WO2021106717A1 - Method for controlling substrate processing system, and substrate processing system - Google Patents

Method for controlling substrate processing system, and substrate processing system Download PDF

Info

Publication number
WO2021106717A1
WO2021106717A1 PCT/JP2020/043027 JP2020043027W WO2021106717A1 WO 2021106717 A1 WO2021106717 A1 WO 2021106717A1 JP 2020043027 W JP2020043027 W JP 2020043027W WO 2021106717 A1 WO2021106717 A1 WO 2021106717A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wafer
processing system
sensor module
radius
Prior art date
Application number
PCT/JP2020/043027
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 後藤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021106717A1 publication Critical patent/WO2021106717A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • This disclosure relates to a control method of a substrate processing system and a substrate processing system.
  • a transfer arm that conveys a wafer to a processing chamber that performs a desired process such as a film forming process on the wafer is known.
  • the wafer is provided with notches such as an orientation flat and a notch for indicating the direction of the crystal axis.
  • Patent Document 1 discloses a position recognition device that calculates the center position of a semiconductor wafer from the detection data of a detection means including a plurality of sensors capable of detecting the position of the edge of the semiconductor wafer. Further, in Patent Document 2, the deviation of the gripping position of the substrate is acquired based on the signal indicating the passing timing of the substrate, and the conveying operation of the conveying mechanism is corrected based on the acquired deviation of the gripping position of the substrate to obtain the substrate.
  • a transport system for transporting to a target position is disclosed.
  • the position recognition device disclosed in Patent Document 1 uses a predetermined radius of the wafer to determine whether or not the sensor has detected the orientation flat formed on the wafer, and calculates the center position of the wafer. doing.
  • the radius of the wafer may change depending on the allowable range of dimensions, expansion due to heat during the process, tension in the film forming process, and the like. Therefore, with the method disclosed in Patent Document 1, there is a possibility that the sensor that detects the notch portion of the wafer cannot be suitably specified. Similarly, even with the method disclosed in Patent Document 2, when the radius of the wafer changes, there is a possibility that the deviation of the gripping position cannot be preferably obtained.
  • One aspect of the present disclosure provides a control method for a substrate processing system and a substrate processing system capable of identifying a detection point at which a notch is detected.
  • the control method of the substrate processing system includes a first chamber having a first mounting portion, a second chamber having a second mounting portion, and a substrate from the first chamber to the second chamber.
  • a first sensor module provided in a transport path from the first chamber to the second chamber and having at least three sensors for detecting the position of the outer edge of the substrate, and a control unit.
  • a method for controlling a substrate processing system which comprises a step of transporting the substrate and detecting the position of the outer edge of the substrate by the first sensor module, and a detection point of the first sensor module formed on the substrate. It has a step of determining whether or not it is detected in the cutout portion.
  • a control method of a substrate processing system and a substrate processing system capable of identifying a detection point at which a notch is detected are provided.
  • the plan view which shows the structure of an example of the substrate processing system which concerns on one Embodiment.
  • the flowchart which shows an example of the process of calculating the radius of a wafer.
  • An example of a table An example of a table.
  • the flowchart which shows an example of the process of calculating the center position of a wafer.
  • the plan view which shows the structure of an example of the substrate processing system which concerns on another embodiment.
  • FIG. 1 is a plan view showing a configuration of an example of a substrate processing system according to an embodiment.
  • the wafer W is shown with dot hatching.
  • the substrate processing system shown in FIG. 1 is a cluster structure (multi-chamber type) system.
  • the board processing system includes processing chambers PM (Process Module) 1 to 6, transfer chamber VTM (Vacuum Transfer Module), load lock chamber LLM (Load Lock Module), loader module LM (Loader Module) 1 to 2, and load port LP ( LoadPort) 1 to 4 and a control unit 100 are provided.
  • PM Process Module
  • VTM Vauum Transfer Module
  • load lock chamber LLM Load Lock Module
  • loader module LM Loader Module
  • load port LP LoadPort
  • the processing chambers PMs 1 to 6 are depressurized to a predetermined vacuum atmosphere, and inside the processing chambers PM1 to PM6, a desired process (etching process, film forming process, cleaning process, ashing process) is applied to the semiconductor wafer W (hereinafter, also referred to as “wafer W”). Etc.).
  • the processing chambers PM1 to PM6 are arranged adjacent to the transport chamber VTM.
  • the processing chambers PM1 to 6 and the transport chamber VTM communicate with each other by opening and closing the gate valves GV1 to 6.
  • the processing chamber PM1 has a mounting portion 111 on which the wafer W is mounted.
  • each of the processing chambers PM2 to PM2 has a mounting portion on which the wafer W is mounted.
  • the operation of each unit for processing in the processing chambers PM1 to PM6 is controlled by the control unit 100.
  • the transport chamber VTM is decompressed to a predetermined vacuum atmosphere. Further, inside the transfer chamber VTM, a transfer device ARM1 for transporting the wafer W is provided inside the transfer chamber VTM.
  • the transfer device ARM1 carries in and out the wafer W between the processing chambers PM1 to 6 and the transfer chamber VTM according to the opening and closing of the gate valves GV1 to 6. Further, the transfer device ARM1 carries in and out the wafer W between the load lock chamber LLM and the transfer chamber VTM according to the opening and closing of the gate valve GV7.
  • the operation of the transfer device ARM1 and the opening / closing of the gate valves GV1 to 7 are controlled by the control unit 100.
  • the transport device ARM1 is configured as an articulated arm including, for example, a base, a first link, a second link, and an end effector 124.
  • the end effector 124 of the transport device ARM1 is illustrated, and other illustrations are omitted.
  • a holding portion for holding the wafer W is provided on the tip end side of the end effector 124.
  • the actuator that drives the transport device ARM1 is controlled by the control unit 100.
  • sensor modules S1 to 7 for detecting the wafer W are provided inside the transport chamber VTM.
  • the sensor module S1 determines whether or not the wafer W is held when the transfer device ARM1 carries the wafer W into the processing chamber PM1 or when the wafer W is carried out from the processing chamber PM1, and the eccentricity of the held wafer W. Detect the amount.
  • the detection method of the sensor module S1 will be described later with reference to FIG. 2 and the like.
  • the sensor modules S2 to 6 determine whether or not the wafer W is held when the transfer device ARM1 carries the wafer W into the processing chambers PM2 to 6 or when the wafer W is carried out from the processing chambers PM2 to 6. , The amount of eccentricity of the held wafer W is detected.
  • the sensor module S7 determines whether or not the wafer W is held when the transfer device ARM1 carries the wafer W into the load lock chamber LLM or when the wafer W is carried out from the load lock chamber LLM, and the held wafer W. Detects the amount of eccentricity.
  • the detection method of the sensor module S7 will be described later with reference to FIG. 3 and the like.
  • an optical passage sensor can be used for the sensor modules S1 to 7, for example.
  • the detected values of the sensor modules S1 to 7 are input to the control unit 100.
  • the load lock chamber LLM is provided between the transport chamber VTM and the loader modules LM1 and LM2.
  • the load lock chamber LLM can switch between an air atmosphere and a vacuum atmosphere.
  • the load lock chamber LLM and the vacuum atmosphere transfer chamber VTM communicate with each other by opening and closing the gate valve GV7.
  • the load lock chamber LLM and the loader module LM1 in the air atmosphere communicate with each other by opening and closing the gate valve GV8.
  • the load lock chamber LLM and the loader module LM2 in the air atmosphere communicate with each other by opening and closing the gate valve GV9.
  • the load lock chamber LLM has a mounting portion 131 on which the wafer W is mounted. Switching between the vacuum atmosphere and the atmospheric atmosphere in the load lock chamber LLM is controlled by the control unit 100.
  • the loader modules LM1 and LM2 have an atmospheric atmosphere, for example, a downflow of clean air is formed. Further, inside the loader module LM1, a transport device ARM2 for transporting the wafer W is provided inside the loader module LM1. The transfer device ARM2 carries in and out the wafer W between the load lock chamber LLM and the loader module LM1 according to the opening and closing of the gate valve GV8. Similarly, inside the loader module LM2, a transfer device ARM3 for transporting the wafer W is provided inside the loader module LM2. The transfer device ARM3 carries in and out the wafer W between the load lock chamber LLM and the loader module LM2 according to the opening and closing of the gate valve GV9. The operation of the transfer devices ARM2 and 3 and the opening and closing of the gate valves GV8 and 9 are controlled by the control unit 100.
  • the transport device ARM2 is configured as an articulated arm including, for example, a base, a first link, a second link, and an end effector 144.
  • the end effector 144 of the transport device ARM2 is illustrated, and other illustrations are omitted.
  • a holding portion for holding the wafer W is provided on the tip end side of the end effector 144.
  • the actuator that drives the transport device ARM2 is controlled by the control unit 100.
  • the transport device ARM3 is configured as an articulated arm similar to the transport device ARM2.
  • Load ports LP1 and LP1 and 2 are provided on the wall surface of the loader module LM1. Further, load ports LP3 and 4 are provided on the wall surface of the loader module LM2.
  • a carrier C containing a wafer W or an empty carrier C is attached to the load ports LP1 to LP4.
  • the carrier C for example, FOUP (Front Opening Unified Pod) or the like can be used.
  • the transfer device ARM2 can take out the wafer W housed in the load ports LP1 and LP2 by holding it in the holding portion of the transfer device ARM2. Further, the wafer W held in the holding portion can be accommodated in the load ports LP1 and LP1 and 2. Similarly, the transfer device ARM3 can hold the wafer W housed in the load ports LP3 and 4 by the holding portion of the transfer device ARM3 and take it out. Further, the wafer W held in the holding portion can be accommodated in the load ports LP3 and 4.
  • the control unit 100 has a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive).
  • the control unit 100 may have other storage areas such as SSD (Solid State Drive) as well as HDD.
  • a recipe in which process procedures, process conditions, and transfer conditions are set is stored in a storage area such as an HDD or RAM.
  • the CPU controls the processing of the wafer W in each processing chamber PM according to the recipe, and controls the transfer of the wafer W.
  • the HDD or RAM may store a program for executing the processing of the wafer W and the transfer of the wafer W in each processing chamber PM.
  • the program may be stored in a storage medium and provided, or may be provided from an external device via a network.
  • the control unit 100 opens the gate valve GV8.
  • the control unit 100 controls the transfer device ARM2 to take out the wafer W from the carrier C of the load port LP1 and place it on the mounting unit 131 of the load lock chamber LLM.
  • the control unit 100 closes the gate valve GV8.
  • the control unit 100 controls the exhaust device (not shown) of the load lock chamber LLM to exhaust the air in the room, and switches the load lock chamber LLM from the atmospheric atmosphere to the vacuum atmosphere.
  • the control unit 100 opens the gate valve GV7.
  • the control unit 100 controls the transport device ARM1 to insert the end effector 124 into the load lock chamber LLM up to a preset teaching point, and holds the wafer W mounted on the mounting portion 131 of the load lock chamber LLM. Then, it is transported to the transport chamber VTM.
  • the transport chamber VTM As will be described later with reference to FIG. 4, when the wafer W is transported from the load lock chamber LLM to the transport chamber VTM, the radius of the wafer W is calculated using the sensor module S7.
  • the control unit 100 closes the gate valve GV7.
  • the control unit 100 opens the gate valve GV1.
  • the control unit 100 controls the transfer device ARM1 to insert the end effector 124 into the processing chamber PM1 up to a preset teaching point, and mounts the holding wafer W on the mounting portion 111 of the processing chamber PM1. ..
  • the center position of the wafer W is calculated using the sensor module S1.
  • the control unit 100 controls the transfer device ARM1 and adjusts the position of the wafer W based on the calculated center position of the wafer W.
  • the control unit 100 closes the gate valve GV1.
  • the control unit 100 controls the processing chamber PM1 to perform a desired processing on the wafer W.
  • the control unit 100 opens the gate valve GV1.
  • the control unit 100 controls the transfer device ARM1 to insert the end effector 124 into the processing chamber PM1 up to a preset teaching point, and holds the wafer W mounted on the mounting portion 111 of the processing chamber PM1. , Transport to the transport chamber VTM.
  • the control unit 100 closes the gate valve GV1.
  • the control unit 100 opens the gate valve GV7.
  • the control unit 100 controls the transport device ARM1 to insert the end effector 124 into the load lock chamber LLM up to a preset teaching point, and mounts the holding wafer W on the mounting portion 131 of the load lock chamber LLM. Place.
  • the control unit 100 closes the gate valve GV7.
  • the control unit 100 controls an intake device (not shown) of the load lock chamber LLM to supply, for example, clean air to the room, and switches the load lock chamber LLM from a vacuum atmosphere to an air atmosphere.
  • the control unit 100 opens the gate valve GV9.
  • the control unit 100 controls the transfer device ARM3 to take out the wafer W mounted on the mounting unit 131 of the load lock chamber LLM and accommodates the wafer W in the carrier C of the load port LP3.
  • the control unit 100 closes the gate valve GV9.
  • the wafer W may be similarly transported / transported to the processing chambers PM2 to PM1.
  • FIG. 2 is an example of a schematic diagram illustrating the configuration of the sensor module S1 and the detection procedure of the sensor module S1.
  • the sensor module S1 has two sensors 11 and 12.
  • the sensor module S1 having the two sensors 11 and 12 is also referred to as a “two sensor type sensor module”.
  • the sensors 11 and 12 are, for example, optical pass sensors, and are wafers W that pass above when the wafer W is transported from the transport chamber VTM to the processing chamber PM1 or from the processing chamber PM1 to the transport chamber VTM. Detect the edge of.
  • the sensors 11 and 12 are arranged at predetermined intervals. Further, the sensors 11 and 12 may be arranged on the opposite side of the reference line 10. Further, the sensors 11 and 12 may be arranged symmetrically with respect to the reference line 10.
  • the reference line 10 is, for example, a line that passes through the center of the mounting portion 111 of the processing chamber PM1 and extends in the transfer direction of the wafer W by the transfer device ARM1.
  • the position of the detection point 21 is detected by the sensor 11 by transporting the wafer W upward along the reference line 10. Further, the position of the detection point 22 is detected by the sensor 12. By further transporting the wafer W, the position of the detection point 23 is detected by the sensor 11. Further, the position of the detection point 24 is detected by the sensor 12.
  • the detected value of the sensor module S1 is input to the control unit 100.
  • the control unit 100 calculates the center position of the wafer W based on the posture of the transfer device ARM1 (position and speed of the end effector 124) and the detected value of the sensor module S1.
  • FIG. 3 is an example of a schematic diagram illustrating the configuration of the sensor module S7 and the detection procedure of the sensor module S7.
  • the sensor module S7 has three sensors 31 to 33.
  • the sensor module S7 having three sensors 31 to 33 is also referred to as a “three sensor type sensor module”.
  • the sensors 31 to 33 are, for example, optical pass sensors, which pass above when the wafer W is transported from the transport chamber VTM to the load lock chamber LLM, or from the load lock chamber LLM to the transport chamber VTM. The edge of the wafer W is detected.
  • the sensors 31 to 33 are arranged at predetermined intervals. Further, the sensors 31 and 32 may be arranged on the opposite side of the reference line 30.
  • the sensors 31 and 32 may be arranged symmetrically with respect to the reference line 30.
  • the reference line 30 is, for example, a line that passes through the center of the mounting portion 131 of the load lock chamber LLM and extends in the transfer direction of the wafer W by the transfer device ARM1.
  • the senor 33 is arranged at a distance equal to or larger than the opening width of the notch 50 from the sensor 32.
  • the sensor 33 is shown as being provided between the sensor 31 and the sensor 32, but the present invention is not limited to this, and the sensor 33 is provided outside between the sensor 31 and the sensor 32. You may be.
  • the position of the detection point 41 is detected by the sensor 31 by transporting the wafer W upward along the reference line 30. Further, the position of the detection point 42 is detected by the sensor 32. Further, the position of the detection point 45 is detected by the sensor 33. By further transporting the wafer W, the position of the detection point 43 is detected by the sensor 31. Further, the position of the detection point 44 is detected by the sensor 32. Further, the position of the detection point 46 is detected by the sensor 33.
  • the detected value of the sensor module S7 is input to the control unit 100.
  • the control unit 100 calculates the radius of the wafer W and the center position of the wafer W based on the posture of the transport device ARM1 (position and speed of the end effector 124) and the detected value of the sensor module S7.
  • the control unit 100 estimates the radius of the wafer W and the center position of the wafer W by imagining a triangle from the detection point and obtaining the circumscribed circle of the triangle.
  • the wafer W is provided with a notch 50 for indicating the direction of the crystal axis.
  • the sensor 11 to 12, 31 to 33
  • detects an edge detection point 22 in the example of FIG. 2 and detection point 42 in the example of FIG. 3
  • the detection point is determined.
  • the center position of the wafer W estimated from the including triangle (for example, in the example of FIG. 2, the triangle consisting of detection points 21, 22, 23, and in the example of FIG. 3, the triangle consisting of detection points 41, 42, 43) is determined. There is a risk of deviating from the actual center position of the wafer W.
  • FIG. 4 is a flowchart showing an example of a process of calculating the radius of the wafer W based on the detected value of the sensor module S7.
  • step S101 the control unit 100 acquires 6 detection points 41 to 46 (see FIG. 3) from the sensor module S7. Specifically, the control unit 100 controls the transfer device ARM1 to transfer the wafer W from the load lock chamber LLM to the transfer chamber VTM. At this time, the detection points 41 to 46 are detected by the wafer W passing over the sensor module S7.
  • step S102 the control unit 100 forms a plurality of triangles from the six detection points 41 to 46.
  • at least four triangles are formed.
  • the formed four triangles are also referred to as triangles T1 to T4.
  • step S103 the control unit 100 calculates the circumscribed circle radius and the circumscribed circle center of each of the triangles T1 to T4 formed in step S102, respectively.
  • step S104 the control unit 100 calculates the average value of the circumscribed circle radii from the circumscribed circle radii of the triangles T1 to T4 calculated in step S103.
  • step S105 the control unit 100 determines whether or not the detection points 41 to 46 are detected at the positions where the notches 50 are formed.
  • the mounting accuracy is a value indicating how much displacement is allowed from the normal position when the wafer W is mounted on the mounting portion 111.
  • the mounting accuracy is a value indicating how much displacement is allowed from the normal position when the wafer W is mounted on the mounting portion 111.
  • step S108 When the detection points 41 to 46 are detected at the positions where the notches 50 are formed (S105 ⁇ Yes), the process of the control unit 100 proceeds to step S108.
