WO2021106188A1 - Conductive leather, conductive fiber, and method for producing conductive leather or conductive fiber - Google Patents

Conductive leather, conductive fiber, and method for producing conductive leather or conductive fiber Download PDF

Info

Publication number
WO2021106188A1
WO2021106188A1 PCT/JP2019/046763 JP2019046763W WO2021106188A1 WO 2021106188 A1 WO2021106188 A1 WO 2021106188A1 JP 2019046763 W JP2019046763 W JP 2019046763W WO 2021106188 A1 WO2021106188 A1 WO 2021106188A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
layer
conductive
nanoparticles
Prior art date
Application number
PCT/JP2019/046763
Other languages
French (fr)
Japanese (ja)
Inventor
誠之 島田
Original Assignee
株式会社 ジャパンナノコート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ジャパンナノコート filed Critical 株式会社 ジャパンナノコート
Priority to JP2021561100A priority Critical patent/JPWO2021106188A1/ja
Priority to PCT/JP2019/046763 priority patent/WO2021106188A1/en
Publication of WO2021106188A1 publication Critical patent/WO2021106188A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C15/00Apparatus for chemical treatment or washing of hides, skins, or leather
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof

Definitions

  • the present invention relates to conductive leather or conductive fibers, and a method for producing conductive leather or conductive fibers.
  • touch panel operations are being performed on a daily basis. Since this touch panel is used, products that can be used while wearing winter clothes gloves and the like are on sale.
  • conductive threads are generally used in these products.
  • the appearance of the products is different because the color of the products differs only in the part where the conductive threads are used. In addition to damaging, it may cause an allergic reaction depending on the type of metal. Further, since the conductive yarn is generally not relatively strong against friction, the conductivity often decreases due to friction.
  • An object of the present invention is to provide leather or fiber which is imparted with conductivity without changing the texture of the base and has excellent abrasion resistance.
  • the present invention relates to conductive leather or conductive fibers that solve the above problems by having the following configurations, and a method for producing conductive leather or conductive fibers.
  • [1] (A) Containing single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, and tin oxide single nanoparticles. For a total of 100 parts by mass of the single nanoparticles of silica and the single nanoparticles of tin oxide, single nanoparticles of silica of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope.
  • Conductivity including a step of applying a second layer forming aqueous solution containing a water repellent, a conductive material, and water to the surface or immersing the surface to form the second layer in this order.
  • a method for producing leather or conductive fibers [4] The method for producing conductive leather or conductive fibers according to the above [3], wherein in the step (A), a dispersion liquid for forming a transparent conductive thin film is applied to a surface or the surface is immersed and then rolled.
  • the conductive leather or conductive fiber of the present invention includes (A) single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, and tin oxide single nanoparticles. Including For a total of 100 parts by mass of silica single nanoparticles and tin oxide single nanoparticles, silica single nanoparticles of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope.
  • the first layer containing 60-40 parts by mass
  • the present invention can provide leather or fiber which is imparted with conductivity without changing the texture of the base and has excellent abrasion resistance.
  • the present invention forms a transparent conductive film on leather or fiber (hereinafter referred to as leather or the like).
  • the transparent conductive film using a single-wall carbon nanotubes and graphene, without lowering the transparency, the first layer of the surface resistance value in the following human hand equivalent 10 6 ⁇ / ⁇ base, a first layer thereon and water repellent for not drop conductivity of, by forming a second layer containing tin oxide as a conductive material, the sheet resistance without reducing the 10 7 ⁇ / ⁇ base, water repellent It becomes possible to form a transparent conductive film which is a coat.
  • the present invention can realize water-repellent conductivity without changing the texture of leather or the like by this transparent conductive film, and unlike synthetic fibers or synthetic leather in which a conductive agent or the like is kneaded, natural fibers or natural materials can be realized. It can contribute to the multifunctionalization of leather.
  • the leather is not particularly limited, but examples thereof include natural leather and artificial leather.
  • An example of the thickness of leather is 0.5 to 2 mm, and in particular, leather for gloves is about 0.5 mm.
  • the fibers are not particularly limited, and examples thereof include natural fibers (cotton, linen, silk, etc.), synthetic fibers, and the like.
  • the single-wall carbon nanotubes are not particularly limited, but the single-wall carbon nanotubes preferably have a fiber diameter of 0.5 nm or less, an aspect ratio of 5 or more, and a length of 10 nm or less. Among the single-walled carbon nanotubes, single-walled carbon nanotubes are more preferable.
  • the single-walled carbon nanotubes having a fiber diameter and an aspect ratio can be uniformly dispersed in a solvent and can form sufficient contact points with each other.
  • the single-wall carbon nanotubes can be dispersed in a solvent without using a dispersant.
  • the treatment for making the single-walled carbon nanotubes dispersible in a solvent include treatment with a strong acid such as sulfuric acid.
  • a single-wall carbon nanotube dispersion liquid that does not use a dispersant is also commercially available.
  • Examples of graphene nanoparticles include graphene nanoparticles having an average thickness (c-axis direction) of 50 nm or less and a radial (a-axis direction) diameter of 2 ⁇ m or less dispersed in water.
  • the powder having an average thickness of graphene nanoparticles of 5 nm or less imparts antistatic property and abrasion resistance to the thin film formed from the coating agent.
  • An example of graphene length is 5 nm to 3 ⁇ m.
  • the average thickness of graphene is preferably 1 to 5 nm from the viewpoint of flame retardancy and film formation having a uniform thickness.
  • the single nanoparticles of silica having a size of 5 nm or less are preferably 40 to 60 parts by mass, and the single nanoparticles of silica having a size of 2 nm or less are preferably 30 to 40 parts by mass.
  • silica nanoparticles having a diameter of 10 nm or more are used, the increase in the transmittance of the substrate with the transparent conductive thin film becomes low, and the wear resistance of the transparent conductive thin film becomes low. In addition, the conductivity tends to decrease.
  • the amount of silica single nanoparticles of 2 nm or less exceeds 40 parts by mass, the dispersion liquid for forming a transparent conductive thin film tends to gel.
  • the silica single nanoparticles of 2 nm or less are preferably 0.5 nm or more from the viewpoint of handleability and availability.
  • the silica single nanoparticles of 2 nm or less contain amorphous silica. It is confirmed by X-ray diffraction that it is amorphous.
  • single nanoparticles of tin oxide of 2 nm or less are 60 to 40 parts by mass, and 50 parts by mass or more, from the viewpoint of conductivity, transmittance, and abrasion resistance of the first layer. Is preferable. Tin oxide powder having an average particle size of primary particles of 10 nm or more is less likely to cause secondary agglomeration by itself, but is not preferable because secondary agglomeration is likely to occur when mixed with other materials.
  • the thickness of the first layer is preferably 50 to 300 nm from the viewpoint of conductivity, transparency and abrasion resistance, and 50 to 80 nm from the viewpoint of the influence of color on leather and the like. , More preferred.
  • the thickness of the first layer when less than 50 nm, the sheet resistance of the surface of the leather or the like, tends to be higher than 10 6 ⁇ / ⁇ base, the touch panel becomes unresponsive. If it is thicker than 300 nm, cracks will occur during film formation and it will be easy to peel off.
  • the sheet resistance of the surface of the leather or the like at a 10 7 ⁇ / ⁇ stand, it becomes difficult to use, the sheet resistance of the surface, if it is 9.9 ⁇ 10 6 ⁇ / ⁇ or less ,preferable.
  • the second layer contains a water repellent agent for not reducing the conductivity of the first layer and a conductive material having a transparent antistatic property.
  • water repellent examples include a fluororesin, a silicone resin, and the like, which may be used alone or in combination of two or more.
  • a fluororesin AGC's Asahi Guard series AG-E600, and as a silicone resin, Shin-Etsu Silicone's water-based emulsion POLON-SR CONIC, etc. can be used in combination with antistatic agents such as ionic surfactants. Preferable as an agent.
  • the conductive material examples include tin oxide powder and an ionic surfactant, and it is preferable to use tin oxide alone or a combination of tin oxide powder and an ionic surfactant.
  • the tin oxide powder is as described above, and examples of the ionic surfactant include a quaternary ammonium salt.
  • the ionic surfactant an amphoteric surfactant having both cation and anion polarities is preferable.
  • Examples of the quaternary ammonium salt include alkyltrimethylammonium salts and dialkyldimethylammonium salts, and examples of commercially available products include the 1SX series manufactured by Taisei Fine Chemicals Co., Ltd.
  • dispersion liquid for forming the second layer for forming the second layer a dispersion liquid manufactured by Japan Nanocoat (product name: AS-WR) is easily used because each component is mixed in advance.
  • the thickness of the second layer is preferably 20 to 100 nm from the viewpoint of water repellency and conductivity. If it is less than 20 nm, the water repellency tends to be insufficient, and if it is thicker than 100 nm, the conductivity tends to decrease.
  • the effect of the present invention can be exhibited as long as the second layer is 1 ⁇ 10 10 ⁇ / ⁇ or less and the transparency is not deteriorated (change in color tone is not visually observed).
  • the method for producing conductive leather or conductive fiber of the present invention is: A process on the surface of leather or fibers (A) Containing single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water. For a total of 100 parts by mass of silica single nanoparticles and tin oxide single nanoparticles, silica single nanoparticles of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope.
  • Measured single nanoparticles of tin oxide of 2 nm or less A step of applying a dispersion liquid for forming a first layer containing 60 to 40 parts by mass on the surface or immersing the surface to form the first layer. (B) A step of applying a second layer forming aqueous solution containing a water repellent, a conductive material, and water to the surface or immersing the surface to form the second layer is included in this order.
  • the step (A) includes single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water.
  • single nanoparticles of silica 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope.
  • a first layer forming dispersion containing 60 to 40 parts by mass of the measured single nanoparticles of tin oxide of 2 nm or less is applied to or immersed in the surface to form the first layer.
  • the dispersion liquid for forming the first layer contains (A) single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water.
  • A single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water.
  • single nanoparticles of silica 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope.
  • Measured single nanoparticles of tin oxide of 2 nm or less Contains 60 to 40 parts by mass.
  • the single-wall carbon nanotubes, graphene nanoparticles, and silica single nanoparticles are as described above.
  • the amount of single-wall carbon nanotubes is preferably 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the first layer. More preferably, 0.03 to 0.06 parts by mass. If it is 0.2 parts by mass or more, thickening and aggregation are likely to occur, and the transmittance is lowered.
  • the graphene nanoparticles are preferably 0.001 to 0.1 parts by mass, more preferably 0.005 to 0.01% by mass, based on 100 parts by mass of the dispersion liquid for forming the first layer.
  • the single nanoparticles are preferably 18 to 99.5 parts by mass with respect to 100 parts by mass in total of the single nanoparticles, single-wall carbon nanotubes and graphene nanoparticles. If the number of single nanoparticles is less than 18 parts by mass, the adhesion of the transparent conductive thin film tends to decrease, and if it exceeds 99.5 parts by mass, the conductivity and heat dissipation of the transparent conductive thin film tend to decrease. Further, the silica single nanoparticles are 40 to 60 parts by mass with respect to 100 parts by mass in total of the silica single nanoparticles, single-wall carbon nanotubes, graphene nanoparticles and tin oxide single nanoparticles. It is more preferable because the layer becomes highly conductive and highly transparent.
