WO2021103736A1 - 一种ⅱ型无水石膏热耦合生产装置及方法 - Google Patents

一种ⅱ型无水石膏热耦合生产装置及方法 Download PDF

Info

Publication number
WO2021103736A1
WO2021103736A1 PCT/CN2020/113702 CN2020113702W WO2021103736A1 WO 2021103736 A1 WO2021103736 A1 WO 2021103736A1 CN 2020113702 W CN2020113702 W CN 2020113702W WO 2021103736 A1 WO2021103736 A1 WO 2021103736A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
gypsum
cyclone
reactor
drying
Prior art date
Application number
PCT/CN2020/113702
Other languages
English (en)
French (fr)
Inventor
唐绍林
万建东
黄鹏
彭卓飞
唐永波
Original Assignee
江苏一夫科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏一夫科技股份有限公司 filed Critical 江苏一夫科技股份有限公司
Publication of WO2021103736A1 publication Critical patent/WO2021103736A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/02Methods and apparatus for dehydrating gypsum
    • C04B11/028Devices therefor characterised by the type of calcining devices used therefor or by the type of hemihydrate obtained
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/466Conversion of one form of calcium sulfate to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/26Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/26Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke
    • C04B11/262Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke waste gypsum other than phosphogypsum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/26Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke
    • C04B11/262Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke waste gypsum other than phosphogypsum
    • C04B11/264Gypsum from the desulfurisation of flue gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/26Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke
    • C04B11/266Chemical gypsum

