WO2021105589A1 - Vitrage feuillete pour camera - Google Patents

Vitrage feuillete pour camera Download PDF

Info

Publication number
WO2021105589A1
WO2021105589A1 PCT/FR2020/052119 FR2020052119W WO2021105589A1 WO 2021105589 A1 WO2021105589 A1 WO 2021105589A1 FR 2020052119 W FR2020052119 W FR 2020052119W WO 2021105589 A1 WO2021105589 A1 WO 2021105589A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glazing
sheets
vehicle
thickness
Prior art date
Application number
PCT/FR2020/052119
Other languages
English (en)
Inventor
Philippe Frebourg
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to CN202080005709.4A priority Critical patent/CN113207288A/zh
Publication of WO2021105589A1 publication Critical patent/WO2021105589A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/1011Properties of the bulk of a glass sheet having predetermined tint or excitation purity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2559/00Photographic equipment or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/106Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms

Definitions

  • the invention relates more particularly to the field of glazing for vehicles and more particularly glazing of very good optical quality, in particular those having to offer visibility to a camera.
  • liquid glass is poured over a tin bath and the glass is stretched longitudinally and laterally to obtain thin thickness sheets used in automotive laminates (typically one of the thicknesses. (2.6mm, 2.1mm, 1.8mm, 1.6mm, 1.4mm, 1.1mm, 0.7mm).
  • the glass sheets thus produced have two types of geometric imperfections which are parallel to the direction of longitudinal stretch. These are flatness defects and thickness defects.
  • the optical transmission quality of glazing depends on the way in which the incident rays are deflected when they pass through the glass sheet.
  • the optical quality in transmission is particularly affected when the two faces of the glass sheet are not parallel.
  • a glazing having only flatness defects (but no thickness defects) will have a much better optical quality, in particular when the incident rays are not too grazing with respect to the surface of the glazing.
  • the optical quality in transmission of laminated glazing depends on the properties of the glass sheets it contains.
  • flatness and thickness defects are present simultaneously in glasses manufactured in the “float” process. They are present in the longitudinal direction of the process and are named under the generic term of “lignage float” (“draw lines” in English).
  • a defect in thickness of a sheet produces a strong optical distortion at the level of this sheet.
  • a defect in the flatness of a sheet is not the cause of a strong optical distortion of this sheet.
  • thermoplastic interlayer material which is placed between the two sheets of glass to manufacture laminated glazing (generally PVB) is not perfectly liquid at the time of assembly and does not perfectly match the two surfaces. glass with which it is in contact.
  • PVB "erases” some of the flatness defects of longer wavelengths, those which do not require a lot of mechanical effort to be “straightened” by bending the glass sheet.
  • the assembly is said to "iron” (like an iron flattens the waves of a garment) long wavelength defects.
  • relatively short wavelength float glass ripple defects are only very partially “ironed” by the assembly process.
  • laminated glazing is particularly affected by “float lineage”. This effect is all the more important as the angle of incidence of the light rays is grazing relative to the surface of the laminated glazing.
  • windshields are preferably manufactured taking into account “float lineage”. A windshield is thus mounted on a vehicle so that the float line is parallel to the median vertical plane of the vehicle (vertical plane of symmetry of the vehicle passing through the middle of the windshield and the middle of the whole vehicle).
  • the residual distortions of the glazing slightly deforms the people and objects that make up the scene seen by the driver.
  • the driver's vision is notably affected when the shape of an object present in his field of vision changes dynamically and in an unnatural way (an object will be alternately slightly smaller then larger and so on) during the movement of the driver. vehicle.
  • the various elements of the scene seen by the driver move mainly from bottom to top along an essentially vertical line (except for the elements which laterally leave the driver's field of vision).
  • the shape of objects or people, possibly slightly affected by the residual distortions of the glazing changes little as they move in the driver's field of vision.
  • vehicle side laminated glazing is preferably produced with a horizontal “float line”. This is because and unlike the case of the windshield, for a side window, the elements present in the driver's field of vision move essentially horizontally.
  • ADAS driving aids
  • ADAS driving aids
  • the risks of driving must be minimized. possible failure of the system for recognizing objects in the path of the vehicle and more generally of functions which may affect the safety of passengers or of people outside the vehicle. This is why it is useful to improve the transmission optics of the glazing, at least in areas equipped with a camera.
  • the float lineage poses a particularly difficult problem for stereoscopic cameras because the latter must combine two images taken from two points located on either side of the vehicle's axis of symmetry and on a horizontal line, and are particularly affected by the vertical alignment of windshields.
  • fusion draw can be rendered in French by the expression “fusion by vertical stretching”, the latter meaning more precisely “formed by overflow from a weir and vertical stretching downwards in the air”.
  • fusion draw can be rendered in French by the expression “fusion by vertical stretching”, the latter meaning more precisely “formed by overflow from a weir and vertical stretching downwards in the air”.
  • a process is in particular described in patent application FR1432363A.
  • a sheet produced by this process does not have a face comprising a tin gradient whose concentration decreases from the surface to the core. Indeed, during its forming into flat glass, the sheet froze in the air without contact with a metal bath, or with any tool.
  • the invention consists in manufacturing a laminated glazing intended to provide a vision for a camera, in particular for a vehicle, and of which two sheets of glass, on either side of an intermediate sheet of polymer material, are obtained from the process of "fusion draw” manufacturing.
  • the invention relates to a device for shooting by a camera through a glazing, comprising a camera and a laminated glazing comprising two sheets of glass separated by a polymer material, the two sheets of glass being of the fusion draw type.
  • the thickness of the “fusion draw” glass sheets is compatible with those used for the manufacture of vehicle glazing, which are generally less than or equal to 2.6 mm thick; the transmission optics are particularly improved compared to sheets produced by the float process.
  • the thickness of each of these glass sheets possibly being in the range of from 0.5 to 3 mm.
  • the thinnest glass is in the glazing so as to be placed on the interior side of the vehicle.
  • the polymer material between two sheets of glass can have a thickness in the range from 0.3 to 1 mm in the final laminated glazing.
  • the invention relates to a windshield of which the outer and inner glasses (when mounted on the vehicle) respectively have the following thickness:
  • the invention relates to a windshield whose outer and inner glasses (when mounted on the vehicle) are respectively 2.1 and 1.6 mm thick.
  • the glass sheets may or may not be covered with one or more thin layers such as one or more anti-IR layers, for example with silver, or one or more so-called Low-E layers: these layers are not taken into account. in the aforementioned thickness ranges.
  • At least one glass sheet of the laminated glazing can be tinted. At least one sheet of glass of the laminated glazing, or even two sheets of glass of the laminated glazing, can be chemically reinforced (by chemical toughening).
  • Laminated glazing is generally curved.
  • the laminated glazing can be manufactured by conventional techniques for assembling laminated glazing comprising placing the glass sheets in contact with the interlayer sheet of polymer material which is to separate them, degassing and passing the assembly in an autoclave. An adhesion is thus created between the sheet of polymer material and the glass sheets.