  • the amount of water is preferably 99.0 to 99.5 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the first layer.
  • an organic solvent other than water can be used as the solvent, water is used from the viewpoint of suppressing environmental pollution due to solvent volatilization.
  • the dispersion liquid for forming the first layer can be obtained, for example, by stirring, melting, mixing, and dispersing various nanopowder, solvent, and other additives at the same time or separately, with heat treatment if necessary. it can.
  • the apparatus for mixing, stirring, dispersing, etc. is not particularly limited, but a Raikai machine, a ball mill, a planetary mixer, a bead mill, or the like can be used. Moreover, you may use these devices in combination as appropriate.
  • a dispersion liquid for forming a second layer which will be described later, can also be obtained in the same manner.
  • Additives and the like can be further added to the dispersion liquid for forming the first layer as long as the object of the present invention is not impaired.
  • AS-SCNT manufactured by Japan Nanocoat As a commercially available product of the dispersion liquid for forming the first layer, AS-SCNT manufactured by Japan Nanocoat can be mentioned.
  • the method of applying the dispersion liquid for forming the first layer to the surface of leather or the like or immersing the surface is not particularly limited, and examples thereof include brush coating, spray coating, and dipping.
  • the thickness of the first layer is preferably 50 to 300 nm.
  • the pickup rate mass of the first layer with respect to 100% by mass of leather
  • the pick-up rate is preferably 200 to 300% after coating and dipping, 60 to 120% after rolling, and more preferably 100%.
  • step (A) when the dispersion liquid for forming a transparent conductive thin film is applied to the surface or immersed in the surface and then rolled, the single-wall carbon nanotubes and graphene are likely to be oriented horizontally with respect to the surface of leather or the like. Therefore, it is preferable from the viewpoint of improving conductivity and transparency.
  • Step (B) In the step (B), an aqueous solution for forming a second layer containing a water repellent, a conductive material, and water is applied to or immersed in the surface to form the second layer.
  • the aqueous solution for forming the second layer contains a water repellent, a conductive material, and water.
  • the water repellent and conductive material are as described above. Although an organic solvent other than water can be used as the solvent, water is used from the viewpoint of suppressing environmental pollution due to solvent volatilization.
  • the water repellent is preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the second layer.
  • the transparent conductive material is preferably 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the second layer.
  • the amount of water is preferably 99.4 to 99.94 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the second layer.
  • Additives and the like can be further added to the dispersion liquid for forming the second layer as long as the object of the present invention is not impaired.
  • a dispersion liquid manufactured by Japan Nanocoat (product name: AS-WR) can be mentioned. It is preferable to dilute this dispersion liquid manufactured by Japan Nanocoat (product name: AS-WR) about 20 times and use it from the viewpoint of thickness control and the like.
  • the method of applying the second layer forming dispersion liquid to the surface of leather or the like or immersing the surface is not particularly limited, and the method of applying the first layer forming dispersion liquid to the surface of leather or the like or immersing the surface is used. , The same is true.
  • the thickness of the second layer is preferably 20 to 100 nm.
  • the pickup rate mass of the first layer with respect to 100% by mass of leather
  • the pick-up rate is preferably 200 to 300% after coating and dipping, 60 to 120% after rolling, and more preferably 100%.
  • a water-based antistatic coating agent manufactured by Japan Nanocoat was used.
  • AS-SCNT a water-based antistatic coating agent manufactured by Japan Nanocoat was used.
  • This AS-SCNT consists of silica nanoparticles: 0.21%, tin oxide nanoparticles: 0.24%, single carbon nanotubes: 0.04%, graphene: 0.01%, and the balance: water.
  • silica nanoparticles having an average particle size of 6 nm manufactured by Fuso Chemical Manufacturing Co., Ltd., product name: PL-06L were used.
  • Comparative Example 5 a mixture of 20 parts by mass of silica nanoparticles having an average particle size of 15 nm (manufactured by Fuso Chemical Co., Ltd., product name: PL-1) and 80 parts by mass of water was used.
  • the dispersion liquid for forming the second layer is 20 of Japan Nanocoat dispersion liquid (product name: AS-WR, fluororesin: 5% by mass, silicone resin: 5% by mass, tin oxide 0.1% by mass, balance: water). A double diluted solution was used.
  • the surface resistance value was measured by Hozan Co., Ltd. (model number: F-109).
  • the transparency was measured by measuring the transparency of the transparent conductive thin film formed on the glass base material (float glass) using a glass transmittance measuring device (model number: MJ-TM110) manufactured by Sato Shoji Co., Ltd.
  • As for the transmittance those having a decrease rate of less than 1% from the float glass transmittance were accepted.
  • For the wear resistance test use (Imoto Seisakusho's rubbing tester tester), and apply a cotton cloth on the coated surface under the condition of 1 kg load, and after 20000 rotations, the surface resistance value does not drop to the 7th power of 10. , Passed.
  • Example 1 Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3.
  • % Liquid sica solid content: 1.4%, tin oxide solid content: 1.6%) 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (product name: graphene 0.1% aqueous dispersion) was added, and the balance was 55 parts by mass of water for forming the first layer of Example 1. An aqueous solution was prepared.
  • Example 1 20 ° C. for a glass substrate (float glass, transmittance: 91.6%, refractive index: 1.51, surface resistance value: 10 13 ⁇ ) having a width of 50 mm, a length of 100 mm, and a thickness of 3 mm.
  • the first layer forming aqueous solution of Example 1 at ⁇ 25 ° C. was placed in a 300 cm 3 beaker, the glass base material was immersed for 20 seconds, and then the glass base material was erected vertically and the first layer forming aqueous solution was poured.
  • the coating was applied under the conditions of atmospheric temperature: 20 to 25 ° C. and humidity: 50 to 55%.
  • the coated glass substrate was dried at a temperature of 20 ° C. for 10 minutes to obtain a glass substrate with a first layer having a center thickness of about 60 nm.
  • the first layer-attached glass substrate thus obtained the transmittance: 91.5%, surface resistivity: was 3.21 ⁇ 10 6 ⁇ .
  • AS-WR as a dispersion liquid for forming the second layer diluted 20-fold with water was applied by dipping, and the transmittance was 91.0% and the surface resistance value was 5.46. A substrate of ⁇ 10 6 ⁇ was obtained. Transmittance after the abrasion test is 91.0% the surface resistance value was 7.32 ⁇ 10 6 ⁇ .
  • Natural leather (thickness: 0.5 mm) was treated in the same process. Color of the treated leather is not changed, the surface resistivity is 3.64 ⁇ 10 6 ⁇ , the surface resistivity value after the abrasion test, a large decrease and 5.21 ⁇ 10 6 ⁇ was observed .. At this time, the pickup rate of the first layer was 160%, and the pickup rate of the second layer was 160%.
  • Example 2 Solid content prepared by mixing Japan Nanocoat silica binder (product name: B-30 (solid content 3%)), Japan Nanocoat tin oxide dispersion (product name: tin oxide 4% dispersion), and water. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat in 15 parts by mass of 3% liquid (silica solid content 1.2%, tin oxide solid content 1.8%) was added, 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (product name: graphene 0.1% aqueous dispersion) was added, and the balance was 55 parts by mass of water, which is the first layer forming aqueous solution of Example 2. Was produced.
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.0%, surface resistivity: 8,35 was ⁇ 10 5 ⁇ .
  • Example 3 Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat is added to 15 parts by mass of the% liquid (silica solid content 1.8%, tin oxide solid content 1.2%).
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.5%, surface resistivity: 6.46 was ⁇ 10 6 ⁇ .
  • AS-WR diluted 20-fold with water was applied by dipping on the first layer. Transmittance 90.9%, it was prepared equipment surface resistance value 6.77 ⁇ 10 6 ⁇ . Transmittance after the abrasion test was 90.8%, and a surface resistance value 8.77 ⁇ 10 6 ⁇ .
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.2%, surface resistivity: 6.37 a ⁇ 10 7 Omega, conductivity was low.
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.5%, surface resistivity: 8.76 was ⁇ 10 6 ⁇ .
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 90.3%, surface resistivity: was 7.86 ⁇ 10 5 ⁇ .
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 89.5%, surface resistivity: 7.46 a ⁇ 10 7 Omega, transmittance and conductivity were low ..
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 90.7%, surface resistivity: 7.76 was ⁇ 10 6 ⁇ .
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 89.3%, surface resistivity: a 1.86 ⁇ 10 7 ⁇ , the transmittance and conductivity were low ..
  • Comparative Example 7 Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat is added to 15 parts by mass of the% liquid (silica solid content 1.4%, tin oxide solid content 1.6%). In addition, an aqueous solution for forming the first layer of Comparative Example 6 in which the balance was 65 parts by mass of water was prepared.
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 90.3%, surface resistivity: a 1.36 ⁇ 10 7 ⁇ , the transmittance and conductivity were low ..
  • Comparative Example 8 Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. % Liquid (silica solid content 1.4%, tin oxide solid content 1.6%) 15 parts by mass, Japan Nanocoat graphene liquid 0.1% aqueous dispersion (product name graphene 0.1% aqueous dispersion) 10 mass Parts were added to prepare an aqueous solution for forming the first layer of Comparative Example 7 in which the balance was 75 parts by mass of water.
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.5%, surface resistivity: A 3.21 ⁇ 10 8 ⁇ , conductivity was low.
  • % Liquid (silica solid content 1.4%, tin oxide solid content 1.6%) 15 parts by mass, Japan Nanocoat Multi CNF (multi-wall carbon nanofiber) 3% aqueous dispersion (Product name: CNT 3% aqueous dispersion) ) 10 parts by mass was added, and 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (trade name: Graphene 0.1% aqueous dispersion) was added, and the balance was 65 parts by mass of water, the first layer of Comparative Example 9. An aqueous solution for formation was prepared. Met.
  • the first layer-attached glass substrate was obtained in the same manner as in Example 1, the center thickness of about 100 nm, the transmittance: 79.3%, surface resistivity: a 2.86 ⁇ 10 5 ⁇ , the transmittance It was low.
  • the AS-WR and dip coating a material obtained by diluting 20-fold with water, permeability: to give a 1.56 ⁇ 10 9 ⁇ substrates 78.1% surface resistivity It was. Not only the transmittance is low, but also the surface resistance value is remarkably increased by applying the same water-repellent coating as in Example 1, so that the conductivity of the substrate is conductive even if the thickness is thin. It was found that excellent single nanocarbon nanotubes are excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The purpose of the present invention is to provide a leather or fiber, which is imparted with electrical conductivity without a change of the texture of a base material, while having excellent friction resistance. A conductive leather or conductive fiber, which is characterized by sequentially comprising in the following order from the surface: (A) a first layer that contains single-walled carbon nanotubes, graphene nanoparticles and single nanoparticles of silica in such a manner that from 40 to 60 parts by mass of single nanoparticles of silica having a size of 5 nm or less as measured by a transmission electron microscope and from 60 to 40 parts by mass of single nanoparticles of tin oxide having a size of 2 nm or less as measured by a transmission electron microscope are contained with respect to a total of 100 parts by mass of the single nanoparticles of silica and the single nanoparticles of tin oxide; and (B) a second layer that contains a water repellent agent and a conductive material.