  • the detection points 41 to 46 are not detected at the position where the notch 50 is formed (S105 / No), the process of the control unit 100 proceeds to step S106.
  • step S106 the control unit 100 determines that the detection points 41 to 46 are not detected at the position where the notch 50 is formed.
  • step S107 the control unit 100 calculates the radius of the wafer W.
  • the radius of the wafer W is calculated based on the detection points 41 to 46 (or the points selected from the detection points 41 to 46). For example, the average of the circumscribed circle radii of each triangle T1 to T4 may be used as the radius of the wafer W. One of the circumscribed circle radii of the triangles T1 to T4 may be selected as the radius of the wafer W. Then, the process of the control unit 100 is terminated.
  • step S108 the control unit 100 compares the magnitude relationship between the circumscribed circle radii of the triangles T1 to T4 calculated in step S103 and the average value of the circumscribed circle radii calculated in step S104, and determines the determination result pattern.
  • the case where the circumscribed circle radius is larger than the average value is indicated by " ⁇ ”
  • the case where the circumscribed circle radius is smaller than the average value is indicated by "x”.
  • the circumscribed circle radius of triangle T1 is larger than the average value
  • the circumscribed circle radius of triangle T2 is smaller than the average value
  • the circumscribed circle radius of triangle T3 is larger than the average value
  • the circumscribed circle radius of triangle T4 is smaller than the average value.
  • step S109 the control unit 100 determines from the table stored in advance in the control unit 100 that it matches the determination result pattern generated in step S108.
  • FIG. 5 is an example of a table.
  • the determination result patterns of the triangles T1 to T4 when the detection points 41 to 46 are the detection points at the positions where the notches 50 are formed are stored in association with each other. For example, when the detection point 41 is the detection point at the position where the notch 50 is formed, the determination result pattern of " ⁇ ⁇ ⁇ ⁇ " is stored. When the detection point 42 is the detection point at the position where the notch 50 is formed, the determination result pattern of "XXXX" is stored. When the detection point 43 is the detection point at the position where the notch 50 is formed, the determination result pattern of "XXXXX" is stored.
  • the triangles T1 to T4 are set so that the determination result pattern corresponding to each detection point 41 to 46 is unique.
  • the table uses one of the triangles. It may have been created.
  • a triangle having a narrow shape for example, a triangle consisting of detection points 42, 45 and other detection points, a triangle consisting of detection points 44, 46 and other detection points, etc.
  • the three detection points can be separated from each other, and the error of the calculated circumscribed circle radius and the center of the circumscribed circle can be reduced.
  • step S108 when the determination result pattern of " ⁇ ⁇ ⁇ ⁇ " is generated in step S108, the detection point 41 is determined from the table as matching the determination result pattern in step S109, and the process of the control unit 100 proceeds to step S110. .. If the determination result pattern generated in step S108 does not match any of the tables, the process of the control unit 100 proceeds to step S110 as not applicable.
  • step S110 the control unit 100 determines whether or not there is a determination result pattern corresponding to the table. If there is no determination result pattern corresponding to the table (S110 / No), the process of the control unit 100 proceeds to step S106, and it is determined that the detection points 41 to 46 are not detected at the positions where the notches 50 are formed. When there is a determination result pattern corresponding to the table (S110 ⁇ Yes), the process of the control unit 100 proceeds to step S111, and the detection point determined in step S109 (here, the detection point 41) is the position where the notch 50 is formed. Identify as.
  • the radius of the wafer W is calculated excluding the detection point at the position where the notch 50 specified in step S111 is formed.
  • the radius of the wafer W is calculated based on the detection points 42 to 46 (or the points selected from the detection points 42 to 46). For example, the average of the circumscribed circle radii of each triangle not including the detection point 41 may be used as the radius of the wafer W. Of the circumscribed circle radii of each triangle that does not include the detection point 41, any circumscribed circle radius may be selected as the radius of the wafer W. Then, the process of the control unit 100 is terminated.
  • FIG. 6 is a flowchart showing an example of a process of calculating the center position of the wafer W based on the detected value of the sensor module S1.
  • step S201 the control unit 100 acquires four detection points 21 to 24 (see FIG. 2) from the sensor module S1. Specifically, the control unit 100 controls the transfer device ARM1 to transfer the wafer W from the transfer chamber VTM to the processing chamber PM1. At this time, the detection points 21 to 24 are detected by the wafer W passing over the sensor module S1.
  • step S202 the control unit 100 forms a plurality of triangles from the four detection points 21 to 24. Here, four triangles are formed.
  • step S203 the control unit 100 calculates the circumscribed circle radius and the circumscribed circle center of each triangle formed in step S202, respectively.
  • step S204 the control unit 100 determines whether or not the variation in the center of the circumscribed circle of each triangle calculated in step S203 falls within the range of mounting accuracy.
  • the process of the control unit 100 proceeds to step S205. If the variation at the center of the circumscribed circle does not fall within the range of mounting accuracy (S204 / No), the process of the control unit 100 proceeds to step S207.
  • step S205 the control unit 100 determines that the detection points 21 to 24 are not detected at the position where the notch 50 is formed.
  • step S206 the control unit 100 calculates the radius of the wafer W and the center position of the wafer W.
  • the center position of the wafer W is calculated based on the detection points 21 to 24 (or points selected from the detection points 21 to 24).
  • the average position of the center of the circumscribed circle of each triangle may be the center position of the wafer W.
  • the centers of the circumscribed circles of each triangle one of the centers of the circumscribed circles may be selected as the center position of the wafer W.
  • the process of the control unit 100 is terminated.
  • step S207 the control unit 100 determines whether or not one of the circumscribed circle radii of each triangle can be regarded as having the same value as the radius of the wafer W calculated by the process shown in FIG.
  • the equivalent value means a value that can be regarded as the same value in terms of calculation accuracy.
  • the process of the control unit 100 proceeds to step S208. If there is not one circumscribed circle that can be regarded as having the same value as the radius of the wafer W (S207 / No), the process of the control unit 100 proceeds to step S210. Even if the radius of the wafer W to be referred to cannot be calculated, 100 of the control unit is determined to be step S207 / No, and the process of 100 of the control unit proceeds to step S210.
  • step S208 the control unit 100 identifies the detection points 21 to 24 that are not used in the circumscribed circle that can be regarded as having the same value as the radius of the wafer W as the detection points at the positions where the notches 50 are formed. To do.
  • step S209 the center position of the wafer W is calculated excluding the detection point at the position where the notch 50 specified in step S208 is formed. That is, the center of the circumscribed circle, which can be regarded as the same value as the radius of the wafer W, is calculated as the center position of the wafer W. Then, the process of the control unit 100 is terminated.
  • step S210 the control unit 100 causes the wafer W to exit the processing chamber PM1, offset, and then enter the processing chamber PM1 again.
  • the offset amount here is equal to or greater than the opening width of the notch 50. This makes it possible to prevent the notch 50 from passing over the sensors 11 and 12 again when the wafer W is re-entered into the processing chamber PM1. Then, the process of the control unit 100 returns to step S201. Thereby, the position of the outer edge of the wafer W can be detected at the position where the notch 50 is not formed.
  • the mounting accuracy is improved in the system in which the wafer W is transferred between the load lock chamber LLM and each of the processing chambers PM1 to 6 via the transport chamber VTM. be able to.
  • a method of detecting the center position of the wafer W in the substrate processing system according to the reference example will be described.
  • a triangle is formed from four detection points, and it is determined whether or not the radius R of the outer peripheral circle of each triangle is within the radius range of the wafer W given in advance. Then, it is determined that the detection point is at the position where the notch 50 is formed.
  • the radius of the wafer W must allow a certain dimensional difference (for example, 300 ⁇ 0.2 mm), and both the tolerance of the radius of the wafer W and the detection accuracy (mounting accuracy) of the center position of the wafer W are compatible. It was difficult to get it done.
  • the center position of the wafer W can be accurately positioned. It can be obtained, and the mounting accuracy when mounting the wafer W on the mounting portions 111 of the processing chambers PM1 to PM6 can be improved.
  • the wafer W is transported from the load lock chamber LLM to each of the processing chambers PM1 to 6, and the processed wafer W is transported from each of the processing chambers PM1 to 6 to the load lock chamber LLM. ..
  • a 3-sensor type sensor module (see FIG. 3) is used for the sensor module S7 through which each transport path passes in common, and a 2-sensor type sensor module (see FIG. 3) is used for the sensor modules S1 to 6 of each processing chamber PM1 to PM6. 2) can be used, so that the number of sensors can be reduced and the cost of the substrate processing system can be reduced.
  • FIG. 7 is a plan view showing a configuration of an example of a substrate processing system according to another embodiment.
  • the wafer W is shown with dot hatching.
  • the substrate processing system shown in FIG. 7 is a system having a cluster structure similar to the substrate processing system shown in FIG. 1, and has a processing chamber PM1 to 6, a transport chamber VTM, a load lock chamber LLM, a loader module LM1-2, and a load port. It includes LPs 1 to 4 and a control unit 100.
  • the sensor module S1 in the processing chamber PM1 is changed to a 3-sensor type sensor module (see FIG. 3) as compared with the substrate processing system shown in FIG. It's different.
  • the configuration of the sensor module S1 is the same as the configuration of the sensor module S7 shown in FIG. 3, and redundant description will be omitted.
  • serial transfer is performed as shown in the paths 153 to 155 of the wafer W.
  • at least one sensor module (see FIG. 3) of at least three sensor types is arranged in each path 153 to 155 for transporting the wafer W from one chamber to another via the transport chamber VTM. Ru.
  • the wafer W mounted on the mounting portion 131 of the load lock chamber LLM is conveyed to the processing chamber PM1 and placed on the mounting portion 111 of the processing chamber PM1.
  • the radius of the wafer W is calculated based on the flow shown in FIG.
  • the center position of the wafer W is calculated based on the flow shown in FIG.
  • the mounting position of the wafer W is adjusted based on the calculated center position of the wafer W.
  • the wafer W is subjected to the desired first processing.
  • the radius of the wafer W may change due to expansion due to heat during the process, tension in the film forming process, and the like.
  • the wafer W mounted on the mounting portion 111 of the processing chamber PM1 is conveyed to the processing chamber PM2, and the mounting portion of the processing chamber PM2 is transported. Place on.
  • the radius of the wafer W is calculated based on the flow shown in FIG.
  • the center position of the wafer W is calculated based on the flow shown in FIG.
  • the mounting position of the wafer W is adjusted based on the calculated center position of the wafer W.
  • the wafer W is subjected to a desired second processing.
  • the wafer W mounted on the mounting portion of the processing chamber PM2 is conveyed to the load lock chamber LLM and mounted on the mounting portion 131.
  • the radius and the center position of the wafer W are calculated based on the flow shown in FIG.
  • the mounting position of the wafer W is adjusted based on the calculated center position of the wafer W.
  • the center position of the wafer W is accurate. It can be obtained well, and the mounting accuracy when mounting the wafer W on the mounting portion 111 of the processing chamber PM1 can be improved.
  • the substrate processing system even if the radial dimension of the wafer W is changed by performing the desired processing on the wafer W in the processing chamber PM1 in the configuration of serial transfer, the processing has been completed.
  • the center position of the wafer W can be obtained with high accuracy, and the mounting accuracy when the processed wafer W is mounted on the mounting portion 111 of the next processing chamber PM2 can be improved.
  • the sensor modules S3 to 6 are shown as 2-sensor type sensor modules (see FIG. 2), but the sensor modules S3 to 6 also have 3 sensor types in each path of the wafer W. At least one or more sensor modules (see FIG. 3) may be arranged.
  • the radius of the wafer W is calculated when the wafer W passes through the sensor module S7, and the center position of the wafer W is calculated when the wafer W passes through the sensor module S1. , Not limited to this.
  • the radius and the center position of the wafer W may be calculated based on the flow shown in FIG.
  • the control unit 100 calculates the radius of the wafer W and the center position of the wafer W.
  • the radius of the wafer W and the center position of the wafer W are calculated based on the detection points 41 to 46 (or points selected from the detection points 41 to 46).
  • the average position of the center of the circumscribed circle of each triangle T1 to T4 may be the center position of the wafer W.
  • One of the centers of the circumscribed circles of the triangles T1 to T4 may be selected as the center position of the wafer W.
  • the radius of the wafer W and the wafer W are excluded from the detection point (here, the detection point 41) at the position where the notch 50 specified in step S111 is formed. Calculate the center position of. That is, the radius of the wafer W and the center position of the wafer W are calculated based on the detection points 42 to 46 (or points selected from the detection points 42 to 46).
  • the average position of the center of the circumscribed circle of each triangle that does not include the detection point 41 may be the center position of the wafer W.
  • the centers of the circumscribed circles of each triangle that does not include the detection point 41 one of the centers of the circumscribed circles may be selected as the center position of the wafer W.
  • the sensor module S1 may be a 3-sensor type sensor module (see FIG. 3), and the sensor modules S2 and S7 may be a 2-sensor type sensor module (see FIG. 2).
  • the radius and center position of the wafer W can be accurately obtained by the sensor module S1 provided in the path 153, and the mounting accuracy when the wafer W is mounted on the mounting portion 111 of the processing chamber PM1 is improved. Can be done. Further, the radius of the wafer W can be accurately obtained by the sensor module S1 provided in the path 154, and the center position of the wafer W can be accurately obtained by the sensor module S2 provided in the path 154.
  • the mounting accuracy when mounting the wafer W on the unit 111 can be improved.
  • the two-sensor type sensor modules S2 and S7 will be arranged on the path 155.
  • the center position of the wafer W is calculated based on the flow shown in FIG. 6 when the wafer W passes through the sensor module S7.
  • higher mounting accuracy is not required as when mounting the wafer W on the mounting portions 111 of the processing chambers PM1 and PM1 and PM1 and 2. That is, in the flow shown in FIG. 6, the allowable mounting accuracy range of step S204 is increased.
  • step S204 when the variation at the center of the circumscribed circle does not fall within the range of mounting accuracy (S204 / No), the process of the control unit 100 proceeds to step S207.
  • 100 of the control unit is determined to be step S207 / No, and the process of 100 of the control unit proceeds to step S210.
  • FIG. 8 is a plan view showing the configuration of an example of the substrate processing system according to still another embodiment.
  • the wafer W is shown with dot hatching.
  • the substrate processing system shown in FIG. 8 is a system having a cluster structure similar to the substrate processing system shown in FIG. 1, and has a processing chamber PM1 to 6, a transport chamber VTM, a load lock chamber LLM, a loader module LM1-2, and a load port. It includes LPs 1 to 4 and a control unit 100.
  • the processing chamber PM1 has mounting portions 111 to 114 on which a total of four wafers W are mounted in a 2 ⁇ 2 matrix in a plan view.
  • the processing chambers PMs 2 to 6 each have a mounting portion on which four wafers W are mounted.
  • the load lock chamber LLM has mounting portions 131 to 134 on which a total of four wafers W are mounted in a 2 ⁇ 2 matrix in a plan view. Further, the arrangement of the mounting portions 111 to 114 of the processing chambers PM1 to 6 and the arrangement of the mounting portions 131 to 134 of the load lock chamber LLM are the same.
  • the transport device ARM1 is configured as an articulated arm including a base 121, a first link 122, a second link 123, and an end effector 124.
  • One end side of the first link 122 is rotatably attached to the base 121 with the vertical direction as a rotation axis.
  • the base 121 can move the first link 122 up and down in the vertical direction.
  • One end side of the second link 123 is rotatably attached to the other end side of the first link 122 with the vertical direction as a rotation axis.
  • the base end side of the end effector 124 is rotatably attached to the other end side of the second link 123 with the vertical direction as a rotation axis.
  • a plurality of holding portions for holding the wafer W are provided on the tip end side of the end effector 124.
  • the actuator that drives the elevating and lowering of the first link 122, the joint between the base 121 and the first link 122, the joint between the first link 122 and the second link 123, and the joint between the second link 123 and the end effector 124 is a control unit. Controlled by 100.
  • the end effector 124 is formed in a fork shape whose tip side branches, and has a base end portion 240 and two blades (fork branch portions) 241,242 extending from the base end portion 240.
  • the blades 241,242 extend in the same direction from the base end portion 240 and are formed at the same height.
  • the blade 241 has holding portions 243 and 244 that hold a plurality of wafers W along the longitudinal direction of the blade 241.
  • the blade 242 has holding portions 245 and 246 that hold a plurality of wafers W along the longitudinal direction of the blade 242. In this way, the four wafers W held by the end effector 124 are held at the same height (on the same plane).
  • Two sets of sensor modules S1 to S7 are provided so as to correspond to the two blades 241,242.
  • the sensor module S7 is a sensor module having three sensors 31 to 33.
  • the sensor modules S1 to 6 are also of the three sensor type so that at least one sensor module (see FIG. 3) of the three sensor type is arranged in each path of the wafer W.
  • a sensor module (see FIG. 3) may be arranged.
  • Wafers W mounted on the mounting portions 131 to 134 of the load lock chamber LLM are conveyed to the processing chamber PM1 and placed on the mounting portions 111 to 114 of the processing chamber PM1.
  • the radius of each wafer W is calculated based on the flow shown in FIG.
  • the center position of each wafer W is calculated based on the flow shown in FIG. Based on the calculated center position of each wafer W, the transfer device ARM1 is controlled to adjust the mounting position of the wafer W.
  • the flow shown in FIG. 4 is processed for each wafer W.
  • the flow shown in FIG. 6 is basically processed for each wafer W.
  • the center position is calculated (S206 or S209) in the first to third wafers W of the four wafers W and S207 / No is determined in the fourth wafer W
  • the wafer W is offset. Reinsert.
  • the center position is calculated on the fourth wafer W (S206 or S209).
  • the positional relationship between the notch 50 of the first wafer W and the sensor module S1 also changes, so that the first wafer W may be determined to be S207 / No.
  • offsetting and re-entry may be repeated again until the center positions of the four wafers W are calculated. Further, the center position of the first wafer W determined to be S207 / No due to the offset may be the center position calculated before the offset. As a result, the number of redoes can be reduced.