  • the sheet of polymeric material is disposed between the two sheets of glass. One side of the sheet of polymeric material is in contact and adhesively bonded to one sheet of glass, while the other side of the sheet of polymeric material is in contact and adhesively bonded to the other sheet of glass.
  • the intermediate material located between the two sheets of glass is advantageously PVB (that is to say polyvinyl butyral) which makes it possible to give good mechanical performance to the laminated glazing over a wide temperature range and thus to satisfy the tests.
  • PVB polyvinyl butyral
  • Standard PVB material has a certain level of stiffness.
  • the PVB used preferably has a higher rigidity. Indeed, the use of a more rigid PVB allows better "ironing" of the parallelism defects between the two sheets of glass during their assembly operation. It therefore makes it possible to further improve the optical quality in transmission of the glazing produced.
  • the rigid PVB has a higher viscosity, so it has both: more difficulty in thinning in areas where, if they were alone, the two sheets of glass would be closer to each other; more difficulty in migrating to fill the spaces where, if they were alone, the two sheets of glass would be farther apart from each other.
  • the rigidity of PVB is, in the first order, characterized by its glass transition temperature which can be effectively measured by a method of dynamic mechanical analysis (or dynamic mechanical analysis, DMA in English) and by the determination of the temperature where l The loss angle is maximum (see article https://en.wikipedia.org/wiki/Dynamic_mechanical_analysis for more information).
  • DMA dynamic mechanical analysis
  • optically enhanced glazing can be produced with "soft" PVB if the acoustic performance is paramount to the optical properties.
  • the improvement in optical quality then comes essentially from the use of two sheets of flat glass formed by the "fusion draw” process.
  • the glazing with improved optics are manufactured from sheets of flat glass formed by the “fusion draw” process and preferably with standard PVB, the glass transition temperature of which determined at 1 Hz by the DMA method is included in the range from 28 to 32 ° C.
  • the glazing with improved optics are manufactured from sheets of flat glass formed by the “fusion draw” process and more preferably with more rigid PVB, the glass transition temperature of which is determined at 1 Hz by the method. DMA is greater than 32 ° C.
  • the polymer material may comprise a PVB exhibiting a glass transition temperature determined at 1 Hz by the DMA method greater than 28 ° C or even greater than 32 ° C.
  • PVB too rigid PVB can possibly lead to a loss of mechanical resistance and to a negative test of the falling ball described in the standard ECE R43. Also, it is necessary to rigorously qualify the glazing when it is produced with PVB whose glass transition temperature determined by DMA is greater than 40 ° C.
  • the invention also relates to a vehicle comprising the device according to the invention.
  • the vehicle is generally such that the glazing delimits the passenger compartment and the exterior of the vehicle, the camera being in the passenger compartment.
  • the laminated glazing is generally the windshield of the vehicle.
  • the invention also relates to a laminated glazing comprising two sheets of glass separated by a polymer material, in which the two sheets of glass are of the fusion draw type and the polymer material comprises a PVB having a glass transition temperature determined at 1 Hz by the DMA method greater than 32 ° C.
  • the polymer material of the laminated glazing has a thickness in the range from 0.3 to 1 mm.
  • the thickness of each of the two sheets of glass of the laminated glazing is in the range from 0.5 to 3 mm.
  • one or both sheets of glass of the laminated glazing are chemically reinforced.
  • the vehicle comprises such laminated glazing according to the invention.
  • the camera can be integrated with a driving assistance system of the vehicle or an autonomous driving system of the vehicle.
  • Figure 1 gives a representation of the flatness defects of float glass.
  • FIG. 2 gives a representation of the thickness defects of float glass.
  • Figure 3 illustrates how the optical quality in transmission is affected when the two sides of a glass sheet are not parallel.
  • Figure 4 illustrates the fact that two parallel incident rays can emerge almost parallel from a sheet of glass having a simple corrugation defect but whose two faces are parallel.
  • Figure 5 illustrates how the assembly operation of a laminated glazing comprising two sheets of glass and one sheet of material transforms defects in parallelism of the two sheets of glass into a defect in thickness of the final laminated glazing.
  • FIG. 6 illustrates a device comprising a curved laminated glazing and a camera arranged to be able to take pictures through the glazing.
  • Figure 1 gives an (intentionally exaggerated) representation of the flatness defects of float glass.
  • the glass sheet 1 has corrugations parallel to the longitudinal edges of the float tape, that is to say parallel to the direction of flow of the glass (arrow 2) during its forming in a float chamber.
  • the 3 peaks and 4 valleys of the glass have been underlined by a dotted line.
  • This representation is naturally simplified compared to an actual glass sheet where there are a plurality of flatness defects having different wavelengths.
  • Real glass therefore has flatness defects characterized by a distribution of wavelengths, which the figure does not show.
  • Figure 2 gives a (purposely exaggerated) representation of float glass thickness defects.
  • the glass sheet 5 has extra thicknesses and sub-thicknesses parallel to the longitudinal edges of the float tape, that is to say parallel to the direction of flow of the glass (arrow 2).
  • the peaks 6 and the valleys 7 of the sample were underlined by a dotted line.
  • this representation of thickness defects is simplified compared to an actual glass sheet having a plurality of thickness defects characterized by a distribution of wavelengths.
  • FIG. 3 illustrates how the optical quality in transmission is affected when the two faces of a sheet of glass are not parallel, this defect being of course exaggerated in the figure. We actually have like a lens in some places.
  • FIG. 4 illustrates the fact that two parallel incident rays can emerge almost parallel from a sheet of glass exhibiting a simple corrugation defect but the two faces of which are parallel. Such a sheet has good optical quality in transmission. This statement is all the more correct as the incident rays are perpendicular to the glass sheet and become less and less correct as the incident rays form an increasingly acute angle with the surface of the glass.
  • FIG. 5 illustrates the structure of a laminated glazing 13 produced by assembling two sheets of glass 10 and 11 with a sheet of polymer material 12.
  • the two sheets do not exhibit any defect in thickness, the sheet 10 being perfectly flat and the sheet 11 having corrugations.
  • the sheet of polymeric material behaves like a perfectly liquid material which matches the two surfaces of the glass sheets with which it is in contact.
  • Each sheet of glass taken separately has good optical quality in transmission, but the assembly operation transformed the defect in parallelism of the two sheets in the final laminated glazing 13 into a defect in thickness.
  • the assembly operation transforms the parallelism defects of the two sheets of glass into a thickness defect at the level of the final laminated glazing.
  • FIG. 6 illustrates a device according to the invention comprising a curved laminated glazing 30, and a camera 31 arranged to be able to take pictures through the glazing 30.
  • the glazing is here a motor vehicle windshield and the camera is fixed to the glazing by a base 34.
  • the laminated glazing comprises a sheet of glass 32 outside the passenger compartment situated on the side opposite to that of the camera, and a sheet of glass 33 inside the passenger compartment situated on the side of the camera.
  • the outer sheet 32 is thicker in the figure but could be of the same thickness as the inner sheet 33.
  • These two glass sheets are of the fusion draw type. They are assembled in the laminated glazing with a sheet of polymeric material, generally PVB.
  • the sheet of polymer material is in contact and adhesively bonded by each of its faces to the two sheets of glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