Description

導電性皮革または導電性繊維、および導電性皮革または導電性繊維の製造方法Conductive leather or conductive fibers, and methods for producing conductive leather or conductive fibers
 本発明は、導電性皮革または導電性繊維、および導電性皮革または導電性繊維の製造方法に関する。 The present invention relates to conductive leather or conductive fibers, and a method for producing conductive leather or conductive fibers.
 現在、スマートフォン等の普及により、タッチパネルでの操作が、日常で行われている。このタッチパネルを使用するため、防寒具の手袋等を着用したままで使用できるような商品が販売されている。 Currently, with the spread of smartphones and the like, touch panel operations are being performed on a daily basis. Since this touch panel is used, products that can be used while wearing winter clothes gloves and the like are on sale.
 しかし、これらの商品には、一般的に導電糸が使用されており、例えば金属系導電糸が使用されている場合、商品の色が導電糸を使用されている部分のみ異なるため、商品の外観を損なう上に、金属の種類によりアレルギー反応を引き起こす場合がある。また、導電糸は、一般的に摩擦に比較的強くないため、摩擦により導電性が低下する場合も多い。 However, conductive threads are generally used in these products. For example, when metallic conductive threads are used, the appearance of the products is different because the color of the products differs only in the part where the conductive threads are used. In addition to damaging, it may cause an allergic reaction depending on the type of metal. Further, since the conductive yarn is generally not relatively strong against friction, the conductivity often decreases due to friction.
 導電性を付与するための加工は、合成繊維類等には使用されている。一方、天然繊維や天然皮革といったものに、導電性加工が採用されている製品は少ない、と思われる。特に、天然皮革製品には、高級品が多いため、デザイン性の観点から、色等の風合いを変えない製品が求められている。また、スマートフォン用手袋等の商品に求められる特性の中で、商品の表面を撥水にしたいという要望があるが、撥水性を付与する表面処理剤は、商品の表面が絶縁性になることにより、商品表面の導通を阻害してしまうため、商品の表面全体に使用されている商品は普及していない。その結果、スマートフォン用手袋の場合には、指先の一部分のみを導電性にする、という使用方法が、通常である(例えば、特許文献1)。 Processing to impart conductivity is used for synthetic fibers and the like. On the other hand, it seems that there are few products that use conductive processing for natural fibers and natural leather. In particular, since many natural leather products are high-class products, products that do not change the texture such as color are required from the viewpoint of design. In addition, among the characteristics required for products such as gloves for smartphones, there is a desire to make the surface of the product water-repellent, but the surface treatment agent that imparts water repellency is due to the surface of the product becoming insulating. , Products used on the entire surface of the product are not widespread because they hinder the continuity of the product surface. As a result, in the case of gloves for smartphones, it is usual to make only a part of the fingertips conductive (for example, Patent Document 1).
特開2017-160582号公報JP-A-2017-160582
 本発明は、下地の風合いを変えずに導電性が付与され、耐摩擦性に優れる皮革または繊維を提供することを目的とする。 An object of the present invention is to provide leather or fiber which is imparted with conductivity without changing the texture of the base and has excellent abrasion resistance.
 本発明は、以下の構成を有することによって上記問題を解決した導電性皮革または導電性繊維、および導電性皮革または導電性繊維の製造方法に関する。
〔1〕(A)シングルウォールカーボンナノチューブと、グラフェンナノ粒子と、シリカのシングルナノ粒子と、酸化スズのシングルナノ粒子と、を含み、
シリカのシングルナノ粒子と酸化スズのシングルナノ粒子との合計100質量部に対して、透過型電子顕微鏡で測定した5nm以下のシリカのシングルナノ粒子:40~60質量部、および透過型電子顕微鏡で測定した2nm以下の酸化スズ粒子:60~40質量部を含む第1層と、
(B)撥水剤と導電性材料を含む第2層と、
を表面からこの順に備えることを特徴とする、導電性皮革または導電性繊維。
〔2〕表面のシート抵抗が、9.9×10Ω/□以下である、上記〔1〕記載の導電性皮革または導電性繊維。
〔3〕皮革または繊維の表面に対する工程であって、
(A)シングルウォールカーボンナノチューブと、グラフェンナノ粒子と、シリカのシングルナノ粒子と、酸化スズのシングルナノ粒子と、水と、を含み、
シリカのシングルナノ粒子と酸化スズのシングルナノ粒子との合計100質量部に対して、透過型電子顕微鏡で測定した5nm以下のシリカのシングルナノ粒子:40~60質量部、および透過型電子顕微鏡で測定した2nm以下酸化スズのシングルナノ粒子:60~40質量部を含む第1層形成用分散液を、表面に塗布または表面を浸漬させ、第1層を形成する工程、
(B)撥水剤と、導電性材料と、水と、を含む第2層形成用水溶液を、表面に塗布または表面を浸漬させ、第2層を形成する工程
を、この順に含む、導電性皮革または導電性繊維の製造方法。
〔4〕(A)工程で、透明導電性薄膜形成用分散液を、表面に塗布または表面を浸漬させた後、圧延する、上記〔3〕記載の導電性皮革または導電性繊維の製造方法。
The present invention relates to conductive leather or conductive fibers that solve the above problems by having the following configurations, and a method for producing conductive leather or conductive fibers.
[1] (A) Containing single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, and tin oxide single nanoparticles.
For a total of 100 parts by mass of the single nanoparticles of silica and the single nanoparticles of tin oxide, single nanoparticles of silica of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope. Measured tin oxide particles of 2 nm or less: the first layer containing 60 to 40 parts by mass, and
(B) A second layer containing a water repellent and a conductive material,
Conductive leather or textiles, characterized in that they are provided in this order from the surface.
[2] The conductive leather or conductive fiber according to the above [1], wherein the sheet resistance on the surface is 9.9 × 10 6 Ω / □ or less.
[3] A process for the surface of leather or fiber.
(A) Containing single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water.
For a total of 100 parts by mass of silica single nanoparticles and tin oxide single nanoparticles, silica single nanoparticles of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope. Measured single nanoparticles of tin oxide of 2 nm or less: A step of applying a dispersion liquid for forming a first layer containing 60 to 40 parts by mass on the surface or immersing the surface to form the first layer.
(B) Conductivity including a step of applying a second layer forming aqueous solution containing a water repellent, a conductive material, and water to the surface or immersing the surface to form the second layer in this order. A method for producing leather or conductive fibers.
[4] The method for producing conductive leather or conductive fibers according to the above [3], wherein in the step (A), a dispersion liquid for forming a transparent conductive thin film is applied to a surface or the surface is immersed and then rolled.
 本発明〔1〕によれば、下地の風合いを変えずに導電性が付与され、耐摩擦性に優れる皮革または繊維を提供することができる。 According to the present invention [1], it is possible to provide leather or fiber which is imparted with conductivity without changing the texture of the base and has excellent abrasion resistance.
 本発明〔3〕によれば、下地の風合いを変えずに導電性が付与され、耐摩擦性に優れる皮革または繊維を簡便に製造することができる。 According to the present invention [3], it is possible to easily produce leather or fiber which is imparted with conductivity and has excellent abrasion resistance without changing the texture of the base.
〔導電性皮革または導電性繊維〕
 本発明の導電性皮革または導電性繊維(以下、導電性皮革等という)は、(A)シングルウォールカーボンナノチューブと、グラフェンナノ粒子と、シリカのシングルナノ粒子と、酸化スズのシングルナノ粒子と、を含み、
シリカのシングルナノ粒子と酸化スズのシングルナノ粒子との合計100質量部に対して、透過型電子顕微鏡で測定した5nm以下のシリカのシングルナノ粒子:40~60質量部、および透過型電子顕微鏡で測定した2nm以下の酸化スズのシングルナノ粒子:60~40質量部を含む第1層と、
(B)撥水剤と透明導電性材料を含む第2層と、
を表面からこの順に備えることを特徴とする。第1層、第2層共に、後述する分散液により、形成することができる。
[Conductive leather or conductive fiber]
The conductive leather or conductive fiber of the present invention (hereinafter referred to as conductive leather, etc.) includes (A) single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, and tin oxide single nanoparticles. Including
For a total of 100 parts by mass of silica single nanoparticles and tin oxide single nanoparticles, silica single nanoparticles of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope. Measured single nanoparticles of tin oxide of 2 nm or less: the first layer containing 60-40 parts by mass, and
(B) A second layer containing a water repellent and a transparent conductive material,
Is provided in this order from the surface. Both the first layer and the second layer can be formed by a dispersion liquid described later.
 本発明は、この構成により、下地の風合いを変えずに導電性が付与され、耐摩擦性に優れる皮革または繊維を提供することができる。 According to this configuration, the present invention can provide leather or fiber which is imparted with conductivity without changing the texture of the base and has excellent abrasion resistance.
 本発明は、皮革または繊維(以下、皮革等という)上に、透明導電膜を形成する。透明導電膜は、シングルウォールカーボンナノチューブおよびグラフェンを利用し、透明度を落とさないまま、表面抵抗値を人の手と同等の10Ω/□台以下にする第1層、その上に第1層の導通性を落とさない為の撥水剤と、導電性材料である酸化スズ等を含有する第2層を形成することにより、シート抵抗を10Ω/□台に低下させずに、撥水コートである透明導電膜を形成することが可能となる。本発明は、この透明導電膜により、皮革等の風合いを変えることなく、撥水導電性を実現することができ、導電剤等を練り込んだ合成繊維や合成皮革とは異なり、天然繊維や天然皮革の多機能化に寄与することができる。 The present invention forms a transparent conductive film on leather or fiber (hereinafter referred to as leather or the like). The transparent conductive film, using a single-wall carbon nanotubes and graphene, without lowering the transparency, the first layer of the surface resistance value in the following human hand equivalent 10 6 Ω / □ base, a first layer thereon and water repellent for not drop conductivity of, by forming a second layer containing tin oxide as a conductive material, the sheet resistance without reducing the 10 7 Ω / □ base, water repellent It becomes possible to form a transparent conductive film which is a coat. The present invention can realize water-repellent conductivity without changing the texture of leather or the like by this transparent conductive film, and unlike synthetic fibers or synthetic leather in which a conductive agent or the like is kneaded, natural fibers or natural materials can be realized. It can contribute to the multifunctionalization of leather.
 皮革としては、特に限定されないが、天然皮革、人工皮革等が、挙げられる。皮革の厚さの一例は、0.5~2mmであり、特に、手袋用皮革は、約0.5mmである。 The leather is not particularly limited, but examples thereof include natural leather and artificial leather. An example of the thickness of leather is 0.5 to 2 mm, and in particular, leather for gloves is about 0.5 mm.
 繊維としては、特に限定されないが、天然繊維(綿、麻、絹等)、合成繊維等が、挙げられる。 The fibers are not particularly limited, and examples thereof include natural fibers (cotton, linen, silk, etc.), synthetic fibers, and the like.
 シングルウォールカーボンナノチューブは、特に限定されないが、シングルウォールカーボンナノチューブは、繊維径が0.5nm以下であり、アスペクト比が5以上であり、長さが10nm以下であると、好ましい。シングルウォールカーボンナノチューブの中でも、シングルウォールカーボンナノチューブが、より好ましい。上記繊維径とアスペクト比のシングルウォールカーボンナノチューブは、溶媒中で均一に分散すると共に、相互に十分な接触点を形成することができる。 The single-wall carbon nanotubes are not particularly limited, but the single-wall carbon nanotubes preferably have a fiber diameter of 0.5 nm or less, an aspect ratio of 5 or more, and a length of 10 nm or less. Among the single-walled carbon nanotubes, single-walled carbon nanotubes are more preferable. The single-walled carbon nanotubes having a fiber diameter and an aspect ratio can be uniformly dispersed in a solvent and can form sufficient contact points with each other.
 シングルウォールカーボンナノチューブの繊維径は、透過型電子顕微鏡写真(倍率10万倍)を観察して求めた質量平均粒子径である(n=50)。また、シングルウォールカーボンナノチューブのアスペクト比は、透過型電子顕微鏡写真(倍率10万倍)を観察して、(長さ/繊維径)を計算して求める(n=50)。 The fiber diameter of the single-wall carbon nanotube is the mass average particle diameter obtained by observing a transmission electron micrograph (magnification of 100,000 times) (n = 50). The aspect ratio of the single-wall carbon nanotubes is obtained by observing a transmission electron micrograph (magnification of 100,000 times) and calculating (length / fiber diameter) (n = 50).
 また、シングルウォールカーボンナノチューブは、分散剤を使用しないで、溶媒中に分散可能なものであると、好ましい。シングルウォールカーボンナノチューブを溶媒中に分散可能なものにする処理としては、硫酸等の強酸による処理が挙げられる。また、分散剤を使用していないシングルウォールカーボンナノチューブ分散液も市販されている。 Further, it is preferable that the single-wall carbon nanotubes can be dispersed in a solvent without using a dispersant. Examples of the treatment for making the single-walled carbon nanotubes dispersible in a solvent include treatment with a strong acid such as sulfuric acid. In addition, a single-wall carbon nanotube dispersion liquid that does not use a dispersant is also commercially available.
