WO2021106744A1 - Optical laminate and image displaying device - Google Patents

Optical laminate and image displaying device Download PDF

Info

Publication number
WO2021106744A1
WO2021106744A1 PCT/JP2020/043221 JP2020043221W WO2021106744A1 WO 2021106744 A1 WO2021106744 A1 WO 2021106744A1 JP 2020043221 W JP2020043221 W JP 2020043221W WO 2021106744 A1 WO2021106744 A1 WO 2021106744A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
polarizer
optical laminate
laminate
Prior art date
Application number
PCT/JP2020/043221
Other languages
French (fr)
Japanese (ja)
Inventor
かさね 眞田
真規子 新地
祥一 松田
麻未 川口
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202080082661.7A priority Critical patent/CN114761841A/en
Priority to KR1020227014807A priority patent/KR20220105632A/en
Publication of WO2021106744A1 publication Critical patent/WO2021106744A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an optical laminate and an image display device including the optical laminate.
  • Patent Documents 1 and 2 can harmonize the display screen with the peripheral portion. It is proposed to cover it with a decorative sheet. However, with the techniques of Patent Documents 1 and 2, it is difficult to realize a display screen that exhibits an appearance in harmony with the design of the peripheral portion when not displayed and can clearly display an image by an image display device when displayed. is there.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to exhibit an appearance in harmony with the design of the peripheral portion when not displayed, and to clarify an image by an image display device when displayed.
  • the purpose is to realize a display screen that can be displayed on.
  • an optical laminate having a light diffusing layer, a light transmitting reflector, and an absorption type polarizer in this order from the viewing side.
  • the optical laminate has a light-transmitting colored layer on the visual side of the light-transmitting reflector.
  • the optical laminate has the light diffusing layer on the outermost surface, and the haze of the light diffusing layer is 5% or more.
  • the optical laminate has a protective layer on the outermost surface, and the haze of the light diffusion layer is 5% or more.
  • the single transmittance of the light transmissive reflector is 10% to 70%.
  • the light transmissive reflector comprises a reflective polarizer.
  • the reflection axis direction of the reflection type polarizer and the absorption axis direction of the absorption type polarizer are arranged so as to be substantially parallel to each other. According to another aspect of the present invention, there is provided an image display device including the above optical laminate.
  • the optical laminate of the present invention it is possible to realize a display screen that exhibits an appearance in harmony with the design of the peripheral portion when not displayed and can clearly display an image by the image display device when displayed. More specifically, since the optical laminate of the present invention has a light diffusion layer on the visual side of the light transmissive reflector, it is possible to diffusely reflect incident light (external light) and suppress glossiness. As a result, it is possible to exhibit a metallic opaque luster and harmonize the texture with the peripheral portion of the housing or the like.
  • the expression “substantially orthogonal” includes the case where the angle between the two directions is 90 ° ⁇ 10 °, preferably 90 ° ⁇ 7 °, and more preferably 90 °. It is ⁇ 5 °. Further, the term “orthogonal” in the present specification may include a substantially orthogonal state.
  • the expression “substantially parallel” includes the case where the angle formed by the two directions is 0 ° ⁇ 10 °, preferably 0 ° ⁇ 7 °, and more preferably 0 ° ⁇ 5 °. Is. Further, the term “parallel” in the present specification may include a substantially parallel state.
  • the terms “layer”, “board”, “sheet” and “film” are not distinguished from each other based solely on the difference in designation. For example, the term “layer” is a concept that includes members that can be called “plates”, “sheets”, “films”.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical laminate 100a has a light diffusing layer 10, a light transmitting reflector 20, and an absorbing polarizing element 30 in this order from the viewing side.
  • the optical laminate 100a is typically applied to an image display device having an optical cell such as a liquid crystal display device having a liquid crystal cell and an organic EL display device having an organic electroluminescence (EL) cell.
  • the light transmissive reflector 20 is arranged on the visible side of the optical cell so as to be on the visible side of the absorption type polarizer 30.
  • the incident light can be diffusely reflected to suppress the glossiness, and as a result, the display screen has a metallic opaque gloss (silver metallic). ), And it can be harmonized with the texture of the peripheral part such as the housing. Further, at the time of display, the image by the image display device can be clearly visually recognized by observing the light emitted from the optical cell side and transmitted through the absorption type polarizer 30.
  • FIG. 2 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention.
  • the optical laminate 100b has a light diffusing layer 10, a light transmitting colored layer 40, a light transmitting reflector 20, and an absorbing polarizing element 30 in this order from the visual side.
  • the optical laminate 100b is typically applied to an image display device provided with an optical cell like the optical laminate 100a, in which case the light transmissive reflector 20 is on the visual side of the absorption type polarizer 30. It is arranged on the visual side of the optical cell so as to be.
  • the light-transmitting colored layer 40 is arranged between the light-diffusing layer 10 and the light-transmitting reflector 20, but the optical laminate of the present invention is not limited to this configuration.
  • the light-transmitting colored layer 40 may be arranged on the visual side of the light-diffusing layer 10, and the light-transmitting colored layer 10 may also serve as the light-transmitting colored layer 40.
  • first protective layer 52 In the optical laminate 100a or 100b, protective layers (first protective layer 52, second protective layer 54) are arranged on both sides of the absorption type polarizing element 30, but whichever is used depending on the purpose and configuration. One (eg, first protective layer 52) or both protective layers may be omitted.
  • the components constituting the optical laminate 100a or 100b are laminated via any appropriate adhesive layer (not shown) such as an adhesive layer and an adhesive layer, if necessary. , It is closely laminated without going through an adhesive layer. Further, on the side of the second protective layer 54 opposite to the side on which the absorption type polarizer 30 is arranged, an adhesive layer or the like for bonding the optical laminate 100a or 100b to the adjacent member is provided, if necessary. It may be provided.
  • the glossiness of the optical laminate can be appropriately adjusted by the design of the peripheral portion of the display screen, but is, for example, 130% or less, preferably 120% or less, more preferably 110% or less, still more preferably. It can be 100% or less. Further, the lower limit of the glossiness of the optical laminate can be, for example, 40%. When the glossiness is within the above range, it is possible to realize a display screen in which a metallic opaque gloss is exhibited and the texture is in harmony with the peripheral portion such as the housing when the image display device is not displayed.
  • the glossiness means mirror glossiness and can be obtained by the method specified in JIS Z8741-1997.
  • the metric saturation of the reflected light in the SCI method of the optical laminate can be appropriately adjusted by the design of the peripheral portion of the display screen, but is typically 3 or more, for example 5 or more, and for example 10 or more. Also, for example, it can be 20 or more. Further, the upper limit of the metric saturation of the reflected light can be, for example, 80.
  • the simple substance transmittance of the optical laminate is, for example, 3% or more, preferably 5% or more, and more preferably 30% or more. Further, the simple substance transmittance can be, for example, 46% or less, and can be, for example, 40% or less. By having such a transmittance, an image by an image display device can be clearly displayed.
  • the light diffusing layer may be made of a light diffusing element or a light diffusing adhesive.
  • the light diffusing element includes a matrix made of a solidified or cured resin and light diffusing fine particles dispersed in the matrix.
  • the matrix is composed of the pressure-sensitive adhesive.
  • the light diffusion performance of the light diffusion layer can be expressed by, for example, a haze value.
  • the haze value of the light diffusing layer can be appropriately set according to the design of the peripheral portion of the display screen.
  • the haze value of the light diffusing layer is, for example, 5% or more, preferably 10% or more.
  • the haze value of the light diffusing layer is, for example, 5% or more, preferably 10% or more, more preferably 30% or more, and further preferably 50. % Or more.
  • the light diffusing performance of the light diffusing layer can be determined by adjusting the constituent materials of the matrix (adhesive in the case of the light diffusing adhesive), the constituent materials of the light diffusing fine particles, the volume average particle size, the blending amount, and the like. Can be controlled.
  • the simple substance transmittance of the light diffusion layer is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the thickness of the light diffusion layer can be appropriately adjusted according to the configuration, diffusion performance, and the like.
  • the thickness is preferably 5 ⁇ m to 200 ⁇ m.
  • the thickness is preferably 5 ⁇ m to 100 ⁇ m.
  • the matrix is made of, for example, an ionizing wire curable resin.
  • the ionized wire include ultraviolet rays, visible light, infrared rays, and electron beams. It is preferably UV light, and therefore the matrix is preferably composed of UV curable resin.
  • the ultraviolet curable resin include acrylic resins, aliphatic (for example, polyolefin) resins, and urethane resins. The form of the light diffusing fine particles in which the light diffusing layer is composed of the light diffusing adhesive will be described later.
  • the light diffusing element is a resin film that forms an arbitrary suitable base material (for example, a protective layer) with a coating liquid for forming a light diffusing element (for example, a dispersion liquid containing a curable resin for forming a matrix and light diffusing fine particles). ) Can be obtained by coating on, curing and / or drying. Moreover, you may use a commercially available light diffusing film.
  • a suitable base material for example, a protective layer
  • a coating liquid for forming a light diffusing element for example, a dispersion liquid containing a curable resin for forming a matrix and light diffusing fine particles.
  • the light diffusing layer When the light diffusing layer is composed of a light diffusing pressure-sensitive adhesive, the light diffusing layer contains the pressure-sensitive adhesive and light-diffusing fine particles dispersed in the pressure-sensitive adhesive.
  • Any suitable adhesive can be used as the pressure-sensitive adhesive. Specific examples thereof include rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, cellulose-based pressure-sensitive adhesives, and the like, and acrylic-based pressure-sensitive adhesives are preferable.
  • an acrylic pressure-sensitive adhesive By using an acrylic pressure-sensitive adhesive, a light diffusion layer having excellent heat resistance and transparency can be obtained.
  • the pressure-sensitive adhesive may be used alone or in combination of two or more.
  • the glass transition temperature of the acrylic pressure-sensitive adhesive is preferably ⁇ 60 ° C. to ⁇ 10 ° C., more preferably ⁇ 55 ° C. to ⁇ 15 ° C.
  • the weight average molecular weight of the acrylic pressure-sensitive adhesive is preferably 200,000 to 2 million, more preferably 250,000 to 1.8 million. By using an acrylic pressure-sensitive adhesive having such characteristics, appropriate pressure-sensitive adhesiveness can be obtained.
  • the refractive index of the acrylic pressure-sensitive adhesive is preferably 1.40 to 1.65, and more preferably 1.45 to 1.60.
  • the acrylic pressure-sensitive adhesive is usually obtained by polymerizing a main monomer that imparts tackiness, a comonomer that imparts cohesiveness, and a functional group-containing monomer that serves as a cross-linking point while imparting tackiness.
  • Acrylic adhesives having the above properties can be synthesized by any appropriate method. For example, they can be synthesized with reference to "Adhesive / Adhesive Chemistry and Applications" published by Dainippon Tosho Co., Ltd., Katsuhiko Nakamae.
  • the content of the pressure-sensitive adhesive in the light diffusion layer is preferably 50% by weight to 99.7% by weight, more preferably 52% by weight to 97% by weight.
  • any suitable light diffusing fine particles can be used.
  • Specific examples include inorganic fine particles and polymer fine particles.
  • the light diffusing fine particles are preferably polymer fine particles.
  • the material of the polymer fine particles include silicone resin, methacrylic resin (for example, polymethyl methacrylate), polystyrene resin, polyurethane resin, and melamine resin. Since these resins have excellent dispersibility with respect to the pressure-sensitive adhesive and an appropriate refractive index difference with the pressure-sensitive adhesive, a light diffusion layer having excellent diffusion performance can be obtained.
  • it is a silicone resin or polymethyl methacrylate.
  • the shape of the light diffusing fine particles can be, for example, a true spherical shape, a flat shape, or an indefinite shape.
  • the light diffusing fine particles may be used alone or in combination of two or more.
  • the volume average particle size of the light diffusing fine particles is preferably 1 ⁇ m to 10 ⁇ m, and more preferably 1.5 ⁇ m to 6 ⁇ m. By setting the volume average particle size in the above range, a light diffusing layer having excellent light diffusing performance can be obtained.
  • the volume average particle size can be measured using, for example, an ultracentrifugal automatic particle size distribution measuring device.
  • the refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65.
  • the absolute value of the difference in refractive index between the light diffusing fine particles and the matrix is preferably more than 0 and 0.2 or less, and more preferably more than 0. It is 0.15 or less, more preferably 0.01 to 0.13.
  • the content of the light diffusing fine particles in the light diffusing layer is preferably 0.3% by weight to 50% by weight, more preferably 3% by weight to 48% by weight.
  • the light-transmitting reflector has transmission characteristics and reflection characteristics that reflect a part of incident light and transmit the remaining light.
  • the single transmittance of the light-transmitting reflector is preferably 10% to 70%, more preferably 15% to 65%, and even more preferably 20% to 60%.
  • the reflectance of the light-transmitting reflector is preferably 30% or more, more preferably 40% or more, still more preferably 45% or more.
  • As the light transmissive reflector for example, a half mirror, a reflective polarizer, a louver film, or the like can be used.
  • the half mirror for example, a multilayer laminate in which two or more dielectric films having different refractive indexes are laminated can be used. Such a half mirror preferably has a metallic luster.
  • the material for forming the dielectric film examples include metal oxides, metal nitrides, metal fluorides, thermoplastic resins (for example, polyethylene terephthalate (PET)) and the like.
  • the multilayer laminated body of the dielectric film reflects a part of the incident light at the interface due to the difference in the refractive index of the laminated dielectric films. The reflectance can be adjusted by changing the phase of the incident light and the reflected light according to the thickness of the dielectric film and adjusting the degree of interference between the two lights.
  • the thickness of the half mirror made of a multilayer laminate of dielectric films can be, for example, 50 ⁇ m to 200 ⁇ m. As such a half mirror, for example, a commercially available product such as the trade name "Picassus" manufactured by Toray Industries, Inc. can be used.
  • the half mirror includes, for example, aluminum (Al), indium (In), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof on a resin film such as PET.
  • a metal-deposited film on which a metal such as the above is vapor-deposited can be used.
  • the metal vapor-deposited film has a metallic luster due to reflection when observed from the vapor-deposited film side, but can transmit light from the resin film side, and by changing the vapor-deposited film thickness, the light transmittance Can be controlled.
  • the vapor deposition film thickness is preferably 1 nm to 50 nm, more preferably 10 nm to 30 nm.
  • the film thickness of the resin film is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m.
  • the reflective polarizer has a function of transmitting polarized light in a specific polarized state (polarizing direction) and reflecting light in other polarized states.
  • the reflective polarizer may be a linearly polarized light separated type or a circularly polarized light separated type, but a linearly polarized light separated type is preferable.
  • the linearly polarized light separation type reflective polarizer is arranged so that the reflection axis direction is substantially parallel to the absorption axis direction of the absorption type polarizer.
  • a linearly polarized light separation type reflective polarizer will be described.
  • Examples of the circularly polarized light separation type reflective polarizer include a laminate of a film on which a cholesteric liquid crystal is immobilized and a ⁇ / 4 plate.
  • FIG. 3 is a schematic perspective view of an example of a reflective polarizer.
  • the reflective polarizer is a multilayer laminate in which a layer A having birefringence and a layer B having substantially no birefringence are alternately laminated.
  • the total number of layers of such a multi-layer laminate can be 50-1000.
  • the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction
  • the refractive index nx in the x-axis direction of the B layer and the refractive index ny in the y-axis direction are substantially the same. is there.
  • the difference in refractive index between the A layer and the B layer is large in the x-axis direction and substantially zero in the y-axis direction.
  • the x-axis direction becomes the reflection axis
  • the y-axis direction becomes the transmission axis.
  • the difference in refractive index between the A layer and the B layer in the x-axis direction is preferably 0.2 to 0.3.
  • the x-axis direction corresponds to the stretching direction of the reflective polarizer in the manufacturing method described later.
  • the layer A is preferably composed of a material that exhibits birefringence by stretching.
  • Representative examples of such materials include polyester naphthalenedicarboxylic acid (eg, polyethylene naphthalate), polycarbonate and acrylic resins (eg, polymethylmethacrylate). Polyethylene naphthalate is preferred.
  • the B layer is preferably composed of a material that does not substantially exhibit birefringence even when stretched.
  • a typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
  • the reflective polarizing element transmits light having a first polarization direction (for example, a p wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects light (eg, s waves). At the interface between the A layer and the B layer, the reflected light is partially transmitted as light having a first polarization direction and partially reflected as light having a second polarization direction. By repeating such reflection and transmission many times inside the reflective polarizer, the efficiency of light utilization can be improved.
  • a first polarization direction for example, a p wave
  • Reflects light eg, s waves
  • the reflective polarizer may include a reflective layer R as the outermost layer on the side opposite to the visual viewing side, as shown in FIG.
  • a reflective layer R as the outermost layer on the side opposite to the visual viewing side, as shown in FIG.
  • the overall thickness of the reflective polarizer can be appropriately set according to the purpose, the total number of layers contained in the reflective polarizer, and the like.
  • the overall thickness of the reflective polarizer is preferably 10 ⁇ m to 150 ⁇ m.
  • the reflective polarizer can be typically produced by combining coextrusion and transverse stretching. Coextrusion can be done in any suitable manner. For example, it may be a feed block system or a multi-manifold system. For example, the material forming the A layer and the material forming the B layer are extruded in the feed block, and then multi-layered using a multiplier. Such a multi-layer device is known to those skilled in the art. Next, the obtained elongated multilayer laminate is typically stretched in a direction (TD) orthogonal to the transport direction. The material (for example, polyethylene naphthalate) constituting the layer A has an increased refractive index only in the stretching direction due to the lateral stretching, and as a result, exhibits birefringence.
  • TD direction orthogonal to the transport direction.
  • the material (for example, polyethylene naphthalate) constituting the layer A has an increased refractive index only in the stretching direction due to the lateral stretching, and as a result, exhibits biref
  • the refractive index of the material constituting the B layer does not increase in any direction by the transverse stretching.
  • a reflective polarizer having a reflection axis in the stretching direction (TD) and a transmission axis in the transport direction (MD) can be obtained (TD corresponds to the x-axis direction of FIG. 3 and MD corresponds to the y-axis. Corresponds to the direction).
  • the stretching operation can be performed using any suitable device.
  • the reflective polarizer for example, those described in JP-A-9-507308 can be used. Further, as the reflective polarizer, a commercially available product may be used as it is, or the commercially available product may be used after secondary processing (for example, stretching). Examples of commercially available products include the product name "APCF” manufactured by Nitto Denko Corporation, the product name “DBEF” manufactured by 3M Company, and the product name "APF” manufactured by 3M Company.
  • the absorption-type polarizer (hereinafter, may be simply referred to as “polarizer”) is typically composed of a resin film containing iodine.
  • polarizer any suitable resin film that can be used as a polarizer can be adopted.
  • the resin film is typically a polyvinyl alcohol-based resin (hereinafter, referred to as “PVA-based resin”) film.
  • PVA-based resin polyvinyl alcohol-based resin
  • the resin film may be a single-layer resin film or a laminated body having two or more layers.
  • the polarizer composed of a single-layer resin film include those obtained by subjecting a PVA-based resin film to a dyeing treatment with iodine and a stretching treatment (typically, uniaxial stretching).
  • the dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed. If necessary, the PVA-based resin film is subjected to a swelling treatment, a cross-linking treatment, a cleaning treatment, a drying treatment and the like.
  • the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin.
  • Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material.
  • the polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • a high temperature eg, 95 ° C. or higher
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizer), and the resin base material is peeled off from the resin base material / polarizer laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
  • the thickness of the polarizer is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. Further, the lower limit of the thickness may be, for example, 2 ⁇ m, or for example, 3 ⁇ m.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance of the polarizer is preferably 43.0% to 46.0%, more preferably 44.5% to 46.0%.
  • the degree of polarization of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • Light-Transparent Colored Layer As the light-transmitting colored layer, a layer having a single transmittance of 15% or more, preferably 40% or more, more preferably 80% or more, and an object color of color is used.
  • the upper limit of the single transmittance of the light-transmitting colored layer can be, for example, 95%, or 93%, for example.
  • the object color of the light-transmitting colored layer, which is colored may be a color generated by transmitted light (transmitted color) and / or a color emitted by reflection (surface color).
  • the color of the object color of the light-transmitting colored layer can be appropriately selected according to the design of the peripheral portion of the display screen.
  • the light-transmitting colored layer may be a single color, may have multiple colors and / or shades, and may form a pattern.
  • the light-transmitting colored layer is, for example, a component of a conventional polarizing plate having a polarizing element containing iodine and a protective layer provided on at least one side thereof, and the polarizing plate is arranged on the visible side of an optical cell.
  • a colored component arranged on the visual side of the polarizing element is used.
  • a component include a protective layer, an adhesive layer, an adhesive layer and the like. Among them, those in which the protective layer and / or the pressure-sensitive adhesive layer are colored are preferable, and those in which the pressure-sensitive adhesive layer is colored can be more preferably used.
  • Coloring can be performed by mixing a colorant with the forming material of the above components (eg, protective layer or pressure-sensitive adhesive layer).
  • a colorant e.g, protective layer or pressure-sensitive adhesive layer.
  • the type of colorant and the amount thereof can be appropriately selected according to the design of the peripheral portion of the display screen.
  • the protective layer may be colored by providing a colored coating layer on the surface of the protective layer.
  • the light-transmitting colored layer containing the colorant selectively absorbs light in a specific wavelength range between wavelengths of 380 nm to 780 nm (that is, absorption maximum in a specific wavelength band). Has a wavelength).
  • the light-transmitting colored layer may have two or more absorption maximum wavelengths.
  • a light-transmitting colored layer having two or more absorption maximum wavelengths can be obtained, for example, by using a plurality of types of colorants.
  • the transmittance of the light-transmitting colored layer at the absorption maximum wavelength is preferably 15% to 80%, more preferably 15% to 70%.
  • the transmittance of the absorption layer at the absorption maximum wavelength is within such a range, the effect of the present invention can be suitably exhibited.
  • the thickness of the light-transmitting colored layer is preferably 1 ⁇ m to 100 ⁇ m, and more preferably 2 ⁇ m to 30 ⁇ m. When the thickness of the light-transmitting colored layer is within such a range, the effect of the present invention can be suitably exhibited.
  • colorants include, for example, anthraquinone-based, triphenylmethane-based, naphthoquinone-based, thioindigo-based, perinone-based, perylene-based, squarylium-based, cyanine-based, porphyrin-based, azaporphyrin-based, phthalocyanine-based, subphthalocyanine-based, Quinoline, polymethin, rhodamine, oxonor, quinone, azo, xanthene, azomethin, quinacridone, dioxazine, diketopyrrolopyrrole, anthraquinone, isoindrinone, indanslon
  • dyes such as indigo-based, thioindigo-based, quinophthalone-based, quinoline-based, and triphenylmethane-based dyes.
  • a pigment may be used as the colorant.
  • pigments include black pigments (carbon black, bone black, graphite, iron black, titanium black, etc.), azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone, perylene, perinone, etc.).
  • the content ratio of the colorant can be any appropriate ratio depending on the type of the colorant, the desired light absorption characteristics, and the like.
  • the content ratio of the colorant in the light-transmitting colored layer is preferably 0.01% by weight to 5.00% by weight, more preferably 0.05% by weight to 3.00% by weight.
  • a polarizer containing a dichroic substance other than iodine (hereinafter, may be referred to as a "dyed polarizer”) can be used as a light-transmitting colored layer.
  • the absorption axis direction of the absorption type polarizer and the absorption axis direction of the dyed polarizer so as to be substantially parallel, the light transmissive colored layer in the image displayed by the image display device is caused. Coloring can be suppressed.
  • the dyed polarizer and the method for producing the same are described in, for example, Japanese Patent Application Laid-Open No. 06-666001, Japanese Patent Application Laid-Open No. 2012-73580, and Japanese Patent Application Laid-Open No. 2018-22125. The entire description of the publication is incorporated herein by reference.
  • the dyed polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance of the dyed polarizer is, for example, 10% to 90%, preferably 10% to 80%, and more preferably 20% to 70%.
  • the degree of polarization of the dyed polarizer is, for example, 15% or more, preferably 40% or more, more preferably 80% or more, still more preferably 90% or more.
  • FIG. 4 is a schematic cross-sectional view of an example of an optical laminate having a light-transmitting colored layer.
  • the optical laminate 100c includes a light diffusing element 10a, a third protective layer 56, a light transmitting colored layer (for example, a colored pressure-sensitive adhesive layer, a dyed polarizing element) 40, a light transmitting reflector 20, and the light transmitting reflector 20.
  • the absorption type polarizer 30 is provided in this order from the viewing side.
  • FIG. 5 is a schematic cross-sectional view of another example of an optical laminate having a light-transmitting colored layer.
  • the optical laminate 100d includes a third protective layer (surface protective layer) 56, a light diffusing pressure-sensitive adhesive layer 10b, a light-transmitting colored layer (for example, a colored pressure-sensitive adhesive layer, a dyed polarizing element) 40, and light.
  • the transmissive reflector 20 and the absorption type polarizer 30 are provided in this order.
  • FIG. 6 is a schematic cross-sectional view of another example of an optical laminate having a light-transmitting colored layer.
  • the optical laminate 100e includes a third protective layer (surface protective layer) 56, a colored light diffusing adhesive layer 10b (which also serves as a light transmissive colored layer 40), a light transmissive reflector 20, and an absorption type.
  • the polarizer 30 is provided in this order from the viewing side.
  • the protective layer is formed of any suitable film that can be used as a protective layer for the polarizer.
  • the protective layer is preferably colorless and transparent, and has a transmittance of 85% or more, preferably 93% or more, for example, over the entire measurement wavelength region of 420 nm to 780 nm.
  • the material that is the main component of the film forming the protective layer include cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, and polyethers.
  • cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, and polyethers.
  • transparent resins such as sulfone-based, polysulfone-based, polystyrene-based, polynorbornene-based, polyolefin-based, (meth) acrylic-based, and acetate-based.
  • thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned.
  • glassy polymers such as siloxane-based polymers can also be mentioned.
  • the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • the polymer film can be, for example, an extruded product of the above resin composition.
  • a (meth) acrylic resin having a cyclic structure such as a lactone ring or a glutarimide ring in the main chain is used as the (meth) acrylic resin.
  • the (meth) acrylic resin having a glutarimide ring include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in Japanese Patent Application Laid-Open No. 161744 and Japanese Patent Application Laid-Open No. 2010-284840. These statements are incorporated herein by reference.
  • the thickness of the outer protective layers (protective layers 52 and 56) arranged on the visual side of the absorption type polarizer is typically 300 ⁇ m or less, preferably 100 ⁇ m. Hereinafter, it is more preferably 5 ⁇ m to 80 ⁇ m, still more preferably 10 ⁇ m to 60 ⁇ m.
  • the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
  • the thickness of the inner protective layer (protective layer 54) arranged on the optical cell side of the absorption type polarizer is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m. More preferably, it is 10 ⁇ m to 60 ⁇ m.
  • the inner protective layer is a retardation layer with any suitable retardation value.
  • the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction)
  • ny is the in-plane direction orthogonal to the slow-phase axis (that is, phase-advance). It is the refractive index in the axial direction)
  • nz is the refractive index in the thickness direction
  • d is the thickness (nm) of the layer (film).
  • the adhesive layer is typically an adhesive layer or an adhesive layer.
  • the adhesive layer is preferably colorless and transparent, and has a transmittance of 80% or more, preferably 90% or more over the entire measurement wavelength region of 420 nm to 780 nm.
  • any suitable adhesive composition can be used as the adhesive composition constituting the adhesive layer.
  • water-based adhesive compositions such as isocyanate-based, polyvinyl alcohol-based, gelatin-based, vinyl-based latex-based, water-based polyurethane, and water-based polyester
  • curable adhesive compositions such as ultraviolet curable adhesives and electron beam-curable adhesives.
  • the thickness of the adhesive layer can be, for example, 0.05 ⁇ m to 1.5 ⁇ m.
  • any suitable pressure-sensitive adhesive composition can be used as the pressure-sensitive adhesive composition for forming the pressure-sensitive adhesive layer.
  • suitable pressure-sensitive adhesive composition examples thereof include rubber-based, acrylic-based, silicone-based, urethane-based, vinyl alkyl ether-based, polyvinyl alcohol-based, polyvinylpyrrolidone-based, polyacrylamide-based, and cellulose-based pressure-sensitive adhesive compositions.
  • an acrylic pressure-sensitive adhesive composition is preferably used because of its excellent optical transparency, adhesive properties, weather resistance, heat resistance, and the like.
  • the thickness of the pressure-sensitive adhesive layer can be, for example, 1 ⁇ m to 100 ⁇ m.
  • Image display device The optical laminate according to item B above can be applied to an image display device. Therefore, the present invention includes an image display device including the above optical laminate.
  • the image display device include a liquid crystal display device provided with a liquid crystal cell, an organic EL display device provided with an organic electroluminescence (EL) cell, and the like.
  • the optical laminate is arranged on the visible side of an optical cell such as a liquid crystal cell or an organic EL cell so that the light transmissive reflector is on the visible side of the absorption type polarizer. Since the liquid crystal cell and the organic EL cell are not characteristic parts of the present invention and can adopt a configuration well known in the industry, detailed description thereof will be omitted.
  • FIG. 7 is a schematic cross-sectional view of a liquid crystal display device according to one embodiment of the present invention.
  • the liquid crystal display device 200 includes a liquid crystal panel 160 and a backlight unit 180 having an optical laminate 100, a liquid crystal cell 120, and a backside polarizing element 140 in this order from the viewing side.
  • the optical laminate 100 is the optical laminate according to item B, so that the light transmissive reflector 20 is on the visual side of the absorption type polarizer 30 and the absorption shaft and the back surface of the absorption type polarizer 30. It is arranged so that the absorption axis of the side polarizer 140 is substantially orthogonal to the absorption axis.
  • the back side polarizer the same one as that of the absorption type polarizer can be used.
  • GM-26 PRO glossiness meter
  • the transmittance Ts having a wavelength of 380 nm to 780 nm as measured using an ultraviolet-visible near-infrared spectrophotometer (V-7100 manufactured by JASCO Corporation) was defined as the single transmittance Ts.
  • the single transmittance of the light-transmitting reflector was measured using an ultraviolet-visible near-infrared spectrophotometer (U-4100 or UH-4150 manufactured by Hitachi High-Tech Science Co., Ltd.).
  • This Ts is a Y value measured by a JIS Z8701 double field of view (C light source) and corrected for luminosity factor.
  • Haze value The light diffusing layer was measured using a haze meter (manufactured by Murakami Color Science Laboratory Co., Ltd., trade name "HN-150”) by the method specified by JIS 7136.
  • thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was subjected to corona treatment.
  • PVA-based resin 100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer") are mixed at a ratio of 9:
  • a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m to prepare a laminate.
  • the obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
  • the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • a dyeing bath having a liquid temperature of 30 ° C.
  • the single-unit transmittance of the polarizing plate A (substantially an iodine-based polarizing element) was 42.4%, and the degree of polarization was 99.999%.
  • a blue polarizer was obtained in the same manner as in Production Example 2 except that 4 parts of Direct Blue 1 (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the dichroic dye.
  • the simple substance transmittance of the polarizer was 42.1%, and the degree of polarization was 68.9%.
  • a yellow polarizer was obtained in the same manner as in Production Example 2 except that 4 parts of Direct Yellow 4 (manufactured by Tokyo Chemical Industry Co., Ltd.) were used as the dichroic dye.
  • the simple substance transmittance of the polarizer was 79.9%, and the degree of polarization was 17.9%.
  • a monomer syrup containing a partial polymer of the above-mentioned monomer mixture was prepared by irradiating with ultraviolet rays until the temperature (temperature: 30 ° C.) reached about 15 Pa ⁇ s and photopolymerizing.
  • this monomer syrup 17.6 parts of hydroxyethyl acrylate (HEA), 5.9 parts of acrylic oligomer, 0.088 part of 1,6-hexanediol diacrylate (HDDA), and 3-glyceride as a silane coupling agent.
  • HOA hydroxyethyl acrylate
  • HDDA 1,6-hexanediol diacrylate
  • 3-glyceride as a silane coupling agent.
  • Sidoxypropyltrimethoxysilane (trade name: KBM-403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.35 part, Ajinomoto Fine-Techno Co., Ltd. azisper PB821 as a dispersant, 2,9-Dimethylquinolino [2,3-b] as a pigment
  • a red pressure-sensitive adhesive composition was prepared by blending 0.05 parts by mass of aryline-7,14 (5H, 12H) -dione (manufactured by BLD Phasetech Ltd.).
  • acrylic oligomer one synthesized by the following method was used. ⁇ Synthesis of acrylic oligomer ⁇ 100 parts of toluene, 60 parts of dicyclopentanyl methacrylate (DCPMA) (trade name: FA-513M, manufactured by Hitachi Kasei Kogyo Co., Ltd.), 40 parts of methyl methacrylate (MMA), and 3.5 parts of ⁇ -thioglycerol as a chain transfer agent. was put into a four-necked flask. Then, after stirring at 70 ° C. in a nitrogen atmosphere for 1 hour, 0.2 part of AIBN was added as a thermal polymerization initiator, and the mixture was reacted at 70 ° C.
  • DCPMA dicyclopentanyl methacrylate
  • MMA methyl methacrylate
  • reaction solution was put into a temperature atmosphere of 130 ° C., and toluene, the chain transfer agent, and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer.
  • the Tg of this acrylic oligomer was 144 ° C. and the Mw was 4300.
  • the red adhesive composition obtained above is applied to a release film R1 (MRF # 38, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 ⁇ m in which one side of the polyester film is a release surface, and one side of the polyester film is a release surface.
  • a 38 ⁇ m thick release film R2 MRE # 38 manufactured by Mitsubishi Resin Co., Ltd.
  • a red pressure-sensitive adhesive sheet was formed.
  • an isocyanate cross-linking agent manufactured by Nippon Polyurethane Industry Co., Ltd., trade name "Coronate L", trimethylolpropane tolylene diisocyanate adduct
  • the pressure-sensitive adhesive layer was applied so as to have a thickness of 23 ⁇ m, and dried at 155 ° C. for 1 minute to form a light-diffusing pressure-sensitive adhesive sheet (light-diffusing pressure-sensitive adhesive layer, haze: 80%).
  • the light diffusing element forming material (coating liquid) was prepared by diluting this mixture with a mixed solvent of toluene / ethyl acetate (weight ratio 90/10) so that the solid content concentration was 30%.
  • a light diffusing element forming material (coating liquid) is applied to one side of a triacetyl cellulose (TAC) film (manufactured by Fujifilm, product name "TG60UL", thickness: 60 ⁇ m) that can function as a protective layer using a bar coater. , A coating film was formed.
  • the transparent plastic film base material on which this coating film was formed was transported to a drying step. In the drying step, the coating film was dried by heating at 110 ° C. for 1 minute.
  • an ultraviolet ray having an integrated light amount of 300 mJ / cm 2 was irradiated with a high-pressure mercury lamp, and the coating film was cured to form a light diffusing element A having a thickness of 5.0 ⁇ m on one side of the TAC film.
  • the haze value of the light diffusing element A was 42%.
  • Example 1 Reflective polarizing element (manufactured by Nitto Denko Co., Ltd., product name "APCF", single transmittance:) on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example 1 via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). 47%) was laminated to obtain a laminate having a structure of a protective layer / iodine-based polarizer / reflective polarizer. At this time, the reflection axis of the reflective polarizer and the absorption axis of the iodine-based polarizer were laminated so as to be parallel to each other.
  • APCF acrylic pressure-sensitive adhesive layer
  • the red adhesive sheet (thickness: 50 ⁇ m, single transmittance: 19.3%) obtained in Production Example 5 was applied to the surface of the reflective polarizer of the obtained laminate, and then the light obtained in Production Example 10 was applied.
  • a TAC film having a diffusing element A on one surface was bonded so that the TAC film was on the red adhesive sheet side to obtain an optical laminate 1.
  • Example 2 An optical laminate in the same manner as in Example 1 except that the blue adhesive sheet (thickness: 50 ⁇ m, single transmittance: 24.2%) obtained in Production Example 6 was used instead of the red adhesive sheet. I got 2.
  • Example 3 An optical laminate in the same manner as in Example 1 except that the yellow adhesive sheet (thickness: 50 ⁇ m, single transmittance: 57.9%) obtained in Production Example 7 was used instead of the red adhesive sheet. I got 3.
  • Example 4 An optical laminate in the same manner as in Example 1 except that the green adhesive sheet (thickness: 50 ⁇ m, single transmittance: 43.3%) obtained in Production Example 8 was used instead of the red adhesive sheet. I got 4.
  • Example 5 Example 1 except that a TAC film having the light diffusing element B obtained in Production Example 11 on one surface was used instead of the TAC film having the light diffusing element A obtained in Production Example 10 on one surface. In the same manner as above, an optical laminate 5 was obtained.
  • Example 6 In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained.
  • the optical laminate 6 was obtained.
  • Example 7 An optical laminate in the same manner as in Example 6 except that the blue adhesive sheet (thickness: 50 ⁇ m, single transmittance: 24.2%) obtained in Production Example 6 was used instead of the red adhesive sheet. I got 7.
  • Example 8 An optical laminate in the same manner as in Example 6 except that the yellow adhesive sheet (thickness: 50 ⁇ m, single transmittance: 57.9%) obtained in Production Example 7 was used instead of the red adhesive sheet. I got 8.
  • Example 9 An optical laminate in the same manner as in Example 6 except that the green adhesive sheet (thickness: 50 ⁇ m, single transmittance: 43.3%) obtained in Production Example 8 was used instead of the red adhesive sheet. I got 9.
  • Example 10 In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained.
  • the red polarizer obtained in Production Example 2 was laminated on the surface of the reflective polarizer of the obtained laminate via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). At this time, the reflection axis of the reflective polarizer and the absorption axis of the red polarizer were bonded so as to be parallel to each other.
  • a TAC film having the light diffusing element A obtained in Production Example 10 on one surface is provided on the surface of the red polarizing element via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m), and the TAC film is on the pressure-sensitive adhesive layer side.
  • the optical laminate 10 was obtained by laminating them so as to be.
  • Example 11 An optical laminate 11 was obtained in the same manner as in Example 10 except that the blue polarizer obtained in Production Example 3 was used instead of the red polarizer.
  • Example 12 An optical laminate 12 was obtained in the same manner as in Example 10 except that the yellow polarizer obtained in Production Example 4 was used instead of the red polarizer.
  • Example 13 Example 10 except that a TAC film having the light diffusing element B obtained in Production Example 11 on one surface was used instead of the TAC film having the light diffusing element A obtained in Production Example 10 on one surface. In the same manner as above, an optical laminate 13 was obtained.
  • Example 14 In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained.
  • the red polarizer obtained in Production Example 2 was laminated on the surface of the reflective polarizer of the obtained laminate via an acrylic pressure-sensitive adhesive layer (thickness: 23 ⁇ m). At this time, the reflection axis of the reflective polarizer and the absorption axis of the red polarizer were bonded so as to be parallel to each other.
  • Example 15 An optical laminate 15 was obtained in the same manner as in Example 14 except that the blue polarizer obtained in Production Example 3 was used instead of the red polarizer.
  • Example 16 An optical laminate 16 was obtained in the same manner as in Example 14 except that the yellow polarizer obtained in Production Example 4 was used instead of the red polarizer.
  • Example 1 In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained. A TAC film (manufactured by FUJIFILM Corporation, manufactured by Fujifilm Co., Ltd.) is placed on the surface of the reflective polarizer of the obtained laminate via the red adhesive sheet (thickness: 50 ⁇ m, single transmittance: 19.3%) obtained in Production Example 5. The name "TG60UL", thickness: 60 ⁇ m) was laminated to obtain an optical laminate C1.
  • a TAC film manufactured by FUJIFILM Corporation, product name "TG60UL", thickness: 60 ⁇ m
  • TG60UL thickness: 60 ⁇ m
  • an acrylic pressure-sensitive adhesive layer thickness: 23 ⁇ m
  • Table 1 shows the configurations and optical characteristics of the optical laminates obtained in Examples and Comparative Examples.
  • the optical laminate of the example has a higher metric saturation of the reflected light than the conventional polarizing plate (Comparative Example 5), and therefore, when the image display device is not displayed (power off). It can be seen that the display screen of (hours) can exhibit a color that is in harmony with the design of the peripheral part. Further, the optical laminate of the example has a suppressed glossiness as compared with the optical laminate of the comparative example having no light diffusion layer, and therefore, it exhibits a metallic opaque gloss and the peripheral portion. It can be seen that a display screen that exhibits a texture that is in harmony with the design can be realized.
  • the optical laminate and image display device of the present invention can be suitably used, for example, as a display unit for electric appliances such as rice cookers, refrigerators, and microwave ovens, and as a display unit for car navigation systems and instruments in a vehicle interior space.
  • Light-diffusing layer 20
  • Light-transmitting reflector 30
  • Absorption-type polarizing element 40
  • Light-transmitting colored layer 100