L'invention concerne un dispositif de prise de vue par une caméra au travers d'un vitrage, comprenant une caméra et un vitrage feuilleté comprenant deux feuilles de verre séparées par un matériau polymère, les deux feuilles de verre étant du type fusion draw. Le dispositif est particulièrement adapté pour équiper les véhicules, la caméra étant intégrée à un système d'aide à la conduite du véhicule ou un système de conduite autonome du véhicule.

Description

Description
Titre de l'invention : VITRAGE FEUILLETE POUR CAMERA
L’invention concerne plus particulièrement le domaine des vitrages pour véhicules et plus particulièrement les vitrages de très bonne qualité optique, notamment ceux devant offrir une visibilité à une caméra.
Actuellement les vitrages feuilletés pour automobile sont en grande majorité produits à partir de deux feuilles de verre « float ». Ce terme signifie que chaque feuille de verre est obtenue par le procédé de flottage du verre sur un bain d'étain liquide appelé « procédé float ». Or, ce type de verre possède des imperfections géométriques caractéristiques, à la fois en termes de planéité et d'épaisseur mais aussi d’orientation le long de la feuille de verre. Une bonne qualité optique des vitrages feuilletés est ainsi difficile à obtenir à cause des défauts de planéité et d’épaisseur des feuilles de verre qu'il contient.
Dans le procédé « float », du verre liquide est coulé sur un bain d’étain et le verre est étiré longitudinalement et latéralement afin d’obtenir des feuilles d’épaisseurs minces utilisées dans les produits feuilletés pour automobile (typiquement l’une des épaisseurs suivantes : 2,6 mm, 2,1 mm, 1,8 mm, 1,6 mm, 1,4 mm, 1 ,1 mm, 0,7 mm). Les feuilles de verre ainsi produites comportent deux types d'imperfections géométriques qui sont parallèles au sens d’étirement longitudinal. Il s’agit de défauts de planéité et de défauts d’épaisseur.
La qualité optique en transmission des vitrages dépend de la façon dont sont déviés les rayons incidents lorsqu’ils traversent la feuille de verre. La qualité optique en transmission est particulièrement affectée lorsque les deux faces de la feuille de verre ne sont pas parallèles. A contrario, un vitrage ayant seulement des défauts de planéité (mais pas de défauts d’épaisseur) aura une bien meilleure qualité optique, notamment lorsque les rayons incidents ne sont pas trop rasants par rapport à la surface du vitrage.
La qualité optique en transmission des vitrages feuilletés dépend des propriétés des feuilles de verre qu’il contient. On peut distinguer deux types de défauts pour une feuille individuelle : 1 ) défauts d'épaisseur et 2) défauts de planéité. De façon générale, les défauts de planéité et d’épaisseur sont présents simultanément dans les verres fabriqués en procédé « float ». Ils sont présents dans la direction longitudinale du procédé et sont nommés sous le terme générique de « lignage float » (« draw lines » en anglais). Un défaut d’épaisseur d’une feuille produit une forte distorsion optique au niveau de cette feuille. Par contre, un défaut de planéité d'une feuille n'est pas à l'origine d'une distorsion optique forte de cette feuille. Cependant, même si les deux feuilles de verre assemblées dans un vitrage feuilleté ne présentent pas de défaut d'épaisseur mais que des défauts de planéité, ces défauts sont une perte locale de parallélisme entre les deux faces extérieures du vitrage, ce qui finalement aboutit à un défaut d'épaisseur au niveau du vitrage final (voir les explications à la figure 5). On peut donc dire que l’opération d’assemblage transforme les défauts de parallélisme des deux feuilles de verre qui le composent en un défaut d'épaisseur. Si les feuilles de départ présentent en plus des défauts d’épaisseur, sauf cas improbable où ces derniers seraient en opposition de phase dans le vitrage feuilleté final, ce dernier serait de faible qualité optique en transmission.
Par ailleurs, le matériau intercalaire thermoplastique que l’on met entre les deux feuilles de verre pour fabriquer des vitrages feuilletés (en général du PVB) n’est pas parfaitement liquide au moment de l'assemblage et n’épouse pas parfaitement les deux surfaces de verre avec lesquelles il est en contact. Ainsi, le PVB « efface » une partie les défauts de planéité de plus grande longueurs d’onde, ceux qui ne nécessitent pas beaucoup d’effort mécanique pour être « redressés » par flexion de la feuille de verre. On dit que l’assemblage « repasse » (comme le fer à repasser aplanit les ondulations d’un vêtement) les défauts de grande longueur d’onde. Néanmoins, des défauts d’ondulation du verre float de relativement faible longueur d'onde ne sont que très partiellement « repassés » par l’opération d’assemblage.
En pratique, on constate donc que les vitrages feuilletés sont particulièrement affectés par le « lignage float ». Cet effet est d’autant plus important que l’angle d'incidence des rayons lumineux est rasant par rapport à la surface du vitrage feuilleté. Ainsi, et afin d’améliorer la qualité optique des produits pour automobile, les pare-brise sont préférentiellement fabriqués en tenant compte du « lignage float ». On monte ainsi un pare-brise sur un véhicule pour que le lignage float soit parallèle au plan vertical médian du véhicule (plan vertical de symétrie du véhicule passant par le milieu du pare-brise et le milieu de tout le véhicule). Par définition, les distorsions résiduelles du vitrage déforment légèrement les personnes et les objets qui composent la scène vue par le conducteur. Avec un lignage float vertical, ces déformations sont minimisées lorsque le conducteur regarde droit devant lui et elles sont plus importantes lorsque le conducteur regarde de biais à travers le pare-brise, du côté du passager par exemple. De plus la vision du conducteur est notablement affectée lorsque la forme d’un objet présent dans son champ de vision se modifie dynamiquement et de façon non naturelle (un objet sera alternativement légèrement plus petit puis plus gros et ainsi de suite) pendant le mouvement du véhicule. Or, lors du déplacement du véhicule, les différents éléments de la scène vue par le conducteur se déplacent majoritairement de bas en haut selon une ligne essentiellement verticale (sauf pour les éléments qui quittent latéralement le champ de vision du conducteur). Ainsi, la forme des objets ou des personnes, éventuellement légèrement affectée par les distorsions résiduelles du vitrage, change peu lors de leur évolution dans le champ de vision du conducteur.