Definitions

  • the application belongs to the technical field of industrial solid waste utilization, and relates to a type II anhydrous gypsum thermally coupled production device and method.
  • Industrial by-product gypsum refers to the main component of calcium sulfate produced by chemical reactions in industrial production.
  • By-products or waste residues also known as chemical gypsum or industrial waste gypsum, mainly include desulfurized gypsum, phosphogypsum, citrate gypsum, fluorogypsum, salt gypsum, MSG gypsum, copper gypsum, titanium gypsum, etc., among which desulfurization gypsum and phosphogypsum are produced It accounts for about 85% of the total industrial by-product gypsum.
  • CN 105985036A discloses a processing method of phosphogypsum. After mixing the phosphogypsum and lime, they are added to a drying and calcining machine. The end is equipped with a spray furnace, and the outlet of the drying and calcining machine adopts a graded outlet to obtain hemihydrate gypsum and non-hydrated gypsum. Water gypsum II, the outlet gypsum is sent to the mixing, homogenization, reduction and conveying device to fully contact the mixed gypsum with air, and the different forms of gypsum are distributed.
  • the qualified gypsum undergoes crystal transformation to obtain the finished gypsum, but in this method, the drying calciner
  • the calcination process cannot be precisely controlled, so it is necessary to set up a graded outlet and then mix and age, which produces ⁇ -type gypsum powder; the drying and calcining machine is equipped with a torch, which makes it difficult to control the calcination time, resulting in large product fluctuations.
  • CN 204138536U discloses a device for drying and calcining desulfurized gypsum, which includes a feed structure, a dispersing structure, an air drying tower, a pulse bag filter and an induced draft fan connected in sequence, and the pulse bag filter is connected to a calcining boiling furnace ,
  • the bottom of the pulse bag filter is equipped with a spiral conveying structure, which is connected with the feed inlet of the calcining boiling furnace, and the waste heat outlet of the calcining boiling furnace is connected with the dispersing structure through the air duct;
  • the device has good sealing performance and can produce a variety of Gypsum products, but the level distribution of drying and calcination is not clear, the temperature of the two is low, only hemihydrate gypsum can be obtained, and the application range is limited.
  • the purpose of this application is to provide a type II anhydrous gypsum thermally coupled production device and method.
  • the device uses the characteristics of the device to perform staged calcination by sequentially drying, fluidizing, swirling, and multi-stage cooling of gypsum materials. , Control the residence time, obtain type II anhydrous gypsum, realize the resource utilization of industrial by-product gypsum; at the same time, adopt multi-stage thermal coupling technology to make full use of the internal heat of the device to achieve energy saving and consumption reduction.
  • This application provides a type II anhydrous gypsum thermally coupled production device, which includes a drying device, a fluidized reactor, a cyclone reactor, and a cooling unit connected in sequence, and the cooling unit includes at least one-stage cooling device, The cold source outlet of the cooling unit is independently connected with the gas inlet of the drying device, the fluidized reactor and the cyclone reactor.
  • the device uses the characteristics of different stages of gypsum material to perform drying, fluidization reaction, cyclone reaction, and multi-stage cooling in sequence.
  • the fluidization reaction and the cyclone reaction are two-stage calcination processes, and different equipment is selected to control the residence time.
  • the heat is transferred to the cooling medium and used for the aforementioned drying and reaction heating.
  • the multi-stage thermal coupling technology is adopted to make full use of the system heat to realize energy saving and consumption reduction and stable operation of the device.
  • the drying device includes an airflow drying tower.
  • a dispersing component is provided at the material inlet of the drying device.
  • the initial wet material has a large water content, the free water is on the surface of the material, and the drying rate is fast. Flash evaporation technology can be applied to complete air drying in the airflow drying tower.
  • the gypsum material enters the air dryer through the screw conveyor, and a rotatable blade is installed at the receiving part to ensure that the material falls into the air dryer and is scattered.
  • the air intake of the airflow drying tower comes from the air preheated by the cooling tower.
  • the hot air blows up the scattered wet material.
  • the air pressure in the drying tower decreases, and the free water on the surface of the material flashes into steam and is heated.
  • the air is taken away, and the induced draft fan is used at the outlet of the airflow drying tower to keep the negative pressure in the tower, which is also conducive to the separation of moisture.
  • the powder is air-dried, it is separated from the gas and solid by a cyclone separator. After the powder is collected, it enters the fluidized reactor through the discharge valve, and the dried exhaust gas is discharged into the atmosphere after dust removal.
  • the inner wall of the fluidized reactor is provided with inclined trays, and one end of the inclined tray is connected to the inner wall; wherein adjacent trays are arranged on opposite sides of the inner wall.
  • the inclination directions of two adjacent inclined trays are opposite.
  • the angle between the inclined tray and the horizontal direction is 30-60 degrees, such as 30 degrees, 35 degrees, 40 degrees, 45 degrees, 50 degrees, 55 degrees or 60 degrees, etc., but is not limited to the enumerated ones.
  • the value of, other unlisted values in this value range are also applicable.
  • a bubble cap and a heating coil are provided on the inclined tray.
  • the heating coil includes an upper heating coil and a lower heating coil, which are correspondingly arranged on the upper side and the lower side of the inclined tray.
  • the fluidized reactor is heated by trays, the trays are inclinedly arranged, with stratified baffle, holes are opened on the plates, and a bubble cap is installed on the holes, and the bubble cap is opened with holes, and the airflow below passes through the bubble cap and the material.
  • a heating coil is arranged above the tray. The gas in the heating coil comes from the exhaust gas of the cyclone reactor and exchanges heat with the material indirectly under the action of gravity and air flow. , The material flows down the inclined tower. During the flow, the material is heated and reacted. The reaction temperature is controlled by the temperature and flow of the hot air in the heating coil, and the flow rate of the material in the reactor is controlled by the amount of turbulent gas.
  • the exhaust gas on the top of the fluidized reactor is separated from the gas and solid by the cyclone separator, and a small amount of powder is collected and transported into the cyclone reactor through the discharge valve.
  • the gas is used to heat the inlet air of the airflow drying tower.
  • the hot air passing through the heating coil also enters the air heater to heat the inlet air of the airflow drying tower.
  • the cyclone reactor is provided with a cyclone plate.
  • the number of the swirl plates is 2-8, for example, 2, 3, 4, 5, 6, 7, or 8, etc.
  • the swirl plate has a tapered structure.
  • the cyclone reactor is equipped with multi-layer cyclone internals to control the air flow spirally.
  • the hot flue gas generated by the combustion of the fuel in the hot blast stove enters from the lower part of the cyclone reactor, and the entrained material passes through the cyclone plate and the air flow becomes Spiral flow, the solid material spirally rises along the inner wall of the reactor driven by the centrifugal force and the spiral airflow.
  • the airflow enters the spiral channel set in the center of the swirling plate, spiraling upward from the center, and part of the material is in There is no air flow on the lower outer edge of the swirl plate and it falls, and is brought up by the updraft during the falling process.
  • the solid material rises repeatedly and slowly passes through the cyclone reactor driven by the spiral airflow; the number of cyclone plates and the gas flow rate can control the residence time of the material in the reactor.
  • the cooling unit includes a first cooling tower, an auger cooler, and a second cooling tower that are connected in sequence, and the cold source outlet of the first cooling tower is connected to the cyclone through a hot blast stove.
  • the gas inlet of the reactor, the gas outlet of the cyclone reactor is connected with the gas inlet of the fluidized reactor, and the cold source outlet of the second cooling tower is connected with the gas inlet of the drying device.
  • the cold source outlet of the second cooling tower is connected to the gas inlet of the airflow drying tower through a gas heater.
  • the heat source inlet of the gas heater is connected to the gas outlet of the fluidized reactor and/or the cold source outlet of the auger cooler.
  • the discharge of the cyclone reactor is subjected to multi-stage cooling, and a part of the hot air exiting the first cooling tower is sent to the lower part of the fluidized reactor to be fed into the fluidized reactor to turbulently heat the powder material of the fluidized reactor, and the other part enters the hot blast furnace After being mixed and combusted with fuel, it enters the cyclone reactor to provide heat;
  • the finished material cooled by the first cooling tower enters the auger cooler, the medium water used is heated or steam is formed to provide heat for the hot air of the airflow drying tower; then the material is cooled by the second cooling tower, and the heated air medium enters Airflow drying tower for heat recovery and utilization.