Abstract

Provided is a method for controlling a substrate processing system and a substrate processing system with which it is possible to identify a detection point at which a cut-out portion has been detected. The method controls a substrate processing system provided with: a first chamber having a first mounting portion; a second chamber having a second mounting portion; a transfer device for transferring a substrate from the first chamber to the second chamber; a first sensor module provided in a transfer route from the first chamber to the second chamber and having at least three sensors for detecting the position of an outer edge of the substrate; and a control unit. The method comprises a step for transferring the substrate and detecting the position of the outer edge of the substrate by means of the first sensor module, and a step for determining whether the point of detection by the first sensor module has been detected at a cut-out portion formed in the substrate.

Description

基板処理システムの制御方法及び基板処理システムBoard processing system control method and board processing system
 本開示は、基板処理システムの制御方法及び基板処理システムに関する。 This disclosure relates to a control method of a substrate processing system and a substrate processing system.
 例えば、ウェハに成膜処理等の所望の処理を行う処理室にウェハを搬送する搬送アームが知られている。ウェハには、結晶軸の方向を示すためのオリエンテーションフラットやノッチなどの切欠き部が設けられている。 For example, a transfer arm that conveys a wafer to a processing chamber that performs a desired process such as a film forming process on the wafer is known. The wafer is provided with notches such as an orientation flat and a notch for indicating the direction of the crystal axis.
 特許文献1には、半導体ウェハの端縁の位置を検出可能な複数のセンサを備えた検出手段の検出データから半導体ウェハの中心位置を算出する位置認識装置が開示されている。また、特許文献2には、基板の通過タイミングを示す信号に基づいて基板の把持位置のずれを取得し、取得した基板の把持位置のずれに基づいて搬送機構の搬送動作を補正し、基板を目標位置に搬送する搬送システムが開示されている。 Patent Document 1 discloses a position recognition device that calculates the center position of a semiconductor wafer from the detection data of a detection means including a plurality of sensors capable of detecting the position of the edge of the semiconductor wafer. Further, in Patent Document 2, the deviation of the gripping position of the substrate is acquired based on the signal indicating the passing timing of the substrate, and the conveying operation of the conveying mechanism is corrected based on the acquired deviation of the gripping position of the substrate to obtain the substrate. A transport system for transporting to a target position is disclosed.
特開2011-18828号公報Japanese Unexamined Patent Publication No. 2011-18828 特開2013-197454号公報Japanese Unexamined Patent Publication No. 2013-197454
 特許文献1に開示された位置認識装置では、予め決定されているウェハの半径を用いて、ウェハに形成されたオリエンテーションフラットを検出したセンサであるか否かを判定し、ウェハの中心位置を算出している。ところで、ウェハは、寸法の許容範囲、プロセス時の熱による膨張、成膜プロセスにおける張力等によって、半径が変化することがある。このため、特許文献1で開示された方法では、ウェハの切欠き部を検出したセンサを好適に特定することができないおそれがある。同様に、特許文献2で開示された方法でも、ウェハの半径が変化する場合、把持位置のずれを好適に取得できないおそれがある。 The position recognition device disclosed in Patent Document 1 uses a predetermined radius of the wafer to determine whether or not the sensor has detected the orientation flat formed on the wafer, and calculates the center position of the wafer. doing. By the way, the radius of the wafer may change depending on the allowable range of dimensions, expansion due to heat during the process, tension in the film forming process, and the like. Therefore, with the method disclosed in Patent Document 1, there is a possibility that the sensor that detects the notch portion of the wafer cannot be suitably specified. Similarly, even with the method disclosed in Patent Document 2, when the radius of the wafer changes, there is a possibility that the deviation of the gripping position cannot be preferably obtained.
 本開示の一態様は、切欠き部を検出した検出点を特定可能な基板処理システムの制御方法及び基板処理システムを提供する。 One aspect of the present disclosure provides a control method for a substrate processing system and a substrate processing system capable of identifying a detection point at which a notch is detected.
 本開示の一態様に係る基板処理システムの制御方法は、第1載置部を有する第1室と、第2載置部を有する第2室と、前記第1室から前記第2室に基板を搬送する搬送装置と、前記第1室から前記第2室への搬送経路に設けられ、前記基板の外縁の位置を検出する少なくとも3つのセンサを有する第1センサモジュールと、制御部と、を備える、基板処理システムの制御方法であって、前記基板を搬送して、前記第1センサモジュールにより前記基板の外縁の位置を検出する工程と、前記第1センサモジュールの検出点が前記基板に形成された切欠き部で検出されたものか否かを判定する工程と、を有する。 The control method of the substrate processing system according to one aspect of the present disclosure includes a first chamber having a first mounting portion, a second chamber having a second mounting portion, and a substrate from the first chamber to the second chamber. A first sensor module provided in a transport path from the first chamber to the second chamber and having at least three sensors for detecting the position of the outer edge of the substrate, and a control unit. A method for controlling a substrate processing system, which comprises a step of transporting the substrate and detecting the position of the outer edge of the substrate by the first sensor module, and a detection point of the first sensor module formed on the substrate. It has a step of determining whether or not it is detected in the cutout portion.
 本開示の一態様によれば、切欠き部を検出した検出点を特定可能な基板処理システムの制御方法及び基板処理システムを提供する。 According to one aspect of the present disclosure, a control method of a substrate processing system and a substrate processing system capable of identifying a detection point at which a notch is detected are provided.
一実施形態に係る基板処理システムの一例の構成を示す平面図。The plan view which shows the structure of an example of the substrate processing system which concerns on one Embodiment. センサモジュールの構成及び検出要領を説明する模式図の一例。An example of a schematic diagram illustrating a configuration of a sensor module and a detection procedure. センサモジュールの構成及び検出要領を説明する模式図の一例。An example of a schematic diagram illustrating a configuration of a sensor module and a detection procedure. ウェハの半径を算出する処理の一例を示すフローチャート。The flowchart which shows an example of the process of calculating the radius of a wafer. テーブルの一例。An example of a table. ウェハの中心位置を算出する処理の一例を示すフローチャート。The flowchart which shows an example of the process of calculating the center position of a wafer. 他の実施形態に係る基板処理システムの一例の構成を示す平面図。The plan view which shows the structure of an example of the substrate processing system which concerns on another embodiment. 更に他の実施形態に係る基板処理システムの一例の構成を示す平面図。The plan view which shows the structure of an example of the substrate processing system which concerns on still another Embodiment.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, a mode for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.
<基板処理システム>
 一実施形態に係る基板処理システムの全体構成の一例について、図1を用いて説明する。図1は、一実施形態に係る基板処理システムの一例の構成を示す平面図である。なお、図1では、ウェハWにドットのハッチングを付して図示している。
<Board processing system>
An example of the overall configuration of the substrate processing system according to the embodiment will be described with reference to FIG. FIG. 1 is a plan view showing a configuration of an example of a substrate processing system according to an embodiment. In FIG. 1, the wafer W is shown with dot hatching.
 図1に示す基板処理システムは、クラスタ構造(マルチチャンバタイプ)のシステムである。基板処理システムは、処理室PM(Process Module)1~6、搬送室VTM(Vacuum Transfer Module)、ロードロック室LLM(Load Lock Module)、ローダーモジュールLM(Loader Module)1~2、ロードポートLP(Load Port)1~4及び制御部100を備えている。 The substrate processing system shown in FIG. 1 is a cluster structure (multi-chamber type) system. The board processing system includes processing chambers PM (Process Module) 1 to 6, transfer chamber VTM (Vacuum Transfer Module), load lock chamber LLM (Load Lock Module), loader module LM (Loader Module) 1 to 2, and load port LP ( LoadPort) 1 to 4 and a control unit 100 are provided.
 処理室PM1~6は、所定の真空雰囲気に減圧され、その内部にて半導体ウェハW(以下、「ウェハW」ともいう。)に所望の処理(エッチング処理、成膜処理、クリーニング処理、アッシング処理等)を施す。処理室PM1~6は、搬送室VTMに隣接して配置される。処理室PM1~6と搬送室VTMとは、ゲートバルブGV1~6の開閉により連通する。処理室PM1は、ウェハWを載置する載置部111を有する。同様に、処理室PM2~6は、ウェハWを載置する載置部をそれぞれ有している。なお、処理室PM1~6における処理のための各部の動作は、制御部100によって制御される。 The processing chambers PMs 1 to 6 are depressurized to a predetermined vacuum atmosphere, and inside the processing chambers PM1 to PM6, a desired process (etching process, film forming process, cleaning process, ashing process) is applied to the semiconductor wafer W (hereinafter, also referred to as “wafer W”). Etc.). The processing chambers PM1 to PM6 are arranged adjacent to the transport chamber VTM. The processing chambers PM1 to 6 and the transport chamber VTM communicate with each other by opening and closing the gate valves GV1 to 6. The processing chamber PM1 has a mounting portion 111 on which the wafer W is mounted. Similarly, each of the processing chambers PM2 to PM2 has a mounting portion on which the wafer W is mounted. The operation of each unit for processing in the processing chambers PM1 to PM6 is controlled by the control unit 100.
 搬送室VTMは、所定の真空雰囲気に減圧されている。また、搬送室VTMの内部には、ウェハWを搬送する搬送装置ARM1が設けられている。搬送装置ARM1は、ゲートバルブGV1~6の開閉に応じて、処理室PM1~6と搬送室VTMとの間でウェハWの搬入及び搬出を行う。また、搬送装置ARM1は、ゲートバルブGV7の開閉に応じて、ロードロック室LLMと搬送室VTMとの間でウェハWの搬入及び搬出を行う。なお、搬送装置ARM1の動作、ゲートバルブGV1~7の開閉は、制御部100によって制御される。 The transport chamber VTM is decompressed to a predetermined vacuum atmosphere. Further, inside the transfer chamber VTM, a transfer device ARM1 for transporting the wafer W is provided. The transfer device ARM1 carries in and out the wafer W between the processing chambers PM1 to 6 and the transfer chamber VTM according to the opening and closing of the gate valves GV1 to 6. Further, the transfer device ARM1 carries in and out the wafer W between the load lock chamber LLM and the transfer chamber VTM according to the opening and closing of the gate valve GV7. The operation of the transfer device ARM1 and the opening / closing of the gate valves GV1 to 7 are controlled by the control unit 100.
 搬送装置ARM1は、例えば、基台と、第1リンクと、第2リンクと、エンドエフェクタ124と、を備える多関節アームとして構成される。なお、図1では、搬送装置ARM1のエンドエフェクタ124を図示し、その他の図示を省略している。エンドエフェクタ124の先端側は、ウェハWを保持する保持部が設けられている。なお、搬送装置ARM1を駆動するアクチュエータは制御部100によって制御される。 The transport device ARM1 is configured as an articulated arm including, for example, a base, a first link, a second link, and an end effector 124. In FIG. 1, the end effector 124 of the transport device ARM1 is illustrated, and other illustrations are omitted. A holding portion for holding the wafer W is provided on the tip end side of the end effector 124. The actuator that drives the transport device ARM1 is controlled by the control unit 100.
 また、搬送室VTMの内部には、ウェハWを検知するセンサモジュールS1~7が設けられている。センサモジュールS1は、搬送装置ARM1がウェハWを処理室PM1に搬入する際、または、処理室PM1から搬出する際、ウェハWが保持されているか否か、及び、保持されているウェハWの偏心量を検知する。なお、センサモジュールS1の検知方法に関しては、図2等を用いて後述する。同様に、センサモジュールS2~6は、搬送装置ARM1がウェハWを処理室PM2~6に搬入する際、または、処理室PM2~6から搬出する際、ウェハWが保持されているか否か、及び、保持されているウェハWの偏心量を検知する。センサモジュールS7は、搬送装置ARM1がウェハWをロードロック室LLMに搬入する際、または、ロードロック室LLMから搬出する際、ウェハWが保持されているか否か、及び、保持されているウェハWの偏心量を検知する。なお、センサモジュールS7の検知方法に関しては、図3等を用いて後述する。センサモジュールS1~7は、例えば光学式の通過センサを用いることができる。センサモジュールS1~7の検出値は、制御部100に入力される。 Further, inside the transport chamber VTM, sensor modules S1 to 7 for detecting the wafer W are provided. The sensor module S1 determines whether or not the wafer W is held when the transfer device ARM1 carries the wafer W into the processing chamber PM1 or when the wafer W is carried out from the processing chamber PM1, and the eccentricity of the held wafer W. Detect the amount. The detection method of the sensor module S1 will be described later with reference to FIG. 2 and the like. Similarly, the sensor modules S2 to 6 determine whether or not the wafer W is held when the transfer device ARM1 carries the wafer W into the processing chambers PM2 to 6 or when the wafer W is carried out from the processing chambers PM2 to 6. , The amount of eccentricity of the held wafer W is detected. The sensor module S7 determines whether or not the wafer W is held when the transfer device ARM1 carries the wafer W into the load lock chamber LLM or when the wafer W is carried out from the load lock chamber LLM, and the held wafer W. Detects the amount of eccentricity. The detection method of the sensor module S7 will be described later with reference to FIG. 3 and the like. For the sensor modules S1 to 7, for example, an optical passage sensor can be used. The detected values of the sensor modules S1 to 7 are input to the control unit 100.
 ロードロック室LLMは、搬送室VTMとローダーモジュールLM1~2との間に設けられている。ロードロック室LLMは、大気雰囲気と真空雰囲気とを切り替えることができるようになっている。ロードロック室LLMと真空雰囲気の搬送室VTMとは、ゲートバルブGV7の開閉により連通する。ロードロック室LLMと大気雰囲気のローダーモジュールLM1とは、ゲートバルブGV8の開閉により連通する。ロードロック室LLMと大気雰囲気のローダーモジュールLM2とは、ゲートバルブGV9の開閉により連通する。ロードロック室LLMは、ウェハWを載置する載置部131を有する。なお、ロードロック室LLM内の真空雰囲気または大気雰囲気の切り替えは、制御部100によって制御される。 The load lock chamber LLM is provided between the transport chamber VTM and the loader modules LM1 and LM2. The load lock chamber LLM can switch between an air atmosphere and a vacuum atmosphere. The load lock chamber LLM and the vacuum atmosphere transfer chamber VTM communicate with each other by opening and closing the gate valve GV7. The load lock chamber LLM and the loader module LM1 in the air atmosphere communicate with each other by opening and closing the gate valve GV8. The load lock chamber LLM and the loader module LM2 in the air atmosphere communicate with each other by opening and closing the gate valve GV9. The load lock chamber LLM has a mounting portion 131 on which the wafer W is mounted. Switching between the vacuum atmosphere and the atmospheric atmosphere in the load lock chamber LLM is controlled by the control unit 100.
 ローダーモジュールLM1~2は、大気雰囲気となっており、例えば清浄空気のダウンフローが形成されている。また、ローダーモジュールLM1の内部には、ウェハWを搬送する搬送装置ARM2が設けられている。搬送装置ARM2は、ゲートバルブGV8の開閉に応じて、ロードロック室LLMとローダーモジュールLM1との間でウェハWの搬入及び搬出を行う。同様に、ローダーモジュールLM2の内部には、ウェハWを搬送する搬送装置ARM3が設けられている。搬送装置ARM3は、ゲートバルブGV9の開閉に応じて、ロードロック室LLMとローダーモジュールLM2との間でウェハWの搬入及び搬出を行う。なお、搬送装置ARM2,3の動作、ゲートバルブGV8,9の開閉は、制御部100によって制御される。 The loader modules LM1 and LM2 have an atmospheric atmosphere, for example, a downflow of clean air is formed. Further, inside the loader module LM1, a transport device ARM2 for transporting the wafer W is provided. The transfer device ARM2 carries in and out the wafer W between the load lock chamber LLM and the loader module LM1 according to the opening and closing of the gate valve GV8. Similarly, inside the loader module LM2, a transfer device ARM3 for transporting the wafer W is provided. The transfer device ARM3 carries in and out the wafer W between the load lock chamber LLM and the loader module LM2 according to the opening and closing of the gate valve GV9. The operation of the transfer devices ARM2 and 3 and the opening and closing of the gate valves GV8 and 9 are controlled by the control unit 100.
 搬送装置ARM2は、例えば、基台と、第1リンクと、第2リンクと、エンドエフェクタ144と、を備える多関節アームとして構成される。なお、図1では、搬送装置ARM2のエンドエフェクタ144を図示し、その他の図示を省略している。エンドエフェクタ144の先端側は、ウェハWを保持する保持部が設けられている。なお、搬送装置ARM2を駆動するアクチュエータは制御部100によって制御される。搬送装置ARM3は、搬送装置ARM2と同様の多関節アームとして構成される。 The transport device ARM2 is configured as an articulated arm including, for example, a base, a first link, a second link, and an end effector 144. In FIG. 1, the end effector 144 of the transport device ARM2 is illustrated, and other illustrations are omitted. A holding portion for holding the wafer W is provided on the tip end side of the end effector 144. The actuator that drives the transport device ARM2 is controlled by the control unit 100. The transport device ARM3 is configured as an articulated arm similar to the transport device ARM2.
 ローダーモジュールLM1の壁面には、ロードポートLP1,2が設けられている。また、ローダーモジュールLM2の壁面には、ロードポートLP3,4が設けられている。ロードポートLP1~4は、ウェハWが収容されたキャリアC又は空のキャリアCが取り付けられる。キャリアCとしては、例えば、FOUP(Front Opening Unified Pod)等を用いることができる。 Load ports LP1 and LP1 and 2 are provided on the wall surface of the loader module LM1. Further, load ports LP3 and 4 are provided on the wall surface of the loader module LM2. A carrier C containing a wafer W or an empty carrier C is attached to the load ports LP1 to LP4. As the carrier C, for example, FOUP (Front Opening Unified Pod) or the like can be used.
 搬送装置ARM2は、ロードポートLP1,2に収容されたウェハWを搬送装置ARM2の保持部で保持して、取り出すことができる。また、保持部に保持されているウェハWをロードポートLP1,2に収容することができる。同様に、搬送装置ARM3は、ロードポートLP3,4に収容されたウェハWを搬送装置ARM3の保持部で保持して、取り出すことができる。また、保持部に保持されているウェハWをロードポートLP3,4に収容することができる。 The transfer device ARM2 can take out the wafer W housed in the load ports LP1 and LP2 by holding it in the holding portion of the transfer device ARM2. Further, the wafer W held in the holding portion can be accommodated in the load ports LP1 and LP1 and 2. Similarly, the transfer device ARM3 can hold the wafer W housed in the load ports LP3 and 4 by the holding portion of the transfer device ARM3 and take it out. Further, the wafer W held in the holding portion can be accommodated in the load ports LP3 and 4.
 制御部100は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)及びHDD(Hard Disk Drive)を有する。制御部100は、HDDに限らずSSD(Solid State Drive)等の他の記憶領域を有してもよい。HDD、RAM等の記憶領域には、プロセスの手順、プロセスの条件、搬送条件が設定されたレシピが格納されている。 The control unit 100 has a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive). The control unit 100 may have other storage areas such as SSD (Solid State Drive) as well as HDD. A recipe in which process procedures, process conditions, and transfer conditions are set is stored in a storage area such as an HDD or RAM.
 CPUは、レシピに従って各処理室PMにおけるウェハWの処理を制御し、ウェハWの搬送を制御する。HDDやRAMには、各処理室PMにおけるウェハWの処理やウェハWの搬送を実行するためのプログラムが記憶されてもよい。プログラムは、記憶媒体に格納して提供されてもよいし、ネットワークを通じて外部装置から提供されてもよい。 The CPU controls the processing of the wafer W in each processing chamber PM according to the recipe, and controls the transfer of the wafer W. The HDD or RAM may store a program for executing the processing of the wafer W and the transfer of the wafer W in each processing chamber PM. The program may be stored in a storage medium and provided, or may be provided from an external device via a network.
<基板処理システムの動作>
 次に、基板処理システムの動作の一例について説明する。ここでは、基板処理システムの動作の一例として、ロードポートLP1に取り付けられたキャリアCに収容されたウェハWを処理室PM1で処理を施し、ロードポートLP3に取り付けられた空のキャリアCに収容する動作に沿って説明する。なお、動作の開始時点において、ゲートバルブGV1~9は閉じており、ロードロック室LLM内は大気雰囲気となっている。