Pour les mêmes raisons, et pour les clients les plus exigeants en termes de qualité optique, les vitrages feuilletés latéraux des véhicules sont préférentiellement produits avec un « lignage float » horizontal. En effet et contrairement au cas du pare- brise, pour une vitre latérale, les éléments présents dans le champ de vision du conducteur se déplacent essentiellement horizontalement.
Les caméras embarquées dans les véhicules automobiles se sont très rapidement développées ces derières années, et les constructeurs automobiles ont rehaussé leur degré d’exigence concernant la qualité optique en transmission des vitrages, notamment dans la zone médiane supérieure à l’état monté sur le véhicule, notamment des pare-brise. Avec le développement des aides à la conduite (les « ADAS ») qui « prennent la main » sur le conducteur notamment en cas de freinage d'urgence, et l’avènement prochain des véhicules à conduite autonome, il convient de minimiser les risques d’éventuelle défaillance du système de reconnaissance des objets sur la trajectoire du véhicule et plus généralement des fonctions pouvant affecter la sécurité des passagers ou des personnes hors du véhicule. C’est pourquoi il est utile d'améliorer l’optique en transmission des vitrages au moins dans les zones équipées de caméra.
Le lignage float pose un problème particulièrement ardu pour les caméras stéréoscopiques car ces dernières doivent combiner deux images prises de deux points situés de part et d’autre de l’axe de symétrie du véhicule et sur une ligne horizontale, et sont particulièrement affectées par le lignage vertical des pare-brise.
Un procédé alternatif au procédé « float » est le procédé « fusion draw » selon lequel du verre liquide déborde des deux côtés d’un réservoir allongé. Les deux écoulements de verre se rejoignent et se ressoudent en une seule feuille s’écoulant sous le réservoir. Ce procédé est adapté au formage de feuilles minces, typiquement d'épaisseur inférieure à 2,6 mm et est réputé dans l'industrie électronique car ses deux faces n’ont été en contact qu’avec de l’air et ne possèdent ni défaut physique, ni gradient d'étain comme c’est le cas de la face « bain » d’un verre float. Ce verre issu du procédé « fusion draw » est de plus exempt des défauts optiques du type « lignage float ». On considère que l'expression « fusion draw » peut être rendue en français par l'expression « fusion par étirement vertical », cette dernière signifiant plus précisément « formée par débordement depuis un déversoir et étirage vertical vers le bas dans l’air ». Un tel procédé est notamment décrit dans la demande de brevet FR1432363A. Une feuille fabriquée selon ce procédé ne possède pas de face comprenant un gradient d'étain dont la concentration diminue de la surface vers le cœur. En effet, lors de son formage en verre plat, la feuille s’est figée dans l’air sans contact avec un bain métallique, ni avec aucun outil.
Aussi, si l'on assemble un verre float avec des verres issus du procédé « fusion draw », cet assemblage est d’une meilleure qualité optique qu'un vitrage similaire dont les deux verres proviendraient d’un float.
L’invention consiste à fabriquer un vitrage feuilleté destiné à procurer une vision pour une caméra, notamment pour un véhicule, et dont deux feuilles de verre, de part et d’autre d’une feuille intercalaire en matériau polymère, sont issues du procédé de fabrication « fusion draw ».
L’invention concerne un dispositif de prise de vue par une caméra au travers d'un vitrage, comprenant une caméra et un vitrage feuilleté comprenant deux feuilles de verre séparées par un matériau polymère, les deux feuilles de verre étant du type fusion draw.
Les avantages sont notamment les suivants : l’épaisseur des feuilles de venre « fusion draw » est compatible avec celles utilisées pour la fabrication de vitrages de véhicule, lesquelles sont en général d’épaisseur inférieure ou égale à 2,6 mm ; l’optique en transmission est particulièrement améliorée par rapport aux feuilles fabriquées par le procédé float.
Selon l’invention on assemble dans un vitrage feuilleté au moins deux feuilles de verre « fusion draw » séparées par une feuille en matériau polymère (généralement en PVB), l’épaisseur de chacune de ces feuilles de verre pouvant être comprise dans le domaine allant de 0,5 à 3 mm. De préférence, le verre le plus mince se trouve dans le vitrage de sorte à être placé du côté de l’intérieur du véhicule. Le matériau polymère entre deux feuilles de verre peut avoir une épaisseur comprise dans le domaine allant de 0,3 à 1 mm dans le vitrage feuilleté final. Notamment, l'invention concerne un pare- brise dont les verres extérieur et intérieur (lorsque monté sur le véhicule) ont respectivement pour épaisseur :
- de 1 ,4 à 2,3 mm pour le verre extérieur (non-situé du côté de la caméra), et
- de 0,7 à 1,8 mm pour le verre intérieur (situé du côté de la caméra). Notamment, l’invention concerne un pare-brise dont les verres extérieur et intérieur (lorsque monté sur le véhicule) ont respectivement pour épaisseur 2,1 et 1 ,6 mm.
Les feuilles de verre peuvent être recouvertes ou non d'une ou plusieurs couches minces telle qu’une ou plusieurs couches anti-IR par exemple à l'argent ou une ou plusieurs couches dites Low-E : ces couches ne sont pas prises en compte dans les plages d’épaisseurs précitées.
Au moins une feuille de verre du vitrage feuilleté peut être teintée. Au moins une feuille de verre du vitrage feuilleté, voire deux feuilles de verre du vitrage feuilleté, peut être renforcée chimiquement (par trempe chimique).