Abstract

The present invention can realize a display screen capable of exhibiting an appearance in harmony with the design of a peripheral part thereof during non-displaying and clearly displaying an image by an image display device during displaying. The present invention provides an optical laminate having, sequentially from a viewing side, a light diffusion layer, a light transmissive reflection plate, and an absorption-type polarizer.

Description

光学積層体および画像表示装置Optical laminate and image display device
 本発明は、光学積層体および当該光学積層体を備えた画像表示装置に関する。 The present invention relates to an optical laminate and an image display device including the optical laminate.
 近年、電化製品や車内設備において高機能化が進み、操作画面、モニター画面等の表示画面の搭載面積が増加する傾向にある。当該表示画面は、非表示時において、通常、黒色に観察されることから、筐体等の周辺部分の意匠と馴染まず、全体としての意匠性が悪化する場合がある。 In recent years, electrical appliances and in-vehicle equipment have become more sophisticated, and the mounting area of display screens such as operation screens and monitor screens tends to increase. Since the display screen is usually observed in black when it is not displayed, it may not be compatible with the design of the peripheral portion of the housing or the like, and the overall design may be deteriorated.
 上記表示画面の外観と周辺部分の意匠との違いを認識し難くし、これにより、全体としての意匠性を向上する方法として、特許文献1および2には、表示画面を周辺部分と調和し得る加飾シートで被うことが提案されている。しかしながら、特許文献1および2の技術では、非表示時においては周辺部分の意匠と調和した外観を呈し、表示時においては画像表示装置による画像を鮮明に表示できる表示画面を実現することが困難である。 As a method of making it difficult to recognize the difference between the appearance of the display screen and the design of the peripheral portion and thereby improving the design as a whole, Patent Documents 1 and 2 can harmonize the display screen with the peripheral portion. It is proposed to cover it with a decorative sheet. However, with the techniques of Patent Documents 1 and 2, it is difficult to realize a display screen that exhibits an appearance in harmony with the design of the peripheral portion when not displayed and can clearly display an image by an image display device when displayed. is there.
特開2018-128581号公報Japanese Unexamined Patent Publication No. 2018-128581 特開2019-120833号公報JP-A-2019-120833
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、非表示時においては周辺部分の意匠と調和した外観を呈し、表示時においては画像表示装置による画像を鮮明に表示できる表示画面を実現することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to exhibit an appearance in harmony with the design of the peripheral portion when not displayed, and to clarify an image by an image display device when displayed. The purpose is to realize a display screen that can be displayed on.
 本発明の1つの局面によれば、光拡散層と光透過性反射板と吸収型偏光子とを、視認側からこの順に有する、光学積層体が提供される。
 1つの実施形態においては、上記光学積層体は、上記光透過性反射板よりも視認側に光透過性有色層を有する。
 1つの実施形態においては、上記光学積層体は、上記光拡散層を最表面に有し、上記光拡散層のヘイズが、5%以上である。
 1つの実施形態においては、上記光学積層体は、保護層を最表面に有し、上記光拡散層のヘイズが、5%以上である。
 1つの実施形態においては、上記光透過性反射板の単体透過率が、10%~70%である。
 1つの実施形態においては、上記光透過性反射板が、反射型偏光子を含む。
 1つの実施形態においては、上記反射型偏光子の反射軸方向と上記吸収型偏光子の吸収軸方向とが、実質的に平行となるように配置されている。
 本発明の別の局面によれば、上記光学積層体を備える、画像表示装置が提供される。
According to one aspect of the present invention, there is provided an optical laminate having a light diffusing layer, a light transmitting reflector, and an absorption type polarizer in this order from the viewing side.
In one embodiment, the optical laminate has a light-transmitting colored layer on the visual side of the light-transmitting reflector.
In one embodiment, the optical laminate has the light diffusing layer on the outermost surface, and the haze of the light diffusing layer is 5% or more.
In one embodiment, the optical laminate has a protective layer on the outermost surface, and the haze of the light diffusion layer is 5% or more.
In one embodiment, the single transmittance of the light transmissive reflector is 10% to 70%.
In one embodiment, the light transmissive reflector comprises a reflective polarizer.
In one embodiment, the reflection axis direction of the reflection type polarizer and the absorption axis direction of the absorption type polarizer are arranged so as to be substantially parallel to each other.
According to another aspect of the present invention, there is provided an image display device including the above optical laminate.
 本発明の光学積層体によれば、非表示時においては周辺部分の意匠と調和した外観を呈し、表示時においては画像表示装置による画像を鮮明に表示できる表示画面を実現することができる。より具体的には、本発明の光学積層体は、光透過性反射板よりも視認側に光拡散層を備えることから、入射光(外光)を拡散反射させて光沢度を抑えることができ、その結果、金属調の不透明な光沢を呈して、筐体等の周辺部分と質感を調和させることができる。 According to the optical laminate of the present invention, it is possible to realize a display screen that exhibits an appearance in harmony with the design of the peripheral portion when not displayed and can clearly display an image by the image display device when displayed. More specifically, since the optical laminate of the present invention has a light diffusion layer on the visual side of the light transmissive reflector, it is possible to diffusely reflect incident light (external light) and suppress glossiness. As a result, it is possible to exhibit a metallic opaque luster and harmonize the texture with the peripheral portion of the housing or the like.
本発明の1つの実施形態による光学積層体の概略断面図である。It is the schematic sectional drawing of the optical laminated body by one Embodiment of this invention. 本発明の1つの実施形態による光学積層体の概略断面図である。It is the schematic sectional drawing of the optical laminated body by one Embodiment of this invention. 本発明に用いられ得る反射型偏光子の一例の概略斜視図である。It is a schematic perspective view of an example of a reflective polarizer that can be used in the present invention. 本発明の1つの実施形態による光学積層体の概略断面図である。It is the schematic sectional drawing of the optical laminated body by one Embodiment of this invention. 本発明の1つの実施形態による光学積層体の概略断面図である。It is the schematic sectional drawing of the optical laminated body by one Embodiment of this invention. 本発明の1つの実施形態による光学積層体の概略断面図である。It is the schematic sectional drawing of the optical laminated body by one Embodiment of this invention. 本発明の1つの実施形態による画像表示装置の概略断面図である。It is the schematic sectional drawing of the image display device by one Embodiment of this invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.用語の定義
(1)「実質的に直交」という表現は、2つの方向のなす角度が90°±10°である場合を包含し、好ましくは90°±7°であり、さらに好ましくは90°±5°である。さらに、本明細書において単に「直交」というときは、実質的に直交な状態を含み得るものとする。
(2)「実質的に平行」という表現は、2つの方向のなす角度が0°±10°である場合を包含し、好ましくは0°±7°であり、さらに好ましくは0°±5°である。さらに、本明細書において単に「平行」というときは、実質的に平行な状態を含み得るものとする。
(3)「層」、「板」、「シート」および「フィルム」の用語は、呼称の違いのみに基づいて互いから区別されるものではない。例えば「層」という用語は、「板」、「シート」、「フィルム」と呼ばれ得るような部材を含む概念である。
A. Definition of terms (1) The expression "substantially orthogonal" includes the case where the angle between the two directions is 90 ° ± 10 °, preferably 90 ° ± 7 °, and more preferably 90 °. It is ± 5 °. Further, the term "orthogonal" in the present specification may include a substantially orthogonal state.
(2) The expression "substantially parallel" includes the case where the angle formed by the two directions is 0 ° ± 10 °, preferably 0 ° ± 7 °, and more preferably 0 ° ± 5 °. Is. Further, the term "parallel" in the present specification may include a substantially parallel state.
(3) The terms "layer", "board", "sheet" and "film" are not distinguished from each other based solely on the difference in designation. For example, the term "layer" is a concept that includes members that can be called "plates", "sheets", "films".
B.光学積層体
B-1.光学積層体の全体構成
 図1は、本発明の1つの実施形態による光学積層体の概略断面図である。光学積層体100aは、光拡散層10と、光透過性反射板20と、吸収型偏光子30とを、視認側からこの順に有する。光学積層体100aは、代表的には、液晶セルを備えた液晶表示装置、有機エレクトロルミネセンス(EL)セルを備えた有機EL表示装置等の光学セルを備えた画像表示装置に適用され、その際、光透過性反射板20が吸収型偏光子30よりも視認側となるように、光学セルの視認側に配置される。このように配置することにより、画像表示装置が非表示の時には、入射光(外光)を拡散反射させて光沢度を抑えることができ、その結果、表示画面が金属調の不透明な光沢(シルバーメタリック)を呈して、筐体等の周辺部分の質感と調和することができる。また、表示時には、光学セル側から出射されて吸収型偏光子30を透過する光を観察することにより、画像表示装置による画像を鮮明に視認することができる。
B. Optical laminate B-1. Overall Configuration of Optical Laminates FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical laminate 100a has a light diffusing layer 10, a light transmitting reflector 20, and an absorbing polarizing element 30 in this order from the viewing side. The optical laminate 100a is typically applied to an image display device having an optical cell such as a liquid crystal display device having a liquid crystal cell and an organic EL display device having an organic electroluminescence (EL) cell. At this time, the light transmissive reflector 20 is arranged on the visible side of the optical cell so as to be on the visible side of the absorption type polarizer 30. By arranging in this way, when the image display device is hidden, the incident light (external light) can be diffusely reflected to suppress the glossiness, and as a result, the display screen has a metallic opaque gloss (silver metallic). ), And it can be harmonized with the texture of the peripheral part such as the housing. Further, at the time of display, the image by the image display device can be clearly visually recognized by observing the light emitted from the optical cell side and transmitted through the absorption type polarizer 30.
 図2は、本発明の別の実施形態による光学積層体の概略断面図である。光学積層体100bは、光拡散層10と、光透過性有色層40と、光透過性反射板20と、吸収型偏光子30とを、視認側からこの順に有する。光学積層体100bは、代表的には、光学積層体100aと同様に光学セルを備えた画像表示装置に適用され、その際、光透過性反射板20が吸収型偏光子30よりも視認側となるように、光学セルの視認側に配置される。このように配置することにより、光透過性有色層40に起因する色味を帯びた金属調の不透明な光沢(カラーメタリック)を呈することができ、その結果、筐体等の周辺部分と色味および質感の両方が調和した表示画面を実現できる。 FIG. 2 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention. The optical laminate 100b has a light diffusing layer 10, a light transmitting colored layer 40, a light transmitting reflector 20, and an absorbing polarizing element 30 in this order from the visual side. The optical laminate 100b is typically applied to an image display device provided with an optical cell like the optical laminate 100a, in which case the light transmissive reflector 20 is on the visual side of the absorption type polarizer 30. It is arranged on the visual side of the optical cell so as to be. By arranging in this way, it is possible to exhibit a metallic opaque gloss (color metallic) with a tint due to the light-transmitting colored layer 40, and as a result, the peripheral portion such as the housing and the tint can be exhibited. It is possible to realize a display screen in which both the texture and the texture are in harmony.
 図2において、光透過性有色層40は、光拡散層10と光透過性反射板20との間に配置されているが、本発明の光学積層体は、当該構成に限定されない。例えば、光透過性有色層40は光拡散層10よりも視認側に配置されていてもよく、また、光拡散層10が光透過性有色層40を兼ねることもできる。 In FIG. 2, the light-transmitting colored layer 40 is arranged between the light-diffusing layer 10 and the light-transmitting reflector 20, but the optical laminate of the present invention is not limited to this configuration. For example, the light-transmitting colored layer 40 may be arranged on the visual side of the light-diffusing layer 10, and the light-transmitting colored layer 10 may also serve as the light-transmitting colored layer 40.
 上記光学積層体100aまたは100bにおいては、吸収型偏光子30の両側に保護層(第1の保護層52、第2の保護層54)が配置されているが、目的や構成に応じてどちらか一方(例えば、第1の保護層52)または両方の保護層が省略されてもよい。 In the optical laminate 100a or 100b, protective layers (first protective layer 52, second protective layer 54) are arranged on both sides of the absorption type polarizing element 30, but whichever is used depending on the purpose and configuration. One (eg, first protective layer 52) or both protective layers may be omitted.
 なお、光学積層体100aまたは100bを構成する各構成要素は、必要に応じて、接着剤層、粘着剤層等の任意の適切な接着層(図示せず)を介して積層されているか、あるいは、接着層を介さずに密着積層されている。また、第2の保護層54の吸収型偏光子30が配置された側と反対側には、必要に応じて、光学積層体100aまたは100bを隣接する部材に貼り合せるための粘着剤層等が設けられてもよい。 The components constituting the optical laminate 100a or 100b are laminated via any appropriate adhesive layer (not shown) such as an adhesive layer and an adhesive layer, if necessary. , It is closely laminated without going through an adhesive layer. Further, on the side of the second protective layer 54 opposite to the side on which the absorption type polarizer 30 is arranged, an adhesive layer or the like for bonding the optical laminate 100a or 100b to the adjacent member is provided, if necessary. It may be provided.
 光学積層体の光沢度は、表示画面の周辺部分の意匠によって適切に調節され得るが、例えば130%以下であり、好ましくは120%以下であり、より好ましくは110%以下であり、さらに好ましくは100%以下であり得る。また、光学積層体の光沢度の下限は、例えば40%であり得る。光沢度が上記範囲内であれば、画像表示装置の非表示時に、金属調の不透明な光沢を呈して、筐体等の周辺部分と質感が調和された表示画面が実現できる。なお、上記光沢度は、鏡面光沢度を意味し、JIS Z8741-1997で定める方法によって求めることができる。 The glossiness of the optical laminate can be appropriately adjusted by the design of the peripheral portion of the display screen, but is, for example, 130% or less, preferably 120% or less, more preferably 110% or less, still more preferably. It can be 100% or less. Further, the lower limit of the glossiness of the optical laminate can be, for example, 40%. When the glossiness is within the above range, it is possible to realize a display screen in which a metallic opaque gloss is exhibited and the texture is in harmony with the peripheral portion such as the housing when the image display device is not displayed. The glossiness means mirror glossiness and can be obtained by the method specified in JIS Z8741-1997.
 光学積層体のSCI方式での反射光のメトリック彩度は、表示画面の周辺部分の意匠によって適切に調節され得るが、代表的には3以上であり、例えば5以上であり、また例えば10以上、また例えば20以上であり得る。また、当該反射光のメトリック彩度の上限は、例えば80であり得る。メトリック彩度は、L表色系におけるa値およびb値を用いて次式により求められる値であり、色空間の中央軸(無彩色軸)からの距離を表す。
   メトリック彩度(C)=√(a*2+b*2
The metric saturation of the reflected light in the SCI method of the optical laminate can be appropriately adjusted by the design of the peripheral portion of the display screen, but is typically 3 or more, for example 5 or more, and for example 10 or more. Also, for example, it can be 20 or more. Further, the upper limit of the metric saturation of the reflected light can be, for example, 80. The metric saturation is a value obtained by the following equation using the a * value and the b * value in the L * a * b * color system, and represents the distance from the central axis (achromatic axis) of the color space.
Metric saturation (C * ) = √ (a * 2 + b * 2 )
 光学積層体の単体透過率は、例えば3%以上であり、好ましくは5%以上であり、より好ましくは30%以上である。また、該単体透過率は、例えば46%以下、また例えば40%以下であり得る。このような透過率を有することにより、画像表示装置による画像を鮮明に表示することができる。 The simple substance transmittance of the optical laminate is, for example, 3% or more, preferably 5% or more, and more preferably 30% or more. Further, the simple substance transmittance can be, for example, 46% or less, and can be, for example, 40% or less. By having such a transmittance, an image by an image display device can be clearly displayed.
B-2.光拡散層
 光拡散層は、光拡散素子で構成されてもよく、光拡散粘着剤で構成されてもよい。光拡散素子は、固化または硬化した樹脂からなるマトリクスと当該マトリクス中に分散した光拡散性微粒子とを含む。光拡散粘着剤は、マトリクスが粘着剤で構成される。
B-2. Light diffusing layer The light diffusing layer may be made of a light diffusing element or a light diffusing adhesive. The light diffusing element includes a matrix made of a solidified or cured resin and light diffusing fine particles dispersed in the matrix. In the light diffusing pressure-sensitive adhesive, the matrix is composed of the pressure-sensitive adhesive.
 光拡散層の光拡散性能は、例えば、ヘイズ値で表すことができる。光拡散層のヘイズ値は、表示画面の周辺部分の意匠に応じて適切に設定され得る。光拡散層が光学積層体の最表面に配置されている場合の光拡散層のヘイズ値は、例えば5%以上であり、好ましくは10%以上である。また、光拡散層が光学積層体の内部に配置されている場合の光拡散層のヘイズ値は、例えば5%以上であり、好ましくは10%以上、より好ましくは30%以上、さらに好ましくは50%以上である。ヘイズ値を上記の範囲とすることにより、画像表示装置の非表示時には金属調の不透明な光沢を呈し、表示時には画像表示装置による画像を鮮明に視認可能な表示画面を実現することができる。なお、光拡散層の光拡散性能は、マトリクス(光拡散粘着剤の場合は粘着剤)の構成材料、ならびに、光拡散性微粒子の構成材料、体積平均粒子径および配合量等を調整することにより制御することができる。 The light diffusion performance of the light diffusion layer can be expressed by, for example, a haze value. The haze value of the light diffusing layer can be appropriately set according to the design of the peripheral portion of the display screen. When the light diffusing layer is arranged on the outermost surface of the optical laminate, the haze value of the light diffusing layer is, for example, 5% or more, preferably 10% or more. When the light diffusing layer is arranged inside the optical laminate, the haze value of the light diffusing layer is, for example, 5% or more, preferably 10% or more, more preferably 30% or more, and further preferably 50. % Or more. By setting the haze value in the above range, it is possible to realize a display screen in which the image display device exhibits a metallic opaque gloss when the image display device is not displayed, and the image by the image display device can be clearly seen when the image display device is displayed. The light diffusing performance of the light diffusing layer can be determined by adjusting the constituent materials of the matrix (adhesive in the case of the light diffusing adhesive), the constituent materials of the light diffusing fine particles, the volume average particle size, the blending amount, and the like. Can be controlled.
 光拡散層の単体透過率は、好ましくは70%以上であり、より好ましくは80%以上であり、さらに好ましくは90%以上である。 The simple substance transmittance of the light diffusion layer is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
 光拡散層の厚みは、構成および拡散性能等に応じて適切に調整することができる。例えば、光拡散層が光拡散素子で構成される場合には、厚みは好ましくは5μm~200μmである。また例えば、光拡散層が光拡散粘着剤で構成される場合には、厚みは好ましくは5μm~100μmである。 The thickness of the light diffusion layer can be appropriately adjusted according to the configuration, diffusion performance, and the like. For example, when the light diffusing layer is composed of a light diffusing element, the thickness is preferably 5 μm to 200 μm. Further, for example, when the light diffusion layer is composed of a light diffusion adhesive, the thickness is preferably 5 μm to 100 μm.
