JP2005202368A - Polarizing plate, optical film, and image display device - Google Patents

Polarizing plate, optical film, and image display device Download PDF

Info

Publication number
JP2005202368A
JP2005202368A JP2004351146A JP2004351146A JP2005202368A JP 2005202368 A JP2005202368 A JP 2005202368A JP 2004351146 A JP2004351146 A JP 2004351146A JP 2004351146 A JP2004351146 A JP 2004351146A JP 2005202368 A JP2005202368 A JP 2005202368A
Authority
JP
Japan
Prior art keywords
polarizing plate
film
polarizer
light
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004351146A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshioka
昌宏 吉岡
Minoru Miyatake
宮武  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004351146A priority Critical patent/JP2005202368A/en
Publication of JP2005202368A publication Critical patent/JP2005202368A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizing plate that has a high polarization degree on a short wavelength side and, further, to provide a polarizing plate that has a high polarization degree and satisfactory durability. <P>SOLUTION: In the polarizing plate in which protective films are layered on one or both sides of a polarizer, the polarizer is formed of a film that has a structure in which minute areas are dispersed in a matrix formed of a transmissive water soluble resin containing an iodine-based light absorbing body. The protective film has an in-plane phase difference of 20 nm or less and a thickness direction phase difference of 30 nm or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、偏光板に関する。また本発明は当該偏光板、光学フィルムに関する。さらには当該偏光板、光学フィルムを用いた液晶表示装置、有機EL表示装置、CRT、PDP等の画像表示装置に関する。   The present invention relates to a polarizing plate. The present invention also relates to the polarizing plate and the optical film. Further, the present invention relates to an image display device such as a polarizing plate, a liquid crystal display device using an optical film, an organic EL display device, a CRT, or a PDP.

時計、携帯電話、PDA、ノートパソコン、パソコン用モニタ、DVDプレイヤー、TVなどでは液晶表示装置が急速に市場展開している。液晶表示装置は、液晶のスイッチングによる偏光状態変化を可視化させたものであり、その表示原理から偏光子が用いられている。特に、TV等の用途にはますます高輝度かつ高コントラストな表示が求められ、偏光子にも、より明るく(高透過率)、より高コントラスト(高偏光度)のものが開発され導入されている。   Liquid crystal display devices are rapidly marketed in watches, mobile phones, PDAs, notebook computers, personal computer monitors, DVD players, TVs, and the like. A liquid crystal display device visualizes a change in polarization state due to switching of liquid crystal, and a polarizer is used from the display principle. In particular, displays with higher brightness and higher contrast are required for applications such as TV, and light polarizers with higher brightness (high transmittance) and higher contrast (high polarization degree) have been developed and introduced. Yes.

偏光子としては、たとえば、ポリビニルアルコールにヨウ素を吸着させ、延伸した構造のヨウ素系偏光子が高透過率、高偏光度を有することから広く用いられている(たとえば、特許文献1参照)。しかし、ヨウ素系偏光子は短波長側の偏光度が相対的に低いため、短波長側では黒表示での青抜け、白表示での黄色みなどの色相上の問題点を有する。   As a polarizer, for example, an iodine-based polarizer having a stretched structure obtained by adsorbing iodine to polyvinyl alcohol is widely used because it has a high transmittance and a high degree of polarization (see, for example, Patent Document 1). However, since iodine-type polarizers have a relatively low degree of polarization on the short wavelength side, the short wavelength side has problems in hue such as bluish in black display and yellowness in white display.

またヨウ素系偏光子は、ヨウ素吸着の際にムラが発生しやすい。そのため、特に黒表示の際には、透過率のムラとして検出され、視認性を低下させるという問題があった。この問題を解決する方法としては、たとえば、ヨウ素系偏光子に吸着させるヨウ素の吸着量を増加させて、黒表示の際の透過率を人間の目の感知限界以下にする方法や、ムラそのものを発生しにくい延伸プロセスを採用する方法などが提案されている。しかしながら、前者は、黒表示の透過率と同時に、白表示の際の透過率も低下させてしまい、表示そのものが暗くなってしまう問題がある。また、後者は、プロセスそのものを置き換える必要があり、生産性を悪くしてしまう問題があった。   In addition, the iodine-based polarizer tends to generate unevenness during iodine adsorption. For this reason, there is a problem in that visibility is deteriorated because it is detected as unevenness of transmittance particularly in black display. As a method for solving this problem, for example, the amount of iodine adsorbed on an iodine polarizer is increased so that the transmittance during black display is below the human eye's detection limit, or the unevenness itself is reduced. A method of adopting a stretching process that hardly occurs has been proposed. However, the former has a problem that the transmittance at the time of white display is lowered at the same time as the transmittance of black display, and the display itself becomes dark. Further, the latter has a problem that it is necessary to replace the process itself, which deteriorates productivity.

また、従来より、偏光子は、その両面をトリアセチルセルロースフィルムなどの保護フィルムで挟持した偏光板として用いられている。しかし、トリアセチルセルロースフィルムは位相差値を有するため、上記色相の問題点から十分ではない。   Conventionally, a polarizer has been used as a polarizing plate having both surfaces sandwiched between protective films such as a triacetyl cellulose film. However, since a triacetyl cellulose film has a retardation value, it is not sufficient from the above-mentioned problem of hue.

また、近年ではあらゆる分野で液晶表示装置が使用される。そのため、過酷な条件で使用される場合も想定しておく必要があり、高温ないしは高湿下においても光線透過率、偏光度、画像の色相などの特性の変化が少なく耐久性に優れた偏光板が要請されている。しかし、屋外用や車載用など、高湿ないし高温における熱信頼性が高く要求される分野においては、トリアセチルセルロースフィルムの透湿度、吸水率が高いため、過剰な水分の浸入による偏光板の特性の劣化が大きいことが問題となってきた。そこで、ポリビニルアルコールを用いた偏光子の保護層として透明で透湿率や吸水率の低いフィルムを用いることが検討されている(たとえば、特許文献2、特許文献3、特許文献4等参照)。   In recent years, liquid crystal display devices are used in various fields. Therefore, it is necessary to assume even when used under harsh conditions, and the polarizing plate has excellent durability with little change in characteristics such as light transmittance, polarization degree, and hue of the image even at high temperature or high humidity. Is requested. However, in fields where high thermal reliability at high humidity or high temperature is required, such as for outdoor use or in-vehicle use, the triacetyl cellulose film has a high moisture permeability and water absorption rate. It has been a problem that the deterioration of the material is large. Therefore, it has been studied to use a transparent film having a low moisture permeability and water absorption rate as a protective layer for a polarizer using polyvinyl alcohol (see, for example, Patent Document 2, Patent Document 3, Patent Document 4 and the like).

しかし、ポリビニルアルコールを用いた偏光子は親水性のため、もともと偏光子自身の吸湿性が高く、ただ単に、保護フィルムとして前述したような透湿率や吸水率の低いフィルムを用いたのでは、偏光子から発散される水分の透過が妨げられ、高温環境下などでは、偏光板自体の内部が高温高湿状態となってしまい、その結果、光線透過率、偏光度などの変化量が大きくなり、偏光板としての信頼性は低いものとなっていた。
特開2001−296427号公報 特開平6−51117号公報 特開平7−77608号公報 特開平11−142645号公報
However, because the polarizer using polyvinyl alcohol is hydrophilic, the polarizer itself has a high hygroscopicity, and simply using a film with low moisture permeability and low water absorption as described above as a protective film, The transmission of moisture emitted from the polarizer is hindered, and the inside of the polarizing plate itself becomes a high temperature and high humidity state in a high temperature environment, resulting in a large amount of change in light transmittance, degree of polarization, etc. The reliability as a polarizing plate was low.
JP 2001-296427 A JP-A-6-511117 JP-A-7-77608 JP-A-11-142645

本発明は、偏光子の片面または両面に保護フィルムが積層されている偏光板であって、短波長側においても高偏光度を有する偏光板を提供することを目的とする。さらには、高偏光度を有し、かつ耐久性の良好な偏光板を提供することを目的とする。   An object of the present invention is to provide a polarizing plate having a protective film laminated on one or both sides of a polarizer, and having a high degree of polarization even on the short wavelength side. It is another object of the present invention to provide a polarizing plate having a high degree of polarization and good durability.

また本発明は、高透過率、かつ高偏光度を有し、黒表示の際の透過率のムラを抑えることができる偏光板、さらには耐久性の良好な偏光板を提供することを目的とする。   Another object of the present invention is to provide a polarizing plate having a high transmittance and a high degree of polarization and capable of suppressing unevenness in transmittance during black display, and further a polarizing plate with good durability. To do.

また本発明は、当該偏光板を用いた光学フィルムを提供することを目的とする。さらには当該偏光板、光学フィルムを用いた画像表示装置を提供することを目的とする。   Another object of the present invention is to provide an optical film using the polarizing plate. Furthermore, it aims at providing the image display apparatus using the said polarizing plate and an optical film.

本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す偏光板により前記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the object can be achieved by the polarizing plate shown below, and have completed the present invention.

すなわち本発明は、偏光子の片面または両面に保護フィルムが積層されている偏光板において、
偏光子は、ヨウ素系吸光体を含有する透光性の水溶性樹脂により形成されるマトリクス中に、微小領域が分散された構造のフィルムからなり、
保護フィルムは、当該フィルム面内の面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nz、フィルムの厚さd(nm)とした場合に、
面内位相差Re=(nx−ny)×dが、20nm以下であり、
かつ厚み方向位相差Rth={(nx+ny)/2−nz)×d)が、30nm以下であることを特徴とする偏光板、に関する。
That is, the present invention is a polarizing plate in which a protective film is laminated on one side or both sides of a polarizer.
The polarizer consists of a film having a structure in which minute regions are dispersed in a matrix formed of a light-transmitting water-soluble resin containing an iodine-based absorber.
In the protective film, the direction in which the in-plane refractive index in the film plane is the maximum is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis. When nx, ny, nz, and film thickness d (nm),
In-plane retardation Re = (nx−ny) × d is 20 nm or less,
And a thickness direction retardation Rth = {(nx + ny) / 2−nz) × d) is 30 nm or less.

前記偏光子の微小領域は、配向された複屈折材料により形成されていることが好ましい。また前記複屈折材料は、少なくとも配向処理時点で液晶性を示すことが好ましい。   The microregion of the polarizer is preferably formed of an oriented birefringent material. The birefringent material preferably exhibits liquid crystallinity at least at the time of alignment treatment.

上記本発明の偏光子は、透光性の水溶性樹脂とヨウ素系吸光体で形成されるヨウ素系偏光子をマトリクスとし、また前記マトリクス中に、微小領域を分散させている。微小領域は配向された複屈折材料により形成されていることが好ましく、特に微小領域は液晶性を示す材料により形成されていることが好ましい。このようにヨウ素系吸光体による吸収二色性の機能に加えて、散乱異方性の機能を合わせ持たせることにより、2つの機能の相乗効果によって偏光性能が向上し、透過率と偏光度を両立した視認性の良好な偏光子を得ている。   In the polarizer of the present invention, an iodine polarizer formed of a translucent water-soluble resin and an iodine light absorber is used as a matrix, and minute regions are dispersed in the matrix. The minute region is preferably formed of an oriented birefringent material, and particularly the minute region is preferably formed of a material exhibiting liquid crystallinity. In this way, in addition to the function of absorption dichroism by the iodine-based absorber, the function of scattering anisotropy is combined, so that the polarization performance is improved by the synergistic effect of the two functions, and the transmittance and degree of polarization are increased. A polarizer with good visibility and compatibility is obtained.

なお、ヨウ素系吸光体は、ヨウ素からなる、可視光を吸収する種のことを意味し、一般には、透光性の水溶性樹脂(特にポリビニルアルコール系樹脂)とポリヨウ素イオン(I3 -,I5 -等)との相互作用によって生じると考えられている。ヨウ素系吸光体はヨウ素錯体ともいわれる。ポリヨウ素イオンは、ヨウ素とヨウ化物イオンから生成させると考えられている。 The iodine-based light absorber means a seed composed of iodine that absorbs visible light. Generally, a light-transmitting water-soluble resin (particularly polyvinyl alcohol-based resin) and polyiodine ions (I 3 , It believed to be caused by the interaction with such) - I 5. Iodine absorbers are also called iodine complexes. Polyiodine ions are thought to be generated from iodine and iodide ions.

異方散乱の散乱性能は、マトリクスと微小領域の屈折率差に起因する。微小領域を形成する材料が、たとえば、液晶性材料であれば、マトリクスの透光性の水溶性樹脂に比べて、Δnの波長分散が高いため、散乱する軸の屈折率差が短波長側ほど大きくなり、短波長ほど散乱量が多い。そのため、短波長ほど偏光性能の向上効果が大きくなり、ヨウ素系偏光子のもつ短波長側の偏光性能の相対的低さを補って、高偏光かつ色相がニュートラルな偏光子を実現できる。   The scattering performance of anisotropic scattering is caused by the difference in refractive index between the matrix and the minute region. If the material forming the microregion is, for example, a liquid crystal material, the wavelength dispersion of Δn is higher than that of the light-transmitting water-soluble resin of the matrix. It becomes larger and the amount of scattering increases as the wavelength becomes shorter. Therefore, the effect of improving the polarization performance increases as the wavelength becomes shorter, and a polarizer having a high polarization and a neutral hue can be realized by compensating for the relatively low polarization performance of the iodine-based polarizer on the short wavelength side.

また本発明の偏光板では、保護フィルムとして位相差の小さいものを用いており、保護フィルムに係わる光学的な着色問題をほぼ解消できる。保護フィルムの面内位相差は20nm以下、より好ましくは10nm以下である。厚み方向位相差は30nm以下、より好ましくは20nm以下である。   In the polarizing plate of the present invention, a protective film having a small retardation is used, and the optical coloring problem related to the protective film can be almost solved. The in-plane retardation of the protective film is 20 nm or less, more preferably 10 nm or less. The thickness direction retardation is 30 nm or less, more preferably 20 nm or less.

前記偏光板において、偏光子の微小領域の複屈折が0.02以上であることが好ましい。微小領域に用いる材料は、より大きい異方散乱機能を獲得するという観点から前記複屈折を有するものが好ましく用いられる。   In the polarizing plate, it is preferable that the birefringence of the minute region of the polarizer is 0.02 or more. As the material used for the minute region, a material having the birefringence is preferably used from the viewpoint of obtaining a larger anisotropic scattering function.

前記偏光板において、偏光子の微小領域を形成する複屈折材料と、透光性の水溶性樹脂との各光軸方向に対する屈折率差は、
最大値を示す軸方向における屈折率差(△n1)が0.03以上であり、
かつ△n1方向と直交する二方向の軸方向における屈折率差(△n2)が、前記△n1の50%以下であることが好ましい。
In the polarizing plate, the refractive index difference between the birefringent material forming the minute region of the polarizer and the light-transmitting water-soluble resin with respect to each optical axis direction is
The refractive index difference (Δn 1 ) in the axial direction showing the maximum value is 0.03 or more,
The refractive index difference (Δn 2 ) in the two axial directions perpendicular to the Δn 1 direction is preferably 50% or less of the Δn 1 .

各光軸方向に対する前記屈折率差(△n1)、(△n2)を、前記範囲に制御することで、米国特許第2123902号明細書で提案されるような、△n1方向の直線偏光のみを選択的に散乱させた機能を有する散乱異方性フィルムとすることができる。すなわち、△n1方向では屈折率差が大きいため、直線偏光を散乱させ、一方、△n2方向では屈折率差が小さいため、直線偏光を透過させることができる。なお、△n1方向と直交する二方向の軸方向における屈折率差(△n2)はともに等しいことが好ましい。 A straight line in the Δn 1 direction as proposed in US Pat. No. 2,213,902 by controlling the refractive index difference (Δn 1 ), (Δn 2 ) in each optical axis direction within the above range. A scattering anisotropic film having a function of selectively scattering only polarized light can be obtained. That is, since the refractive index difference is large in the Δn 1 direction, linearly polarized light is scattered, while in the Δn 2 direction, the linearly polarized light can be transmitted because the refractive index difference is small. The refractive index difference (Δn 2 ) in two axial directions orthogonal to the Δn 1 direction is preferably equal.

散乱異方性を高くするには、△n1方向の屈折率差(△n1)を、0.03以上、好ましくは0.05以上、特に好ましくは0.10以上とするのが好ましい。また△n1方向と直交する二方向の屈折率差(△n2)は、前記△n1の50%以下、さらには30%以下であるのが好ましい。 In order to increase the scattering anisotropy, the refractive index difference (Δn 1 ) in the Δn 1 direction is 0.03 or more, preferably 0.05 or more, particularly preferably 0.10 or more. Further, the refractive index difference (Δn 2 ) in two directions orthogonal to the Δn 1 direction is preferably 50% or less, more preferably 30% or less of the Δn 1 .

前記偏光板において、偏光子のヨウ素系吸光体は、当該材料の吸収軸が、△n1方向に配向していることが好ましい。 In the polarizing plate, it is preferable that the iodine-based light absorber of the polarizer has the absorption axis of the material oriented in the Δn 1 direction.

マトリクス中のヨウ素系吸光体を、その材料の吸収軸が前記△n1方向に平行になるように配向させることにより、散乱偏光方向である△n1方向の直線偏光を選択的に吸収させることができる。その結果、入射光のうち△n2方向の直線偏光成分は、異方散乱性能を有しない従来型のヨウ素系偏光子と同じく、散乱されることなく、かつヨウ素吸光体による吸収も殆どない。一方、△n1方向の直線偏光成分は散乱され、かつヨウ素系吸光体によって吸収される。通常、吸収は、吸収係数と厚みによって決定される。このように光が散乱された場合、散乱がない場合に比べて光路長が飛躍的に長くなる。結果として△n1方向の偏光成分は従来のヨウ素系偏光子と比べ、余分に吸収される。つまり同じ透過率でより高い偏光度が得られる。 Iodine based light absorbing material in the matrix, by the absorption axis of the material is oriented to be parallel to the △ n 1 direction, thereby selectively absorbing certain scattering polarizing direction △ n 1 direction of linearly polarized light Can do. As a result, the linearly polarized light component in the Δn 2 direction of the incident light is not scattered and hardly absorbed by the iodine absorber as is the case with conventional iodine-based polarizers that do not have anisotropic scattering performance. On the other hand, the linearly polarized light component in the Δn 1 direction is scattered and absorbed by the iodine-based absorber. Usually, absorption is determined by the absorption coefficient and thickness. When light is scattered in this way, the optical path length is dramatically increased as compared to the case where there is no scattering. As a result, the polarization component in the Δn 1 direction is absorbed excessively compared to the conventional iodine-based polarizer. That is, a higher degree of polarization can be obtained with the same transmittance.

以下、理想的なモデルについて詳細に説明する。一般に直線偏光子に用いられる二つの主透過率(第1主透過率k1(透過率最大方位=△n2方向の直線偏光透過率)、第2主透過率k2(透過率最小方向=△n1方向の直線偏光透過率))を用いて以下議論する。 Hereinafter, an ideal model will be described in detail. Generally, two main transmittances (first main transmittance k 1 (maximum transmittance direction = linear polarization transmittance in Δn 2 direction)) and second main transmittance k 2 (minimum direction of transmittance = used for linear polarizers) The following will be discussed using Δn 1 direction linearly polarized light transmission)).

市販のヨウ素系偏光子ではヨウ素系吸光体が一方向に配向しているとすれば、平行透過率、偏光度はそれぞれ、
平行透過率=0.5×((k12 +(k22)、
偏光度=(k1−k2)/(k1+k2)、で表される。
In a commercially available iodine polarizer, if the iodine absorber is oriented in one direction, the parallel transmittance and the polarization degree are
Parallel transmittance = 0.5 × ((k 1 ) 2 + (k 2 ) 2 ),
Degree of polarization = (k 1 −k 2 ) / (k 1 + k 2 )

一方、本発明の偏光子では△n1方向の偏光は散乱され、平均光路長はα(>1)倍になっていると仮定し、散乱による偏光解消は無視できると仮定すると、その場合の主透過率はそれぞれ、k1、k2’=10X(但し、xはαlogk2である)、で表される。 On the other hand, in the polarizer of the present invention, it is assumed that the polarized light in the Δn 1 direction is scattered, the average optical path length is α (> 1) times, and depolarization due to scattering is assumed to be negligible. The main transmittances are represented by k 1 and k 2 ′ = 10 X (where x is αlogk 2 ), respectively.