<Operation of board processing system>
Next, an example of the operation of the substrate processing system will be described. Here, as an example of the operation of the substrate processing system, the wafer W accommodated in the carrier C attached to the load port LP1 is processed in the processing chamber PM1 and accommodated in the empty carrier C attached to the load port LP3. It will be explained along with the operation. At the start of the operation, the gate valves GV1 to 9 are closed, and the load lock chamber LLM has an atmospheric atmosphere.
 制御部100は、ゲートバルブGV8を開ける。制御部100は、搬送装置ARM2を制御して、ロードポートLP1のキャリアCからウェハWを取り出し、ロードロック室LLMの載置部131に載置する。ウェハWがロードロック室LLMの載置部131に載置され、搬送装置ARM2がロードロック室LLMから退避すると、制御部100は、ゲートバルブGV8を閉じる。 The control unit 100 opens the gate valve GV8. The control unit 100 controls the transfer device ARM2 to take out the wafer W from the carrier C of the load port LP1 and place it on the mounting unit 131 of the load lock chamber LLM. When the wafer W is placed on the mounting portion 131 of the load lock chamber LLM and the transfer device ARM2 is retracted from the load lock chamber LLM, the control unit 100 closes the gate valve GV8.
 制御部100は、ロードロック室LLMの排気装置(図示せず)を制御して室内の空気を排気し、ロードロック室LLMを大気雰囲気から真空雰囲気へと切り替える。 The control unit 100 controls the exhaust device (not shown) of the load lock chamber LLM to exhaust the air in the room, and switches the load lock chamber LLM from the atmospheric atmosphere to the vacuum atmosphere.
 次に、経路151に示すように、ロードロック室LLMの載置部131に載置されたウェハWを、処理室PM1に搬送して、載置部111に載置する。具体的には、制御部100は、ゲートバルブGV7を開ける。制御部100は、搬送装置ARM1を制御して、予め設定された教示点までエンドエフェクタ124をロードロック室LLMに挿入し、ロードロック室LLMの載置部131に載置されたウェハWを保持して、搬送室VTMへと搬送する。なお、図4を用いて後述するように、ウェハWをロードロック室LLMから搬送室VTMへと搬送する際、センサモジュールS7を用いてウェハWの半径を算出する。エンドエフェクタ124がロードロック室LLMから退避すると、制御部100は、ゲートバルブGV7を閉じる。 Next, as shown in the path 151, the wafer W mounted on the mounting section 131 of the load lock chamber LLM is conveyed to the processing chamber PM1 and mounted on the mounting section 111. Specifically, the control unit 100 opens the gate valve GV7. The control unit 100 controls the transport device ARM1 to insert the end effector 124 into the load lock chamber LLM up to a preset teaching point, and holds the wafer W mounted on the mounting portion 131 of the load lock chamber LLM. Then, it is transported to the transport chamber VTM. As will be described later with reference to FIG. 4, when the wafer W is transported from the load lock chamber LLM to the transport chamber VTM, the radius of the wafer W is calculated using the sensor module S7. When the end effector 124 retracts from the load lock chamber LLM, the control unit 100 closes the gate valve GV7.
 制御部100は、ゲートバルブGV1を開ける。制御部100は、搬送装置ARM1を制御して、予め設定された教示点までエンドエフェクタ124を処理室PM1に挿入し、保持しているウェハWを処理室PM1の載置部111に載置する。なお、図6を用いて後述するように、ウェハWを搬送室VTMから処理室PM1へと搬送する際、センサモジュールS1を用いてウェハWの中心位置を算出する。制御部100は、搬送装置ARM1を制御して、算出したウェハWの中心位置に基づいて、ウェハWの位置を調整する。エンドエフェクタ124が処理室PM1から退避すると、制御部100は、ゲートバルブGV1を閉じる。 The control unit 100 opens the gate valve GV1. The control unit 100 controls the transfer device ARM1 to insert the end effector 124 into the processing chamber PM1 up to a preset teaching point, and mounts the holding wafer W on the mounting portion 111 of the processing chamber PM1. .. As will be described later with reference to FIG. 6, when the wafer W is transported from the transport chamber VTM to the processing chamber PM1, the center position of the wafer W is calculated using the sensor module S1. The control unit 100 controls the transfer device ARM1 and adjusts the position of the wafer W based on the calculated center position of the wafer W. When the end effector 124 retracts from the processing chamber PM1, the control unit 100 closes the gate valve GV1.
 制御部100は、処理室PM1を制御して、ウェハWに所望の処理を施す。 The control unit 100 controls the processing chamber PM1 to perform a desired processing on the wafer W.
 ウェハWの処理が終了すると、経路152に示すように、処理室PM1の載置部111に載置されたウェハWを、ロードロック室LLMに搬送して、載置部131に載置する。具体的には、制御部100は、ゲートバルブGV1を開ける。制御部100は、搬送装置ARM1を制御して、予め設定された教示点までエンドエフェクタ124を処理室PM1に挿入し、処理室PM1の載置部111に載置されたウェハWを保持して、搬送室VTMへと搬送する。エンドエフェクタ124が処理室PM1から退避すると、制御部100は、ゲートバルブGV1を閉じる。 When the processing of the wafer W is completed, as shown in the path 152, the wafer W mounted on the mounting portion 111 of the processing chamber PM1 is conveyed to the load lock chamber LLM and mounted on the mounting portion 131. Specifically, the control unit 100 opens the gate valve GV1. The control unit 100 controls the transfer device ARM1 to insert the end effector 124 into the processing chamber PM1 up to a preset teaching point, and holds the wafer W mounted on the mounting portion 111 of the processing chamber PM1. , Transport to the transport chamber VTM. When the end effector 124 retracts from the processing chamber PM1, the control unit 100 closes the gate valve GV1.
 制御部100は、ゲートバルブGV7を開ける。制御部100は、搬送装置ARM1を制御して、予め設定された教示点までエンドエフェクタ124をロードロック室LLMに挿入し、保持しているウェハWをロードロック室LLMの載置部131に載置する。エンドエフェクタ124がロードロック室LLMから退避すると、制御部100は、ゲートバルブGV7を閉じる。 The control unit 100 opens the gate valve GV7. The control unit 100 controls the transport device ARM1 to insert the end effector 124 into the load lock chamber LLM up to a preset teaching point, and mounts the holding wafer W on the mounting portion 131 of the load lock chamber LLM. Place. When the end effector 124 retracts from the load lock chamber LLM, the control unit 100 closes the gate valve GV7.
 制御部100は、ロードロック室LLMの吸気装置(図示せず)を制御して室内に例えば清浄空気を供給し、ロードロック室LLMを真空雰囲気から大気雰囲気へと切り替える。 The control unit 100 controls an intake device (not shown) of the load lock chamber LLM to supply, for example, clean air to the room, and switches the load lock chamber LLM from a vacuum atmosphere to an air atmosphere.
 制御部100は、ゲートバルブGV9を開ける。制御部100は、搬送装置ARM3を制御して、ロードロック室LLMの載置部131に載置されたウェハWを取り出し、ロードポートLP3のキャリアCに収容する。ウェハWがロードロック室LLMの載置部131から取り出され、搬送装置ARM3がロードロック室LLMから退避すると、制御部100は、ゲートバルブGV9を閉じる。 The control unit 100 opens the gate valve GV9. The control unit 100 controls the transfer device ARM3 to take out the wafer W mounted on the mounting unit 131 of the load lock chamber LLM and accommodates the wafer W in the carrier C of the load port LP3. When the wafer W is taken out from the mounting portion 131 of the load lock chamber LLM and the transfer device ARM3 is retracted from the load lock chamber LLM, the control unit 100 closes the gate valve GV9.
 以上、ウェハWを処理室PM1に搬送・搬出する例を説明したが、同様にウェハWを処理室PM2~6に搬送・搬出してもよい。 Although the example of transporting / unloading the wafer W to the processing chamber PM1 has been described above, the wafer W may be similarly transported / transported to the processing chambers PM2 to PM1.
<ウェハの中心位置検出>
 次に、センサモジュールS1~7について、図2及び図3を用いて更に説明する。
<Wafer center position detection>
Next, the sensor modules S1 to 7 will be further described with reference to FIGS. 2 and 3.
 図2は、センサモジュールS1の構成及びセンサモジュールS1の検出要領を説明する模式図の一例である。センサモジュールS1は、2つのセンサ11,12を有している。以下、2つのセンサ11,12を有するセンサモジュールS1を「2センサタイプのセンサモジュール」ともいう。センサ11,12は、例えば光学式の通過センサであって、ウェハWを搬送室VTMから処理室PM1に搬送する、または、処理室PM1から搬送室VTMに搬送する際に上方を通過するウェハWのエッジを検出する。センサ11,12は、所定の間隔を隔てて配置される。また、センサ11,12は、基準線10に対して、反対側に配置されてもよい。また、センサ11,12は、基準線10に対して、対称に配置されてもよい。基準線10とは、例えば処理室PM1の載置部111の中心を通り、搬送装置ARM1によるウェハWの搬送方向に延びる線である。 FIG. 2 is an example of a schematic diagram illustrating the configuration of the sensor module S1 and the detection procedure of the sensor module S1. The sensor module S1 has two sensors 11 and 12. Hereinafter, the sensor module S1 having the two sensors 11 and 12 is also referred to as a “two sensor type sensor module”. The sensors 11 and 12 are, for example, optical pass sensors, and are wafers W that pass above when the wafer W is transported from the transport chamber VTM to the processing chamber PM1 or from the processing chamber PM1 to the transport chamber VTM. Detect the edge of. The sensors 11 and 12 are arranged at predetermined intervals. Further, the sensors 11 and 12 may be arranged on the opposite side of the reference line 10. Further, the sensors 11 and 12 may be arranged symmetrically with respect to the reference line 10. The reference line 10 is, for example, a line that passes through the center of the mounting portion 111 of the processing chamber PM1 and extends in the transfer direction of the wafer W by the transfer device ARM1.
 図2において、ウェハWを基準線10に沿って上方へ向かって搬送することにより、センサ11によって検出点21の位置が検出される。また、センサ12によって検出点22の位置が検出される。ウェハWを更に搬送することにより、センサ11によって検出点23の位置が検出される。また、センサ12によって検出点24の位置が検出される。センサモジュールS1の検出値は、制御部100に入力される。制御部100は、搬送装置ARM1の姿勢(エンドエフェクタ124の位置、速度)及びセンサモジュールS1の検出値に基づいて、ウェハWの中心位置を算出する。 In FIG. 2, the position of the detection point 21 is detected by the sensor 11 by transporting the wafer W upward along the reference line 10. Further, the position of the detection point 22 is detected by the sensor 12. By further transporting the wafer W, the position of the detection point 23 is detected by the sensor 11. Further, the position of the detection point 24 is detected by the sensor 12. The detected value of the sensor module S1 is input to the control unit 100. The control unit 100 calculates the center position of the wafer W based on the posture of the transfer device ARM1 (position and speed of the end effector 124) and the detected value of the sensor module S1.
 図3は、センサモジュールS7の構成及びセンサモジュールS7の検出要領を説明する模式図の一例である。センサモジュールS7は、3つのセンサ31~33を有している。以下、3つのセンサ31~33を有するセンサモジュールS7を「3センサタイプのセンサモジュール」ともいう。センサ31~33は、例えば光学式の通過センサであって、ウェハWを搬送室VTMからロードロック室LLMに搬送する、または、ロードロック室LLMから搬送室VTMに搬送する際に上方を通過するウェハWのエッジを検出する。センサ31~33は、所定の間隔を隔てて配置される。また、センサ31,32は、基準線30に対して、反対側に配置されてもよい。また、センサ31,32は、基準線30に対して、対称に配置されてもよい。基準線30とは、例えばロードロック室LLMの載置部131の中心を通り、搬送装置ARM1によるウェハWの搬送方向に延びる線である。 FIG. 3 is an example of a schematic diagram illustrating the configuration of the sensor module S7 and the detection procedure of the sensor module S7. The sensor module S7 has three sensors 31 to 33. Hereinafter, the sensor module S7 having three sensors 31 to 33 is also referred to as a “three sensor type sensor module”. The sensors 31 to 33 are, for example, optical pass sensors, which pass above when the wafer W is transported from the transport chamber VTM to the load lock chamber LLM, or from the load lock chamber LLM to the transport chamber VTM. The edge of the wafer W is detected. The sensors 31 to 33 are arranged at predetermined intervals. Further, the sensors 31 and 32 may be arranged on the opposite side of the reference line 30. Further, the sensors 31 and 32 may be arranged symmetrically with respect to the reference line 30. The reference line 30 is, for example, a line that passes through the center of the mounting portion 131 of the load lock chamber LLM and extends in the transfer direction of the wafer W by the transfer device ARM1.
 また、センサ33は、センサ32からノッチ50の開口幅以上の間隔を隔てて配置される。なお、図3においては、センサ33は、センサ31とセンサ32の間に設けられるものとして図示しているが、これに限られるものではなく、センサ31とセンサ32の間よりも外側に設けられていてもよい。 Further, the sensor 33 is arranged at a distance equal to or larger than the opening width of the notch 50 from the sensor 32. In FIG. 3, the sensor 33 is shown as being provided between the sensor 31 and the sensor 32, but the present invention is not limited to this, and the sensor 33 is provided outside between the sensor 31 and the sensor 32. You may be.
 図3において、ウェハWを基準線30に沿って上方へ向かって搬送することにより、センサ31によって検出点41の位置が検出される。また、センサ32によって検出点42の位置が検出される。また、センサ33によって検出点45の位置が検出される。ウェハWを更に搬送することにより、センサ31によって検出点43の位置が検出される。また、センサ32によって検出点44の位置が検出される。また、センサ33によって検出点46の位置が検出される。センサモジュールS7の検出値は、制御部100に入力される。制御部100は、搬送装置ARM1の姿勢(エンドエフェクタ124の位置、速度)及びセンサモジュールS7の検出値に基づいて、ウェハWの半径及びウェハWの中心位置を算出する。 In FIG. 3, the position of the detection point 41 is detected by the sensor 31 by transporting the wafer W upward along the reference line 30. Further, the position of the detection point 42 is detected by the sensor 32. Further, the position of the detection point 45 is detected by the sensor 33. By further transporting the wafer W, the position of the detection point 43 is detected by the sensor 31. Further, the position of the detection point 44 is detected by the sensor 32. Further, the position of the detection point 46 is detected by the sensor 33. The detected value of the sensor module S7 is input to the control unit 100. The control unit 100 calculates the radius of the wafer W and the center position of the wafer W based on the posture of the transport device ARM1 (position and speed of the end effector 124) and the detected value of the sensor module S7.
 制御部100は、検出点から三角形を仮想して、三角形の外接円を求めることにより、ウェハWの半径やウェハWの中心位置を推定する。ここで、ウェハWには、結晶軸の方向を示すためのノッチ50が設けられている。センサ(11~12,31~33)がノッチ50が形成された位置でエッジ(図2の例では、検出点22、図3の例では、検出点42)を検出した場合、その検出点を含む三角形(例えば、図2の例では、検出点21,22,23からなる三角形、図3の例では、検出点41,42,43からなる三角形)から推定されたウェハWの中心位置が、実際のウェハWの中心位置からずれるおそれがある。 The control unit 100 estimates the radius of the wafer W and the center position of the wafer W by imagining a triangle from the detection point and obtaining the circumscribed circle of the triangle. Here, the wafer W is provided with a notch 50 for indicating the direction of the crystal axis. When the sensor (11 to 12, 31 to 33) detects an edge (detection point 22 in the example of FIG. 2 and detection point 42 in the example of FIG. 3) at the position where the notch 50 is formed, the detection point is determined. The center position of the wafer W estimated from the including triangle (for example, in the example of FIG. 2, the triangle consisting of detection points 21, 22, 23, and in the example of FIG. 3, the triangle consisting of detection points 41, 42, 43) is determined. There is a risk of deviating from the actual center position of the wafer W.
 図4は、センサモジュールS7の検出値に基づいて、ウェハWの半径を算出する処理の一例を示すフローチャートである。 FIG. 4 is a flowchart showing an example of a process of calculating the radius of the wafer W based on the detected value of the sensor module S7.
 ステップS101において、制御部100は、センサモジュールS7から6点の検出点41~46(図3参照)を取得する。具体的には、制御部100は、搬送装置ARM1を制御して、ウェハWをロードロック室LLMから搬送室VTMへと搬送する。この際、センサモジュールS7上をウェハWが通過することにより、検出点41~46が検出される。 In step S101, the control unit 100 acquires 6 detection points 41 to 46 (see FIG. 3) from the sensor module S7. Specifically, the control unit 100 controls the transfer device ARM1 to transfer the wafer W from the load lock chamber LLM to the transfer chamber VTM. At this time, the detection points 41 to 46 are detected by the wafer W passing over the sensor module S7.
 ステップS102において、制御部100は、6点の検出点41~46から複数の三角形を形成する。ここでは、少なくとも4つの三角形を形成する。以下の説明において、形成した4つの三角形を三角形T1~T4ともいう。 In step S102, the control unit 100 forms a plurality of triangles from the six detection points 41 to 46. Here, at least four triangles are formed. In the following description, the formed four triangles are also referred to as triangles T1 to T4.
 ステップS103において、制御部100は、ステップS102で形成した各三角形T1~T4の外接円半径及び外接円中心をそれぞれ算出する。 In step S103, the control unit 100 calculates the circumscribed circle radius and the circumscribed circle center of each of the triangles T1 to T4 formed in step S102, respectively.
 ステップS104において、制御部100は、ステップS103で算出した各三角形T1~T4の外接円半径から外接円半径の平均値を算出する。 In step S104, the control unit 100 calculates the average value of the circumscribed circle radii from the circumscribed circle radii of the triangles T1 to T4 calculated in step S103.
 ステップS105において、制御部100は、ノッチ50が形成された位置で検出点41~46を検出したか否かを判定する。 In step S105, the control unit 100 determines whether or not the detection points 41 to 46 are detected at the positions where the notches 50 are formed.
 ここでは、ステップS103で算出した各三角形T1~T4の外接円中心のばらつきが載置精度の範囲内に収まるか否かを判定する。載置精度とは、ウェハWを載置部111に載置する際に、正規位置からどれほどの変位を許容するかを示す値である。外接円中心のばらつきが載置精度の範囲内に収まる場合、ノッチ50が形成された位置で検出点41~46を検出していないと判定する。外接円中心のばらつきが載置精度の範囲内に収まらない場合、ノッチ50が形成された位置でいずれかの検出点41~46が検出されたと判定する。 Here, it is determined whether or not the variation in the center of the circumscribed circle of each triangle T1 to T4 calculated in step S103 is within the range of the mounting accuracy. The mounting accuracy is a value indicating how much displacement is allowed from the normal position when the wafer W is mounted on the mounting portion 111. When the variation in the center of the circumscribed circle is within the range of the mounting accuracy, it is determined that the detection points 41 to 46 are not detected at the position where the notch 50 is formed. If the variation in the center of the circumscribed circle does not fall within the range of mounting accuracy, it is determined that any of the detection points 41 to 46 is detected at the position where the notch 50 is formed.
 ノッチ50が形成された位置で検出点41~46を検出した場合(S105・Yes)、制御部100の処理は、ステップS108に進む。ノッチ50が形成された位置で検出点41~46を検出していない場合(S105・No)、制御部100の処理は、ステップS106に進む。 When the detection points 41 to 46 are detected at the positions where the notches 50 are formed (S105 · Yes), the process of the control unit 100 proceeds to step S108. When the detection points 41 to 46 are not detected at the position where the notch 50 is formed (S105 / No), the process of the control unit 100 proceeds to step S106.
 ステップS106において、制御部100は、検出点41~46はノッチ50が形成された位置での検出ではないと判定する。 In step S106, the control unit 100 determines that the detection points 41 to 46 are not detected at the position where the notch 50 is formed.
 ステップS107において、制御部100は、ウェハWの半径を算出する。ここでは、検出点41~46(または、検出点41~46の中から選択した点)に基づいて、ウェハWの半径を算出する。例えば、各三角形T1~T4の外接円半径の平均を、ウェハWの半径としてもよい。各三角形T1~T4の外接円半径のうち、いずれかの外接円半径を選択して、ウェハWの半径としてもよい。そして、制御部100の処理を終了する。 In step S107, the control unit 100 calculates the radius of the wafer W. Here, the radius of the wafer W is calculated based on the detection points 41 to 46 (or the points selected from the detection points 41 to 46). For example, the average of the circumscribed circle radii of each triangle T1 to T4 may be used as the radius of the wafer W. One of the circumscribed circle radii of the triangles T1 to T4 may be selected as the radius of the wafer W. Then, the process of the control unit 100 is terminated.