  • the device further includes a solid-liquid separation device, and the solid-liquid separation device is arranged in front of the drying device.
  • the solid-liquid separation device includes a centrifuge.
  • the gypsum raw materials to be processed need to be pretreated because they contain impurities, and sometimes a gypsum slurry is obtained, so preliminary solid-liquid separation is required first.
  • the present application provides a method for thermally coupling production of type II anhydrous gypsum using the above-mentioned device, and the method includes the following steps:
  • the gypsum material undergoes a fluidization reaction to produce hemihydrate gypsum
  • step (1) The hemihydrate gypsum obtained in step (1) is subjected to a cyclone reaction to obtain type II anhydrous gypsum;
  • Step (2) obtains type II anhydrous gypsum for cooling.
  • the medium serving as the cold source is heated up to supply heat for the reaction in step (1) and step (2).
  • the source of the gypsum material in step (1) is industrial by-product gypsum.
  • the gypsum material in step (1) is obtained from gypsum slurry through solid-liquid separation.
  • the free water content of the gypsum material in step (1) is 20-25% by weight, such as 20% by weight, 21% by weight, 22% by weight, 23% by weight, 24% by weight, or 25% by weight, but not limited to the listed values , Other unlisted values within this value range also apply.
  • the gypsum material in step (1) is dispersed before drying, and then air-dried.
  • the temperature of the gypsum material is 60-80°C, such as 60°C, 65°C, 70°C, 75°C, or 80°C, but not limited to the listed values. Other unlisted values in the range also apply.
  • the free water content of the gypsum material is not more than 1wt%, for example, 1wt%, 0.9wt%, 0.8wt%, 0.7wt%, 0.6wt%, 0.5wt% or 0.4wt% %, etc., but are not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the fluidization reaction in step (1) is carried out in a fluidized reactor.
  • the temperature of the fluidization reaction in step (1) is 130-160°C, such as 130°C, 135°C, 140°C, 145°C, 150°C, 155°C, or 160°C, but is not limited to those listed.
  • the value of, other unlisted values in this value range are also applicable.
  • the fluidization reaction time in step (1) is 20-30 min, such as 20 min, 22 min, 24 min, 25 min, 26 min, 28 min, or 30 min, etc., but it is not limited to the numerical values listed, and others within the numerical range Values not listed also apply.
  • the dried gypsum material CaSO 4 ⁇ 2H 2 O removes part of the bound water and is converted into CaSO 4 ⁇ 0.5H 2 O.
  • the cyclone reaction in step (2) is carried out in a cyclone reactor.
  • the temperature of the cyclone reaction in step (2) is 500-600°C, such as 500°C, 520°C, 540°C, 560°C, 580°C or 600°C, etc., but is not limited to the listed values. Other unlisted values within this value range also apply.
  • the time of the cyclone reactor in step (2) is 40-60 min, such as 40 min, 45 min, 50 min, 55 min or 60 min, etc., but it is not limited to the listed values, and other unlisted values within the range of values The values also apply.
  • the heat required for the cyclone reaction in step (2) is provided by a hot blast stove.
  • the outlet gas temperature of the hot blast stove is 750-850°C, such as 750°C, 760°C, 780°C, 800°C, 820°C, 840°C or 850°C, etc., but is not limited to the listed values, Other unlisted values within this value range also apply.
  • the hot blast stove is installed separately, and oil, gas or coal can be used as fuel to control the gas outlet temperature of the hot blast stove and enter the cyclone reactor to further convert hemihydrate gypsum CaSO 4 ⁇ 0.5H 2 O into anhydrous gypsum.
  • the cooling in step (3) includes three-stage cooling, which is carried out in the first cooling tower, the auger cooler, and the second cooling tower in sequence.
  • the temperature of Type II anhydrous gypsum is 450°C or higher, such as 450°C, 480°C, 500°C, 520°C, 540°C, or 550°C, but not limited to the above.
  • the listed values, other unlisted values within this range of values are also applicable
  • the temperature of the material after primary cooling is 240-300°C, such as 240°C, 250°C, 260°C, 270°C, 280°C, 290°C or 300°C, etc. , But not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • the medium used for the primary cooling is air
  • the heated air enters the hot blast stove, and is combusted with fuel to supply heat for swirling reaction and fluidization reaction in sequence.
  • the material temperature after secondary cooling is 130-160°C, such as 130°C, 135°C, 140°C, 145°C, 150°C, 155°C or 160°C, etc., but not limited to the listed values. Other unlisted values in the range also apply.
  • the medium used for secondary cooling is water, which forms steam after heating.
  • the temperature of the material after the three-stage cooling is 40-60°C, such as 40°C, 45°C, 50°C, 55°C, or 60°C, etc., but it is not limited to the listed values, and others are not listed within the range of values. The value of is also applicable.
  • the medium used for the third-stage cooling is air, which is heated by the exhaust gas from the fluidized reactor and/or the steam after the second-stage cooling to supply heat for the drying described in step (1).
  • the gypsum material passes from the airflow drying tower through the fluidized reactor, and then to the cyclone reactor.
  • the temperature is increased step by step.
  • the core equipment of the three-stage heating and dehydration has different structures and forms to suit the characteristics of the logistics dehydration process.
  • the temperature of II anhydrous gypsum is as high as 450°C or more. It adopts three-stage cooling to lower the temperature to a suitable temperature and send it to the finished product bin.
  • the air passes through the first cooling tower and the hot blast stove as a heating process, and then passes through the fluidized reactor and air heater as a cooling process.
  • the application uses the different characteristics of the device to calcine the gypsum materials in stages, control the progress of the reaction, and then undergo multi-stage cooling to obtain Type II anhydrous gypsum with a purity that meets the quality requirements, realizing the resource utilization of industrial by-product gypsum;
  • the device described in this application adopts multi-stage thermal coupling technology to fully use the heat in the product cooling stage in the drying and reaction stages, fully utilize the heat in the system, realize energy saving and consumption reduction and stable operation of the device, and reduce heat consumption by 50% the above.
  • Figure 1 is a schematic diagram of the structural connection of a type II anhydrous gypsum thermally coupled production device provided in Example 1 of the present application;
  • Example 2 is a schematic diagram of the internal partial structure of the fluidized reactor provided in Example 1 of the present application;
  • Example 3 is a schematic diagram of the internal cross-sectional structure of the cyclone reactor provided in Example 1 of the present application;
  • 1-solid-liquid separation device 2-drying device, 3-fluidized reactor, 31-inclined tray, 32-bubble cap, 33-upper heating coil, 34-lower heating coil, 4-swirl flow Reactor, 41- Swirl Plate, 42- Center Windshield, 5- First Cooling Tower, 6-Auger Cooler, 7-Second Cooling Tower, 8-Hot Stove, 9-First Gas Heater, 10 -The second gas heater, 11- The third gas heater.
  • the specific implementation mode of the application provides a type II anhydrous gypsum thermally coupled production device and method.
  • the device includes a drying device 2, a fluidized reactor 3, a cyclone reactor 4, and a cooling unit connected in sequence.
  • the cooling unit includes at least one-stage cooling device, and the cold source outlet of the cooling unit is independently connected to the gas inlet of the drying device 2, the fluidized reactor 3, and the cyclone reactor 4.
  • the method includes the following steps:
  • the gypsum material undergoes a fluidization reaction to produce hemihydrate gypsum
  • step (1) The hemihydrate gypsum obtained in step (1) is subjected to a cyclone reaction to obtain type II anhydrous gypsum;
  • Step (2) obtains type II anhydrous gypsum for cooling.
  • the medium serving as the cold source is heated up to supply heat for the reaction in step (1) and step (2).
  • This embodiment provides a type II anhydrous gypsum thermally coupled production device.
  • the schematic diagram of the structural connection of the device is shown in Figure 1, including a drying device 2, a fluidized reactor 3, a cyclone reactor 4 and
  • the cooling unit includes at least one-stage cooling device, and the cold source outlet of the cooling unit is independently connected to the gas inlet of the drying device 2, the fluidized reactor 3, and the cyclone reactor 4.
  • the drying device 2 includes an airflow drying tower, and the material inlet of the drying device 2 is provided with a dispersing component.
  • the internal partial structure diagram of the fluidized reactor 3 is shown in Fig. 2.
  • the inner walls of both sides are alternately provided with inclined trays 31 from top to bottom, and the inclined directions of the two adjacent inclined trays 31 are opposite.
  • the angle between the inclined tray 31 and the horizontal direction is 50 degrees;
  • the inclined tray 31 is provided with a bubble cap 32 and a heating coil; the heating coil includes an upper heating coil 33 and a lower heating coil 34, which are correspondingly arranged on the upper and lower sides of the inclined tray 31.
  • the internal cross-sectional structure diagram of the cyclone reactor 4 is shown in FIG. 3.
  • the cyclone reactor 4 is provided with a cyclone plate 41 and a central windshield 42.
  • the number of the cyclone plate 41 is 6, which is a cone. -Shaped structure; the central windshield 42 is a hemispherical structure.
  • the cooling unit includes a first cooling tower 5, an auger cooler 6 and a second cooling tower 7, which are connected in sequence, and the gas outlet of the first cooling tower 5 is connected to the gas of the cyclone reactor 4 through a hot blast stove 8.