つまり、この場合の平行透過率、偏光度は、
平行透過率=0.5×((k12+(k2’)2)、
偏光度=(k1−k2’)/(k1+k2’)、で表される。
In other words, the parallel transmittance and polarization degree in this case are
Parallel transmittance = 0.5 × ((k 1 ) 2 + (k 2 ′) 2 ),
Degree of polarization = (k 1 −k 2 ′) / (k 1 + k 2 ′)

例えば、市販のヨウ素系偏光子(平行透過率0.385,偏光度0.965:k1=0.877,k2=0.016)と同条件(染色量、作製手順が同じ)で本発明の偏光子を作製したとすると、計算上ではαが2倍の時、k2=0.0003まで低くなり、結果として平行透過率は0.385のまま、偏光度は0.999に向上する。上記は、計算上であり、もちろん散乱による偏光解消や表面反射および後方散乱の影響などにより幾分機能が低下する。上式から分かるようにαが高い程良く、ヨウ素系吸光体の二色比が高いほど高機能が期待できる。αを高くするには、散乱異方性機能をできるだけ高くし、△n1方向の偏光を選択的に強く散乱させればよい。また、後方散乱は少ない方が良く、入射光強度に対する後方散乱強度の比率は30%以下が好ましく、さらには20%以下が好ましい。 For example, a commercially available iodine-based polarizer (parallel transmittance 0.385, polarization degree 0.965: k 1 = 0.877, k 2 = 0.016) and the same conditions (staining amount and production procedure are the same) Assuming that the polarizer of the invention was manufactured, when α was doubled in the calculation, k 2 decreased to 0.0003, and as a result, the parallel transmittance remained 0.385 and the degree of polarization improved to 0.999. To do. The above is computational, and of course the function is somewhat degraded due to the effects of depolarization due to scattering, surface reflection and backscattering. As can be seen from the above formula, the higher the α, the better. The higher the dichroic ratio of the iodine-based absorber, the higher the function can be expected. In order to increase α, the scattering anisotropy function should be made as high as possible, and the polarized light in the Δn 1 direction should be selectively strongly scattered. Further, it is better that the backscattering is small, and the ratio of the backscattering intensity to the incident light intensity is preferably 30% or less, and more preferably 20% or less.

前記偏光板において、偏光子として用いられるフィルムは、延伸によって製造されたものを好適に用いることができる。   In the polarizing plate, as the film used as the polarizer, a film produced by stretching can be suitably used.

前記偏光板において、偏光子の微小領域は、△n2方向の長さが0.05〜500μmであることが好ましい。 In the polarizing plate, the microregion of the polarizer preferably has a length in the Δn 2 direction of 0.05 to 500 μm.

可視光領域の波長のうち、振動面を△n1方向に有する直線偏光を強く散乱させるためには、分散分布している微小領域は、△n2方向の長さが0.05〜500μm、好ましくは0.5〜100μmとなるように制御されることが好ましい。微小領域の△n2方向の長さが波長に比べて短すぎると十分に散乱が起こらない。一方、微小領域の△n2方向の長さが長すぎるとフィルム強度が低下したり、微小領域を形成する液晶性材料が、微小領域中で十分に配向しないなどの問題が生じるおそれがある。 In order to strongly scatter linearly polarized light having a vibration surface in the Δn 1 direction among wavelengths in the visible light region, the dispersion-distributed microregion has a length in the Δn 2 direction of 0.05 to 500 μm, It is preferably controlled so as to be 0.5 to 100 μm. If the length of the minute region in the Δn 2 direction is too short compared to the wavelength, sufficient scattering will not occur. On the other hand, if the length of the micro area in the Δn 2 direction is too long, there is a possibility that the film strength is lowered, or that the liquid crystalline material forming the micro area is not sufficiently aligned in the micro area.

前記偏光板において、偏光子のヨウ素系吸収体は、少なくとも400〜700nmの波長帯域に吸収領域を有するものが用いられる。   In the polarizing plate, as the iodine-based absorber of the polarizer, one having an absorption region in a wavelength band of at least 400 to 700 nm is used.

前記偏光板において、保護フィルムが、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と(B)側鎖に置換および/または非置換フェニル基ならびにニトリル基を有する熱可塑性樹脂とを含有してなる樹脂組成物、ならびにノルボルネン系樹脂から選ばれるいずれか少なくとも1種を好ましく用いることができる。その他、ポリオレフィン系樹脂、ポリエステル系樹脂およびポリアミド系樹脂から選ばれるいずれか少なくとも1種を好ましく用いることができる。また、特定の処理を施したセルロース系樹脂フィルムを用いることができる。   In the polarizing plate, the protective film comprises (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, and (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl group and a nitrile group in the side chain. Any one selected from a resin composition containing a resin and a norbornene-based resin can be preferably used. In addition, at least one selected from polyolefin resins, polyester resins, and polyamide resins can be preferably used. Moreover, the cellulose resin film which performed the specific process can be used.

前記材料を用いた保護フィルムは、高温度下や高湿度下において偏光子が寸法変化し、その応力を受けた場合にも安定した位相差値を確保できる。すなわち、高温度、高湿度の環境下においても位相差が生じにくく、特性変化の少ない光学フィルムを得ることができる。特に、熱可塑性樹脂(A)、(B)の混合物を含有する保護フィルムが好ましい。   The protective film using the material can ensure a stable retardation value even when the polarizer undergoes dimensional change under high temperature or high humidity and is subjected to the stress. That is, it is possible to obtain an optical film that hardly causes a phase difference even in an environment of high temperature and high humidity and has little characteristic change. In particular, a protective film containing a mixture of the thermoplastic resins (A) and (B) is preferable.

また、一般的に、フィルム材料は延伸することにより強度を向上させることができ、より強靭な機械特性を得ることができる。しかし、多くの材料では延伸処理により位相差が発生するため、偏光子の保護フィルムとして使用できない。熱可塑性樹脂(A)、(B)の混合物を含有する保護フィルムは延伸処理した場合にも前記面内位相差、厚み方向位相差を満足できる点でも好ましい。延伸処理は一軸延伸、二軸延伸のいずれでもよい。特に二軸延伸処理されたフィルムが好ましい。   In general, the film material can be improved in strength by stretching, and tougher mechanical properties can be obtained. However, in many materials, since a phase difference is generated by the stretching treatment, it cannot be used as a protective film for a polarizer. The protective film containing the mixture of the thermoplastic resins (A) and (B) is preferable in that it can satisfy the in-plane retardation and the thickness direction retardation even when it is stretched. The stretching treatment may be either uniaxial stretching or biaxial stretching. In particular, a biaxially stretched film is preferred.

前記偏光板は、透過方向の直線偏光に対する透過率が80%以上、かつヘイズ値が5%以下であり、吸収方向の直線偏光に対するヘイズ値が30%以上であることが好ましい。   The polarizing plate preferably has a transmittance of 80% or more for linearly polarized light in the transmission direction, a haze value of 5% or less, and a haze value of 30% or more for linearly polarized light in the absorption direction.

前記透過率、ヘイズ値を有する偏光板は、透過方向の直線偏光に対しては高い透過率と良好な視認性を保有し、かつ吸収方向の直線偏光に対しては強い光拡散性を有している。したがって、簡便な方法にて、他の光学特性を犠牲にすることなく、高透過率、かつ高偏光度を有し、黒表示の際の透過率のムラを抑えることができる。すなわち、黒表示したときに、局所的な透過率バラツキによるムラが散乱により隠蔽され、白表示のときは散乱することなく明瞭なイメージを有する、つまり視認性が良好になり、液晶表示装置等に適用した場合には、正面および斜めから観測した再の光漏れが少なくなる。   The polarizing plate having the transmittance and haze value has high transmittance and good visibility for linearly polarized light in the transmission direction, and has strong light diffusibility for linearly polarized light in the absorption direction. ing. Therefore, it is possible to reduce the unevenness of the transmittance during black display with a high transmittance and a high degree of polarization without sacrificing other optical characteristics by a simple method. That is, when black is displayed, unevenness due to local transmittance variation is concealed by scattering, and when white is displayed, the image has a clear image without scattering, that is, the visibility is improved, and the liquid crystal display device is When applied, re-light leakage observed from the front and diagonal is reduced.

本発明の偏光板は、透過方向の直線偏光、すなわち前記ヨウ素系吸光体の最大吸収方向とは直交する方向の直線偏光に対しては、可及的に高い透過率を有するものが好ましく、入射した直線偏光の光強度を100としたとき80%以上の光線透過率を有することが好ましい。光線透過率は85%以上がより好ましく、さらには光線透過率88%以上であるのが好ましい。ここで光線透過率は、積分球付き分光光度計を用いて測定された380nm〜780nmの分光透過率よりCIE1931 XYZ表色系に基づき算出したY値に相当する。なお、偏光板の表裏面の空気界面により約8%〜10%が反射されるため、理想的極限は100%からこの表面反射分を差し引いたものとなる。   The polarizing plate of the present invention preferably has a transmittance as high as possible for linearly polarized light in the transmission direction, that is, linearly polarized light in a direction orthogonal to the maximum absorption direction of the iodine-based absorber. When the light intensity of the linearly polarized light is 100, the light transmittance is preferably 80% or more. The light transmittance is more preferably 85% or more, and more preferably 88% or more. Here, the light transmittance corresponds to a Y value calculated based on the CIE1931 XYZ color system from the spectral transmittance of 380 nm to 780 nm measured using a spectrophotometer with an integrating sphere. Since about 8% to 10% is reflected by the air interface between the front and back surfaces of the polarizing plate, the ideal limit is 100% minus this surface reflection.

また、偏光板は、透過方向の直線偏光は表示画像の視認性の明瞭性の観点より散乱されないことが望ましい。そのため、透過方向の直線偏光に対するヘイズ値は、5%以下であることが好ましい。より好ましくは3%以下、さらに好ましくは1%以下である。一方、偏光板は、吸収方向の直線偏光、すなわち前記ヨウ素系吸光体の最大吸収方向の直線偏光は局所的な透過率バラツキによるムラを散乱により隠蔽する観点より強く散乱されることが望ましい。そのため、吸収方向の直線偏光に対するヘイズ値は30%以上であることが好ましい。より好ましくは40%以上、さらに好ましくは50%以上である。なお、ヘイズ値は、JIS K 7136 (プラスチック−透明材料のへーズの求め方)に基づいて測定した値である。   In addition, it is desirable that the polarizing plate does not scatter linearly polarized light in the transmission direction from the viewpoint of clarity of display image visibility. Therefore, the haze value for linearly polarized light in the transmission direction is preferably 5% or less. More preferably, it is 3% or less, More preferably, it is 1% or less. On the other hand, in the polarizing plate, it is desirable that the linearly polarized light in the absorption direction, that is, the linearly polarized light in the maximum absorption direction of the iodine-based absorber is strongly scattered from the viewpoint of concealing unevenness due to local transmittance variation by scattering. Therefore, the haze value for linearly polarized light in the absorption direction is preferably 30% or more. More preferably, it is 40% or more, and further preferably 50% or more. The haze value is a value measured based on JIS K 7136 (Plastic—How to determine haze of transparent material).

前記光学特性は、偏光子の吸収二色性の機能に加えて、散乱異方性の機能が複合化されたことによって引き起こされるものである。同様のことが、米国特許第2123902号明細書や、特開平9−274108号公報や特開平9−297204号公報に記載されている、直線偏光のみを選択的に散乱させる機能を有した散乱異方性フィルムと、二色性吸収型偏光子とを散乱最大の軸と吸収最大の軸が平行となるような軸配置にて重畳することによっても達成可能と考えられる。しかし、これらは、別途、散乱異方性フィルムを形成する必要性があることや、重畳の際の軸合わせ精度が問題となること、さらに単に、重ね置いた場合は、前述した吸収される偏光の光路長増大効果が期待できず、高透過率、高偏光度が達成されにくい。   The optical characteristics are caused by the composite of the function of scattering anisotropy in addition to the function of absorption dichroism of the polarizer. The same is true for the scattering differences described in U.S. Pat. No. 2,213,902 and JP-A-9-274108 and JP-A-9-297204, which have the function of selectively scattering only linearly polarized light. It can also be achieved by superimposing the isotropic film and the dichroic absorption polarizer in an axial arrangement in which the scattering maximum axis and the absorption maximum axis are parallel to each other. However, it is necessary to separately form a scattering anisotropic film, and the alignment accuracy at the time of superimposing becomes a problem. The effect of increasing the optical path length cannot be expected, and it is difficult to achieve high transmittance and high degree of polarization.

また本発明は、前記偏光板が、少なくとも1枚積層されていることを特徴とする光学フィルム、に関する。   The present invention also relates to an optical film in which at least one polarizing plate is laminated.

さらには本発明は、前記偏光板または前記光学フィルムが用いられていることを特徴とする画像表示装置、に関する。   Furthermore, this invention relates to the image display apparatus characterized by using the said polarizing plate or the said optical film.

本発明の偏光板は、偏光子の片面または両面に保護フィルムが積層されている。   In the polarizing plate of the present invention, a protective film is laminated on one side or both sides of a polarizer.

まず本発明の偏光子を図面を参照しながら説明する。図1は、本発明の偏光子の概念図であり、ヨウ素系吸光体2を含有する透光性の水溶性樹脂1によりフィルムが形成されており、当該フィルムをマトリクスとして、微小領域3が分散された構造を有する。   First, the polarizer of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a polarizer of the present invention, in which a film is formed of a translucent water-soluble resin 1 containing an iodine-based absorber 2, and the microregion 3 is dispersed using the film as a matrix. Has a structured.

図1は、微小領域3と、透光性の水溶性樹脂1との屈折率差が最大値を示す軸方向(△n1方向)に、ヨウ素系吸光体2が配向している場合の例である。微小領域3では、△n1方向の偏光成分は散乱している。図1では、フィルム面内の一方向にある△n1方向は吸収軸となっている。フィルム面内において△n1方向に直交する△n2方向は透過軸となっている。なお、△n1方向に直交するもう一つの△n2方向は厚み方向である。 FIG. 1 shows an example in which the iodine-based absorber 2 is oriented in the axial direction (Δn 1 direction) in which the difference in refractive index between the minute region 3 and the translucent water-soluble resin 1 is maximum. It is. In the minute region 3, the polarization component in the Δn 1 direction is scattered. In FIG. 1, the Δn 1 direction in one direction in the film plane is an absorption axis. In the film plane △ n 1 perpendicular to the direction △ n 2 direction is a transmission axis. Incidentally, another △ n 2 direction perpendicular to △ n 1 direction is the thickness direction.

透光性の水溶性樹脂1としては、可視光領域において透光性を有し、ヨウ素系吸光体を分散吸着するものを特に制限なく使用できる。たとえば、従来より偏光子に用いられているポリビニルアルコールまたはその誘導体があげられる。ポリビニルアルコールの誘導体としては、ポリビニルホルマール、ポリビニルアセタール等があげられる他、エチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸そのアルキルエステル、アクリルアミド等で変性したものがあげられる。また透光性の水溶性樹脂1としては、例えばポリビニルピロリドン系樹脂、アミロース系樹脂等があげられる。前記透光性の水溶性樹脂1は、成形歪み等による配向複屈折を生じにくい等方性を有するものでもよく、配向複屈折を生じやすい異方性を有するものでもよい。   As translucent water-soluble resin 1, what has translucency in visible region and can disperse and adsorb iodine type light absorber can be used without particular limitation. For example, polyvinyl alcohol or its derivative conventionally used for a polarizer is mentioned. Derivatives of polyvinyl alcohol include polyvinyl formal, polyvinyl acetal and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, alkyl esters thereof, acrylamide and the like. can give. Examples of the translucent water-soluble resin 1 include polyvinyl pyrrolidone resins and amylose resins. The translucent water-soluble resin 1 may have an isotropic property that hardly causes orientation birefringence due to molding distortion or the like, or may have anisotropy that easily causes orientation birefringence.

微小領域3を形成する材料は、等方性か複屈折を有するかは特に限定されるものではないが、複屈折材料が好ましい。また複屈折材料は、少なくとも配向処理時点で液晶性を示すもの(以下、液晶性材料という)が好ましく用いられる。すなわち、液晶性材料は、配向処理時点で液晶性を示していれば、形成された微小領域3においては液晶性を示していてもよく、液晶性を喪失していてもよい。   The material forming the microregion 3 is not particularly limited as to whether it is isotropic or birefringent, but a birefringent material is preferable. As the birefringent material, a material exhibiting liquid crystallinity at the time of alignment treatment (hereinafter referred to as a liquid crystalline material) is preferably used. That is, as long as the liquid crystalline material exhibits liquid crystallinity at the time of the alignment treatment, the formed microregion 3 may exhibit liquid crystallinity or may lose liquid crystallinity.

微小領域3を形成する複屈折材料(液晶性材料)は、ネマチック液晶性、スメクチック液晶性、コレステリック液晶性のいずれでもよく、またリオトロピック液晶性のものでもよい。また、複屈折材料は、液晶性熱可塑樹脂でもよく、液晶性単量体の重合により形成されていてもよい。液晶性材料が液晶性熱可塑樹脂の場合には、最終的に得られる構造体の耐熱性の観点から、ガラス転移温度の高いものが好ましい。少なくとも室温ではガラス状態であるものを用いるのが好ましい。液晶性熱可塑性樹脂は、通常、加熱により配向し、冷却して固定させて、液晶性を維持したまま微小領域3を形成する。液晶性単量体は配合後に、重合、架橋等により固定した状態で微小領域3を形成させることができるが、形成した微小領域3では液晶性が喪失されてしまうものがある。   The birefringent material (liquid crystalline material) forming the minute region 3 may be nematic liquid crystalline, smectic liquid crystalline, cholesteric liquid crystalline, or lyotropic liquid crystalline. The birefringent material may be a liquid crystalline thermoplastic resin, or may be formed by polymerization of a liquid crystalline monomer. When the liquid crystalline material is a liquid crystalline thermoplastic resin, those having a high glass transition temperature are preferable from the viewpoint of the heat resistance of the finally obtained structure. It is preferable to use a glass that is at least at room temperature. The liquid crystalline thermoplastic resin is usually oriented by heating, cooled and fixed to form the microregion 3 while maintaining liquid crystallinity. The liquid crystalline monomer can form the microregion 3 in a state where it is fixed by polymerization, cross-linking or the like after blending, but the liquid crystallinity is lost in the microregion 3 formed.

前記液晶性熱可塑性樹脂としては、主鎖型、側鎖型またはこれらの複合型の各種骨格のポリマーを特に制限なく使用できる。主鎖型の液晶ポリマーとしては、芳香族単位等からなるメソゲン基を結合した構造を有する縮合系のポリマー、たとえば、ポリエステル系、ポリアミド系、ポリカーボネート系、ポリエステルイミド系などのポリマーがあげられる。メソゲン基となる前記芳香族単位としては、フェニル系、ビフェニル系、ナフタレン系のものがあげられ、これら芳香族単位は、シアノ基、アルキル基、アルコキシ基、ハロゲン基等の置換基を有していてもよい。   As the liquid crystalline thermoplastic resin, polymers of various skeletons of main chain type, side chain type, or a composite type thereof can be used without particular limitation. Examples of the main chain type liquid crystal polymer include condensation polymers having a structure in which mesogenic groups composed of aromatic units and the like are bonded, for example, polymers such as polyester, polyamide, polycarbonate, and polyesterimide. Examples of the aromatic unit that becomes a mesogenic group include phenyl, biphenyl, and naphthalene types, and these aromatic units have substituents such as a cyano group, an alkyl group, an alkoxy group, and a halogen group. May be.