 ステップS108において、制御部100は、ステップS103で算出した各三角形T1~T4の外接円半径と、ステップS104で算出した外接円半径の平均値と、の大小関係をそれぞれ比較して、判定結果パターンを生成する。以下の説明において、外接円半径が平均値よりも大きい場合を「○」で示し、外接円半径が平均値よりも小さい場合を「×」で示す。例えば、三角形T1の外接円半径が平均値より大きく、三角形T2の外接円半径が平均値より小さく、三角形T3の外接円半径が平均値より大きく、三角形T4の外接円半径が平均値より小さい場合、「○×○×」という判定結果パターンが生成される。 In step S108, the control unit 100 compares the magnitude relationship between the circumscribed circle radii of the triangles T1 to T4 calculated in step S103 and the average value of the circumscribed circle radii calculated in step S104, and determines the determination result pattern. To generate. In the following description, the case where the circumscribed circle radius is larger than the average value is indicated by "○", and the case where the circumscribed circle radius is smaller than the average value is indicated by "x". For example, when the circumscribed circle radius of triangle T1 is larger than the average value, the circumscribed circle radius of triangle T2 is smaller than the average value, the circumscribed circle radius of triangle T3 is larger than the average value, and the circumscribed circle radius of triangle T4 is smaller than the average value. , "○ × ○ ×" judgment result pattern is generated.
 ステップS109において、制御部100は、制御部100に予め記憶されているテーブルから、ステップS108で生成した判定結果パターンと一致するものを判定する。 In step S109, the control unit 100 determines from the table stored in advance in the control unit 100 that it matches the determination result pattern generated in step S108.
 図5は、テーブルの一例である。テーブルには、各検出点41~46がノッチ50が形成された位置での検出点であった場合における各三角形T1~T4の判定結果パターンが対応付けして記憶されている。例えば、検出点41がノッチ50が形成された位置での検出点であった場合、「○×○×」という判定結果パターンが記憶されている。検出点42がノッチ50が形成された位置での検出点であった場合、「×○××」という判定結果パターンが記憶されている。検出点43がノッチ50が形成された位置での検出点であった場合、「×○×○」という判定結果パターンが記憶されている。 FIG. 5 is an example of a table. In the table, the determination result patterns of the triangles T1 to T4 when the detection points 41 to 46 are the detection points at the positions where the notches 50 are formed are stored in association with each other. For example, when the detection point 41 is the detection point at the position where the notch 50 is formed, the determination result pattern of "○ × ○ ×" is stored. When the detection point 42 is the detection point at the position where the notch 50 is formed, the determination result pattern of "XXXXX" is stored. When the detection point 43 is the detection point at the position where the notch 50 is formed, the determination result pattern of "XXXXX" is stored.
 ここで、6つの検出点41~46から形成される20通りの三角形のうち、各検出点41~46に対応する判定結果パターンがユニークとなるように、三角形T1~T4が設定されている。 Here, of the 20 triangles formed from the six detection points 41 to 46, the triangles T1 to T4 are set so that the determination result pattern corresponding to each detection point 41 to 46 is unique.
 また、6つの検出点41~46から形成される20通りの三角形のうち、ある一つの三角形と他の三角形とで、同じ大小パターンとなるものについては、いずれか一方の三角形を用いてテーブルが作成されていてよい。この場合、形状が細くなる三角形(例えば、検出点42,45と他の検出点からなる三角形、検出点44,46と他の検出点からなる三角形等)を除くようにしてもよい。これにより、3つの検出点を互いに離すことができ、算出される外接円半径、外接円中心の誤差を低減することができる。 In addition, among the 20 triangles formed from the six detection points 41 to 46, if one triangle and the other triangle have the same magnitude pattern, the table uses one of the triangles. It may have been created. In this case, a triangle having a narrow shape (for example, a triangle consisting of detection points 42, 45 and other detection points, a triangle consisting of detection points 44, 46 and other detection points, etc.) may be excluded. As a result, the three detection points can be separated from each other, and the error of the calculated circumscribed circle radius and the center of the circumscribed circle can be reduced.
 例えば、ステップS108において「○×○×」という判定結果パターンを生成した場合、ステップS109においてテーブルから判定結果パターンと一致するものとして検出点41が判定され、制御部100の処理はステップS110に進む。なお、ステップS108において生成した判定結果パターンがテーブルのいずれにも一致しない場合、該当なしとして、制御部100の処理はステップS110に進む。 For example, when the determination result pattern of "○ × ○ ×" is generated in step S108, the detection point 41 is determined from the table as matching the determination result pattern in step S109, and the process of the control unit 100 proceeds to step S110. .. If the determination result pattern generated in step S108 does not match any of the tables, the process of the control unit 100 proceeds to step S110 as not applicable.
 ステップS110において、制御部100は、テーブルに該当する判定結果パターンがあったか否かを判定する。テーブルに該当する判定結果パターンがない場合(S110・No)、制御部100の処理はステップS106に進み、検出点41~46はノッチ50が形成された位置での検出ではないと判定する。テーブルに該当する判定結果パターンがある場合(S110・Yes)、制御部100の処理はステップS111に進み、ステップS109で判定された検出点(ここでは検出点41)がノッチ50が形成された位置であると特定する。 In step S110, the control unit 100 determines whether or not there is a determination result pattern corresponding to the table. If there is no determination result pattern corresponding to the table (S110 / No), the process of the control unit 100 proceeds to step S106, and it is determined that the detection points 41 to 46 are not detected at the positions where the notches 50 are formed. When there is a determination result pattern corresponding to the table (S110 · Yes), the process of the control unit 100 proceeds to step S111, and the detection point determined in step S109 (here, the detection point 41) is the position where the notch 50 is formed. Identify as.
 ステップS112において、ステップS111で特定されたノッチ50が形成された位置での検出点を除いて、ウェハWの半径を算出する。ここでは、検出点42~46(または、検出点42~46の中から選択した点)に基づいて、ウェハWの半径を算出する。例えば、検出点41を含まない各三角形の外接円半径の平均を、ウェハWの半径としてもよい。検出点41を含まない各三角形の外接円半径のうち、いずれかの外接円半径を選択して、ウェハWの半径としてもよい。そして、制御部100の処理を終了する。 In step S112, the radius of the wafer W is calculated excluding the detection point at the position where the notch 50 specified in step S111 is formed. Here, the radius of the wafer W is calculated based on the detection points 42 to 46 (or the points selected from the detection points 42 to 46). For example, the average of the circumscribed circle radii of each triangle not including the detection point 41 may be used as the radius of the wafer W. Of the circumscribed circle radii of each triangle that does not include the detection point 41, any circumscribed circle radius may be selected as the radius of the wafer W. Then, the process of the control unit 100 is terminated.
 図6は、センサモジュールS1の検出値に基づいて、ウェハWの中心位置を算出する処理の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of a process of calculating the center position of the wafer W based on the detected value of the sensor module S1.
 ステップS201において、制御部100は、センサモジュールS1から4点の検出点21~24(図2参照)を取得する。具体的には、制御部100は、搬送装置ARM1を制御して、ウェハWを搬送室VTMから処理室PM1へと搬送する。この際、センサモジュールS1上をウェハWが通過することにより、検出点21~24が検出される。 In step S201, the control unit 100 acquires four detection points 21 to 24 (see FIG. 2) from the sensor module S1. Specifically, the control unit 100 controls the transfer device ARM1 to transfer the wafer W from the transfer chamber VTM to the processing chamber PM1. At this time, the detection points 21 to 24 are detected by the wafer W passing over the sensor module S1.
 ステップS202において、制御部100は、4点の検出点21~24から複数の三角形を形成する。ここでは、4つの三角形を形成する。 In step S202, the control unit 100 forms a plurality of triangles from the four detection points 21 to 24. Here, four triangles are formed.
 ステップS203において、制御部100は、ステップS202で形成した各三角形の外接円半径及び外接円中心をそれぞれ算出する。 In step S203, the control unit 100 calculates the circumscribed circle radius and the circumscribed circle center of each triangle formed in step S202, respectively.
 ステップS204において、制御部100は、ステップS203で算出した各三角形の外接円中心のばらつきが載置精度の範囲内に収まるか否かを判定する。外接円中心のばらつきが載置精度の範囲内に収まる場合(S204・Yes)、制御部100の処理は、ステップS205に進む。外接円中心のばらつきが載置精度の範囲内に収まらない場合(S204・No)、制御部100の処理は、ステップS207に進む。 In step S204, the control unit 100 determines whether or not the variation in the center of the circumscribed circle of each triangle calculated in step S203 falls within the range of mounting accuracy. When the variation at the center of the circumscribed circle is within the range of the mounting accuracy (S204 · Yes), the process of the control unit 100 proceeds to step S205. If the variation at the center of the circumscribed circle does not fall within the range of mounting accuracy (S204 / No), the process of the control unit 100 proceeds to step S207.
 ステップS205において、制御部100は、検出点21~24はノッチ50が形成された位置での検出ではないと判定する。 In step S205, the control unit 100 determines that the detection points 21 to 24 are not detected at the position where the notch 50 is formed.
 ステップS206において、制御部100は、ウェハWの半径及びウェハWの中心位置を算出する。ここでは、検出点21~24(または、検出点21~24の中から選択した点)に基づいて、ウェハWの中心位置を算出する。例えば、各三角形の外接円中心の平均位置をウェハWの中心位置としてもよい。各三角形の外接円中心のうち、いずれかの外接円中心を選択して、ウェハWの中心位置としてもよい。これにより、算出されたウェハWの中心位置と、実際のウェハWの中心位置との誤差を、載置精度の範囲内に収めることができる。そして、制御部100の処理を終了する。 In step S206, the control unit 100 calculates the radius of the wafer W and the center position of the wafer W. Here, the center position of the wafer W is calculated based on the detection points 21 to 24 (or points selected from the detection points 21 to 24). For example, the average position of the center of the circumscribed circle of each triangle may be the center position of the wafer W. Of the centers of the circumscribed circles of each triangle, one of the centers of the circumscribed circles may be selected as the center position of the wafer W. As a result, the error between the calculated center position of the wafer W and the actual center position of the wafer W can be kept within the range of the mounting accuracy. Then, the process of the control unit 100 is terminated.
 ステップS207において、制御部100は、各三角形の外接円半径のうち、図4に示す処理で算出したウェハWの半径と同値とみなせる外接円は1つであるか否かを判定する。ここで、同値とは、計算精度において同値とみなせるものをいう。ウェハWの半径と同値とみなせる外接円は1つである場合(S207・Yes)、制御部100の処理はステップS208に進む。ウェハWの半径と同値とみなせる外接円が1つでない場合(S207・No)、制御部100の処理はステップS210に進む。なお、参照すべきウェハWの半径が算出できていない場合にも、制御部の100はステップS207・Noと判定して、制御部の100の処理はステップS210に進む。 In step S207, the control unit 100 determines whether or not one of the circumscribed circle radii of each triangle can be regarded as having the same value as the radius of the wafer W calculated by the process shown in FIG. Here, the equivalent value means a value that can be regarded as the same value in terms of calculation accuracy. When there is only one circumscribed circle that can be regarded as having the same value as the radius of the wafer W (S207 · Yes), the process of the control unit 100 proceeds to step S208. If there is not one circumscribed circle that can be regarded as having the same value as the radius of the wafer W (S207 / No), the process of the control unit 100 proceeds to step S210. Even if the radius of the wafer W to be referred to cannot be calculated, 100 of the control unit is determined to be step S207 / No, and the process of 100 of the control unit proceeds to step S210.
 ステップS208において、制御部100は、検出点21~24のうち、ウェハWの半径と同値とみなせる外接円に用いられていない検出点を、ノッチ50が形成された位置での検出であると特定する。 In step S208, the control unit 100 identifies the detection points 21 to 24 that are not used in the circumscribed circle that can be regarded as having the same value as the radius of the wafer W as the detection points at the positions where the notches 50 are formed. To do.
 ステップS209において、ステップS208で特定されたノッチ50が形成された位置での検出点を除いて、ウェハWの中心位置を算出する。即ち、ウェハWの半径と同値とみなせる外接円の外接円中心をウェハWの中心位置として算出する。そして、制御部100の処理を終了する。 In step S209, the center position of the wafer W is calculated excluding the detection point at the position where the notch 50 specified in step S208 is formed. That is, the center of the circumscribed circle, which can be regarded as the same value as the radius of the wafer W, is calculated as the center position of the wafer W. Then, the process of the control unit 100 is terminated.
 ステップS210において、制御部100は、ウェハWを処理室PM1から退出させ、オフセットした後に、再度処理室PM1内に進入させる。ここでのオフセット量は、ノッチ50の開口幅以上とする。これにより、処理室PM1内にウェハWを再進入させた際、ノッチ50がセンサ11,12の上を再び通過することを防止することができる。そして、制御部100の処理は、ステップS201に戻る。これにより、ノッチ50が形成されていない位置でウェハWの外縁の位置を検出することができる。 In step S210, the control unit 100 causes the wafer W to exit the processing chamber PM1, offset, and then enter the processing chamber PM1 again. The offset amount here is equal to or greater than the opening width of the notch 50. This makes it possible to prevent the notch 50 from passing over the sensors 11 and 12 again when the wafer W is re-entered into the processing chamber PM1. Then, the process of the control unit 100 returns to step S201. Thereby, the position of the outer edge of the wafer W can be detected at the position where the notch 50 is not formed.
 以上、一実施形態に係る基板処理システムによれば、搬送室VTMを介してロードロック室LLMと各処理室PM1~6との間をウェハWが搬送されるシステムにおいて、載置精度を高くすることができる。 As described above, according to the substrate processing system according to the embodiment, the mounting accuracy is improved in the system in which the wafer W is transferred between the load lock chamber LLM and each of the processing chambers PM1 to 6 via the transport chamber VTM. be able to.
 ここで、参考例に係る基板処理システムにおけるウェハWの中心位置の検出方法について説明する。参考例に係る基板処理システムの検出方法において、4つの検出点から三角形を形成し、各三角形の外周円の半径Rが、予め与えられたウェハWの半径の範囲内か否かを判定することで、ノッチ50が形成された位置での検出点とを判定する。しかしながら、ウェハWの半径はある程度の寸法差(例えば、300±0.2mm)を許容しなければならず、ウェハWの半径の許容とウェハWの中心位置の検出精度(載置精度)を両立させることが困難であった。 Here, a method of detecting the center position of the wafer W in the substrate processing system according to the reference example will be described. In the detection method of the substrate processing system according to the reference example, a triangle is formed from four detection points, and it is determined whether or not the radius R of the outer peripheral circle of each triangle is within the radius range of the wafer W given in advance. Then, it is determined that the detection point is at the position where the notch 50 is formed. However, the radius of the wafer W must allow a certain dimensional difference (for example, 300 ± 0.2 mm), and both the tolerance of the radius of the wafer W and the detection accuracy (mounting accuracy) of the center position of the wafer W are compatible. It was difficult to get it done.
 これに対し、本実施形態に係る基板処理システムでは、ウェハWの半径寸法が予め与えられていなくても、また、ウェハWごとに半径寸法が異なっていても、ウェハWの中心位置を精度よく求めることができ、各処理室PM1~6の載置部111にウェハWを載置する際の載置精度を高くすることができる。 On the other hand, in the substrate processing system according to the present embodiment, even if the radial dimension of the wafer W is not given in advance, or even if the radial dimension is different for each wafer W, the center position of the wafer W can be accurately positioned. It can be obtained, and the mounting accuracy when mounting the wafer W on the mounting portions 111 of the processing chambers PM1 to PM6 can be improved.
 また、本実施形態に係る基板処理システムでは、ロードロック室LLMから各処理室PM1~6にウェハWを搬送し、処理済のウェハWを各処理室PM1~6からロードロック室LLMに搬送する。各搬送経路が共通して通過するセンサモジュールS7には3センサタイプのセンサモジュール(図3参照)を用い、各処理室PM1~6のセンサモジュールS1~6には2センサタイプのセンサモジュール(図2参照)を用いることができるので、センサの数を低減して、基板処理システムのコストを低減することができる。 Further, in the substrate processing system according to the present embodiment, the wafer W is transported from the load lock chamber LLM to each of the processing chambers PM1 to 6, and the processed wafer W is transported from each of the processing chambers PM1 to 6 to the load lock chamber LLM. .. A 3-sensor type sensor module (see FIG. 3) is used for the sensor module S7 through which each transport path passes in common, and a 2-sensor type sensor module (see FIG. 3) is used for the sensor modules S1 to 6 of each processing chamber PM1 to PM6. 2) can be used, so that the number of sensors can be reduced and the cost of the substrate processing system can be reduced.
 次に、他の実施形態に係る基板処理システムの全体構成の一例について、図7を用いて説明する。図7は、他の実施形態に係る基板処理システムの一例の構成を示す平面図である。なお、図7では、ウェハWにドットのハッチングを付して図示している。 Next, an example of the overall configuration of the substrate processing system according to another embodiment will be described with reference to FIG. 7. FIG. 7 is a plan view showing a configuration of an example of a substrate processing system according to another embodiment. In FIG. 7, the wafer W is shown with dot hatching.
 図7に示す基板処理システムは、図1に示す基板処理システムと同様に、クラスタ構造のシステムであり、処理室PM1~6、搬送室VTM、ロードロック室LLM、ローダーモジュールLM1~2、ロードポートLP1~4及び制御部100を備えている。 The substrate processing system shown in FIG. 7 is a system having a cluster structure similar to the substrate processing system shown in FIG. 1, and has a processing chamber PM1 to 6, a transport chamber VTM, a load lock chamber LLM, a loader module LM1-2, and a load port. It includes LPs 1 to 4 and a control unit 100.
 ここで、図7に示す基板処理システムは、図1に示す基板処理システムと比較して、処理室PM1のセンサモジュールS1が3センサタイプのセンサモジュール(図3参照)に変更されている点で異なっている。なお、センサモジュールS1の構成は、図3に示すセンサモジュールS7の構成と同様であり、重複する説明を省略する。 Here, in the substrate processing system shown in FIG. 7, the sensor module S1 in the processing chamber PM1 is changed to a 3-sensor type sensor module (see FIG. 3) as compared with the substrate processing system shown in FIG. It's different. The configuration of the sensor module S1 is the same as the configuration of the sensor module S7 shown in FIG. 3, and redundant description will be omitted.
 また、図7に示す基板処理システムでは、ウェハWの経路153~155に示すように、シリアル搬送を行う。ここで、搬送室VTMを介して、1つの室から他の室へウェハWを搬送する各経路153~155には、少なくとも3センサタイプのセンサモジュール(図3参照)が少なくとも1つずつ配置される。 Further, in the substrate processing system shown in FIG. 7, serial transfer is performed as shown in the paths 153 to 155 of the wafer W. Here, at least one sensor module (see FIG. 3) of at least three sensor types is arranged in each path 153 to 155 for transporting the wafer W from one chamber to another via the transport chamber VTM. Ru.
 経路153に示すように、ロードロック室LLMの載置部131に載置されたウェハWを、処理室PM1に搬送して、処理室PM1の載置部111に載置する。ここでは、ウェハWがセンサモジュールS7を通過する際に、図4に示すフローに基づいてウェハWの半径を算出する。また、ウェハWがセンサモジュールS1を通過する際に、図6に示すフローに基づいてウェハWの中心位置を算出する。算出したウェハWの中心位置に基づいて、ウェハWの載置位置を調整する。 As shown in the route 153, the wafer W mounted on the mounting portion 131 of the load lock chamber LLM is conveyed to the processing chamber PM1 and placed on the mounting portion 111 of the processing chamber PM1. Here, when the wafer W passes through the sensor module S7, the radius of the wafer W is calculated based on the flow shown in FIG. Further, when the wafer W passes through the sensor module S1, the center position of the wafer W is calculated based on the flow shown in FIG. The mounting position of the wafer W is adjusted based on the calculated center position of the wafer W.
