JP7048468B2 - Unstretched conductive composite fiber and method for manufacturing BCF using it - Google Patents

Unstretched conductive composite fiber and method for manufacturing BCF using it Download PDF

Info

Publication number
JP7048468B2
JP7048468B2 JP2018176659A JP2018176659A JP7048468B2 JP 7048468 B2 JP7048468 B2 JP 7048468B2 JP 2018176659 A JP2018176659 A JP 2018176659A JP 2018176659 A JP2018176659 A JP 2018176659A JP 7048468 B2 JP7048468 B2 JP 7048468B2
Authority
JP
Japan
Prior art keywords
conductive
unstretched
fiber
bcf
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018176659A
Other languages
Japanese (ja)
Other versions
JP2020045599A (en
Inventor
健吾 森江
寿一 勝井
雅春 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Priority to JP2018176659A priority Critical patent/JP7048468B2/en
Publication of JP2020045599A publication Critical patent/JP2020045599A/en
Application granted granted Critical
Publication of JP7048468B2 publication Critical patent/JP7048468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、延伸後にも優れた導電性を示す未延伸ポリアミド系導電性複合繊維およびそれを用いたBCFの製造方法に関するものである。 The present invention relates to an unstretched polyamide-based conductive composite fiber that exhibits excellent conductivity even after stretching, and a method for producing a BCF using the same.

嵩高連続長繊維(BCF:Bulked Continuous Filament)はポリアミド、ポリプロピレン、ポリエステル、ポリ乳酸などの樹脂を紡糸延伸捲縮加工した繊維であり、自動車、家屋、車両、航空機などのカーペットに用いられる。このカーペットには実用的な強度、耐光性、耐へたり性、意匠性、制電性が求められる。カーペットなどの布帛に制電性を与える方法として、帯電防止剤を含む繊維を使用したり、布帛自体に帯電防止加工を施すことがある。しかし帯電防止剤や帯電防止加工は外気の水分によりその効果を発揮するものであり、乾燥した環境であれば、そのカーペットの制電性は損なわれ、不快な静電気を発生することとなる。そこでいかなる環境下でも高い制電性を得る方法として、導電性繊維をカーペットの中に混ぜ込むことがある(特許文献1)。 Bulked continuous fiber (BCF) is a fiber obtained by spinning, stretching and crimping a resin such as polyamide, polypropylene, polyester or polylactic acid, and is used for carpets of automobiles, houses, vehicles, aircraft and the like. This carpet is required to have practical strength, light resistance, sag resistance, design and antistatic properties. As a method of imparting antistatic properties to a fabric such as a carpet, fibers containing an antistatic agent may be used, or the fabric itself may be subjected to antistatic processing. However, antistatic agents and antistatic processing exert their effects by the moisture of the outside air, and in a dry environment, the antistatic property of the carpet is impaired and unpleasant static electricity is generated. Therefore, as a method of obtaining high antistatic property under any environment, conductive fibers may be mixed into the carpet (Patent Document 1).

特開平7-258920号公報Japanese Unexamined Patent Publication No. 7-2589220

導電性繊維をカーペットの中に混ぜ込むと方法として、BCF製造時にカーボンブラックを含有する導電性繊維を混繊させる方法がある。BCFの製造は通常、樹脂を溶融して多数の孔を持つノズルから押し出し、複数のローラーを通過させて連続的に延伸、更にエアジェットで嵩高加工を施し、巻取機で巻き取ることで製造される。この工程において、ノズルから押し出され、延伸される前の糸条にボビン等に巻かれた導電糸を繰り出し、ガイドなどを介し混繊させる。ここで、混繊された導電糸は延伸に対し破断しないのはもちろんのこと延伸、嵩高加工後も一定以上の導電性を有していなければならない。また、この導電糸はカーペットに混ぜ込まれた際にカーボンブラック特有の黒筋が目立ってしまっては、カーペットの意匠性が著しく損なわれてしまう。
本発明は、BCF製造時に混繊、延伸されても十分な導電性を有しており、カーペットに使用された際に黒筋が目立たない導電糸を提供することをその目的とする。
As a method of mixing conductive fibers into carpet, there is a method of mixing conductive fibers containing carbon black during BCF production. BCF is usually manufactured by melting the resin, extruding it from a nozzle with a large number of holes, passing it through multiple rollers, continuously stretching it, performing bulk processing with an air jet, and winding it with a winder. Will be done. In this step, the conductive yarn wound on the bobbin or the like is unwound on the yarn extruded from the nozzle and before being drawn, and the yarn is mixed through a guide or the like. Here, the mixed conductive yarn must not only not break with respect to stretching, but also have a certain level of conductivity even after stretching and bulk processing. Further, if the black streaks peculiar to carbon black become conspicuous when the conductive yarn is mixed with the carpet, the design of the carpet is significantly impaired.
It is an object of the present invention to provide a conductive yarn which has sufficient conductivity even when mixed and stretched during BCF production and whose black streaks are inconspicuous when used for carpets.

すなわち、本発明は、導電性カーボンブラックを20質量%以上、45質量%以下含有するポリアミドからなる導電層と、隠ぺい性無機顔料を5質量%以上含有するポリアミドからなる保護層とを有し、破断伸度が200~600%であり、線抵抗値が1.0E+05~9.9E+07Ω/cmであり、全周長に対する導電層の露出周長の割合は8%未満である、未延伸導電性複合繊維をその要旨とする。
上記未延伸導電性複合繊維は、BCFを製造する際の延伸工程への供給するものであることが好ましい。
上記未延伸導電性複合繊維は、繊維横断面における保護層の外周に3個以上の凸部を有するものであることが好ましい。
本発明は、また、非導電性繊維と導電性繊維と混繊してBCFを製造する方法であって、非導電性繊維を溶融紡糸する第1工程、溶融紡糸して得られた未延伸非導電性繊維と、上記未延伸導電性繊維を混繊して延伸する第2工程、混繊した延伸糸を流体噴射により嵩高加工する第3工程、得られた嵩高加工糸を巻き取る第4工程とを含むBCFの製造方法でもある。
That is, the present invention has a conductive layer made of a polyamide containing 20% by mass or more and 45% by mass or less of conductive carbon black, and a protective layer made of a polyamide containing 5% by mass or more of a concealing inorganic pigment. The elongation at break is 200 to 600%, the linear resistance value is 1.0E + 05 to 9.9E + 07Ω / cm, and the ratio of the exposed peripheral length of the conductive layer to the total peripheral length is less than 8%, unstretched conductivity. The gist is composite fiber.
The unstretched conductive composite fiber is preferably supplied to the drawing step when producing BCF.
The unstretched conductive composite fiber preferably has three or more convex portions on the outer periphery of the protective layer in the cross section of the fiber.
The present invention is also a method for producing BCF by mixing non-conductive fibers and conductive fibers, the first step of melt-spinning non-conductive fibers, unstretched non-stretched obtained by melt-spinning. The second step of mixing and stretching the conductive fibers and the unstretched conductive fibers, the third step of bulk processing the mixed drawn yarn by fluid injection, and the fourth step of winding up the obtained bulky processed yarn. It is also a method for producing BCF including.