  • the gas outlet of the cyclone reactor 4 is connected with the gas inlet of the fluidized reactor 3
  • the gas outlet of the second cooling tower 7 is connected with the gas inlet of the drying device 2.
  • the gas outlet of the second cooling tower 7 is connected to the gas inlet of the airflow drying tower through the first gas heater 9, the second gas heater 10, and the third gas heater 11 in sequence.
  • the heat source inlet of the second gas heater 10 is connected to the gas outlet of the fluidized reactor 3, and the heat source inlet of the third gas heater 11 is connected to the cold source outlet of the auger cooler 6.
  • the device also includes a solid-liquid separation device 1, the solid-liquid separation device 1 is arranged in front of the drying device 2, and the solid-liquid separation device 1 includes a centrifuge.
  • This embodiment provides a type II anhydrous gypsum thermally coupled production device.
  • the device includes a drying device 2, a fluidized reactor 3, a cyclone reactor 4, and a cooling unit connected in sequence.
  • the cooling unit includes at least one A stage cooling device, the cold source outlet of the cooling unit is independently connected to the gas inlet of the drying device 2, the fluidized reactor 3 and the cyclone reactor 4.
  • the drying device 2 includes an airflow drying tower, and the material inlet of the drying device 2 is provided with a dispersing component.
  • the inner walls of both sides of the fluidized reactor 3 are alternately provided with inclined trays 31 from top to bottom.
  • the inclined directions of the two adjacent inclined trays 31 are opposite, and the angle between the inclined trays 31 and the horizontal direction is 30 degrees;
  • the inclined tray 31 is provided with a bubble cap 32 and a heating coil; the heating coil includes an upper heating coil 33 and a lower heating coil 34, which are correspondingly arranged on the upper and lower sides of the inclined tray 31.
  • the swirling flow reactor 4 is provided with a swirling plate 41 and a central windshield 42.
  • the number of the swirling plates 41 is three and has a conical structure; the central windshield 42 has a hemispherical structure.
  • the cooling unit includes a first cooling tower 5, an auger cooler 6 and a second cooling tower 7, which are connected in sequence.
  • the gas outlet of the first cooling tower 5 is divided into two branches.
  • the gas inlet of the flow reactor 4, the other branch is connected to the lower gas inlet of the fluidized reactor 3.
  • the gas outlet of the cyclone reactor 4 is connected to the gas inlet of the heating coil in the fluidized reactor 3.
  • the gas outlet of the second cooling tower 7 is connected to the gas inlet of the drying device 2.
  • the gas outlet of the second cooling tower 7 is connected to the gas inlet of the airflow drying tower through the second gas heater 10 and the third gas heater 11 in sequence.
  • the heat source inlet of the second gas heater 10 is connected to the gas outlet of the fluidized reactor 3, and the heat source inlet of the third gas heater 11 is connected to the cold source outlet of the auger cooler 6.
  • This embodiment provides a type II anhydrous gypsum thermally coupled production method, which is carried out using the device in embodiment 1, and includes the following steps:
  • step (2) The hemihydrate gypsum obtained in step (1) is subjected to a cyclone reaction in the cyclone reactor 4, the cyclone reaction temperature is 500°C, and the time is 60 minutes to obtain type II anhydrous gypsum.
  • the heat required for the cyclone reaction Provided by fuel combustion, the temperature of the gas produced by combustion is 800°C;
  • step (3) The type II anhydrous gypsum obtained in step (2) is subjected to three-stage cooling.
  • the first-stage cooling is carried out in the first cooling tower 5.
  • the material is reduced from 500°C to 250°C, and the medium air used is heated and enters the hot air furnace 8.
  • the heat is supplied by swirling reaction and fluidization reaction.
  • the secondary cooling is carried out in the auger cooler 6.
  • the temperature of the material is 150°C.
  • the medium water used is heated to form steam
  • the third-stage cooling It is carried out in the second cooling tower 7, the temperature of the material after cooling is 50°C, and the medium air used is heated by the exhaust gas of the fluidization reaction and the steam after the secondary cooling to supply heat for drying in step (1).
  • the gypsum material is dried, graded and calcined and cooled in multiple stages, and the purity of the obtained type II anhydrous gypsum meets the quality requirements.
  • the process adopts multi-stage thermal coupling technology to fully use the heat in the cooling stage of the product for drying and In the reaction stage, the heat in the system is fully utilized to achieve energy saving and consumption reduction, and the heat consumption can be reduced by more than 50%.
  • This embodiment provides a type II anhydrous gypsum thermally coupled production method, which is carried out using the device in embodiment 1, and includes the following steps:
  • step (2) The hemihydrate gypsum obtained in step (1) is subjected to a cyclone reaction in the cyclone reactor 4, the cyclone reaction temperature is 600°C, and the time is 40 minutes to obtain type II anhydrous gypsum.
  • the heat required for the cyclone reaction Provided by fuel combustion, the temperature of the gas produced by combustion is 850°C;
  • step (3) The type II anhydrous gypsum obtained in step (2) is subjected to three-stage cooling, and the first-stage cooling is carried out in the first cooling tower 5.
  • the material is reduced from 550°C to 280°C, and the medium air used is heated and enters the hot air furnace 8.
  • the heat is supplied by swirling reaction and fluidization reaction in turn.
  • the secondary cooling is carried out in the auger cooler 6.
  • the temperature of the material after cooling is 160°C.
  • the medium water used is heated to form steam, and the three-stage cooling It is carried out in the second cooling tower 7, the material temperature after cooling is 60°C, and the medium air used is heated by the exhaust gas of the fluidization reaction and the steam after the secondary cooling to supply heat for drying in step (1).
  • the gypsum material is dried, graded and calcined and cooled in multiple stages, and the purity of the obtained type II anhydrous gypsum meets the quality requirements.
  • the process adopts multi-stage thermal coupling technology to fully use the heat in the cooling stage of the product for drying and In the reaction stage, the heat in the system is fully utilized to achieve energy saving and consumption reduction, and the heat consumption can be reduced by more than 50%.
  • This embodiment provides a type II anhydrous gypsum thermally coupled production method, which is carried out using the device in embodiment 2, and includes the following steps:
  • the industrial by-produced gypsum material with a free water content of 22wt% is broken up and dried by an airflow drying tower. After drying, the temperature of the gypsum material is 60°C, and the free water content is 0.6wt%, in the fluidized reactor 3.
  • the fluidization reaction is carried out inside, the reaction temperature is 160°C, the reaction time is 20 minutes, and hemihydrate gypsum is generated;
  • step (2) The hemihydrate gypsum obtained in step (1) is subjected to a cyclone reaction in the cyclone reactor 4, the cyclone reaction temperature is 550°C, and the time is 50 minutes to obtain type II anhydrous gypsum.
  • the heat required for the cyclone reaction Provided by fuel combustion, the temperature of the gas produced by combustion is 750°C;
  • step (3) The type II anhydrous gypsum obtained in step (2) is subjected to three-stage cooling, and the first-stage cooling is carried out in the first cooling tower 5.
  • the material is reduced from 520°C to 240°C, and a part of the air used as the medium enters the fluidization after being heated.
  • the other part of the reactor 3 enters the hot blast furnace 8, and after combustion with fuel, it supplies heat for the swirling reaction and the fluidization reaction.
  • the secondary cooling is carried out in the auger cooler 6. After cooling, the temperature of the material is 130°C.
  • the medium used The water is heated to form steam, and the three-stage cooling is carried out in the second cooling tower 7.
  • the temperature of the material after cooling is 40°C.
  • the medium air used is heated by the exhaust gas of the fluidization reaction and the steam after the second cooling is the step ( 1) Medium dry heating.
  • the gypsum material is dried, graded and calcined and cooled in multiple stages, and the purity of the obtained type II anhydrous gypsum meets the quality requirements.
  • the process adopts multi-stage thermal coupling technology to fully use the heat in the cooling stage of the product for drying and In the reaction stage, the heat in the system is fully utilized to achieve energy saving and consumption reduction, and the heat consumption can be reduced by more than 50%.
  • the application uses the different characteristics of the device to carry out graded calcination of gypsum materials, control the progress of the reaction, and then undergo multi-stage cooling to obtain Type II anhydrous gypsum with a purity that meets the quality requirements and realizes industrial by-product gypsum.
  • the device uses multi-stage thermal coupling technology to fully use the heat in the product cooling stage in the drying and reaction stages, and the heat in the system is fully utilized to achieve energy saving and consumption reduction and stable operation of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Processing Of Solid Wastes (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种Ⅱ型无水石膏热耦合生产装置,包括依次连接的干燥装置(2)、流化反应器(3)、旋流反应器(4)和冷却单元,冷却单元包括至少一级冷却装置,冷却单元的冷源出口独立地与干燥装置(2)、流化反应器(3)和旋流反应器(4)的气体入口相连。利用装置的不同特性将石膏物料进行分级煅烧,控制反应进行,再经多级冷却,得到Ⅱ型无水石膏产品。

