing through a high-temperature thermal plasma region (>10000 K), and then, as it cools, nucleation and growth occur to form spherical FeCo nanoparticles, and then the nanoparticles collide. and sintered on the surface to form final FeCo nano-chain particles. The FeCo nanochains synthesized in the gas phase are finally collected by filtering by a metal filter in a collection chamber. In this experiment, FeCo nanochain particles were produced with a yield of about 30% by injecting raw materials at a condition of 5 g/min, and the thermal plasma synthesis process is a continuous process, so it can be continuously manufactured without a batch concept.
도 2에 따르면, 철 만을 원료로 하여 공정을 수행하는 경우, 구형의 결과물이 형성되는 반면, 본 발명의 제조방법에 따라 철과 코발트를 원료로 하여 공정을 수행하는 경우에는 실제로 1차원 선형구조의 나노체인이 형성되는 것을 확인할 수 있다.According to FIG. 2, when the process is performed using only iron as a raw material, a spherical result is formed, whereas when the process is performed using iron and cobalt as raw materials according to the manufacturing method of the present invention, the one-dimensional linear structure is actually formed. It can be seen that nanochains are formed.
<실험예 2><Experimental Example 2>
FeCo 나노체인의 구조 확인Confirmation of the structure of FeCo nanochains
제조된 FeCo 나노체인의 구조를 보다 명확하게 확인하기 위하여 다음과 같은 실험을 수행하였다.In order to more clearly confirm the structure of the prepared FeCo nanochain, the following experiment was performed.
상기 실험예 1의 과정에서 제조된 FeCo 나노 체인을 TEM으로 확인하였고, 그 결과를 도 3에 나타내었다.The FeCo nanochain prepared in the process of Experimental Example 1 was confirmed by TEM, and the result is shown in FIG. 3 .
도 3에 따르면, 실제로, 본 발명의 제조방법으로 제조되는 FeCo 나노 체인인 1차원 선형구조를 갖는다는 것을 확인할 수 있다.According to FIG. 3, it can be confirmed that, in fact, it has a one-dimensional linear structure, which is a FeCo nanochain manufactured by the manufacturing method of the present invention.
<실험예 3><Experimental Example 3>
조성에 따른 나노체인 구조 변화의 확인Confirmation of changes in nanochain structure according to composition
원료의 조성비에 따른 나노체인 구조 변화 유무를 확인하기 위하여 다음과 같은 실험을 수행하였다.The following experiment was performed to confirm whether the structure of the nanochain was changed according to the composition ratio of the raw material.
상기 실험예 1과 동일한 방법으로 FeCo 나노체인을 제조하되, 철 분말과 코발트 분말의 중량비를 3:7, 4:6, 5:5, 7:3으로 변화시키며 FeCo 나노체인을 제조하였고, 그 결과를 SEM(TESCAN (MIRA3 LM))으로 확인하여 도 4에 나타내었다.FeCo nanochains were prepared in the same manner as in Experimental Example 1, but FeCo nanochains were prepared by changing the weight ratio of iron powder and cobalt powder to 3:7, 4:6, 5:5, 7:3, and as a result, was confirmed by SEM (TSCAN (MIRA3 LM)) and shown in FIG. 4 .
도 4에 따르면, 철과 코발트의 중량비를 3:7에서 7:3의 범위로 변화시키면서 제조를 하여도, 제조되는 나노체인은 여전히 1차원 선형구조를 유지한다는 것을 확인할 수 있다.According to FIG. 4 , it can be confirmed that the manufactured nanochain still maintains a one-dimensional linear structure even when the weight ratio of iron and cobalt is changed in the range of 3:7 to 7:3.
<실험예 4><Experimental Example 4>
조성비에 따른 유전율 및 투자율 특성 확인Confirmation of dielectric constant and permeability characteristics according to composition ratio
제조되는 FeCo 나노체인의 조성비에 따른 유전율 및 투자율을 확인하기 위하여 다음과 같은 실험을 수행하였다.In order to confirm the dielectric constant and magnetic permeability according to the composition ratio of the FeCo nanochain to be manufactured, the following experiment was performed.