Le vitrage feuilleté est généralement bombé.
Le vitrage feuilleté peut être fabriqué par les techniques classiques d'assemblage des vitrages feuilletés comprenant la mise en contact des feuilles de verre avec la feuille d’intercalaire en matériau polymère devant les séparer, le dégazage et passage de l’ensemble en autoclave. Une adhésion est ainsi crée entre la feuille de matériau polymère et les feuilles de verre. Dans le vitrage feuilleté final, la feuille de matériau polymère est disposée entre les deux feuilles de verre. Une face de la feuille de matériau polymère est en contact et liée de façon adhésive à une feuille de verre, tandis que l’autre face de la feuille de matériau polymère est en contact et liée de façon adhésive à l’autre feuille de verre.
Le matériau intercalaire situé entre les deux feuilles de verre est avantageusement du PVB (c’est-à-dire du Polybutyral de vinyle) qui permet de donner de bonnes performances mécaniques au vitrage feuilleté sur un vaste domaine de température et ainsi de satisfaire les tests de la norme « ECE R43 » qui définit les propriétés minimales que doivent satisfaire les vitrages pour application automobile.
Le matériau PVB standard possède un certain niveau de rigidité. Selon l'invention, le PVB utilisé possède préférentiellement une rigidité plus élevée. En effet, l'emploi d’un PVB plus rigide permet de mieux « repasser » les défauts de parallélisme entre les deux feuilles de verre lors de leur opération d'assemblage. Il permet donc d’améliorer encore la qualité optique en transmission des vitrages produits. Plus précisément, lors de l’étape de dégazage aux environs de 100-110 °C et dans l'autoclave aux environs de 110-140°C, le PVB rigide a une viscosité plus élevée, il a donc à la fois : plus de difficultés à s'amincir dans les zones où, si elles étaient seules, les deux feuilles de verre seraient plus proches l’une de l’autre ; plus de difficultés à migrer pour combler les espaces où, si elles étaient seules, les deux feuilles de verre seraient plus éloignées l’une de l’autre.
Plus la viscosité du PVB est élevée entre 100 et 140°C, moins ces déplacements de PVB entre les deux feuilles de verre peuvent se réaliser. En conséquence, deux effets sont obtenus : o dans la distribution des différentes longueurs d’onde des défauts de parallélisme existant entre les deux feuilles de verre, un PVB rigide « repasse » une gamme de défauts plus large, jusqu’à atteindre des défauts de longueur d’onde plus faible, comparé à un PVB à rigidité standard ; o à longueur d'onde donnée, chaque défaut est « repassé » plus efficacement. La rigidité du PVB est, au premier ordre, caractérisée par sa température de transition vitreuse qui peut-être efficacement mesurée par une méthode d’analyse mécanique dynamique (ou dynamic mechanical analysis, DMA en Anglais) et par la détermination de la température où l’angle de perte est maximal (voir article https://en.wikipedia.org/wiki/Dynamic_mechanical_analysis pour plus d’information). Pour le PVB, il est recommandé d’effectuer une telle analyse à basse fréquence, typiquement 1 Hz, afin de bien identifier les modes de déformation prenant effet lorsque la sollicitation du matériau est lente.
Par cette méthode, et comme documenté dans l'article technique « Intercalaires pour verres feuilletés », Gérard SAVINEAU, « Techniques de l’ingénieur », Réf. N4404-V1, 10-02-2013, il est possible de caractériser plusieurs types de PVB dont : les PVB « mous » aux propriétés acoustiques renforcées qui ont une température de transition vitreuse comprise dans l’intervalle 16-18 °C ; les PVB « standards » dont la température de transition vitreuse est comprise dans l’intervalle 28-32 °C ; les PVB « rigides » dont la température de transition vitreuse est comprise dans l’intervalle 40-45 °C.
Bien entendu il existe des PVB aux températures de transition vitreuse intermédiaires aux trois catégories venant d’être mentionnées.
Selon l’invention, les vitrages à optique améliorée peuvent être produits avec du PVB « mou » si les performances acoustiques sont primordiales devant les propriétés optiques. L’amélioration de la qualité optique provient alors essentiellement de l'utilisation de deux feuilles de verre plat formées par le procédé « fusion draw ». Selon l’invention, les vitrages à optique améliorée sont fabriqués à partir de feuilles de verre plat formées par le procédé « fusion draw » et préférentiellement avec du PVB standard dont la température de transition vitreuse déterminée à 1 Hz par la méthode DMA est comprise dans le domaine allant de 28 à 32 °C.
Selon l’invention, les vitrages à optique améliorée sont fabriqués à partir de feuilles de verre plat formées par le procédé « fusion draw » et de façon plus préférentielle avec du PVB plus rigide dont la température de transition vitreuse déterminée à 1 Hz par la méthode DMA est supérieure à 32 °C. Selon l’invention, le matériau polymère peut comprendre un PVB présentant une température de transition vitreuse déterminée à 1Hz par la méthode DMA supérieure à 28 °C voire supérieure à 32°C.
L'utilisation de PVB trop rigide peut éventuellement amener à une perte de résistance mécanique et à un test négatif de la chute de bille décrit dans la norme ECE R43. Aussi, il est nécessaire de qualifier rigoureusement les vitrages lorsqu’ils sont produits avec des PVB dont la température de transition vitreuse déterminée par DMA est supérieure à 40 °C.
L'invention concerne également un véhicule comprenant le dispositif selon l'invention. Notamment, le véhicule est généralement tel que le vitrage délimite l'habitacle et l'extérieur du véhicule, la caméra étant dans l’habitacle. Notamment, le vitrage feuilleté est généralement le pare-brise du véhicule.
L'invention concerne encore un vitrage feuilleté comprenant deux feuilles de verre séparées par un matériau polymère, dans lequel les deux feuilles de verre sont du type fusion draw et le matériau polymère comprend un PVB présentant une température de transition vitreuse déterminée à 1 Hz par la méthode DMA supérieure à 32°C.