 光拡散層が光拡散素子で構成される場合、マトリクスは、例えば電離線硬化型樹脂で構成される。電離線としては、例えば、紫外線、可視光、赤外線、電子線が挙げられる。好ましくは紫外線であり、したがって、マトリクスは、好ましくは紫外線硬化型樹脂で構成される。紫外線硬化型樹脂としては、例えば、アクリル系樹脂、脂肪族系(例えば、ポリオレフィン)樹脂、ウレタン系樹脂が挙げられる。光拡散性微粒子は、光拡散層が光拡散粘着剤で構成される形態について後述するとおりである。 When the light diffusing layer is made of a light diffusing element, the matrix is made of, for example, an ionizing wire curable resin. Examples of the ionized wire include ultraviolet rays, visible light, infrared rays, and electron beams. It is preferably UV light, and therefore the matrix is preferably composed of UV curable resin. Examples of the ultraviolet curable resin include acrylic resins, aliphatic (for example, polyolefin) resins, and urethane resins. The form of the light diffusing fine particles in which the light diffusing layer is composed of the light diffusing adhesive will be described later.
 光拡散素子は、光拡散素子形成用塗工液(例えば、マトリクス形成用硬化性樹脂と光拡散性微粒子とを含む分散液)を任意の適切な基材(例えば、保護層を形成する樹脂フィルム)上に塗工し、硬化および/または乾燥させることによって得られ得る。また、市販の光拡散フィルムを用いてもよい。 The light diffusing element is a resin film that forms an arbitrary suitable base material (for example, a protective layer) with a coating liquid for forming a light diffusing element (for example, a dispersion liquid containing a curable resin for forming a matrix and light diffusing fine particles). ) Can be obtained by coating on, curing and / or drying. Moreover, you may use a commercially available light diffusing film.
 光拡散層が光拡散粘着剤で構成される場合、光拡散層は、粘着剤と当該粘着剤中に分散した光拡散性微粒子とを含む。粘着剤としては、任意の適切なものを用いることがでる。具体例としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、エポキシ系粘着剤、セルロース系粘着剤等が挙げられ、好ましくは、アクリル系粘着剤である。アクリル系粘着剤を用いることにより、耐熱性および透明性に優れた光拡散層が得られ得る。粘着剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 When the light diffusing layer is composed of a light diffusing pressure-sensitive adhesive, the light diffusing layer contains the pressure-sensitive adhesive and light-diffusing fine particles dispersed in the pressure-sensitive adhesive. Any suitable adhesive can be used as the pressure-sensitive adhesive. Specific examples thereof include rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, cellulose-based pressure-sensitive adhesives, and the like, and acrylic-based pressure-sensitive adhesives are preferable. By using an acrylic pressure-sensitive adhesive, a light diffusion layer having excellent heat resistance and transparency can be obtained. The pressure-sensitive adhesive may be used alone or in combination of two or more.
 アクリル系粘着剤としては、任意の適切なものを用いることができる。アクリル系粘着剤のガラス転移温度は、好ましくは-60℃~-10℃であり、より好ましくは-55℃~-15℃である。アクリル系粘着剤の重量平均分子量は、好ましくは20万~200万であり、より好ましくは25万~180万である。このような特性を有するアクリル系粘着剤を用いることにより、適切な粘着性を得ることができる。アクリル系粘着剤の屈折率は、好ましくは1.40~1.65であり、より好ましくは1.45~1.60である。 Any suitable acrylic adhesive can be used. The glass transition temperature of the acrylic pressure-sensitive adhesive is preferably −60 ° C. to −10 ° C., more preferably −55 ° C. to −15 ° C. The weight average molecular weight of the acrylic pressure-sensitive adhesive is preferably 200,000 to 2 million, more preferably 250,000 to 1.8 million. By using an acrylic pressure-sensitive adhesive having such characteristics, appropriate pressure-sensitive adhesiveness can be obtained. The refractive index of the acrylic pressure-sensitive adhesive is preferably 1.40 to 1.65, and more preferably 1.45 to 1.60.
 上記アクリル系粘着剤は、通常、粘着性を与える主モノマー、凝集性を与えるコモノマーおよび粘着性を与えつつ架橋点となる官能基含有モノマーを重合させて得られる。上記特性を有するアクリル系粘着剤は、任意の適切な方法で合成することができ、例えば、大日本図書(株)発行  中前勝彦著「接着・粘着の化学と応用」を参考に合成できる。 The acrylic pressure-sensitive adhesive is usually obtained by polymerizing a main monomer that imparts tackiness, a comonomer that imparts cohesiveness, and a functional group-containing monomer that serves as a cross-linking point while imparting tackiness. Acrylic adhesives having the above properties can be synthesized by any appropriate method. For example, they can be synthesized with reference to "Adhesive / Adhesive Chemistry and Applications" published by Dainippon Tosho Co., Ltd., Katsuhiko Nakamae.
 光拡散層中における粘着剤の含有量は、好ましくは50重量%~99.7重量%であり、より好ましくは52重量%~97重量%である。 The content of the pressure-sensitive adhesive in the light diffusion layer is preferably 50% by weight to 99.7% by weight, more preferably 52% by weight to 97% by weight.
 光拡散性微粒子としては、任意の適切なものを用いることができる。具体例としては、無機微粒子、高分子微粒子等が挙げられる。光拡散性微粒子は、好ましくは高分子微粒子である。高分子微粒子の材質としては、例えば、シリコーン樹脂、メタアクリル系樹脂(例えば、ポリメタクリル酸メチル)、ポリスチレン樹脂、ポリウレタン樹脂、メラミン樹脂が挙げられる。これらの樹脂は、粘着剤に対する優れた分散性および粘着剤との適切な屈折率差を有するので、拡散性能に優れた光拡散層が得られ得る。好ましくは、シリコーン樹脂、ポリメタクリル酸メチルである。光拡散性微粒子の形状は、例えば、真球状、扁平状、不定形状であり得る。光拡散性微粒子は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Any suitable light diffusing fine particles can be used. Specific examples include inorganic fine particles and polymer fine particles. The light diffusing fine particles are preferably polymer fine particles. Examples of the material of the polymer fine particles include silicone resin, methacrylic resin (for example, polymethyl methacrylate), polystyrene resin, polyurethane resin, and melamine resin. Since these resins have excellent dispersibility with respect to the pressure-sensitive adhesive and an appropriate refractive index difference with the pressure-sensitive adhesive, a light diffusion layer having excellent diffusion performance can be obtained. Preferably, it is a silicone resin or polymethyl methacrylate. The shape of the light diffusing fine particles can be, for example, a true spherical shape, a flat shape, or an indefinite shape. The light diffusing fine particles may be used alone or in combination of two or more.
 光拡散性微粒子の体積平均粒子径は、好ましくは1μm~10μmであり、より好ましくは1.5μm~6μmである。体積平均粒子径を上記範囲にすることにより、優れた光拡散性能を有する光拡散層を得ることができる。体積平均粒子径は、例えば、超遠心式自動粒度分布測定装置を用いて測定することができる。 The volume average particle size of the light diffusing fine particles is preferably 1 μm to 10 μm, and more preferably 1.5 μm to 6 μm. By setting the volume average particle size in the above range, a light diffusing layer having excellent light diffusing performance can be obtained. The volume average particle size can be measured using, for example, an ultracentrifugal automatic particle size distribution measuring device.
 光拡散性微粒子の屈折率は、好ましくは1.30~1.70であり、より好ましくは1.40~1.65である。 The refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65.
 光拡散性微粒子とマトリクス(代表的には、電離線硬化型樹脂または粘着剤)との屈折率差の絶対値は、好ましくは0を超えて0.2以下であり、より好ましくは0を超えて0.15以下であり、さらに好ましくは0.01~0.13である。 The absolute value of the difference in refractive index between the light diffusing fine particles and the matrix (typically, an ionizing wire curable resin or an adhesive) is preferably more than 0 and 0.2 or less, and more preferably more than 0. It is 0.15 or less, more preferably 0.01 to 0.13.
 光拡散層中における光拡散性微粒子の含有量は、好ましくは0.3重量%~50重量%であり、より好ましくは3重量%~48重量%である。光拡散性微粒子の配合量を上記の範囲にすることにより、優れた光拡散性能を有する光拡散層を得ることができる。 The content of the light diffusing fine particles in the light diffusing layer is preferably 0.3% by weight to 50% by weight, more preferably 3% by weight to 48% by weight. By setting the blending amount of the light diffusing fine particles within the above range, a light diffusing layer having excellent light diffusing performance can be obtained.
B-3.光透過性反射板
 光透過性反射板は、入射する光の一部を反射し、残りの光を透過させる透過特性および反射特性を有する。光透過性反射板の単体透過率は、好ましくは10%~70%、より好ましくは15%~65%、さらに好ましくは20%~60%である。光透過性反射板の反射率は、好ましくは30%以上、より好ましくは40%以上、さらに好ましくは45%以上である。光透過性反射板としては、例えば、ハーフミラー、反射型偏光子、ルーバーフィルム等を用いることができる。
B-3. Light-transmitting reflector The light-transmitting reflector has transmission characteristics and reflection characteristics that reflect a part of incident light and transmit the remaining light. The single transmittance of the light-transmitting reflector is preferably 10% to 70%, more preferably 15% to 65%, and even more preferably 20% to 60%. The reflectance of the light-transmitting reflector is preferably 30% or more, more preferably 40% or more, still more preferably 45% or more. As the light transmissive reflector, for example, a half mirror, a reflective polarizer, a louver film, or the like can be used.
 ハーフミラーとしては、例えば、屈折率の異なる2以上の誘電体膜が積層された多層積層体を用いることができる。このようなハーフミラーは、好ましくは金属様光沢を有する。 As the half mirror, for example, a multilayer laminate in which two or more dielectric films having different refractive indexes are laminated can be used. Such a half mirror preferably has a metallic luster.
 上記誘電体膜の形成材料としては、金属酸化物、金属窒化物、金属フッ化物、熱可塑性樹脂(例えば、ポリエチレンテレフタレート(PET))等が挙げられる。誘電体膜の多層積層体は、積層した誘電体膜の屈折率差によって、界面で入射光の一部を反射させる。誘電体膜の厚さによって、入射光と反射光との位相を変化させ、2つの光の干渉の程度を調整することにより、反射率を調整することができる。誘電体膜の多層積層体からなるハーフミラーの厚みは、例えば50μm~200μmであり得る。このようなハーフミラーとしては、例えば、東レ社製の商品名「ピカサス」等の市販品を用いることができる。 Examples of the material for forming the dielectric film include metal oxides, metal nitrides, metal fluorides, thermoplastic resins (for example, polyethylene terephthalate (PET)) and the like. The multilayer laminated body of the dielectric film reflects a part of the incident light at the interface due to the difference in the refractive index of the laminated dielectric films. The reflectance can be adjusted by changing the phase of the incident light and the reflected light according to the thickness of the dielectric film and adjusting the degree of interference between the two lights. The thickness of the half mirror made of a multilayer laminate of dielectric films can be, for example, 50 μm to 200 μm. As such a half mirror, for example, a commercially available product such as the trade name "Picassus" manufactured by Toray Industries, Inc. can be used.
 また、ハーフミラーとしては、例えば、PET等の樹脂フィルム上にアルミニウム(Al)、インジウム(In)、亜鉛(Zn)、鉛(Pb)、銅(Cu)、銀(Ag)、またはこれらの合金等の金属を蒸着した金属蒸着フィルムを用いることができる。当該金属蒸着フィルムは、蒸着膜側から観察した場合には、反射により金属様光沢を有するが、樹脂フィルム側からの光を透過することができ、蒸着膜厚を変化させることによって、光透過率を制御することができる。蒸着膜厚は、好ましくは1nm~50nm、より好ましくは10nm~30nmである。また、樹脂フィルムの膜厚は、好ましくは1μm~1000μm、より好ましくは20μm~100μmである。 The half mirror includes, for example, aluminum (Al), indium (In), zinc (Zn), lead (Pb), copper (Cu), silver (Ag), or an alloy thereof on a resin film such as PET. A metal-deposited film on which a metal such as the above is vapor-deposited can be used. The metal vapor-deposited film has a metallic luster due to reflection when observed from the vapor-deposited film side, but can transmit light from the resin film side, and by changing the vapor-deposited film thickness, the light transmittance Can be controlled. The vapor deposition film thickness is preferably 1 nm to 50 nm, more preferably 10 nm to 30 nm. The film thickness of the resin film is preferably 1 μm to 1000 μm, more preferably 20 μm to 100 μm.
 反射型偏光子は、特定の偏光状態(偏光方向)の偏光を透過し、それ以外の偏光状態の光を反射する機能を有する。反射型偏光子は、直線偏光分離型または円偏光分離型であり得るが、直線偏光分離型が好ましい。直線偏光分離型の反射型偏光子は、反射軸方向が吸収型偏光子の吸収軸方向と実質的に平行になるように配置される。以下、一例として、直線偏光分離型の反射型偏光子について説明する。なお、円偏光分離型の反射型偏光子としては、例えば、コレステリック液晶を固定化したフィルムとλ/4板との積層体が挙げられる。 The reflective polarizer has a function of transmitting polarized light in a specific polarized state (polarizing direction) and reflecting light in other polarized states. The reflective polarizer may be a linearly polarized light separated type or a circularly polarized light separated type, but a linearly polarized light separated type is preferable. The linearly polarized light separation type reflective polarizer is arranged so that the reflection axis direction is substantially parallel to the absorption axis direction of the absorption type polarizer. Hereinafter, as an example, a linearly polarized light separation type reflective polarizer will be described. Examples of the circularly polarized light separation type reflective polarizer include a laminate of a film on which a cholesteric liquid crystal is immobilized and a λ / 4 plate.
 図3は、反射型偏光子の一例の概略斜視図である。反射型偏光子は、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとが交互に積層された多層積層体である。例えば、このような多層積層体の層の総数は、50~1000であり得る。図示例では、A層のx軸方向の屈折率nxがy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一である。したがって、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となる。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。なお、x軸方向は、後述する製造方法における反射型偏光子の延伸方向に対応する。 FIG. 3 is a schematic perspective view of an example of a reflective polarizer. The reflective polarizer is a multilayer laminate in which a layer A having birefringence and a layer B having substantially no birefringence are alternately laminated. For example, the total number of layers of such a multi-layer laminate can be 50-1000. In the illustrated example, the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction of the B layer and the refractive index ny in the y-axis direction are substantially the same. is there. Therefore, the difference in refractive index between the A layer and the B layer is large in the x-axis direction and substantially zero in the y-axis direction. As a result, the x-axis direction becomes the reflection axis, and the y-axis direction becomes the transmission axis. The difference in refractive index between the A layer and the B layer in the x-axis direction is preferably 0.2 to 0.3. The x-axis direction corresponds to the stretching direction of the reflective polarizer in the manufacturing method described later.
 上記A層は、好ましくは、延伸により複屈折性を発現する材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。ポリエチレンナフタレートが好ましい。上記B層は、好ましくは、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。 The layer A is preferably composed of a material that exhibits birefringence by stretching. Representative examples of such materials include polyester naphthalenedicarboxylic acid (eg, polyethylene naphthalate), polycarbonate and acrylic resins (eg, polymethylmethacrylate). Polyethylene naphthalate is preferred. The B layer is preferably composed of a material that does not substantially exhibit birefringence even when stretched. A typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
 反射型偏光子は、A層とB層との界面において、第1の偏光方向を有する光(例えば、p波)を透過し、第1の偏光方向とは直交する第2の偏光方向を有する光(例えば、s波)を反射する。反射した光は、A層とB層との界面において、一部が第1の偏光方向を有する光として透過し、一部が第2の偏光方向を有する光として反射する。反射型偏光子の内部において、このような反射および透過が多数繰り返されることにより、光の利用効率を高めることができる。 The reflective polarizing element transmits light having a first polarization direction (for example, a p wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects light (eg, s waves). At the interface between the A layer and the B layer, the reflected light is partially transmitted as light having a first polarization direction and partially reflected as light having a second polarization direction. By repeating such reflection and transmission many times inside the reflective polarizer, the efficiency of light utilization can be improved.
 1つの実施形態においては、反射型偏光子は、図3に示すように、視認側と反対側の最外層として反射層Rを含んでいてもよい。反射層Rを設けることにより、最終的に利用されずに反射型偏光子の最外部に戻ってきた光をさらに利用することができるので、光の利用効率をさらに高めることができる。反射層Rは、代表的には、ポリエステル樹脂層の多層構造により反射機能を発現する。 In one embodiment, the reflective polarizer may include a reflective layer R as the outermost layer on the side opposite to the visual viewing side, as shown in FIG. By providing the reflective layer R, it is possible to further utilize the light that has returned to the outermost side of the reflective polarizer without being finally utilized, so that the efficiency of light utilization can be further improved. The reflective layer R typically exhibits a reflective function due to the multilayer structure of the polyester resin layer.
 反射型偏光子の全体厚みは、目的、反射型偏光子に含まれる層の合計数等に応じて適切に設定され得る。反射型偏光子の全体厚みは、好ましくは10μm~150μmである。 The overall thickness of the reflective polarizer can be appropriately set according to the purpose, the total number of layers contained in the reflective polarizer, and the like. The overall thickness of the reflective polarizer is preferably 10 μm to 150 μm.
 反射型偏光子は、代表的には、共押出と横延伸とを組み合わせて作製され得る。共押出は、任意の適切な方式で行われ得る。例えば、フィードブロック方式であってもよく、マルチマニホールド方式であってもよい。例えば、フィードブロック中でA層を構成する材料とB層を構成する材料とを押出し、次いで、マルチプライヤーを用いて多層化する。なお、このような多層化装置は当業者に公知である。次いで、得られた長尺状の多層積層体を代表的には搬送方向に直交する方向(TD)に延伸する。A層を構成する材料(例えば、ポリエチレンナフタレート)は、当該横延伸により延伸方向においてのみ屈折率が増大し、結果として複屈折性を発現する。B層を構成する材料(例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステル)は、当該横延伸によってもいずれの方向にも屈折率は増大しない。結果として、延伸方向(TD)に反射軸を有し、搬送方向(MD)に透過軸を有する反射型偏光子が得られ得る(TDが図3のx軸方向に対応し、MDがy軸方向に対応する)。なお、延伸操作は、任意の適切な装置を用いて行われ得る。 The reflective polarizer can be typically produced by combining coextrusion and transverse stretching. Coextrusion can be done in any suitable manner. For example, it may be a feed block system or a multi-manifold system. For example, the material forming the A layer and the material forming the B layer are extruded in the feed block, and then multi-layered using a multiplier. Such a multi-layer device is known to those skilled in the art. Next, the obtained elongated multilayer laminate is typically stretched in a direction (TD) orthogonal to the transport direction. The material (for example, polyethylene naphthalate) constituting the layer A has an increased refractive index only in the stretching direction due to the lateral stretching, and as a result, exhibits birefringence. The refractive index of the material constituting the B layer (for example, copolyester of naphthalenedicarboxylic acid and terephthalic acid) does not increase in any direction by the transverse stretching. As a result, a reflective polarizer having a reflection axis in the stretching direction (TD) and a transmission axis in the transport direction (MD) can be obtained (TD corresponds to the x-axis direction of FIG. 3 and MD corresponds to the y-axis. Corresponds to the direction). The stretching operation can be performed using any suitable device.