상기 실험예 1과 동일한 방법으로 제조된 조성별 나노체인에 대하여 에폭시 수지와 중량비 1:1로 교반한 후 180℃에서 3시간 동안 경화하여 제작한 시편을 Keysight 85051B 동축관과 Keysight N5222B Network Analyzer를 이용해 동축관법으로 산란계수를 측정한 후 Keysight N1500A 소프트웨어를 사용하여 유전율과 투자율을 확인하였고, 그 결과를 도 5에 나타내었다.For the nanochain by composition prepared in the same manner as in Experimental Example 1, the specimen prepared by stirring at a weight ratio of 1:1 with an epoxy resin and curing it at 180°C for 3 hours was tested using a Keysight 85051B coaxial tube and a Keysight N5222B Network Analyzer. After measuring the scattering coefficient by the coaxial tube method, the dielectric constant and the magnetic permeability were confirmed using the Keysight N1500A software, and the results are shown in FIG. 5 .
도 5에 따르면 본 발명에 따른 방법으로 제조된 나노체인의 유전율의 실수부가 10 이상이며 투자율의 실수부는 1.5, 허수부는 0.5 수준으로 우수하다는 것을 확인할 수 있다.According to FIG. 5, it can be confirmed that the real part of the permittivity of the nanochain manufactured by the method according to the present invention is 10 or more, the real part of the permeability is 1.5, and the imaginary part is excellent at the level of 0.5.
<실험예 5><Experimental Example 5>
유전율과 투자율의 비교Comparison of permittivity and permeability
본 발명에 따른 FeCo 나노체인의 유전율과 투자율을 기존의 전자파 흡수체 물질들과 비교하기 위하여 다음과 같은 실험을 수행하였다.In order to compare the dielectric constant and permeability of the FeCo nanochain according to the present invention with those of conventional electromagnetic wave absorber materials, the following experiment was performed.
각 물질과 에폭시 수지를 중량비 1:1로 교반한 후 180℃에서 3시간 동안 경화하여 유전율/투자율 측정용 시편을 제작하였다. FeCo 나노체인은 상기 실험예 1의 방법 중 Fe:Co 중량비가 6:4인 방법으로 제조되었고, 비교를 위해 사용된 기존의 물질은 다음과 같다: BASF사의 카르보닐철 분말 (모델명 EW), BASF사의 카르보닐철 분말 (모델명 SQ), 상기 EW를 자체적으로 나노분말화 시킨 것(CIP EW 나노파우더), FeCo 잉곳을 제조하고 가스분사를 통하여 제조된 평균 입경이 3.8 마이크로미터인 FeCo 마이크로분말. 제작한 시편을 Keysight 85051B 동축관과 Keysight N5222B Network Analyzer를 이용해 동축관법으로 산란계수를 측정한 후 Keysight N1500A 소프트웨어를 사용하여 유전율과 투자율을 확인하였다.Each material and the epoxy resin were stirred at a weight ratio of 1:1, and then cured at 180° C. for 3 hours to prepare a specimen for measuring dielectric constant/permeability. The FeCo nanochain was prepared by the method in which the Fe:Co weight ratio was 6:4 in the method of Experimental Example 1, and the existing materials used for comparison are as follows: BASF's carbonyl iron powder (model name EW), BASF Carbonyl iron powder (model name SQ) of the company, a nanopowder of the EW itself (CIP EW nanopowder), FeCo micropowder having an average particle diameter of 3.8 micrometers prepared by manufacturing an FeCo ingot and gas spraying. After measuring the scattering coefficient by coaxial tube method using Keysight 85051B coaxial tube and Keysight N5222B Network Analyzer, the dielectric constant and permeability were confirmed using Keysight N1500A software.
상기 실험의 결과를 도 6에 나타내었다. 도 6에 따르면, 본 발명에 따른 FeCo 나노체인이 기존의 전자파 흡수체 물질들과 비교하여 현저히 우수한 유전율과 투자율을 갖는다는 것을 확인할 수 있다.The results of the experiment are shown in FIG. 6 . According to FIG. 6 , it can be confirmed that the FeCo nanochain according to the present invention has remarkably excellent dielectric constant and magnetic permeability compared to conventional electromagnetic wave absorber materials.
<실험예 6><Experimental Example 6>