 グラフェンナノ粒子としては、平均厚さ(c軸方向)が50nm以下で、径方向(a軸方向)の径が2μm以下のグラフェンを水に単分散したものが、挙げられる。グラフェンナノ粒子の平均厚さが5nm以下の粉末は、コーティング剤から形成される薄膜に帯電防止性、耐摩耗性を付与する。グラフェンの長さの一例は、5nm~3μmである。グラフェンの平均厚さは、難燃性、均一な厚さの成膜の観点から、1~5nmであると、好ましい。ここで、グラフェンの平均厚さと長さは、透過型電子顕微鏡写真(倍率10万倍)を観察して求めた質量平均粒子径である(n=50)。 Examples of graphene nanoparticles include graphene nanoparticles having an average thickness (c-axis direction) of 50 nm or less and a radial (a-axis direction) diameter of 2 μm or less dispersed in water. The powder having an average thickness of graphene nanoparticles of 5 nm or less imparts antistatic property and abrasion resistance to the thin film formed from the coating agent. An example of graphene length is 5 nm to 3 μm. The average thickness of graphene is preferably 1 to 5 nm from the viewpoint of flame retardancy and film formation having a uniform thickness. Here, the average thickness and length of graphene are mass average particle diameters obtained by observing a transmission electron micrograph (magnification of 100,000 times) (n = 50).
 シングルナノ粒子とは、透過型電子顕微鏡で測定した粒子径(n=50)が、10nm未満のものをいう。シングルナノ粒子100質量部に対して、5nm以下のシリカのシングルナノ粒子は、40~60質量部であり、2nm以下のシリカのシングルナノ粒子が、30~40質量部であると、好ましい。ここで、10nm以上のシリカのナノ粒子を使用すると、透明導電性薄膜付き基材の透過率の増加が低くなり、透明導電性薄膜の耐摩耗性が低くなってしまう。また、導電性が低下しやすくなる。なお、2nm以下のシリカのシングルナノ粒子が、40質量部を超えると、透明導電性薄膜形成用分散液がゲル化してしまい易い。なお、2nm以下のシリカのシングルナノ粒子は、ハンドリング性、入手しやすさの観点から、0.5nm以上であると好ましい。 Single nanoparticles refer to particles having a particle size (n = 50) measured with a transmission electron microscope of less than 10 nm. With respect to 100 parts by mass of the single nanoparticles, the single nanoparticles of silica having a size of 5 nm or less are preferably 40 to 60 parts by mass, and the single nanoparticles of silica having a size of 2 nm or less are preferably 30 to 40 parts by mass. Here, when silica nanoparticles having a diameter of 10 nm or more are used, the increase in the transmittance of the substrate with the transparent conductive thin film becomes low, and the wear resistance of the transparent conductive thin film becomes low. In addition, the conductivity tends to decrease. If the amount of silica single nanoparticles of 2 nm or less exceeds 40 parts by mass, the dispersion liquid for forming a transparent conductive thin film tends to gel. The silica single nanoparticles of 2 nm or less are preferably 0.5 nm or more from the viewpoint of handleability and availability.
 2nm以下のシリカのシングルナノ粒子は、アモルファスシリカを含むと、好ましい。アモルファスであることは、X線回折で確認する。 It is preferable that the silica single nanoparticles of 2 nm or less contain amorphous silica. It is confirmed by X-ray diffraction that it is amorphous.
 シングルナノ粒子100質量部に対して、2nm以下の酸化スズのシングルナノ粒子は、第1層の導電性、透過率、耐摩耗性の観点から、60~40質量部であり、50質量部以上であると、好ましい。1次粒子の平均粒径が10nm以上の酸化錫粉末は、単体では2次凝集が起きにくいが、他の材料と混合すると、2次凝集が起きやすくなるため、好ましくない。 With respect to 100 parts by mass of single nanoparticles, single nanoparticles of tin oxide of 2 nm or less are 60 to 40 parts by mass, and 50 parts by mass or more, from the viewpoint of conductivity, transmittance, and abrasion resistance of the first layer. Is preferable. Tin oxide powder having an average particle size of primary particles of 10 nm or more is less likely to cause secondary agglomeration by itself, but is not preferable because secondary agglomeration is likely to occur when mixed with other materials.
 第1層は、厚さが、50~300nmであると、導電性、透明性、および耐摩耗性の観点から、好ましく、50~80nmであると、皮革等への色味の影響の観点から、より好ましい。第1層の厚さが、50nm未満だと、皮革等の表面のシート抵抗が、10Ω/□台より高くなり易く、タッチパネルが反応しなくなる。300nmより厚いと、成膜時にクラックが入り、剥がれ易くなる。なお、タッチパネルの用途では、皮革等の表面のシート抵抗が、10Ω/□台になると、使用しにくくなるため、表面のシート抵抗が、9.9×10Ω/□以下であると、好ましい。 The thickness of the first layer is preferably 50 to 300 nm from the viewpoint of conductivity, transparency and abrasion resistance, and 50 to 80 nm from the viewpoint of the influence of color on leather and the like. , More preferred. The thickness of the first layer, when less than 50 nm, the sheet resistance of the surface of the leather or the like, tends to be higher than 10 6 Ω / □ base, the touch panel becomes unresponsive. If it is thicker than 300 nm, cracks will occur during film formation and it will be easy to peel off. In the applications of the touch panel, the sheet resistance of the surface of the leather or the like, at a 10 7 Ω / □ stand, it becomes difficult to use, the sheet resistance of the surface, if it is 9.9 × 10 6 Ω / □ or less ,preferable.
 第2層は、第1層の導通性を落とさない為の撥水剤と、透明帯電防止性を有する導電性材料を含有する。 The second layer contains a water repellent agent for not reducing the conductivity of the first layer and a conductive material having a transparent antistatic property.
 撥水剤としては、フッ素系樹脂、シリコーン樹脂等が、挙げられ、単独で使用しても、複数を併用してもよい。フッ素樹脂としては、AGC社のアサヒガードシリーズAG-E600、シリコーン樹脂としては、信越シリコーンの水系エマルジョンPOLON-SR CONIC等が、イオン性界面活性剤等の帯電防止性を有するものと併用できる撥水剤として、好ましい。 Examples of the water repellent include a fluororesin, a silicone resin, and the like, which may be used alone or in combination of two or more. As a fluororesin, AGC's Asahi Guard series AG-E600, and as a silicone resin, Shin-Etsu Silicone's water-based emulsion POLON-SR CONIC, etc. can be used in combination with antistatic agents such as ionic surfactants. Preferable as an agent.
 導電性材料としては、酸化錫粉末、イオン性界面活性剤等が、挙げられ、酸化錫単体、および、酸化錫粉末とイオン性界面活性剤との併用が、好ましい。酸化錫粉末は上述のとおりであり、イオン性界面活性剤としては、第4級アンモニウム塩が、挙げられる。イオン性界面活性剤としては、カチオンとアニオンの両極性を有する両性界面活性剤が、好ましい。 Examples of the conductive material include tin oxide powder and an ionic surfactant, and it is preferable to use tin oxide alone or a combination of tin oxide powder and an ionic surfactant. The tin oxide powder is as described above, and examples of the ionic surfactant include a quaternary ammonium salt. As the ionic surfactant, an amphoteric surfactant having both cation and anion polarities is preferable.
 第4級アンモニウム塩としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩が、挙げられ、市販品としては、大成ファインケミカル社の1SXシリーズが、挙げられる。 Examples of the quaternary ammonium salt include alkyltrimethylammonium salts and dialkyldimethylammonium salts, and examples of commercially available products include the 1SX series manufactured by Taisei Fine Chemicals Co., Ltd.
 第2層を形成するための第2層形成用分散液としては、ジャパンナノコート製分散液(品名:AS-WR)が、予め各成分が混合されているため、簡便に使用できる。 As the dispersion liquid for forming the second layer for forming the second layer, a dispersion liquid manufactured by Japan Nanocoat (product name: AS-WR) is easily used because each component is mixed in advance.
 第2層は、厚さが、20~100nmであると、撥水性、導電性の観点から、好ましい。20nm未満では、撥水性が十分ではなくなりやすく、100nmより厚いと、導電性が低下し易くなる。 The thickness of the second layer is preferably 20 to 100 nm from the viewpoint of water repellency and conductivity. If it is less than 20 nm, the water repellency tends to be insufficient, and if it is thicker than 100 nm, the conductivity tends to decrease.
 第2層は、1×1010Ω/□以下であり、かつ透明性が落ちない(目視で色合いの変化が観察されない)のであれば、本願発明の効果を奏することができる。 The effect of the present invention can be exhibited as long as the second layer is 1 × 10 10 Ω / □ or less and the transparency is not deteriorated (change in color tone is not visually observed).
〔導電性皮革または導電性繊維の製造方法〕
 本発明の導電性皮革または導電性繊維の製造方法は、
 皮革または繊維の表面に対する工程であって、
(A)シングルウォールカーボンナノチューブと、グラフェンナノ粒子と、シリカのシングルナノ粒子と、酸化スズのシングルナノ粒子、水と、を含み、
シリカのシングルナノ粒子と酸化スズのシングルナノ粒子との合計100質量部に対して、透過型電子顕微鏡で測定した5nm以下のシリカのシングルナノ粒子:40~60質量部、および透過型電子顕微鏡で測定した2nm以下酸化スズのシングルナノ粒子:60~40質量部を含む第1層形成用分散液を、表面に塗布または表面を浸漬させ、第1層を形成する工程、
(B)撥水剤と、導電性材料と、水と、を含む第2層形成用水溶液を、表面に塗布または表面を浸漬させ、第2層を形成する工程
を、この順に含む。
[Manufacturing method of conductive leather or conductive fiber]
The method for producing conductive leather or conductive fiber of the present invention is:
A process on the surface of leather or fibers
(A) Containing single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water.
For a total of 100 parts by mass of silica single nanoparticles and tin oxide single nanoparticles, silica single nanoparticles of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope. Measured single nanoparticles of tin oxide of 2 nm or less: A step of applying a dispersion liquid for forming a first layer containing 60 to 40 parts by mass on the surface or immersing the surface to form the first layer.
(B) A step of applying a second layer forming aqueous solution containing a water repellent, a conductive material, and water to the surface or immersing the surface to form the second layer is included in this order.
[(A)工程]
 (A)工程は、シングルウォールカーボンナノチューブと、グラフェンナノ粒子と、シリカのシングルナノ粒子と、酸化スズのシングルナノ粒子、水と、を含み、
シリカのシングルナノ粒子と酸化スズのシングルナノ粒子との合計100質量部に対して、透過型電子顕微鏡で測定した5nm以下のシリカのシングルナノ粒子:40~60質量部、および透過型電子顕微鏡で測定した2nm以下酸化スズのシングルナノ粒子:60~40質量部を含む第1層形成用分散液を、表面に塗布または表面を浸漬させ、第1層を形成する。
[Step (A)]
The step (A) includes single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water.
For a total of 100 parts by mass of single nanoparticles of silica and single nanoparticles of tin oxide, single nanoparticles of silica of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope. A first layer forming dispersion containing 60 to 40 parts by mass of the measured single nanoparticles of tin oxide of 2 nm or less is applied to or immersed in the surface to form the first layer.
 第1層形成用分散液は、(A)シングルウォールカーボンナノチューブと、グラフェンナノ粒子と、シリカのシングルナノ粒子と、酸化スズのシングルナノ粒子と、水と、を含み、
シリカのシングルナノ粒子と酸化スズのシングルナノ粒子との合計100質量部に対して、透過型電子顕微鏡で測定した5nm以下のシリカのシングルナノ粒子:40~60質量部、および透過型電子顕微鏡で測定した2nm以下酸化スズのシングルナノ粒子:60~40質量部を含む。
The dispersion liquid for forming the first layer contains (A) single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water.
For a total of 100 parts by mass of single nanoparticles of silica and single nanoparticles of tin oxide, single nanoparticles of silica of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope. Measured single nanoparticles of tin oxide of 2 nm or less: Contains 60 to 40 parts by mass.
 シングルウォールカーボンナノチューブ、グラフェンナノ粒子、シリカのシングルナノ粒子については、上述のとおりである。 The single-wall carbon nanotubes, graphene nanoparticles, and silica single nanoparticles are as described above.
 シングルウォールカーボンナノチューブは、第1層形成用分散液100質量部に対して、0.01~0.1質量部であると、好ましい。0.03~0.06質量部が、より好ましい。0.2質量部以上になると増粘、凝集しやすくなり透過率が低下する。 The amount of single-wall carbon nanotubes is preferably 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the first layer. More preferably, 0.03 to 0.06 parts by mass. If it is 0.2 parts by mass or more, thickening and aggregation are likely to occur, and the transmittance is lowered.
 グラフェンナノ粒子は、第1層形成用分散液100質量部に対して、0.001~0.1質量部であると、好ましく、0.005~0.01%質量部が、より好ましい。 The graphene nanoparticles are preferably 0.001 to 0.1 parts by mass, more preferably 0.005 to 0.01% by mass, based on 100 parts by mass of the dispersion liquid for forming the first layer.
 シングルナノ粒子は、シングルナノ粒子とシングルウォールカーボンナノチューブとグラフェンナノ粒子との合計100質量部に対して、18~99.5質量部であると、好ましい。シングルナノ粒子が18質量部未満では、透明導電性薄膜の密着性が低下し易く、99.5質量部を超えると、透明導電性薄膜の導電性、放熱性が低下してしまい易い。また、シリカのシングルナノ粒子は、シリカのシングルナノ粒子とシングルウォールカーボンナノチューブとグラフェンナノ粒子と酸化スズのシングルナノ粒子の合計100質量部に対して、40~60質量部であると、第1層が高導電性および高透明性となるため、より好ましい。 The single nanoparticles are preferably 18 to 99.5 parts by mass with respect to 100 parts by mass in total of the single nanoparticles, single-wall carbon nanotubes and graphene nanoparticles. If the number of single nanoparticles is less than 18 parts by mass, the adhesion of the transparent conductive thin film tends to decrease, and if it exceeds 99.5 parts by mass, the conductivity and heat dissipation of the transparent conductive thin film tend to decrease. Further, the silica single nanoparticles are 40 to 60 parts by mass with respect to 100 parts by mass in total of the silica single nanoparticles, single-wall carbon nanotubes, graphene nanoparticles and tin oxide single nanoparticles. It is more preferable because the layer becomes highly conductive and highly transparent.
 水は、第1層形成用分散液100質量部に対して、99.0~99.5質量部であると、好ましい。なお、溶媒として、水以外の有機溶媒も使用可能であるが、溶媒揮発による環境汚染を抑制できる観点から、水を使用する。 The amount of water is preferably 99.0 to 99.5 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the first layer. Although an organic solvent other than water can be used as the solvent, water is used from the viewpoint of suppressing environmental pollution due to solvent volatilization.