 反射型偏光子としては、例えば、特表平9-507308号公報に記載のものが使用され得る。また、反射型偏光子としては、市販品をそのまま用いてもよく、市販品を2次加工(例えば、延伸)して用いてもよい。市販品としては、例えば、日東電工社製の商品名「APCF」、3M社製の商品名「DBEF」、3M社製の商品名「APF」が挙げられる。 As the reflective polarizer, for example, those described in JP-A-9-507308 can be used. Further, as the reflective polarizer, a commercially available product may be used as it is, or the commercially available product may be used after secondary processing (for example, stretching). Examples of commercially available products include the product name "APCF" manufactured by Nitto Denko Corporation, the product name "DBEF" manufactured by 3M Company, and the product name "APF" manufactured by 3M Company.
B-4.吸収型偏光子
 吸収型偏光子(以下、単に「偏光子」と称する場合がある)は、代表的には、ヨウ素を含む樹脂フィルムで構成される。樹脂フィルムとしては、偏光子として用いられ得る任意の適切な樹脂フィルムを採用することができる。樹脂フィルムは、代表的には、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)フィルムである。樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B-4. Absorption-type polarizer The absorption-type polarizer (hereinafter, may be simply referred to as “polarizer”) is typically composed of a resin film containing iodine. As the resin film, any suitable resin film that can be used as a polarizer can be adopted. The resin film is typically a polyvinyl alcohol-based resin (hereinafter, referred to as “PVA-based resin”) film. The resin film may be a single-layer resin film or a laminated body having two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、PVA系樹脂フィルムにヨウ素による染色処理および延伸処理(代表的には、一軸延伸)が施されたものが挙げられる。上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系樹脂フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系樹脂フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系樹脂フィルムを膨潤させて染色ムラ等を防止することができる。 Specific examples of the polarizer composed of a single-layer resin film include those obtained by subjecting a PVA-based resin film to a dyeing treatment with iodine and a stretching treatment (typically, uniaxial stretching). The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed. If necessary, the PVA-based resin film is subjected to a swelling treatment, a cross-linking treatment, a cleaning treatment, a drying treatment and the like. For example, by immersing the PVA-based resin film in water and washing it with water before dyeing, not only can the stains on the surface of the PVA-based film and the blocking inhibitor be washed, but also the PVA-based resin film is swollen to cause uneven dyeing. Etc. can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material. It is produced by forming a PVA-based resin layer on the resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to use the PVA-based resin layer as a polarizer. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizer), and the resin base material is peeled off from the resin base material / polarizer laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
 偏光子の厚みは、好ましくは40μm以下であり、より好ましくは30μm以下である。また、当該厚みの下限は、例えば2μm、また例えば3μmであり得る。 The thickness of the polarizer is preferably 40 μm or less, more preferably 30 μm or less. Further, the lower limit of the thickness may be, for example, 2 μm, or for example, 3 μm.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは43.0%~46.0%であり、より好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizer is preferably 43.0% to 46.0%, more preferably 44.5% to 46.0%. The degree of polarization of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
B-5.光透過性有色層
 上記光透過性有色層としては、単体透過率が15%以上、好ましくは40%以上、より好ましくは80%以上であり、かつ、物体色が有色である層が用いられる。光透過性有色層の単体透過率の上限は、例えば95%、また例えば93%であり得る。また、有色である光透過性有色層の物体色は、透過光によって生ずる色(透過色)および/または反射によって発せられる色(表面色)であり得る。
B-5. Light-Transparent Colored Layer As the light-transmitting colored layer, a layer having a single transmittance of 15% or more, preferably 40% or more, more preferably 80% or more, and an object color of color is used. The upper limit of the single transmittance of the light-transmitting colored layer can be, for example, 95%, or 93%, for example. Further, the object color of the light-transmitting colored layer, which is colored, may be a color generated by transmitted light (transmitted color) and / or a color emitted by reflection (surface color).
 光透過性有色層が有する物体色の色彩は、表示画面の周辺部分の意匠に応じて適切に選択され得る。例えば、光透過性有色層は、単一色であってもよく、多色および/または濃淡を有し、図柄を構成していてもよい。 The color of the object color of the light-transmitting colored layer can be appropriately selected according to the design of the peripheral portion of the display screen. For example, the light-transmitting colored layer may be a single color, may have multiple colors and / or shades, and may form a pattern.
 光透過性有色層としては、例えば、ヨウ素を含む偏光子とその少なくとも片側に設けられた保護層とを有する従来の偏光板の構成要素であって、当該偏光板が光学セルの視認側に配置された際に、偏光子よりも視認側に配置される構成要素を着色したものが用いられる。このような構成要素としては、保護層、粘着剤層、接着剤層等が挙げられる。なかでも、保護層および/または粘着剤層が着色されたものが好ましく、粘着剤層が着色されたものがより好ましく用いられ得る。着色は、上記構成要素(例えば、保護層または粘着剤層)の形成材料に着色剤を混合することによって行われ得る。着色剤の種類およびその配合量は、表示画面の周辺部分の意匠に応じて適切に選択され得る。また、保護層の着色は、保護層表面に着色コーティング層を設けることによって行われてもよい。 The light-transmitting colored layer is, for example, a component of a conventional polarizing plate having a polarizing element containing iodine and a protective layer provided on at least one side thereof, and the polarizing plate is arranged on the visible side of an optical cell. When this is done, a colored component arranged on the visual side of the polarizing element is used. Examples of such a component include a protective layer, an adhesive layer, an adhesive layer and the like. Among them, those in which the protective layer and / or the pressure-sensitive adhesive layer are colored are preferable, and those in which the pressure-sensitive adhesive layer is colored can be more preferably used. Coloring can be performed by mixing a colorant with the forming material of the above components (eg, protective layer or pressure-sensitive adhesive layer). The type of colorant and the amount thereof can be appropriately selected according to the design of the peripheral portion of the display screen. Further, the protective layer may be colored by providing a colored coating layer on the surface of the protective layer.
 1つの実施形態においては、上記着色剤を含有する光透過性有色層は、380nm~780nmの波長の間の特定波長範囲の光を選択的に吸収する(すなわち、特定範囲の波長帯域に吸収極大波長を有する)。光透過性有色層は、2以上の吸収極大波長を有していてもよい。2以上の吸収極大波長を有する光透過性有色層は、例えば、複数種の着色剤を用いることにより得ることができる。 In one embodiment, the light-transmitting colored layer containing the colorant selectively absorbs light in a specific wavelength range between wavelengths of 380 nm to 780 nm (that is, absorption maximum in a specific wavelength band). Has a wavelength). The light-transmitting colored layer may have two or more absorption maximum wavelengths. A light-transmitting colored layer having two or more absorption maximum wavelengths can be obtained, for example, by using a plurality of types of colorants.
 光透過性有色層の吸収極大波長での透過率は、好ましくは15%~80%であり、より好ましくは15%~70%である。吸収層の吸収極大波長での透過率がこのような範囲内にあれば、本発明の効果が好適に発現され得る。 The transmittance of the light-transmitting colored layer at the absorption maximum wavelength is preferably 15% to 80%, more preferably 15% to 70%. When the transmittance of the absorption layer at the absorption maximum wavelength is within such a range, the effect of the present invention can be suitably exhibited.
 光透過性有色層の厚みは、好ましくは1μm~100μmであり、より好ましくは2μm~30μmである。光透過性有色層の厚みがこのような範囲内にあれば、本発明の効果が好適に発現され得る。 The thickness of the light-transmitting colored layer is preferably 1 μm to 100 μm, and more preferably 2 μm to 30 μm. When the thickness of the light-transmitting colored layer is within such a range, the effect of the present invention can be suitably exhibited.
 着色剤の具体例としては、例えば、アントラキノン系、トリフェニルメタン系、ナフトキノン系、チオインジゴ系、ペリノン系、ペリレン系、スクアリリウム系、シアニン系、ポルフィリン系、アザポルフィリン系、フタロシアニン系、サブフタロシアニン系、キニザリン系、ポリメチン系、ローダミン系、オキソノール系、キノン系、アゾ系、キサンテン系、アゾメチン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリドン系、イソインドリノン系、インダンスロン系、インジゴ系、チオインジゴ系、キノフタロン系、キノリン系、トリフェニルメタン系等の染料が挙げられる。 Specific examples of colorants include, for example, anthraquinone-based, triphenylmethane-based, naphthoquinone-based, thioindigo-based, perinone-based, perylene-based, squarylium-based, cyanine-based, porphyrin-based, azaporphyrin-based, phthalocyanine-based, subphthalocyanine-based, Quinoline, polymethin, rhodamine, oxonor, quinone, azo, xanthene, azomethin, quinacridone, dioxazine, diketopyrrolopyrrole, anthraquinone, isoindrinone, indanslon Examples thereof include dyes such as indigo-based, thioindigo-based, quinophthalone-based, quinoline-based, and triphenylmethane-based dyes.
 着色剤として、顔料を用いてもよい。顔料の具体例としては、例えば、黒色顔料(カーボンブラック、ボーンブラック、グラファイト、鉄黒、チタンブラック等)、アゾ系顔料、フタロシアニン系顔料、多環式顔料(キナクリドン系、ペリレン系、ペリノン系、イソインドリノン系、イソインドリン系、ジオキサジン系、チオインジゴ系、アントラキノン系、キノフタロン系、金属錯体系、ジケトピロロピロール系等)、染料レーキ系顔料、白色・体質顔料(酸化チタン、酸化亜鉛、硫化亜鉛、クレー、タルク、硫酸バリウム、炭酸カルシウム等)、有彩顔料(黄鉛、カドミニウム系、クロムバーミリオン、ニッケルチタン、クロムチタン、黄色酸化鉄、ベンガラ、ジンククロメート、鉛丹、群青、紺青、コバルトブルー、クロムグリーン、酸化クロム、バナジン酸ビスマス等)、光輝材顔料(パール顔料、アルミ顔料、ブロンズ顔料等)、蛍光顔料(硫化亜鉛、硫化ストロンチウム、アルミン酸ストロンチウム等)等が挙げられる。 A pigment may be used as the colorant. Specific examples of pigments include black pigments (carbon black, bone black, graphite, iron black, titanium black, etc.), azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone, perylene, perinone, etc.). Isoindrinone-based, isoindolin-based, dioxazine-based, thioindigo-based, anthraquinone-based, quinophthalone-based, metal complex-based, diketopyrrolopyrrole-based, dye lake pigments, white / extender pigments (titanium oxide, zinc oxide, sulfide) Zinc, clay, talc, barium sulfate, calcium carbonate, etc.), chromatic pigments (yellow lead, cadmium, chrome vermilion, nickel titanium, chrome titanium, yellow iron oxide, red iron oxide, zinc chromate, lead tan, ultramarine, dark blue, Cobalt blue, chrome green, chromium oxide, bismuth vanadate, etc.), bright material pigments (pearl pigments, aluminum pigments, bronze pigments, etc.), fluorescent pigments (zinc sulfide, strontium sulfide, strontium aluminate, etc.) and the like can be mentioned.
 着色剤の含有割合は、着色剤の種類、所望の光吸収特性等に応じて、任意の適切な割合とされ得る。光透過性有色層における着色剤の含有割合は、好ましくは0.01重量%~5.00重量%であり、より好ましくは0.05重量%~3.00重量%である。 The content ratio of the colorant can be any appropriate ratio depending on the type of the colorant, the desired light absorption characteristics, and the like. The content ratio of the colorant in the light-transmitting colored layer is preferably 0.01% by weight to 5.00% by weight, more preferably 0.05% by weight to 3.00% by weight.
 また例えば、ヨウ素以外の二色性物質を含む偏光子(以下、「染色偏光子」と称する場合がある)を光透過性有色層として用いることができる。この場合、吸収型偏光子の吸収軸方向と染色偏光子の吸収軸方向とが、実質的に平行となるように配置することにより、画像表示装置による表示画像における光透過性有色層に起因する色付きを抑制することができる。染色偏光子およびその製造方法については、例えば、特公平06-066001号公報、特開2012-73580号公報、特開2018-22125号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Further, for example, a polarizer containing a dichroic substance other than iodine (hereinafter, may be referred to as a "dyed polarizer") can be used as a light-transmitting colored layer. In this case, by arranging the absorption axis direction of the absorption type polarizer and the absorption axis direction of the dyed polarizer so as to be substantially parallel, the light transmissive colored layer in the image displayed by the image display device is caused. Coloring can be suppressed. The dyed polarizer and the method for producing the same are described in, for example, Japanese Patent Application Laid-Open No. 06-666001, Japanese Patent Application Laid-Open No. 2012-73580, and Japanese Patent Application Laid-Open No. 2018-22125. The entire description of the publication is incorporated herein by reference.
 染色偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。染色偏光子の単体透過率は、例えば10%~90%、好ましくは10%~80%であり、より好ましくは20%~70%である。染色偏光子の偏光度は、例えば15%以上であり、好ましくは40%以上であり、より好ましくは80%以上、さらに好ましくは90%以上である。 The dyed polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the dyed polarizer is, for example, 10% to 90%, preferably 10% to 80%, and more preferably 20% to 70%. The degree of polarization of the dyed polarizer is, for example, 15% or more, preferably 40% or more, more preferably 80% or more, still more preferably 90% or more.
 図4は、光透過性有色層を有する光学積層体の一例の概略断面図である。光学積層体100cは、光拡散素子10aと、第3の保護層56と、光透過性有色層(例えば、着色された粘着剤層、染色偏光子)40と、光透過性反射板20と、吸収型偏光子30とを、視認側からこの順に有する。 FIG. 4 is a schematic cross-sectional view of an example of an optical laminate having a light-transmitting colored layer. The optical laminate 100c includes a light diffusing element 10a, a third protective layer 56, a light transmitting colored layer (for example, a colored pressure-sensitive adhesive layer, a dyed polarizing element) 40, a light transmitting reflector 20, and the light transmitting reflector 20. The absorption type polarizer 30 is provided in this order from the viewing side.
 図5は、光透過性有色層を有する光学積層体の別の一例の概略断面図である。光学積層体100dは、第3の保護層(表面保護層)56と、光拡散粘着剤層10bと、光透過性有色層(例えば、着色された粘着剤層、染色偏光子)40と、光透過性反射板20と、吸収型偏光子30とを、この順に有する。 FIG. 5 is a schematic cross-sectional view of another example of an optical laminate having a light-transmitting colored layer. The optical laminate 100d includes a third protective layer (surface protective layer) 56, a light diffusing pressure-sensitive adhesive layer 10b, a light-transmitting colored layer (for example, a colored pressure-sensitive adhesive layer, a dyed polarizing element) 40, and light. The transmissive reflector 20 and the absorption type polarizer 30 are provided in this order.
 図6は、光透過性有色層を有する光学積層体の別の一例の概略断面図である。光学積層体100eは、第3の保護層(表面保護層)56と、着色された光拡散粘着剤層10b(光透過性有色層40を兼ねる)と、光透過性反射板20と、吸収型偏光子30とを、視認側からこの順に有する。 FIG. 6 is a schematic cross-sectional view of another example of an optical laminate having a light-transmitting colored layer. The optical laminate 100e includes a third protective layer (surface protective layer) 56, a colored light diffusing adhesive layer 10b (which also serves as a light transmissive colored layer 40), a light transmissive reflector 20, and an absorption type. The polarizer 30 is provided in this order from the viewing side.
B-6.保護層
 保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。保護層は、好ましくは無色透明であり、例えば、420nm~780nmの測定波長領域の全領域にわたって透過率が、85%以上、好ましくは93%以上である。
B-6. Protective layer The protective layer is formed of any suitable film that can be used as a protective layer for the polarizer. The protective layer is preferably colorless and transparent, and has a transmittance of 85% or more, preferably 93% or more, for example, over the entire measurement wavelength region of 420 nm to 780 nm.
 上記保護層を形成するフィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。 Specific examples of the material that is the main component of the film forming the protective layer include cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, and polyethers. Examples thereof include transparent resins such as sulfone-based, polysulfone-based, polystyrene-based, polynorbornene-based, polyolefin-based, (meth) acrylic-based, and acetate-based. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.
 1つの実施形態においては、上記(メタ)アクリル系樹脂として、ラクトン環やグルタルイミド環等の環状構造を主鎖中に有する(メタ)アクリル系樹脂が用いられる。グルタルイミド環を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-009182号公報、特開2009-161744号公報、特開2010-284840号公報に記載されている。これらの記載は、本明細書に参考として援用される。 In one embodiment, as the (meth) acrylic resin, a (meth) acrylic resin having a cyclic structure such as a lactone ring or a glutarimide ring in the main chain is used. Examples of the (meth) acrylic resin having a glutarimide ring (hereinafter, also referred to as glutarimide resin) include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A. 2006-328334, 2006-337491, 2006-337492, 2006-337493, 2006-337569, 2007-009182, 2009- It is described in Japanese Patent Application Laid-Open No. 161744 and Japanese Patent Application Laid-Open No. 2010-284840. These statements are incorporated herein by reference.
 光学積層体を画像表示装置に適用したときに吸収型偏光子よりも視認側に配置される外側保護層(保護層52、56)の厚みは、代表的には300μm以下であり、好ましくは100μm以下、より好ましくは5μm~80μm、さらに好ましくは10μm~60μmである。なお、表面処理が施されている場合、外側保護層の厚みは、表面処理層の厚みを含めた厚みである。 When the optical laminate is applied to an image display device, the thickness of the outer protective layers (protective layers 52 and 56) arranged on the visual side of the absorption type polarizer is typically 300 μm or less, preferably 100 μm. Hereinafter, it is more preferably 5 μm to 80 μm, still more preferably 10 μm to 60 μm. When the surface treatment is applied, the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
 光学積層体を画像表示装置に適用したときに吸収型偏光子よりも光学セル側に配置される内側保護層(保護層54)の厚みは、好ましくは5μm~200μm、より好ましくは10μm~100μm、さらに好ましくは10μm~60μmである。1つの実施形態においては、内側保護層は、任意の適切な位相差値を有する位相差層である。この場合、位相差層の面内位相差Re(550)は、例えば110nm~150nmである。「Re(550)」は、23℃における波長550nmの光で測定した面内位相差であり、式:Re=(nx-ny)×dにより求められる。ここで、「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率であり、「d」は層(フィルム)の厚み(nm)である。 When the optical laminate is applied to an image display device, the thickness of the inner protective layer (protective layer 54) arranged on the optical cell side of the absorption type polarizer is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm. More preferably, it is 10 μm to 60 μm. In one embodiment, the inner protective layer is a retardation layer with any suitable retardation value. In this case, the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm. “Re (550)” is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C., and is obtained by the formula: Re = (nx−ny) × d. Here, "nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny" is the in-plane direction orthogonal to the slow-phase axis (that is, phase-advance). It is the refractive index in the axial direction), “nz” is the refractive index in the thickness direction, and “d” is the thickness (nm) of the layer (film).
B-7.接着層
 接着層は、代表的には、接着剤層または粘着剤層である。接着層は、好ましくは無色透明であり、例えば、420nm~780nmの測定波長領域の全領域にわたって透過率が、80%以上、好ましくは90%以上である。