 処理室PM1では、ウェハWに所望の第1の処理を施す。なお、ウェハWに第1の処理を施すことにより、プロセス時の熱による膨張、成膜プロセスにおける張力等によって、ウェハWの半径が変化することがある。 In the processing chamber PM1, the wafer W is subjected to the desired first processing. By performing the first treatment on the wafer W, the radius of the wafer W may change due to expansion due to heat during the process, tension in the film forming process, and the like.
 ウェハWの第1の処理が終了すると、経路154に示すように、処理室PM1の載置部111に載置されたウェハWを、処理室PM2に搬送して、処理室PM2の載置部に載置する。ここでは、ウェハWがセンサモジュールS1を通過する際に、図4に示すフローに基づいてウェハWの半径を算出する。また、ウェハWがセンサモジュールS2を通過する際に、図6に示すフローに基づいてウェハWの中心位置を算出する。算出したウェハWの中心位置に基づいて、ウェハWの載置位置を調整する。 When the first processing of the wafer W is completed, as shown in the path 154, the wafer W mounted on the mounting portion 111 of the processing chamber PM1 is conveyed to the processing chamber PM2, and the mounting portion of the processing chamber PM2 is transported. Place on. Here, when the wafer W passes through the sensor module S1, the radius of the wafer W is calculated based on the flow shown in FIG. Further, when the wafer W passes through the sensor module S2, the center position of the wafer W is calculated based on the flow shown in FIG. The mounting position of the wafer W is adjusted based on the calculated center position of the wafer W.
 処理室PM2では、ウェハWに所望の第2の処理を施す。 In the processing chamber PM2, the wafer W is subjected to a desired second processing.
 ウェハWの第2の処理が終了すると、経路155に示すように、処理室PM2の載置部に載置されたウェハWを、ロードロック室LLMに搬送して、載置部131に載置する。ここでは、ウェハWがセンサモジュールS7を通過する際に、図4に示すフローに基づいてウェハWの半径及び中心位置を算出する。算出したウェハWの中心位置に基づいて、ウェハWの載置位置を調整する。 When the second processing of the wafer W is completed, as shown in the path 155, the wafer W mounted on the mounting portion of the processing chamber PM2 is conveyed to the load lock chamber LLM and mounted on the mounting portion 131. To do. Here, when the wafer W passes through the sensor module S7, the radius and the center position of the wafer W are calculated based on the flow shown in FIG. The mounting position of the wafer W is adjusted based on the calculated center position of the wafer W.
 以上、他の実施形態に係る基板処理システムによれば、ウェハWの半径寸法が予め与えられていなくても、また、ウェハWごとに半径寸法が異なっていても、ウェハWの中心位置を精度よく求めることができ、処理室PM1の載置部111にウェハWを載置する際の載置精度を高くすることができる。 As described above, according to the substrate processing system according to the other embodiment, even if the radial dimension of the wafer W is not given in advance, or even if the radial dimension is different for each wafer W, the center position of the wafer W is accurate. It can be obtained well, and the mounting accuracy when mounting the wafer W on the mounting portion 111 of the processing chamber PM1 can be improved.
 また、他の実施形態に係る基板処理システムによれば、シリアル搬送をする構成において、処理室PM1にてウェハWに所望の処理を施すことでウェハWの半径寸法が変化したとしても、処理済のウェハWの中心位置を精度よく求めることができ、次の処理室PM2の載置部111に処理済のウェハWを載置する際の載置精度を高くすることができる。 Further, according to the substrate processing system according to another embodiment, even if the radial dimension of the wafer W is changed by performing the desired processing on the wafer W in the processing chamber PM1 in the configuration of serial transfer, the processing has been completed. The center position of the wafer W can be obtained with high accuracy, and the mounting accuracy when the processed wafer W is mounted on the mounting portion 111 of the next processing chamber PM2 can be improved.
 なお、図7の例では、センサモジュールS3~6は2センサタイプのセンサモジュール(図2参照)として図示しているが、センサモジュールS3~6についても、ウェハWの各経路に3センサタイプのセンサモジュール(図3参照)が少なくとも1つ以上配置されるようにしてもよい。 In the example of FIG. 7, the sensor modules S3 to 6 are shown as 2-sensor type sensor modules (see FIG. 2), but the sensor modules S3 to 6 also have 3 sensor types in each path of the wafer W. At least one or more sensor modules (see FIG. 3) may be arranged.
 なお、経路153において、ウェハWがセンサモジュールS7を通過する際にウェハWの半径を算出し、ウェハWがセンサモジュールS1を通過する際に、ウェハWの中心位置を算出するものとして説明したが、これに限られるものではない。経路153において、ウェハWがセンサモジュールS1を通過する際に、図4に示すフローに基づいてウェハWの半径及び中心位置を算出する構成であってもよい。この構成においては、ステップS107またはステップS112において、制御部100は、ウェハWの半径を算出するとともに、ウェハWの中心位置を算出する。ステップS107においてウェハWの中心位置を算出する際、検出点41~46(または、検出点41~46の中から選択した点)に基づいて、ウェハWの半径及びウェハWの中心位置を算出する。例えば、各三角形T1~T4の外接円中心の平均位置をウェハWの中心位置としてもよい。各三角形T1~T4の外接円中心のうち、いずれかの外接円中心を選択して、ウェハWの中心位置としてもよい。また、ステップS112においてウェハWの中心位置を算出する際、ステップS111で特定されたノッチ50が形成された位置での検出点(ここでは検出点41)を除いて、ウェハWの半径及びウェハWの中心位置を算出する。即ち、検出点42~46(または、検出点42~46の中から選択した点)に基づいて、ウェハWの半径及びウェハWの中心位置を算出する。例えば、検出点41を含まない各三角形の外接円中心の平均位置をウェハWの中心位置としてもよい。検出点41を含まない各三角形の外接円中心のうち、いずれかの外接円中心を選択して、ウェハWの中心位置としてもよい。 In the path 153, the radius of the wafer W is calculated when the wafer W passes through the sensor module S7, and the center position of the wafer W is calculated when the wafer W passes through the sensor module S1. , Not limited to this. In the path 153, when the wafer W passes through the sensor module S1, the radius and the center position of the wafer W may be calculated based on the flow shown in FIG. In this configuration, in step S107 or step S112, the control unit 100 calculates the radius of the wafer W and the center position of the wafer W. When calculating the center position of the wafer W in step S107, the radius of the wafer W and the center position of the wafer W are calculated based on the detection points 41 to 46 (or points selected from the detection points 41 to 46). .. For example, the average position of the center of the circumscribed circle of each triangle T1 to T4 may be the center position of the wafer W. One of the centers of the circumscribed circles of the triangles T1 to T4 may be selected as the center position of the wafer W. Further, when calculating the center position of the wafer W in step S112, the radius of the wafer W and the wafer W are excluded from the detection point (here, the detection point 41) at the position where the notch 50 specified in step S111 is formed. Calculate the center position of. That is, the radius of the wafer W and the center position of the wafer W are calculated based on the detection points 42 to 46 (or points selected from the detection points 42 to 46). For example, the average position of the center of the circumscribed circle of each triangle that does not include the detection point 41 may be the center position of the wafer W. Of the centers of the circumscribed circles of each triangle that does not include the detection point 41, one of the centers of the circumscribed circles may be selected as the center position of the wafer W.
 また、センサモジュールS1を3センサタイプのセンサモジュール(図3参照)とし、センサモジュールS2,S7を2センサタイプのセンサモジュール(図2参照)としてもよい。経路153に設けられたセンサモジュールS1によって、ウェハWの半径及び中心位置を精度よく求めることができ、処理室PM1の載置部111にウェハWを載置する際の載置精度を高くすることができる。また、経路154に設けられたセンサモジュールS1によってウェハWの半径を精度よく求め、経路154に設けられたセンサモジュールS2によってウェハWの中心位置を精度よく求めることができ、処理室PM2の載置部111にウェハWを載置する際の載置精度を高くすることができる。 Further, the sensor module S1 may be a 3-sensor type sensor module (see FIG. 3), and the sensor modules S2 and S7 may be a 2-sensor type sensor module (see FIG. 2). The radius and center position of the wafer W can be accurately obtained by the sensor module S1 provided in the path 153, and the mounting accuracy when the wafer W is mounted on the mounting portion 111 of the processing chamber PM1 is improved. Can be done. Further, the radius of the wafer W can be accurately obtained by the sensor module S1 provided in the path 154, and the center position of the wafer W can be accurately obtained by the sensor module S2 provided in the path 154. The mounting accuracy when mounting the wafer W on the unit 111 can be improved.
 なお、経路155には、2センサタイプのセンサモジュールS2,S7が配置されることとなる。ロードロック室LLMの載置部131へウェハWを載置する際は、ウェハWがセンサモジュールS7を通過する際に、図6に示すフローに基づいてウェハWの中心位置を算出する。ここで、ロードロック室LLMの載置部131へウェハWを載置する際は、処理室PM1,2の載置部111へウェハWを載置する際ほど、高い載置精度は要求されない。即ち、図6に示すフローにおいて、ステップS204の許容される載置精度範囲が大きくなる。これにより、2センサタイプのセンサモジュール(図2参照)で算出したウェハWの中心位置(S206)に基づいて制御しても、要求される載置精度を満たしつつウェハWを載置することができる。また、ステップS204において、外接円中心のばらつきが載置精度の範囲内に収まらない場合(S204・No)、制御部100の処理は、ステップS207に進む。この場合、参照すべきウェハWの半径が算出できていないため、制御部の100はステップS207・Noと判定して、制御部の100の処理はステップS210に進む。 Note that the two-sensor type sensor modules S2 and S7 will be arranged on the path 155. When the wafer W is mounted on the mounting portion 131 of the load lock chamber LLM, the center position of the wafer W is calculated based on the flow shown in FIG. 6 when the wafer W passes through the sensor module S7. Here, when mounting the wafer W on the mounting portion 131 of the load lock chamber LLM, higher mounting accuracy is not required as when mounting the wafer W on the mounting portions 111 of the processing chambers PM1 and PM1 and PM1 and 2. That is, in the flow shown in FIG. 6, the allowable mounting accuracy range of step S204 is increased. As a result, even if the control is performed based on the center position (S206) of the wafer W calculated by the two-sensor type sensor module (see FIG. 2), the wafer W can be mounted while satisfying the required mounting accuracy. it can. Further, in step S204, when the variation at the center of the circumscribed circle does not fall within the range of mounting accuracy (S204 / No), the process of the control unit 100 proceeds to step S207. In this case, since the radius of the wafer W to be referred to has not been calculated, 100 of the control unit is determined to be step S207 / No, and the process of 100 of the control unit proceeds to step S210.
 次に、更に他の実施形態に係る基板処理システムの全体構成の一例について、図8を用いて説明する。図8は、更に他の実施形態に係る基板処理システムの一例の構成を示す平面図である。なお、図8では、ウェハWにドットのハッチングを付して図示している。 Next, an example of the overall configuration of the substrate processing system according to still another embodiment will be described with reference to FIG. FIG. 8 is a plan view showing the configuration of an example of the substrate processing system according to still another embodiment. In FIG. 8, the wafer W is shown with dot hatching.
 図8に示す基板処理システムは、図1に示す基板処理システムと同様に、クラスタ構造のシステムであり、処理室PM1~6、搬送室VTM、ロードロック室LLM、ローダーモジュールLM1~2、ロードポートLP1~4及び制御部100を備えている。 The substrate processing system shown in FIG. 8 is a system having a cluster structure similar to the substrate processing system shown in FIG. 1, and has a processing chamber PM1 to 6, a transport chamber VTM, a load lock chamber LLM, a loader module LM1-2, and a load port. It includes LPs 1 to 4 and a control unit 100.
 処理室PM1は、平面視して2×2の行列状に合計4枚のウェハWを載置する載置部111~114を有する。同様に、処理室PM2~6は、4枚のウェハWを載置する載置部をそれぞれ有している。ロードロック室LLMは、平面視して2×2の行列状に合計4枚のウェハWを載置する載置部131~134を有する。また、処理室PM1~6の載置部111~114の配置とロードロック室LLMの載置部131~134の配置とは、等しくなっている。 The processing chamber PM1 has mounting portions 111 to 114 on which a total of four wafers W are mounted in a 2 × 2 matrix in a plan view. Similarly, the processing chambers PMs 2 to 6 each have a mounting portion on which four wafers W are mounted. The load lock chamber LLM has mounting portions 131 to 134 on which a total of four wafers W are mounted in a 2 × 2 matrix in a plan view. Further, the arrangement of the mounting portions 111 to 114 of the processing chambers PM1 to 6 and the arrangement of the mounting portions 131 to 134 of the load lock chamber LLM are the same.
 搬送装置ARM1は、基台121と、第1リンク122と、第2リンク123と、エンドエフェクタ124と、を備える多関節アームとして構成される。第1リンク122の一端側は、基台121に対して上下方向を回転軸として回動自在に取り付けられている。また、基台121は、第1リンク122を上下方向に昇降することができるようになっている。第2リンク123の一端側は、第1リンク122の他端側に対して上下方向を回転軸として回動自在に取り付けられている。エンドエフェクタ124の基端側は、第2リンク123の他端側に対して上下方向を回転軸として回動自在に取り付けられている。エンドエフェクタ124の先端側は、ウェハWを保持する保持部が複数設けられている。第1リンク122の昇降、基台121と第1リンク122との関節、第1リンク122と第2リンク123との関節、第2リンク123とエンドエフェクタ124との関節を駆動するアクチュエータは制御部100によって制御される。 The transport device ARM1 is configured as an articulated arm including a base 121, a first link 122, a second link 123, and an end effector 124. One end side of the first link 122 is rotatably attached to the base 121 with the vertical direction as a rotation axis. Further, the base 121 can move the first link 122 up and down in the vertical direction. One end side of the second link 123 is rotatably attached to the other end side of the first link 122 with the vertical direction as a rotation axis. The base end side of the end effector 124 is rotatably attached to the other end side of the second link 123 with the vertical direction as a rotation axis. A plurality of holding portions for holding the wafer W are provided on the tip end side of the end effector 124. The actuator that drives the elevating and lowering of the first link 122, the joint between the base 121 and the first link 122, the joint between the first link 122 and the second link 123, and the joint between the second link 123 and the end effector 124 is a control unit. Controlled by 100.
 エンドエフェクタ124は、先端側が分岐するフォーク状に形成されており、基端部240と、基端部240から伸びる2つのブレード(フォーク枝部)241,242と、を有している。ブレード241,242は、基端部240から同じ方向に伸びており、同じ高さに形成されている。ブレード241は、ブレード241の長手方向に沿って複数のウェハWを保持する保持部243,244を有している。ブレード242は、ブレード242の長手方向に沿って複数のウェハWを保持する保持部245,246を有している。このように、エンドエフェクタ124に保持される4枚のウェハWは同じ高さ(同一平面上)で保持される。 The end effector 124 is formed in a fork shape whose tip side branches, and has a base end portion 240 and two blades (fork branch portions) 241,242 extending from the base end portion 240. The blades 241,242 extend in the same direction from the base end portion 240 and are formed at the same height. The blade 241 has holding portions 243 and 244 that hold a plurality of wafers W along the longitudinal direction of the blade 241. The blade 242 has holding portions 245 and 246 that hold a plurality of wafers W along the longitudinal direction of the blade 242. In this way, the four wafers W held by the end effector 124 are held at the same height (on the same plane).
 センサモジュールS1~S7は、2つのブレード241,242に対応するように、2組設けられている。 Two sets of sensor modules S1 to S7 are provided so as to correspond to the two blades 241,242.
 図8に示す基板処理システムでは、ウェハWをロードロック室LLMから各処理室PM1~6に搬送し、処理の後、各処理室PM1~6からロードロック室LLMに搬送する。このため、センサモジュールS7が3つのセンサ31~33を有するセンサモジュールとなっている。なお、シリアル搬送をする構成では、センサモジュールS1~6についても、ウェハWの各経路に少なくとも3センサタイプのセンサモジュール(図3参照)が少なくとも1つずつ配置されるように、3センサタイプのセンサモジュール(図3参照)が配置されてもよい。 In the substrate processing system shown in FIG. 8, the wafer W is transported from the load lock chamber LLM to the respective processing chambers PM1 to 6, and after processing, is transported from the respective processing chambers PM1 to 6 to the load lock chamber LLM. Therefore, the sensor module S7 is a sensor module having three sensors 31 to 33. In the configuration of serial transfer, the sensor modules S1 to 6 are also of the three sensor type so that at least one sensor module (see FIG. 3) of the three sensor type is arranged in each path of the wafer W. A sensor module (see FIG. 3) may be arranged.
 ロードロック室LLMの載置部131~134に載置されたウェハWを、処理室PM1に搬送して、処理室PM1の載置部111~114に載置する。ここでは、ウェハWがセンサモジュールS7を通過する際に、図4に示すフローに基づいて各ウェハWの半径をそれぞれ算出する。また、ウェハWがセンサモジュールS1を通過する際に、図6に示すフローに基づいて各ウェハWの中心位置を算出する。算出した各ウェハWの中心位置に基づいて、搬送装置ARM1を制御してウェハWの載置位置を調整する。 Wafers W mounted on the mounting portions 131 to 134 of the load lock chamber LLM are conveyed to the processing chamber PM1 and placed on the mounting portions 111 to 114 of the processing chamber PM1. Here, when the wafer W passes through the sensor module S7, the radius of each wafer W is calculated based on the flow shown in FIG. Further, when the wafer W passes through the sensor module S1, the center position of each wafer W is calculated based on the flow shown in FIG. Based on the calculated center position of each wafer W, the transfer device ARM1 is controlled to adjust the mounting position of the wafer W.
 図4に示すフローは各ウェハWごとに処理される。図6に示すフローは、基本的には、各ウェハWごとに処理される。ここで、4枚のウェハWのうち第1~3のウェハWにおいて中心位置が算出され(S206またはS209)、第4のウェハWにおいてS207・Noと判定された場合、ウェハWをオフセットして再挿入させる。これにより、第4のウェハWにおいて中心位置が算出される(S206またはS209)。この際、第1のウェハWのノッチ50とセンサモジュールS1との位置関係も変化することにより、今度は第1のウェハWにおいてS207・Noと判定されるおそれがある。 The flow shown in FIG. 4 is processed for each wafer W. The flow shown in FIG. 6 is basically processed for each wafer W. Here, when the center position is calculated (S206 or S209) in the first to third wafers W of the four wafers W and S207 / No is determined in the fourth wafer W, the wafer W is offset. Reinsert. As a result, the center position is calculated on the fourth wafer W (S206 or S209). At this time, the positional relationship between the notch 50 of the first wafer W and the sensor module S1 also changes, so that the first wafer W may be determined to be S207 / No.
 この場合、再度オフセットと再進入を繰り返して、4枚のウェハWの中心位置が算出されるまで繰り返してもよい。また、オフセットしたことによりS207・Noと判定される第1のウェハWの中心位置は、オフセット前に算出された中心位置としてもよい。これにより、やり直し回数を削減することができる。 In this case, offsetting and re-entry may be repeated again until the center positions of the four wafers W are calculated. Further, the center position of the first wafer W determined to be S207 / No due to the offset may be the center position calculated before the offset. As a result, the number of redoes can be reduced.
 尚、本願は、2019年11月28日に出願した日本国特許出願2019-215253号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 Note that this application claims priority based on Japanese Patent Application No. 2019-215253 filed on November 28, 2019, and the entire contents of these Japanese patent applications are incorporated herein by reference.
10,30   基準線
11,12,31~33 センサ
21~24,41~46 検出点
50      ノッチ(切欠き部)
100     制御部
111~114   載置部(第1載置部、第2載置部)
124      エンドエフェクタ
131~134   載置部(第1載置部、第2載置部)
151~155   経路(搬送経路)
PM1~6   処理室(第1室、第2室)
VTM     搬送室(第1室、第2室)
LLM     ロードロック室
W       ウェハ
S1~S7   センサモジュール(基板検知部)
ARM1    搬送装置
10,30 Reference line 11,12,31-33 Sensor 21-24,41-46 Detection point 50 Notch (notch)
100 Control units 111 to 114 Mounting units (first mounting unit, second mounting unit)
124 End effector 131-134 Mounting part (1st mounting part, 2nd mounting part)
151-155 route (transport route)
PM1-6 processing room (1st room, 2nd room)
VTM transport room (1st room, 2nd room)
LLM load lock chamber W wafers S1 to S7 sensor module (board detector)
ARM1 transport device