표면 유전층 코팅의 확인Identification of surface dielectric layer coating
본 발명의 방법으로 제조되는 FeCo 나노체인 표면에 유전층이 실제로 코팅되는지를 확인하기 위하여 다음과 같은 실험을 수행하였다.The following experiment was performed to confirm whether the dielectric layer was actually coated on the surface of the FeCo nanochain prepared by the method of the present invention.
세라믹 코팅을 위하여 공지의 졸겔 공정을 사용하였다. 에탄올에 TEOS 용액을 혼합하고, 증류수에 암모니아수(NH4OH) 용액을 각각 혼합하여, 15분동안 60 ℃에서 교반하였다. 두 용액을 혼합한 후, 상기 실험예 1 중 Fe:Co 비율이 6:4로 제조된 FeCo 나노체인을 상기 혼합된 용액에 도입하고, 상온에서 45 분간 교반하면서, 가수분해 반응을 통한 표면 유전층 코팅을 수행하였다. 이후, 코팅된 나노체인을 용액으로부터 분리하고, 이를 진공 챔버에서 70 ℃ 온도로 완전 건조를 수행하였다.A known sol-gel process was used for the ceramic coating. A TEOS solution was mixed with ethanol, and an aqueous ammonia (NH 4 OH) solution was mixed with distilled water, respectively, and stirred at 60° C. for 15 minutes. After mixing the two solutions, FeCo nanochains prepared in an Fe:Co ratio of 6:4 in Experimental Example 1 were introduced into the mixed solution, and while stirring at room temperature for 45 minutes, coating the surface dielectric layer through hydrolysis reaction was performed. Thereafter, the coated nanochain was separated from the solution, and it was completely dried at a temperature of 70° C. in a vacuum chamber.
상기 방법으로 건조된 나노체인을 TEM장비로 확인하였고, 그 결과를 도 7에 나타내었다.The nanochain dried by the above method was confirmed by TEM equipment, and the results are shown in FIG. 7 .
도 7에 따르면, 실제 FeCo 나노체인 표면에 실리카 코팅층이 건전하게 형성되어 있음을 확인할 수 있다.According to FIG. 7 , it can be confirmed that the silica coating layer is soundly formed on the surface of the actual FeCo nanochain.
<실험예 7><Experimental Example 7>
전자파 흡수체 제조 및 평가Electromagnetic wave absorber manufacturing and evaluation
본 발명의 FeCo 나노체인을 이용하여 전자파 흡수체를 제조하는 경우, 그 성능을 평가하기 위하여 다음과 같은 실험을 수행하였다.When the electromagnetic wave absorber was manufactured using the FeCo nanochain of the present invention, the following experiment was performed to evaluate its performance.
시편의 제작 및 유전율과 투자율 측정은 실험예 5와 동일하게 수행되었다. 제작한 시편 후면에 완전전도체 (PEC)인 구리 테이프를 부착한 후 Keysight 85051B 동축관과 Keysight N5222B Network Analyzer를 이용해 동축관법으로 산란계수를 측정하여 흡수성능을 확인하였다.Fabrication of the specimen and measurement of permittivity and permeability were performed in the same manner as in Experimental Example 5. After attaching a copper tape, which is a perfect conductor (PEC), to the back of the prepared specimen, the absorption performance was confirmed by measuring the scattering coefficient using the Keysight 85051B coaxial tube and the Keysight N5222B Network Analyzer using the coaxial tube method.
상기 실험의 결과를 도 8 내지 도 11에 나타내었다. 도 8 내지 도 11에 따르면, 본 발명의 FeCo 나노체인을 포함하는 전자파 흡수체는 기존의 물질들과 비교하여 더 광대역에서 우수한 전자파 흡수성능을 갖는다는 것을 확인할 수 있으며, 따라서, 본 발명의 FeCo 나노체인이 전자파 흡수체로 사용되는 경우, 기존의 물질들보다 현저히 우수한 성능을 갖는다는 것을 확인할 수 있다.The results of the above experiments are shown in FIGS. 8 to 11 . 8 to 11, it can be confirmed that the electromagnetic wave absorber including the FeCo nanochain of the present invention has excellent electromagnetic wave absorption performance in a wider band compared to existing materials, and thus, the FeCo nanochain of the present invention When used as this electromagnetic wave absorber, it can be confirmed that it has significantly superior performance than existing materials.