De préférence, le matériau polymère du vitrage feuilleté a une épaisseur comprise dans le domaine allant de 0,3 à 1 mm.
De préférence, l'épaisseur de chacune des deux feuilles de verre du vitrage feuilleté est comprise dans le domaine allant de 0,5 à 3 mm.
De préférence, l’une ou les deux feuilles de verre du vitrage feuilleté sont renforcées chimiquement.
Avantageusement, le véhicule comprend un tel vitrage feuilleté selon l’invention.
Dans les figures qui suivent, les défauts de planéité et de parallélisme sont exagérés à dessein pour faciliter la compréhension. Les épaisseurs des différents constituants (verre et matériau polymère) ne sont pas à l’échelle. La caméra peut être intégrée à un système d'aide à la conduite du véhicule ou un système de conduite autonome du véhicule.
La figure 1 donne une représentation des défauts de planéité du verre float.
La figure 2 donne une représentation des défauts d'épaisseur du verre float. La figure 3 illustre comment la qualité optique en transmission est affectée lorsque les deux faces d'une feuille de verre ne sont pas parallèles.
La figure 4 illustre le fait que deux rayons incidents parallèles peuvent ressortir quasiment parallèles d’une feuille de verre présentant un simple défaut d'ondulation mais dont les deux faces sont parallèles.
La figure 5 illustre comment l’opération d’assemblage d’un vitrage feuilleté comprenant deux feuilles de verre et une feuille de matériau transforme les défauts de parallélisme des deux feuilles de verre en un défaut d’épaisseur du vitrage feuilleté final.
La figure 6 illustre un dispositif comprenant un vitrage feuilleté bombé et une caméra disposée pour pouvoir prendre des prises de vue au travers du vitrage.
La figure 1 donne une représentation (exagérée à dessein) des défauts de planéité du verre float. La feuille de verre 1 présente des ondulations parallèles aux bords longitudinaux du ruban float, c’est-à-dire parallèlement au sens d'écoulement du verre (flèche 2) pendant son formage dans une enceinte float. Les sommets 3 et les vallées 4 du verre ont été soulignés par un trait pointillé. Cette représentation est naturellement simplifiée par rapport à une feuille de verre réelle où existe une pluralité de défauts de planéité ayant des longueurs d’onde différentes. Le verre réel possède donc des défauts de planéité caractérisés par une distribution de longueurs d’onde, ce que ne rend pas la figure.
La figure 2 donne une représentation (exagérée à dessein) des défauts d’épaisseur du verre float. La feuille de verre 5 présente des surépaisseurs et des sous-épaisseurs parallèles aux bords longitudinaux du ruban float, c’est-à-dire parallèlement au sens d’écoulement du verre (flèche 2). Les sommets 6 et les vallées 7 de l'échantillon ont été soulignés par un trait pointillé. Comme dans le cas de la figure 1 , cette représentation des défauts d’épaisseur est simplifiée par rapport à une feuille de verre réelle présentant une pluralité de défauts d’épaisseur caractérisés par une distribution de longueurs d'onde.
Une feuille de verre réelle est donc caractérisée par la combinaison de défauts de planéité et de défauts d’épaisseur, chaque type de défaut étant caractérisé par une distribution de longueur d'ondes. La figure 3 illustre comment la qualité optique en transmission est affectée lorsque les deux faces d'une feuille de verre ne sont pas parallèles, ce défaut étant bien entendu exagéré sur la figure. On a en fait comme une lentille en certains endroits.
La figure 4 illustre le fait que deux rayons incidents parallèles peuvent ressortir quasiment parallèles d'une feuille de verre présentant un simple défaut d'ondulation mais dont les deux faces sont parallèles. Une telle feuille a une bonne qualité optique en transmission. Cette affirmation est d’autant plus juste que les rayons incidents sont perpendiculaires à la feuille de verre et devient de moins en moins juste lorsque les rayons incidents forment un angle de plus en plus aigu avec la surface du verre.
La figure 5 illustre la structure d'un vitrage feuilleté 13 réalisé par assemblage de deux feuilles de verre 10 et 11 avec une feuille de matériau polymère 12. Les deux feuilles ne présentent pas de défaut d’épaisseur, la feuille 10 étant parfaitement plane et la feuille 11 présentant des ondulations. On suppose pour simplifier que la feuille de matériau polymère se comporte comme un matériau parfaitement liquide et qui épouse les deux surfaces des feuilles de verre avec lesquelles il est en contact. Chaque feuille de verre prise séparément a une bonne qualité optique en transmission mais l'opération d’assemblage a transformé le défaut de parallélisme des deux feuilles dans le vitrage feuilleté final 13 en un défaut d’épaisseur. On se retrouve finalement dans un cas de défaut similaire à celui de la figure 3. Ainsi, l’opération d’assemblage transforme les défauts de parallélisme des deux feuilles de verre en un défaut d'épaisseur au niveau du vitrage feuilleté final.
La figure 6 illustre un dispositif selon l’invention comprenant un vitrage feuilleté bombé 30, et une caméra 31 disposée pour pouvoir prendre des prises de vue au travers du vitrage 30. Le vitrage est ici un pare-brise de véhicule automobile et la caméra est fixée au vitrage par une embase 34. Le vitrage feuilleté comprend une feuille de verre 32 extérieure à l’habitacle située du côté opposé à celui de la caméra, et une feuille de verre 33 intérieure à l’habitacle située du côté de la caméra. La feuille extérieure 32 est plus épaisse sur la figure mais pourrait être de même épaisseur que la feuille intérieure 33. Ces deux feuilles de verre sont du type fusion draw. Elles sont assemblées dans le vitrage feuilleté avec une feuille 35 de matériau polymère, généralement du PVB. Dans ce vitrage feuilleté, la feuille de matériau polymère est en contact et liée de façon adhésive par chacune de ses faces aux deux feuilles de verre.