Claims (16)

  1.  第1載置部を有する第1室と、
     第2載置部を有する第2室と、
     前記第1室から前記第2室に基板を搬送する搬送装置と、
     前記第1室から前記第2室への搬送経路に設けられ、前記基板の外縁の位置を検出する少なくとも3つのセンサを有する第1センサモジュールと、
     制御部と、を備える、基板処理システムの制御方法であって、
     前記基板を搬送して、前記第1センサモジュールにより前記基板の外縁の位置を検出する工程と、
     前記第1センサモジュールの検出点が前記基板に形成された切欠き部で検出されたものか否かを判定する工程と、を有する、
    基板処理システムの制御方法。
    The first room with the first mounting part and
    The second room with the second mounting part and
    A transport device for transporting the substrate from the first chamber to the second chamber,
    A first sensor module provided in the transport path from the first chamber to the second chamber and having at least three sensors for detecting the position of the outer edge of the substrate.
    A control method for a substrate processing system including a control unit.
    A step of transporting the substrate and detecting the position of the outer edge of the substrate by the first sensor module.
    It comprises a step of determining whether or not the detection point of the first sensor module is detected in the notch formed in the substrate.
    How to control the board processing system.
  2.  前記判定する工程は、
     複数の前記検出点から複数の三角形を形成する工程と、
     形成された複数の前記三角形の外接円から外接円半径を算出する工程と、
     複数の前記三角形の外接円半径の平均値を算出する工程と、
     複数の前記三角形の外接円半径と前記平均値との大小関係のパターンを生成する工程と、
     前記パターンに基づいて、前記切欠き部で検出された検出点を特定する工程と、を有する、
    請求項1に記載の基板処理システムの制御方法。
    The determination step is
    The process of forming a plurality of triangles from the plurality of detection points and
    The process of calculating the circumscribed circle radius from the circumscribed circles of the plurality of formed triangles, and
    The process of calculating the average value of the circumscribed circle radii of the plurality of triangles, and
    A process of generating a pattern of a magnitude relationship between the circumscribed circle radii of a plurality of the triangles and the average value, and
    It comprises a step of identifying a detection point detected in the notch based on the pattern.
    The control method for a substrate processing system according to claim 1.
  3.  前記制御部は、前記パターンと前記切欠き部で検出された検出点とを対応付けしたテーブルを有し、
     前記検出点を特定する工程は、
     前記パターン及び前記テーブルに基づいて、前記切欠き部で検出された検出点を特定する、
    請求項2に記載の基板処理システムの制御方法。
    The control unit has a table in which the pattern is associated with the detection points detected in the notch portion.
    The step of identifying the detection point is
    Identify the detection points detected in the notch based on the pattern and the table.
    The control method for a substrate processing system according to claim 2.
  4.  前記切欠き部で検出された検出点を除いた複数の検出点に基づいて、基板半径を算出する工程を更に備える、
    請求項2または請求項3に記載の基板処理システムの制御方法。
    A step of calculating the substrate radius based on a plurality of detection points excluding the detection points detected in the notch portion is further provided.
    The control method for a substrate processing system according to claim 2 or 3.
  5.  前記基板処理システムは、前記搬送経路の前記第1センサモジュールよりも下流に設けられ、前記基板の外縁の位置を検出する少なくとも2つのセンサを有する第2センサモジュールを備え、
     前記基板半径を算出する工程は、前記第1センサモジュールの検出点に基づいて、前記基板半径を算出する、
    請求項4に記載の基板処理システムの制御方法。
    The substrate processing system includes a second sensor module provided downstream of the first sensor module of the transport path and having at least two sensors for detecting the position of the outer edge of the substrate.
    In the step of calculating the substrate radius, the substrate radius is calculated based on the detection point of the first sensor module.
    The control method for a substrate processing system according to claim 4.
  6.  算出した前記基板半径と、前記第2センサモジュールの検出点に基づいて、基板中心位置を算出する工程を更に備える、
    請求項5に記載の基板処理システムの制御方法。
    A step of calculating the substrate center position based on the calculated substrate radius and the detection point of the second sensor module is further provided.
    The control method for a substrate processing system according to claim 5.
  7.  前記基板中心位置を算出する工程は、
     複数の前記検出点から複数の三角形を形成する工程と、
     形成された複数の前記三角形の外接円から外接円中心を算出する工程と、
     複数の前記外接円中心のばらつきが載置精度の範囲を超えるか否かに基づいて、前記切欠き部で検出された検出点の有無を判定する工程と、
     複数の前記外接円中心のばらつきが前記載置精度の範囲を超えず、前記切欠き部で検出された検出点はないと判定された場合、前記外接円中心から前記基板中心位置を算出する工程と、を有する、
    請求項6に記載の基板処理システムの制御方法。
    The step of calculating the substrate center position is
    The process of forming a plurality of triangles from the plurality of detection points and
    The process of calculating the center of the circumscribed circle from the circumscribed circles of the plurality of formed triangles, and
    A step of determining the presence or absence of a detection point detected in the notch based on whether or not the variation of the centers of the plurality of circumscribed circles exceeds the range of mounting accuracy.
    A step of calculating the substrate center position from the circumscribed circle center when it is determined that the variation of the plurality of circumscribed circle centers does not exceed the range of the previously described accuracy and there is no detection point detected in the notch. And have,
    The control method for a substrate processing system according to claim 6.
  8.  複数の前記外接円中心のばらつきが前記載置精度の範囲を超え、前記切欠き部で検出された検出点があると判定された場合、形成された複数の前記外接円から外接円半径を算出する工程と、
     前記基板半径と同値とみなせる外接円半径を有する外接円を特定する工程と、
     特定された前記外接円の中心から前記基板中心位置を算出する工程と、を有する、
    請求項7に記載の基板処理システムの制御方法。
    When the variation in the centers of the plurality of circumscribed circles exceeds the range of the previously described accuracy and it is determined that there is a detection point detected in the notch, the radius of the circumscribed circle is calculated from the plurality of formed circumscribed circles. And the process to do
    The step of specifying the circumscribed circle having the circumscribed circle radius that can be regarded as the same value as the substrate radius, and
    It comprises a step of calculating the substrate center position from the center of the specified circumscribed circle.
    The control method for a substrate processing system according to claim 7.
  9.  前記基板半径と同値とみなせる外接円半径を有する外接円が複数ある場合、前記搬送経路をオフセットして、前記第2センサモジュールの検出をやり直す、
    請求項8に記載の基板処理システムの制御方法。
    When there are a plurality of circumscribed circles having a circumscribed circle radius that can be regarded as the same value as the substrate radius, the transport path is offset and the detection of the second sensor module is repeated.
    The control method for a substrate processing system according to claim 8.
  10.  第1載置部を有する第1室と、
     第2載置部を有する第2室と、
     前記第1室から前記第2室に基板を搬送する搬送装置と、
     前記第1室から前記第2室への搬送経路に設けられ、前記基板の外縁の位置を検出する少なくとも3つのセンサを有する第1センサモジュールと、
     制御部と、を備え、
     前記制御部は、
     前記第1センサモジュールの検出点が前記基板に形成された切欠き部で検出されたものか否かを判定する、ように構成される、
    基板処理システム。
    The first room with the first mounting part and
    The second room with the second mounting part and
    A transport device for transporting the substrate from the first chamber to the second chamber,
    A first sensor module provided in the transport path from the first chamber to the second chamber and having at least three sensors for detecting the position of the outer edge of the substrate.
    With a control unit
    The control unit
    It is configured to determine whether or not the detection point of the first sensor module is detected in the notch formed in the substrate.
    Board processing system.
  11.  前記判定は、
     複数の前記検出点から複数の三角形を形成し、
     形成された複数の前記三角形の外接円から外接円半径を算出し、
     複数の前記三角形の外接円半径の平均値を算出し、
     複数の前記三角形の外接円半径と前記平均値との大小関係のパターンを生成し、
     前記パターンに基づいて、前記切欠き部で検出された検出点を特定する、
    請求項10に記載の基板処理システム。
    The judgment is
    A plurality of triangles are formed from the plurality of detection points,
    The circumscribed circle radius is calculated from the circumscribed circles of the plurality of formed triangles, and the circumscribed circle radius is calculated.
    Calculate the average value of the circumscribed circle radii of the plurality of triangles,
    Generate a pattern of the magnitude relationship between the circumscribed circle radii of the plurality of triangles and the average value.
    Identifying the detection points detected in the notch based on the pattern.
    The substrate processing system according to claim 10.
  12.  前記制御部は、前記パターンと前記切欠き部で検出された検出点とを対応付けしたテーブルを有し、
     前記検出点の特定は、
     前記パターン及び前記テーブルに基づいて、前記切欠き部で検出された検出点を特定する、
    請求項11に記載の基板処理システム。
    The control unit has a table in which the pattern is associated with the detection points detected in the notch portion.
    The identification of the detection point is
    Identify the detection points detected in the notch based on the pattern and the table.
    The substrate processing system according to claim 11.
  13.  前記制御部は、
     前記切欠き部で検出された検出点を除いた複数の検出点に基づいて、基板半径を算出する、ように構成される、
    請求項11または請求項12に記載の基板処理システム。
    The control unit
    The substrate radius is calculated based on a plurality of detection points excluding the detection points detected in the notch.
    The substrate processing system according to claim 11 or 12.
  14.  前記搬送経路の前記第1センサモジュールよりも下流に設けられ、前記基板の外縁の位置を検出する少なくとも2つのセンサを有する第2センサモジュールを更に備える、
    請求項10乃至請求項13のいずれか1項に記載の基板処理システム。
    A second sensor module, which is provided downstream of the first sensor module of the transport path and has at least two sensors for detecting the position of the outer edge of the substrate, is further provided.
    The substrate processing system according to any one of claims 10 to 13.
  15.  前記搬送経路の前記第1センサモジュールよりも下流に設けられ、前記基板の外縁の位置を検出する少なくとも2つのセンサを有する第2センサモジュールを更に備え、
     前記基板半径の算出は、
     前記第1センサモジュールの検出点に基づいて、前記基板半径を算出する、
    請求項13に記載の基板処理システム。
    A second sensor module, which is provided downstream of the first sensor module of the transport path and has at least two sensors for detecting the position of the outer edge of the substrate, is further provided.
    The calculation of the substrate radius is
    The substrate radius is calculated based on the detection point of the first sensor module.
    The substrate processing system according to claim 13.
  16.  前記制御部は、
     算出した前記基板半径と、前記第2センサモジュールの検出点に基づいて、基板中心位置を算出する、ように構成される、
    請求項15に記載の基板処理システム。
    The control unit
    The substrate center position is calculated based on the calculated substrate radius and the detection point of the second sensor module.
    The substrate processing system according to claim 15.
PCT/JP2020/043027 2019-11-28 2020-11-18 Method for controlling substrate processing system, and substrate processing system WO2021106717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019215253 2019-11-28
JP2019-215253 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021106717A1 true WO2021106717A1 (en) 2021-06-03