Description

一种Ⅱ型无水石膏热耦合生产装置及方法 技术领域
本申请属于工业固体废弃物利用技术领域,涉及一种Ⅱ型无水石膏热耦合生产装置及方法。
背景技术
随着工业的快速发展,天然石膏资源的在开采与消耗的同时,也会排放大量的工业副产石膏,其中工业副产石膏是指工业生产中因化学反应生成的以硫酸钙为主要成分的副产品或废渣,也称化学石膏或工业废石膏,主要包括脱硫石膏、磷石膏、柠檬酸石膏、氟石膏、盐石膏、味精石膏、铜石膏、钛石膏等,其中脱硫石膏和磷石膏的产生量约占全部工业副产石膏总量的85%。
工业副产石膏种类众多,不同的工艺操作条件及原料来源造成工业副产石膏成分各异,品质不稳定,由于含有的有害杂质成分多且复杂以及含酸含氟等诸多难题,很难实现一种工艺能够解决所有工业副产石膏的问题,造成其研究和综合应用进展缓慢,大量工业副产石膏的堆积,占用耕地,污染水体和土壤,极大危害了人类生活环境,给工业副产石膏排放企业造成巨大经济和环保压力。
目前,工业副产石膏综合利用主要有两个途径:一是用作水泥缓凝剂,约占工业副产石膏综合利用量的70%;二是生产石膏建材制品,包括纸面石膏板、石膏砌块、石膏空心条板、干混砂浆、石膏砖等,但上述利用途径中,只是对石膏的简单后的应用,石膏中的有害杂质并未充分去除,综合利用率低,而且用作建筑材料时,一般只能用于面材或装饰,难以用作主体结构材料,应用量及应用范围受到限制。因此,需要对石膏进行转化,使之能够代替传统水泥,从而可以大量消化工业副产石膏,解决环保问题。
CN 105985036A公开了一种磷石膏的加工方法,将磷石膏与石灰混合处理后加入烘干煅烧机中,端部配置喷火炉,烘干煅烧机的出口采用分级出口,分别得到半水石膏和无水石膏II,将出口石膏送入搅拌匀化还原输送装置将混合石膏与空气充分接触,将不同形式的石膏进行分配,合格的石膏进行晶体转化,得到成品石膏,但该方法中烘干煅烧机不能精确控制煅烧过程,需要设置分级出口,再进行混合陈化,其生产的是β型石膏粉;烘干煅烧机配置喷火炉,难以控制煅烧时间,造成产品波动较大。
CN 204138536U公开了一种用于干燥和煅烧脱硫石膏的装置,包括依次连接的进料结构、打散结构、气流干燥塔、脉冲布袋除尘器和引风机,所述脉冲布袋除尘器与煅烧沸腾炉连接,脉冲布袋除尘器底部设有螺旋输送结构,螺旋输送结构与煅烧沸腾炉的进料口连接,煅烧沸腾炉的余热出口通过风道与所述打散结构连接;该装置封闭性好,可以生产多种石膏产品,但干燥和煅烧的层次分布不明确,两者温度较低,只能得到半水石膏,应用范围受限。
综上所述,对于工业副产石膏的综合利用,还需要采用不同装置精确控制干燥、煅烧过程,制备应用范围更广的无水石膏产品,同时提高装置中热量的利用率,降低能耗。
发明内容
本申请的目的在于提供一种Ⅱ型无水石膏热耦合生产装置及方法,所述装置通过将石膏物料依次进行干燥、流化反应、旋流反应以及多级冷却,利用装置的特性进行分级煅烧,控制停留时间,得到Ⅱ型无水石膏,实现工业副产石膏的资源化利用;同时采用多级热耦合技术,对装置内部热量充分利用,实现节能降耗。
为达此目的,本申请采用以下技术方案:
本申请提供了一种Ⅱ型无水石膏热耦合生产装置,所述装置包括依次连接的干燥装置、流化反应器、旋流反应器和冷却单元,所述冷却单元包括至少一级冷却装置,所述冷却单元的冷源出口独立地与干燥装置、流化反应器和旋流反应器的气体入口相连。
本申请中,所述装置利用石膏物料不同阶段的特性依次进行干燥、流化反应、旋流反应以及多级冷却,流化反应和旋流反应为两级煅烧过程,选择不同设备控制停留时间,而成品的多级冷却阶段,热量转移到冷却介质后用于前述干燥、反应的供热,采用多级热耦合技术,将系统热量充分利用,实现节能降耗与装置的稳定运行。
作为本申请可选的技术方案,所述干燥装置包括气流干燥塔。
可选地,所述干燥装置的物料进口处设有打散组件。
本申请中,最初湿物料含水量大,游离水在物料表面,干燥速率快,可以应用闪蒸技术,在气流干燥塔内用气流干燥来完成。石膏物料通过螺旋输送器进入气流干燥器内,其接料部位安装可转动的刀片,确保物料落入气流干燥器内被打散。
气流干燥塔的进气,来自经冷却塔预热的空气,热空气吹浮起打散的湿物料,到达干燥塔上部时,干燥塔内气压降低,物料表面游离水闪蒸为蒸汽,被热空气带走,气流干燥塔出口采用引风机,使塔内保持负压,也有利于水分的分离。粉料经过气流干燥后,通过旋风分离器进行气固分离,粉料收集后通过卸料阀进入流化反应器,干燥乏气体通过除尘后排入大气。
作为本申请可选的技术方案,所述流化反应器的内壁上设有倾斜塔板,所 述倾斜塔板的一端与内壁相连;其中相邻塔板设置于内壁上相对的两侧。
可选地,相邻两块倾斜塔板的倾斜方向相反。
可选地,所述倾斜塔板与水平方向的夹角为30~60度,例如30度、35度、40度、45度、50度、55度或60度等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述倾斜塔板上设有泡罩和加热盘管。
可选地,所述加热盘管包括上层加热盘管和下层加热盘管,对应地设置于倾斜塔板的上侧和下侧。
本申请中,所述流化反应器为塔板式加热,塔板倾斜设置,分层折流,板上开孔,孔上安装有泡罩,泡罩上开孔,下方气流通过泡罩与物料直接接触换热,对物料有导流、搅拌作用,塔板上方布置加热盘管,加热盘管内的气体来自旋流反应器的乏气,与物料进行间接换热,在重力和气流的作用下,物料沿着倾斜的塔向下流动,在流动的过程中物料受热反应,其反应温度受加热盘管内热空气温度、流量的控制,物料在反应器内的流速受扰流气体量的控制。
本申请中,流化反应器顶部的乏气,通过旋风分离器进行气固分离,少量粉料收集后通过卸料阀被输送入旋流反应器,气体用于加热气流干燥塔的进风,通过加热盘管内的热空气也进入空气加热器用于加热气流干燥塔的进风。
作为本申请可选的技术方案,所述旋流反应器内设有旋流板。
可选地,所述旋流板的数量为2~8个,例如2个、3个、4个、5个、6个、7个或8个等。
可选地,所述旋流板呈锥形结构。
本申请中,旋流反应器中布置有多层旋流内件,控制气流螺旋上升,热风 炉中燃料燃烧产生的热烟气从旋流反应器下部进入,夹带物料通过旋流板后气流呈螺旋流动,固体物料在离心力和螺旋气流的带动下,沿反应器内壁螺旋上升,当到达下一个旋流板,气流进入设置在旋流板中心的螺旋通道,从中心向上螺旋流动,部分物料在旋流板下外缘没有气流而下落,下落过程中又被上升气流带起。固体物料多次的下落上升并在螺旋气流的带动下缓慢通过旋流反应器;旋流板的数量及气体的流量均可控制物料在反应器内的停留时间。
作为本申请可选的技术方案,所述冷却单元包括依次连接的第一冷却塔、搅龙式冷却器和第二冷却塔,所述第一冷却塔的冷源出口通过热风炉连接至旋流反应器的气体入口,所述旋流反应器的气体出口与流化反应器的气体入口相连,所述第二冷却塔的冷源出口与干燥装置的气体入口相连。
可选地,所述第二冷却塔的冷源出口通过气体加热器与气流干燥塔的气体入口相连。
可选地,所述气体加热器的热源入口与流化反应器的气体出口和/或搅龙式冷却器的冷源出口相连。
本申请中,旋流反应器出料进行多级冷却,出第一冷却塔的热空气一部分输送到流化反应器下部进气,对流化反应器的粉料扰流加热,另一部分进入热风炉与燃料混合燃烧后,进入旋流反应器提供热量;
经第一冷却塔冷却后的成品物料进入搅龙式冷却器,所用介质水被加热或形成蒸汽为气流干燥塔的热风提供热量;之后物料再经第二冷却塔冷却,加热后的空气介质进入气流干燥塔,进行热量回收利用。
可选地,所述装置还包括固液分离装置,所述固液分离装置设置于干燥装置前。
可选地,所述固液分离装置包括离心机。
本申请中,待处理的石膏原料由于含有杂质,需要进行预处理,有时会得到石膏浆液,因此需要先进行初步固液分离。
另一方面,本申请提供了一种采用上述装置热耦合生产Ⅱ型无水石膏的方法,所述方法包括以下步骤:
(1)石膏物料经干燥后进行流化反应,生成半水石膏;
(2)将步骤(1)得到的半水石膏进行旋流反应,得到Ⅱ型无水石膏;
(3)步骤(2)得到Ⅱ型无水石膏进行冷却,冷却过程中作为冷源的介质升温后为步骤(1)和步骤(2)中的反应供热。
作为本申请可选的技术方案,步骤(1)所述石膏物料的来源为工业副产石膏。
可选地,步骤(1)所述石膏物料由石膏浆液经固液分离得到。
可选地,步骤(1)所述石膏物料的游离水含量为20~25wt%,例如20wt%、21wt%、22wt%、23wt%、24wt%或25wt%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述石膏物料干燥前先进行打散,然后进行气流干燥。
可选地,步骤(1)所述干燥后,石膏物料温度为60~80℃,例如60℃、65℃、70℃、75℃或80℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述干燥后,石膏物料的游离水含量不大于1wt%,例如1wt%、0.9wt%、0.8wt%、0.7wt%、0.6wt%、0.5wt%或0.4wt%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,步骤(1)所述流化反应在流化反应器内进行。
可选地,步骤(1)所述流化反应的温度为130~160℃,例如130℃、135℃、140℃、145℃、150℃、155℃或160℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述流化反应的时间为20~30min,例如20min、22min、24min、25min、26min、28min或30min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,在上述流化反应条件下,干燥后的石膏物料CaSO 4·2H 2O脱除部分结合水,转化为CaSO 4·0.5H 2O。
作为本申请可选的技术方案,步骤(2)所述旋流反应在旋流反应器内进行。
可选地,步骤(2)所述旋流反应的温度为500~600℃,例如500℃、520℃、540℃、560℃、580℃或600℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述旋流反应器的时间为40~60min,例如40min、45min、50min、55min或60min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述旋流反应所需热量由热风炉提供。
可选地,所述热风炉的出口气体温度为750~850℃,例如750℃、760℃、780℃、800℃、820℃、840℃或850℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,热风炉单独设置,可以油、气或煤作为燃料,控制热风炉气体出口温度,进入旋流反应器,将半水石膏CaSO 4·0.5H 2O进一步转化为无水石膏。
作为本申请可选的技术方案,步骤(3)所述冷却包括三级冷却,依次在第一冷却塔、搅龙式冷却器和第二冷却塔内进行。
可选地,步骤(3)所述冷却前,Ⅱ型无水石膏的温度为450℃以上,例如450℃、480℃、500℃、520℃、540℃或550℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,一级冷却后物料温度为240~300℃,例如240℃、250℃、260℃、270℃、280℃、290℃或300℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,一级冷却所用介质为空气,加热后的空气进入热风炉,与燃料燃烧后依次为旋流反应、流化反应供热。