Claims

REVENDICATIONS
1. Dispositif de prise de vue par une caméra au travers d’un vitrage (30), comprenant une caméra (31 ) et un vitrage feuilleté (30) comprenant deux feuilles de verre (32, 33) séparées par un matériau polymère (35), caractérisé en ce que les deux feuilles de verre (32, 33) sont du type fusion draw.
2. Dispositif selon la revendication précédente, caractérisé en ce que l’épaisseur de chacune des deux feuilles de verre (32, 33) est comprise dans le domaine allant de 0,5 à 3 mm.
3. Dispositif selon l’une des revendications précédentes, caractérisé en ce que l’épaisseur de la feuille (33) située du côté de la caméra (31) a une épaisseur comprise dans le domaine allant de 0,7 à 1 ,8 mm et l’épaisseur de l'autre feuille (32) a une épaisseur comprise dans le domaine allant de 1 ,4 à 2,3 mm.
4. Dispositif selon l’une des revendications précédentes, caractérisé en ce que l’une ou les deux feuilles de verre (32, 33) sont renforcées chimiquement.
5. Dispositif selon l’une des revendications précédentes, caractérisé en ce que au moins une feuille de verre (32, 33) est teintée.
6. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le matériau polymère (35) comprend un PVB présentant une température de transition vitreuse déterminée à 1 Hz par la méthode DMA supérieure à 28 °C.
7. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le matériau polymère (35) comprend un PVB présentant une température de transition vitreuse déterminée à 1 Hz par la méthode DMA supérieure à 32 °C.
8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le matériau polymère (35) a une épaisseur comprise dans le domaine allant de 0,3 à 1 mm.
9. Dispositif selon l’une des revendications précédentes, caractérisé en ce que le vitrage (30) est le pare-brise d'un véhicule.
10. Véhicule comprenant le dispositif de l’une des revendications précédentes.
11.Véhicule selon la revendication précédente, caractérisé en ce que le vitrage (30) délimite l’habitacle et l’extérieur du véhicule, la caméra (31 ) étant dans l’habitacle.
12. Véhicule selon l’une des revendications précédentes de véhicule, caractérisé en ce que la caméra (31 ) est intégrée à un système d’aide à la conduite du véhicule ou un système de conduite autonome du véhicule.
13. Vitrage (30) feuilleté comprenant deux feuilles de verre (32, 33) séparées par un matériau polymère (35), caractérisé en ce que les deux feuilles de verre (32, 33) sont du type fusion draw et en ce que le matériau polymère (35) comprend un PVB présentant une température de transition vitreuse déterminée à 1 Hz par la méthode DMA supérieure à 32°C.
14. Vitrage selon la revendication précédente, caractérisé en ce que le matériau polymère (35) a une épaisseur comprise dans le domaine allant de 0,3 à 1 mm.
15. Vitrage selon l’une des revendications précédentes de vitrage, caractérisé en ce que l’épaisseur de chacune des deux feuilles de verre (32, 33) est comprise dans le domaine allant de 0,5 à 3 mm.
16. Vitrage selon l’une des revendications précédentes de vitrage, caractérisé en ce que l’une ou les deux feuilles de verre (32, 33) sont renforcées chimiquement.
17. Véhicule comprenant le vitrage de l'une des revendications de vitrage précédentes.
PCT/FR2020/052119 2019-11-29 2020-11-18 Vitrage feuillete pour camera WO2021105589A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005709.4A CN113207288A (zh) 2019-11-29 2020-11-18 用于摄像机的层压窗玻璃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1913491 2019-11-29
FR1913491A FR3103807A1 (fr) 2019-11-29 2019-11-29 Vitrage feuillete pour camera