Claims (14)

  1. 복수의 나노입자가 서로 입자 표면에서 융착되어 1차원 선형 구조를 형성하고, 각각의 나노입자 직경은 30 nm 내지 500 nm인 것을 특징으로 하는 FeCo 나노 체인.A plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm.
  2. 제1항에 있어서, 상기 FeCo 나노 체인의 종횡비는 1.5 내지 15인 것을 특징으로 하는 FeCo 나노 체인.The FeCo nanochain according to claim 1, wherein the aspect ratio of the FeCo nanochain is 1.5 to 15.
  3. 제1항에 있어서, 상기 FeCo 나노 체인은 표면에 유전성 무기 코팅을 더 포함하는 것을 특징으로 하는 FeCo 나노 체인.The FeCo nanochain according to claim 1, wherein the FeCo nanochain further comprises a dielectric inorganic coating on the surface.
  4. 제3항에 있어서, 상기 유전성 무기 코팅은 실리카 코팅인 것을 특징으로 하는 FeCo 나노 체인.The FeCo nanochain according to claim 3, wherein the dielectric inorganic coating is a silica coating.
  5. 제3항에 있어서, 상기 유전성 무기 코팅의 두께는 2 nm 내지 200 nm 인 것을 특징으로 하는 FeCo 나노 체인.The FeCo nanochain according to claim 3, wherein the dielectric inorganic coating has a thickness of 2 nm to 200 nm.
  6. 제1항에 있어서, 상기 FeCo 나노 체인은 전자파 흡수체로 사용되는 것을 특징으로 하는 FeCo 나노 체인.The FeCo nanochain according to claim 1, wherein the FeCo nanochain is used as an electromagnetic wave absorber.
  7. 철과 코발트의 혼합분말 또는 철과 코발트의 합금분말을 플라즈마 영역으로 도입하는 단계; 및introducing a mixed powder of iron and cobalt or an alloy powder of iron and cobalt into the plasma region; and
    열플라즈마 합성법을 통하여 FeCo 나노 체인을 형성하는 단계;를 포함하는 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법.Forming FeCo nanochains through thermal plasma synthesis; Method for producing FeCo nanochains having a one-dimensional linear structure, comprising: a.
  8. 제7항에 있어서, 상기 열플라즈마 합성법은 비활성 아르곤 가스 분위기 혹은 아르곤과 수소 혼합 가스 분위기에서, 챔버 압력 0.2~3 bar의 조건에서 수행되는 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법.The method of claim 7, wherein the thermal plasma synthesis method is performed in an inert argon gas atmosphere or an argon and hydrogen mixed gas atmosphere, at a chamber pressure of 0.2 to 3 bar. .
  9. 제7항에 있어서, 상기 제조방법은 FeCo 나노 체인을 형성한 후, 이의 표면에 유전성 무기 코팅층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법.The method of claim 7, wherein the method further comprises forming a dielectric inorganic coating layer on the surface of the FeCo nanochain after forming the FeCo nanochain.
  10. 제9항에 있어서, 상기 유전성 무기 코팅층을 형성하는 단계는 용액공정으로 수행되는 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법.[10] The method of claim 9, wherein the forming of the inorganic dielectric coating layer is performed by a solution process.
  11. 제9항에 있어서, 상기 유전성 무기 코팅층은 실리카로 형성되는 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법.[10] The method of claim 9, wherein the dielectric inorganic coating layer is formed of silica.
  12. 제9항에 있어서, 상기 유전성 무기 코팅층은 2 nm 내지 200 nm 의 두께로 형성되는 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법.[10] The method of claim 9, wherein the dielectric inorganic coating layer is formed to a thickness of 2 nm to 200 nm.
  13. 제7항에 있어서, 상기 철과 코발트의 중량비는 7:3 내지 4:6인 것을 특징으로 하는 1차원 선형 구조의 FeCo 나노 체인의 제조방법.The method of claim 7, wherein the weight ratio of iron and cobalt is 7:3 to 4:6.
  14. 복수의 나노입자가 서로 입자 표면에서 융착되어 1차원 선형 구조를 형성하고, 각각의 나노입자 직경은 30 nm 내지 500 nm인 FeCo 나노 체인을 포함하는 전자파 흡수체.An electromagnetic wave absorber comprising FeCo nano-chains in which a plurality of nanoparticles are fused to each other on the particle surface to form a one-dimensional linear structure, and each nanoparticle has a diameter of 30 nm to 500 nm.
PCT/KR2020/002922 2019-11-28 2020-02-28 Feco nanochain, method of preparing same, and electromagnetic wave-absorbing body WO2021107277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0155001 2019-11-28
KR1020190155001A KR20210066958A (en) 2019-11-28 2019-11-28 FeCo NANO CHAIN, PREPARATION METHOD THEREOF, AND ELECTROMAGNETIC WAVE ABSORBER INCLUDING THE SAME