可选地,二级冷却后物料温度为130~160℃,例如130℃、135℃、140℃、145℃、150℃、155℃或160℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,二级冷却所用介质为水,加热后形成蒸汽。
可选地,三级冷却后物料温度为40~60℃,例如40℃、45℃、50℃、55℃、或60℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,三级冷却所用介质为空气,再经流化反应器排出气和/或二级冷却后的蒸汽加热后为步骤(1)所述干燥供热。
本申请中,石膏物料从气流干燥塔经过流化反应器,再到旋流反应器,温 度逐级升高,三个阶段升温脱水的核心设备其结构形式不同,以适合物流脱水过程的特点,完全脱水后的Ⅱ无水石膏温度高达450℃以上,采用三级冷却,将温度降至适宜温度,送入成品料仓。其中,空气经过第一冷却塔、热风炉是一升温过程,再经流化反应器、空气加热器为降温过程,这是空气在系统内层多级耦合;搅龙式冷却器所产生的蒸汽给热空气再进一步升温,进入干燥塔,这是系统水蒸汽在外层的热耦合;内外层的热耦合将热风炉所产生的热量基本全用于物料的脱水,生产过程的前后升温和降温工序之间采用耦合热交换,以充分利用热能。
与现有技术相比,本申请具有以下有益效果:
(1)本申请利用装置的不同特性将石膏物料进行分级煅烧,控制反应进行,再经多级冷却,得到Ⅱ型无水石膏的纯度满足质量要求,实现了工业副产石膏的资源化利用;
(2)本申请所述装置采用多级热耦合技术,将产品冷却阶段的热量充分用于干燥及反应阶段,系统内热量充分利用,实现节能降耗与装置的稳定运行,热量消耗减少50%以上。
附图说明
图1是本申请实施例1提供的Ⅱ型无水石膏热耦合生产装置的结构连接示意图;
图2是本申请实施例1提供的流化反应器的内部局部结构示意图;
图3是本申请实施例1提供的旋流反应器的内部横截面结构示意图;
其中,1-固液分离装置,2-干燥装置,3-流化反应器,31-倾斜塔板,32-泡罩,33-上层加热盘管,34-下层加热盘管,4-旋流反应器,41-旋流板,42-中心 风挡,5-第一冷却塔,6-搅龙式冷却器,7-第二冷却塔,8-热风炉,9-第一气体加热器,10-第二气体加热器,11-第三气体加热器。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明,但下述的实施例仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
本申请具体实施方式部分提供了一种Ⅱ型无水石膏热耦合生产装置及方法,所述装置包括依次连接的干燥装置2、流化反应器3、旋流反应器4和冷却单元,所述冷却单元包括至少一级冷却装置,所述冷却单元的冷源出口独立地与干燥装置2、流化反应器3和旋流反应器4的气体入口相连。
所述方法包括以下步骤:
(1)石膏物料经干燥后进行流化反应,生成半水石膏;
(2)将步骤(1)得到的半水石膏进行旋流反应,得到Ⅱ型无水石膏;
(3)步骤(2)得到Ⅱ型无水石膏进行冷却,冷却过程中作为冷源的介质升温后为步骤(1)和步骤(2)中的反应供热。
以下为本申请典型但非限制性实施例:
实施例1:
本实施例提供了一种Ⅱ型无水石膏热耦合生产装置,所述装置的结构连接示意图如图1所示,包括依次连接的干燥装置2、流化反应器3、旋流反应器4和冷却单元,所述冷却单元包括至少一级冷却装置,所述冷却单元的冷源出口独立地与干燥装置2、流化反应器3和旋流反应器4的气体入口相连。
所述干燥装置2包括气流干燥塔,所述干燥装置2的物料进口处设有打散 组件。
所述流化反应器3的内部局部结构示意图如图2所示,其两侧内壁上自上而下交替设有倾斜塔板31,相邻两块倾斜塔板31的倾斜方向相反,所述倾斜塔板31与水平方向的夹角为50度;
所述倾斜塔板31上设有泡罩32和加热盘管;所述加热盘管包括上层加热盘管33和下层加热盘管34,对应地设置于倾斜塔板31的上侧和下侧。
所述旋流反应器4的内部横截面结构示意图如图3所示,旋流反应器4内设有旋流板41和中心风挡42,所述旋流板41的数量为6个,呈锥形结构;所述中心风挡42呈半球形结构。
所述冷却单元包括依次连接的第一冷却塔5、搅龙式冷却器6和第二冷却塔7,所述第一冷却塔5的气体出口通过热风炉8连接至旋流反应器4的气体入口,所述旋流反应器4的气体出口与流化反应器3的气体入口相连,所述第二冷却塔7的气体出口与干燥装置2的气体入口相连。
所述第二冷却塔7的气体出口依次通过第一气体加热器9、第二气体加热器10和第三气体加热器11与气流干燥塔的气体入口相连。
所述第二气体加热器10的热源入口与流化反应器3的气体出口相连,所述第三气体加热器11的热源入口与搅龙式冷却器6的冷源出口相连。
所述装置还包括固液分离装置1,所述固液分离装置1设置于干燥装置2前,所述固液分离装置1包括离心机。
实施例2:
本实施例提供了一种Ⅱ型无水石膏热耦合生产装置,所述装置包括依次连接的干燥装置2、流化反应器3、旋流反应器4和冷却单元,所述冷却单元包括 至少一级冷却装置,所述冷却单元的冷源出口独立地与干燥装置2、流化反应器3和旋流反应器4的气体入口相连。
所述干燥装置2包括气流干燥塔,所述干燥装置2的物料进口处设有打散组件。
所述流化反应器3的两侧内壁上自上而下交替设有倾斜塔板31,相邻两块倾斜塔板31的倾斜方向相反,所述倾斜塔板31与水平方向的夹角为30度;
所述倾斜塔板31上设有泡罩32和加热盘管;所述加热盘管包括上层加热盘管33和下层加热盘管34,对应地设置于倾斜塔板31的上侧和下侧。
所述旋流反应器4内设有旋流板41和中心风挡42,所述旋流板41的数量为3个,呈锥形结构;所述中心风挡42呈半球形结构。
所述冷却单元包括依次连接的第一冷却塔5、搅龙式冷却器6和第二冷却塔7,所述第一冷却塔5的气体出口分两支,一支通过热风炉8连接至旋流反应器4的气体入口,另一支连接至流化反应器3的下部气体入口,所述旋流反应器4的气体出口与流化反应器3中加热盘管的气体入口相连,所述第二冷却塔7的气体出口与干燥装置2的气体入口相连。
所述第二冷却塔7的气体出口依次通过第二气体加热器10和第三气体加热器11与气流干燥塔的气体入口相连。
所述第二气体加热器10的热源入口与流化反应器3的气体出口相连,所述第三气体加热器11的热源入口与搅龙式冷却器6的冷源出口相连。
实施例3:
本实施例提供了一种Ⅱ型无水石膏热耦合生产方法,所述方法采用实施例1中的装置进行,包括以下步骤:
(1)将工业副产的石膏浆液先进行离心分离,得到游离水含量为20wt%的石膏物料,然后采用气流干燥塔进行打散、干燥,干燥后石膏物料温度为65℃,游离水含量为0.8wt%,在流化反应器3内进行流化反应,反应温度为150℃,反应时间为30min,生成半水石膏;
(2)将步骤(1)得到的半水石膏在旋流反应器4内进行旋流反应,旋流反应温度为500℃,时间为60min,得到Ⅱ型无水石膏,旋流反应所需热量由燃料燃烧提供,燃烧产生的气体温度为800℃;
(3)将步骤(2)得到Ⅱ型无水石膏进行三级冷却,一级冷却在第一冷却塔5内进行,物料由500℃降至250℃,所用介质空气被加热后进入热风炉8,与燃料燃烧后依次为旋流反应、流化反应供热,二级冷却在搅龙式冷却器6内进行,冷却后物料温度为150℃,所用介质水被加热后形成蒸汽,三级冷却在第二冷却塔7内进行,冷却后物料温度为50℃,所用介质空气被加热后被流化反应乏气和二级冷却后的蒸汽加热为步骤(1)中干燥供热。
本实施例中,石膏物料经过干燥、分级煅烧和多级冷却,得到的Ⅱ型无水石膏的纯度满足质量要求,该过程采用多级热耦合技术,将产品冷却阶段的热量充分用于干燥及反应阶段,系统内热量充分利用,实现节能降耗,热量消耗可减少50%以上。
实施例4:
本实施例提供了一种Ⅱ型无水石膏热耦合生产方法,所述方法采用实施例1中的装置进行,包括以下步骤:
(1)将工业副产的石膏浆液先进行离心分离,得到游离水含量为25wt%的石膏物料,然后采用气流干燥塔进行打散、干燥,干燥后石膏物料温度为 75℃,游离水含量为1wt%,在流化反应器3内进行流化反应,反应温度为135℃,反应时间为25min,生成半水石膏;
(2)将步骤(1)得到的半水石膏在旋流反应器4内进行旋流反应,旋流反应温度为600℃,时间为40min,得到Ⅱ型无水石膏,旋流反应所需热量由燃料燃烧提供,燃烧产生的气体温度为850℃;
(3)将步骤(2)得到Ⅱ型无水石膏进行三级冷却,一级冷却在第一冷却塔5内进行,物料由550℃降至280℃,所用介质空气被加热后进入热风炉8,与燃料燃烧后依次为旋流反应、流化反应供热,二级冷却在搅龙式冷却器6内进行,冷却后物料温度为160℃,所用介质水被加热后形成蒸汽,三级冷却在第二冷却塔7内进行,冷却后物料温度为60℃,所用介质空气被加热后被流化反应乏气和二级冷却后的蒸汽加热为步骤(1)中干燥供热。
本实施例中,石膏物料经过干燥、分级煅烧和多级冷却,得到的Ⅱ型无水石膏的纯度满足质量要求,该过程采用多级热耦合技术,将产品冷却阶段的热量充分用于干燥及反应阶段,系统内热量充分利用,实现节能降耗,热量消耗可减少50%以上。
实施例5:
本实施例提供了一种Ⅱ型无水石膏热耦合生产方法,所述方法采用实施例2中的装置进行,包括以下步骤:
(1)将工业副产的游离水含量为22wt%的石膏物料采用气流干燥塔进行打散、干燥,干燥后石膏物料温度为60℃,游离水含量为0.6wt%,在流化反应器3内进行流化反应,反应温度为160℃,反应时间为20min,生成半水石膏;
(2)将步骤(1)得到的半水石膏在旋流反应器4内进行旋流反应,旋流 反应温度为550℃,时间为50min,得到Ⅱ型无水石膏,旋流反应所需热量由燃料燃烧提供,燃烧产生的气体温度为750℃;
(3)将步骤(2)得到Ⅱ型无水石膏进行三级冷却,一级冷却在第一冷却塔5内进行,物料由520℃降至240℃,所用介质空气被加热后一部分进入流化反应器3,另一部分进入热风炉8,与燃料燃烧后依次为旋流反应、流化反应供热,二级冷却在搅龙式冷却器6内进行,冷却后物料温度为130℃,所用介质水被加热后形成蒸汽,三级冷却在第二冷却塔7内进行,冷却后物料温度为40℃,所用介质空气被加热后被流化反应乏气和二级冷却后的蒸汽加热为步骤(1)中干燥供热。
本实施例中,石膏物料经过干燥、分级煅烧和多级冷却,得到的Ⅱ型无水石膏的纯度满足质量要求,该过程采用多级热耦合技术,将产品冷却阶段的热量充分用于干燥及反应阶段,系统内热量充分利用,实现节能降耗,热量消耗可减少50%以上。
综合上述实施例可以看出,本申请利用装置的不同特性将石膏物料进行分级煅烧,控制反应进行,再经多级冷却,得到Ⅱ型无水石膏的纯度满足质量要求,实现了工业副产石膏的资源化利用;所述装置采用多级热耦合技术,将产品冷却阶段的热量充分用于干燥及反应阶段,系统内热量充分利用,实现节能降耗与装置的稳定运行。
申请人声明,本申请通过上述实施例来说明本申请的详细装置与方法,但本申请并不局限于上述详细装置与方法,即不意味着本申请必须依赖上述详细装置与方法才能实施。