本発明によれば、BCF製造時に混繊、延伸されても十分な導電性を有しており、カーペットに使用された際に黒筋が目立たない導電糸を提供できる。 According to the present invention, it is possible to provide a conductive yarn which has sufficient conductivity even when mixed and stretched during BCF production and whose black streaks are inconspicuous when used for a carpet.

本発明におけるBCFの製造方法の例を示す説明図である。It is explanatory drawing which shows the example of the manufacturing method of BCF in this invention.

以下、本発明を詳細に説明する。
本発明は、導電層と、保護層とからなる未延伸導電性複合繊維である。
Hereinafter, the present invention will be described in detail.
The present invention is an unstretched conductive composite fiber composed of a conductive layer and a protective layer.

本発明において、導電層を構成するベースポリマーとなる熱可塑性樹脂は、ポリアミドである。
これらポリアミドとしては、例えば、ポリアミド6、ポリアミド66、ポリアミド12、ポリアミド11、ポリアミド610、ポリアミド612及びそれらを主体とする共重合体が挙げられ、中でも、ポリアミド6、ポリアミド66、ポリアミド12が好ましい。
In the present invention, the thermoplastic resin serving as the base polymer constituting the conductive layer is polyamide.
Examples of these polyamides include polyamide 6, polyamide 66, polyamide 12, polyamide 11, polyamide 610, and a copolymer containing them as a main component, and polyamide 6, polyamide 66, and polyamide 12 are preferable.

本発明の未延伸導電性複合繊維の導電層は、導電性カーボンブラックを20質量%以上、45質量%以下含有したポリアミドである。 The conductive layer of the unstretched conductive composite fiber of the present invention is a polyamide containing 20% by mass or more and 45% by mass or less of conductive carbon black.

本発明の導電性複合繊維において、導電層は、導電性カーボンブラックを20質量%以上、45質量%以下含有する。カーボンブラックの量が、少な過ぎると導電性及び制電性が得られず、多過ぎると、紡糸の際に、流動性が失われ製糸性が悪くなる傾向がある。中でも、カーボンブラックの含有量は、25質量%以上、40質量%以下が好ましい。 In the conductive composite fiber of the present invention, the conductive layer contains 20% by mass or more and 45% by mass or less of conductive carbon black. If the amount of carbon black is too small, conductivity and antistatic properties cannot be obtained, and if it is too large, fluidity is lost during spinning and the spinning property tends to be deteriorated. Above all, the content of carbon black is preferably 25% by mass or more and 40% by mass or less.

本発明において、導電層に用いられる導電性カーボンブラックとしては、ケッチェンブラック、ファーネスブラック、アセチレンブラック、チャンネルブラックなどが挙げられ、優れた導電性を有するカーボンブラックであれば特に限定はされない。 In the present invention, examples of the conductive carbon black used for the conductive layer include Ketjen black, furnace black, acetylene black, channel black, and the like, and the carbon black having excellent conductivity is not particularly limited.

本発明において、保護層を構成する熱可塑性樹脂は、ポリアミドである。
保護層は、通常は、導電材料としてのカーボンブラックを含まない非導電層である。
本発明において保護層となるポリアミドとして、例えばポリアミド6、ポリアミド66、ポリアミド12、ポリアミド11、ポリアミド610、ポリアミド612などのポリアミド、及びこれらを共重合した物が挙げられるが、溶融紡糸可能なものであれば特に限定されるものではなく、好ましくはポリアミド6、ポリアミド66である。
In the present invention, the thermoplastic resin constituting the protective layer is polyamide.
The protective layer is usually a non-conductive layer that does not contain carbon black as a conductive material.
Examples of the polyamide used as the protective layer in the present invention include polyamides such as polyamide 6, polyamide 66, polyamide 12, polyamide 11, polyamide 610, and polyamide 612, and copolymers thereof, which can be melt-spun. If there is, the present invention is not particularly limited, and polyamide 6 and polyamide 66 are preferable.

本発明の未延伸導電性複合繊維の保護層は、隠ぺい性無機顔料を含有する。この隠ぺい性無機顔料は導電部分のカーボンブラックの着色を隠ぺいする。 The protective layer of the unstretched conductive composite fiber of the present invention contains a concealing inorganic pigment. This concealing inorganic pigment hides the carbon black coloring of the conductive part.

隠ぺい性無機顔料の含有量は、保護層のポリアミドに対し、5質量%以上であり、より好ましくは、7質量%以上である。隠ぺい性無機顔料の含有量が多過ぎると、導電性複合繊維の製造時の溶融紡糸ノズルの汚れが強くなり、歩留りが低下したり、得られる導電性複合繊維の物性の低下、紡糸装置のガイドなどが摩耗劣化するため、隠ぺい性無機顔料の含有量の上限は、15質量%程度が好ましい。
上記の範囲で、保護層に、隠ぺい性無機顔料を含有することにより、製糸性や糸物性の低下を招くことなくカーボンブラックの着色を効果的に隠ぺいし、カーボンブラック含有繊維特有の黒スジが目立たず、良好な意匠性を有するものとなる。
The content of the concealing inorganic pigment is 5% by mass or more, more preferably 7% by mass or more, based on the polyamide of the protective layer. If the content of the concealing inorganic pigment is too high, the molten spinning nozzle becomes more dirty during the production of the conductive composite fiber, and the yield is lowered, the physical properties of the obtained conductive composite fiber are lowered, and the guide of the spinning device is used. The upper limit of the content of the concealing inorganic pigment is preferably about 15% by mass, because the content of the hiding inorganic pigment is deteriorated by abrasion.
In the above range, by containing a concealing inorganic pigment in the protective layer, the coloring of carbon black is effectively concealed without causing deterioration of yarn-making property and thread physical characteristics, and black streaks peculiar to carbon black-containing fibers are formed. It is inconspicuous and has good design.

このような隠ぺい性無機顔料としては、例えば、酸化チタン、硫酸バリウム、酸化カルシウム、酸化亜鉛などの増白剤が好適に挙げられ、特に酸化チタンが好ましい。 Examples of such a hiding inorganic pigment preferably include whitening agents such as titanium oxide, barium sulfate, calcium oxide, and zinc oxide, and titanium oxide is particularly preferable.

本発明における隠ぺい性無機顔料は、コスト、白度、繊維とした際の強伸度への影響や、繊維加工機械のガイドなどに対する摩耗性などを鑑みて適宜選択すればよい。 The concealing inorganic pigment in the present invention may be appropriately selected in consideration of cost, whiteness, the influence on the strength and elongation of the fiber, and the wear resistance to the guide of the fiber processing machine.

また、これらの隠ぺい性無機顔料を保護層に含有させる方法は、特に限定するものではないが、あらかじめポリアミドに混練し、コンパウンドとして溶融紡糸しても良いし、樹脂混練物を一度ペレット化することなく混練と溶融紡糸を連続的に行っても良い。また隠ぺい性無機顔料を30質量%以上含有する高濃度マスターバッチをあらかじめ作製し、溶融紡糸時にドライブレンドにて希釈し、濃度を調整しても良い。 The method of incorporating these concealing inorganic pigments in the protective layer is not particularly limited, but may be kneaded with polyamide in advance and melt-spun as a compound, or the resin kneaded product may be pelletized once. You may continuously perform kneading and melt spinning without kneading. Further, a high-concentration masterbatch containing 30% by mass or more of the concealing inorganic pigment may be prepared in advance and diluted with a dry blend at the time of melt spinning to adjust the concentration.

本発明の未延伸導電性複合繊維の破断伸度は、200~600%である。破断伸度が200%未満であると、BCF製造時に混繊され、延伸、嵩高加工された際に糸切れや導電性の低下(線抵抗値の著しい上昇)が生じる。また、破断伸度が600%を超えると、理由は定かではないが、BCFとした際に、導電性複合繊維のみがBCFからたるみ、浮き上がったような形態となり、カーペットとする際の製織性、意匠性や導電性の耐久性に悪影響を及ぼす。中でも、250~550%が好ましい。 The breaking elongation of the unstretched conductive composite fiber of the present invention is 200 to 600%. If the elongation at break is less than 200%, the fibers are mixed during BCF production, and yarn breakage and a decrease in conductivity (significant increase in linear resistance value) occur during drawing and bulk processing. In addition, when the elongation at break exceeds 600%, the reason is not clear, but when BCF is used, only the conductive composite fiber slackens from the BCF and becomes a floating form, and the weaving property when making a carpet, It adversely affects the durability of design and conductivity. Above all, 250 to 550% is preferable.

本発明の未延伸導電性複合繊維の破断強度は、0.4cN/dtex以上が好ましく、より好ましくは0.6cN/dtex以上である。上限は特にないが、未延伸糸であることと、破断伸度とのバランスを考慮すると上限は2.5cN/dtex程度であることが好ましい。この範囲であると、製糸及びBCF製造時の混繊、延伸、嵩高加工の安定性が得られるため、好ましい。 The breaking strength of the unstretched conductive composite fiber of the present invention is preferably 0.4 cN / dtex or more, and more preferably 0.6 cN / dtex or more. Although there is no particular upper limit, the upper limit is preferably about 2.5 cN / dtex in consideration of the balance between the undrawn yarn and the elongation at break. Within this range, stability of blending, stretching, and bulk processing during silk reeling and BCF production can be obtained, which is preferable.

本発明の未延伸導電性複合繊維の総繊度は、15~80dtexが好ましく、より好ましくは20~60dtexである。この範囲であると、十分な白度、カーペットとした際の意匠性、導電性、製糸及びBCF製造時の混繊、延伸、嵩高加工の安定性が得られるため、好ましい。 The total fineness of the unstretched conductive composite fiber of the present invention is preferably 15 to 80 dtex, more preferably 20 to 60 dtex. This range is preferable because sufficient whiteness, designability when used as a carpet, conductivity, and stability of fiber blending, drawing, and bulk processing during silk reeling and BCF production can be obtained.

本発明の未延伸導電性複合繊維のフィラメント数は、特に限定されるのもではないが、1~8fが好ましく、より好ましくは1~6fであり、白度や単糸の破断強度を鑑み決定する。 The number of filaments of the unstretched conductive composite fiber of the present invention is not particularly limited, but is preferably 1 to 8f, more preferably 1 to 6f, and is determined in consideration of the whiteness and the breaking strength of the single yarn. do.

本発明の未延伸導電性複合繊維の線抵抗値は、1.0E+05~9.9E+07Ω/cmである。この範囲であると、製糸及びBCF製造時の混繊、延伸、嵩高加工の安定性およびBCFとした際にも十分な導電性が得られ、しいてはカーペットとした際に良好な制電性を示す。
本発明の未延伸導電性複合繊維のパッケージ(巻き姿)は、ボビンやパーンに巻き取られたものであり、そのパッケージ端面はテーパー角が90°のスクエアエンドでも、テーパー角が90°未満のテーパーエンドでも良い。また、ある一定の内層のボビン直径まではスクエアエンドで、その位置から外層はテーパーエンドとなるパッケージでも良く、それらは取扱い性や運搬、運送の効率や容易性、BCFへの混繊する際にパッケージから導電性複合繊維を繰り出す安定性を鑑みて決定すればよい。
The linear resistance value of the unstretched conductive composite fiber of the present invention is 1.0E + 05 to 9.9E + 07Ω / cm. Within this range, sufficient conductivity can be obtained for blending, stretching, and bulk processing stability during silk reeling and BCF manufacturing, and sufficient conductivity can be obtained for BCF, and good antistatic properties for carpets. Is shown.
The package (rolled form) of the unstretched conductive composite fiber of the present invention is wound around a bobbin or a pan, and the end face of the package has a taper angle of less than 90 ° even at a square end having a taper angle of 90 °. It may be a tapered end. In addition, a package may have a square end up to a certain inner bobbin diameter and a tapered end from that position to the outer layer, which are easy to handle, transport, transport efficiency and ease, and when blended into BCF. It may be determined in consideration of the stability of feeding out the conductive composite fiber from the package.

本発明において、繊維横断面は、繊維軸長手方向に垂直な面をいう。
本発明の未延伸導電性複合繊維は、導電層及び保護層が、繊維長手方向に連続していることが好ましい。
In the present invention, the fiber cross section refers to a plane perpendicular to the fiber axis longitudinal direction.
In the unstretched conductive composite fiber of the present invention, it is preferable that the conductive layer and the protective layer are continuous in the fiber longitudinal direction.

本発明の導電性複合繊維の繊維横断面における、保護層/導電層の面積比率は好ましくは100/1~3/1、より好ましくは50/1~5/1である。保護層の面積比率が高すぎると、白度が高くなるが、十分な導電性が得られないおそれがある。また、保護層の面積比率が低すぎると、十分な白度が得られなくなるどころか、破断強度及び破断伸度が低下し、BCF混繊時における延伸工程にて糸切れが多発するおそれがある。
本発明の導電性複合繊維の繊維横断面の断面形状は、導電層が保護層に完全に包まれている非露出タイプ、導電層が繊維表面の一部または繊維表面全体に露出している露出タイプのいずれでもよい。しかしながら、繊維とした際に十分な白度を有するためには、繊維横断面における繊維表面への導電層の露出長は短いほど好ましく、導電性複合繊維の繊維横断面における全周長に対する導電層の露出周長の割合は8%未満が好ましく、より好ましくは0%、すなわち導電層が非露出である。
また、繊維横断面としては丸断面、三角断面、多葉断面など、特に限定されるものではないが、乱反射により繊維の白度を上げるために多葉断面であることが好ましい。
特に好ましい断面形状として、繊維横断面における保護層の外周に3個以上の凸部を有するものが挙げられる。これにより、光が乱反射し易く、優れた白度を得られやすい。
The area ratio of the protective layer / the conductive layer in the fiber cross section of the conductive composite fiber of the present invention is preferably 100/1 to 3/1, more preferably 50/1 to 5/1. If the area ratio of the protective layer is too high, the whiteness will be high, but sufficient conductivity may not be obtained. Further, if the area ratio of the protective layer is too low, not only a sufficient whiteness cannot be obtained, but also the breaking strength and the breaking elongation are lowered, and there is a possibility that yarn breakage occurs frequently in the drawing step at the time of BCF blending.
The cross-sectional shape of the fiber cross section of the conductive composite fiber of the present invention is a non-exposed type in which the conductive layer is completely wrapped in a protective layer, and the conductive layer is exposed to a part of the fiber surface or the entire fiber surface. It can be of any type. However, in order to have sufficient whiteness when made into a fiber, it is preferable that the exposed length of the conductive layer on the fiber surface in the fiber cross section is short, and the conductive layer with respect to the entire circumference of the fiber cross section of the conductive composite fiber. The ratio of the exposed peripheral length is preferably less than 8%, more preferably 0%, that is, the conductive layer is unexposed.
The cross section of the fiber is not particularly limited, such as a round cross section, a triangular cross section, and a multi-leaf cross section, but a multi-leaf cross section is preferable in order to increase the whiteness of the fiber due to diffused reflection.
A particularly preferable cross-sectional shape is one having three or more convex portions on the outer periphery of the protective layer in the cross section of the fiber. As a result, light is easily reflected diffusely, and excellent whiteness is easily obtained.

本発明の未延伸導電性複合繊維を後述する方法で測定したL*値は、65以上であることが好ましく、より好ましくは70以上である。この範囲であると、カーペットとした際に導電性繊維の黒筋が目立たない。 The L * value of the unstretched conductive composite fiber of the present invention measured by the method described later is preferably 65 or more, more preferably 70 or more. Within this range, black streaks of conductive fibers are not noticeable when used as a carpet.

このような本発明の未延伸導電性複合繊維は、BCFを製造する際に、ノズルから吐出される糸条に混繊し、延伸、嵩高加工に対し、破断せず、導電性を維持することができ、BCFカーペットとした際に、黒筋が目立つことなく良好な制電性を得ることができる。 Such an unstretched conductive composite fiber of the present invention is mixed with threads discharged from a nozzle when BCF is manufactured, and is not broken and maintains conductivity against stretching and bulky processing. Therefore, when a BCF carpet is used, good antistatic properties can be obtained without conspicuous black streaks.

本発明の未延伸導電性複合繊維の好適な製造方法の例を示す。
上記の導電性カーボンブラック、上記のポリアミドを準備し、混練して樹脂組成物を製造する。得られた樹脂組成物を導電層、隠ぺい材を5質量%以上含有するポリアミドを保護層とし、導電層と保護層が繊維横断面で複合された状態で吐出される複合口金と用いて、溶融複合紡糸を行い、導電性複合繊維を製造する。
溶融紡糸の際、紡糸温度は、原料となるポリアミドの融点+10℃~80℃、紡糸速度は、400~1800m/min程度が好ましく、この範囲であると製糸性が安定し、巻き取ったパッケージの形状も良好である。また、ポリアミドは合成繊維の中でも吸水性、吸湿性が高く、特に未延伸であるとその特性は顕著となるため、付与させる油剤や巻取環境温湿度を適宜調整する。
図1はBCFの製造方法の例を示す。溶融紡糸装置1から吐出された非導電性未延伸繊維と、本発明の未延伸導電性複合繊維2をガイド3を介して引き揃えて混繊し、油剤付与ローラー4で油剤付与し、第1ゴデッドローラー5に供給し、第1ゴデッドローラー5と第2ゴデッドローラー6の間で、延伸する。次いで、得られた延伸糸を嵩高加工装置7で流体噴射にて嵩高加工を行い、ワインダー8に巻取り、BCF9を得ることができる。また、糸走行やその方向、巻取張力を安定させたり、多段延伸もしくは弛緩させる目的で第2ゴデットローラー6のあとにもローラーを適宜設置しても良い。
未延伸非導電繊維と、未延伸導電性複合繊維の混合比率は、BCFとなった際の質量比率で、BCFに対し0.2~5質量%程度未延伸導電性複合繊維を混合することが好ましい。
第1ゴデッドローラー5と第2ゴデッドローラー6との延伸条件の好適な例を挙げると、例えば、第1ゴデッドローラー5の温度は室温でもよいが、延伸の安定性や導電性複合繊維の導電性を維持するためには40℃以上、第2ゴデッドローラー6の温度は第1ゴデッドローラーの温度よりも高く、好ましくは110℃以上、より好ましくは130℃以上である。延伸倍率は2.0倍から4.5倍で、BCFの強伸度や捲縮特性を鑑み決定する。
また、嵩高加工方法は、特に限定されるものではないが、例えば、流体噴射加工(エアジェット)が好適に挙げられる。
このようにして得られたBCFを用いて、公知の諸加工工程を経てタフティングを行い、精練して、染色し、制電性が優れ、黒筋が、目立たない意匠性の良好なカーペットを得ることができる。
An example of a suitable manufacturing method of the unstretched conductive composite fiber of this invention is shown.
The above-mentioned conductive carbon black and the above-mentioned polyamide are prepared and kneaded to produce a resin composition. The obtained resin composition is used as a conductive layer, and a polyamide containing 5% by mass or more of a hiding material is used as a protective layer, and melted by using a composite base ejected in a state where the conductive layer and the protective layer are composited in the cross section of the fiber. Composite spinning is performed to produce conductive composite fibers.
At the time of melt spinning, the spinning temperature is preferably the melting point of the polyamide used as a raw material + 10 ° C to 80 ° C, and the spinning speed is preferably about 400 to 1800 m / min. The shape is also good. Further, polyamide has high water absorption and hygroscopicity among synthetic fibers, and its characteristics become remarkable especially when it is unstretched. Therefore, the oil agent to be applied and the winding environment temperature / humidity are appropriately adjusted.
FIG. 1 shows an example of a method for producing BCF. The non-conductive unstretched fibers discharged from the melt spinning apparatus 1 and the unstretched conductive composite fibers 2 of the present invention are aligned and mixed via a guide 3, and the oil is applied by the oiling roller 4, and the first It is supplied to the goded roller 5 and stretched between the first goded roller 5 and the second goded roller 6. Next, the obtained drawn yarn is bulk-processed by fluid injection with the bulk-bulging processing device 7, and is wound around a winder 8 to obtain BCF 9. Further, a roller may be appropriately installed after the second godet roller 6 for the purpose of stabilizing the yarn running, its direction, and the winding tension, and for the purpose of multi-stage stretching or relaxation.
The mixing ratio of the unstretched non-conductive fiber and the unstretched conductive composite fiber is the mass ratio at the time of becoming BCF, and the unstretched conductive composite fiber may be mixed by about 0.2 to 5% by mass with respect to the BCF. preferable.
To give a suitable example of the drawing conditions of the first Godded Roller 5 and the second Godded Roller 6, for example, the temperature of the first Godded Roller 5 may be room temperature, but the drawing stability and the conductive composite fiber may be used. In order to maintain the conductivity of 40 ° C. or higher, the temperature of the second goded roller 6 is higher than the temperature of the first godded roller, preferably 110 ° C. or higher, and more preferably 130 ° C. or higher. The draw ratio is 2.0 to 4.5 times, and is determined in consideration of the strong elongation of BCF and the crimping characteristics.
Further, the bulky processing method is not particularly limited, but for example, fluid injection processing (air jet) is preferably mentioned.
Using the BCF thus obtained, tufting is performed through various known processing steps, and the carpet is refined, dyed, has excellent antistatic properties, and has black streaks inconspicuous and has good design. Obtainable.

以下に実施例を挙げて本発明を具体的に説明する。なお、本発明は以下に述べる実施例に限定されるものではない。尚、本発明の実施例及び比較例で得られた導電性繊維及びそれからなる生地の特性・評価は次に示す方法より求めた。 Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to the examples described below. The characteristics and evaluation of the conductive fibers and the fabric made of the conductive fibers obtained in the examples and comparative examples of the present invention were obtained by the following methods.

<破断強度、破断伸度>
導電性複合繊維の破断強度及び破断伸度は、JIS L 1013に準じ、(株)島津製作所製AGS-1KNGオートグラフ引っ張り試験機を用い、試料糸長5cm、引っ張り速度10cm/minの条件で試料が伸長破断したときの強度及び伸度を測定して求めた。
<繊維の導電性評価(線抵抗値)>
線抵抗値は、導電性複合繊維を10cm採取し、その両端に導電性接着剤でアルミ箔を接着させ、Agilent社製ハイレジスタンスメーター4339Bを用いて10cm長での抵抗値を測定した。測定値を10cmで割り返し、線抵抗値(Ω/cm)とした。
<ニュアンス巻による白度評価>
未延伸導電性繊維を黒板に、その黒板が透けないよう目付1.2g/cm以上で隙間なく、また、繊維を延伸することなく巻きつけ、日本電飾 測色色差計(ZE-2000)を用い、L値を測定した。L値が65以上となるとBCFとした際、しいてはカーペットとした際に導電性複合繊維の黒筋が目立たない。
<Breaking strength, breaking elongation>
The breaking strength and breaking elongation of the conductive composite fiber are in accordance with JIS L 1013, and a sample is used under the conditions of a sample yarn length of 5 cm and a tensile speed of 10 cm / min using an AGS-1KNG autograph tensile tester manufactured by Shimadzu Corporation. Was obtained by measuring the strength and elongation at the time of elongation fracture.
<Evaluation of fiber conductivity (line resistance value)>
For the linear resistance value, 10 cm of the conductive composite fiber was collected, aluminum foil was adhered to both ends thereof with a conductive adhesive, and the resistance value at a length of 10 cm was measured using a high resistance meter 4339B manufactured by Agilent. The measured value was divided by 10 cm to obtain a linear resistance value (Ω / cm).
<Whiteness evaluation by nuance volume>
Unstretched conductive fibers are wrapped around a blackboard with a basis weight of 1.2 g / cm 2 or more so that the blackboard does not show through, and the fibers are not stretched. The L * value was measured using. When the L * value is 65 or more, the black streaks of the conductive composite fiber are not conspicuous when the BCF is used and when the carpet is used.

〔実施例1〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を芯の導電層、アナターゼ型酸化チタン9.7質量%を含有するポリアミド6を鞘の保護層とし、導電層が保護層に完全に包まれ、保護層は4つの突起(凸部)を有する十字型断面となる口金を用いて溶融複合紡糸機にて複合紡糸を行った。保護層と導電層の繊維横断面における面積比率は10:1となるようギアポンプを調節し、8ホールのノズルから吐出された複合繊維を8つに分け、油剤を付与し、35dtexのモノフィラメントとして680m/minで回転する8つのボビンに未延伸複合導電繊維を巻き取った。
[Example 1]
The resin composition obtained by kneading the polyamide 6 with 35% by mass of conductive carbon black is used as the core conductive layer, and the polyamide 6 containing 9.7% by mass of anatase-type titanium oxide is used as the protective layer of the sheath, and the conductive layer is completely formed as the protective layer. The protective layer was subjected to composite spinning with a melt composite spinning machine using a base having a cross-shaped cross section having four protrusions (convex portions). The gear pump was adjusted so that the area ratio of the protective layer and the conductive layer in the fiber cross section was 10: 1, the composite fiber discharged from the 8-hole nozzle was divided into eight, oiled, and 680 m as a 35 dtex monofilament. Unstretched composite conductive fibers were wound around eight bobbins rotating at / min.

〔実施例2〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を芯の導電層、アナターゼ型酸化チタン9.7質量%を含有するポリアミド6を鞘の保護層とし、導電層が保護層に完全に包まれ、保護層は4つの突起(凸部)を有する十字型断面となる口金を用いて溶融複合紡糸機にて複合紡糸を行った。保護層と導電層の繊維横断面における面積比率は30:1となるようギアポンプを調節し、8ホールのノズルから吐出された複合繊維を8つに分け、油剤を付与し、35dtexのモノフィラメントとして680m/minで回転する8つのボビンに未延伸複合導電繊維を巻き取った。
[Example 2]
The resin composition obtained by kneading the polyamide 6 with 35% by mass of conductive carbon black is used as the core conductive layer, and the polyamide 6 containing 9.7% by mass of anatase-type titanium oxide is used as the protective layer of the sheath, and the conductive layer is completely formed as the protective layer. The protective layer was subjected to composite spinning with a melt composite spinning machine using a base having a cross-shaped cross section having four protrusions (convex portions). The gear pump was adjusted so that the area ratio of the protective layer and the conductive layer in the fiber cross section was 30: 1, the composite fiber discharged from the 8-hole nozzle was divided into eight, oiled, and 680 m as a 35 dtex monofilament. Unstretched composite conductive fibers were wound around eight bobbins rotating at / min.

〔実施例3〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を芯の導電層、アナターゼ型酸化チタン9.7質量%を含有するポリアミド6を鞘の保護層とし、導電層が繊維表面に一部露出し、保護層は4つの突起(凸部)を有する十字型断面となる口金を用いて溶融複合紡糸機にて複合紡糸を行った。保護層と導電層の繊維横断面における面積比率は30:1となるようギアポンプを調節し、8ホールのノズルから吐出された複合繊維を8つに分け、油剤を付与し、35dtexのモノフィラメントとして680m/minで回転する8つのボビンに未延伸複合導電繊維を巻き取った。導電層は繊維横断面における1つの凹部に露出し、全周長に対する導電層の露出周長の割合は5%であった。
[Example 3]
A resin composition obtained by kneading 35% by mass of conductive carbon black with polyamide 6 is used as a conductive layer of the core, and polyamide 6 containing 9.7% by mass of anatase-type titanium oxide is used as a protective layer of a sheath, and a conductive layer is formed on the fiber surface. The protective layer was subjected to composite spinning with a melt composite spinning machine using a base having a cross-shaped cross section having four protrusions (convex portions). The gear pump was adjusted so that the area ratio of the protective layer and the conductive layer in the fiber cross section was 30: 1, the composite fiber discharged from the 8-hole nozzle was divided into eight, oiled, and 680 m as a 35 dtex monofilament. Unstretched composite conductive fibers were wound around eight bobbins rotating at / min. The conductive layer was exposed in one recess in the cross section of the fiber, and the ratio of the exposed peripheral length of the conductive layer to the total peripheral length was 5%.

〔実施例4〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を芯の導電層、ルチル型酸化チタン50質量%を含有するポリアミド6とアナターゼ型酸化チタン0.3質量%を含有するポリアミドをドライブレンドし、保護層における酸化チタンの総含有量が6.2質量%となるようブレンド比を調整したものを保護層とし、導電層が保護層に完全に包まれ、保護層は4つの突起(凸部)を有する十字型断面となる口金を用いて溶融複合紡糸機にて複合紡糸を行った。保護層と導電層の繊維横断面における面積比率は30:1となるようギアポンプを調節し、8ホールのノズルから吐出された複合繊維を8つに分け、油剤を付与し、35dtexのモノフィラメントとして680m/minで回転する8つのボビンに未延伸複合導電繊維を巻き取った。
[Example 4]
A resin composition in which 35% by mass of conductive carbon black is kneaded with polyamide 6 is used as a core conductive layer, and a polyamide 6 containing 50% by mass of rutile-type titanium oxide and a polyamide containing 0.3% by mass of anatase-type titanium oxide are dried. The protective layer is made by blending and adjusting the blend ratio so that the total content of titanium oxide in the protective layer is 6.2% by mass. The conductive layer is completely wrapped in the protective layer, and the protective layer has four protrusions (4 protrusions (). Composite spinning was performed with a melt composite spinning machine using a base having a cross-shaped cross section (convex portion). The gear pump was adjusted so that the area ratio of the protective layer and the conductive layer in the fiber cross section was 30: 1, the composite fiber discharged from the 8-hole nozzle was divided into eight, oiled, and 680 m as a 35 dtex monofilament. Unstretched composite conductive fibers were wound around eight bobbins rotating at / min.

〔比較例1〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を芯の導電層、アナターゼ型酸化チタン9.7質量%を含有するポリアミド6を鞘の保護層とし、導電層が繊維表面に一部露出し、保護層は4つの突起を有する十字型断面となる口金を用いて溶融複合紡糸機にて複合紡糸を行った。保護層と導電層の繊維横断面における面積比率は30:1となるようギアポンプを調節し、8ホールのノズルから吐出された複合繊維を8つに分け、油剤を付与し、35dtexのモノフィラメントとして680m/minで回転する8つのボビンに未延伸複合導電繊維を巻き取った。導電層は繊維横断面における1つの凹部に露出し、全周長に対する導電層の露出周長の割合は16%であった。
[Comparative Example 1]
A resin composition obtained by kneading 35% by mass of conductive carbon black with polyamide 6 is used as a conductive layer of the core, and polyamide 6 containing 9.7% by mass of anatase-type titanium oxide is used as a protective layer of a sheath, and a conductive layer is formed on the fiber surface. The protective layer was partially exposed, and composite spinning was performed with a melt composite spinning machine using a base having a cross-shaped cross section having four protrusions. The gear pump was adjusted so that the area ratio of the protective layer and the conductive layer in the fiber cross section was 30: 1, the composite fiber discharged from the 8-hole nozzle was divided into eight, oiled, and 680 m as a 35 dtex monofilament. Unstretched composite conductive fibers were wound around eight bobbins rotating at / min. The conductive layer was exposed in one recess in the cross section of the fiber, and the ratio of the exposed peripheral length of the conductive layer to the total peripheral length was 16%.

〔比較例2〕
ポリアミド6に導電性カーボンブラックを35質量%混練した樹脂組成物を芯の導電層、アナターゼ型酸化チタン1.6質量%を含有するポリアミド6を鞘の保護層とし、導電層が保護層に完全に包まれ、保護層は4つの突起を有する十字型断面となる口金を用いて溶融複合紡糸機にて複合紡糸を行った。保護層と導電層の繊維横断面における面積比率は30:1となるようギアポンプを調節し、8ホールのノズルから吐出された複合繊維を8つに分け、油剤を付与し、35dtexのモノフィラメントとして680m/minで回転する8つのボビンに未延伸複合導電繊維を巻き取った。
[Comparative Example 2]
The resin composition obtained by kneading the polyamide 6 with 35% by mass of conductive carbon black is used as the core conductive layer, and the polyamide 6 containing 1.6% by mass of anatase-type titanium oxide is used as the protective layer of the sheath, and the conductive layer is completely formed as the protective layer. The protective layer was subjected to composite spinning with a melt composite spinning machine using a base having a cross-shaped cross section having four protrusions. The gear pump was adjusted so that the area ratio of the protective layer and the conductive layer in the fiber cross section was 30: 1, the composite fiber discharged from the 8-hole nozzle was divided into eight, oiled, and 680 m as a 35 dtex monofilament. Unstretched composite conductive fibers were wound around eight bobbins rotating at / min.

Figure 0007048468000001
Figure 0007048468000001

実施例1~4、比較例1,2で得た未延伸導電性複合繊維パッケージをクリルにセットし、溶融紡糸装置から吐出される96フィラメントのポリアミド6の糸条に、クリルから繰り出した未延伸導電性複合繊維を、ガイドを介して混繊し、900m/minで回転する50℃の第1ゴデットローラー、2800m/minで回転する160℃の第2ゴデットローラー間で連続的に延伸し、さらに160℃のエアジェットにて嵩高加工を施したのち、ワインダーにて巻き取った。得られたBCFは1560dtex/97fで、延伸された導電性複合繊維が1フィラメント含まれている。この際、得られたすべての未延伸導電性複合繊維パッケージからの糸の繰り出し(解舒性)、延伸や加工は安定したものであった。また、これら導電性複合繊維が混繊されたBCFを2.54cm当たり2本用いて製造されたカーペットは人体帯電圧測定法によると人体帯電圧3.0kV(絶対値)以下となり、優れた制電性を示した。
実施例1~4を用いて得たBCFは導電性に優れ、また導電性複合繊維が含まれていないBCFと比べ、筋が目立つものではなかった。比較例1,2を用いて得たBCFは導電性複合繊維が含まれていないBCFと比べ、黒もしくはグレーの筋が目立つものとなった。
<参考例1>
33dtex/3fの延伸導電性複合繊維(破断強度2.9cN/dtex,破断伸度65%、線抵抗値3.5E+07Ω/cm)のパッケージをクリルにセットし、溶融紡糸装置から吐出される96フィラメントのポリアミド6の糸条に、パッケージから繰り出した延伸導電性複合繊維を、ガイドを介して混繊し、900m/minで回転する50℃の第1ゴデットローラー、2800m/minで回転する160℃の第2ゴデットローラー間で連続的に延伸したが、ローラー間で導電性複合繊維の破断を繰り返し、BCFを安定的に得ることができなかった。
<参考例2>
溶融紡糸装置から吐出される96フィラメントのポリアミド6の糸条を900m/minで回転する50℃の第1ゴデットローラー、2800m/minで回転する160℃の第2ゴデットローラー間で連続的に延伸したのち、クリルにセットされた33dtex/3fの延伸導電性複合繊維(破断強度2.9cN/dtex,破断伸度65%、線抵抗値3.5E+07Ω/cm)パッケージから繰り出した延伸導電性複合繊維を混繊させ、160℃の流体噴射にて嵩高加工を施したのち、ワインダーにて巻き取った。パッケージからの繰り出しは安定せず、糸切れやパッケージの形状崩れを起こしたため、得られるBCFの歩留りが低下した。
The unstretched conductive composite fiber packages obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were set on the krill, and unstretched from the krill on the threads of the 96-filament polyamide 6 discharged from the melt spinning apparatus. The conductive composite fibers are mixed via a guide and continuously stretched between the first godet rollers at 50 ° C. rotating at 900 m / min and the second godet rollers at 160 ° C. rotating at 2800 m / min. After further bulk processing with an air jet at 160 ° C., the fibers were wound up with a winder. The obtained BCF was 1560 dtex / 97f, and one filament of the stretched conductive composite fiber was contained. At this time, the feeding (unwinding property), stretching and processing of the yarn from all the obtained unstretched conductive composite fiber packages were stable. In addition, the carpet manufactured by using two BCFs mixed with these conductive composite fibers per 2.54 cm has a human body band voltage of 3.0 kV (absolute value) or less according to the human body band voltage measurement method, which is an excellent control. Shown electrical.
The BCF obtained using Examples 1 to 4 was excellent in conductivity, and the streaks were not conspicuous as compared with the BCF containing no conductive composite fiber. The BCF obtained by using Comparative Examples 1 and 2 had black or gray streaks conspicuous as compared with the BCF containing no conductive composite fiber.
<Reference example 1>
A package of 33 dtex / 3f stretched conductive composite fiber (breaking strength 2.9 cN / dtex, breaking elongation 65%, linear resistance value 3.5E + 07Ω / cm) is set in the krill, and 96 filaments discharged from the melt spinning device. 1. Although it was continuously stretched between the second Godet rollers, the conductive composite fibers were repeatedly broken between the rollers, and BCF could not be stably obtained.
<Reference example 2>
A 96-filament polyamide 6 yarn discharged from a melt spinning apparatus is continuously rotated between a first godet roller at 50 ° C. rotating at 900 m / min and a second godet roller at 160 ° C. rotating at 2800 m / min. Stretched conductive composite fiber of 33 dtex / 3f stretched conductive composite fiber (break strength 2.9 cN / dtex, breaking elongation 65%, linear resistance value 3.5E + 07 Ω / cm) set in krill after stretching. The fibers were mixed, bulky processed by a fluid injection at 160 ° C., and then wound up with a winder. The feeding from the package was not stable, and the yarn breakage and the shape of the package were deformed, so that the yield of the obtained BCF was lowered.

1 溶融紡糸装置
2 未延伸導電性繊維
3 ガイド
4 油剤付与ローラー
5 第1ゴデットローラー
6 第2ゴデットローラー
7 嵩高加工装置
8 ワインダー
9 BCF
1 Melt spinning device 2 Unstretched conductive fiber 3 Guide 4 Oil agent application roller 5 1st Godet roller 6 2nd Godet roller 7 Bulk processing device 8 Winder 9 BCF

Claims (4)

BCFを製造する際の延伸工程へ供給する繊維であって、導電性カーボンブラックを20質量%以上、45質量%以下含有するポリアミドからなる導電層と、隠ぺい性無機顔料を5質量%以上含有するポリアミドからなる保護層とを有し、繊維横断面において前記保護層の外周に3個以上の凸部を有し、破断伸度が200~600%であり、線抵抗値が1.0E+05~9.9E+07Ω/cmであり、繊維横断面の全周長に対する導電層の露出周長の割合は8%未満であり、黒板が透けないよう目付1.2g/cm以上で隙間なく延伸することなく黒板に巻きつけたときのL値が65以上である未延伸導電性複合繊維 A fiber supplied to the drawing step in the production of BCF, which contains a conductive layer made of polyamide containing 20% by mass or more and 45% by mass or less of conductive carbon black, and 5% by mass or more of a concealing inorganic pigment. It has a protective layer made of polyamide, has three or more convex portions on the outer periphery of the protective layer in the cross section of the fiber, has a breaking elongation of 200 to 600%, and has a linear resistance value of 1.0E + 05 to 9. It is .9E + 07Ω / cm, the ratio of the exposed peripheral length of the conductive layer to the total peripheral length of the fiber cross section is less than 8%, and the grain size is 1.2 g / cm 2 or more so that the blackboard does not show through, without stretching without gaps. An unstretched conductive composite fiber having an L * value of 65 or more when wrapped around a blackboard . 繊維横断面の全周長に対する導電層の露出周長の割合が0%である請求項1記載の未延伸導電性複合繊維。 The unstretched conductive composite fiber according to claim 1, wherein the ratio of the exposed peripheral length of the conductive layer to the total peripheral length of the fiber cross section is 0%. 隠ぺい性無機顔料を7質量%以上含有するポリアミドからなる保護層である請求項1または2記載の未延伸導電性複合繊維。 The unstretched conductive composite fiber according to claim 1 or 2, which is a protective layer made of a polyamide containing 7% by mass or more of a concealing inorganic pigment. 非導電性繊維と導電性繊維と混繊してBCFを製造する方法であって、非導電性繊維を溶融紡糸する第1工程、溶融紡糸して得られた未延伸非導電性繊維と、請求項1~3いずれか1項に記載の未延伸導電性繊維を混繊して延伸する第2工程、混繊した延伸糸を流体噴射により嵩高加工する第3工程、得られた嵩高加工糸を巻き取る第4工程とを含むBCFの製造方法。
A method for producing BCF by mixing non-conductive fibers and conductive fibers, wherein the first step of melt-spinning non-conductive fibers is unstretched non-conductive fibers obtained by melt-spinning. Item 2 The second step of mixing and drawing unstretched conductive fibers according to any one of Items 1 to 3, the third step of bulk processing the mixed drawn yarn by fluid injection, and the obtained bulky processed yarn. A method for producing BCF, which comprises a fourth step of winding.
JP2018176659A 2018-09-20 2018-09-20 Unstretched conductive composite fiber and method for manufacturing BCF using it Active JP7048468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018176659A JP7048468B2 (en) 2018-09-20 2018-09-20 Unstretched conductive composite fiber and method for manufacturing BCF using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018176659A JP7048468B2 (en) 2018-09-20 2018-09-20 Unstretched conductive composite fiber and method for manufacturing BCF using it

Publications (2)

Publication Number Publication Date
JP2020045599A JP2020045599A (en) 2020-03-26
JP7048468B2 true JP7048468B2 (en) 2022-04-05

Family

ID=69900796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018176659A Active JP7048468B2 (en) 2018-09-20 2018-09-20 Unstretched conductive composite fiber and method for manufacturing BCF using it

Country Status (1)

Country Link
JP (1) JP7048468B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172825A (en) 1999-10-06 2001-06-26 Kuraray Co Ltd Electroconductive conjugate fiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183426A (en) * 1981-05-08 1982-11-11 Kanebo Gosen Kk Conductive blended fiber yarn
JPS58163723A (en) * 1982-03-17 1983-09-28 Toray Ind Inc Electroconductive synthetic fiber
JPH07103489B2 (en) * 1986-07-01 1995-11-08 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Method for combining and co-stretching antistatic filaments and non-stretched nylon filaments
JPH07133510A (en) * 1993-11-08 1995-05-23 Kanebo Ltd Electrically-conductive conjugate yarn

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172825A (en) 1999-10-06 2001-06-26 Kuraray Co Ltd Electroconductive conjugate fiber

Also Published As

Publication number Publication date
JP2020045599A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
CA2252138C (en) Process for making poly(trimethylene terephthalate) yarn
EP0056667B1 (en) Synthetic technical multifilament yarn and process for the manufacture thereof
US7584596B2 (en) Method of manufacturing line of autohesion thread
JP5107454B2 (en) Tapered multifilament yarn
US20200325601A1 (en) Bulky yarn
JP2013227719A5 (en)
DE2623672A1 (en) ANTISTATIC SYNTHETIC TEXTILE FILLS
JP2022506136A (en) Cotton-based stretch yarn for making eco-friendly stretch fabrics
KR20050119670A (en) Fluoropolymer yarn blends
JP7048468B2 (en) Unstretched conductive composite fiber and method for manufacturing BCF using it
CA2564128A1 (en) High-strength spanized yarn and method for producing the same
DE1510659A1 (en) Composite yarn and method of making it
JP5327411B1 (en) Fiber, production method thereof, and water-repellent fabric
JP7473946B2 (en) Composite monofilament for fishery materials and method for producing same
JP6367070B2 (en) Synthetic fiber multifilament
JP4754095B2 (en) Tapered multifilament yarn and method for producing the same
DE2313474B2 (en) Process for producing filament yarn with sticking out filament ends
JP2016069771A (en) Synthetic fiber
JP3210787B2 (en) Conductive mixed yarn
US5766730A (en) Strand materials
JP2005213673A (en) Polyamide composite false-twist yarn and method for producing the same
JP3210793B2 (en) Durable conductive mixed yarn
CA1109218A (en) Melt-drawing, cooling, attenuating, and heat treating under tension, of filament
JP2007197868A (en) Method for producing crimped yarn for dust-controlling mat, and method for producing dust-controlling mat
JP6582518B2 (en) Tangled mixed crimped yarn and carpet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150