Family

ID=76128820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043027 WO2021106717A1 (en) 2019-11-28 2020-11-18 Method for controlling substrate processing system, and substrate processing system

Country Status (2)

Country Link
TW (1) TW202129819A (en)
WO (1) WO2021106717A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088398A (en) * 2007-10-02 2009-04-23 Olympus Corp Centripetalism method of disk object
JP2012222195A (en) * 2011-04-11 2012-11-12 Tokyo Electron Ltd Substrate transfer method, substrate transfer apparatus, and painting development apparatus
JP2013161915A (en) * 2012-02-03 2013-08-19 Tokyo Electron Ltd Substrate transfer device, substrate transfer method, and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088398A (en) * 2007-10-02 2009-04-23 Olympus Corp Centripetalism method of disk object
JP2012222195A (en) * 2011-04-11 2012-11-12 Tokyo Electron Ltd Substrate transfer method, substrate transfer apparatus, and painting development apparatus
JP2013161915A (en) * 2012-02-03 2013-08-19 Tokyo Electron Ltd Substrate transfer device, substrate transfer method, and storage medium

Also Published As

Publication number Publication date
TW202129819A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
US7039501B2 (en) Method for determining a position of a robot
JP7158238B2 (en) Substrate processing system
US20050137751A1 (en) Auto-diagnostic method and apparatus
US20080138176A1 (en) Apparatus for manufacturing semiconductor device
US7353076B2 (en) Vacuum processing method and vacuum processing apparatus
TWI700160B (en) Substrate conveying method and substrate processing system
WO2021106717A1 (en) Method for controlling substrate processing system, and substrate processing system
WO2022202626A1 (en) Substrate transfer method
JP2010062215A (en) Vacuum treatment method and vacuum carrier
JP2022099108A (en) Substrate transfer device, substrate processing system, and substrate processing method
JP2023049784A (en) Substrate processing system and teaching method of transport device
JP7433179B2 (en) Control method and substrate transfer system
WO2020241599A1 (en) Substrate processing system and method for controlling substrate processing system
US20240128110A1 (en) Method of controlling substrate transfer system
JP2023104358A (en) Substrate transfer method and substrate processing system
TW202205482A (en) Substrate processing method and substrate processing apparatus
JP7433180B2 (en) Teaching method for transport device and robot arm
JP2024057943A (en) Method for controlling substrate transport system
JP2023139986A (en) Substrate processing system and substrate transfer method
JP2024048046A (en) Substrate transport system and image correction method
JP2023128504A (en) Substrate transfer method and semiconductor manufacturing system
JP2022161170A (en) Teaching method for transport device and transport system
KR20240051832A (en) Method of controlling substrate transfer system
JP2024002030A (en) Plasma processing device and method for operating plasma processing device
JP2023081015A (en) Substrate processing system and substrate processing system adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP