WO2021106843A1 - Yarn and fabric - Google Patents

Yarn and fabric Download PDF

Info

Publication number
WO2021106843A1
WO2021106843A1 PCT/JP2020/043599 JP2020043599W WO2021106843A1 WO 2021106843 A1 WO2021106843 A1 WO 2021106843A1 JP 2020043599 W JP2020043599 W JP 2020043599W WO 2021106843 A1 WO2021106843 A1 WO 2021106843A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
yarn
piezoelectric
potential
surfactant
Prior art date
Application number
PCT/JP2020/043599
Other languages
French (fr)
Japanese (ja)
Inventor
辻 雅之
貴子 西浦
英治 田口
宏和 林
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021561407A priority Critical patent/JP7131715B2/en
Priority to CN202090000982.3U priority patent/CN219342438U/en
Publication of WO2021106843A1 publication Critical patent/WO2021106843A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made

Definitions

  • the present invention relates to a yarn provided with a potential generating fiber that generates an electric potential by energy from the outside, and a fabric provided with the yarn.
  • Patent Document 1 discloses a piezoelectric thread that generates an electric potential by external energy.
  • an object of the present invention is to provide a thread and a fabric that suppress the disappearance of an electric field more than before.
  • the thread of the present invention includes a plurality of electric potential generating fibers that generate electric potentials by energy from the outside, and a surfactant that adheres to the plurality of electric potential generating fibers. Further, the yarn is characterized in that the adhesion mode of the surfactant is not uniform.
  • Surfactant improves the wettability of the thread surface. Moisture spreads wet on the surface of the yarn and easily evaporates. In particular, when the adhesion mode of the surfactant is not uniform, the moisture is more likely to get wet and spread on the surface of the yarn than when it is uniform. Therefore, it becomes difficult for water to intervene between the plurality of potential generating fibers. Therefore, the thread of the present invention can easily maintain an electric field.
  • the thread of the present invention can suppress the disappearance of the electric field more than before.
  • FIG. 1 (A) is a diagram showing the configuration of the thread 1
  • FIG. 1 (B) is a cross-sectional view taken along the line AA of FIG. 1 (A).
  • 2 (A) and 2 (B) are views showing the relationship between the uniaxial stretching direction of polylactic acid, the electric field direction, and the deformation of the piezoelectric fiber 10.
  • FIG. 3 is a diagram showing the configuration of the thread 2. It is a figure which shows the electric field in the thread 1 and the thread 2. It is a simulation result which shows the relationship between the amount of a surfactant and the water content after a lapse of a predetermined time. It is sectional drawing of the thread 1A which concerns on the modification. It is a figure which shows the cloth 75.
  • FIG. 1 (A) is a partially exploded view showing the configuration of the thread 1
  • FIG. 1 (B) is a cross-sectional view taken along the line AA of FIG. 1 (A).
  • the yarn 1 is a multifilament yarn in which a plurality of piezoelectric fibers 10 are twisted. Further, the thread 1 has a surfactant 100 attached to the plurality of piezoelectric fibers 10.
  • the piezoelectric fiber 10 is a fiber having a circular cross section.
  • the yarn 1 is a left-handed swirl yarn (hereinafter, referred to as S yarn) in which a plurality of piezoelectric fibers 10 are swiveled to the left and twisted.
  • S yarn left-handed swirl yarn
  • the yarn 1 in which seven piezoelectric fibers 10 are twisted is shown, but the number of twists is actually set as appropriate in consideration of the intended use and the like.
  • the piezoelectric fiber 10 is made of, for example, a piezoelectric polymer.
  • the piezoelectric fiber 10 is manufactured, for example, by a method of extruding a piezoelectric polymer into fibers.
  • the piezoelectric fiber 10 is a method of melt-spinning a piezoelectric polymer into fibers (for example, a spinning / drawing method in which a spinning step and a drawing step are performed separately, a direct drawing method in which a spinning step and a drawing step are connected, and false twisting.
  • the POY-DTY method which can be performed at the same time, or the ultra-high-speed spinning method for high speed, etc.), dry or wet spinning of piezoelectric polymers (for example, by dissolving the raw material polymer in a solvent)
  • the cross-sectional shape of the piezoelectric fiber 10 is not limited to a circular shape.
  • Piezoelectric polymers include those having pyroelectricity and those not having pyroelectricity.
  • the piezoelectric fiber 10 of the present embodiment may or may not have pyroelectricity.
  • PVDF polyvinylidene fluoride
  • Pyroelectric piezoelectric polymers such as PVDF also generate potentials due to the thermal energy of the human body. In this case, the heat energy of the human body is the energy from the outside.
  • Polylactic acid is a piezoelectric polymer that does not have pyroelectricity. Polylactic acid is uniaxially stretched to produce piezoelectricity. Polylactic acid includes PLLA having a right-handed helical structure in which an L-form monomer is polymerized, and PDLA having a left-handed helical structure in which a D-monomer is polymerized and having a piezoelectric constant polarity opposite to that of PLLA.
  • FIGS. 2 (A) and 2 (B) show the uniaxially stretched direction, the electric field direction, and the piezoelectric fiber 10 of the thread 1 in the case where the piezoelectric fiber 10 is uniaxially stretched L-form polylactic acid. It is a figure which shows the relationship with the deformation of. Note that FIGS. 2 (A) and 2 (B) are views when the piezoelectric fiber 10 is assumed to have a film shape as a model case.
  • Polylactic acid is a chiral polymer, and its main chain has a spiral structure. Polylactic acid exhibits piezoelectricity when it is uniaxially stretched and the molecules are oriented. Further heat treatment is applied to increase the crystallinity, thereby increasing the piezoelectric constant.
  • the uniaxially stretched piezoelectric fiber 10 made of polylactic acid is defined as the first axis in the thickness direction, the third axis in the stretching direction 900, and the second axis in the direction orthogonal to both the first axis and the third axis. It has tensor components of d 14 and d 25 as piezoelectric strain constants. Therefore, the piezoelectric fiber 10 made of uniaxially stretched polylactic acid generates an electric potential when strain occurs in the direction of 45 degrees with respect to the uniaxially stretched direction.
  • the piezoelectric fiber 10 contracts in the direction of the first diagonal line 910A and extends in the direction of the second diagonal line 910B orthogonal to the first diagonal line 910A, in the direction from the back side to the front side of the paper surface. Generates an electric field. That is, the piezoelectric fiber 10 generates a negative potential on the front side of the paper surface. As shown in FIG. 2B, the piezoelectric fiber 10 also generates an electric potential when it extends in the direction of the first diagonal line 910A and contracts in the direction of the second diagonal line 910B, but the polarity is reversed and the surface of the paper surface. An electric field is generated in the direction from to the back side. That is, the piezoelectric fiber 10 generates a positive potential on the front side of the paper surface.
  • Polylactic acid does not need to be polled like other piezoelectric polymers such as PVDF or piezoelectric ceramics because piezoelectricity is generated by the orientation of molecules due to stretching.
  • the piezoelectric constant of uniaxially stretched polylactic acid is about 5 to 30 pC / N, and has a very high piezoelectric constant among polymers. Furthermore, the piezoelectric constant of polylactic acid does not fluctuate with time and is extremely stable.
  • each piezoelectric fiber 10 having the above properties is applied to the thread 1 of FIG. 1 (A)
  • the stretching direction 900 of each piezoelectric fiber 10 coincides with the axial direction of each piezoelectric fiber 10.
  • the drawing direction 900 of the piezoelectric fibers 10 is tilted 45 degrees to the left on the paper surface with respect to the axial direction of the yarn 1.
  • the piezoelectric fiber 10 When the thread 1 which is such an S thread is stretched by applying an axial tension, the piezoelectric fiber 10 stretches along the axial direction of the thread 1 and contracts along the width direction of the thread 1.
  • the axial direction of the thread 1 corresponds to the second diagonal line 910B in the example of FIG. 2A.
  • the piezoelectric fiber 10 contracts in the direction corresponding to the first diagonal line 910A and extends in the direction corresponding to the second diagonal line 910B, as in the example shown in FIG. 2 (A). Therefore, a negative potential is generated on the surface of the piezoelectric fiber 10, and a positive potential is generated on the inside. That is, the piezoelectric fiber 10 generates an electric potential by energy from the outside.
  • the inclination of the thread 1 with respect to the axial direction is not limited to 45 degrees to the left.
  • the drawing direction 900 may intersect at least with respect to the axial direction of the yarn 1. That is, the drawing direction 900 of the piezoelectric fiber 10 may be greater than 0 degrees and less than 90 degrees to the left with respect to the axial direction of the yarn.