側鎖型の液晶ポリマーとしては、ポリアクリレート系、ポリメタクリレート系、ポリ−α−ハロ−アクリレート系、ポリ−α−ハロ−シアノアクリレート系、ポリアクリルアミド系、ポリシロキサン系、ポリマロネート系の主鎖を骨格とし、側鎖に環状単位等からなるメソゲン基を有するものがあげられる。メソゲン基となる前記環状単位としては、たとえば、ビフェニル系、フェニルベンゾエート系、フェニルシクロヘキサン系、アゾキシベンゼン系、アゾメチン系、アゾベンゼン系、フェニルピリミジン系、ジフェニルアセチレン系、ジフェニルベンゾエート系、ビシクロへキサン系、シクロヘキシルベンゼン系、ターフェニル系等があげられる。なお、これら環状単位の末端は、たとえば、シアノ基、アルキル基、アルケニル基、アルコキシ基、ハロゲン基、ハロアルキル基、ハロアルコキシ基、ハロアルケニル基等の置換基を有していてもよい。またメソゲン基のフェニル基は、ハロゲン基を有するものを用いることができる。   Side chain type liquid crystal polymers include polyacrylate, polymethacrylate, poly-α-halo-acrylate, poly-α-halo-cyanoacrylate, polyacrylamide, polysiloxane, and polymalonate main chains. Examples of the skeleton include those having a mesogenic group composed of a cyclic unit or the like in the side chain. Examples of the cyclic unit serving as a mesogenic group include biphenyl, phenylbenzoate, phenylcyclohexane, azoxybenzene, azomethine, azobenzene, phenylpyrimidine, diphenylacetylene, diphenylbenzoate, and bicyclohexane. Cyclohexylbenzene, terphenyl and the like. In addition, the terminal of these cyclic units may have substituents, such as a cyano group, an alkyl group, an alkenyl group, an alkoxy group, a halogen group, a haloalkyl group, a haloalkoxy group, a haloalkenyl group, for example. Moreover, what has a halogen group can be used for the phenyl group of a mesogenic group.

また、いずれの液晶ポリマーのメソゲン基も屈曲性を付与するスペーサ部を介して結合していてもよい。スペーサ部としては、ポリメチレン鎖、ポリオキシメチレン鎖等があげられる。スペーサ部を形成する構造単位の繰り返し数は、メソゲン部の化学構造により適宜に決定されるがポリメチレン鎖の繰り返し単位は0〜20、好ましくは2〜12、ポリオキシメチレン鎖の繰り返し単位は0〜10、好ましくは1〜3である。   Further, the mesogenic group of any liquid crystal polymer may be bonded via a spacer portion that imparts flexibility. Examples of the spacer portion include a polymethylene chain and a polyoxymethylene chain. The number of repeating structural units forming the spacer portion is appropriately determined depending on the chemical structure of the mesogenic portion, but the repeating unit of the polymethylene chain is 0 to 20, preferably 2 to 12, and the repeating unit of the polyoxymethylene chain is 0 to 0. 10, preferably 1-3.

前記液晶性熱可塑樹脂は、ガラス転移温度50℃以上、さらには80℃以上であることが好ましい。また、重量平均分子量が2千〜10万程度のものが好ましい。   The liquid crystalline thermoplastic resin preferably has a glass transition temperature of 50 ° C. or higher, more preferably 80 ° C. or higher. Further, those having a weight average molecular weight of about 2,000 to 100,000 are preferred.

液晶性単量体としては、末端にアクリロイル基、メタクリロイル基等の重合性官能基を有し、これに前記環状単位等からなるメソゲン基、スペーサ部を有するものがあげられる。また重合性官能基として、アクリロイル基、メタアクリロイル基等を2つ以上有するものを用いて架橋構造を導入して耐久性を向上させることもできる。   Examples of the liquid crystalline monomer include those having a polymerizable functional group such as an acryloyl group or a methacryloyl group at the terminal, and a mesogenic group composed of the cyclic unit or the like and a spacer portion. In addition, as a polymerizable functional group, one having two or more acryloyl groups, methacryloyl groups and the like can be used to introduce a crosslinked structure to improve durability.

微小領域3を形成する材料は、前記液晶性材料に全てが限定されるものではなく、マトリクス材料と異なる素材であれば、非液晶性の樹脂を用いることができる。樹脂としては、ポリビニルアルコールとその誘導体、ポリオレフィン、ポリアリレート、ポリメタクリレート、ポリアクリルアミド、ポリエチレンテレフタレート、アクリルスチレン共重合体などがあげられる。また微小領域3を形成する材料としては、複屈折を持たない粒子などを用いることができる。当該微粒子としては、たとえば、ポリアクリレート、アクリルスチレン共重合体などの樹脂があげられる。微粒子のサイズは特に制限されないが、0.05〜500μm、好ましくは0.5〜100μmの粒子径のものが用いられる。微小領域3を形成する材料は、前記液晶性材料が好ましいが、前記液晶性材料には非液晶性材料を混入して用いることができる。さらには微小領域3を形成する材料にて、非液晶性材料を単独で使用することもできる。   The material for forming the minute region 3 is not limited to the liquid crystalline material, and a non-liquid crystalline resin can be used as long as the material is different from the matrix material. Examples of the resin include polyvinyl alcohol and derivatives thereof, polyolefin, polyarylate, polymethacrylate, polyacrylamide, polyethylene terephthalate, and acrylic styrene copolymer. Further, as a material for forming the minute region 3, particles having no birefringence can be used. Examples of the fine particles include resins such as polyacrylate and acrylic styrene copolymer. The size of the fine particles is not particularly limited, but those having a particle size of 0.05 to 500 μm, preferably 0.5 to 100 μm are used. The material for forming the minute region 3 is preferably the liquid crystalline material, but the liquid crystalline material can be mixed with a non-liquid crystalline material. Furthermore, a non-liquid crystalline material can be used alone as a material for forming the minute region 3.

本発明の偏光子は、ヨウ素系吸光体2を含有する透光性の水溶性樹脂1によりマトリクスを形成したフィルムを作製するとともに、当該マトリクス中に、微小領域3(たとえば、液晶性材料により形成された、配向された複屈折材料)を分散させる。また、フィルム中において、前記△n1方向の屈折率差(△n1)、△n2方向の屈折率差(△n2)が前記範囲になるように制御する。 The polarizer of the present invention produces a film in which a matrix is formed with a translucent water-soluble resin 1 containing an iodine-based absorber 2 and is formed in the matrix with a minute region 3 (for example, a liquid crystalline material). The oriented birefringent material) is dispersed. Further, in the film, the △ n 1 direction refractive index difference (△ n 1), △ n 2 direction of the refractive index difference (△ n 2) is controlled to be in the range.

かかる本発明の偏光子の製造工程は、特に制限されないが、たとえば、
(1)マトリクスとなる透光性の水溶性樹脂に、微小領域となる材料(以下、微小領域となる材料として液晶性材料を用いた場合を代表例として説明する。他の材料の場合も液晶性材料に準ずる。)が分散された混合溶液を製造する工程、
(2)前記(1)の混合溶液をフィルム化する工程、
(3)前記(2)で得られたフィルムを配向(延伸)する工程、
(4)前記マトリクスとなる透光性の水溶性樹脂に、ヨウ素系吸光体を分散させる(染色する)工程、
を施すことにより得られる。なお、工程(1)乃至(4)の順序は適宜に決定できる。
The manufacturing process of the polarizer of the present invention is not particularly limited.
(1) As a representative example, a case where a liquid crystal water-soluble resin serving as a matrix is made of a material that becomes a minute region (hereinafter, a liquid crystalline material is used as a material that becomes a minute region. A process for producing a mixed solution in which the same is applied to
(2) forming a film of the mixed solution of (1),
(3) A step of orienting (stretching) the film obtained in (2) above,
(4) A step of dispersing (staining) an iodine-based light absorber in a light-transmitting water-soluble resin serving as the matrix,
It is obtained by applying. Note that the order of the steps (1) to (4) can be determined as appropriate.

前記工程(1)では、まず、マトリクスを形成する透光性の水溶性樹脂に、微小領域となる液晶性材料を分散した混合溶液を調製する。当該混合溶液の調製法は、特に制限されないが、前記マトリクス成分(透光性の水溶性樹脂)と液晶性材料の相分離現象を利用する方法があげられる。たとえば、液晶性材料としてマトリクス成分とは相溶しにくい材料を選択し、マトリクス成分の水溶液に液晶性材料を形成する材料の溶液を界面活性剤などの分散剤を介して分散させる方法などあげられる。前記混合溶液の調製において、マトリクスを形成する透光性材料と微小領域となる液晶材料の組み合わせによっては分散剤を入れなくてもよい。マトリクス中に分散させる液晶性材料の使用量は、特に制限されないが、透光性の水溶性樹脂100重量部に対して、液晶性材料を0.01〜100重量部、好ましくは0.1〜10重量部である。液晶性材料は溶媒に溶解し、または溶解することなく用いられる。溶媒としては、たとえば、水、トルエン、キシレン、ヘキサン、シクロヘキサン、ジクロロメタン、トリクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、トリクロロエチレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、テトラヒドロフラン、酢酸エチル等があげられる。マトリクス成分の溶媒と、液晶性材料の溶媒とは同一でもよく異種でもよい。   In the step (1), first, a mixed solution is prepared in which a liquid crystalline material that forms a minute region is dispersed in a light-transmitting water-soluble resin that forms a matrix. A method for preparing the mixed solution is not particularly limited, and examples thereof include a method using a phase separation phenomenon between the matrix component (translucent water-soluble resin) and a liquid crystal material. For example, as a liquid crystalline material, a material that is not compatible with the matrix component is selected, and a solution of the material that forms the liquid crystalline material is dispersed in an aqueous solution of the matrix component through a dispersant such as a surfactant. . In the preparation of the mixed solution, a dispersant may not be added depending on a combination of a light-transmitting material forming a matrix and a liquid crystal material forming a micro region. The amount of the liquid crystalline material to be dispersed in the matrix is not particularly limited, but 0.01 to 100 parts by weight, preferably 0.1 to 100 parts by weight of the liquid crystalline material with respect to 100 parts by weight of the light-transmitting water-soluble resin. 10 parts by weight. The liquid crystalline material is used in a solvent or without being dissolved. Examples of the solvent include water, toluene, xylene, hexane, cyclohexane, dichloromethane, trichloromethane, dichloroethane, trichloroethane, tetrachloroethane, trichloroethylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, tetrahydrofuran, and ethyl acetate. . The solvent of the matrix component and the solvent of the liquid crystal material may be the same or different.

前記工程(2)において、フィルム形成後の乾燥工程で発泡を低減させるためには、工程(1)における混合溶液の調製において、微小領域を形成する液晶性材料を溶解するための溶媒を用いない方が好ましい。たとえば、溶媒を用いない場合には、マトリクスを形成する透光性材料の水溶液に液晶性材料を直接添加し、液晶性材料をより小さく均一に分散させるために液晶温度範囲以上で加熱し分散させる方法等などがあげられる。   In the step (2), in order to reduce foaming in the drying step after film formation, a solvent for dissolving the liquid crystalline material forming the microregion is not used in the preparation of the mixed solution in the step (1). Is preferred. For example, when a solvent is not used, a liquid crystal material is directly added to an aqueous solution of a translucent material that forms a matrix, and the liquid crystal material is heated and dispersed above the liquid crystal temperature range in order to disperse the liquid crystal material in a smaller and uniform manner. The method etc. are mention | raise | lifted.

なお、マトリクス成分の溶液、液晶性材料の溶液、または混合溶液中には、分散剤、界面活性剤、紫外線吸収剤、難燃剤、酸化防止剤、可塑剤、離型剤、滑剤、着色剤等の各種の添加剤を本発明の目的を阻害しない範囲で含有させることができる。   In addition, in a matrix component solution, a liquid crystal material solution, or a mixed solution, a dispersant, a surfactant, an ultraviolet absorber, a flame retardant, an antioxidant, a plasticizer, a release agent, a lubricant, a colorant, etc. These various additives can be contained within a range not impairing the object of the present invention.

前記混合溶液をフィルム化する工程(2)では、前記混合溶液を加熱乾燥し、溶媒を除去することにより、マトリクス中に微小領域が分散されたフィルムを作製する。フィルムの形成方法としては、キャスティング法、押出成形法、射出成形法、ロール成形法、流延成形法などの各種の方法を採用できる。フィルム成形にあたっては、フィルム中の微小領域のサイズが、最終的に△n2方向が0.05〜500μmになるように制御する。混合溶液の粘度、混合溶液の溶媒の選択、組み合わせ、分散剤、混合溶媒の熱プロセス(冷却速度)、乾燥速度を調整することにより、微小領域の大きさや分散性を制御することができる。たとえば、マトリクスを形成する高せん断力のかかるような高粘度の透光性の水溶性樹脂と微小領域となる液晶性材料の混合溶液を液晶温度範囲以上に加熱しながらホモミキサー等の撹拌機により分散させることによって微小領域を、より小さく分散させることができる。 In the step (2) of forming the mixed solution into a film, the mixed solution is heated and dried, and the solvent is removed to produce a film in which micro regions are dispersed in the matrix. As a film forming method, various methods such as a casting method, an extrusion molding method, an injection molding method, a roll molding method, and a casting method can be employed. In forming the film, the size of the minute region in the film is finally controlled to be 0.05 to 500 μm in the Δn 2 direction. By adjusting the viscosity of the mixed solution, the selection and combination of the solvent of the mixed solution, the dispersant, the thermal process (cooling rate) of the mixed solvent, and the drying rate, the size and dispersibility of the microregion can be controlled. For example, by using a stirrer such as a homomixer while heating a mixed solution of a highly viscous translucent water-soluble resin that forms a matrix and a liquid crystalline material that forms a microscopic region to a temperature above the liquid crystal temperature range. By dispersing, the minute region can be dispersed smaller.

前記フィルムを配向する工程(3)は、フィルムを延伸することにより行うことができる。延伸は、一軸延伸、二軸延伸、斜め延伸などがあげられるが、通常、一軸延伸を行う。延伸方法は、空気中での乾式延伸、水系浴中での湿式延伸のいずれでもよい。湿式延伸延を採用する場合には、水系浴中に、適宜に添加剤(ホウ酸等のホウ素化合物,アルカリ金属のヨウ化物等)を含有させることができる。延伸倍率は特に制限されないが、通常、2〜10倍程度とするのが好ましい。   The step (3) of orienting the film can be performed by stretching the film. Stretching includes uniaxial stretching, biaxial stretching, oblique stretching, etc., but uniaxial stretching is usually performed. The stretching method may be either dry stretching in air or wet stretching in an aqueous bath. In the case of adopting wet drawing, additives (boron compounds such as boric acid, alkali metal iodides and the like) can be appropriately contained in the aqueous bath. Although the draw ratio is not particularly limited, it is usually preferably about 2 to 10 times.

かかる延伸により、ヨウ素系吸光体を延伸軸方向に配向させることができる。また、微小領域において複屈折材料となる液晶性材料は、上記延伸により微小領域中で延伸方向に配向され複屈折を発現させる。   By such stretching, the iodine-based absorber can be oriented in the stretching axis direction. In addition, the liquid crystalline material that becomes a birefringent material in the minute region is oriented in the stretching direction in the minute region by the above stretching, and exhibits birefringence.

微小領域は延伸に応じて変形することが望ましい。微小領域が非液晶性材料の場合は延伸温度が樹脂のガラス転移温度付近、微小領域が液晶性材料の場合は延伸時の温度で液晶性材料がネマチック相またはスメクチック相等の液晶状態または等方相状態になる温度を選択するのが望ましい。延伸時点で配向が不十分な場合には、別途、加熱配向処理などの工程を加えてもよい。   It is desirable that the minute region is deformed according to stretching. When the microregion is a non-liquid crystalline material, the stretching temperature is close to the glass transition temperature of the resin, and when the microregion is a liquid crystalline material, the liquid crystalline material is in a liquid crystal state such as a nematic phase or a smectic phase or isotropic phase at the stretching temperature. It is desirable to select the temperature at which the condition is reached. If the orientation is insufficient at the time of stretching, a step such as a heat orientation treatment may be separately added.

液晶性材料の配向には上記延伸に加え、電場や磁場などの外場を用いてもよい。また液晶性材料にアゾベンゼンなどの光反応性物質を混合したり、液晶性材料にシンナモイル基等の光反応性基を導入したものを用い、これを光照射などの配向処理によって配向させてもよい。さらには延伸処理と以上に述べた配向処理を併用することもできる。液晶性材料が、液晶性熱可塑樹脂の場合には、延伸時に配向させた後、室温に冷却させることにより配向が固定化され安定化される。液晶性単量体は、配向していれば目的の光学特性が発揮されるため、必ずしも硬化している必要はない。だたし、液晶性単量体で等方転移温度が低いものは、少し温度がかかることにより等方状態になってしまう。こうなると異方散乱でなくなって、逆に偏光性能が悪くなるので、このような場合には硬化させるのが好ましい。また液晶性単量体には室温で放置すると結晶化するものが多くあり、こうなると異方散乱でなくなって、逆に偏光性能が悪くなるので、このような場合にも硬化させるのが好ましい。かかる観点からすれば、配向状態をどのような条件下においても安定に存在させるためには、液晶性単量体を硬化することが好ましい。液晶性単量体の硬化は、たとえば、光重合開始剤と混合してマトリクス成分の溶液中に分散し、配向後、いずれかのタイミング(ヨウ素系吸光体による染色前、染色後)において紫外線等を照射して硬化し、配向を安定化させる。望ましくは、ヨウ素系吸光体による染色前である。   In addition to the stretching described above, an external field such as an electric field or a magnetic field may be used for the orientation of the liquid crystalline material. Alternatively, a liquid-reactive material such as azobenzene mixed with a photoreactive substance or a liquid-reactive material into which a photoreactive group such as a cinnamoyl group is introduced may be aligned by an alignment treatment such as light irradiation. . Furthermore, the stretching treatment and the orientation treatment described above can be used in combination. In the case where the liquid crystalline material is a liquid crystalline thermoplastic resin, the orientation is fixed and stabilized by being oriented at the time of stretching and then cooled to room temperature. The liquid crystalline monomer does not necessarily need to be cured because the desired optical properties are exhibited as long as it is oriented. However, liquid crystalline monomers having a low isotropic transition temperature are in an isotropic state when a little temperature is applied. In this case, anisotropic scattering is eliminated and the polarization performance is adversely affected. In such a case, curing is preferable. In addition, many liquid crystalline monomers crystallize when left at room temperature. In this case, anisotropic scattering is lost and, on the other hand, polarization performance deteriorates. In such a case, it is preferable to cure. From this point of view, it is preferable to cure the liquid crystalline monomer in order for the alignment state to exist stably under any conditions. Curing of the liquid crystalline monomer is, for example, mixed with a photopolymerization initiator and dispersed in a solution of a matrix component, and after alignment, at any timing (before or after staining with an iodine-based absorber), ultraviolet rays, etc. Is cured by irradiation to stabilize the orientation. Desirably, it is before dyeing | staining with an iodine type light absorber.

前記マトリクスとなる透光性の水溶性樹脂に、ヨウ素系吸光体を分散させる工程(4)は、一般には、ヨウ素をヨウ化カリウム等のアルカリ金属のヨウ化物等の助剤とともに溶解させた水系浴に前記フィルムを浸漬する方法があげられる。前述したように、マトリクス中に分散されたヨウ素とマトリクス樹脂との相互作用によりヨウ素系吸光体が形成される。浸漬させるタイミングとしては、前記延伸工程(3)の前でも後でもよい。ヨウ素系吸光体は、一般に延伸工程を経ることによって著しく形成される。ヨウ素を含有する水系浴の濃度、アルカリ金属のヨウ化物などの助剤の割合は特に制限されず、一般的なヨウ素染色法を採用でき、前記濃度等は任意に変更することができる。   In the step (4) of dispersing the iodine-based absorber in the light-transmitting water-soluble resin serving as the matrix, generally, an aqueous system in which iodine is dissolved together with an assistant such as an alkali metal iodide such as potassium iodide. There is a method of immersing the film in a bath. As described above, an iodine-based light absorber is formed by the interaction between iodine dispersed in the matrix and the matrix resin. The timing of immersion may be before or after the stretching step (3). The iodine-based light absorber is generally formed remarkably through a stretching process. The concentration of the aqueous bath containing iodine and the ratio of the auxiliary agent such as alkali metal iodide are not particularly limited, and a general iodine staining method can be adopted, and the concentration and the like can be arbitrarily changed.

また得られる偏光子中におけるヨウ素の割合は特に制限されないが、透光性の水溶性樹脂とヨウ素の割合が、透光性の水溶性樹脂100重量部に対して、ヨウ素が0.05〜50重量部程度、さらには0.1〜10重量部となるように制御するのが好ましい。   Further, the ratio of iodine in the obtained polarizer is not particularly limited, but the ratio of iodine of translucent water-soluble resin to iodine is 0.05 to 50 with respect to 100 parts by weight of translucent water-soluble resin. It is preferable to control the amount to be about parts by weight, more preferably 0.1 to 10 parts by weight.

偏光子の作製にあたっては、前記工程(1)乃至(4)の他に、様々な目的のための工程(5)を施すことができる。工程(5)としては、たとえば、主にフィルムのヨウ素染色効率を向上させる目的として、水浴にフィルムを浸漬して膨潤させる工程があげられる。また、任意の添加物を溶解させた水浴に浸漬する工程等があげられる。主に水溶性樹脂(マトリクス)に架橋を施す目的のため、ホウ酸、ホウ砂などの添加剤を含有する水溶液にフィルムを浸漬する工程があげられる。また、主に、分散したヨウ素系吸光体の量バランスを調節し、色相を調節することを目的として、アルカリ金属のヨウ化物などの添加剤を含有する水溶液にフィルムを浸漬する工程があげられる。   In producing the polarizer, in addition to the steps (1) to (4), a step (5) for various purposes can be performed. Examples of the step (5) include a step of swelling the film by immersing the film in a water bath mainly for the purpose of improving the iodine dyeing efficiency of the film. Moreover, the process etc. which are immersed in the water bath which melt | dissolved arbitrary additives are mention | raise | lifted. A step of immersing the film in an aqueous solution containing additives such as boric acid and borax is mainly used for the purpose of crosslinking the water-soluble resin (matrix). Further, there is a step of immersing the film in an aqueous solution containing an additive such as an alkali metal iodide for the purpose of adjusting the amount balance of the dispersed iodine light absorber and adjusting the hue.

前記フィルムを配向(延伸)延伸する工程(3)、マトリクス樹脂にヨウ素系吸光体を分散染色する工程(4)および上記工程(5)は、工程(3)、(4)が少なくとも1回ずつあれば、工程の回数、順序、条件(浴温度や浸漬時間など)は任意に選択でき、各工程は別々に行ってもよく、複数の工程を同時に行ってもよい。例えば、工程(5)の架橋工程と延伸工程(3)を同時に行ってもよい。   The step (3) of orienting (stretching) the film, the step (4) of dispersing and dyeing an iodine-based absorber on the matrix resin, and the step (5) are performed at least once each of the steps (3) and (4). If present, the number of steps, order, and conditions (bath temperature, immersion time, etc.) can be arbitrarily selected, and each step may be performed separately or a plurality of steps may be performed simultaneously. For example, you may perform the bridge | crosslinking process and extending process (3) of a process (5) simultaneously.

また、染色に用いるヨウ素系吸光体や、架橋に用いるホウ酸などは、上記のようにフィルムを水溶液への浸漬させることによって、フィルム中へ浸透させる方法の代わりに、工程(1)において混合溶液を調製前または調製後で、工程(2)のフィルム化前に任意の種類、量を添加する方法を採用することもできる。また両方法を併用してもよい。ただし、工程(3)において、延伸時等に高温(例えば80℃以上)にする必要がある場合であって、ヨウ素系吸光体が該温度で劣化してしまう場合には、ヨウ素系吸光体を分散染色する工程(4)は工程(3)の後にするのが望ましい。   In addition, the iodine-based light absorber used for dyeing, boric acid used for crosslinking, etc. are mixed in the step (1) instead of the method of permeating into the film by immersing the film in an aqueous solution as described above. It is also possible to adopt a method of adding any kind and amount before or after preparation and before film formation in step (2). Moreover, you may use both methods together. However, in the step (3), when it is necessary to increase the temperature at the time of stretching or the like (for example, 80 ° C. or more) and the iodine-based absorber is deteriorated at the temperature, the iodine-based absorber is used. The step (4) of disperse dyeing is preferably performed after the step (3).

以上の処理をしたフィルムは、適当な条件で乾燥されることが望ましい。乾燥は常法に従って行われる。   The film subjected to the above treatment is desirably dried under appropriate conditions. Drying is performed according to a conventional method.

得られた偏光子(フィルム)の厚さは特に制限されないが、通常、1μmから3mm、好ましくは5μmから1mm、さらに好ましくは10〜500μmである。   The thickness of the obtained polarizer (film) is not particularly limited, but is usually 1 μm to 3 mm, preferably 5 μm to 1 mm, and more preferably 10 to 500 μm.

このようにして得られた偏光子は、通常、延伸方向において、微小領域を形成する複屈折材料の屈折率とマトリクス樹脂の屈折率の大小関係は特になく、延伸方向が△n1方向になっている。延伸軸と直交する二つの垂直方向は△n2方向となっている。また、ヨウ素系吸光体は延伸方向が、最大吸収を示す方向になっており、吸収+散乱の効果が最大限発現された偏光子になっている。 The polarizer thus obtained usually has no particular relationship between the refractive index of the birefringent material forming the microregion and the refractive index of the matrix resin in the stretching direction, and the stretching direction is in the Δn 1 direction. ing. Two vertical directions perpendicular to the stretching axis are Δn 2 directions. Further, the iodine light absorber has a direction in which the stretching direction exhibits the maximum absorption, and is a polarizer in which the effect of absorption + scattering is expressed to the maximum.

保護フィルムは、当該フィルム面内の面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nz、フィルムの厚さd(nm)とした場合に、面内位相差Re=(nx−ny)×dが、20nm以下であり、かつ厚み方向位相差Rth={(nx+ny)/2−nz)×d)が、30nm以下であるものが用いられる。   In the protective film, the direction in which the in-plane refractive index in the film plane is the maximum is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis. When nx, ny, nz, and film thickness d (nm), in-plane retardation Re = (nx−ny) × d is 20 nm or less, and thickness direction retardation Rth = {(nx + ny) / 2-nz) × d) is 30 nm or less.

上記保護フィルムの材料としては、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と(B)側鎖に置換および/または非置換フェニル基ならびにニトリル基を有する熱可塑性樹脂とを含有してなる樹脂組成物、ノルボルネン系樹脂があげられる。また、本発明の条件を満足するポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリアクリル樹脂等があげられる。また、特定の処理を施したセルロース系樹脂フィルムを用いることができる。   As the material of the protective film, (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain and (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl group and a nitrile group in the side chain And a norbornene-based resin. Further, polyolefin resins, polyester resins, polyamide resins, polyacrylic resins and the like that satisfy the conditions of the present invention can be mentioned. Moreover, the cellulose resin film which performed the specific process can be used.

前記熱可塑性樹脂(A)、(B)を含有する保護フィルムは、前述の通り、偏光子の寸法変化による応力を受けた場合にも位相差が生じにくく、延伸処理した場合にも面内位相差Re、厚み方向位相差Rthを小さく制御することができる。かかる熱可塑性樹脂(A)、(B)を含有する保護フィルムは、たとえば、WO01/37007に記載されている。なお、保護フィルムは、熱可塑性樹脂(A)、(B)を主成分とする場合にも他の樹脂を含有することもできる。   As described above, the protective film containing the thermoplastic resins (A) and (B) is less likely to cause retardation even when subjected to stress due to dimensional change of the polarizer, and is in-plane even when stretched. The phase difference Re and the thickness direction phase difference Rth can be controlled to be small. Such a protective film containing the thermoplastic resins (A) and (B) is described in, for example, WO01 / 37007. The protective film can also contain other resins even when the thermoplastic resins (A) and (B) are the main components.

熱可塑性樹脂(A)は、側鎖に置換および/または非置換イミド基を有するものであり、主鎖は任意の熱可塑性樹脂である。主鎖は、例えば、炭素のみからなる主鎖であってもよく、または炭素以外の原子が炭素間に挿入されていてもよい。また炭素以外の原子からなっていてもよい。主鎖は好ましく炭化水素またはその置換体である。主鎖は、例えば付加重合により得られる。具体的には例えば、ポリオレフィンまたはポリビニルである。また主鎖は縮合重合により得られる。例えばエステル結合、アミド結合などで得られる。主鎖は好ましくは置換ビニルモノマーを重合させて得られるポリビニル骨格である。   The thermoplastic resin (A) has a substituted and / or unsubstituted imide group in the side chain, and the main chain is an arbitrary thermoplastic resin. The main chain may be, for example, a main chain composed only of carbon, or atoms other than carbon may be inserted between carbons. Moreover, you may consist of atoms other than carbon. The main chain is preferably a hydrocarbon or a substituted product thereof. The main chain is obtained, for example, by addition polymerization. Specifically, for example, polyolefin or polyvinyl. The main chain is obtained by condensation polymerization. For example, it can be obtained by an ester bond or an amide bond. The main chain is preferably a polyvinyl skeleton obtained by polymerizing a substituted vinyl monomer.

熱可塑性樹脂(A)に置換および/または非置換のイミド基を導入する方法としては、従来公知の任意の方法を採用できる。例えば、前記イミド基を有するモノマーを重合する方法、各種モノマーを重合して主鎖を形成した後、前記イミド基を導入する方法、前記イミド基を有する化合物を側鎖にグラフトさせる方法等があげられる。イミド基の置換基としては、イミド基の水素を置換し得る従来公知の置換基が使用可能である。例えば、アルキル基などがあげられる。   Any conventionally known method can be adopted as a method for introducing a substituted and / or unsubstituted imide group into the thermoplastic resin (A). For example, a method of polymerizing a monomer having the imide group, a method of polymerizing various monomers to form a main chain, and then introducing the imide group, a method of grafting the compound having the imide group to a side chain, etc. It is done. As the substituent of the imide group, a conventionally known substituent that can replace the hydrogen of the imide group can be used. For example, an alkyl group etc. are mention | raise | lifted.

熱可塑性樹脂(A)は、少なくとも1種のオレフィンから誘導される繰り返し単位と少なくとも1種の置換および/または非置換マレイミド構造を有する繰り返し単位とを含有する二元またはそれ以上の多元共重合体であるのが好ましい。上記オレフィン・マレイミド共重合体は、オレフィンとマレイミド化合物から、公知の方法で合成できる。合成法は、例えば、特開平5−59193号公報、特開平5−195801号公報、特開平6−136058号公報および特開平9−328523号公報に記載されている。   The thermoplastic resin (A) is a binary copolymer having at least one repeating unit derived from at least one olefin and at least one repeating unit having a substituted and / or unsubstituted maleimide structure. Is preferred. The olefin / maleimide copolymer can be synthesized from an olefin and a maleimide compound by a known method. The synthesis method is described, for example, in JP-A-5-59193, JP-A-5-195801, JP-A-6-1336058 and JP-A-9-328523.

オレフィンとしては、たとえば、イソブテン、2−メチル−1−ブテン、2−メチル−1−ペンテン、2−メチル−1−へキセン、2−メチル−1−ヘプテン、2−メチル−1−へプテン、1−イソオクテン、2−メチル−1−オクテン、2−エチル−1−ペンテン、2−エチル−2−ブテン、2−メチル−2−ペンテン、2−メチル−2−へキセン等があげられる。これらのなかでもイソブテンが好ましい。これらのオレフィンは単独で用いてもよく、2種以上を組合せてもよい。   Examples of the olefin include isobutene, 2-methyl-1-butene, 2-methyl-1-pentene, 2-methyl-1-hexene, 2-methyl-1-heptene, 2-methyl-1-heptene, Examples thereof include 1-isooctene, 2-methyl-1-octene, 2-ethyl-1-pentene, 2-ethyl-2-butene, 2-methyl-2-pentene, 2-methyl-2-hexene and the like. Of these, isobutene is preferred. These olefins may be used alone or in combination of two or more.

マレイミド化合物としては、マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−n−プロピルマレイミド、N−i−プロピルマレイミド、N−n−ブチルマレイミド、N−i−ブチルマレイミド、N−t−ブチルマレイミド、N−n−ペンチルマレイミド、N−n−ヘキシルマレイミド、N−n−へプチルマレイミド、N−n−オクチルマレイミド、N−ラウリルマレイミド、N−ステアリルマレイミド、N−シクロプロピルマレイミド、N−シクロブチルマレイミド、N−シクロペンチルマレイミド、N−シクロヘキシルマレイミド、N−シクロヘプチルマレイミド、N−シクロオクチルマレイミド等があげられる。これらのなかでもN−メチルマレイミドが好ましい。これらマレイミド化合物は単独で用いてもよく、または2種以上を組み合わせてもよい。   As maleimide compounds, maleimide, N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ni-butylmaleimide, Nt-butyl Maleimide, Nn-pentylmaleimide, Nn-hexylmaleimide, Nn-heptylmaleimide, Nn-octylmaleimide, N-laurylmaleimide, N-stearylmaleimide, N-cyclopropylmaleimide, N-cyclo Examples thereof include butyl maleimide, N-cyclopentyl maleimide, N-cyclohexyl maleimide, N-cycloheptyl maleimide, N-cyclooctyl maleimide and the like. Of these, N-methylmaleimide is preferred. These maleimide compounds may be used alone or in combination of two or more.

オレフィン・マレイミド共重合体において、オレフィンの繰り返し単位の含有量は特に制限されないが、熱可塑性樹脂(A)の総繰り返し単位の20〜70モル%程度、好ましくは40〜60モル%、さらに好ましくは45〜55モル%である。マレイミド構造の繰り返し単位の含有量は30〜80モル%程度、好ましくは40〜60モル%、さらに好ましくは45〜55モル%である。   In the olefin / maleimide copolymer, the content of the repeating unit of the olefin is not particularly limited, but is about 20 to 70 mol%, preferably 40 to 60 mol%, more preferably about the total repeating unit of the thermoplastic resin (A). It is 45 to 55 mol%. The content of repeating units having a maleimide structure is about 30 to 80 mol%, preferably 40 to 60 mol%, and more preferably 45 to 55 mol%.

熱可塑性樹脂(A)は前記オレフィンの繰り返し単位とマレイミド構造の繰り返し単位を含有し、これらの単位のみにより形成することができる。また前記以外に、他のビニル系単量体の繰り返し単位を50モル%以下の割合で含んでいてもよい。他のビニル系単量体としてはアクリル酸メチル、アクリル酸ブチル等のアクリル酸系単量体、メタクリル酸メチル、メタクリル酸シクロヘキシル等のメタクリル酸系単量体、酢酸ビニル等のビニルエステル単量体、メチルビニルエーテル等のビニルエーテル単量体、無水マレイン酸のような酸無水物、スチレン、α−メチルスチレン、p−メトキシスチレン等のスチレン系単量体等があげられる。   A thermoplastic resin (A) contains the repeating unit of the said olefin and the repeating unit of a maleimide structure, and can be formed only with these units. In addition to the above, repeating units of other vinyl monomers may be contained in a proportion of 50 mol% or less. Other vinyl monomers include acrylic acid monomers such as methyl acrylate and butyl acrylate, methacrylic acid monomers such as methyl methacrylate and cyclohexyl methacrylate, and vinyl ester monomers such as vinyl acetate. And vinyl ether monomers such as methyl vinyl ether, acid anhydrides such as maleic anhydride, and styrene monomers such as styrene, α-methylstyrene and p-methoxystyrene.

熱可塑性樹脂(A)の重量平均分子量は特に制限されないが、1×103〜5×106程度である。前記重量平均分子量は1×104以上が好ましく、5×105以下が好ましい。熱可塑性樹脂(A)のガラス転移温度は80℃以上、好ましくは100℃以上、さらに好ましくは130℃以上である。 The weight average molecular weight of the thermoplastic resin (A) is not particularly limited, but is about 1 × 10 3 to 5 × 10 6 . The weight average molecular weight is preferably 1 × 10 4 or more, and more preferably 5 × 10 5 or less. The glass transition temperature of the thermoplastic resin (A) is 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 130 ° C. or higher.

また熱可塑性樹脂(A)としては、グルタルイミド系熱可塑性樹脂を用いることができる。グルタルイミド系樹脂は、特開平2−153904号公報等に記載されている。グルタルイミド系樹脂は、グルタルイミド構造単位とアクリル酸メチルまたはメタクリル酸メチル構造単位を有する。グルタルイミド系樹脂中にも前記他のビニル系単量体を導入できる。   Moreover, as a thermoplastic resin (A), a glutarimide type thermoplastic resin can be used. Glutarimide resins are described in JP-A-2-153904. The glutarimide-based resin has a glutarimide structural unit and a methyl acrylate or methyl methacrylate structural unit. The other vinyl monomers can also be introduced into the glutarimide resin.

熱可塑性樹脂(B)は、置換および/または非置換フェニル基とニトリル基とを側鎖に有する熱可塑性樹脂である。熱可塑性樹脂(B)の主鎖は、熱可塑性樹脂(A)と同様のものを例示できる。   The thermoplastic resin (B) is a thermoplastic resin having a substituted and / or unsubstituted phenyl group and a nitrile group in the side chain. The main chain of a thermoplastic resin (B) can illustrate the thing similar to a thermoplastic resin (A).

熱可塑性樹脂(B)に前記フェニル基を導入する方法としては、例えば、前記フェニル基を有するモノマーを重合する方法、各種モノマーを重合して主鎖を形成した後、フェニル基を導入する方法、フェニル基を有する化合物を側鎖にグラフトする方法等があげられる。フェニル基の置換基としては、フェニル基の水素を置換し得る従来公知の置換基が使用可能である。例えば、アルキル基などがあげられる。熱可塑性樹脂(B)にニトリル基を導入する方法もフェニル基の導入法と同様の方法を採用できる。   Examples of the method of introducing the phenyl group into the thermoplastic resin (B) include a method of polymerizing the monomer having the phenyl group, a method of introducing a phenyl group after polymerizing various monomers to form a main chain, Examples thereof include a method of grafting a compound having a phenyl group onto a side chain. As the substituent of the phenyl group, a conventionally known substituent that can replace hydrogen of the phenyl group can be used. For example, an alkyl group etc. are mention | raise | lifted. The method for introducing a nitrile group into the thermoplastic resin (B) can be the same as the method for introducing a phenyl group.

熱可塑性樹脂(B)は、不飽和ニトリル化合物から誘導される繰り返し単位(ニトリル単位)とスチレン系化合物から誘導される繰り返し単位(スチレン系単位)とを含む二元または三元以上の多元共重合体であるのが好ましい。たとえばアクリロニトリル・スチレン系の共重合体を好ましく用いることができる。   The thermoplastic resin (B) is a binary or ternary multi-copolymer comprising a repeating unit derived from an unsaturated nitrile compound (nitrile unit) and a repeating unit derived from a styrene compound (styrene unit). It is preferably a coalescence. For example, an acrylonitrile / styrene copolymer can be preferably used.

不飽和ニトリル化合物としては、シアノ基および反応性二重結合を有する任意の化合物があげられる。例えば、アクリロニトリル、メタクリロニトリル等のα−置換不飽和ニトリル、フマロニトリル等のα,β−二置換オレフィン性不飽和結合を有するニトリル化合物等があげられる。   The unsaturated nitrile compound includes any compound having a cyano group and a reactive double bond. Examples thereof include α-substituted unsaturated nitriles such as acrylonitrile and methacrylonitrile, and nitrile compounds having an α, β-disubstituted olefinically unsaturated bond such as fumaronitrile.

スチレン系化合物としては、フェニル基および反応性二重結合を有する任意の化合物があげられる。例えば、スチレン、ビニルトルエン、メトキシスチレン、クロロスチレン等の非置換または置換スチレン系化合物、α−メチルスチレン等のα−置換スチレン系化合物があげられる。   Examples of the styrenic compound include any compound having a phenyl group and a reactive double bond. Examples thereof include unsubstituted or substituted styrene compounds such as styrene, vinyl toluene, methoxystyrene, and chlorostyrene, and α-substituted styrene compounds such as α-methylstyrene.