B-7. Adhesive layer The adhesive layer is typically an adhesive layer or an adhesive layer. The adhesive layer is preferably colorless and transparent, and has a transmittance of 80% or more, preferably 90% or more over the entire measurement wavelength region of 420 nm to 780 nm.
 接着剤層を構成する接着剤組成物としては、任意の適切な接着剤組成物が用いられ得る。例えば、イソシアネート系、ポリビニルアルコール系、ゼラチン系、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等の水系接着剤組成物、紫外線硬化型接着剤、電子線硬化型接着剤等の硬化型接着剤組成物等が挙げられる。接着剤層の厚みは、例えば、0.05μm~1.5μmであり得る。 Any suitable adhesive composition can be used as the adhesive composition constituting the adhesive layer. For example, water-based adhesive compositions such as isocyanate-based, polyvinyl alcohol-based, gelatin-based, vinyl-based latex-based, water-based polyurethane, and water-based polyester, and curable adhesive compositions such as ultraviolet curable adhesives and electron beam-curable adhesives. And so on. The thickness of the adhesive layer can be, for example, 0.05 μm to 1.5 μm.
 粘着剤層を形成する粘着剤組成物としては、任意の適切な粘着剤組成物が用いられ得る。例えば、ゴム系、アクリル系、シリコーン系、ウレタン系、ビニルアルキルエーテル系、ポリビニルアルコール系、ポリビニルピロリドン系、ポリアクリルアミド系、セルロース系等の粘着剤組成物が挙げられる。中でも、光学的透明性に優れ、また、粘着特性、耐候性、耐熱性等に優れる点から、アクリル系粘着剤組成物が好ましく用いられる。粘着剤層の厚みは、例えば、1μm~100μmであり得る。 Any suitable pressure-sensitive adhesive composition can be used as the pressure-sensitive adhesive composition for forming the pressure-sensitive adhesive layer. Examples thereof include rubber-based, acrylic-based, silicone-based, urethane-based, vinyl alkyl ether-based, polyvinyl alcohol-based, polyvinylpyrrolidone-based, polyacrylamide-based, and cellulose-based pressure-sensitive adhesive compositions. Among them, an acrylic pressure-sensitive adhesive composition is preferably used because of its excellent optical transparency, adhesive properties, weather resistance, heat resistance, and the like. The thickness of the pressure-sensitive adhesive layer can be, for example, 1 μm to 100 μm.
C.画像表示装置
 上記B項に記載の光学積層体は、画像表示装置に適用され得る。したがって、本発明は、上記光学積層体を備えた画像表示装置を包含する。画像表示装置の代表例としては、液晶セルを備えた液晶表示装置、有機エレクトロルミネセンス(EL)セルを備えた有機EL表示装置等が挙げられる。1つの実施形態において、上記光学積層体は、液晶セル、有機ELセル等の光学セルの視認側に、光透過性反射板が吸収型偏光子よりも視認側となるように配置される。液晶セルおよび有機ELセルについては、本発明の特徴的な部分ではなく、かつ、業界で周知の構成が採用され得るので、詳細な説明は省略する。
C. Image display device The optical laminate according to item B above can be applied to an image display device. Therefore, the present invention includes an image display device including the above optical laminate. Typical examples of the image display device include a liquid crystal display device provided with a liquid crystal cell, an organic EL display device provided with an organic electroluminescence (EL) cell, and the like. In one embodiment, the optical laminate is arranged on the visible side of an optical cell such as a liquid crystal cell or an organic EL cell so that the light transmissive reflector is on the visible side of the absorption type polarizer. Since the liquid crystal cell and the organic EL cell are not characteristic parts of the present invention and can adopt a configuration well known in the industry, detailed description thereof will be omitted.
 図7は、本発明の1つの実施形態による液晶表示装置の概略断面図である。液晶表示装置200は、視認側から順に光学積層体100と液晶セル120と背面側偏光子140とを有する液晶パネル160およびバックライトユニット180を備える。光学積層体100は、B項に記載の光学積層体であり、光透過性反射板20が吸収型偏光子30よりも視認側となるように、かつ、吸収型偏光子30の吸収軸と背面側偏光子140の吸収軸とが実質的に直交となるように配置されている。背面側偏光子としては、吸収型偏光子と同様のものが用いられ得る。 FIG. 7 is a schematic cross-sectional view of a liquid crystal display device according to one embodiment of the present invention. The liquid crystal display device 200 includes a liquid crystal panel 160 and a backlight unit 180 having an optical laminate 100, a liquid crystal cell 120, and a backside polarizing element 140 in this order from the viewing side. The optical laminate 100 is the optical laminate according to item B, so that the light transmissive reflector 20 is on the visual side of the absorption type polarizer 30 and the absorption shaft and the back surface of the absorption type polarizer 30. It is arranged so that the absorption axis of the side polarizer 140 is substantially orthogonal to the absorption axis. As the back side polarizer, the same one as that of the absorption type polarizer can be used.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method of each characteristic is as follows. Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are based on weight.
(1)厚み
 デジタルゲージ((株)尾崎製作所製、製品名「PEACOCK」)を用いて測定した。
(2)反射色相およびメトリック彩度
 光学積層体について、分光測色計(コニカミノルタ社製 CM-2600d)を用いて測定した反射色相a*、b*から、下記式を用いてメトリック彩度を求めた。
   メトリック彩度(C)=√(a*2+b*2
(3)偏光子の単体透過率、偏光度
 ヨウ素系偏光子については、製造例1で得られた偏光板A(ヨウ素系偏光子/保護層)を、紫外可視近赤外分光光度計(日本分光社製 V-7100)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光子のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式を用いて偏光度を求めた。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100 
 製造例2~4で得られた染色偏光子についても、同様の方法で測定を行った。
(4)光沢度
 光学積層体の光沢度について、JIS Z8741-1997で定める方法により、光沢度計(村上色彩化学研究所社製、商品名「GM-26 PRO」)を用いて測定した。
(5)単体透過率
 紫外可視近赤外分光光度計(日本分光社製 V-7100)を用いて測定したときの、波長380nm~780nmの透過率Tsを、単体透過率Tsとした。ただし、光透過性反射板の単体透過率は、紫外可視近赤外分光光度計(日立ハイテクサイエンス社製 U-4100またはUH-4150)を用いて測定した。このTsは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
(6)ヘイズ値
 光拡散層について、JIS 7136で定める方法により、ヘイズメーター(村上色彩科学研究所社製、商品名「HN-150」)を用いて測定した。
(1) Thickness Measured using a digital gauge (manufactured by Ozaki Seisakusho Co., Ltd., product name "PEACOCK").
(2) Reflected Hue and Metric Saturation From the reflected hues a * and b * measured with a spectrophotometer (CM-2600d manufactured by Konica Minolta) for the optical laminate, the metric saturation was calculated using the following formula. I asked.
Metric saturation (C * ) = √ (a * 2 + b * 2 )
(3) Single Transmittance and Degree of Polarization of Polarizer For the iodine-based polarizer, the polarizing plate A (iodine-based polarizer / protective layer) obtained in Production Example 1 was used as an ultraviolet-visible near-infrared spectrophotometer (Japan). The single transmittance Ts, the parallel transmittance Tp, and the orthogonal transmittance Tc measured using V-7100) manufactured by Spectronizing Co., Ltd. were defined as the polarizers Ts, Tp, and Tc, respectively. These Ts, Tp and Tc are Y values measured by the JIS Z8701 2 degree field of view (C light source) and corrected for luminosity factor. From the obtained Tp and Tc, the degree of polarization was determined using the following formula.
Polarization degree (%) = {(Tp-Tc) / (Tp + Tc)} 1/2 x 100
The dyed polarizers obtained in Production Examples 2 to 4 were also measured by the same method.
(4) Glossiness The glossiness of the optical laminate was measured using a glossiness meter (manufactured by Murakami Color Chemistry Laboratory, trade name "GM-26 PRO") by the method specified in JIS Z8741-1997.
(5) Single Transmittance The transmittance Ts having a wavelength of 380 nm to 780 nm as measured using an ultraviolet-visible near-infrared spectrophotometer (V-7100 manufactured by JASCO Corporation) was defined as the single transmittance Ts. However, the single transmittance of the light-transmitting reflector was measured using an ultraviolet-visible near-infrared spectrophotometer (U-4100 or UH-4150 manufactured by Hitachi High-Tech Science Co., Ltd.). This Ts is a Y value measured by a JIS Z8701 double field of view (C light source) and corrected for luminosity factor.
(6) Haze value The light diffusing layer was measured using a haze meter (manufactured by Murakami Color Science Laboratory Co., Ltd., trade name "HN-150") by the method specified by JIS 7136.
<製造例1 偏光板の作製>
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
 このようにして、樹脂基材上に厚み約5μmのヨウ素系偏光子(吸収型偏光子)を形成し、樹脂基材/ヨウ素系偏光子の構成を有する積層体を得た。
 上記で得られたヨウ素系偏光子の表面(樹脂基材とは反対側の面)に、保護層としてラクトン環構造を有するアクリル系樹脂フィルム(厚み:40μm)を、紫外線硬化型接着剤を介して貼り合せた。次いで、樹脂基材を剥離し、ヨウ素系偏光子/保護層の構成を有する偏光板Aを得た。当該偏光板A(実質的には、ヨウ素系偏光子)の単体透過率は42.4%、偏光度は99.999%であった。
<Manufacturing Example 1 Fabrication of Polarizing Plate>
As the thermoplastic resin base material, an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) having a long shape and a Tg of about 75 ° C. was used, and one side of the resin base material was subjected to corona treatment.
100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer") are mixed at a ratio of 9: A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizer finally obtained Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) became a desired value (staining treatment).
Then, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4% by weight, potassium iodide concentration 5% by weight) at a liquid temperature of 70 ° C., the total in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at about 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at about 75 ° C. (dry shrinkage treatment).
In this way, an iodine-based polarizer (absorption-type polarizer) having a thickness of about 5 μm was formed on the resin substrate, and a laminate having a resin substrate / iodine-based polarizer configuration was obtained.
An acrylic resin film (thickness: 40 μm) having a lactone ring structure as a protective layer is applied to the surface of the iodine-based polarizer obtained above (the surface opposite to the resin base material) via an ultraviolet curable adhesive. And pasted together. Next, the resin base material was peeled off to obtain a polarizing plate A having an iodine-based polarizer / protective layer structure. The single-unit transmittance of the polarizing plate A (substantially an iodine-based polarizing element) was 42.4%, and the degree of polarization was 99.999%.
<製造例2 赤色偏光子の作製>
 水100重量部に対して、二色性色素として、Direct Red 81(東京化成工業社製)4部をヨウ素の代わりに染色浴に添加したこと以外は製造例1と同様にして、赤色偏光子を得た。該偏光子の単体透過率は44.4%、偏光度は58.6%であった。
<Manufacturing Example 2 Production of Red Polarizer>
A red polarizing element in the same manner as in Production Example 1 except that 4 parts of Direct Red 81 (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the dyeing bath instead of iodine with respect to 100 parts by weight of water. Got The simple substance transmittance of the polarizer was 44.4%, and the degree of polarization was 58.6%.
<製造例3 青色偏光子の作製>
 二色性色素として、Direct Blue 1(東京化成工業社製)4部を用いたこと以外は製造例2と同様にして、青色偏光子を得た。該偏光子の単体透過率は42.1%、偏光度は68.9%であった。
<Manufacturing Example 3 Production of Blue Polarizer>
A blue polarizer was obtained in the same manner as in Production Example 2 except that 4 parts of Direct Blue 1 (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the dichroic dye. The simple substance transmittance of the polarizer was 42.1%, and the degree of polarization was 68.9%.
<製造例4 黄色偏光子の作製>
 二色性色素として、Direct Yellow 4(東京化成工業社製)4部を用いたこと以外は製造例2と同様にして、黄色偏光子を得た。該偏光子の単体透過率は79.9%、偏光度は17.9%であった。
<Manufacturing Example 4 Production of Yellow Polarizer>
A yellow polarizer was obtained in the same manner as in Production Example 2 except that 4 parts of Direct Yellow 4 (manufactured by Tokyo Chemical Industry Co., Ltd.) were used as the dichroic dye. The simple substance transmittance of the polarizer was 79.9%, and the degree of polarization was 17.9%.
<製造例5 赤色粘着剤シートの作製>
≪粘着剤組成物の調製≫
 2-エチルヘキシルアクリレート(2EHA)、NVP、ヒドロキシエチルアクリレート(HEA)を78/18/4の重量比で含むモノマー混合物100部を、光重合開始剤としての商品名:イルガキュア651(チバスペシャルティケミカルズ社製)0.035部および商品名:イルガキュア184(チバスペシャルティケミカルズ社製)0.035部ととともに4つ口フラスコに投入し、窒素雰囲気下で粘度(BH粘度計、No.5ローター、10rpm、測定温度30℃)が約15Pa・sになるまで紫外線を照射して光重合させることにより、上記モノマー混合物の部分重合物を含むモノマーシロップを調製した。
 このモノマーシロップ100部に、ヒドロキシエチルアクリレート(HEA)17.6部、アクリル系オリゴマー5.9部、1,6-ヘキサンジオールジアクリレート(HDDA)0.088部、シランカップリング剤として3-グリシドキシプロピルトリメトキシシラン(商品名:KBM-403、信越化学工業社製)0.35部および分散剤として味の素ファインテクノ社製アジスパーPB821、顔料として2,9-Dimethylquinolino[2,3-b]acridine-7,14(5H,12H)-dione(BLD Pharmatech Ltd.社製)を0.05質量部配合して、赤色粘着剤組成物を調製した。
<Manufacturing Example 5 Production of Red Adhesive Sheet>
≪Preparation of adhesive composition≫
100 parts of a monomer mixture containing 2-ethylhexyl acrylate (2EHA), NVP, and hydroxyethyl acrylate (HEA) in a weight ratio of 78/18/4 as a photopolymerization initiator, trade name: Irgacure 651 (manufactured by Ciba Specialty Chemicals). ) 0.035 parts and trade name: Irgacure 184 (manufactured by Ciba Specialty Chemicals) 0.035 parts and put into a four-necked flask, and the viscosity (BH viscometer, No. 5 rotor, 10 rpm, measurement) under a nitrogen atmosphere. A monomer syrup containing a partial polymer of the above-mentioned monomer mixture was prepared by irradiating with ultraviolet rays until the temperature (temperature: 30 ° C.) reached about 15 Pa · s and photopolymerizing.
In 100 parts of this monomer syrup, 17.6 parts of hydroxyethyl acrylate (HEA), 5.9 parts of acrylic oligomer, 0.088 part of 1,6-hexanediol diacrylate (HDDA), and 3-glyceride as a silane coupling agent. Sidoxypropyltrimethoxysilane (trade name: KBM-403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.35 part, Ajinomoto Fine-Techno Co., Ltd. azisper PB821 as a dispersant, 2,9-Dimethylquinolino [2,3-b] as a pigment A red pressure-sensitive adhesive composition was prepared by blending 0.05 parts by mass of aryline-7,14 (5H, 12H) -dione (manufactured by BLD Phasetech Ltd.).
 なお、上記アクリル系オリゴマーとしては、以下の方法で合成したものを使用した。
≪アクリル系オリゴマーの合成≫
 トルエン100部、ジシクロペンタニルメタクリレート(DCPMA)(商品名:FA-513M、日立化成工業社製)60部、メチルメタクリレート(MMA)40部、および連鎖移動剤としてα-チオグリセロール3.5部を4つ口フラスコに投入した。そして、70℃にて窒素雰囲気下で1時間攪拌した後、熱重合開始剤としてAIBN0.2部を投入し、70℃で2時間反応させ、続いて80℃で2時間反応させた。その後、反応液を130℃の温度雰囲気下に投入し、トルエン、連鎖移動剤、および未反応モノマーを乾燥除去することにより、固形状のアクリル系オリゴマーを得た。このアクリル系オリゴマーのTgは144℃であり、Mwは4300であった。
As the acrylic oligomer, one synthesized by the following method was used.
≪Synthesis of acrylic oligomer≫
100 parts of toluene, 60 parts of dicyclopentanyl methacrylate (DCPMA) (trade name: FA-513M, manufactured by Hitachi Kasei Kogyo Co., Ltd.), 40 parts of methyl methacrylate (MMA), and 3.5 parts of α-thioglycerol as a chain transfer agent. Was put into a four-necked flask. Then, after stirring at 70 ° C. in a nitrogen atmosphere for 1 hour, 0.2 part of AIBN was added as a thermal polymerization initiator, and the mixture was reacted at 70 ° C. for 2 hours and then at 80 ° C. for 2 hours. Then, the reaction solution was put into a temperature atmosphere of 130 ° C., and toluene, the chain transfer agent, and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer. The Tg of this acrylic oligomer was 144 ° C. and the Mw was 4300.
≪粘着剤シートの作製≫
 ポリエステルフィルムの片面が剥離面となっている厚さ38μmの剥離フィルムR1(三菱樹脂社製、MRF#38)に、上記で得た赤色粘着剤組成物を塗布し、ポリエステルフィルムの片面が剥離面となっている厚さ38μmの剥離フィルムR2(三菱樹脂社製、MRE#38)を被せて空気を遮断し、紫外線を照射して硬化させることにより、厚さ50μm、単体透過率19.3%の赤色粘着剤シート(赤色粘着剤層)を形成した。
≪Preparation of adhesive sheet≫
The red adhesive composition obtained above is applied to a release film R1 (MRF # 38, manufactured by Mitsubishi Resin Co., Ltd.) having a thickness of 38 μm in which one side of the polyester film is a release surface, and one side of the polyester film is a release surface. By covering with a 38 μm thick release film R2 (MRE # 38 manufactured by Mitsubishi Resin Co., Ltd.) to block air and irradiating with ultraviolet rays to cure, the thickness is 50 μm and the single transmission rate is 19.3%. A red pressure-sensitive adhesive sheet (red pressure-sensitive adhesive layer) was formed.
<製造例6 青色粘着剤シートの作製>
 赤色顔料0.05部の代わりに青色顔料(東京化成工業社製、製品名「Pigment Blue 15」)0.05部を用いたこと以外は製造例5と同様にして、厚さ50μm、単体透過率24.2%の青色粘着剤シートを得た。
<Manufacturing Example 6 Production of Blue Adhesive Sheet>
Similar to Production Example 5, thickness 50 μm, single transmission, except that 0.05 parts of blue pigment (manufactured by Tokyo Chemical Industry Co., Ltd., product name “Pigment Blue 15”) was used instead of 0.05 parts of red pigment. A blue pressure-sensitive adhesive sheet having a rate of 24.2% was obtained.
<製造例7 黄色粘着剤シートの作製>
 赤色顔料0.05部の代わりに黄色顔料(Oakwood Products, Inc.社製、製品名「Dalamar Yellow」)0.05部を用いたこと以外は製造例5と同様にして、厚さ50μm、単体透過率57.9%の黄色粘着剤シートを得た。
<Manufacturing Example 7 Production of Yellow Adhesive Sheet>
Similar to Production Example 5, except that 0.05 parts of a yellow pigment (manufactured by Oakwood Products, Inc., product name "Dalamar Yellow") was used instead of 0.05 parts of a red pigment, a single substance having a thickness of 50 μm. A yellow pressure-sensitive adhesive sheet having a transmittance of 57.9% was obtained.
<製造例8 緑色粘着剤シートの作製>
 赤色顔料0.05部の代わりに青色顔料(東京化成工業社製、製品名「Pigment Blue 15」)0.03部と黄色顔料(Oakwood Products, Inc.社製、製品名「Dalamar Yellow」)0.03部を混合して用いたこと以外は製造例5と同様にして、厚さ50μm、単体透過率43.3%の緑色粘着剤シートを得た。
<Manufacturing Example 8 Preparation of Green Adhesive Sheet>
0.03 parts of blue pigment (manufactured by Tokyo Chemical Industry Co., Ltd., product name "Pigment Blue 15") and yellow pigment (manufactured by Oakwood Products, Inc., product name "Dalamar Yellow") 0 instead of 0.05 parts of red pigment A green pressure-sensitive adhesive sheet having a thickness of 50 μm and a single permeability of 43.3% was obtained in the same manner as in Production Example 5 except that .03 parts were mixed and used.
<製造例9 光拡散粘着剤シートの作製>
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート94.9部、アクリル酸5部、4-ヒドロキシブチルアクリレート0.1部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1部を酢酸エチル100部と共に仕込み(モノマーの濃度50%)、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って8時間重合反応を行い、重量平均分子量(Mw)202万、Mw/Mn=3.2のアクリル系ポリマーの溶液を調製した。このようにして得られたアクリル系ポリマー溶液の固形分100部に対して、イソシアネート架橋剤(日本ポリウレタン工業社製、商品名「コロネートL」、トリメチロールプロパンのトリレンジイソシアネートのアダクト体)0.45部およびベンゾイルパーオキサイド(日本油脂社製,商品名「ナイパーBMT」)0.1部、および光拡散性微粒子(モメンティブ・パフォーマンス・マテリアルズ社製、商品名「トスパール145」、粒子径4.5μm)26部を配合して、アクリル系光拡散粘着剤組成物を調製した。次いで、上記アクリル系光拡散粘着剤組成物を、シリコーン処理を施した厚さ38μmのポリエチレンテレフタレート(PET)フィルム(三菱化学ポリエステルフィルム(株)製、商品名「MRF38」)の片面に、乾燥後の粘着剤層の厚さが23μmになるように塗布し、155℃で1分間乾燥処理して光拡散粘着剤シート(光拡散粘着剤層、ヘイズ:80%)を形成した。
<Manufacturing Example 9 Preparation of Light Diffusion Adhesive Sheet>