Claims (34)

  1. 一种Ⅱ型无水石膏热耦合生产装置,其中,所述装置包括依次连接的干燥装置、流化反应器、旋流反应器和冷却单元,所述冷却单元包括至少一级冷却装置,所述冷却单元的冷源出口独立地与干燥装置、流化反应器和旋流反应器的气体入口相连;
    所述流化反应器的内壁上设有倾斜塔板,所述倾斜塔板的一端与内壁相连,相邻两块倾斜塔板的倾斜方向相反;
    所述旋流反应器内设有旋流板,所述旋流板呈锥形结构。
  2. 根据权利要求1所述的生产装置,其中,所述干燥装置包括气流干燥塔。
  3. 根据权利要求1所述的生产装置,其中,所述干燥装置的物料进口处设有打散组件。
  4. 根据权利要求1所述的生产装置,其中,所述倾斜塔板与水平方向的夹角为30~60度。
  5. 根据权利要求1所述的生产装置,其中,所述倾斜塔板上设有泡罩和加热盘管。
  6. 根据权利要求5所述的生产装置,其中,所述加热盘管包括上层加热盘管和下层加热盘管,对应地设置于倾斜塔板的上侧和下侧。
  7. 根据权利要求1所述的生产装置,其中,所述旋流板的数量为2~8个。
  8. 根据权利要求1所述的生产装置,其中,所述冷却单元包括依次连接的第一冷却塔、搅龙式冷却器和第二冷却塔,所述第一冷却塔的冷源出口通过热风炉连接至旋流反应器的气体入口,所述旋流反应器的气体出口与流化反应器的气体入口相连,所述第二冷却塔的冷源出口与干燥装置的气体入口相连。
  9. 根据权利要求8所述的生产装置,其中,所述第二冷却塔的冷源出口通过气体加热器与气流干燥塔的气体入口相连。
  10. 根据权利要求9所述的生产装置,其中,所述气体加热器的热源入口与流化反应器的气体出口和/或搅龙式冷却器的冷源出口相连。
  11. 根据权利要求1所述的生产装置,其中,所述装置还包括固液分离装置,所述固液分离装置设置于干燥装置前。
  12. 根据权利要求11所述的生产装置,其中,所述固液分离装置包括离心机。
  13. 一种采用权利要求1-12任一项所述的装置热耦合生产Ⅱ型无水石膏的方法,其中,所述方法包括以下步骤:
    (1)石膏物料经干燥后进行流化反应,生成半水石膏;
    (2)将步骤(1)得到的半水石膏进行旋流反应,得到Ⅱ型无水石膏;
    (3)将步骤(2)得到Ⅱ型无水石膏进行冷却,冷却过程中作为冷源的介质升温后为步骤(1)和步骤(2)中的反应供热。
  14. 根据权利要求13所述的方法,其中,步骤(1)所述石膏物料的来源为工业副产石膏。
  15. 根据权利要求13所述的方法,其中,步骤(1)所述石膏物料由石膏浆液经固液分离得到。
  16. 根据权利要求13所述的方法,其中,步骤(1)所述石膏物料的游离水含量为20~25wt%。
  17. 根据权利要求13所述的方法,其中,步骤(1)所述石膏物料干燥前先进行打散,然后进行气流干燥。
  18. 根据权利要求13所述的方法,其中,步骤(1)所述干燥后,石膏物料温度为60~80℃。
  19. 根据权利要求13所述的方法,其中,步骤(1)所述干燥后,石膏物料的游离水含量不大于1wt%。
  20. 根据权利要求13所述的方法,其中,步骤(1)所述流化反应在流化反应器内进行。
  21. 根据权利要求13所述的方法,其中,步骤(1)所述流化反应的温度为130~160℃。
  22. 根据权利要求13所述的方法,其中,步骤(1)所述流化反应的时间为20~30min。
  23. 根据权利要求13所述的方法,其中,步骤(2)所述旋流反应在旋流反应器内进行。
  24. 根据权利要求13所述的方法,其中,步骤(2)所述旋流反应的温度为500~600℃。
  25. 根据权利要求13所述的方法,其中,步骤(2)所述旋流反应器的时间为40~60min。
  26. 根据权利要求13所述的方法,其中,步骤(2)所述旋流反应所需热量由热风炉提供。
  27. 根据权利要求26所述的方法,其中,所述热风炉的出口气体温度为750~850℃。
  28. 根据权利要求13所述的方法,其中,步骤(3)所述冷却包括三级冷却,依次在第一冷却塔、搅龙式冷却器和第二冷却塔内进行。
  29. 根据权利要求28所述的方法,其中,步骤(3)所述冷却前,Ⅱ型无水石膏的温度为450℃以上,一级冷却后物料温度为240~300℃。
  30. 根据权利要求28所述的方法,其中,一级冷却所用介质为空气,加热后的空气进入热风炉,与燃料燃烧后依次为旋流反应、流化反应供热。
  31. 根据权利要求28所述的方法,其中,二级冷却后物料温度为130~160℃。
  32. 根据权利要求28所述的方法,其中,二级冷却所用介质为水,加热后形成蒸汽。
  33. 根据权利要求28所述的方法,其中,三级冷却后物料温度为40~60℃。
  34. 根据权利要求28所述的方法,其中,三级冷却所用介质为空气,再经流化反应器排出气和/或二级冷却后的蒸汽加热后为步骤(1)所述干燥供热。
PCT/CN2020/113702 2019-11-25 2020-09-07 一种ⅱ型无水石膏热耦合生产装置及方法 WO2021103736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911165525.X 2019-11-25
CN201911165525.XA CN110803876B (zh) 2019-11-25 2019-11-25 一种ⅱ型无水石膏热耦合生产装置及方法