熱可塑性樹脂(B)中のニトリル単位の含有量は特に制限されないが、総繰り返し単位を基準として、10〜70重量%程度、好ましくは20〜60重量%、さらに好ましくは20〜50重量%である。特に20〜40重量%、20〜30重量%が好ましい。スチレン系単位は、30〜80重量%程度、好ましくは40〜80重量%、さらに好ましくは50〜80重量%である。特に60〜80重量%、70〜80重量%が好ましい。   The content of the nitrile unit in the thermoplastic resin (B) is not particularly limited, but is about 10 to 70% by weight, preferably 20 to 60% by weight, more preferably 20 to 50% by weight based on the total repeating units. is there. 20 to 40 weight% and 20 to 30 weight% are especially preferable. The styrenic unit is about 30 to 80% by weight, preferably 40 to 80% by weight, and more preferably 50 to 80% by weight. 60 to 80 weight% and 70 to 80 weight% are especially preferable.

熱可塑性樹脂(B)は前記ニトリル単位とスチレン系単位を含有し、これらの単位のみにより形成することができる。また前記以外に他のビニル系単量体の繰り返し単位を50モル%以下の割合で含んでいてもよい。他のビニル系単量体としては熱可塑性樹脂(A)に例示したもの、オレフィンの繰り返し単位、マレイミド、置換マレイミドの繰り返し単位等があげられる。かかる熱可塑性樹脂(B)としてはAS樹脂、ABS樹脂、ASA樹脂等があげられる。   A thermoplastic resin (B) contains the said nitrile unit and a styrene-type unit, and can be formed only with these units. In addition to the above, repeating units of other vinyl monomers may be contained in a proportion of 50 mol% or less. Examples of the other vinyl monomers include those exemplified for the thermoplastic resin (A), olefin repeating units, maleimide, substituted maleimide repeating units, and the like. Examples of the thermoplastic resin (B) include AS resin, ABS resin, ASA resin, and the like.

熱可塑性樹脂(B)の重量平均分子量は特に制限されないが、1×103〜5×106程度である。好ましくは1×104以上、5×105以下である。 The weight average molecular weight of the thermoplastic resin (B) is not particularly limited, but is about 1 × 10 3 to 5 × 10 6 . It is preferably 1 × 10 4 or more and 5 × 10 5 or less.

熱可塑性樹脂(A)と熱可塑性樹脂(B)の比率は、保護フィルムに求められる位相差に応じて調整される。前記配合比は、一般的には熱可塑性樹脂(A)の含有量がフィルム中の樹脂の総量のうちの50〜95重量%であることが好ましく、60〜95重量%であることがより好ましく、さらに好ましくは、65〜90重量%である。熱可塑性樹脂(B)の含有量は、フィルム中の樹脂の総量のうちの5〜50重量%であることが好ましく、より好ましくは5〜40重量%であり、さらに好ましくは、10〜35重量%である。熱可塑性樹脂(A)と熱可塑性樹脂(B)はこれらを熱溶融混練することにより混合される。   The ratio of the thermoplastic resin (A) and the thermoplastic resin (B) is adjusted according to the retardation required for the protective film. In general, the content of the thermoplastic resin (A) is preferably 50 to 95% by weight, more preferably 60 to 95% by weight, based on the total amount of the resin in the film. More preferably, it is 65 to 90% by weight. The content of the thermoplastic resin (B) is preferably 5 to 50% by weight of the total amount of the resin in the film, more preferably 5 to 40% by weight, and still more preferably 10 to 35% by weight. %. The thermoplastic resin (A) and the thermoplastic resin (B) are mixed by hot-melt kneading them.

ノルボルネン系樹脂としては、例えば、ノルボルネン系モノマーの開環(共)重合体を、必要に応じてマレイン酸付加、シクロペンタジエン付加の如き変性を行った後に水素添加した樹脂、ノルボルネン系モノマーを付加重合させた樹脂、ノルボルネン系モノマーとエチレンやα−オレフィンなどのオレフィン系モノマーと付加重合させた樹脂、ノルボルネン系モノマーとシクロペンテン、シクロオクテン、5,6−ジヒドロジシクロペンタジエンなどの環状オレフィン系モノマーと付加重合させた樹脂などがあげられる。熱可塑性飽和ノルボルネン系樹脂の具体例としては、日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートン等があげられる。   Examples of norbornene-based resins include, for example, ring-opening (co) polymers of norbornene-based monomers, which are subjected to modifications such as maleic acid addition and cyclopentadiene addition, and then hydrogenated, and norbornene-based monomers are subjected to addition polymerization. Addition resin, norbornene monomer and addition polymerized olefin monomer such as ethylene and α-olefin, norbornene monomer and cyclic olefin monomer such as cyclopentene, cyclooctene and 5,6-dihydrodicyclopentadiene Examples thereof include polymerized resins. Specific examples of the thermoplastic saturated norbornene resin include ZEONEX and ZEONOR manufactured by Nippon Zeon Co., Ltd., and ARTON manufactured by JSR Corporation.

ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリ4−メチルペンテン−1などの炭素数が1から6のα−オレフィンのホモポリマーないしコポリマーなどがあげられる。ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート−イソフタレート共重合体などがあげられる。また各種ポリアミド系樹脂などがあげられる。   Examples of the polyolefin-based resin include homopolymers or copolymers of α-olefins having 1 to 6 carbon atoms such as polyethylene, polypropylene, ethylene-propylene copolymer, and poly-4-methylpentene-1. Examples of the polyester resin include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polyethylene terephthalate-isophthalate copolymer. In addition, various polyamide-based resins are exemplified.

また、特定の処理を施したセルロース系樹脂フィルムを用いることができる。セルロース系樹脂フィルムの材料としては、例えば、ジアセチルセルロースやトリアセチルセルロース等の脂肪酸置換セルロース系ポリマーがあげられる。セルロース系樹脂フィルムに対する処理手段は、下記手段により行うことができる。例えば、シクロペンタノン、メチルエチルケトン等の溶剤を塗布したポリエチレンテレフタレート、ポリプロピレン、ステンレス等の基材を、一般的なセルロース系樹脂フィルムに貼り合わせ、加熱乾燥(80〜150℃程度、3〜10分間程度)した後、基材フィルムを剥離する方法;ノルボルネン系樹脂、アクリル系樹脂等をシクロペンタノン、メチルエチルケトン等の溶剤に溶解した溶液を、一般的なセルロース系樹脂フィルムに塗布し、加熱乾燥(80〜150℃程度、3〜10分間程度)した後、塗布フィルムを剥離する方法等があげられる。セルロース系樹脂フィルムとしては、脂肪酸置換度を制御した脂肪酸置換セルロース系ポリマーを用いることができる。一般的に用いられているトリアセチルセルロースでは、酢酸置換度が2.8程度のものが用いられているが、酢酸置換度を1.8〜2.7、さらにプロピオン酸置換度を0.1〜1に制御したものを用いることにより、厚み方向位相差(Rth)を小さく制御できる。さらには、脂肪酸置換セルロース系ポリマーに、ジブチルフタレート、p-トルエンスルホンアニリド、クエン酸アセチルトリエチル等の可塑剤を添加することにより、厚み方向位相差(Rth)を小さく制御することができる。可塑剤の添加量は、脂肪酸置換セルロース系ポリマー100重量部に対して、40重量部程度以下、さらには1〜20重量部、さらには1〜15重量部とするのが好適である。   Moreover, the cellulose resin film which performed the specific process can be used. Examples of the material for the cellulose resin film include fatty acid-substituted cellulose polymers such as diacetyl cellulose and triacetyl cellulose. The treatment means for the cellulose resin film can be performed by the following means. For example, a base material such as polyethylene terephthalate, polypropylene, and stainless steel coated with a solvent such as cyclopentanone and methyl ethyl ketone is bonded to a general cellulose resin film and dried by heating (about 80 to 150 ° C. for about 3 to 10 minutes) ) And then peeling the substrate film; a solution obtained by dissolving norbornene resin, acrylic resin, etc. in a solvent such as cyclopentanone, methyl ethyl ketone, etc., is applied to a general cellulose resin film and dried by heating (80 (About 150 degreeC, about 3-10 minutes), and the method etc. which peel a coating film are mention | raise | lifted. As the cellulose resin film, a fatty acid substituted cellulose polymer having a controlled degree of fatty acid substitution can be used. Generally used triacetyl cellulose has an acetic acid substitution degree of about 2.8. The acetic acid substitution degree is 1.8 to 2.7, and the propionic acid substitution degree is 0.1. By using the one controlled to ˜1, the thickness direction retardation (Rth) can be controlled to be small. Furthermore, the thickness direction retardation (Rth) can be controlled to be small by adding a plasticizer such as dibutyl phthalate, p-toluenesulfonanilide, and acetyltriethyl citrate to the fatty acid-substituted cellulose polymer. The addition amount of the plasticizer is preferably about 40 parts by weight or less, more preferably 1 to 20 parts by weight, and further preferably 1 to 15 parts by weight with respect to 100 parts by weight of the fatty acid-substituted cellulose polymer.

保護フィルムの厚さは、任意であるが一般には偏光板の薄型化などを目的に1〜500μm、さらには1〜300μm、特に5〜300μmが好ましい。なお、偏光子の両側に保護フィルムを設ける場合は、その表裏で異なるポリマー等からなる保護フィルムを用いることができる。   The thickness of the protective film is arbitrary, but generally 1 to 500 μm, more preferably 1 to 300 μm, and particularly preferably 5 to 300 μm for the purpose of reducing the thickness of the polarizing plate. In addition, when providing a protective film on both sides of a polarizer, the protective film which consists of a polymer etc. which is different in the front and back can be used.

前記保護フィルムの透湿度は特に制限されないが、透湿度は、500g/m2/24h以下であるのが好ましい。さらには、120g/m2/24h以下であるのが好ましい。透湿度が500g/m2/24h以下の保護フィルムは高温度下や高湿度下において耐久性がよく、色相に関する耐湿性が良好である。前記保護フィルムに用いる材料としては、ノルボルネン系樹脂が、透湿度が低く好適である。 The moisture permeability of the protective film is not particularly limited, moisture permeability is preferably not more than 500g / m 2 / 24h. Further is preferably not more than 120g / m 2 / 24h. Protective film of less moisture permeability of 500g / m 2 / 24h well durability at high temperatures and high humidity, is excellent moisture resistance related hues. As a material used for the protective film, a norbornene-based resin is preferable because of low moisture permeability.

また保護フィルムには、各種樹脂層を設けることができ、樹脂層を介して接着剤により偏光子に貼り合わせることができる。   Moreover, various resin layers can be provided in a protective film, and it can affix on a polarizer with an adhesive agent through a resin layer.

樹脂層は、前記保護フィルムと良好に密着すれば特に制限されない。たとえば、エステル系、エーテル系、カーボネート系、ウレタン系、シリコーン系等の各種樹脂を用いることができる。前記樹脂層は水系、溶剤系のいずれでもよい。なかでも水系ウレタン樹脂やシリコーン系樹脂が好ましい。さらに上記樹脂層を形成する樹脂には、シランカップリング剤やチタンカップリング剤などのカップリング剤、そのカップリング剤を効率よく反応させるためのチタン系、錫系等の触媒を添加することができる。これにより一層偏光子と保護フィルムとの接着力をより強固にすることができる。また上記樹脂層には他の添加剤を加えてもよい。具体的にはさらにはテルペン樹脂、フェノール樹脂、テルペン−フェノール樹脂、ロジン樹脂、キシレン樹脂などの粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤などの安定剤等を用いてもよい。   The resin layer is not particularly limited as long as it is in good contact with the protective film. For example, various resins such as ester, ether, carbonate, urethane, and silicone can be used. The resin layer may be either water-based or solvent-based. Of these, water-based urethane resins and silicone resins are preferable. Furthermore, it is possible to add a coupling agent such as a silane coupling agent or a titanium coupling agent to the resin that forms the resin layer, and a catalyst such as a titanium-based or tin-based catalyst for efficiently reacting the coupling agent. it can. Thereby, the adhesive force between the polarizer and the protective film can be further strengthened. Moreover, you may add another additive to the said resin layer. Specifically, terpene resins, phenol resins, terpene-phenol resins, rosin resins, xylene resins and other tackifiers, UV absorbers, antioxidants, heat stabilizers and other stabilizers may be used.

上記樹脂層は、乾燥後の厚み、塗工の円滑性などを考慮して適当な濃度に希釈した溶液を公知の技術により塗工、乾燥することにより形成される。前記樹脂層は乾燥後の厚みが、好ましくは0.01〜10μm、さらに好ましくは0.1〜2μmである。樹脂層を複数層設ける場合にも、樹脂層の総厚みは前記範囲になるようにするのが好ましい。   The resin layer is formed by coating and drying a solution diluted to an appropriate concentration in consideration of the thickness after drying, the smoothness of coating, and the like by a known technique. The thickness of the resin layer after drying is preferably 0.01 to 10 μm, more preferably 0.1 to 2 μm. Even when a plurality of resin layers are provided, the total thickness of the resin layers is preferably in the above range.

なお、保護フィルムの偏光子と接着する面には、樹脂層を設けることができる他、易接着処理を施すことができる。易接着処理としては、プラズマ処理、コロナ処理等のドライ処理、アルカリ処理等の化学処理、易接着剤層を形成するコーティング処理等があげられる。   In addition, the surface which adhere | attaches with the polarizer of a protective film can provide an easily bonding process besides providing a resin layer. Examples of the easy adhesion treatment include dry treatment such as plasma treatment and corona treatment, chemical treatment such as alkali treatment, and coating treatment for forming an easy adhesive layer.

前記保護フィルムの偏光子を接着させない面には、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよい。   The surface of the protective film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, antisticking, diffusion or antiglare.

ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を保護フィルムの表面に付加する方式などにて形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止処理は隣接層との密着防止を目的に施される。   Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. For example, a cured film having excellent hardness and slipping properties with an appropriate ultraviolet curable resin such as acrylic or silicone is applied to the protective film. It can be formed by a method of adding to the surface. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. Further, the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.

またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が0.5〜50μmのシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2〜50重量部程度であり、5〜25重量部が好ましい。アンチグレア層は偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであってもよい。   The anti-glare treatment is applied for the purpose of preventing the outside light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, the surface is roughened by a sandblasting method or an embossing method. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a blending method of transparent fine particles. The fine particles to be included in the formation of the surface fine concavo-convex structure are, for example, conductive materials made of silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide or the like having an average particle size of 0.5 to 50 μm. In some cases, transparent fine particles such as inorganic fine particles, organic fine particles composed of a crosslinked or uncrosslinked polymer, and the like are used. When forming a surface fine uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the transparent resin forming the surface fine uneven structure. The antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.

なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、保護フィルムそのものに設けることができるほか、別途光学層として透明保護層とは別体のものとして設けることもできる。   The antireflection layer, antisticking layer, diffusion layer, antiglare layer, and the like can be provided on the protective film itself, or can be provided separately from the transparent protective layer as an optical layer.

前記偏光子と保護フィルムとの接着処理には、接着剤が用いられる。接着剤としては、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等を例示できる。前記接着剤は、通常、水溶液からなる接着剤として用いられ、通常、0.5〜60重量%の固形分を含有してなる。   An adhesive is used for the adhesion treatment between the polarizer and the protective film. Examples of the adhesive include isocyanate adhesives, polyvinyl alcohol adhesives, gelatin adhesives, vinyl latexes, and water-based polyesters. The said adhesive agent is normally used as an adhesive agent which consists of aqueous solution, and contains 0.5 to 60 weight% of solid content normally.

本発明の偏光板は、前記保護フィルムと偏光子を、前記接着剤を用いて貼り合わせることにより製造する。接着剤の塗布は、保護フィルム、偏光子のいずれに行ってもよく、両者に行ってもよい。貼り合わせ後には、乾燥工程を施し、塗布乾燥層からなる接着層を形成する。偏光子と保護フィルムの貼り合わせは、ロールラミネーター等により行うことができる。接着層の厚さは、特に制限されないが、通常0.1〜5μm程度である。   The polarizing plate of the present invention is produced by bonding the protective film and the polarizer together using the adhesive. Application | coating of an adhesive agent may be performed to any of a protective film and a polarizer, and may be performed to both. After the bonding, a drying process is performed to form an adhesive layer composed of a coating dry layer. Bonding of a polarizer and a protective film can be performed with a roll laminator or the like. The thickness of the adhesive layer is not particularly limited, but is usually about 0.1 to 5 μm.

本発明の偏光板は、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1/2や1/4等の波長板を含む)、視角補償フィルムなどの液晶表示装置等の形成に用いられることのある光学層を1層または2層以上用いることができる。特に、本発明の偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板、偏光板に更に視角補償フィルムが積層されてなる広視野角偏光板、あるいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。   The polarizing plate of the present invention can be used as an optical film laminated with another optical layer in practical use. The optical layer is not particularly limited. For example, for forming a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film. One or more optical layers that may be used can be used. In particular, a reflective polarizing plate or a semi-transmissive polarizing plate in which a polarizing plate or a semi-transmissive reflecting plate is further laminated on the polarizing plate of the present invention, an elliptical polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on the polarizing plate. A wide viewing angle polarizing plate obtained by further laminating a viewing angle compensation film on a plate or a polarizing plate, or a polarizing plate obtained by further laminating a brightness enhancement film on the polarizing plate is preferable.

反射型偏光板は、偏光板に反射層を設けたもので、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。   A reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device or the like that reflects incident light from the viewing side (display side). Such a light source can be omitted, and the liquid crystal display device can be easily thinned. The reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer made of metal or the like is attached to one surface of the polarizing plate via a transparent protective layer or the like as necessary.

反射型偏光板の具体例としては、必要に応じマット処理した保護フィルムの片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設して反射層を形成したものなどがあげられる。また前記保護フィルムに微粒子を含有させて表面微細凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前記した微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性やギラギラした見栄えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有の保護フィルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗ムラをより抑制しうる利点なども有している。保護フィルムの表面微細凹凸構造を反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレーティング方式、スパッタリング方式等の蒸着方式やメッキ方式などの適宜な方式で金属を透明保護層の表面に直接付設する方法などにより行うことができる。   Specific examples of the reflective polarizing plate include those in which a reflective layer is formed by attaching a foil or vapor-deposited film made of a reflective metal such as aluminum on one surface of a protective film matted as necessary. In addition, the protective film may contain fine particles to form a surface fine concavo-convex structure and a reflective layer having a fine concavo-convex structure thereon. The reflective layer having the fine concavo-convex structure has an advantage that incident light is diffused by irregular reflection to prevent directivity and glaring appearance and to suppress unevenness in brightness and darkness. Moreover, the protective film containing fine particles also has an advantage that incident light and its reflected light are diffused when passing through it and light and dark unevenness can be further suppressed. The reflective layer with a fine concavo-convex structure reflecting the surface fine concavo-convex structure of the protective film is transparently protected by an appropriate method such as a vapor deposition method such as a vacuum deposition method, an ion plating method, a sputtering method, or a plating method. It can be performed by a method of attaching directly to the surface of the layer.

反射板は前記の偏光板の保護フィルムに直接付与する方式に代えて、その透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。なお反射層は、通常、金属からなるので、その反射面が保護フィルムや偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ましい。   The reflective plate can be used as a reflective sheet in which a reflective layer is provided on an appropriate film according to the transparent film, instead of the method of directly imparting to the protective film of the polarizing plate. Since the reflective layer is usually made of metal, the usage form in which the reflective surface is covered with a protective film, a polarizing plate or the like is used to prevent a decrease in reflectance due to oxidation, and thus the long-term sustainability of the initial reflectance. More preferable is the point of avoiding the additional attachment of the protective layer.

なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。   The semi-transmissive polarizing plate can be obtained by using a semi-transmissive reflective layer such as a half mirror that reflects and transmits light with the reflective layer. A transflective polarizing plate is usually provided on the back side of a liquid crystal cell, and displays an image by reflecting incident light from the viewing side (display side) when a liquid crystal display device is used in a relatively bright atmosphere. In a relatively dark atmosphere, a liquid crystal display device or the like that displays an image using a built-in light source such as a backlight built in the back side of the transflective polarizing plate can be formed. In other words, the transflective polarizing plate is useful for forming a liquid crystal display device of a type that can save energy of using a light source such as a backlight in a bright atmosphere and can be used with a built-in light source even in a relatively dark atmosphere. It is.

偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる1/4波長板(λ/4板とも言う)が用いられる。1/2波長板(λ/2板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。   An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described. A phase difference plate or the like is used when changing linearly polarized light to elliptically polarized light or circularly polarized light, changing elliptically polarized light or circularly polarized light to linearly polarized light, or changing the polarization direction of linearly polarized light. In particular, a so-called quarter-wave plate (also referred to as a λ / 4 plate) is used as a retardation plate that changes linearly polarized light into circularly polarized light or changes circularly polarized light into linearly polarized light. A half-wave plate (also referred to as a λ / 2 plate) is usually used when changing the polarization direction of linearly polarized light.

楕円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈折により生じた着色(青又は黄)を補償(防止)して、前記着色のない白黒表示する場合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償(防止)することができて好ましい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。上記した位相差板の具体例としては、ポリカーボネート、ポリビニルアルコール、ポリスチレン、ポリメチルメタクリレート、ポリプロピレンやその他のポリオレフィン、ポリアリレート、ポリアミドの如き適宜なポリマーからなるフィルムを延伸処理してなる複屈折性フィルムや液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差板は、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を目的としたものなどの使用目的に応じた適宜な位相差を有するものであってよく、2種以上の位相差板を積層して位相差等の光学特性を制御したものなどであってもよい。   The elliptically polarizing plate is effectively used for black and white display without the above color by compensating (preventing) the coloration (blue or yellow) generated by the birefringence of the liquid crystal layer of the super twist nematic (STN) type liquid crystal display device. It is done. Further, the one in which the three-dimensional refractive index is controlled is preferable because it can compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction. The circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which an image is displayed in color, and also has an antireflection function. Specific examples of the retardation plate include a birefringent film obtained by stretching a film made of an appropriate polymer such as polycarbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene, other polyolefins, polyarylate, and polyamide. And an alignment film of a liquid crystal polymer, and a liquid crystal polymer alignment layer supported by a film. The retardation plate may have an appropriate retardation according to the purpose of use, such as those for the purpose of compensating for various wavelength plates or birefringence of the liquid crystal layer, viewing angle, and the like. What laminated | stacked the phase difference plate and controlled optical characteristics, such as phase difference, etc. may be used.

また上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相差板を適宜な組合せで積層したものである。かかる楕円偏光板等は、(反射型)偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個に積層することによっても形成しうるが、前記の如く予め楕円偏光板等の光学フィルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造効率を向上させうる利点がある。   The elliptical polarizing plate and the reflective elliptical polarizing plate are obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination. Such an elliptically polarizing plate or the like can also be formed by sequentially laminating them sequentially in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflective) polarizing plate and a retardation plate. An optical film such as a polarizing plate has an advantage that it can improve the production efficiency of a liquid crystal display device and the like because of excellent quality stability and lamination workability.

視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向から見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルムである。このような視角補償位相差板としては、例えば位相差フィルム、液晶ポリマー等の配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなどからなる。通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマーフィルムが用いられるのに対し、視角補償フィルムとして用いられる位相差板には、面方向に二軸に延伸された複屈折を有するポリマーフィルムとか、面方向に一軸に延伸され厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマーや傾斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムとしては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又は/及び収縮処理したものや、液晶ポリマーを斜め配向させたものなどが挙げられる。位相差板の素材原料ポリマーは、先の位相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的とした適宜なものを用いうる。   The viewing angle compensation film is a film for widening the viewing angle so that an image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed from a slightly oblique direction rather than perpendicular to the screen. As such a viewing angle compensation phase difference plate, for example, a retardation film, an alignment film such as a liquid crystal polymer, or an alignment layer such as a liquid crystal polymer supported on a transparent substrate is used. A normal retardation plate uses a birefringent polymer film uniaxially stretched in the plane direction, whereas a retardation plate used as a viewing angle compensation film stretches biaxially in the plane direction. Birefringent polymer film, biaxially stretched film such as polymer with birefringence with a controlled refractive index in the thickness direction that is uniaxially stretched in the plane direction and stretched in the thickness direction, etc. Used. Examples of the inclined alignment film include a film obtained by bonding a heat shrink film to a polymer film and stretching or / and shrinking the polymer film under the action of the contraction force by heating, and a film obtained by obliquely aligning a liquid crystal polymer. Can be mentioned. The raw material polymer for the phase difference plate is the same as the polymer described in the previous phase difference plate, preventing coloration due to a change in the viewing angle based on the phase difference by the liquid crystal cell and expanding the viewing angle for good visual recognition. An appropriate one for the purpose can be used.

また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセルロースフィルムにて支持した光学補償位相差板が好ましく用いうる。   Also, from the viewpoint of achieving a wide viewing angle with good visibility, an optically compensated phase difference in which a liquid crystal polymer alignment layer, in particular an optically anisotropic layer composed of a discotic liquid crystal polymer gradient alignment layer, is supported by a triacetylcellulose film. A plate can be preferably used.

偏光板と輝度向上フィルムを貼り合わせた偏光板は、通常液晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることにより輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バックライトなどで液晶セルの裏側から偏光子を通して光を入射した場合には、偏光子の偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしまい、偏光子を透過してこない。すなわち、用いた偏光子の特性によっても異なるが、およそ50%の光が偏光子に吸収されてしまい、その分、液晶画像表示等に利用しうる光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏光方向を有する光を偏光子に入射させずに輝度向上フィルムで一旦反射させ、更にその後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射させることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用でき、画面を明るくすることができる。   A polarizing plate obtained by bonding a polarizing plate and a brightness enhancement film is usually provided on the back side of a liquid crystal cell. The brightness enhancement film reflects a linearly polarized light with a predetermined polarization axis or a circularly polarized light in a predetermined direction when natural light is incident due to a backlight such as a liquid crystal display device or reflection from the back side, and transmits other light. In addition, a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate allows light from a light source such as a backlight to enter to obtain transmitted light in a predetermined polarization state, and reflects light without transmitting the light other than the predetermined polarization state. The The light reflected on the surface of the brightness enhancement film is further inverted through a reflective layer or the like provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state. Luminance can be improved by increasing the amount of light transmitted through the enhancement film and increasing the amount of light that can be used for liquid crystal display image display or the like by supplying polarized light that is difficult to be absorbed by the polarizer. That is, when light is incident through the polarizer from the back side of the liquid crystal cell without using a brightness enhancement film, light having a polarization direction that does not coincide with the polarization axis of the polarizer is almost polarized. It is absorbed by the polarizer and does not pass through the polarizer. That is, although depending on the characteristics of the polarizer used, approximately 50% of the light is absorbed by the polarizer, and the amount of light that can be used for liquid crystal image display or the like is reduced accordingly, resulting in a dark image. The brightness enhancement film allows light having a polarization direction that is absorbed by the polarizer to be reflected once by the brightness enhancement film without being incident on the polarizer, and further inverted through a reflective layer provided on the rear side thereof. Repeatedly re-enter the brightness enhancement film, and the brightness enhancement film transmits only polarized light whose polarization direction is such that the polarization direction of light reflected and inverted between the two can pass through the polarizer. Therefore, light such as a backlight can be efficiently used for displaying an image on the liquid crystal display device, and the screen can be brightened.

輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。すなわち、拡散板は偏光を元の自然光状態にもどす。この非偏光状態、すなわち自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光状態にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる。   A diffusion plate may be provided between the brightness enhancement film and the reflective layer. The polarized light reflected by the brightness enhancement film is directed to the reflective layer or the like, but the installed diffuser plate uniformly diffuses the light passing therethrough and simultaneously cancels the polarized state and becomes a non-polarized state. That is, the diffuser plate returns the polarized light to the original natural light state. The light in the non-polarized state, that is, the natural light state is directed toward the reflection layer and the like, reflected through the reflection layer and the like, and again passes through the diffusion plate and reenters the brightness enhancement film. Thus, while maintaining the brightness of the display screen by providing a diffuser plate that returns polarized light to the original natural light state between the brightness enhancement film and the reflective layer, etc., the brightness unevenness of the display screen is reduced at the same time, A uniform and bright screen can be provided. By providing such a diffuser plate, it is considered that the first incident light has a moderate increase in the number of repetitions of reflection, and in combination with the diffusion function of the diffuser plate, a uniform bright display screen can be provided.

前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。   The brightness enhancement film has a characteristic of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, such as a multilayer thin film of dielectric material or a multilayer laminate of thin film films having different refractive index anisotropies. Such as an alignment film of a cholesteric liquid crystal polymer or an alignment liquid crystal layer supported on a film substrate, which reflects either left-handed or right-handed circularly polarized light and transmits other light. Appropriate things such as a thing can be used.

従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶層の如く円偏光を投下するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板として1/4波長板を用いることにより、円偏光を直線偏光に変換することができる。   Therefore, in the brightness enhancement film of the type that transmits linearly polarized light having the predetermined polarization axis as described above, the transmitted light is incident on the polarizing plate with the polarization axis aligned as it is, thereby efficiently transmitting while suppressing absorption loss due to the polarizing plate. Can be made. On the other hand, in a brightness enhancement film of a type that emits circularly polarized light such as a cholesteric liquid crystal layer, it can be directly incident on a polarizer. However, from the viewpoint of suppressing absorption loss, the circularly polarized light is linearly polarized through a retardation plate. It is preferable to make it enter into a polarizing plate. Note that circularly polarized light can be converted to linearly polarized light by using a quarter wave plate as the retardation plate.

可視光域等の広い波長範囲で1/4波長板として機能する位相差板は、例えば波長550nmの淡色光に対して1/4波長板として機能する位相差層と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重畳する方式などにより得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、1層又は2層以上の位相差層からなるものであってよい。   A retardation plate that functions as a quarter-wave plate in a wide wavelength range such as a visible light region exhibits, for example, a retardation layer that functions as a quarter-wave plate for light-color light having a wavelength of 550 nm and other retardation characteristics. It can be obtained by a method of superposing a retardation layer, for example, a retardation layer functioning as a half-wave plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or more retardation layers.

なお、コレステリック液晶層についても、反射波長が相違するものの組み合わせにして2層又は3層以上重畳した配置構造とすることにより、可視光領域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。   In addition, the cholesteric liquid crystal layer can also be obtained by reflecting circularly polarized light in a wide wavelength range such as a visible light region by combining two or more layers having different reflection wavelengths and having an overlapping structure. Based on this, transmitted circularly polarized light in a wide wavelength range can be obtained.

また偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板などであってもよい。   Further, the polarizing plate may be formed by laminating a polarizing plate and two or more optical layers as in the above-described polarization separation type polarizing plate. Therefore, a reflective elliptical polarizing plate or a semi-transmissive elliptical polarizing plate in which the above-mentioned reflective polarizing plate or transflective polarizing plate and a retardation plate are combined may be used.

偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前記の偏光板やその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。   An optical film in which the optical layer is laminated on a polarizing plate can be formed by a method of sequentially laminating separately in the manufacturing process of a liquid crystal display device or the like. There is an advantage that the manufacturing process of a liquid crystal display device or the like can be improved because of excellent stability and assembly work. For the lamination, an appropriate adhesive means such as an adhesive layer can be used. When adhering the polarizing plate and other optical films, their optical axes can be set at an appropriate arrangement angle in accordance with the target retardation characteristics.

前述した偏光板や、偏光板を少なくとも1層積層されている光学フィルムには、液晶セル等の他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。   An adhesive layer for adhering to other members such as a liquid crystal cell may be provided on the polarizing plate described above or an optical film in which at least one polarizing plate is laminated. The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited. For example, an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer is appropriately selected. Can be used. In particular, those having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used.

また上記に加えて、吸湿による発泡現象や剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性などの点より、吸湿率が低くて耐熱性に優れる粘着層が好ましい。   In addition to the above, in terms of prevention of foaming and peeling phenomena due to moisture absorption, deterioration of optical properties and liquid crystal cell warpage due to differences in thermal expansion, etc., as well as formability of liquid crystal display devices with high quality and excellent durability An adhesive layer having a low moisture absorption rate and excellent heat resistance is preferred.

粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤や顔料、着色剤、酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘着層などであってもよい。   The adhesive layer is, for example, natural or synthetic resins, in particular, tackifier resins, fillers or pigments made of glass fibers, glass beads, metal powders, other inorganic powders, colorants, antioxidants, etc. It may contain an additive to be added to the adhesive layer. Moreover, the adhesion layer etc. which contain microparticles | fine-particles and show light diffusibility may be sufficient.

偏光板や光学フィルムの片面又は両面への粘着層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた10〜40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で偏光板上または光学フィルム上に直接付設する方式、あるいは前記に準じセパレータ上に粘着層を形成してそれを偏光板上または光学フィルム上に移着する方式などがあげられる。   Attachment of the adhesive layer to one or both sides of the polarizing plate or the optical film can be performed by an appropriate method. For example, a pressure sensitive adhesive solution of about 10 to 40% by weight in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of a suitable solvent alone or a mixture such as toluene and ethyl acetate is prepared. A method in which it is directly attached on a polarizing plate or an optical film by an appropriate development method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the above, and this is applied to a polarizing plate or an optical film. The method of moving up is mentioned.

粘着層は、異なる組成又は種類等のものの重畳層として偏光板や光学フィルムの片面又は両面に設けることもできる。また両面に設ける場合に、偏光板や光学フィルムの表裏において異なる組成や種類や厚さ等の粘着層とすることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には1〜500μmであり、5〜200μmが好ましく、特に10〜100μmが好ましい。   The pressure-sensitive adhesive layer can be provided on one side or both sides of a polarizing plate or an optical film as a superimposed layer of different compositions or types. Moreover, when providing in both surfaces, it can also be set as the adhesion layers of a different composition, a kind, thickness, etc. in the front and back of a polarizing plate or an optical film. The thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 1 to 500 μm, preferably 5 to 200 μm, particularly preferably 10 to 100 μm.

粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鏡アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。   On the exposed surface of the adhesive layer, a separator is temporarily attached and covered for the purpose of preventing contamination until it is put to practical use. Thereby, it can prevent contacting an adhesion layer in the usual handling state. As the separator, except for the above thickness conditions, for example, a suitable thin leaf body such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foam sheet, metal foil, laminate thereof, and the like, silicone type or Appropriate ones according to the prior art, such as those coated with an appropriate release agent such as a long mirror alkyl type, fluorine type or molybdenum sulfide, can be used.

なお本発明において、上記した偏光板を形成する偏光子や保護フィルムや光学フィルム等、また粘着層などの各層には、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであってもよい。   In the present invention, the polarizer, protective film, optical film, etc. that form the polarizing plate described above, and each layer such as an adhesive layer include, for example, salicylic acid ester compounds, benzophenol compounds, benzotriazole compounds, and cyanoacrylate compounds. A compound or a compound having ultraviolet absorbing ability by a method such as a method of treating with a UV absorber such as a nickel complex salt compound may be used.

本発明の偏光板または光学フィルムは液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと偏光板または光学フィルム、及び必要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光板または光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。   The polarizing plate or the optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing plate or an optical film, and an illumination system as necessary, and incorporating a drive circuit. There is no limitation in particular except the point which uses the polarizing plate or optical film by invention, and it can apply according to the former. As the liquid crystal cell, any type such as a TN type, an STN type, or a π type can be used.

液晶セルの片側又は両側に偏光板または光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による偏光板または光学フィルムは液晶セルの片側又は両側に設置することができる。両側に偏光板または光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。   An appropriate liquid crystal display device such as a liquid crystal display device in which a polarizing plate or an optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight or a reflector used in an illumination system can be formed. In that case, the polarizing plate or optical film by this invention can be installed in the one side or both sides of a liquid crystal cell. When providing a polarizing plate or an optical film on both sides, they may be the same or different. Further, when forming a liquid crystal display device, for example, a single layer or a suitable part such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged.

次いで有機エレクトロルミネセンス装置(有機EL表示装置)について説明する。一般に、有機EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組み合わせをもった構成が知られている。   Next, an organic electroluminescence device (organic EL display device) will be described. Generally, in an organic EL display device, a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitter (organic electroluminescent light emitter). Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Alternatively, a structure having various combinations such as a laminate of such a light emitting layer and an electron injection layer composed of a perylene derivative or the like, or a laminate of these hole injection layer, light emitting layer, and electron injection layer is known. It has been.

有機EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。   In organic EL display devices, holes and electrons are injected into the organic light-emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons excites the phosphor material. Then, light is emitted on the principle that the excited fluorescent material emits light when returning to the ground state. The mechanism of recombination in the middle is the same as that of a general diode, and as can be predicted from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.

有機EL表示装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg−Ag、Al−Liなどの金属電極を用いている。   In an organic EL display device, in order to extract light emitted from the organic light emitting layer, at least one of the electrodes must be transparent, and a transparent electrode usually formed of a transparent conductor such as indium tin oxide (ITO) is used as an anode. It is used as On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.

このような構成の有機EL表示装置において、有機発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える。   In the organic EL display device having such a configuration, the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident from the surface of the transparent substrate at the time of non-light emission, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode is again emitted to the surface side of the transparent substrate. The display surface of the organic EL display device looks like a mirror surface.

電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を含む有機EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることができる。   In an organic EL display device comprising an organic electroluminescent light emitting device comprising a transparent electrode on the surface side of an organic light emitting layer that emits light upon application of a voltage and a metal electrode on the back side of the organic light emitting layer, the surface of the transparent electrode While providing a polarizing plate on the side, a retardation plate can be provided between the transparent electrode and the polarizing plate.

位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。特に、位相差板を1/4波長板で構成し、かつ偏光板と位相差板との偏光方向のなす角をπ/4に調整すれば、金属電極の鏡面を完全に遮蔽することができる。   Since the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization action. In particular, the mirror surface of the metal electrode can be completely shielded by configuring the retardation plate with a quarter-wave plate and adjusting the angle formed by the polarization direction of the polarizing plate and the retardation plate to π / 4. .

すなわち、この有機EL表示装置に入射する外部光は、偏光板により直線偏光成分のみが透過する。この直線偏光は位相差板により一般に楕円偏光となるが、とくに位相差板が1/4波長板でしかも偏光板と位相差板との偏光方向のなす角がπ/4のときには円偏光となる。   That is, only the linearly polarized light component of the external light incident on the organic EL display device is transmitted by the polarizing plate. This linearly polarized light becomes generally elliptically polarized light by the phase difference plate, but becomes circularly polarized light particularly when the phase difference plate is a quarter wavelength plate and the angle formed by the polarization direction of the polarizing plate and the phase difference plate is π / 4. .

この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。   This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and becomes linearly polarized light again on the retardation plate. And since this linearly polarized light is orthogonal to the polarization direction of a polarizing plate, it cannot permeate | transmit a polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.

以下に、この発明の実施例を記載してより具体的に説明する。なお、以下において、部とあるのは重量部を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. In the following, “parts” means parts by weight.

保護フィルムの屈折率nx、ny、nzは自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA21ADH)により計測し、面内位相差Re、厚み方向位相差Rthを算出した。   The refractive indexes nx, ny, and nz of the protective film were measured with an automatic birefringence measuring device (manufactured by Oji Scientific Instruments, automatic birefringence meter KOBRA21ADH), and the in-plane retardation Re and the thickness direction retardation Rth were calculated.