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler, 94.9 parts of butyl acrylate, 5 parts of acrylic acid, 0.1 part of 4-hydroxybutyl acrylate, and 2, as a polymerization initiator. 0.1 part of 2'-azobisisobutyronitrile was charged together with 100 parts of ethyl acetate (monomer concentration 50%), nitrogen gas was introduced with gentle stirring to replace nitrogen, and then the liquid temperature in the flask was adjusted. The polymerization reaction was carried out at around 55 ° C. for 8 hours to prepare a solution of an acrylic polymer having a weight average molecular weight (Mw) of 2.02 million and Mw / Mn = 3.2. With respect to 100 parts of the solid content of the acrylic polymer solution thus obtained, an isocyanate cross-linking agent (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name "Coronate L", trimethylolpropane tolylene diisocyanate adduct) 0. 45 parts and 0.1 part of benzoyl polymer (manufactured by Nippon Oil & Fats Co., Ltd., trade name "Niper BMT"), and light diffusing fine particles (manufactured by Momentive Performance Materials, trade name "Tospearl 145", particle size 4. 5 μm) 26 parts were blended to prepare an acrylic light diffusing pressure-sensitive adhesive composition. Next, the acrylic light-diffusing pressure-sensitive adhesive composition was dried on one side of a silicone-treated 38 μm-thick polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., trade name “MRF38”). The pressure-sensitive adhesive layer was applied so as to have a thickness of 23 μm, and dried at 155 ° C. for 1 minute to form a light-diffusing pressure-sensitive adhesive sheet (light-diffusing pressure-sensitive adhesive layer, haze: 80%).
<製造例10 光拡散素子Aの作製>
 光拡散素子に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(DIC(株)製、商品名「ユニディック17-806」、固形分80%)100重量部を準備した。前記樹脂の樹脂固形分100重量部あたり、光拡散性微粒子としてスチレン架橋粒子(綜研化学(株)製、商品名「MX-350H」、重量平均粒径:3.5μm、屈折率1.59)を14重量部、チキソトロピー付与剤として有機粘度である合成スメクタイト(クニミネ工業(株)製、商品名「スメクトンSAN」)を2.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を5重量部、レベリング剤(DIC(株)製、商品名「メガファックF-556」、固形分100%)を0.5重量部混合した。この混合物を固形分濃度が30%となるように、トルエン/酢酸エチル混合溶媒(重量比90/10)で希釈して、光拡散素子形成材料(塗工液)を調整した。
 保護層として機能し得るトリアセチルセルロース(TAC)フィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)の片面に、バーコータを用いて光拡散素子形成材料(塗工液)を塗布し、塗膜を形成した。そして、この塗膜が形成された透明プラスチックフィルム基材を、乾燥工程へと搬送した。乾燥工程において、110℃で1分間加熱することにより前記塗膜を乾燥させた。その後、高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射し、前記塗膜を硬化処理して厚み5.0μmの光拡散素子AをTACフィルムの片面に形成した。光拡散素子Aのヘイズ値は、42%であった。
<Manufacturing Example 10 Fabrication of Light Diffusing Element A>
As a resin contained in the light diffusing element, 100 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by DIC Corporation, trade name "Unidic 17-806", solid content 80%) was prepared. Styrene crosslinked particles (manufactured by Soken Kagaku Co., Ltd., trade name "MX-350H", weight average particle size: 3.5 μm, refractive index 1.59) per 100 parts by weight of the resin solid content of the resin. 14 parts by weight, 2.5 parts by weight of synthetic smectite (manufactured by Kunimine Kogyo Co., Ltd., trade name "Smecton SAN") having an organic viscosity as a thixotropy-imparting agent, photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907") 5 parts by weight and 0.5 part by weight of a leveling agent (manufactured by DIC Co., Ltd., trade name "Megafuck F-556", 100% solid content) were mixed. The light diffusing element forming material (coating liquid) was prepared by diluting this mixture with a mixed solvent of toluene / ethyl acetate (weight ratio 90/10) so that the solid content concentration was 30%.
A light diffusing element forming material (coating liquid) is applied to one side of a triacetyl cellulose (TAC) film (manufactured by Fujifilm, product name "TG60UL", thickness: 60 μm) that can function as a protective layer using a bar coater. , A coating film was formed. Then, the transparent plastic film base material on which this coating film was formed was transported to a drying step. In the drying step, the coating film was dried by heating at 110 ° C. for 1 minute. Then, an ultraviolet ray having an integrated light amount of 300 mJ / cm 2 was irradiated with a high-pressure mercury lamp, and the coating film was cured to form a light diffusing element A having a thickness of 5.0 μm on one side of the TAC film. The haze value of the light diffusing element A was 42%.
<製造例11 光拡散素子Bの作製>
 光拡散性微粒子として不定形シリカ(富士シリシア化学(株)製、商品名「サイロホービック100」、重量平均粒径:2.6μm)を14重量部添加し、硬化処理後の厚みを7.0μmとした以外は、製造例10と同様の方法でTACフィルムの片面に光拡散素子Bを形成した。光拡散素子Bのヘイズ値は、11%であった。
<Manufacturing Example 11 Fabrication of Light Diffusing Element B>
As light diffusing fine particles, 14 parts by weight of amorphous silica (manufactured by Fuji Silysia Chemical Ltd., trade name "Silohobic 100", weight average particle size: 2.6 μm) was added, and the thickness after curing treatment was increased to 7. The light diffusing element B was formed on one side of the TAC film by the same method as in Production Example 10 except that the thickness was set to 0 μm. The haze value of the light diffusing element B was 11%.
[実施例1]
 製造例1で得られた偏光板Aのヨウ素系偏光子表面にアクリル系粘着剤層(厚み:23μm)を介して反射型偏光子(日東電工社製、製品名「APCF」、単体透過率:47%)を積層して、保護層/ヨウ素系偏光子/反射型偏光子の構成を有する積層体を得た。このとき、反射型偏光子の反射軸とヨウ素系偏光子の吸収軸とが平行となるように積層した。得られた積層体の反射型偏光子表面に、製造例5で得られた赤色粘着剤シート(厚み:50μm、単体透過率:19.3%)を、次いで、製造例10で得られた光拡散素子Aを一方の表面に有するTACフィルムを、TACフィルムが赤色粘着剤シート側になるように貼り合せて、光学積層体1を得た。
[Example 1]
Reflective polarizing element (manufactured by Nitto Denko Co., Ltd., product name "APCF", single transmittance:) on the surface of the iodine-based polarizing element of the polarizing plate A obtained in Production Example 1 via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). 47%) was laminated to obtain a laminate having a structure of a protective layer / iodine-based polarizer / reflective polarizer. At this time, the reflection axis of the reflective polarizer and the absorption axis of the iodine-based polarizer were laminated so as to be parallel to each other. The red adhesive sheet (thickness: 50 μm, single transmittance: 19.3%) obtained in Production Example 5 was applied to the surface of the reflective polarizer of the obtained laminate, and then the light obtained in Production Example 10 was applied. A TAC film having a diffusing element A on one surface was bonded so that the TAC film was on the red adhesive sheet side to obtain an optical laminate 1.
[実施例2]
 赤色粘着剤シートの代わりに、製造例6で得られた青色粘着剤シート(厚み:50μm、単体透過率:24.2%)を用いたこと以外は実施例1と同様にして、光学積層体2を得た。
[Example 2]
An optical laminate in the same manner as in Example 1 except that the blue adhesive sheet (thickness: 50 μm, single transmittance: 24.2%) obtained in Production Example 6 was used instead of the red adhesive sheet. I got 2.
[実施例3]
 赤色粘着剤シートの代わりに、製造例7で得られた黄色粘着剤シート(厚み:50μm、単体透過率:57.9%)を用いたこと以外は実施例1と同様にして、光学積層体3を得た。
[Example 3]
An optical laminate in the same manner as in Example 1 except that the yellow adhesive sheet (thickness: 50 μm, single transmittance: 57.9%) obtained in Production Example 7 was used instead of the red adhesive sheet. I got 3.
[実施例4]
 赤色粘着剤シートの代わりに、製造例8で得られた緑色粘着剤シート(厚み:50μm、単体透過率:43.3%)を用いたこと以外は実施例1と同様にして、光学積層体4を得た。
[Example 4]
An optical laminate in the same manner as in Example 1 except that the green adhesive sheet (thickness: 50 μm, single transmittance: 43.3%) obtained in Production Example 8 was used instead of the red adhesive sheet. I got 4.
[実施例5]
 製造例10で得られた光拡散素子Aを一方の表面に有するTACフィルムの代わりに、製造例11で得られた光拡散素子Bを一方の表面に有するTACフィルム用いたこと以外は実施例1と同様にして、光学積層体5を得た。
[Example 5]
Example 1 except that a TAC film having the light diffusing element B obtained in Production Example 11 on one surface was used instead of the TAC film having the light diffusing element A obtained in Production Example 10 on one surface. In the same manner as above, an optical laminate 5 was obtained.
[実施例6]
 実施例1と同様にして、保護層/ヨウ素系偏光子/反射型偏光子の構成を有する積層体を得た。得られた積層体の反射型偏光子表面に、製造例5で得られた赤色粘着剤シート(厚み:50μm、単体透過率:19.3%)と製造例9で得られた光拡散粘着剤シート(厚み:23μm、ヘイズ値:80%)とをこの順に貼り合わせ、次いで、光拡散粘着剤シートの表面にTACフィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)を貼り合せて、光学積層体6を得た。
[Example 6]
In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained. The red pressure-sensitive adhesive sheet (thickness: 50 μm, single transmittance: 19.3%) obtained in Production Example 5 and the light-diffusing pressure-sensitive adhesive obtained in Production Example 9 were placed on the surface of the reflective polarizer of the obtained laminate. Sheets (thickness: 23 μm, haze value: 80%) are bonded in this order, and then a TAC film (manufactured by Fujifilm, product name “TG60UL”, thickness: 60 μm) is bonded to the surface of the light-diffusing adhesive sheet. The optical laminate 6 was obtained.
[実施例7]
 赤色粘着剤シートの代わりに、製造例6で得られた青色粘着剤シート(厚み:50μm、単体透過率:24.2%)を用いたこと以外は実施例6と同様にして、光学積層体7を得た。
[Example 7]
An optical laminate in the same manner as in Example 6 except that the blue adhesive sheet (thickness: 50 μm, single transmittance: 24.2%) obtained in Production Example 6 was used instead of the red adhesive sheet. I got 7.
[実施例8]
 赤色粘着剤シートの代わりに、製造例7で得られた黄色粘着剤シート(厚み:50μm、単体透過率:57.9%)を用いたこと以外は実施例6と同様にして、光学積層体8を得た。
[Example 8]
An optical laminate in the same manner as in Example 6 except that the yellow adhesive sheet (thickness: 50 μm, single transmittance: 57.9%) obtained in Production Example 7 was used instead of the red adhesive sheet. I got 8.
[実施例9]
 赤色粘着剤シートの代わりに、製造例8で得られた緑色粘着剤シート(厚み:50μm、単体透過率:43.3%)を用いたこと以外は実施例6と同様にして、光学積層体9を得た。
[Example 9]
An optical laminate in the same manner as in Example 6 except that the green adhesive sheet (thickness: 50 μm, single transmittance: 43.3%) obtained in Production Example 8 was used instead of the red adhesive sheet. I got 9.
[実施例10]
 実施例1と同様にして、保護層/ヨウ素系偏光子/反射型偏光子の構成を有する積層体を得た。得られた積層体の反射型偏光子表面にアクリル系粘着剤層(厚み:23μm)を介して、製造例2で得られた赤色偏光子を積層した。このとき、反射型偏光子の反射軸と、赤色偏光子の吸収軸とが平行になるように貼り合せた。次いで、赤色偏光子の表面にアクリル系粘着剤層(厚み:23μm)を介して、製造例10で得られた光拡散素子Aを一方の表面に有するTACフィルムを、TACフィルムが粘着剤層側になるように貼り合せて、光学積層体10を得た。
[Example 10]
In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained. The red polarizer obtained in Production Example 2 was laminated on the surface of the reflective polarizer of the obtained laminate via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). At this time, the reflection axis of the reflective polarizer and the absorption axis of the red polarizer were bonded so as to be parallel to each other. Next, a TAC film having the light diffusing element A obtained in Production Example 10 on one surface is provided on the surface of the red polarizing element via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm), and the TAC film is on the pressure-sensitive adhesive layer side. The optical laminate 10 was obtained by laminating them so as to be.
[実施例11]
 赤色偏光子の代わりに、製造例3で得られた青色偏光子を用いたこと以外は実施例10と同様にして、光学積層体11を得た。
[Example 11]
An optical laminate 11 was obtained in the same manner as in Example 10 except that the blue polarizer obtained in Production Example 3 was used instead of the red polarizer.
[実施例12]
 赤色偏光子の代わりに、製造例4で得られた黄色偏光子を用いたこと以外は実施例10と同様にして、光学積層体12を得た。
[Example 12]
An optical laminate 12 was obtained in the same manner as in Example 10 except that the yellow polarizer obtained in Production Example 4 was used instead of the red polarizer.
[実施例13]
 製造例10で得られた光拡散素子Aを一方の表面に有するTACフィルムの代わりに、製造例11で得られた光拡散素子Bを一方の表面に有するTACフィルム用いたこと以外は実施例10と同様にして、光学積層体13を得た。
[Example 13]
Example 10 except that a TAC film having the light diffusing element B obtained in Production Example 11 on one surface was used instead of the TAC film having the light diffusing element A obtained in Production Example 10 on one surface. In the same manner as above, an optical laminate 13 was obtained.
[実施例14]
 実施例1と同様にして、保護層/ヨウ素系偏光子/反射型偏光子の構成を有する積層体を得た。得られた積層体の反射型偏光子表面にアクリル系粘着剤層(厚み:23μm)を介して、製造例2で得られた赤色偏光子を積層した。このとき、反射型偏光子の反射軸と、赤色偏光子の吸収軸とが平行になるように貼り合せた。次いで、赤色偏光子の表面に、製造例9で得られた光拡散粘着剤シート(厚み:23μm、ヘイズ値:80%)を介してTACフィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)を貼り合せて、光学積層体14を得た。
[Example 14]
In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained. The red polarizer obtained in Production Example 2 was laminated on the surface of the reflective polarizer of the obtained laminate via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). At this time, the reflection axis of the reflective polarizer and the absorption axis of the red polarizer were bonded so as to be parallel to each other. Next, on the surface of the red polarizing element, a TAC film (manufactured by Fujifilm, product name "TG60UL", thickness) was passed through the light diffusing adhesive sheet (thickness: 23 μm, haze value: 80%) obtained in Production Example 9. : 60 μm) was laminated to obtain an optical laminate 14.
[実施例15]
 赤色偏光子の代わりに、製造例3で得られた青色偏光子を用いたこと以外は実施例14と同様にして、光学積層体15を得た。
[Example 15]
An optical laminate 15 was obtained in the same manner as in Example 14 except that the blue polarizer obtained in Production Example 3 was used instead of the red polarizer.
[実施例16]
 赤色偏光子の代わりに、製造例4で得られた黄色偏光子を用いたこと以外は実施例14と同様にして、光学積層体16を得た。
[Example 16]
An optical laminate 16 was obtained in the same manner as in Example 14 except that the yellow polarizer obtained in Production Example 4 was used instead of the red polarizer.
[比較例1]
 実施例1と同様にして、保護層/ヨウ素系偏光子/反射型偏光子の構成を有する積層体を得た。得られた積層体の反射型偏光子表面に、製造例5で得られた赤色粘着剤シート(厚み:50μm、単体透過率:19.3%)を介してTACフィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)を貼り合せて、光学積層体C1を得た。
[Comparative Example 1]
In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained. A TAC film (manufactured by FUJIFILM Corporation, manufactured by Fujifilm Co., Ltd.) is placed on the surface of the reflective polarizer of the obtained laminate via the red adhesive sheet (thickness: 50 μm, single transmittance: 19.3%) obtained in Production Example 5. The name "TG60UL", thickness: 60 μm) was laminated to obtain an optical laminate C1.
[比較例2]
 実施例1と同様にして、保護層/ヨウ素系偏光子/反射型偏光子の構成を有する積層体を得た。得られた積層体の反射型偏光子表面に、アクリル系粘着剤層(厚み:23μm)を介して、製造例2で得られた赤色偏光子を積層した。このとき、反射型偏光子の反射軸と、赤色偏光子の吸収軸とが平行になるように貼り合せた。次いで、赤色偏光子の表面に、アクリル系粘着剤層(厚み:23μm)を介して、TACフィルム(富士フイルム社製、製品名「TG60UL」、厚み:60μm)を貼り合せて、光学積層体C2を得た。
[Comparative Example 2]
In the same manner as in Example 1, a laminate having a protective layer / iodine-based polarizer / reflective polarizer configuration was obtained. The red polarizer obtained in Production Example 2 was laminated on the surface of the reflective polarizer of the obtained laminate via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm). At this time, the reflection axis of the reflective polarizer and the absorption axis of the red polarizer were bonded so as to be parallel to each other. Next, a TAC film (manufactured by FUJIFILM Corporation, product name "TG60UL", thickness: 60 μm) is attached to the surface of the red polarizing element via an acrylic pressure-sensitive adhesive layer (thickness: 23 μm) to form an optical laminate C2. Got
[比較例3]
 赤色偏光子の代わりに、製造例3で得られた青色偏光子を用いたこと以外は比較例2と同様にして、光学積層体C3を得た。
[Comparative Example 3]
An optical laminate C3 was obtained in the same manner as in Comparative Example 2 except that the blue polarizer obtained in Production Example 3 was used instead of the red polarizer.
[比較例4]
 赤色偏光子の代わりに、製造例4で得られた黄色偏光子を用いたこと以外は比較例2と同様にして、光学積層体C4を得た。
[Comparative Example 4]
An optical laminate C4 was obtained in the same manner as in Comparative Example 2 except that the yellow polarizer obtained in Production Example 4 was used instead of the red polarizer.
[比較例5]
 製造例1で得られた偏光子/保護層の構成を有する偏光板Aをそのまま光学積層体C5として用いた。
[Comparative Example 5]
The polarizing plate A having the structure of the polarizer / protective layer obtained in Production Example 1 was used as it was as the optical laminate C5.
 実施例および比較例で得られた光学積層体の構成ならびに光学特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the configurations and optical characteristics of the optical laminates obtained in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなとおり、実施例の光学積層体は、従来の偏光板(比較例5)に比べて反射光のメトリック彩度が大きく、このことから、画像表示装置の非表示時(電源オフ時)の表示画面が周辺部分の意匠と調和した色味を呈し得ることがわかる。また、実施例の光学積層体は、光拡散層を有さない比較例の光学積層体に比べて光沢度が抑制されており、このことから、金属調の不透明な光沢を呈し、周辺部分の意匠と調和した質感を呈する表示画面を実現し得ることがわかる。 As is clear from Table 1, the optical laminate of the example has a higher metric saturation of the reflected light than the conventional polarizing plate (Comparative Example 5), and therefore, when the image display device is not displayed (power off). It can be seen that the display screen of (hours) can exhibit a color that is in harmony with the design of the peripheral part. Further, the optical laminate of the example has a suppressed glossiness as compared with the optical laminate of the comparative example having no light diffusion layer, and therefore, it exhibits a metallic opaque gloss and the peripheral portion. It can be seen that a display screen that exhibits a texture that is in harmony with the design can be realized.
 本発明の光学積層体および画像表示装置は、例えば、炊飯器、冷蔵庫、電子レンジ等の電化製品の表示部や、車内空間においてカーナビゲーションや計器類の表示部として好適に用いられ得る。 The optical laminate and image display device of the present invention can be suitably used, for example, as a display unit for electric appliances such as rice cookers, refrigerators, and microwave ovens, and as a display unit for car navigation systems and instruments in a vehicle interior space.
 10   光拡散層
 20   光透過性反射板
 30   吸収型偏光子
 40   光透過性有色層
100   光学積層体
10 Light-diffusing layer 20 Light-transmitting reflector 30 Absorption-type polarizing element 40 Light-transmitting colored layer 100 Optical laminate