Publications (1)

Publication Number Publication Date
WO2021105589A1 true WO2021105589A1 (fr) 2021-06-03

Family

ID=70613858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052119 WO2021105589A1 (fr) 2019-11-29 2020-11-18 Vitrage feuillete pour camera

Country Status (3)

Country Link
CN (1) CN113207288A (fr)
FR (1) FR3103807A1 (fr)
WO (1) WO2021105589A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1432363A (fr) 1964-05-06 1966-03-18 Corning Glass Works Procédé et appareil pour la production de feuilles en matière thermo-plastique telle que du verre
WO2013188489A1 (fr) * 2012-06-14 2013-12-19 Corning Incorporated Procédé de laminage de stratifiés à verre mince
US20160257095A1 (en) * 2014-03-07 2016-09-08 Corning Incorporated Glass laminate structures for head-up display system
WO2017103471A1 (fr) * 2015-12-17 2017-06-22 Saint-Gobain Glass France Verre feuillete asymetrique
FR3077761A1 (fr) * 2018-02-14 2019-08-16 Saint-Gobain Glass France Pare-brise automobile dont la zone de champ d'une camera presente une distorsion optique diminuee

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0114288A (pt) * 2000-09-28 2003-07-29 Solutia Inc Laminado de vidro resistente à intrusão
JP4912591B2 (ja) * 2002-03-12 2012-04-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ローカラーpvbシートおよびその製造方法
FR2996802B1 (fr) * 2012-10-12 2014-11-21 Saint Gobain Vitrage feuillete
US20150251377A1 (en) * 2014-03-07 2015-09-10 Corning Incorporated Glass laminate structures for head-up display system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1432363A (fr) 1964-05-06 1966-03-18 Corning Glass Works Procédé et appareil pour la production de feuilles en matière thermo-plastique telle que du verre
WO2013188489A1 (fr) * 2012-06-14 2013-12-19 Corning Incorporated Procédé de laminage de stratifiés à verre mince
US20160257095A1 (en) * 2014-03-07 2016-09-08 Corning Incorporated Glass laminate structures for head-up display system
WO2017103471A1 (fr) * 2015-12-17 2017-06-22 Saint-Gobain Glass France Verre feuillete asymetrique
FR3077761A1 (fr) * 2018-02-14 2019-08-16 Saint-Gobain Glass France Pare-brise automobile dont la zone de champ d'une camera presente une distorsion optique diminuee

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GÉRARD SAVINEAU: "Intercalaires pour verres feuilletés", TECHNIQUES DE L'INGÉNIEUR, 2 October 2013 (2013-10-02)

Also Published As

Publication number Publication date
FR3103807A1 (fr) 2021-06-04
CN113207288A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
EP3060397B1 (fr) Verre feuillete mince pour pare-brise
EP2435266B1 (fr) Vitrage a faible niveau de double image
EP2608958B1 (fr) Procédé de sélection d'un intercalaire pour un amortissement vibro-acoustique, intercalaire et vitrage comprenant un tel intercalaire
EP2670594B1 (fr) Element transparent a reflexion diffuse
EP2432637B1 (fr) Procede de selection d'un intercalaire pour un amortissement vibro-acoustique, intercalaire pour un amortissement vibro-acoustique et vitrage comprenant un tel intercalaire
EP3558670A1 (fr) Vitrage feuilleté
JP2017105665A (ja) 合わせガラス
FR2817042A1 (fr) Procede et dispositif d'analyse de la surface d'un substrat
EP2421705B1 (fr) Procede de fabrication d'un vitrage feuillete et vitrage feuillete
EP3964360A1 (fr) Fabrication d'un vitrage feuillete
FR3012073A1 (fr) Vitrage feuillete asymetrique
FR2470003A1 (fr) Procede de fabrication de panneaux feuilletes multicouches
FR3077761A1 (fr) Pare-brise automobile dont la zone de champ d'une camera presente une distorsion optique diminuee
CA2886822A1 (fr) Fabrication d'un vitrage feuillete muni d'un conducteur electrique
WO2013054060A1 (fr) Toit de vehicule en verre comprenant des zones locales de contrainte en compression
EP0526263A1 (fr) Vitrage et son procédé d'obtention
WO2004040944A1 (fr) Vitre transparente avec surface de contact non transparente pour une liasion par brasage
EP0723897A1 (fr) Vitrage feuilleté équipé d'un détecteur
WO2021105589A1 (fr) Vitrage feuillete pour camera
EP0675338B1 (fr) Procédé et dispositif pour mesurer la qualité optique de la surface d'un objet transparent
US20100112355A1 (en) Aircraft Transparency
EP3745169B1 (fr) Voiture de vehicule ferroviaire a vitres holographiques
WO2023099261A1 (fr) Procede de fabrication d'un vitrage comprenant une embase destinee a un systeme d'assistance a la conduite d'un vehicule automobile, embase et vitrage
US20230256715A1 (en) Laminated glazing
FR3121438A1 (fr) Procede de decoupe d’un vitrage feuillete au moyen d’une source laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20821341

Country of ref document: EP

Kind code of ref document: A1