実施例1
(偏光子)
重合度2400、ケン化度98.5%のポリビニルアルコール樹脂を溶解した固形分13重量%のポリビニルアルコール水溶液と、メソゲン基の両末端に一つずつアクリロイル基を有する液晶性単量体(ネマチック液晶温度範囲が40〜70℃)とグリセリンとを、ポリビニルアルコール:液晶性単量体:グリセリン=100:5:15(重量比)になるように混合し、液晶温度範囲以上に加熱してホモミキサーにて撹拌して混合溶液を得た。当該混合溶液中に存在している気泡を室温(23℃)で放置することにより脱泡した後に、キャスト法にて塗工、続いて乾燥後に、白濁した厚さ70μmの混合フィルムを得た。この混合フィルムを130℃で10分間熱処理した。
Example 1
(Polarizer)
A 13% by weight polyvinyl alcohol aqueous solution in which a polyvinyl alcohol resin having a polymerization degree of 2400 and a saponification degree of 98.5% is dissolved, and a liquid crystalline monomer having one acryloyl group at both ends of the mesogenic group (nematic liquid crystal) The temperature range is 40-70 ° C.) and glycerin are mixed such that polyvinyl alcohol: liquid crystalline monomer: glycerin = 100: 5: 15 (weight ratio), and heated to a temperature higher than the liquid crystal temperature range. To obtain a mixed solution. The bubbles present in the mixed solution were degassed by leaving them at room temperature (23 ° C.), and then coated by a casting method, followed by drying to obtain a white turbid mixed film having a thickness of 70 μm. This mixed film was heat-treated at 130 ° C. for 10 minutes.

上記混合フィルムを30℃の水浴に浸漬して膨潤させたのち、30℃のヨウ素:ヨウ化カリウム=1:7(重量比)の水溶液(染色浴:濃度0.32重量%)に浸漬しながら約3倍に延伸し、その後、50℃のホウ酸3重量%水溶液(架橋浴)に浸漬しながら総延伸倍率が約6倍になるように延伸した後、さらに60℃のホウ酸4重量%水溶液(架橋浴)に浸漬した。さらに、30℃のヨウ化カリウム5重量%水溶液浴に浸漬して色相調節を行なった。続いて50℃にて4分間乾燥し、本発明の偏光子を得た。   The mixed film is immersed in a 30 ° C. water bath to swell, and then immersed in an aqueous solution (dye bath: concentration 0.32% by weight) of iodine: potassium iodide = 1: 7 (weight ratio) at 30 ° C. The film was stretched about 3 times, then stretched so that the total stretch ratio was about 6 times while immersed in a 3% by weight boric acid aqueous solution (crosslinking bath) at 50 ° C., and then further 4% by weight boric acid at 60 ° C. It was immersed in an aqueous solution (crosslinking bath). Furthermore, the hue was adjusted by dipping in a 5% by weight aqueous solution of potassium iodide at 30 ° C. Then, it dried at 50 degreeC for 4 minute (s), and obtained the polarizer of this invention.

(異方散乱発現の確認と屈折率の測定)
また得られた偏光子を偏光顕微鏡観察したところ、ポリビニルアルコールマトリクス中に無数に分散された液晶性単量体の微小領域が形成されていることが確認できた。この液晶性単量体は延伸方向に配向しており、微小領域の延伸方向(△n2方向)の平均サイズは5〜10μmであった。
(Confirmation of anisotropic scattering and measurement of refractive index)
Further, when the obtained polarizer was observed with a polarizing microscope, it was confirmed that minute regions of liquid crystal monomers dispersed innumerably in the polyvinyl alcohol matrix were formed. This liquid crystalline monomer was oriented in the stretching direction, and the average size in the stretching direction (Δn 2 direction) of the microregion was 5 to 10 μm.

マトリクスと微小領域の屈折率については、各々別々に測定した。測定は20℃で行なった。まず、同一延伸条件で延伸したポリビニルアルコールフィルム単独の屈折率をアッベ屈折計(測定光589nm)で測定したところ、延伸方向(△n1方向)の屈折率=1.54,△n2方向の屈折率=1.52であった。また液晶性単量体の屈折率(ne:異常光屈折率およびno:常光屈折率)を測定した。noは、垂直配向処理を施した高屈折率ガラス上に液晶性単量体を配向塗設し、アッベ屈折計(測定光589nm)で測定した。一方、水平配向処理した液晶セルに液晶性単量体を注入し、自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA21ADH)にて位相差(Δn×d)を測定し、また別途、光干渉法によりセルギャップを(d)を測定し、位相差/セルギャップからΔnを算出し、このΔnとnoの和をne とした。ne(△n1方向の屈折率に相当)=1.64、no(△n2方向の屈折率に相当)=1.52,であった。従って、△n1=1.64−1.54=0.10、△n2=1.52−1.52=0.00と算出された。以上から所望の異方散乱が発現していることが確認できた。 The refractive indexes of the matrix and the minute region were measured separately. The measurement was performed at 20 ° C. First, when the refractive index of a polyvinyl alcohol film alone stretched under the same stretching conditions was measured with an Abbe refractometer (measurement light 589 nm), the refractive index in the stretching direction (Δn 1 direction) = 1.54, in the Δn 2 direction. Refractive index = 1.52. The refractive index of the liquid crystal monomer (n e: extraordinary refractive index and n o: ordinary index) was measured. n o is oriented Coating liquid crystal monomer onto a high refractive index glass with a vertical alignment treatment was measured with an Abbe refractometer (measurement light 589 nm). On the other hand, a liquid crystalline monomer is injected into a horizontally aligned liquid crystal cell, and the phase difference (Δn × d) is measured with an automatic birefringence measuring apparatus (manufactured by Oji Scientific Instruments, automatic birefringence meter KOBRA21ADH). separately, a cell gap by a light interference method to measure (d), to calculate the Δn from the phase difference / cell gap, the sum of the Δn and n o was ne. n (corresponding to △ n 1 the refractive index in the direction) e = 1.64, (corresponding to △ n 2 the refractive index in the direction) n o = 1.52, was. Therefore, Δn 1 = 1.64−1.54 = 0.10 and Δn 2 = 1.52−1.52 = 0.00 were calculated. From the above, it was confirmed that desired anisotropic scattering was expressed.

(保護フィルム)
イソブテンおよびN−メチルマレイミドからなる交互共重合体(N−メチルマレイミド含有量50モル%)75重量部と、アクリロニトリルの含有量が28重量%であるアクリロニトリル−スチレン共重合体25重量部とを塩化メチレンに溶解し、固形分濃度15重量%の溶液を得た。この溶液をガラス板状に敷いポリエチレンテレフタレートフィルム上に流延し、室温で60分放置した後、当該フィルムから剥がした。100℃で10分間乾燥後に、140℃で10分間、さらに160℃で30分間乾燥して、厚さ100μmの保護フィルムを得た。保護フィルムの面内位相差Reは4nm、厚み方向位相差Rthは4nmであった。
(Protective film)
75 parts by weight of an alternating copolymer composed of isobutene and N-methylmaleimide (N-methylmaleimide content: 50 mol%) and 25 parts by weight of acrylonitrile-styrene copolymer having an acrylonitrile content of 28% by weight are chlorinated. This was dissolved in methylene to obtain a solution having a solid concentration of 15% by weight. This solution was spread on a glass plate, cast on a polyethylene terephthalate film, allowed to stand at room temperature for 60 minutes, and then peeled off from the film. After drying at 100 ° C. for 10 minutes, it was dried at 140 ° C. for 10 minutes and further at 160 ° C. for 30 minutes to obtain a protective film having a thickness of 100 μm. The in-plane retardation Re of the protective film was 4 nm, and the thickness direction retardation Rth was 4 nm.

(偏光板)
前記保護フィルムを、上記偏光子の両面にポリウレタン系接着剤を用いて積層して偏光板を作製した。
(Polarizer)
The said protective film was laminated | stacked on both surfaces of the said polarizer using the polyurethane-type adhesive agent, and the polarizing plate was produced.

実施例2
実施例1において、保護フィルムとして、厚さ80μmのノルボルネン系フィルム(JSR社製,アートン:面内位相差Reは4nm、厚み方向位相差Rthは20nm)を用いたこと以外は実施例1と同様にして偏光板を得た。
Example 2
In Example 1, a norbornene-based film having a thickness of 80 μm (manufactured by JSR, Arton: in-plane retardation Re is 4 nm, thickness direction retardation Rth is 20 nm) was used as the protective film in the same manner as in Example 1. Thus, a polarizing plate was obtained.

実施例3
実施例1において、保護フィルムとして、厚さ40μmのノルボルネン系フィルム(日本ゼオン社製,ゼオノア:面内位相差Reは0.3nm、厚み方向位相差Rthは7.8nm)を用いたこと以外は実施例1と同様にして偏光板を得た。
Example 3
In Example 1, a 40 μm-thick norbornene film (manufactured by Nippon Zeon Co., Ltd., ZEONOR: in-plane retardation Re is 0.3 nm, thickness direction retardation Rth is 7.8 nm) is used as the protective film. A polarizing plate was obtained in the same manner as in Example 1.

実施例4
(保護フィルム)
環状オレフィン系樹脂(Ticona社製,TOPAS6013)100重量部と紫外線吸収剤(旭電化社製,LA31)5重量部を混合し、5時間乾燥した後に270℃に設定した押出し機に供給し、溶融混練後に、Tダイから押出し、冷却ロールにて引き取り、厚み40μmからなる保護フィルムを得た。上記で得られた保護フィルムにコロナ処理を行った。さらにコロナ処理面にシラノール(日本ユニカー製,APZ6601)100重量部に対して、イソプロピルアルコール67重量部を混合、撹拌したものを塗布し、そののち120℃で2分間乾燥して樹脂層を形成した。樹脂層の厚みは30nmであった。
Example 4
(Protective film)
100 parts by weight of a cyclic olefin resin (Ticona, TOPAS 6013) and 5 parts by weight of an ultraviolet absorber (Asahi Denka Co., LA31) are mixed, dried for 5 hours, and then supplied to an extruder set at 270 ° C. for melting. After kneading, the film was extruded from a T die and taken up with a cooling roll to obtain a protective film having a thickness of 40 μm. The protective film obtained above was subjected to corona treatment. Further, a mixture obtained by mixing and stirring 67 parts by weight of isopropyl alcohol with respect to 100 parts by weight of silanol (manufactured by Nihon Unicar, APZ6601) was applied to the corona-treated surface, and then dried at 120 ° C. for 2 minutes to form a resin layer. . The thickness of the resin layer was 30 nm.

実施例1において、前記樹脂層を形成した保護フィルム(面内位相差Reは0.8nm、厚み方向位相差Rthは1.3nm)を用いたこと以外は実施例1と同様にして偏光板を得た。樹脂層を形成した保護フィルムは樹脂層が偏光子側になるようにした。   In Example 1, a polarizing plate was prepared in the same manner as in Example 1 except that the protective film on which the resin layer was formed (in-plane retardation Re was 0.8 nm and thickness direction retardation Rth was 1.3 nm) was used. Obtained. The protective film on which the resin layer was formed was such that the resin layer was on the polarizer side.

実施例5
(保護フィルム)
シクロペンタノン5mlをポリエチレンテレフタレートフィルム(厚み75μm,縦10cm×横20cm)上にバーコート法により塗布した。そのシクロペンタノンの塗布された面上に、トリアセチルセルロースフィルム(富士写真フイルム社製,UZ−TAC;厚み40μm,縦10cm×横20cm)を積層した。この積層体を、100℃で5分間乾燥した後、この積層体からポリエチレンテレフタレートフィルムを剥離して、セルロース系樹脂フィルム単独からなる保護フィルムを得た。
Example 5
(Protective film)
5 ml of cyclopentanone was applied on a polyethylene terephthalate film (thickness 75 μm, length 10 cm × width 20 cm) by a bar coating method. A triacetyl cellulose film (Fuji Photo Film, UZ-TAC; thickness 40 μm, length 10 cm × width 20 cm) was laminated on the surface coated with cyclopentanone. The laminate was dried at 100 ° C. for 5 minutes, and then the polyethylene terephthalate film was peeled from the laminate to obtain a protective film made of a cellulose resin film alone.

実施例1において、前記保護フィルム(面内位相差Reは0.5nm、厚み方向位相差Rthは5.1nm)を用いたこと以外は実施例1と同様にして偏光板を得た。   A polarizing plate was obtained in the same manner as in Example 1 except that the protective film (in-plane retardation Re was 0.5 nm and thickness direction retardation Rth was 5.1 nm) was used.

比較例1
実施例1において、保護フィルムとして、厚さ80μmのトリアセチルセルロースフィルム(面内位相差Reは2nm、厚み方向位相差Rthは40nm)を用いたこと以外は実施例1と同様にして偏光板を得た。
Comparative Example 1
In Example 1, a polarizing plate was prepared in the same manner as in Example 1 except that a 80 μm thick triacetylcellulose film (in-plane retardation Re was 2 nm and thickness direction retardation Rth was 40 nm) was used as the protective film. Obtained.

比較例2
実施例1において、保護フィルムとして、厚さ80μmの二軸延伸したポリカーボネートフィルム(面内位相差Reは10nm、厚み方向位相差Rthは120nm)を用いたこと以外は実施例1と同様にして偏光板を得た。
Comparative Example 2
In Example 1, a polarizing film was formed in the same manner as in Example 1 except that a biaxially stretched polycarbonate film (in-plane retardation Re was 10 nm, thickness direction retardation Rth was 120 nm) having a thickness of 80 μm was used as the protective film. I got a plate.

比較例3
実施例1において、液晶性単量体を用いなかったこと以外は実施例1と同様にして偏光子を作製した。また当該偏光子を用いて、比較例1と同様にして偏光板を作製した。
Comparative Example 3
In Example 1, a polarizer was produced in the same manner as in Example 1 except that the liquid crystalline monomer was not used. Moreover, the polarizing plate was produced like the comparative example 1 using the said polarizer.

比較例4
実施例1において、液晶性単量体を用いなかったこと以外は実施例1と同様にして偏光子を作製した。また当該偏光子を用いて、実施例1と同様にして偏光板を作製した。
Comparative Example 4
In Example 1, a polarizer was produced in the same manner as in Example 1 except that the liquid crystalline monomer was not used. Further, using the polarizer, a polarizing plate was produced in the same manner as in Example 1.

(光学特性評価)
実施例及び比較例で得られた偏光板の光学特性を、積分球付き分光光度計(日立製作所製のU−4100)にて測定した。各直線偏光に対する透過率はグラントムソンプリズム偏光子を通して得られた完全偏光を100%として測定した。なお、透過率は、CIE1931表色系に基づいて算出した、視感度補正したY値で示した。k1は最大透過率方向の直線偏光の透過率、k2はその直交方向の直線偏光の透過率を表す。結果を表1に示す。
(Optical property evaluation)
The optical properties of the polarizing plates obtained in Examples and Comparative Examples were measured with a spectrophotometer with an integrating sphere (U-4100 manufactured by Hitachi, Ltd.). The transmittance for each linearly polarized light was measured with 100% of the completely polarized light obtained through the Glan-Thompson prism polarizer. Note that the transmittance is indicated by a Y value corrected for visual sensitivity calculated based on the CIE 1931 color system. k 1 represents the transmittance of linearly polarized light in the maximum transmittance direction, and k 2 represents the transmittance of linearly polarized light in the orthogonal direction. The results are shown in Table 1.

偏光度Pは、P={(k1−k2)/(k1+k2)}×100、で算出した。単体透過率Tは、T=(k1+k2)/2、で算出した。 The degree of polarization P was calculated by P = {(k 1 −k 2 ) / (k 1 + k 2 )} × 100. The single transmittance T was calculated by T = (k 1 + k 2 ) / 2.

さらに実施例1および比較例3で得られた偏光子については偏光吸光スペクトルの測定をグラントムソンプリズムを備えた分光光度計((株)日立製作所製,U4100)により行った最大透過率(k1):平行透過率とその直交方向の直線偏光の透過率(k2):直交透過率を図2に示す。 Further, with respect to the polarizers obtained in Example 1 and Comparative Example 3, the maximum transmittance (k 1 ) obtained by measuring the polarization absorption spectrum with a spectrophotometer equipped with a Glan-Thompson prism (manufactured by Hitachi, Ltd., U4100). ): Parallel transmittance and transmittance of linearly polarized light in the orthogonal direction (k 2 ): The orthogonal transmittance is shown in FIG.

平行透過率(k1)については、実施例1および比較例3の偏光子は可視域全域でほぼ等しいのに対し、実施例1の偏光子では吸収+散乱軸により、直交透過率(k2)が、短波長側で比較例3の偏光子より大幅に小さくなっている。つまり、短波長側では実施例1の偏光子の偏光性能が比較例3の偏光子を上回ったことを示す。実施例1と比較例3では延伸、染色などの条件はすべて等しいので、ヨウ素系吸光体の配向度も等しいと考えられる。ゆえに、実施例1の偏光子の直交透過率(k2)は、前述の通り、ヨウ素による吸収に異方散乱の効果が加わったことによる効果によって偏光性能が向上したことを示すものである。 Regarding the parallel transmittance (k 1 ), the polarizers of Example 1 and Comparative Example 3 are substantially equal in the entire visible range, whereas the polarizer of Example 1 has an orthogonal transmittance (k 2) due to the absorption + scattering axis. ) Is significantly smaller than the polarizer of Comparative Example 3 on the short wavelength side. That is, on the short wavelength side, it shows that the polarization performance of the polarizer of Example 1 exceeded the polarizer of Comparative Example 3. In Example 1 and Comparative Example 3, all the conditions such as stretching and dyeing are the same, so the degree of orientation of the iodine-based absorber is also considered to be equal. Therefore, the orthogonal transmittance (k 2 ) of the polarizer of Example 1 indicates that the polarization performance is improved by the effect of adding the anisotropic scattering effect to the absorption by iodine as described above.

へイズ値は、最大透過率方向の直線偏光に対するヘイズ値および吸収方向(その直交方向)の直線偏光に対するヘイズ値を測定した。ヘイズ値の測定は、JIS K 7136 (プラスチック−透明材料のヘイズの求め方)に従って、へイズメーター(村上色彩研究所製のHM−150)を用いて、市販の偏光板(日東電工社製NPF−SEG1224DU:単体透過率43%,偏光度99.96%)を、サンプルの測定光の入射面側に配置し、市販の偏光板とサンプル(偏光板)の延伸方向を直交させて測定した時のへイズ値を示す。ただし、市販のへイズメーターの光源では直交時の光量が検出器の感度限界以下となってしまうため、別途設けた高光強度のハロゲンランプの光を光ファイバーを用いて入光させ、検出感度内とした後、手動にてシャッター開閉を行い、ヘイズ値を算出した。   For the haze value, the haze value for linearly polarized light in the maximum transmittance direction and the haze value for linearly polarized light in the absorption direction (the orthogonal direction thereof) were measured. The haze value is measured according to JIS K 7136 (Plastic—How to determine haze of transparent material) using a haze meter (HM-150 manufactured by Murakami Color Research Laboratory) and a commercially available polarizing plate (NPF manufactured by Nitto Denko Corporation). -SEG1224DU: single transmittance of 43%, polarization degree of 99.96%) placed on the incident surface side of the measurement light of the sample and measured with the commercially available polarizing plate and the sample (polarizing plate) extending in the orthogonal direction The haze value of However, with a commercially available light source of a Heizometer, the amount of light when orthogonal is less than the sensitivity limit of the detector, so the light of a separately provided high-intensity halogen lamp is incident using an optical fiber, and within the detection sensitivity After that, the shutter was manually opened and closed, and the haze value was calculated.

ムラの評価は、暗室において、液晶ディスプレイに用いられるバックライトの上面にサンプル(偏光板)を配置しさらに、市販の偏光板(日東電工社製のNPF−SEG1224DU)を検光子として偏光軸が直交するように積層し、目視にて下記基準にて、そのレベルを確認した。ムラは偏光子の延伸ムラ、位相差による干渉ムラを評価した。
×:目視にてムラが確認できるレベル。
○:目視にてムラが確認できないレベル。
For the evaluation of unevenness, a sample (polarizing plate) is placed on the upper surface of a backlight used in a liquid crystal display in a dark room, and the polarizing axis is orthogonal with a commercially available polarizing plate (NPF-SEG1224DU manufactured by Nitto Denko Corporation) as an analyzer. The levels were visually confirmed according to the following criteria. The unevenness was evaluated for unevenness in stretching of the polarizer and interference due to retardation.
X: Level at which unevenness can be confirmed visually.
○: Level at which unevenness cannot be confirmed visually.