Claims (8)

  1.  光拡散層と光透過性反射板と吸収型偏光子とを、視認側からこの順に有する、光学積層体。 An optical laminate having a light diffusion layer, a light transmissive reflector, and an absorption type polarizer in this order from the visual side.
  2.  前記光透過性反射板よりも視認側に光透過性有色層を有する、請求項1に記載の光学積層体。 The optical laminate according to claim 1, which has a light-transmitting colored layer on the visual side of the light-transmissive reflector.
  3.  前記光拡散層を最表面に有し、
     前記光拡散層のヘイズが、5%以上である、請求項1または2に記載の光学積層体。
    It has the light diffusion layer on the outermost surface,
    The optical laminate according to claim 1 or 2, wherein the haze of the light diffusion layer is 5% or more.
  4.  保護層を最表面に有し、
     前記光拡散層のヘイズが、5%以上である、請求項1または2に記載の光学積層体。
    It has a protective layer on the outermost surface
    The optical laminate according to claim 1 or 2, wherein the haze of the light diffusion layer is 5% or more.
  5.  前記光透過性反射板の単体透過率が、10%~70%である、請求項1から4のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, wherein the light-transmitting reflector has a single transmittance of 10% to 70%.
  6.  前記光透過性反射板が、反射型偏光子を含む、請求項1から5のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 5, wherein the light-transmitting reflector includes a reflective polarizing element.
  7.  前記反射型偏光子の反射軸方向と前記吸収型偏光子の吸収軸方向とが、実質的に平行となるように配置されている、請求項6の光学積層体。 The optical laminate according to claim 6, wherein the reflection axis direction of the reflective polarizer and the absorption axis direction of the absorption polarizer are arranged so as to be substantially parallel to each other.
  8.  請求項1から7のいずれかに記載の光学積層体を備える、画像表示装置。 An image display device comprising the optical laminate according to any one of claims 1 to 7.
PCT/JP2020/043221 2019-11-28 2020-11-19 Optical laminate and image displaying device WO2021106744A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080082661.7A CN114761841A (en) 2019-11-28 2020-11-19 Optical laminate and image display device
KR1020227014807A KR20220105632A (en) 2019-11-28 2020-11-19 Optical laminate and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-215332 2019-11-28
JP2019215332A JP2021086021A (en) 2019-11-28 2019-11-28 Optical laminate and image display device