 第1層形成用分散液は、例えば、各種ナノ粉末、溶媒、およびその他添加剤等を、同時にまたは別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、ライカイ機、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。後述する第2層形成用分散液も同様にして、得ることができる。 The dispersion liquid for forming the first layer can be obtained, for example, by stirring, melting, mixing, and dispersing various nanopowder, solvent, and other additives at the same time or separately, with heat treatment if necessary. it can. The apparatus for mixing, stirring, dispersing, etc., is not particularly limited, but a Raikai machine, a ball mill, a planetary mixer, a bead mill, or the like can be used. Moreover, you may use these devices in combination as appropriate. A dispersion liquid for forming a second layer, which will be described later, can also be obtained in the same manner.
 第1層形成用分散液には、本発明の目的を損なわない範囲で、更に必要に応じ、添加剤等を配合することができる。 Additives and the like can be further added to the dispersion liquid for forming the first layer as long as the object of the present invention is not impaired.
 第1層形成用分散液の市販品としては、ジャパンナノコート製AS-SCNTが、挙げられる。 As a commercially available product of the dispersion liquid for forming the first layer, AS-SCNT manufactured by Japan Nanocoat can be mentioned.
 第1層形成用分散液を、皮革等の表面に塗布または表面を浸漬させる方法は、特に限定されないが、刷毛塗り、スプレーコート、ディッピング等が挙げられる。 The method of applying the dispersion liquid for forming the first layer to the surface of leather or the like or immersing the surface is not particularly limited, and examples thereof include brush coating, spray coating, and dipping.
 第1層の厚さは、上述のとおり、50~300nmであると、好ましい。皮革(厚さが0.5~2mm、特に、手袋用は0.5mm)の場合、ピックアップ率(皮革100質量%に対する第1層の質量)が60%であると、好ましい。布の場合には、ピックアップ率が、塗布浸漬後に、200~300%、圧延後に60~120%であると好ましく、100%であると、より好ましい。 As described above, the thickness of the first layer is preferably 50 to 300 nm. In the case of leather (thickness 0.5 to 2 mm, particularly 0.5 mm for gloves), the pickup rate (mass of the first layer with respect to 100% by mass of leather) is preferably 60%. In the case of cloth, the pick-up rate is preferably 200 to 300% after coating and dipping, 60 to 120% after rolling, and more preferably 100%.
 (A)工程で、透明導電性薄膜形成用分散液を、表面に塗布または表面を浸漬させた後、圧延すると、シングルウォールカーボンナノチューブおよびグラフェンが、皮革等の表面に対して水平に配向しやすくなるため、導電性向上及び透明性向上の観点から好ましい。 In step (A), when the dispersion liquid for forming a transparent conductive thin film is applied to the surface or immersed in the surface and then rolled, the single-wall carbon nanotubes and graphene are likely to be oriented horizontally with respect to the surface of leather or the like. Therefore, it is preferable from the viewpoint of improving conductivity and transparency.
[(B)工程]
 (B)工程は、撥水剤と、導電性材料と、水とを含む第2層形成用水溶液を、表面に塗布または表面を浸漬させ、第2層を形成する。
[Step (B)]
In the step (B), an aqueous solution for forming a second layer containing a water repellent, a conductive material, and water is applied to or immersed in the surface to form the second layer.
 第2層形成用水溶液は、撥水剤と、導電性材料と、水とを含む。 The aqueous solution for forming the second layer contains a water repellent, a conductive material, and water.
 撥水剤、導電性材料については、上述のとおりである。なお、溶媒として、水以外の有機溶媒も使用可能であるが、溶媒揮発による環境汚染を抑制できる観点から、水を使用する。 The water repellent and conductive material are as described above. Although an organic solvent other than water can be used as the solvent, water is used from the viewpoint of suppressing environmental pollution due to solvent volatilization.
 撥水剤は、第2層形成用分散液100質量部に対して、0.05~0.5質量部であると、好ましい。 The water repellent is preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the second layer.
 透明導電性材料は、第2層形成用分散液100質量部に対して、0.01~0.1質量部であると、好ましい。 The transparent conductive material is preferably 0.01 to 0.1 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the second layer.
 水は、第2層形成用分散液100質量部に対して、99.4~99.94質量部であると、好ましい。 The amount of water is preferably 99.4 to 99.94 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming the second layer.
 第2層形成用分散液には、本発明の目的を損なわない範囲で、更に必要に応じ、添加剤等を配合することができる。 Additives and the like can be further added to the dispersion liquid for forming the second layer as long as the object of the present invention is not impaired.
 第2層形成用分散液の市販品としては、ジャパンナノコート製分散液(品名:AS-WR)が、挙げられる。このジャパンナノコート製分散液(品名:AS-WR)を、20倍程度に希釈して使用すると、厚さ制御等の観点から、好ましい。 As a commercially available product of the dispersion liquid for forming the second layer, a dispersion liquid manufactured by Japan Nanocoat (product name: AS-WR) can be mentioned. It is preferable to dilute this dispersion liquid manufactured by Japan Nanocoat (product name: AS-WR) about 20 times and use it from the viewpoint of thickness control and the like.
 第2層形成用分散液を、皮革等の表面に塗布または表面を浸漬させる方法は、特に限定されず、第1層形成用分散液を、皮革等の表面に塗布または表面を浸漬させる方法と、同様である。 The method of applying the second layer forming dispersion liquid to the surface of leather or the like or immersing the surface is not particularly limited, and the method of applying the first layer forming dispersion liquid to the surface of leather or the like or immersing the surface is used. , The same is true.
 第2層の厚さは、上述のとおり、20~100nmであると、好ましい。皮革(厚さが0.5~2mm、特に、手袋用は0.5mm)の場合、ピックアップ率(皮革100質量%に対する第1層の質量)が60%であると、好ましい。布の場合には、ピックアップ率が、塗布浸漬後に、200~300%、圧延後に60~120%であると好ましく、100%であると、より好ましい。 As described above, the thickness of the second layer is preferably 20 to 100 nm. In the case of leather (thickness 0.5 to 2 mm, particularly 0.5 mm for gloves), the pickup rate (mass of the first layer with respect to 100% by mass of leather) is preferably 60%. In the case of cloth, the pick-up rate is preferably 200 to 300% after coating and dipping, 60 to 120% after rolling, and more preferably 100%.
 本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。 The present invention will be described with reference to Examples, but the present invention is not limited thereto. In the following examples, parts and% indicate parts by mass and% by mass unless otherwise specified.
 実施例1の第1層形成用分散液には、ジャパンナノコート製水系帯電防止コーティング剤(品名:AS-SCNT)を用いた。このAS-SCNTは、シリカナノ粒子:0.21%、酸化スズナノ粒子:0.24%、シングルカーボンナノチューブ:0.04%、グラフェン:0.01%、残部:水からなる。比較例4では、平均粒径:6nmのシリカのナノ粒子(扶桑化学製製、品名:PL-06L)を、用いた。比較例5では、平均粒径:15nmのシリカのナノ粒子(扶桑化学製、品名:PL-1):20質量部と、水:80質量部とを混合したものを、用いた。 As the dispersion liquid for forming the first layer of Example 1, a water-based antistatic coating agent (product name: AS-SCNT) manufactured by Japan Nanocoat was used. This AS-SCNT consists of silica nanoparticles: 0.21%, tin oxide nanoparticles: 0.24%, single carbon nanotubes: 0.04%, graphene: 0.01%, and the balance: water. In Comparative Example 4, silica nanoparticles having an average particle size of 6 nm (manufactured by Fuso Chemical Manufacturing Co., Ltd., product name: PL-06L) were used. In Comparative Example 5, a mixture of 20 parts by mass of silica nanoparticles having an average particle size of 15 nm (manufactured by Fuso Chemical Co., Ltd., product name: PL-1) and 80 parts by mass of water was used.
 第2層形成用分散液には、ジャパンナノコート製分散液(品名:AS-WR、フッ素樹脂:5質量%、シリコーン樹脂:5質量%、酸化錫0.1質量%、残部:水)の20倍希釈液を用いた。 The dispersion liquid for forming the second layer is 20 of Japan Nanocoat dispersion liquid (product name: AS-WR, fluororesin: 5% by mass, silicone resin: 5% by mass, tin oxide 0.1% by mass, balance: water). A double diluted solution was used.
 表面抵抗値は、ホーザン株式会社(型番:F-109)で測定した。透明性は、ガラス基材(フロートガラス)に形成した透明導電性薄膜の透過度を、佐藤商事社製ガラス透過率測定器(型番:MJ-TM110)を用いて測定した。透過率は、フロートガラス透過率からの低下率が1%未満のものを合格とした。耐摩耗性試験は、(井元製作所のラビングテスター試験器)を使用し、塗布面に、綿布を1kg荷重の条件で、20000回転に後、表面抵抗値が10の7乗台に低下しないものを、合格とした。 The surface resistance value was measured by Hozan Co., Ltd. (model number: F-109). The transparency was measured by measuring the transparency of the transparent conductive thin film formed on the glass base material (float glass) using a glass transmittance measuring device (model number: MJ-TM110) manufactured by Sato Shoji Co., Ltd. As for the transmittance, those having a decrease rate of less than 1% from the float glass transmittance were accepted. For the wear resistance test, use (Imoto Seisakusho's rubbing tester tester), and apply a cotton cloth on the coated surface under the condition of 1 kg load, and after 20000 rotations, the surface resistance value does not drop to the 7th power of 10. , Passed.
〔実施例1〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分:1.4%、酸化スズ固形分:1.6%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名:グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の実施例1の第1層形成用水溶液を作製した。
[Example 1]
Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. % Liquid (silica solid content: 1.4%, tin oxide solid content: 1.6%) 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (product name: graphene 0.1% aqueous dispersion) was added, and the balance was 55 parts by mass of water for forming the first layer of Example 1. An aqueous solution was prepared.
 幅:50mm、長さ:100mm、厚さ:3mmのガラス基材(フロートガラス、透過率:91.6%、屈折率:1.51、表面抵抗値:1013Ω)に対して、20℃~25℃の実施例1の第1層形成用水溶液を、300cmのビーカーに入れ、ガラス基材を20秒間浸漬した後、ガラス基材を垂直に立てて、第1層形成用水溶液を流し掛け、雰囲気温度:20~25℃、湿度:50~55%の条件で、塗布した。塗布後のガラス基材を温度:20℃で10分間乾燥させ、中心厚さ:約60nmの第1層付きガラス基材を得た。 20 ° C. for a glass substrate (float glass, transmittance: 91.6%, refractive index: 1.51, surface resistance value: 10 13 Ω) having a width of 50 mm, a length of 100 mm, and a thickness of 3 mm. The first layer forming aqueous solution of Example 1 at ~ 25 ° C. was placed in a 300 cm 3 beaker, the glass base material was immersed for 20 seconds, and then the glass base material was erected vertically and the first layer forming aqueous solution was poured. The coating was applied under the conditions of atmospheric temperature: 20 to 25 ° C. and humidity: 50 to 55%. The coated glass substrate was dried at a temperature of 20 ° C. for 10 minutes to obtain a glass substrate with a first layer having a center thickness of about 60 nm.
 得られた第1層付きガラス基材は、透過率:91.5%、表面抵抗値:3.21×10Ωであった。 The first layer-attached glass substrate thus obtained, the transmittance: 91.5%, surface resistivity: was 3.21 × 10 6 Ω.
 次に、第1層の上に、第2層形成用分散液としてのAS-WRを水で20倍希釈したものをディッピング塗布し、透過率:91.0%、表面抵抗値:5.46×10Ωの基材を得た。耐摩耗試験後の透過率は、91.0%であり、表面抵抗値は、7.32×10Ωであった。 Next, on the first layer, AS-WR as a dispersion liquid for forming the second layer diluted 20-fold with water was applied by dipping, and the transmittance was 91.0% and the surface resistance value was 5.46. A substrate of × 10 6 Ω was obtained. Transmittance after the abrasion test is 91.0% the surface resistance value was 7.32 × 10 6 Ω.
 天然皮革(厚さ:0.5mm)を、同じ工程で処理した。処理した天然皮革の色目は変わらず、表面抵抗値は、3.64×10Ωであり、耐摩耗試験後の表面抵抗値は、5.21×10Ωと大きな低下は見られなかった。このときの第1層のピックアップ率は160%であり、第2層のピックアップ率は、160%であった。 Natural leather (thickness: 0.5 mm) was treated in the same process. Color of the treated leather is not changed, the surface resistivity is 3.64 × 10 6 Ω, the surface resistivity value after the abrasion test, a large decrease and 5.21 × 10 6 Ω was observed .. At this time, the pickup rate of the first layer was 160%, and the pickup rate of the second layer was 160%.
〔実施例2〕
 ジャパンナノコート製シリカバインダー(品名:B-30(固形分3%))と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分1.2%、酸化スズ固形分1.8%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名:グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の実施例2の第1層形成用水溶液を作製した。
[Example 2]
Solid content prepared by mixing Japan Nanocoat silica binder (product name: B-30 (solid content 3%)), Japan Nanocoat tin oxide dispersion (product name: tin oxide 4% dispersion), and water. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat in 15 parts by mass of 3% liquid (silica solid content 1.2%, tin oxide solid content 1.8%) Was added, 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (product name: graphene 0.1% aqueous dispersion) was added, and the balance was 55 parts by mass of water, which is the first layer forming aqueous solution of Example 2. Was produced.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:91.0%、表面抵抗値:8,35×10Ωであった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.0%, surface resistivity: 8,35 was × 10 5 Ω.
 次に、第1層の上に、AS-WRを水で20倍希釈したものをディッピング塗布し、
透過率:90.5%、表面抵抗値:3.34×10Ωの基材を得た。耐摩耗試験後の透過率は、90.5%であり、表面抵抗値は、5.77×10Ωであった。