Publications (1)

Publication Number Publication Date
WO2021107277A1 true WO2021107277A1 (en) 2021-06-03

Family

ID=76130253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002922 WO2021107277A1 (en) 2019-11-28 2020-02-28 Feco nanochain, method of preparing same, and electromagnetic wave-absorbing body

Country Status (2)

Country Link
KR (1) KR20210066958A (en)
WO (1) WO2021107277A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101685A (en) * 2021-09-29 2022-03-01 北京环境特性研究所 Low-frequency radar wave absorbent and preparation method thereof
CN117862495A (en) * 2024-03-11 2024-04-12 中国空气动力研究与发展中心低速空气动力研究所 FeCo nano-chain metal powder and FeCo@SiO 2 Microwave absorbing material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589780B1 (en) * 2021-09-03 2023-10-17 경상국립대학교산학협력단 Development of multi-functional wing-shaped microwave heating sandwich composite based on electromagnetic wave absorption technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476442B2 (en) * 2002-07-17 2009-01-13 Massachusetts Institute Of Technology Nanoparticle chains and preparation thereof
US20090091762A1 (en) * 2007-09-03 2009-04-09 Rohm Co., Ltd. Metallic structure and photodetector
WO2012122216A1 (en) * 2011-03-07 2012-09-13 Yadong Yin Magnetically responsive photonic nanochains
KR101683059B1 (en) * 2015-01-19 2016-12-07 고려대학교 산학협력단 Fluorescent and magnetic core-shell nanochain structures and preparation method thereof
CN106180740B (en) * 2015-05-27 2019-02-12 中国科学院金属研究所 Co, Ni, FeCo, GdCo5Nano capsule primary reconstruction nano chain and its preparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476442B2 (en) * 2002-07-17 2009-01-13 Massachusetts Institute Of Technology Nanoparticle chains and preparation thereof
US20090091762A1 (en) * 2007-09-03 2009-04-09 Rohm Co., Ltd. Metallic structure and photodetector
WO2012122216A1 (en) * 2011-03-07 2012-09-13 Yadong Yin Magnetically responsive photonic nanochains
KR101683059B1 (en) * 2015-01-19 2016-12-07 고려대학교 산학협력단 Fluorescent and magnetic core-shell nanochain structures and preparation method thereof
CN106180740B (en) * 2015-05-27 2019-02-12 中国科学院金属研究所 Co, Ni, FeCo, GdCo5Nano capsule primary reconstruction nano chain and its preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101685A (en) * 2021-09-29 2022-03-01 北京环境特性研究所 Low-frequency radar wave absorbent and preparation method thereof
CN114101685B (en) * 2021-09-29 2023-06-09 北京环境特性研究所 Low-frequency radar wave absorbent and preparation method thereof
CN117862495A (en) * 2024-03-11 2024-04-12 中国空气动力研究与发展中心低速空气动力研究所 FeCo nano-chain metal powder and FeCo@SiO 2 Microwave absorbing material and preparation method thereof
CN117862495B (en) * 2024-03-11 2024-06-07 中国空气动力研究与发展中心低速空气动力研究所 FeCo nano-chain metal powder and FeCo@SiO2Microwave absorbing material and preparation method thereof

Also Published As

Publication number Publication date
KR20210066958A (en) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2021107277A1 (en) Feco nanochain, method of preparing same, and electromagnetic wave-absorbing body
US20210054218A1 (en) Soft magnetic material powder and manufacturing method thereof, and magnetic core and manufacturing method thereof
CN100360001C (en) Composite magnetic element, electromagnetic wave absorbing sheet, production method for sheet-form article, production method for electromagnetic wave absorbing sheet
Naidu et al. Microwave processed NiMgZn ferrites for electromagnetic intereference shielding applications
Yang et al. Controlled synthesis of core–shell iron–silica nanoparticles and their magneto-dielectric properties in polymer composites
WO2011142565A2 (en) Broadband electromagnetic wave absorber and method for manufacturing same
KR101101172B1 (en) Method for purificating carbon nanotube and electromagnetic wave absorption material to include carbon nanotube that fabricated using the same
WO2014104816A1 (en) Electromagnetic wave absorbing sheet, method for manufacturing same, and electronic device comprising same
CN110771276B (en) Radio wave absorber
Tamura et al. A dry phantom material composed of ceramic and graphite powder
Wei et al. Enhanced microwave-absorbing properties of FeCo magnetic film-functionalized silicon carbide fibers fabricated by a radio frequency magnetron method
Guo et al. Magnetic sputtering of FeNi/C bilayer film on SiC fibers for effective microwave absorption in the low-frequency region
Darwish et al. Can hexaferrite composites be used as a new artificial material for antenna applications?
Ren et al. Improved mechanical and microwave absorption properties of SiCf/SiC composites with SiO2 filler
Logesh et al. Tunable microwave absorption performance of carbon fiber-reinforced reaction bonded silicon nitride composites
CN108865060A (en) The preparation method and applications of graphene composite wave-suction material based on 5G communication
US5668070A (en) Ceramic composition for absorbing electromagnetic wave and a method for manufacturing the same
Bu et al. Enhanced antioxidation and microwave absorbing properties of SiC/SiO 2 coating on carbon fiber
CN110746782A (en) High-performance wave-absorbing heat-conducting silica gel gasket convenient for die cutting and laminating and preparation method thereof
CN111902036A (en) Electromagnetic wave noise suppression sheet and high-frequency electronic equipment
CN109694243A (en) A kind of soft magnetic ferrite and its preparation process using nano particle preparation
KR102202204B1 (en) Metal-carbon composite structure, composite film comprising the same, and method of fabrication of the same
WO2017078404A1 (en) Shape-anisotropic magnetic particles, electromagnetic wave absorbing sheet including same, and antenna module including same
WO2021162368A1 (en) Multifunctional composite film having heat dissipation and electromagnetic wave shielding/ absorption capabilities, and production method therefor
WO2020017887A1 (en) Iron oxide magnetic powder and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894800

Country of ref document: EP

Kind code of ref document: A1