Publications (1)

Publication Number Publication Date
WO2021106744A1 true WO2021106744A1 (en) 2021-06-03

Family

ID=76087489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043221 WO2021106744A1 (en) 2019-11-28 2020-11-19 Optical laminate and image displaying device

Country Status (5)

Country Link
JP (1) JP2021086021A (en)
KR (1) KR20220105632A (en)
CN (1) CN114761841A (en)
TW (1) TW202130511A (en)
WO (1) WO2021106744A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023119830A (en) * 2022-02-17 2023-08-29 日東電工株式会社 Optical laminate and image display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194660A (en) * 1999-10-29 2001-07-19 Casio Comput Co Ltd Liquid crystal display device
JP2009282240A (en) * 2008-05-21 2009-12-03 Toppan Printing Co Ltd Optical element, article with label, and optical kit
JP2018049087A (en) * 2016-09-20 2018-03-29 日東電工株式会社 Liquid crystal panel, liquid crystal display device, and polarizer set

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822711B1 (en) * 1999-09-30 2004-11-23 Casio Computer Co., Ltd. Liquid crystal display apparatus using polarizing element transmitting one of two polarizing components crossing at right angles and reflecting the other component
CN102662270B (en) * 2012-04-12 2015-05-20 华映视讯(吴江)有限公司 Polarizing layer of liquid crystal display panel and manufacture method thereof
KR20150076564A (en) * 2013-12-27 2015-07-07 제일모직주식회사 Module for liquid crystal display and liquid crystal display apparatus comprising the same
JP6990361B2 (en) 2017-02-09 2022-01-12 凸版印刷株式会社 Liquid crystal display with design sheet
JP2019120833A (en) 2018-01-09 2019-07-22 大日本印刷株式会社 Decorative sheet, display device with decorative sheet, and display device with panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194660A (en) * 1999-10-29 2001-07-19 Casio Comput Co Ltd Liquid crystal display device
JP2009282240A (en) * 2008-05-21 2009-12-03 Toppan Printing Co Ltd Optical element, article with label, and optical kit
JP2018049087A (en) * 2016-09-20 2018-03-29 日東電工株式会社 Liquid crystal panel, liquid crystal display device, and polarizer set

Also Published As

Publication number Publication date
CN114761841A (en) 2022-07-15
KR20220105632A (en) 2022-07-27
TW202130511A (en) 2021-08-16
JP2021086021A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP4583982B2 (en) Polarizing plate, optical film and image display device
US20150009563A1 (en) Light control film and p-polarization multi-layer film optical film stack
WO2004023173A1 (en) Polarizer, optical film and image display
WO2005091023A1 (en) Polarizing plate, optical film and image display
CN109752784A (en) Optical film, polarizer and liquid crystal display
WO2021106743A1 (en) Optical laminate and image display device
WO2021106744A1 (en) Optical laminate and image displaying device
WO2021106742A1 (en) Optical laminate, optical device, and image display device
TWI226943B (en) Polarizing plate and liquid crystal display using the same
WO2022039078A1 (en) Designed film and designed molded body
WO2023085319A1 (en) Optical multilayer body and image display device
WO2022071060A1 (en) Decorative film and optical device
JP7389792B2 (en) Optical laminates and liquid crystal display devices
JP2005292719A (en) Polarizer, polarizing plate, optical film and picture display device
JP2021092753A (en) Optical laminate, optical device, and image display device
JP2021144207A (en) Optical laminate and image display device
WO2021182133A1 (en) Polarizer, optical layered product, and image display device
JP2021105706A (en) Polarizer protective film, polarizing plate, and image display device
WO2016043305A1 (en) Polarizing plate
JP4335618B2 (en) Polarizer, optical film, and image display device
JP2005202368A (en) Polarizing plate, optical film, and image display device
TWI802687B (en) Polarizing plate and display device using polarizing plate
WO2023085318A1 (en) Optical laminate and image display device
KR20210014671A (en) Polarizing member and head-up display device having same
JP2020129069A (en) Image display device equipped with polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892664

Country of ref document: EP

Kind code of ref document: A1