Next, on the first layer, AS-WR diluted 20-fold with water was applied by dipping.
Transmittance: 90.5%, surface resistivity: to obtain a substrate of 3.34 × 10 6 Ω. Transmittance after the abrasion test is 90.5% the surface resistance value was 5.77 × 10 6 Ω.
〔実施例3〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分1.8%、酸化スズ固形分1.2%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の実施例3の第1層形成用水溶液を作製した。
[Example 3]
Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat is added to 15 parts by mass of the% liquid (silica solid content 1.8%, tin oxide solid content 1.2%). In addition, 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (product name: graphene 0.1% aqueous dispersion) was added to prepare an aqueous solution for forming the first layer of Example 3 in which the balance was 55 parts by mass of water. did.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:91.5%、表面抵抗値:6.46×10Ωであった。
次に、第1層の上にAS-WRを水で20倍希釈したものをディッピング塗布し、
透過率90.9%、表面抵抗値6.77×10Ωの機材を用意した。耐摩耗試験後の透過率は90.8%であり、表面抵抗値8.77×10Ωであった。
The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.5%, surface resistivity: 6.46 was × 10 6 Ω.
Next, AS-WR diluted 20-fold with water was applied by dipping on the first layer.
Transmittance 90.9%, it was prepared equipment surface resistance value 6.77 × 10 6 Ω. Transmittance after the abrasion test was 90.8%, and a surface resistance value 8.77 × 10 6 Ω.
〔比較例1〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の比較例1の第1層形成用水溶液を作製した。
[Comparative Example 1]
Japan Nanocoat silica binder product name: B-30 (solid content 3%) 15 parts by mass, Japan Nanocoat CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) 20 parts by mass added, Japan 10 parts by mass of a 0.1% aqueous dispersion of a graphene solution made by Nanocoat (trade name: 0.1% aqueous dispersion of graphene) was added to prepare an aqueous solution for forming the first layer of Comparative Example 1 in which the balance was 55 parts by mass of water.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:91.2%、表面抵抗値:6.37×10Ωであり、導電性が低かった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.2%, surface resistivity: 6.37 a × 10 7 Omega, conductivity was low.
〔比較例2〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分2%、酸化スズ固形分1%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の比較例2の第1層形成用水溶液を作製した。
[Comparative Example 2]
Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat was added to 15 parts by mass of% liquid (silica solid content 2%, tin oxide solid content 1%), and Japan Nanocoat 10 parts by mass of a 0.1% aqueous dispersion of graphene (trade name: 0.1% aqueous dispersion of graphene) was added to prepare an aqueous solution for forming the first layer of Comparative Example 2 in which the balance was 55 parts by mass of water.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:91.5%、表面抵抗値:8.76×10Ωであった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.5%, surface resistivity: 8.76 was × 10 6 Ω.
 次に、第1層の上に、AS-WRを水で20倍希釈したものをディッピング塗布し、
透過率:91.2%、表面抵抗値:3.21×10Ωの基材を得た。第2層形成後の導電性が、低かった。
Next, on the first layer, AS-WR diluted 20-fold with water was applied by dipping.
Transmittance: 91.2%, surface resistivity: to obtain a substrate of 3.21 × 10 7 Ω. The conductivity after the formation of the second layer was low.
〔比較例3〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分:1%、酸化スズ固形分:2%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の比較例3の第1層形成用水溶液を作製した。
[Comparative Example 3]
Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat was added to 15 parts by mass of the% liquid (silica solid content: 1%, tin oxide solid content: 2%). 10 parts by mass of a 0.1% aqueous dispersion of graphene solution manufactured by Japan Nanocoat (trade name: 0.1% aqueous dispersion of graphene) was added to prepare an aqueous solution for forming the first layer of Comparative Example 3 in which the balance was 55 parts by mass of water.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:90.3%、表面抵抗値:7.86×10Ωであった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 90.3%, surface resistivity: was 7.86 × 10 5 Ω.
 次に、第1層の上に、AS-WRを水で20倍希釈したものをディッピング塗布し、
透過率:90.1%、表面抵抗値:1.56×10Ωの基材を得た。この比較例では、透過率が、低かった。また、耐摩耗性試験後の透過率:90.3%、表面抵抗値:3.36×10Ωとなり、耐摩耗性も低かった。
Next, on the first layer, AS-WR diluted 20-fold with water was applied by dipping.
Transmittance: 90.1%, surface resistivity: to obtain a substrate of 1.56 × 10 6 Ω. In this comparative example, the transmittance was low. Further, transmittance after the abrasion resistance test: 90.3%, surface resistivity: 3.36 next × 10 7 Omega, wear resistance was also low.
〔比較例4〕
 扶桑化学製シリカバインダーの品名:PL-06L(固形分6%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分:1.8%、酸化スズ固形分:1.2%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の比較例4の第1層形成用水溶液を作製した。
[Comparative Example 4]
Product name of silica binder manufactured by Fuso Chemical Co., Ltd .: PL-06L (solid content 6%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide 4% dispersion liquid), and water are mixed to prepare a solid content 3 % Liquid (silica solid content: 1.8%, tin oxide solid content: 1.2%) 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (product name: graphene 0.1% aqueous dispersion) was added, and the balance was 55 parts by mass of water, which is the first layer forming aqueous solution of Comparative Example 4. Was produced.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:89.5%、表面抵抗値:7.46×10Ωであり、透過率と導電性が、低かった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 89.5%, surface resistivity: 7.46 a × 10 7 Omega, transmittance and conductivity were low ..
〔比較例5〕
 扶桑化学製シリカバインダーの品名:PL-1(固形分12%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分1.8%、酸化スズ固形分1.2%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の比較例4の第1層形成用水溶液を作製した。
[Comparative Example 5]
Product name of Fuso Chemical's silica binder: PL-1 (solid content 12%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide 4% dispersion liquid), and water were mixed to prepare a solid content 3 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat is added to 15 parts by mass of the% liquid (silica solid content 1.8%, tin oxide solid content 1.2%). In addition, 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (product name: graphene 0.1% aqueous dispersion) was added to prepare an aqueous solution for forming the first layer of Comparative Example 4 in which the balance was 55 parts by mass of water. did.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:90.7%、表面抵抗値:7.76×10Ωであった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 90.7%, surface resistivity: 7.76 was × 10 6 Ω.
 次に、第1層の上に、AS-WRを水で20倍希釈したものをディッピング塗布し、
透過率90.3%、表面抵抗値1.31×10Ωの基材を得た。第2層形成後の導電性、および透過率が、低かった。
Next, on the first layer, AS-WR diluted 20-fold with water was applied by dipping.
Transmittance 90.3% to obtain a base material of the surface resistance value 1.31 × 10 7 Ω. The conductivity and transmittance after the formation of the second layer were low.
〔比較例6〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)と、10nmの酸化スズ粉末を水で分散した10nm酸化スズ分散液(固形分4%)と、水と、を混合して作製した固形分3%液(シリカ固形分1%、酸化スズ固形分2%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水55質量部の比較例6の第1層形成用水溶液を作製した。
[Comparative Example 6]
Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), 10 nm tin oxide dispersion liquid (solid content 4%) in which 10 nm tin oxide powder is dispersed with water, and water are mixed and prepared. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat was added to 15 parts by mass of the solid content 3% liquid (silica solid content 1%, tin oxide solid content 2%). In addition, 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (product name: graphene 0.1% aqueous dispersion) was added to prepare an aqueous solution for forming the first layer of Comparative Example 6 in which the balance was 55 parts by mass of water. did.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:89.3%、表面抵抗値:1.86×10Ωであり、透過率および導電性が、低かった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 89.3%, surface resistivity: a 1.86 × 10 7 Ω, the transmittance and conductivity were low ..
〔比較例7〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分1.4%、酸化スズ固形分1.6%)15質量部に、ジャパンナノコート製CNF0.2%水分散液(品名:SCNT0.2%水分散液)20質量部を加え、残部が水65質量部の比較例6の第1層形成用水溶液を作製した。
[Comparative Example 7]
Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. 20 parts by mass of CNF 0.2% aqueous dispersion (product name: SCNT 0.2% aqueous dispersion) manufactured by Japan Nanocoat is added to 15 parts by mass of the% liquid (silica solid content 1.4%, tin oxide solid content 1.6%). In addition, an aqueous solution for forming the first layer of Comparative Example 6 in which the balance was 65 parts by mass of water was prepared.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:90.3%、表面抵抗値:1.36×10Ωであり、透過率および導電性が、低かった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 90.3%, surface resistivity: a 1.36 × 10 7 Ω, the transmittance and conductivity were low ..
〔比較例8〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分1.4%、酸化スズ固形分1.6%)15質量部に、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水75質量部の比較例7の第1層形成用水溶液を作製した。
[Comparative Example 8]
Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. % Liquid (silica solid content 1.4%, tin oxide solid content 1.6%) 15 parts by mass, Japan Nanocoat graphene liquid 0.1% aqueous dispersion (product name graphene 0.1% aqueous dispersion) 10 mass Parts were added to prepare an aqueous solution for forming the first layer of Comparative Example 7 in which the balance was 75 parts by mass of water.
 実施例1と同様にして得られた第1層付きガラス基材は、透過率:91.5%、表面抵抗値:3.21×10Ωであり、導電性が低かった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the transmittance: 91.5%, surface resistivity: A 3.21 × 10 8 Ω, conductivity was low.
〔比較例9〕
 ジャパンナノコート製シリカバインダーの品名:B-30(固形分3%)と、ジャパンナノコート製酸化スズ分散液(品名:酸化スズ4%分散液)と、水と、を混合して作製した固形分3%液(シリカ固形分1.4%、酸化スズ固形分1.6%)15質量部に、ジャパンナノコート製マルチCNF(マルチウォールカーボンナノファイバー)3%水分散液(品名:CNT3%水分散液)10質量部を加え、ジャパンナノコート製グラフェン液0.1%水分散液(品名グラフェン0.1%水分散液)10質量部を加え、残部が水65質量部の比較例9の第1層形成用水溶液を作製した。であった。
[Comparative Example 9]
Product name of silica binder manufactured by Japan Nanocoat: B-30 (solid content 3%), tin oxide dispersion liquid manufactured by Japan Nanocoat (product name: tin oxide dispersion liquid), and water are mixed to prepare solid content 3. % Liquid (silica solid content 1.4%, tin oxide solid content 1.6%) 15 parts by mass, Japan Nanocoat Multi CNF (multi-wall carbon nanofiber) 3% aqueous dispersion (Product name: CNT 3% aqueous dispersion) ) 10 parts by mass was added, and 10 parts by mass of Japan Nanocoat's graphene solution 0.1% aqueous dispersion (trade name: Graphene 0.1% aqueous dispersion) was added, and the balance was 65 parts by mass of water, the first layer of Comparative Example 9. An aqueous solution for formation was prepared. Met.
 実施例1と同様にして得られた第1層付きガラス基材は、中心膜厚約100nm,透過率:79.3%、表面抵抗値:2.86×10Ωであり、透過率が低かった。 The first layer-attached glass substrate was obtained in the same manner as in Example 1, the center thickness of about 100 nm, the transmittance: 79.3%, surface resistivity: a 2.86 × 10 5 Ω, the transmittance It was low.
 次に、第1層の上に、AS-WRを水で20倍希釈したものをディッピング塗布し、透過率:78.1%、表面抵抗値:1.56×10Ωの基材を得た。透過率が低いだけでなく、表面に、実施例1と同様な撥水コートをすることにより、表面抵抗値が著しく増加したことから、下地の導通性に関しては、厚みが薄くても導通性の優れるシングルナノカーボンナノチューブが優れていることがわかった。 Next, on the first layer, the AS-WR and dip coating a material obtained by diluting 20-fold with water, permeability: to give a 1.56 × 10 9 Ω substrates 78.1% surface resistivity It was. Not only the transmittance is low, but also the surface resistance value is remarkably increased by applying the same water-repellent coating as in Example 1, so that the conductivity of the substrate is conductive even if the thickness is thin. It was found that excellent single nanocarbon nanotubes are excellent.