  • FIG. 3 is a partially exploded view showing the yarn 2 constituting the right-handed swivel yarn (hereinafter referred to as Z yarn) twisted by swirling the piezoelectric fiber 10 to the right.
  • the thread 2 is a Z thread.
  • the drawing direction 900 of the piezoelectric fibers 10 is tilted 45 degrees to the right on the paper surface with respect to the axial direction of the yarn 2.
  • the piezoelectric fiber 10 When the Z thread 2 is stretched by applying tension, the piezoelectric fiber 10 stretches along the axial direction of the thread 2 and contracts along the width direction of the thread 2.
  • the axial direction of the thread 2 corresponds to the first diagonal line 910A in the example of FIG. 2B.
  • the piezoelectric fiber 10 extends in the direction corresponding to the first diagonal line 910A and contracts in the direction corresponding to the second diagonal line 910B, as in the example shown in FIG. 2 (B). Therefore, a positive potential is generated on the surface of the piezoelectric fiber 10, and a negative potential is generated on the inside. That is, the piezoelectric fiber 10 generates an electric potential by energy from the outside.
  • the inclination of the thread 2 with respect to the axial direction is not limited to 45 degrees to the right, as long as it intersects at least the axial direction of the thread 2. Good. That is, the stretching direction 900 of the piezoelectric fiber 10 may be greater than 0 degrees and less than 90 degrees to the right with respect to the axial direction of the yarn 2.
  • FIG. 4 is a cross-sectional view showing the state of the electric field in the thread 1 and the thread 2.
  • the thread 1 alone has a negative potential on the surface and a positive potential inside when an axial tension is applied.
  • the thread 2 alone when an axial tension is applied, the surface becomes a positive potential and the inside becomes a negative potential.
  • an electric field is mainly formed from the inside to the outside of the thread 1
  • an electric field is mainly formed from the outside to the inside.
  • these electric fields leak into the air and are synthesized, and the electric field is formed between the yarn 1 and the yarn 2 due to the potential difference between the yarn 1 and the yarn 2.
  • an electric field is generated between the thread 1 and the object close to the thread 1.
  • an electric field is generated between the thread 2 and the object close to the thread 2.
  • the thread 1 and the thread 2 do not have to have potentials having opposite polarities to each other. Even when the thread 1 and the thread 2 have potentials of the same polarity, an electric field is generated if there is a potential difference between them. That is, the thread 1 and the thread 2 may have different potentials when the potential is generated.
  • Such an electric field can suppress the growth of, for example, bacteria, fungi, archaea, or microorganisms such as mites and fleas.
  • the thread 1 or the thread 2 contains water containing an electrolyte
  • an electric current flows through the water.
  • the potential generated in the thread 1 or the thread 2 disappears.
  • the electric potential disappears, so does the electric field.
  • the thread 1 or thread 2 of the present embodiment has a surfactant 100 attached to a plurality of piezoelectric fibers 10.
  • the surfactant 100 may be ionic (cationic / anionic / zwitterionic) or nonionic (nonionic). Further, the surfactant 100 may be a small molecule or a polymer.
  • the surfactant 100 is, for example, an oil agent used in the fiber manufacturing process. When the user washes clothes containing thread 1 (or thread 2), the oil agent may be removed, but a laundry finishing agent (softener) may be attached instead. This softener is also an example of the surfactant 100.
  • the surfactant 100 improves the wettability of the surface of the piezoelectric fiber 10. Therefore, the water wets and spreads on the surface of the piezoelectric fiber 10. Moisture is exposed to the outside of the yarn by wetting and spreading on the fiber surface. Therefore, the moisture is more likely to evaporate and dries faster than when no surfactant is attached.
  • FIG. 5 is a simulation result showing the relationship between the amount of the surfactant and the water content after a lapse of a predetermined time. As shown in FIG. 5, as the amount of the surfactant increases, the water content after a lapse of a predetermined time decreases. That is, the larger the amount of the surfactant, the easier it is for the water to evaporate.
  • the mode of attachment of the surfactant 100 to the plurality of piezoelectric fibers 10 in the present embodiment is not uniform. That is, the thread 1 (or thread 2) has a piezoelectric fiber 10 having a large amount of the surfactant 100 attached and a piezoelectric fiber 10 having a small amount of the surfactant 100 attached. More specifically, the surfactant 100 adhered by the piezoelectric fiber 10 arranged on the outside of the thread 1 (or thread 2) and the piezoelectric fiber 10 arranged on the inside of the thread 1 (or thread 2). The amount is different. For example, in the example of FIG. 1B, the amount of the surfactant 100 adhering to the piezoelectric fiber 10 arranged on the outside is larger than the amount of the surfactant 100 adhering to the piezoelectric fiber 10 arranged on the inside. ..
  • Thread 1 (or thread 2) is a multifilament thread. Therefore, the thread 1 or the thread 2 contains a large amount of surfactant inside. Therefore, a large amount of water is drawn into the thread 1 or the thread 2. Moisture drawn in is not exposed to the outside, so it is harder to dry than moisture that has spread to the outside. Since the thread 1 or the thread 2 also contains a surfactant on the outside, the thread 1 or the thread 2 is in a wet state as a whole.
  • the mode of attachment of the surfactant 100 to the plurality of piezoelectric fibers 10 is not uniform, the wetting and spreading of water is biased.
  • the amount of the surfactant 100 adhering to the piezoelectric fiber 10 arranged on the outside is large, a large amount of water is exposed to the outside. Therefore, the water content is more likely to evaporate than when the surfactant 100 adheres in a uniform manner.
  • the amount of the surfactant 100 adhering to the piezoelectric fiber 10 arranged on the outside is large, water is easily drawn into the inside of the yarn. In this case, the outside becomes dry. Therefore, the electric field formed between the yarn 1 and the yarn 2 is easily maintained.
  • FIG. 6 is a cross-sectional view of the thread 1A according to a modified example of the thread 1.
  • the thread 1A includes a resin 50 between the plurality of piezoelectric fibers 10.
  • Resin 50 is an example of an insulator.
  • the resin 50 is arranged so as to coat the periphery of the piezoelectric fiber 10 arranged at the center and fill the gap with the surrounding piezoelectric fiber 10. Therefore, the surfactant 100 adheres more to the outside than the inside of the thread 1A.
  • Such a thread 1A adheres a large amount of surfactant 100 to the outside. Therefore, the water is more likely to evaporate. Therefore, the thread 1A can easily maintain the electric field.
  • the resin 50 makes it difficult for moisture to enter the thread 1A. From this point as well, the thread 1A can easily maintain an electric field.
  • the thread 2A according to the modified example 2 provided with the resin 50 can be configured for the thread 2 as in the example of FIG. 6
  • the thread 1A may be a covering thread in which the piezoelectric fiber 10 is coated with the resin 50 and the coated piezoelectric fiber 10 is arranged as the core thread. In this case, the other plurality of piezoelectric fibers 10 rotate around the core yarn.
  • the surfactant 100 adheres more to the outside than the inside of the thread 1A.
  • the core thread may be a material to which the surfactant 100 does not easily adhere. Also in this case, the surfactant 100 adheres more to the outside than to the inside.
  • the sheath yarn wound around the core yarn is not limited to the filament yarn, and may be a film-shaped piezoelectric material.
  • the filament yarn may be false twisted yarn. False plying has many gaps. Therefore, the surfactant 100 easily adheres to the false plying yarn. In addition, the false plying has a good texture.
  • the thread may have thick fibers on the inside and a plurality of thin piezoelectric fibers 10 on the outside. Also in this case, the surfactant 100 adheres more to the outside than to the inside.
  • the amount of adhesion of the surfactant 100 on the inner side and the outer side of the hollow fiber or the thread having irregularities on the surface is different.
  • the piezoelectric fibers constituting the yarn are not limited to long fibers, and may contain at least one short fiber.
  • the yarn is a spun yarn obtained by twisting a plurality of short fibers, the shape is more complicated than that of the long fibers. Therefore, the amount of the surfactant 100 adhered is not uniform.
  • the ends of some short fibers are exposed from the sides of the yarn. That is, more fibers are exposed on the surface of the yarn. Therefore, when short fibers are used, more surfactant adheres to the outside than to the inside.
  • the Z yarn using PDLA can be considered.
  • the S yarn using PDLA can be considered.
  • the fabric 75 shown in FIG. 7 includes the yarn of the present embodiment described above.
  • the fabric 75 containing the yarn shown in the present embodiment also easily maintains an electric field.
  • the maximum value and the minimum value of the contact angle at the time of pulling up were ⁇ 10 ° or more from the center value, respectively. Therefore, it can be seen that the adhesion mode of the surfactant is not uniform also for the cloth 75.

Abstract

The present invention provides a yarn and fabric, each of which exhibits a higher antibacterial effect. A yarn (1, 1A, 2, 2A) is provided with a plurality of potential-generating fibers (10), which generate a potential by means of an external energy, and a surfactant (100) which adheres to the plurality of potential-generating fibers (10). In addition, the yarn (1, 1A, 2, 2A) is characterized by the non-uniform adhesion state of the surfactant (100).

Description

糸および布帛Thread and fabric
 本発明は、外部からのエネルギーにより電位を生じる電位発生繊維を備えた糸、および該糸を備えた布帛に関する。 The present invention relates to a yarn provided with a potential generating fiber that generates an electric potential by energy from the outside, and a fabric provided with the yarn.
 特許文献1には、外部からのエネルギーにより電位を生じる圧電糸が開示されている。 Patent Document 1 discloses a piezoelectric thread that generates an electric potential by external energy.
特許第6292368号公報Japanese Patent No. 6292368
 汗等の電解質を含む水分が存在すると、複数の圧電糸同士で電流が流れる。電流が流れると、発生した電位は消失する。したがって、電場が消失する。 In the presence of moisture containing electrolytes such as sweat, an electric current flows between multiple piezoelectric threads. When an electric current flows, the generated potential disappears. Therefore, the electric field disappears.
 そこで、本発明は、従来よりも電場の消失を抑制する糸および布帛を提供することを目的とする。 Therefore, an object of the present invention is to provide a thread and a fabric that suppress the disappearance of an electric field more than before.
 本発明の糸は、外部からのエネルギーにより電位を発生する複数の電位発生繊維と、前記複数の電位発生繊維に付着する界面活性剤と、を備える。また、糸は、前記界面活性剤の付着態様が一様ではないことを特徴とする。 The thread of the present invention includes a plurality of electric potential generating fibers that generate electric potentials by energy from the outside, and a surfactant that adheres to the plurality of electric potential generating fibers. Further, the yarn is characterized in that the adhesion mode of the surfactant is not uniform.
 界面活性剤は、糸の表面の濡れ性を向上させる。水分は、糸の表面に濡れ広がり、蒸発し易くなる。特に、界面活性剤の付着態様が一様ではない場合、一様である場合よりも糸の表面に水分が濡れ広がり易くなる。したがって、複数の電位発生繊維同士の間で水分が介在し難くなる。よって、本発明の糸は、電場を維持し易くなる。 Surfactant improves the wettability of the thread surface. Moisture spreads wet on the surface of the yarn and easily evaporates. In particular, when the adhesion mode of the surfactant is not uniform, the moisture is more likely to get wet and spread on the surface of the yarn than when it is uniform. Therefore, it becomes difficult for water to intervene between the plurality of potential generating fibers. Therefore, the thread of the present invention can easily maintain an electric field.
 この発明の糸は、従来よりも電場の消失を抑制することができる。 The thread of the present invention can suppress the disappearance of the electric field more than before.
図1(A)は、糸1の構成を示す図であり、図1(B)は、図1(A)のA-A線における断面図である。FIG. 1 (A) is a diagram showing the configuration of the thread 1, and FIG. 1 (B) is a cross-sectional view taken along the line AA of FIG. 1 (A). 図2(A)および図2(B)は、ポリ乳酸の一軸延伸方向と、電場方向と、圧電繊維10の変形と、の関係を示す図である。2 (A) and 2 (B) are views showing the relationship between the uniaxial stretching direction of polylactic acid, the electric field direction, and the deformation of the piezoelectric fiber 10. 図3は、糸2の構成を示す図である。FIG. 3 is a diagram showing the configuration of the thread 2. 糸1および糸2における、電場を示す図である。It is a figure which shows the electric field in the thread 1 and the thread 2. 界面活性剤の量と所定時間経過後の含水量との関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between the amount of a surfactant and the water content after a lapse of a predetermined time. 変形例に係る糸1Aの断面図である。It is sectional drawing of the thread 1A which concerns on the modification. 布帛75を示す図である。It is a figure which shows the cloth 75.
 図1(A)は、糸1の構成を示す一部分解図であり、図1(B)は、図1(A)のA-A線における断面図である。糸1は、複数の圧電繊維10が撚られてなるマルチフィラメント糸である。また、糸1は、複数の圧電繊維10に付着した界面活性剤100を有する。 FIG. 1 (A) is a partially exploded view showing the configuration of the thread 1, and FIG. 1 (B) is a cross-sectional view taken along the line AA of FIG. 1 (A). The yarn 1 is a multifilament yarn in which a plurality of piezoelectric fibers 10 are twisted. Further, the thread 1 has a surfactant 100 attached to the plurality of piezoelectric fibers 10.
 圧電繊維10は、断面が円形状の繊維である。糸1は、複数の圧電繊維10が左旋回して撚られた左旋回糸(以下、S糸と称する。)である。なお、本実施形態では、一例として7本の圧電繊維10が撚られてなる糸1を示しているが、撚り数は、実際には用途等を鑑みて、適宜設定される。 The piezoelectric fiber 10 is a fiber having a circular cross section. The yarn 1 is a left-handed swirl yarn (hereinafter, referred to as S yarn) in which a plurality of piezoelectric fibers 10 are swiveled to the left and twisted. In the present embodiment, as an example, the yarn 1 in which seven piezoelectric fibers 10 are twisted is shown, but the number of twists is actually set as appropriate in consideration of the intended use and the like.
 圧電繊維10は、例えば圧電性ポリマーからなる。圧電繊維10は、例えば、圧電性ポリマーを押し出し成型して繊維化する手法により製造される。あるいは、圧電繊維10は、圧電性ポリマーを溶融紡糸して繊維化する手法(例えば、紡糸工程および延伸工程を分けて行う紡糸・延伸法、紡糸工程および延伸工程を連結した直延伸法、仮撚り工程も同時に行うことのできるPOY-DTY法、または高速化を図った超高速紡糸法などを含む。)、圧電性高分子を乾式あるいは湿式紡糸(例えば、溶媒に原料となるポリマーを溶解してノズルから押し出して繊維化するような相分離法もしくは乾湿紡糸法、溶媒を含んだままゲル状に均一に繊維化するような液晶紡糸法、または液晶溶液もしくは融体を用いて繊維化する液晶紡糸法、等を含む。)により繊維化する手法、または圧電性高分子を静電紡糸により繊維化する手法等により製造される。なお、圧電繊維10の断面形状は、円形状に限るものではない。 The piezoelectric fiber 10 is made of, for example, a piezoelectric polymer. The piezoelectric fiber 10 is manufactured, for example, by a method of extruding a piezoelectric polymer into fibers. Alternatively, the piezoelectric fiber 10 is a method of melt-spinning a piezoelectric polymer into fibers (for example, a spinning / drawing method in which a spinning step and a drawing step are performed separately, a direct drawing method in which a spinning step and a drawing step are connected, and false twisting. The POY-DTY method, which can be performed at the same time, or the ultra-high-speed spinning method for high speed, etc.), dry or wet spinning of piezoelectric polymers (for example, by dissolving the raw material polymer in a solvent) A phase separation method or a dry-wet spinning method in which fibers are extruded from a nozzle, a liquid crystal spinning method in which the fibers are uniformly fiberized into a gel while containing a solvent, or a liquid crystal spinning method in which fibers are formed using a liquid crystal solution or a melt. It is manufactured by a method of fiberizing by a method, etc.), or a method of fiberizing a piezoelectric polymer by electrostatic spinning. The cross-sectional shape of the piezoelectric fiber 10 is not limited to a circular shape.
 圧電性ポリマーは、焦電性を有するものと、焦電性を有しないものとが存在する。本実施形態の圧電繊維10は、焦電性を有していてもよいし、焦電性を有していなくてもよい。例えば、PVDF(ポリフッ化ビニリデン)は、焦電性を有しており、温度変化によっても電位が発生する。PVDF等の焦電性を有する圧電性ポリマーは、人体の熱エネルギーによっても、電位が生じる。この場合、人体の熱エネルギーが外部からのエネルギーである。 Piezoelectric polymers include those having pyroelectricity and those not having pyroelectricity. The piezoelectric fiber 10 of the present embodiment may or may not have pyroelectricity. For example, PVDF (polyvinylidene fluoride) has pyroelectricity, and an electric potential is generated even when the temperature changes. Pyroelectric piezoelectric polymers such as PVDF also generate potentials due to the thermal energy of the human body. In this case, the heat energy of the human body is the energy from the outside.
 ポリ乳酸(PLA)は、焦電性を有していない圧電性ポリマーである。ポリ乳酸は、一軸延伸されることで圧電性が生じる。ポリ乳酸には、L体モノマーが重合した右巻き螺旋構造を有するPLLAと、D体モノマーが重合した左巻き螺旋構造を有し、圧電定数の極性がPLLAとは逆であるPDLAと、がある。 Polylactic acid (PLA) is a piezoelectric polymer that does not have pyroelectricity. Polylactic acid is uniaxially stretched to produce piezoelectricity. Polylactic acid includes PLLA having a right-handed helical structure in which an L-form monomer is polymerized, and PDLA having a left-handed helical structure in which a D-monomer is polymerized and having a piezoelectric constant polarity opposite to that of PLLA.
 図2(A)および図2(B)は、圧電繊維10が一軸延伸されたL体のポリ乳酸である場合における、糸1の、ポリ乳酸の一軸延伸方向と、電場方向と、圧電繊維10の変形と、の関係を示す図である。なお、図2(A)および図2(B)は、モデルケースとして、圧電繊維10をフィルム形状と仮定した場合の図である。 2 (A) and 2 (B) show the uniaxially stretched direction, the electric field direction, and the piezoelectric fiber 10 of the thread 1 in the case where the piezoelectric fiber 10 is uniaxially stretched L-form polylactic acid. It is a figure which shows the relationship with the deformation of. Note that FIGS. 2 (A) and 2 (B) are views when the piezoelectric fiber 10 is assumed to have a film shape as a model case.
 ポリ乳酸は、キラル高分子であり、主鎖が螺旋構造を有する。ポリ乳酸は、一軸延伸されて分子が配向すると、圧電性を発現する。さらに熱処理を加えて結晶化度を高めると圧電定数が高くなる。一軸延伸されたポリ乳酸からなる圧電繊維10は、厚み方向を第1軸、延伸方向900を第3軸、第1軸および第3軸の両方に直交する方向を第2軸と定義したとき、圧電歪み定数としてd14およびd25のテンソル成分を有する。したがって、一軸延伸されたポリ乳酸からなる圧電繊維10は、一軸延伸された方向に対して45度の方向に歪みが生じた場合に、電位を発生する。 Polylactic acid is a chiral polymer, and its main chain has a spiral structure. Polylactic acid exhibits piezoelectricity when it is uniaxially stretched and the molecules are oriented. Further heat treatment is applied to increase the crystallinity, thereby increasing the piezoelectric constant. The uniaxially stretched piezoelectric fiber 10 made of polylactic acid is defined as the first axis in the thickness direction, the third axis in the stretching direction 900, and the second axis in the direction orthogonal to both the first axis and the third axis. It has tensor components of d 14 and d 25 as piezoelectric strain constants. Therefore, the piezoelectric fiber 10 made of uniaxially stretched polylactic acid generates an electric potential when strain occurs in the direction of 45 degrees with respect to the uniaxially stretched direction.
 図2(A)に示すように、圧電繊維10は、第1対角線910Aの方向に縮み、第1対角線910Aに直交する第2対角線910Bの方向に伸びると、紙面の裏側から表側に向く方向に電場を生じる。すなわち、圧電繊維10は、紙面表側では、負の電位が発生する。圧電繊維10は、図2(B)に示すように、第1対角線910Aの方向に伸び、第2対角線910Bの方向に縮む場合も、電位を発生するが、極性が逆になり、紙面の表面から裏側に向く方向に電場を生じる。すなわち、圧電繊維10は、紙面表側では、正の電位が発生する。 As shown in FIG. 2A, the piezoelectric fiber 10 contracts in the direction of the first diagonal line 910A and extends in the direction of the second diagonal line 910B orthogonal to the first diagonal line 910A, in the direction from the back side to the front side of the paper surface. Generates an electric field. That is, the piezoelectric fiber 10 generates a negative potential on the front side of the paper surface. As shown in FIG. 2B, the piezoelectric fiber 10 also generates an electric potential when it extends in the direction of the first diagonal line 910A and contracts in the direction of the second diagonal line 910B, but the polarity is reversed and the surface of the paper surface. An electric field is generated in the direction from to the back side. That is, the piezoelectric fiber 10 generates a positive potential on the front side of the paper surface.
 ポリ乳酸は、延伸による分子の配向で圧電性が生じるため、PVDF等の他の圧電性ポリマーまたは圧電セラミックスのように、ポーリング処理を行う必要がない。一軸延伸されたポリ乳酸の圧電定数は、5~30pC/N程度であり、高分子の中では非常に高い圧電定数を有する。さらに、ポリ乳酸の圧電定数は経時的に変動することがなく、極めて安定している。 Polylactic acid does not need to be polled like other piezoelectric polymers such as PVDF or piezoelectric ceramics because piezoelectricity is generated by the orientation of molecules due to stretching. The piezoelectric constant of uniaxially stretched polylactic acid is about 5 to 30 pC / N, and has a very high piezoelectric constant among polymers. Furthermore, the piezoelectric constant of polylactic acid does not fluctuate with time and is extremely stable.
 以上の様な性質を有する圧電繊維10を図1(A)の糸1に適用する場合について説明する。図1(A)において、各圧電繊維10の延伸方向900は、それぞれの圧電繊維10の軸方向に一致している。複数の圧電繊維10が撚られることによって、圧電繊維10の延伸方向900は、糸1の軸方向に対して、紙面上において左45度に傾いた状態となる。 A case where the piezoelectric fiber 10 having the above properties is applied to the thread 1 of FIG. 1 (A) will be described. In FIG. 1A, the stretching direction 900 of each piezoelectric fiber 10 coincides with the axial direction of each piezoelectric fiber 10. By twisting the plurality of piezoelectric fibers 10, the drawing direction 900 of the piezoelectric fibers 10 is tilted 45 degrees to the left on the paper surface with respect to the axial direction of the yarn 1.
 この様なS糸である糸1に軸方向の張力をかけて伸張した場合、圧電繊維10は、糸1の軸方向に沿って伸び、糸1の幅方向に沿って縮む。糸1の軸方向は、図2(A)の例では第2対角線910Bに相当する。これにより、圧電繊維10は、図2(A)に示した例の様に、第1対角線910Aに相当する方向に縮み、第2対角線910Bの方向に相当する方向に伸びる。したがって、圧電繊維10の表面には負の電位が発生し、内側には正の電位が発生する。すなわち、圧電繊維10は、外部からのエネルギーにより電位を発生する。 When the thread 1 which is such an S thread is stretched by applying an axial tension, the piezoelectric fiber 10 stretches along the axial direction of the thread 1 and contracts along the width direction of the thread 1. The axial direction of the thread 1 corresponds to the second diagonal line 910B in the example of FIG. 2A. As a result, the piezoelectric fiber 10 contracts in the direction corresponding to the first diagonal line 910A and extends in the direction corresponding to the second diagonal line 910B, as in the example shown in FIG. 2 (A). Therefore, a negative potential is generated on the surface of the piezoelectric fiber 10, and a positive potential is generated on the inside. That is, the piezoelectric fiber 10 generates an electric potential by energy from the outside.
 なお、圧電繊維10は、ずり応力が加わることによって電位を発生するため、糸1の軸方向に対する傾きは左45度に限られるものではない。延伸方向900は、少なくとも糸1の軸方向に対して交差していればよい。すなわち、圧電繊維10の延伸方向900は、糸の軸方向に対して0度より大きく左90度未満であればよい。 Since the piezoelectric fiber 10 generates an electric potential when shear stress is applied, the inclination of the thread 1 with respect to the axial direction is not limited to 45 degrees to the left. The drawing direction 900 may intersect at least with respect to the axial direction of the yarn 1. That is, the drawing direction 900 of the piezoelectric fiber 10 may be greater than 0 degrees and less than 90 degrees to the left with respect to the axial direction of the yarn.
 一方、図3は、圧電繊維10を右旋回して撚られた右旋回糸(以下、Z糸と称する。)を構成する、糸2を示す一部分解図である。糸2は、Z糸である。複数の圧電繊維10が撚られることによって圧電繊維10の延伸方向900は、糸2の軸方向に対して、紙面上において右45度に傾いた状態となる。 On the other hand, FIG. 3 is a partially exploded view showing the yarn 2 constituting the right-handed swivel yarn (hereinafter referred to as Z yarn) twisted by swirling the piezoelectric fiber 10 to the right. The thread 2 is a Z thread. By twisting the plurality of piezoelectric fibers 10, the drawing direction 900 of the piezoelectric fibers 10 is tilted 45 degrees to the right on the paper surface with respect to the axial direction of the yarn 2.