Figure 2005202368
上記表1に示す通り、実施例と比較例の偏光板では、略単体透過率、偏光度等の偏光特性は良好である。しかし、実施例1、2と比較例1、2の偏光板では、ヨウ素系吸光体を含有する透光性の水溶性樹脂により形成されるマトリクス中に、微小領域が分散された構造の偏光子を用いているため、通常の偏光子を用いている比較例3の偏光板よりも、直交時の透過率のヘイズ値が高くバラツキによるムラが、散乱によって隠蔽され確認できなくなっていることが分かる。また、実施例1、2では、本願発明の構成により、従来の偏光子の延伸ムラが偏光散乱により感知されなくなっていることが比較例3、4との対比から明らかである。また位相差値の小さい保護フィルムを用いているため、比較例1、2、3に比べても干渉ムラが小さく抑えられていることが分かる。
Figure 2005202368
As shown in Table 1 above, the polarizing plates of Examples and Comparative Examples have good polarization characteristics such as substantially single transmittance and degree of polarization. However, in the polarizing plates of Examples 1 and 2 and Comparative Examples 1 and 2, a polarizer having a structure in which minute regions are dispersed in a matrix formed of a translucent water-soluble resin containing an iodine-based absorber. Therefore, it can be seen that the haze value of the transmittance at the time of orthogonality is higher than that of the polarizing plate of Comparative Example 3 using a normal polarizer, and unevenness due to dispersion is hidden by scattering and cannot be confirmed. . Further, in Examples 1 and 2, it is clear from the comparison with Comparative Examples 3 and 4 that due to the configuration of the present invention, the stretching unevenness of the conventional polarizer is not detected by the polarization scattering. Moreover, since the protective film with a small phase difference value is used, it can be seen that the interference unevenness is suppressed to be smaller than those of Comparative Examples 1, 2, and 3.

本発明の偏光子の構造と類似する偏光子として、特開2002−207118号公報には、樹脂マトリクス中に液晶性複屈折材料と吸収二色性材料との混合相を分散させたものが開示されている。その効果は本発明と同種類のものである。しかし、特開2002−207118号公報のように分散相に吸収二色性材料が存在している場合に比較して、本発明のようにマトリクス層に吸収二色性材料が存在する方が、散乱した偏光が吸収層を通過するが光路長が長くなるため、より散乱した光を吸収することができる。ゆえに、本発明のほうが偏光性能の向上の効果がはるかに高い。また製造工程が簡単である。   As a polarizer similar to the structure of the polarizer of the present invention, JP-A No. 2002-207118 discloses a resin matrix in which a mixed phase of a liquid crystalline birefringent material and an absorbing dichroic material is dispersed. Has been. The effect is the same as that of the present invention. However, as compared with the case where the absorbing dichroic material is present in the dispersed phase as in JP-A-2002-207118, the one where the absorbing dichroic material is present in the matrix layer as in the present invention, Although the scattered polarized light passes through the absorption layer, the optical path length becomes long, so that more scattered light can be absorbed. Therefore, the effect of improving the polarization performance is much higher in the present invention. Also, the manufacturing process is simple.

また特表2000−506990号公報には、連続相または分散相のいずれかに二色性染料が添加された光学体が開示されているが、本発明は二色性染料ではなくヨウ素を用いている点に大きな特徴がある。二色性染料ではなくヨウ素を用いる場合には以下の利点がある。(1)ヨウ素によって発現する吸収二色性は二色性染料よりも高い。したがって、得られる偏光子に偏光特性もヨウ素を用いた方が高くなる。(2)ヨウ素は、連続相(マトリクス相)に添加される前は吸収二色性を示しておらず、マトリクスに分散された後、延伸することによって二色性を示すヨウ素系吸光体が形成される。この点は連続相に添加される前から二色性を有している二色性染料と相違する点である。つまり、ヨウ素はマトリクスへ分散されるときは、ヨウ素のままである。この場合、マトリクスへの拡散性は一般に二色性染料に比べて遥かに良い。結果として、ヨウ素系吸光体は二色性染料よりもフィルムの隅々まで分散される。ゆえに、散乱異方性による光路長増大効果を最大限活用することができ偏光機能が増大する。   In addition, JP 2000-506990 A discloses an optical body in which a dichroic dye is added to either a continuous phase or a dispersed phase, but the present invention uses iodine instead of a dichroic dye. There is a big feature in that. The use of iodine instead of a dichroic dye has the following advantages. (1) The absorption dichroism expressed by iodine is higher than that of the dichroic dye. Therefore, the polarization property of the obtained polarizer is higher when iodine is used. (2) Iodine does not show absorption dichroism before being added to the continuous phase (matrix phase), and after being dispersed in the matrix, it is stretched to form an iodine-based absorber that exhibits dichroism. Is done. This point is different from a dichroic dye having dichroism before being added to the continuous phase. That is, when iodine is dispersed into the matrix, it remains iodine. In this case, the diffusibility to the matrix is generally much better than that of the dichroic dye. As a result, iodine-based absorbers are dispersed throughout the film rather than the dichroic dye. Therefore, the effect of increasing the optical path length due to scattering anisotropy can be utilized to the maximum, and the polarization function is increased.

また特表2000−506990号公報に記載の発明の背景には、Aphoninによって、液晶液滴をポリマーマトリクス中に配置してなる延伸フィルムの光学特性について記載されていることが述べられている。しかし、Aphoninらは、二色性染料を用いることなくマトリクス相と分散相(液晶成分)とからなる光学フィルムに言及したものであって、液晶成分は液晶ポリマーまたは液晶モノマーの重合物ではないため、当該フィルム中の液晶成分の複屈折は典型的に温度に依存し敏感である。一方、本発明はヨウ素系吸光体を含有する透光性の水溶性樹脂により形成されるマトリクス中に、微小領域が分散された構造のフィルムからなる偏光子を提供するものであり、さらには本発明の液晶性材料は、液晶ポリマーでは液晶温度範囲で配向させた後、室温に冷却して配向が固定され、液晶モノマーでは同様に配向させた後、紫外線硬化等によって配向が固定されるものであり、液晶性材料により形成された微小領域の複屈折は温度によって変化するものではない。   In addition, it is stated in the background of the invention described in Japanese Translation of PCT International Publication No. 2000-506990 that optical properties of a stretched film in which liquid crystal droplets are arranged in a polymer matrix are described by Aphonin. However, Aphonin et al. Mentioned an optical film composed of a matrix phase and a dispersed phase (liquid crystal component) without using a dichroic dye, and the liquid crystal component is not a polymer of a liquid crystal polymer or a liquid crystal monomer. The birefringence of the liquid crystal component in the film is typically temperature dependent and sensitive. On the other hand, the present invention provides a polarizer comprising a film having a structure in which minute regions are dispersed in a matrix formed of a translucent water-soluble resin containing an iodine-based absorber. The liquid crystalline material of the invention is a liquid crystal polymer that is aligned in the liquid crystal temperature range, then cooled to room temperature and fixed in alignment. In other words, the birefringence of a minute region formed of a liquid crystal material does not change with temperature.

(耐久性評価)
偏光板について下記評価を行った。結果を表2に示す。
(Durability evaluation)
The following evaluation was performed about the polarizing plate. The results are shown in Table 2.

<保護フィルムの透湿度>
JISZ0208に準じた方法で、40℃/90%R.H(R.H:相対湿度)の試験条件で測定した。
<Water permeability of protective film>
In accordance with JISZ0208, 40 ° C./90% R.D. It was measured under the test condition of H (RH: relative humidity).

<耐湿性試験>
サイズ25mm×50mmの大きさに切断した偏光板をスライドガラスにアクリル系粘着剤を用いて貼り付け、光学特性(初期の光学特性)を測定した後、60℃/95%R.Hの乾燥機に入れ、1000時間前記条件の乾燥機に投入した後の下記光学特性(試験後の光学特性)を測定し、下記変化量を求めた。結果を表2に示す。
<Moisture resistance test>
A polarizing plate cut to a size of 25 mm × 50 mm was attached to a slide glass with an acrylic pressure-sensitive adhesive, and after measuring optical properties (initial optical properties), 60 ° C./95% R.D. The following optical properties (optical properties after the test) after being put in the dryer of H and put in the dryer under the above conditions for 1000 hours were measured, and the following changes were determined. The results are shown in Table 2.

透過率変化量:JISZ−8701に準じ、視感度補正を行い光線透過率(以下、単に透過率と略称する)を求めた。透過率変化量=試験後透過率−初期透過率である。   Change in transmittance: Visibility was corrected in accordance with JISZ-8701, and the light transmittance (hereinafter simply referred to as transmittance) was obtained. Transmittance change amount = transmittance after test−initial transmittance.

偏光度変化量:偏光度は、次の式により求めた。ただし、H0 :平行透過率、H90:直交透過率、である。偏光度=√((H0−H90)/(H0+H90))×100(%)。
偏光度変化量=試験後偏光度−初期偏光度
色相変化量:色相a、色相bをJISZ−8701に準じ、視感度補正を行い色相a、色相bを求めた。色相a変化量=試験後色相a−初期色相a、色相b変化量=試験後色相b−初期色相b、である。
Polarization degree change amount: The degree of polarization was determined by the following equation. However, H0: parallel transmittance, H90: orthogonal transmittance. Polarization degree = √ ((H 0 −H 90 ) / (H 0 + H 90 )) × 100 (%).
Polarization degree change amount = post-test polarization degree-initial polarization degree Hue change amount: Hue a and hue b were subjected to visibility correction according to JISZ-8701 to obtain hue a and hue b. Hue a change amount = hue after test-initial hue a, hue b change amount = hue after test b-initial hue b.

Figure 2005202368
表2に示す通り、実施例では、比較例に比べて耐湿性試験後の光学特性変化量が小さく、耐久性が良好であることが分かる。
Figure 2005202368
As shown in Table 2, it can be seen that in the examples, the amount of change in optical characteristics after the moisture resistance test is small compared to the comparative example, and the durability is good.

本発明の偏光子の一例を示す概念図である。It is a conceptual diagram which shows an example of the polarizer of this invention. 実施例1と比較例3の偏光子の偏光吸光スペクトルを表すグラフである。6 is a graph showing polarization absorption spectra of polarizers of Example 1 and Comparative Example 3.

符号の説明Explanation of symbols

1 透光性の水溶性樹脂
2 ヨウ素系吸光体
3 微小領域
1 Translucent water-soluble resin 2 Iodine absorber 3 Micro area

Claims (13)

偏光子の片面または両面に保護フィルムが積層されている偏光板において、
偏光子は、ヨウ素系吸光体を含有する透光性の水溶性樹脂により形成されるマトリクス中に、微小領域が分散された構造のフィルムからなり、
保護フィルムは、当該フィルム面内の面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nz、フィルムの厚さd(nm)とした場合に、
面内位相差Re=(nx−ny)×dが、20nm以下であり、
かつ厚み方向位相差Rth={(nx+ny)/2−nz)×d)が、30nm以下であることを特徴とする偏光板。
In a polarizing plate in which a protective film is laminated on one side or both sides of a polarizer,
The polarizer consists of a film having a structure in which minute regions are dispersed in a matrix formed of a light-transmitting water-soluble resin containing an iodine-based absorber.
In the protective film, the direction in which the in-plane refractive index in the film plane is the maximum is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis. When nx, ny, nz, and film thickness d (nm),
In-plane retardation Re = (nx−ny) × d is 20 nm or less,
A thickness direction retardation Rth = {(nx + ny) / 2−nz) × d) is 30 nm or less.
偏光子の微小領域は、配向された複屈折材料により形成されていることを特徴とする請求項1記載の偏光板。   2. The polarizing plate according to claim 1, wherein the minute region of the polarizer is formed of an oriented birefringent material. 複屈折材料は、少なくとも配向処理時点で液晶性を示すことを特徴とする請求項2記載の偏光板。   The polarizing plate according to claim 2, wherein the birefringent material exhibits liquid crystallinity at least at the time of the alignment treatment. 偏光子の微小領域の複屈折が0.02以上であることを特徴とする請求項2または3記載の偏光板。   The polarizing plate according to claim 2 or 3, wherein the birefringence of the minute region of the polarizer is 0.02 or more. 偏光子の微小領域を形成する複屈折材料と、透光性の水溶性樹脂との各光軸方向に対する屈折率差は、
最大値を示す軸方向における屈折率差(△n1)が0.03以上であり、
かつ△n1方向と直交する二方向の軸方向における屈折率差(△n2)が、前記△n1の50%以下であることを特徴とする請求項2〜4のいずれかに記載の偏光板。
The refractive index difference for each optical axis direction between the birefringent material that forms the microscopic region of the polarizer and the translucent water-soluble resin is
The refractive index difference (Δn 1 ) in the axial direction showing the maximum value is 0.03 or more,
The refractive index difference (Δn 2 ) in two axial directions orthogonal to the Δn 1 direction is 50% or less of the Δn 1. 5. Polarizer.
偏光子中のヨウ素系吸光体は、その吸収軸が、△n1方向に配向していることを特徴とする請求項1〜5のいずれかに記載の偏光板。 The polarizing plate according to claim 1 , wherein an absorption axis of the iodine-based light absorber in the polarizer is oriented in the Δn 1 direction. 前記偏光子として用いられるフィルムは、延伸によって製造されたものであることを特徴とする請求項1〜6のいずれかに記載の偏光板。   The polarizing plate according to claim 1, wherein the film used as the polarizer is manufactured by stretching. 偏光子の微小領域は、△n2方向の長さが0.05〜500μmであることを特徴とする請求項1〜7のいずれかに記載の偏光板。 The polarizing plate according to claim 1, wherein the minute region of the polarizer has a length in the Δn 2 direction of 0.05 to 500 μm. 偏光子中のヨウ素系吸収体は、少なくとも400〜700nmの波長帯域に吸収領域を有することを特徴とする請求項1〜8のいずれかに記載の偏光板。   The polarizing plate according to claim 1, wherein the iodine-based absorber in the polarizer has an absorption region in a wavelength band of at least 400 to 700 nm. 保護フィルムが、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と(B)側鎖に置換および/または非置換フェニル基ならびにニトリル基を有する熱可塑性樹脂とを含有してなる樹脂組成物、ならびにノルボルネン系樹脂から選ばれるいずれか少なくとも1種を含有していることを特徴とする請求項1〜9のいずれかに記載の偏光板。   The protective film contains (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain and (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl group and a nitrile group in the side chain. The polarizing plate according to claim 1, comprising at least one selected from the group consisting of a resin composition and a norbornene-based resin. 透過方向の直線偏光に対する透過率が80%以上、かつヘイズ値が5%以下であり、吸収方向の直線偏光に対するヘイズ値が30%以上であることを特徴とする請求項1〜10のいずれかに記載の偏光板。   The transmittance for linearly polarized light in the transmission direction is 80% or more, the haze value is 5% or less, and the haze value for linearly polarized light in the absorption direction is 30% or more. The polarizing plate as described in. 請求項1〜11のいずれかに記載の偏光板が、少なくとも1枚積層されていることを特徴とする光学フィルム。   An optical film, wherein at least one polarizing plate according to claim 1 is laminated. 請求項1〜11のいずれかに記載の偏光板または請求項12記載の光学フィルムが用いられていることを特徴とする画像表示装置。   An image display device comprising the polarizing plate according to claim 1 or the optical film according to claim 12.
JP2004351146A 2003-12-19 2004-12-03 Polarizing plate, optical film, and image display device Withdrawn JP2005202368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351146A JP2005202368A (en) 2003-12-19 2004-12-03 Polarizing plate, optical film, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003423129 2003-12-19
JP2004351146A JP2005202368A (en) 2003-12-19 2004-12-03 Polarizing plate, optical film, and image display device

Publications (1)

Publication Number Publication Date
JP2005202368A true JP2005202368A (en) 2005-07-28

Family

ID=34829352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351146A Withdrawn JP2005202368A (en) 2003-12-19 2004-12-03 Polarizing plate, optical film, and image display device

Country Status (1)

Country Link
JP (1) JP2005202368A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072203A (en) * 2005-09-07 2007-03-22 Nitto Denko Corp Manufacturing method of polarizer, manufacturing method of polarizing plate, polarizer, polarizing plate, optical film and image display device
JP2013200578A (en) * 2006-05-12 2013-10-03 Fujifilm Corp Polarizing plate and liquid crystal display device
KR101476942B1 (en) * 2010-10-29 2014-12-24 코니카 미놀타 가부시키가이샤 Liquid crystal display device
KR20150104886A (en) * 2014-03-06 2015-09-16 주식회사 효성 Norbornene-based retardation film, and polarizing plate and display device using the same
WO2016125801A1 (en) * 2015-02-04 2016-08-11 富士フイルム株式会社 Image display device
JP2017083843A (en) * 2015-10-30 2017-05-18 住友化学株式会社 Polarizing plate
KR20190017374A (en) * 2017-08-11 2019-02-20 주식회사 엘지화학 Polarizing plate, polarizing set and liquid crystal display

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072203A (en) * 2005-09-07 2007-03-22 Nitto Denko Corp Manufacturing method of polarizer, manufacturing method of polarizing plate, polarizer, polarizing plate, optical film and image display device
JP2013200578A (en) * 2006-05-12 2013-10-03 Fujifilm Corp Polarizing plate and liquid crystal display device
KR101476942B1 (en) * 2010-10-29 2014-12-24 코니카 미놀타 가부시키가이샤 Liquid crystal display device
KR20150104886A (en) * 2014-03-06 2015-09-16 주식회사 효성 Norbornene-based retardation film, and polarizing plate and display device using the same
KR101629076B1 (en) * 2014-03-06 2016-06-09 주식회사 효성 Norbornene-based retardation film, and polarizing plate and display device using the same
WO2016125801A1 (en) * 2015-02-04 2016-08-11 富士フイルム株式会社 Image display device
JPWO2016125801A1 (en) * 2015-02-04 2017-11-24 富士フイルム株式会社 Image display device
US10573816B2 (en) 2015-02-04 2020-02-25 Fujifilm Corporation Image display device
JP2017083843A (en) * 2015-10-30 2017-05-18 住友化学株式会社 Polarizing plate
KR20190017374A (en) * 2017-08-11 2019-02-20 주식회사 엘지화학 Polarizing plate, polarizing set and liquid crystal display
KR102108556B1 (en) 2017-08-11 2020-05-08 주식회사 엘지화학 Polarizing plate, polarizing set and liquid crystal display

Similar Documents

Publication Publication Date Title
JP4583982B2 (en) Polarizing plate, optical film and image display device
JP4676678B2 (en) High brightness polarizing plate
WO2004023173A1 (en) Polarizer, optical film and image display
JP3724801B2 (en) Polarizer, optical film, and image display device
WO2005093473A1 (en) Elliptical polarization plate, optical film, and image display device
US20070279741A1 (en) Polarizing Plate, Optical Film and Image Display
WO2005091022A1 (en) Circularly polarizing plate, optical film and image display
JP2006099076A (en) Polarizer, polarizing plate, optical film and image display device
WO2005093474A1 (en) Optical film and image display unit
JP2006267131A (en) Method for manufacturing polarizer, method for manufacturing polarizing plate, method for manufacturing multilayer optical film, polarizer, polarizing plate, multilayer optical film, and image display
JP2005292225A (en) Optical film and image display device
JP2005037890A (en) Method for manufacturing polarizer, polarizer, optical film and image display apparatus
JP2007140127A (en) Polarizer, method for manufacturing the same, optical film and image display device
JP3779723B2 (en) Polarizer, optical film, and image display device
JP2009116197A (en) Anisotropic light scattering film, manufacturing method thereof, optical film and image display device
KR100822688B1 (en) Polarizer, optical film, and image display
JP2005292719A (en) Polarizer, polarizing plate, optical film and picture display device
JP4880719B2 (en) Liquid crystal panel and liquid crystal display device
JP2005283846A (en) Optical film and liquid crystal display device
WO2005062087A1 (en) Polarizing plate, optical film and image display
JP2005202368A (en) Polarizing plate, optical film, and image display device
JP4335618B2 (en) Polarizer, optical film, and image display device
JP2007025089A (en) Light-transmissive film, its manufacturing method, polarizer, its manufacturing method, polarizing plate, optical film and image display device
JP2006224430A (en) Microregion dispersing type polyvinyl alcohol film, its manufacturing method, manufacturing method of polarizer, polarizer, polarizing plate, optical film and image display device
JP2004126355A (en) Polarizing plate, optical film, and picture display apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090428