Claims (4)

  1.  (A)シングルウォールカーボンナノチューブと、グラフェンナノ粒子と、シリカのシングルナノ粒子と、酸化スズのシングルナノ粒子と、を含み、
    シリカのシングルナノ粒子と酸化スズのシングルナノ粒子との合計100質量部に対して、透過型電子顕微鏡で測定した5nm以下のシリカのシングルナノ粒子:40~60質量部、および透過型電子顕微鏡で測定した2nm以下の酸化スズのシングルナノ粒子:60~40質量部を含む第1層と、
    (B)撥水剤と導電性材料を含む第2層と、
    を表面からこの順に備えることを特徴とする、導電性皮革または導電性繊維。
    (A) Containing single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, and tin oxide single nanoparticles.
    For a total of 100 parts by mass of silica single nanoparticles and tin oxide single nanoparticles, silica single nanoparticles of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope. Measured single nanoparticles of tin oxide of 2 nm or less: the first layer containing 60-40 parts by mass, and
    (B) A second layer containing a water repellent and a conductive material,
    Conductive leather or textiles, characterized in that they are provided in this order from the surface.
  2.  表面のシート抵抗が、9.9×10Ω/□以下である、請求項1記載の導電性皮革または導電性繊維。 The conductive leather or textile according to claim 1, wherein the sheet resistance of the surface is 9.9 × 10 6 Ω / □ or less.
  3.  皮革または繊維の表面に対する工程であって、
    (A)シングルウォールカーボンナノチューブと、グラフェンナノ粒子と、シリカのシングルナノ粒子と、酸化スズのシングルナノ粒子と、水と、を含み、
    シリカのシングルナノ粒子と酸化スズのシングルナノ粒子との合計100質量部に対して、透過型電子顕微鏡で測定した5nm以下のシリカのシングルナノ粒子:40~60質量部、および透過型電子顕微鏡で測定した2nm以下酸化スズのシングルナノ粒子:60~40質量部を含む第1層形成用分散液を、表面に塗布または表面を浸漬させ、第1層を形成する工程、
    (B)撥水剤と、導電性材料と、水と、を含む第2層形成用水溶液を、表面に塗布または表面を浸漬させ、第2層を形成する工程
    を、この順に含む、導電性皮革または導電性繊維の製造方法。
    A process on the surface of leather or fibers
    (A) Containing single-wall carbon nanotubes, graphene nanoparticles, silica single nanoparticles, tin oxide single nanoparticles, and water.
    For a total of 100 parts by mass of silica single nanoparticles and tin oxide single nanoparticles, silica single nanoparticles of 5 nm or less measured with a transmission electron microscope: 40 to 60 parts by mass, and with a transmission electron microscope. Measured single nanoparticles of tin oxide of 2 nm or less: A step of applying a dispersion liquid for forming a first layer containing 60 to 40 parts by mass on the surface or immersing the surface to form the first layer.
    (B) Conductivity including a step of applying a second layer forming aqueous solution containing a water repellent, a conductive material, and water to the surface or immersing the surface to form the second layer in this order. A method for producing leather or conductive fibers.
  4.  (A)工程で、透明導電性薄膜形成用分散液を、表面に塗布または表面を浸漬させた後、圧延する、請求項3記載の導電性皮革または導電性繊維の製造方法。 The method for producing conductive leather or conductive fiber according to claim 3, wherein in the step (A), a dispersion liquid for forming a transparent conductive thin film is applied to a surface or immersed in the surface and then rolled.
PCT/JP2019/046763 2019-11-29 2019-11-29 Conductive leather, conductive fiber, and method for producing conductive leather or conductive fiber WO2021106188A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021561100A JPWO2021106188A1 (en) 2019-11-29 2019-11-29
PCT/JP2019/046763 WO2021106188A1 (en) 2019-11-29 2019-11-29 Conductive leather, conductive fiber, and method for producing conductive leather or conductive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/046763 WO2021106188A1 (en) 2019-11-29 2019-11-29 Conductive leather, conductive fiber, and method for producing conductive leather or conductive fiber