Publications (1)

Publication Number Publication Date
WO2021103736A1 true WO2021103736A1 (zh) 2021-06-03

Family

ID=69491312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113702 WO2021103736A1 (zh) 2019-11-25 2020-09-07 一种ⅱ型无水石膏热耦合生产装置及方法

Country Status (2)

Country Link
CN (1) CN110803876B (zh)
WO (1) WO2021103736A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110803876B (zh) * 2019-11-25 2020-09-18 江苏一夫科技股份有限公司 一种ⅱ型无水石膏热耦合生产装置及方法
CN112266190B (zh) * 2020-10-30 2022-06-28 辽宁东大粉体工程技术有限公司 利用工业副产石膏生产自激发ii型无水石膏的装置与方法
CN114804682B (zh) * 2021-01-21 2024-04-12 中山嘉珂环保科技有限公司 一种石膏节能环保煅烧系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196034A (zh) * 1995-08-15 1998-10-14 美国石膏公司 多级煅烧石膏生产硬石膏产品的方法和系统
CN1729046A (zh) * 2002-12-23 2006-02-01 奥托昆普技术公司 在流化床内热处理的方法与装置
JP2006321663A (ja) * 2005-05-17 2006-11-30 Tadano Ltd 半水石膏の製造装置及び半水石膏の連続的製造方法
CN201367394Y (zh) * 2009-01-20 2009-12-23 北新集团建材股份有限公司 一种气流脱硫石膏煅烧系统
EP2163532A1 (de) * 2008-09-11 2010-03-17 Claudius Peters Technologies GmbH Verfahren und Anlage zur Herstellung von Hartgips
CN101781097A (zh) * 2009-01-16 2010-07-21 北新集团建材股份有限公司 一种气流脱硫石膏煅烧系统
CN110803876A (zh) * 2019-11-25 2020-02-18 江苏一夫科技股份有限公司 一种ⅱ型无水石膏热耦合生产装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115699A1 (de) * 1991-05-14 1992-11-19 Krupp Polysius Ag Verfahren und anlage zur herstellung von anhydrit-fliessestrichgips
US7765813B2 (en) * 2004-07-15 2010-08-03 United States Gypsum Company Apparatus and process for cooling and de-steaming calcined stucco
CN2782675Y (zh) * 2005-04-26 2006-05-24 崔霞 一种石膏焙烧炉的流化台结构
CN100497230C (zh) * 2006-09-05 2009-06-10 山东天力干燥设备有限公司 连续式间接加热的脱硫石膏流化床及其干燥煅烧工艺
DE102008020600B4 (de) * 2008-04-24 2010-11-18 Outotec Oyj Verfahren und Anlage zur Wärmebehandlung feinkörniger mineralischer Feststoffe
CN104261708B (zh) * 2014-09-24 2016-02-10 安徽晋马环保节能科技有限公司 一种节能型化学石膏烘干与煅烧系统
CN108569853B (zh) * 2018-07-19 2023-10-31 西安建筑科技大学 一种工业副产石膏脱水系统与工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196034A (zh) * 1995-08-15 1998-10-14 美国石膏公司 多级煅烧石膏生产硬石膏产品的方法和系统
CN1729046A (zh) * 2002-12-23 2006-02-01 奥托昆普技术公司 在流化床内热处理的方法与装置
JP2006321663A (ja) * 2005-05-17 2006-11-30 Tadano Ltd 半水石膏の製造装置及び半水石膏の連続的製造方法
EP2163532A1 (de) * 2008-09-11 2010-03-17 Claudius Peters Technologies GmbH Verfahren und Anlage zur Herstellung von Hartgips
CN101781097A (zh) * 2009-01-16 2010-07-21 北新集团建材股份有限公司 一种气流脱硫石膏煅烧系统
CN201367394Y (zh) * 2009-01-20 2009-12-23 北新集团建材股份有限公司 一种气流脱硫石膏煅烧系统
CN110803876A (zh) * 2019-11-25 2020-02-18 江苏一夫科技股份有限公司 一种ⅱ型无水石膏热耦合生产装置及方法

Also Published As

Publication number Publication date
CN110803876A (zh) 2020-02-18
CN110803876B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2021103736A1 (zh) 一种ⅱ型无水石膏热耦合生产装置及方法
CN110498622B (zh) 一种粉体多级悬浮预热窑外分解煅烧氧化钙的方法
CN104555946B (zh) 由硫磺气体还原石膏制硫酸联产水泥熟料的方法
CN110803877B (zh) 一种由脱硫石膏生产ii型无水石膏的装置及方法
CN103387347A (zh) 煅烧石灰石生产活性石灰粉的方法和装置
CN101318632B (zh) 以悬浮态分解磷石膏制备硫酸联产石灰的方法
CN112897542B (zh) 一种用于高岭土低温快速煅烧改性的工艺及装置
CN108751244B (zh) 一种结晶铝盐焙烧制备工业级氧化铝的集成装置
CN114524631B (zh) 一种基于水泥熟料烧成系统改造的高岭土悬浮煅烧系统
CN106396432B (zh) 一种制浆造纸白泥回收活性石灰的方法
CN112939002B (zh) 一种可灵活调节的高活性偏高岭土制备系统及制备方法
WO2021068499A1 (zh) 一种无水石膏制备系统
CN101955166B (zh) 半水磷石膏的分解方法
CN112551925B (zh) 一种石膏原料综合利用的装置和方法
CN101172583B (zh) 一种湿硫酸钙生产硫酸和水泥熟料的工艺
CN212504610U (zh) 烟气自循环热解制备轻烧氧化镁并富集二氧化碳的装置
CN111777340B (zh) 烟气自循环热解制备轻烧氧化镁并富集二氧化碳的装置
CN112266190B (zh) 利用工业副产石膏生产自激发ii型无水石膏的装置与方法
CN108910836A (zh) 一种石膏制硫酸联产石灰的工艺及装置
WO2002018270A1 (fr) Procede de decomposition du gypse en dioxyde de soufre
CN210945395U (zh) 一种由脱硫石膏生产ii型无水石膏的装置
CN206266444U (zh) 悬浮闪速制备高活性轻烧氧化镁成套装置
CN114772559A (zh) 一种磷石膏制备硫酸联产水泥的分离式双系统和生产方法
CN212640307U (zh) 一种兼具轻烧氧化镁制备和二氧化碳收集的装置
CN110885064B (zh) 一种硫酸钙生产水泥熟料和硫酸的系统及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891587

Country of ref document: EP

Kind code of ref document: A1