 Z糸である糸2に張力をかけて伸張した場合、圧電繊維10は、糸2の軸方向に沿って伸び、糸2の幅方向に沿って縮む。糸2の軸方向は、図2(B)の例では第1対角線910Aに相当する。これにより、圧電繊維10は、図2(B)に示した例の様に、第1対角線910Aに相当する方向に伸び、第2対角線910Bの方向に相当する方向に縮む。したがって、圧電繊維10の表面には正の電位が発生し、内側には負の電位が発生する。すなわち、圧電繊維10は、外部からのエネルギーにより電位を発生する。なお、圧電繊維10はずり応力が加わることによって電位を発生するため、糸2の軸方向に対する傾きは右45度に限られるものではなく、少なくとも糸2の軸方向に対して交差していればよい。すなわち圧電繊維10の延伸方向900は糸2の軸方向に対して0度より大きく右90度未満であればよい。 When the Z thread 2 is stretched by applying tension, the piezoelectric fiber 10 stretches along the axial direction of the thread 2 and contracts along the width direction of the thread 2. The axial direction of the thread 2 corresponds to the first diagonal line 910A in the example of FIG. 2B. As a result, the piezoelectric fiber 10 extends in the direction corresponding to the first diagonal line 910A and contracts in the direction corresponding to the second diagonal line 910B, as in the example shown in FIG. 2 (B). Therefore, a positive potential is generated on the surface of the piezoelectric fiber 10, and a negative potential is generated on the inside. That is, the piezoelectric fiber 10 generates an electric potential by energy from the outside. Since the piezoelectric fiber 10 generates an electric potential when shear stress is applied, the inclination of the thread 2 with respect to the axial direction is not limited to 45 degrees to the right, as long as it intersects at least the axial direction of the thread 2. Good. That is, the stretching direction 900 of the piezoelectric fiber 10 may be greater than 0 degrees and less than 90 degrees to the right with respect to the axial direction of the yarn 2.
 図4は、糸1および糸2における、電場の状態を示す断面図である。糸1および糸2を構成する圧電繊維10がPLLAで形成された場合、糸1単独では、軸方向の張力が加わった時に表面が負の電位になり内部は正の電位になる。糸2単独では、軸方向の張力が加わった時に表面が正の電位になり内部は負の電位になる。 FIG. 4 is a cross-sectional view showing the state of the electric field in the thread 1 and the thread 2. When the piezoelectric fibers 10 constituting the thread 1 and the thread 2 are formed of PLLA, the thread 1 alone has a negative potential on the surface and a positive potential inside when an axial tension is applied. With the thread 2 alone, when an axial tension is applied, the surface becomes a positive potential and the inside becomes a negative potential.
 これら糸1および糸2が近接した場合、近接する部分(表面)は同電位になろうとする。この場合、糸1と糸2との近接部は0Vとなり、元々の電位差を保つように、糸1の内部の正の電位はさらに高くなる。同様に糸2の内部の負の電位はさらに低くなる。 When these threads 1 and 2 are close to each other, the adjacent parts (surfaces) tend to have the same potential. In this case, the proximity portion between the thread 1 and the thread 2 becomes 0 V, and the positive potential inside the thread 1 is further increased so as to maintain the original potential difference. Similarly, the negative potential inside the thread 2 becomes even lower.
 糸1の断面では、主に糸1の内から外に向かう電場が形成され、糸2の断面では主に外から内に向かう電場が形成される。糸1および糸2を近接させた場合、これらの電場が空気中に漏れ出て合成され、糸1および糸2の間の電位差により、糸1と糸2との間に電場が形成される。あるいは、糸1と、人体等の所定の電位を有する物と、が近接した場合に、糸1と近接する物との間に電場が生じる。糸2と、人体等の所定の電位を有する物と、が近接した場合にも、糸2と近接する物との間に電場が生じる。 In the cross section of the thread 1, an electric field is mainly formed from the inside to the outside of the thread 1, and in the cross section of the thread 2, an electric field is mainly formed from the outside to the inside. When the yarn 1 and the yarn 2 are brought close to each other, these electric fields leak into the air and are synthesized, and the electric field is formed between the yarn 1 and the yarn 2 due to the potential difference between the yarn 1 and the yarn 2. Alternatively, when the thread 1 and an object having a predetermined potential such as a human body are close to each other, an electric field is generated between the thread 1 and the object close to the thread 1. Even when the thread 2 and an object having a predetermined potential such as a human body are close to each other, an electric field is generated between the thread 2 and the object close to the thread 2.
 なお、糸1および糸2は、互いに逆極性の電位を有する必要はない。糸1および糸2は、同じ極性の電位を有する場合であっても、両者に電位差があれば、電場が生じる。すなわち、糸1および糸2は、電位が発生した時に異なる電位となればよい。 Note that the thread 1 and the thread 2 do not have to have potentials having opposite polarities to each other. Even when the thread 1 and the thread 2 have potentials of the same polarity, an electric field is generated if there is a potential difference between them. That is, the thread 1 and the thread 2 may have different potentials when the potential is generated.
 この様な電場は、例えば、細菌、真菌、古細菌またはダニやノミ等の微生物の増殖を抑制することができる。 Such an electric field can suppress the growth of, for example, bacteria, fungi, archaea, or microorganisms such as mites and fleas.
 ここで、糸1または糸2に電解質を含む水分が存在する場合、当該水分を介して電流が流れる。電流が流れると、糸1または糸2で発生した電位は消失する。電位が消失すると、電場も消失する。 Here, when the thread 1 or the thread 2 contains water containing an electrolyte, an electric current flows through the water. When an electric current flows, the potential generated in the thread 1 or the thread 2 disappears. When the electric potential disappears, so does the electric field.
 本実施形態の糸1または糸2は、複数の圧電繊維10に付着した界面活性剤100を有する。界面活性剤100は、イオン性(カチオン性・アニオン性・双性)でも、非イオン性(ノニオン性)でもよい。また、界面活性剤100は、低分子であっても高分子であってもよい。 The thread 1 or thread 2 of the present embodiment has a surfactant 100 attached to a plurality of piezoelectric fibers 10. The surfactant 100 may be ionic (cationic / anionic / zwitterionic) or nonionic (nonionic). Further, the surfactant 100 may be a small molecule or a polymer.
 界面活性剤100は、例えば、繊維の製造工程で用いられる油剤である。利用者が糸1(または糸2)を含む衣料を洗濯した場合、当該油剤を除去してしまう場合があるが、代わりに洗濯の仕上げ剤(柔軟剤)が付着する場合もある。この柔軟剤も、界面活性剤100の一例である。 The surfactant 100 is, for example, an oil agent used in the fiber manufacturing process. When the user washes clothes containing thread 1 (or thread 2), the oil agent may be removed, but a laundry finishing agent (softener) may be attached instead. This softener is also an example of the surfactant 100.
 界面活性剤100は、圧電繊維10の表面の濡れ性を向上させる。そのため、水分は、圧電繊維10の表面に濡れ広がる。水分は、繊維表面に濡れ広がることにより糸の外側に多く露出する。よって、水分は、界面活性剤が付着していない場合よりも蒸発しやすくなり、速く乾燥する。 The surfactant 100 improves the wettability of the surface of the piezoelectric fiber 10. Therefore, the water wets and spreads on the surface of the piezoelectric fiber 10. Moisture is exposed to the outside of the yarn by wetting and spreading on the fiber surface. Therefore, the moisture is more likely to evaporate and dries faster than when no surfactant is attached.
 図5は、界面活性剤の量と所定時間経過後の含水量との関係を示すシミュレーション結果である。図5に示す様に、界面活性剤の量が多くなるほど、所定時間経過後の含水量は少なくなる。つまり、界面活性剤の量が多いほど水分は蒸発し易くなる。 FIG. 5 is a simulation result showing the relationship between the amount of the surfactant and the water content after a lapse of a predetermined time. As shown in FIG. 5, as the amount of the surfactant increases, the water content after a lapse of a predetermined time decreases. That is, the larger the amount of the surfactant, the easier it is for the water to evaporate.
 水分が蒸発すると、電流経路が無くなるため、糸1の電位は維持され易い。また、糸2の電位も維持され易い。よって、糸1および糸2の間に形成される電場は、維持され易い。 When the water evaporates, the current path disappears, so the potential of the thread 1 is easily maintained. In addition, the potential of the thread 2 is easily maintained. Therefore, the electric field formed between the yarn 1 and the yarn 2 is easily maintained.
 そして、本実施形における複数の圧電繊維10に対する界面活性剤100の付着態様は、一様ではない。つまり、糸1(または糸2)は、界面活性剤100の付着量が多い圧電繊維10と、界面活性剤100の付着量が少ない圧電繊維10と、を有する。より具体的には、糸1(または糸2)の外側に配置される圧電繊維10と、糸1(または糸2)の内側に配置される圧電繊維10と、で付着する界面活性剤100の量が異なる。例えば、図1(B)の例では、外側に配置される圧電繊維10に付着する界面活性剤100の量は、内側に配置される圧電繊維10に付着する界面活性剤100の量よりも多い。 The mode of attachment of the surfactant 100 to the plurality of piezoelectric fibers 10 in the present embodiment is not uniform. That is, the thread 1 (or thread 2) has a piezoelectric fiber 10 having a large amount of the surfactant 100 attached and a piezoelectric fiber 10 having a small amount of the surfactant 100 attached. More specifically, the surfactant 100 adhered by the piezoelectric fiber 10 arranged on the outside of the thread 1 (or thread 2) and the piezoelectric fiber 10 arranged on the inside of the thread 1 (or thread 2). The amount is different. For example, in the example of FIG. 1B, the amount of the surfactant 100 adhering to the piezoelectric fiber 10 arranged on the outside is larger than the amount of the surfactant 100 adhering to the piezoelectric fiber 10 arranged on the inside. ..
 仮に複数の圧電繊維10に対する界面活性剤100の付着態様が一様である場合、水分の濡れ広がりには偏りがなくなる。糸1(または糸2)は、マルチフィラメント糸である。そのため、糸1または糸2は、内側に多くの界面活性剤を含むことになる。したがって、糸1または糸2の内側に水分を多く引き込む。内側に引き込まれた水分は、外部に露出しないため、外側に濡れ広がった水分よりも乾きにくい。糸1または糸2は、外側にも界面活性剤を含んでいるため、全体的に濡れた状態となる。 If the mode of attachment of the surfactant 100 to the plurality of piezoelectric fibers 10 is uniform, there is no bias in the wet spread of moisture. Thread 1 (or thread 2) is a multifilament thread. Therefore, the thread 1 or the thread 2 contains a large amount of surfactant inside. Therefore, a large amount of water is drawn into the thread 1 or the thread 2. Moisture drawn in is not exposed to the outside, so it is harder to dry than moisture that has spread to the outside. Since the thread 1 or the thread 2 also contains a surfactant on the outside, the thread 1 or the thread 2 is in a wet state as a whole.
 一方で、複数の圧電繊維10に対する界面活性剤100の付着態様が一様ではない場合、水分の濡れ広がりに偏りが生じる。特に外側に配置される圧電繊維10に付着する界面活性剤100の量が多い場合、水分は、外側に多く露出する。よって、水分は、界面活性剤100の付着態様が一様である場合よりも、蒸発し易くなる。また、外側に配置される圧電繊維10に付着する界面活性剤100の量が多い場合、水分は糸の内部に引き込まれ易い。この場合、外部は乾燥状態になる。したがって、糸1および糸2の間に形成される電場は、維持され易くなる。 On the other hand, if the mode of attachment of the surfactant 100 to the plurality of piezoelectric fibers 10 is not uniform, the wetting and spreading of water is biased. In particular, when the amount of the surfactant 100 adhering to the piezoelectric fiber 10 arranged on the outside is large, a large amount of water is exposed to the outside. Therefore, the water content is more likely to evaporate than when the surfactant 100 adheres in a uniform manner. Further, when the amount of the surfactant 100 adhering to the piezoelectric fiber 10 arranged on the outside is large, water is easily drawn into the inside of the yarn. In this case, the outside becomes dry. Therefore, the electric field formed between the yarn 1 and the yarn 2 is easily maintained.
 次に、図6は、糸1の変形例に係る糸1Aの断面図である。糸1Aは、複数の圧電繊維10の間に、樹脂50を備えている。樹脂50は、絶縁体の一例である。図6の断面では、樹脂50は、中心に配置された圧電繊維10の周囲をコーティングし、周りの圧電繊維10との隙間を埋めるように配置される。そのため、界面活性剤100は、糸1Aの内側よりも外側に多く付着する。 Next, FIG. 6 is a cross-sectional view of the thread 1A according to a modified example of the thread 1. The thread 1A includes a resin 50 between the plurality of piezoelectric fibers 10. Resin 50 is an example of an insulator. In the cross section of FIG. 6, the resin 50 is arranged so as to coat the periphery of the piezoelectric fiber 10 arranged at the center and fill the gap with the surrounding piezoelectric fiber 10. Therefore, the surfactant 100 adheres more to the outside than the inside of the thread 1A.
 この様な糸1Aは、外側に多くの界面活性剤100を付着する。したがって、水分は、より蒸発し易くなる。よって、糸1Aは、電場を維持し易くなる。また、糸1Aは、樹脂50により、内側に水分が侵入しにくい。この点からも、糸1Aは、電場を維持し易くなる。 Such a thread 1A adheres a large amount of surfactant 100 to the outside. Therefore, the water is more likely to evaporate. Therefore, the thread 1A can easily maintain the electric field. In addition, the resin 50 makes it difficult for moisture to enter the thread 1A. From this point as well, the thread 1A can easily maintain an electric field.
 なお、図6では、糸1の変形例を示したが、糸2についても、図6の例と同様に、樹脂50を備えた変形例2に係る糸2Aを構成することができる。 Although the modified example of the thread 1 is shown in FIG. 6, the thread 2A according to the modified example 2 provided with the resin 50 can be configured for the thread 2 as in the example of FIG.
 なお、糸1Aは、圧電繊維10を樹脂50でコーティングし、該コーティングした圧電繊維10を芯糸として配置したカバリング糸であってもよい。この場合、他の複数の圧電繊維10は、芯糸の周囲を旋回する。界面活性剤100は、糸1Aの内側よりも外側に多く付着する。 The thread 1A may be a covering thread in which the piezoelectric fiber 10 is coated with the resin 50 and the coated piezoelectric fiber 10 is arranged as the core thread. In this case, the other plurality of piezoelectric fibers 10 rotate around the core yarn. The surfactant 100 adheres more to the outside than the inside of the thread 1A.
 また、芯糸は、界面活性剤100の付着しにくい素材であってもよい。この場合も、界面活性剤100は、内側よりも外側に多く付着する。 Further, the core thread may be a material to which the surfactant 100 does not easily adhere. Also in this case, the surfactant 100 adheres more to the outside than to the inside.
 また、芯糸に巻く鞘糸は、フィラメント糸に限らず、フィルム形状の圧電体であってもよい。また、フィラメント糸は、仮撚糸であってもよい。仮撚糸は、多くの隙間を有する。よって、仮撚糸には界面活性剤100が付着し易い。また、仮撚糸は、風合いも良い。 Further, the sheath yarn wound around the core yarn is not limited to the filament yarn, and may be a film-shaped piezoelectric material. Further, the filament yarn may be false twisted yarn. False plying has many gaps. Therefore, the surfactant 100 easily adheres to the false plying yarn. In addition, the false plying has a good texture.
 あるいは、糸は、内側に太い繊維を有し、外側に複数の細い圧電繊維10を有していてもよい。この場合も、界面活性剤100は、内側よりも外側に多く付着する。 Alternatively, the thread may have thick fibers on the inside and a plurality of thin piezoelectric fibers 10 on the outside. Also in this case, the surfactant 100 adheres more to the outside than to the inside.
 また、中空糸、あるいは表面に凹凸を有する糸も、内側と外側の界面活性剤100の付着量が異なる。 Further, the amount of adhesion of the surfactant 100 on the inner side and the outer side of the hollow fiber or the thread having irregularities on the surface is different.
 また、糸を構成する圧電繊維は、長繊維に限らず、少なくとも1つの短繊維を含んでいてもよい。糸が複数の短繊維を撚った紡績糸である場合、長繊維よりも複雑な形状となる。したがって、界面活性剤100の付着量が一様ではなくなる。また、いくつかの短繊維の端部は、糸の側面から露出する。つまり、糸の表面には、より多くの繊維が露出する。したがって、短繊維を用いた場合には、界面活性剤は、内側よりも外側に多く付着する。 Further, the piezoelectric fibers constituting the yarn are not limited to long fibers, and may contain at least one short fiber. When the yarn is a spun yarn obtained by twisting a plurality of short fibers, the shape is more complicated than that of the long fibers. Therefore, the amount of the surfactant 100 adhered is not uniform. Also, the ends of some short fibers are exposed from the sides of the yarn. That is, more fibers are exposed on the surface of the yarn. Therefore, when short fibers are used, more surfactant adheres to the outside than to the inside.
 なお、表面に負の電位を生じる繊維としては、PLLAを用いたS糸の他にも、PDLAを用いたZ糸も考えられる。また、表面に正の電位を生じる繊維としては、PLLAを用いたZ糸の他にも、PDLAを用いたS糸も考えられる。 As the fiber that generates a negative potential on the surface, in addition to the S yarn using PLLA, the Z yarn using PDLA can be considered. Further, as the fiber that generates a positive potential on the surface, in addition to the Z yarn using PLLA, the S yarn using PDLA can be considered.
 図7に示す布帛75は、上述した本実施形態の糸を含む。本実施形態に示した糸を含む布帛75も、電場を維持し易い。 The fabric 75 shown in FIG. 7 includes the yarn of the present embodiment described above. The fabric 75 containing the yarn shown in the present embodiment also easily maintains an electric field.
 また、出願人は、布帛75から無作為に糸を10本抽出し、動的接触角測定(拡張/収縮法)を実施した。10本の糸において、引き上げ時の接触角の最大値および最小値は、それぞれ中心値から±10°以上であった。したがって、布帛75についても、界面活性剤の付着態様が一様ではないことが分かる。 In addition, the applicant randomly extracted 10 threads from the fabric 75 and performed dynamic contact angle measurement (expansion / contraction method). In the 10 threads, the maximum value and the minimum value of the contact angle at the time of pulling up were ± 10 ° or more from the center value, respectively. Therefore, it can be seen that the adhesion mode of the surfactant is not uniform also for the cloth 75.
 最後に、本実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Finally, the description of this embodiment should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the claims.
1,1A,2,2A…糸
10…圧電繊維
50…樹脂
100…界面活性剤
900…延伸方向
910A…第1対角線
910B…第2対角線
1,1A, 2,2A ... Thread 10 ... Piezoelectric fiber 50 ... Resin 100 ... Surfactant 900 ... Stretching direction 910A ... First diagonal line 910B ... Second diagonal line

Claims (7)

  1.  外部からのエネルギーにより電位を発生する複数の電位発生繊維と、
     前記複数の電位発生繊維に付着する界面活性剤と、
     を備え、
     前記界面活性剤の付着態様が一様ではない、
     糸。
    Multiple electric potential generating fibers that generate electric potential by external energy,
    The surfactant adhering to the plurality of potential generating fibers and
    With
    The adhesion mode of the surfactant is not uniform.
    yarn.
  2.  外側に配置される電位発生繊維と、内側に配置される電位発生繊維と、で付着する界面活性剤の量が異なる、
     請求項1に記載の糸。
    The amount of the surfactant adhering to the potential-generating fibers arranged on the outside and the potential-generating fibers arranged on the inside is different.
    The thread according to claim 1.
  3.  外側に配置される電位発生繊維に付着する界面活性剤の量は、内側に配置される電位発生繊維に付着する界面活性剤の量よりも多い、
     請求項2に記載の糸。
    The amount of surfactant adhering to the potential generating fibers arranged on the outside is larger than the amount of surfactant adhering to the potential generating fibers arranged on the inside.
    The thread according to claim 2.
  4.  前記複数の電位発生繊維は、前記電位が発生した時に異なる電位となる、少なくとも2つの電位発生繊維を含む、
     請求項1乃至請求項3のいずれか1項に記載の糸。
    The plurality of potential generating fibers include at least two potential generating fibers having different potentials when the potential is generated.
    The thread according to any one of claims 1 to 3.
  5.  前記複数の電位発生繊維の間に配置される絶縁体を備えた、
     請求項1乃至請求項4のいずれか1項に記載の糸。
    An insulator arranged between the plurality of potential generating fibers.
    The thread according to any one of claims 1 to 4.
  6.  前記複数の電位発生繊維は、ポリ乳酸を含む、
     請求項1乃至請求項5のいずれか1項に記載の糸。
    The plurality of potential generating fibers contain polylactic acid.
    The thread according to any one of claims 1 to 5.
  7.  請求項1乃至請求項6のいずれか1項に記載の糸を含む布帛。 A fabric containing the thread according to any one of claims 1 to 6.
PCT/JP2020/043599 2019-11-26 2020-11-24 Yarn and fabric WO2021106843A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021561407A JP7131715B2 (en) 2019-11-26 2020-11-24 yarn and fabric
CN202090000982.3U CN219342438U (en) 2019-11-26 2020-11-24 Yarn and fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019213068 2019-11-26
JP2019-213068 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021106843A1 true WO2021106843A1 (en) 2021-06-03

Family

ID=76130503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043599 WO2021106843A1 (en) 2019-11-26 2020-11-24 Yarn and fabric

Country Status (3)

Country Link
JP (1) JP7131715B2 (en)
CN (1) CN219342438U (en)
WO (1) WO2021106843A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248612A1 (en) * 2022-06-22 2023-12-28 株式会社村田製作所 Thread, fabric, and method for producing thread
US11950280B2 (en) 2018-05-10 2024-04-02 Interdigital Patent Holdings, Inc. Channelization and BWP

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248442A (en) * 1999-03-03 2000-09-12 Unitika Ltd Antimicrobial interknitted fabric
JP2004027374A (en) * 2002-06-21 2004-01-29 Nippon Ester Co Ltd Polylactic acid-based fiber
JP2005232645A (en) * 2004-02-23 2005-09-02 Toray Ind Inc Polylactic acid fiber, method for producing the same and fiber structure for industrial material composed of polylactic acid fiber
WO2018211817A1 (en) * 2017-05-19 2018-11-22 株式会社村田製作所 Antimicrobial fiber, seat, and seat cover
WO2019239866A1 (en) * 2018-06-12 2019-12-19 花王株式会社 Antibacterial fiber and garment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557027B2 (en) * 1996-01-26 2004-08-25 トヨタ自動車株式会社 Naturally degradable composite yarn and its product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248442A (en) * 1999-03-03 2000-09-12 Unitika Ltd Antimicrobial interknitted fabric
JP2004027374A (en) * 2002-06-21 2004-01-29 Nippon Ester Co Ltd Polylactic acid-based fiber
JP2005232645A (en) * 2004-02-23 2005-09-02 Toray Ind Inc Polylactic acid fiber, method for producing the same and fiber structure for industrial material composed of polylactic acid fiber
WO2018211817A1 (en) * 2017-05-19 2018-11-22 株式会社村田製作所 Antimicrobial fiber, seat, and seat cover
WO2019239866A1 (en) * 2018-06-12 2019-12-19 花王株式会社 Antibacterial fiber and garment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11950280B2 (en) 2018-05-10 2024-04-02 Interdigital Patent Holdings, Inc. Channelization and BWP
WO2023248612A1 (en) * 2022-06-22 2023-12-28 株式会社村田製作所 Thread, fabric, and method for producing thread

Also Published As

Publication number Publication date
CN219342438U (en) 2023-07-14
JP7131715B2 (en) 2022-09-06
JPWO2021106843A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2021106843A1 (en) Yarn and fabric
Lin et al. Ultrastrong and Highly Sensitive Fiber Microactuators Constructed by Force‐Reeled Silks
WO2017212523A1 (en) Antibacterial piezoelectric thread, antibacterial fabric, clothing, medical member, bioactive piezoelectric, and piezoelectric thread for substance adsorption
CN100383613C (en) Friction cloth for manufacturing liquid crystal board
JP5552114B2 (en) Artificial hair fiber, its use and production method
US11530498B2 (en) Resin structure
JP7425815B2 (en) Yarn manufacturing method
KR101938840B1 (en) Polyester conjugated yarn having natural emotion and manufacturing method of fabric using the same
JP2024045680A (en) Method for measuring surface potential of yarn containing potential-generating fibers
JP7376328B2 (en) Antibacterial yarns and antibacterial fabrics comprising antibacterial yarns
JP2009084756A (en) Twisted yarn having high elongational elasticity and method for manufacturing the same
HU210409B (en) Thread, made of fibres with tissue covered grains, and process for its production
WO2020111049A1 (en) Antibacterial twisted yarn, and antibacterial yarn and antibacterial fabric provided with antibacterial twisted yarn
CN109154107A (en) Conducting fibre and its manufacturing method
CN86100754A (en) Elasticized non-woven fabric and its method for making
WO2021200075A1 (en) Yarn and structure comprising same
KR102305073B1 (en) Method for providing sizing agent on carbon fiber bundle
WO2023248612A1 (en) Thread, fabric, and method for producing thread
WO2021131926A1 (en) Woven fabric
JP7048468B2 (en) Unstretched conductive composite fiber and method for manufacturing BCF using it
WO2022249768A1 (en) Modified cross-section fiber
TW202249314A (en) Piezoelectric substrate, sensor, actuator, and biological information acquisition device
TWI665347B (en) Vinylidene fluoride resin fiber and sheet structure
JP2018071014A (en) Sea-island composite fiber and method for producing the same
JP6861071B2 (en) Manufacturing method of elastic knitted fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561407

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894463

Country of ref document: EP

Kind code of ref document: A1