Publications (1)

Publication Number Publication Date
WO2021106188A1 true WO2021106188A1 (en) 2021-06-03

Family

ID=76129477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046763 WO2021106188A1 (en) 2019-11-29 2019-11-29 Conductive leather, conductive fiber, and method for producing conductive leather or conductive fiber

Country Status (2)

Country Link
JP (1) JPWO2021106188A1 (en)
WO (1) WO2021106188A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255767A (en) * 1991-02-08 1992-09-10 Nichiban Kenkyusho:Kk Coating composition and textile material
JP2012529127A (en) * 2009-06-03 2012-11-15 ジーエルティー テクノヴェーションズ、エルエルシー Materials used with capacitive touch screens
KR101359617B1 (en) * 2013-11-07 2014-02-06 (주) 현대식모 A manufacturing method of electroconductive suede
WO2014115792A1 (en) * 2013-01-26 2014-07-31 株式会社 ジャパンナノコート Dispersion liquid for formation of transparent conductive thin film and substrate equipped with transparent conductive thin film
WO2014115793A1 (en) * 2013-01-26 2014-07-31 株式会社 ジャパンナノコート Dispersion liquid for formation of high-refractive-index thin film
JP2019064078A (en) * 2017-09-29 2019-04-25 平岡織染株式会社 Antistatic antibacterial film material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255767A (en) * 1991-02-08 1992-09-10 Nichiban Kenkyusho:Kk Coating composition and textile material
JP2012529127A (en) * 2009-06-03 2012-11-15 ジーエルティー テクノヴェーションズ、エルエルシー Materials used with capacitive touch screens
WO2014115792A1 (en) * 2013-01-26 2014-07-31 株式会社 ジャパンナノコート Dispersion liquid for formation of transparent conductive thin film and substrate equipped with transparent conductive thin film
WO2014115793A1 (en) * 2013-01-26 2014-07-31 株式会社 ジャパンナノコート Dispersion liquid for formation of high-refractive-index thin film
KR101359617B1 (en) * 2013-11-07 2014-02-06 (주) 현대식모 A manufacturing method of electroconductive suede
JP2019064078A (en) * 2017-09-29 2019-04-25 平岡織染株式会社 Antistatic antibacterial film material

Also Published As

Publication number Publication date
JPWO2021106188A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP5473148B2 (en) Transparent conductive film with improved conductivity and method for producing the same
TWI523043B (en) Preparation method of transparent conductive film
JP2000511245A (en) Method for untangling hollow carbon microfibers, electrically conductive transparent carbon microfiber agglomeration film, and coating composition for forming such a film
Wang et al. Surface-conductive UHMWPE fibres via in situ reduction and deposition of graphene oxide
JP2015164896A (en) Method for applying carbon/tin mixtures to metal or alloy coatings
JP2015164896A5 (en)
KR102408128B1 (en) Polymer composition, and transparent conducting polymer thin film with excellent conductivity and flexibility using the same, and transparent electrode using the same and method for manufacturing the same
WO2009055831A9 (en) Carbon nanotube films and methods of forming films of carbon nanotubes by dispersing in a superacid
Trovato et al. Electrically conductive cotton fabric coatings developed by silica sol-gel precursors doped with surfactant-aided dispersion of vertically aligned carbon nanotubes fillers in organic solvent-free aqueous solution
KR101359957B1 (en) Carbon nano tube and silver nano wire dispersion liquid of one component type, Method for manufacturing conductive coating substrate using the same
Meng et al. Effect of growth of graphite nanofibers on superhydrophobic and electrochemical properties of carbon fibers
KR20180138314A (en) Water-dispersible carbon nanotubes without surfactant, method for producing the same and flexible film heaters using the same
TWI708267B (en) Patterned transparent conductive film and process for producing such a patterned transparent conductive film
TWI642621B (en) Composite carbon material and method of preparing the same
WO2021106188A1 (en) Conductive leather, conductive fiber, and method for producing conductive leather or conductive fiber
KR20160019570A (en) Flexible and stretchable biocompatible nano carbon composite ink materials for electronic textile and fabrication method of textile electrode using the same
Horita et al. Polydopamine-assisted dip-and-dry fabrication of highly conductive cotton fabrics using single-wall carbon nanotubes inks for flexible devices
JP5933043B2 (en) Dispersion for forming transparent conductive thin film and substrate with transparent conductive thin film
KR20090070918A (en) Textile having water repellent property and antistatic property, manufacturing apparatus for manufacturing the same and method for fabricating using said manufacturing apparatus
KR20130003467A (en) Transparent conductive film containing a carbon nanotube and method for preparing the same
JP6019761B2 (en) Planar heating element and manufacturing method thereof
KR20200067060A (en) Carbon nanotube silver nano wire one component type coating composition and manufacturing method thereof
WO2014115793A1 (en) Dispersion liquid for formation of high-refractive-index thin film
WO2016080327A1 (en) Carbon nanotube dispersion, functional film, and composite material
JP2013118128A (en) Transparent conductive film and use of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954702

Country of ref document: EP

Kind code of ref document: A1