WO2021103665A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2021103665A1
WO2021103665A1 PCT/CN2020/109817 CN2020109817W WO2021103665A1 WO 2021103665 A1 WO2021103665 A1 WO 2021103665A1 CN 2020109817 W CN2020109817 W CN 2020109817W WO 2021103665 A1 WO2021103665 A1 WO 2021103665A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal line
display panel
emitting
area
Prior art date
Application number
PCT/CN2020/109817
Other languages
English (en)
French (fr)
Inventor
秦旭
王欢
张露
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2021103665A1 publication Critical patent/WO2021103665A1/zh
Priority to US17/519,037 priority Critical patent/US20220058366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0456Pixel structures with a reflective area and a transmissive area combined in one pixel, such as in transflectance pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers

Definitions

  • the embodiments of the present application relate to the field of display technology, such as a display panel and a display device.
  • the present application provides a display panel and a display device, which increase the light transmittance of the display module, increase the light collection amount of the fingerprint identification module, and at the same time improve the abnormal situation of fingerprint capture, thereby improving the performance of the fingerprint identification module.
  • the sensitivity and success rate of fingerprint recognition is provided.
  • an embodiment of the present application provides a display panel, including:
  • a display module includes an array substrate and a plurality of light-emitting units located on the array substrate, each of the plurality of light-emitting units includes an electrode, the array substrate includes a plurality of pixel drive circuits, the light-emitting unit The electrode in the corresponding pixel drive circuit is electrically connected at a potential connection point, the display module includes a plurality of light-transmitting areas, and the light-transmitting areas are located on the array substrate;
  • the fingerprint identification module is located on the side of the array substrate away from the light-emitting unit, the fingerprint identification module is configured to pass through the light-transmitting area of the display module after being reflected by the touch body The light irradiated to the fingerprint identification module performs fingerprint identification;
  • the light-transmitting area of the display module includes a plurality of first light-transmitting areas, and the area of each of the first light-transmitting areas is greater than or equal to 2.5% of the area occupied by a pixel unit, along a line perpendicular to the display panel.
  • the first light-transmitting area is arranged adjacent to the potential connection point.
  • an embodiment of the present application also provides a display device, including the display panel as in the first aspect.
  • the embodiments of the application provide a display panel and a display device.
  • the display panel includes a display module and a fingerprint recognition module.
  • the display module includes an array substrate and a plurality of light-emitting units on the array substrate.
  • the array substrate includes a plurality of pixel drivers. Circuit, the reflective electrode in the light-emitting unit is electrically connected to the corresponding pixel drive circuit at the potential connection point, the fingerprint recognition module is located on the side of the array substrate away from the light-emitting unit, and the fingerprint recognition module is set to pass through after being reflected by the touch body
  • the light transmitting area of the display module is irradiated to the light of the fingerprint recognition module for fingerprint recognition.
  • the light transmitting area of the display module includes a plurality of first light transmitting areas, and the area of each first light transmitting area is greater than or equal to one light emitting area.
  • the unit occupies 2.5% of the area, and along the direction perpendicular to the display panel, the first light-transmitting area is arranged adjacent to the electrical connection point, which increases the light transmittance of the display module and improves the light collection amount of the fingerprint recognition module.
  • the abnormal situation of fingerprint capture is improved, and the sensitivity and success rate of fingerprint recognition by the fingerprint recognition module are improved.
  • FIG. 1 is a schematic diagram of a top view structure of a display panel adopted in the related art
  • FIG. 2 is a schematic diagram of a top view structure of a display panel provided by an embodiment of the application.
  • FIG. 3 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a top view structure of a reflective electrode in a light-emitting unit provided by an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a pixel driving circuit provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a top view structure of another display panel adopted in the related art.
  • FIG. 7 is a schematic diagram of a top view structure of another display panel provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a top view structure of a reference signal line provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a top view structure of a display panel adopted in the related art.
  • FIG. 10 is a schematic top view of a structure of a display device according to an embodiment of the application.
  • a display panel with fingerprint recognition function generally has a fingerprint recognition module arranged below the display module, and the light emitted by the light source is reflected by the touch body and then passes through the display module and is then received by the fingerprint recognition module below the display module. Receiving, the display panel realizes the fingerprint recognition function.
  • the display module includes a metal layer and other opaque structures. Affected by the transmittance of the screen, the success rate of image acquisition and recognition does not meet the same requirements as traditional fingerprint modules.
  • FIG. 1 is a schematic diagram of a top view structure of a display panel adopted in the related art.
  • the black areas in Fig. 1 are all metal opaque structures 10.
  • the area of the light-transmitting area in the display module has little difference, that is, the slightly larger light-transmitting hole and the light-transmitting hole in the display module
  • the size of the smaller light-transmitting hole is not much different, that is, the size of the hole without the black structure in Figure 1 is close.
  • the slightly larger light-transmitting hole will produce the main order diffraction spot, which is slightly smaller.
  • the light-transmitting hole of the display module will form a secondary diffraction spot.
  • the fingerprint recognition module will collect the primary and secondary diffraction at the same time.
  • the secondary diffraction spot forms a reflection stack of light intensity at the edge of the prism.
  • the secondary light intensity exceeds the primary light intensity, it will cause abnormal fingerprint capture and affect the sensitivity of the display panel to realize the fingerprint recognition function. And success rate.
  • a first light-transmitting area with a larger area in the display module is formed in the vicinity of the position where the reflective electrode of the light-emitting unit is electrically connected to the corresponding pixel drive circuit, that is, a large light-transmitting hole in the display module is formed.
  • the reflective electrode in the embodiment of the present application may be an anode or a cathode, which is not limited in the present application.
  • the display panel includes a display module 1 and a fingerprint recognition module 5.
  • the display module 1 includes an array substrate 2 and a plurality of light-emitting units 3 located on the array substrate 2.
  • the electrode 31, the array substrate 2 includes a plurality of pixel driving circuits 6, the reflective electrode 31 in the light-emitting unit 3 and the corresponding pixel driving circuit 6 are electrically connected at the potential connection point A, and the display module 1 includes a plurality of light-transmitting regions.
  • the light area is located on the array substrate 2 in FIG. 2 corresponding to the larger area of the black area of the reflective electrode 31 shown in FIG. 4, including the reflective electrode 31 in the light-emitting unit 3, wherein the reflective electrode has high reflectivity to light ⁇ electrode.
  • the pixel driving circuit 6 and the light-emitting unit 3 are arranged in a one-to-one correspondence, the pixel driving circuit 6 provides a driving current to the corresponding light-emitting unit 3, and the light-emitting unit 3 emits light in response to the driving current.
  • the light-emitting unit 3 may be, for example, an organic light-emitting element.
  • the electrode 31 may be the anode of an organic light-emitting element.
  • the pixel drive circuit 6 is electrically connected to the reflective electrode 31 in the corresponding light-emitting unit 3 through a via hole. The position of the via hole is the reflective electrode 31 in the light-emitting unit 3 and the corresponding pixel drive circuit.
  • the pixel driving circuit 6 outputs a driving current to the reflective electrode 31 in the corresponding light-emitting unit 3 through the potential connection point A.
  • the fingerprint recognition module 5 is located on the side of the array substrate 2 away from the light-emitting unit 3.
  • the area of the display module 1 that is not blocked by the metal opaque structure 10 is the light-transmitting area of the display module 1 ,
  • the black areas in FIG. 2 are all metal opaque structures 10, and the fingerprint recognition module 5 is configured to perform fingerprints based on the light that is irradiated to the fingerprint recognition module 5 from the light transmitting area of the transparent display module 1 after being reflected by the touch body 4 Recognition.
  • the touch body 4 is usually a finger, and the fingerprint is composed of a series of ridges 41 and valleys 42 on the skin surface of the fingertips. Because the distances between the ridges 41 and valleys 42 and the fingerprint identification module 5 are different, the fingerprint identification module 5 receives The intensity of the light reflected by the ridge 41 and the valley 42 is different, so that the magnitude of the current signal converted from the reflected light formed at the position of the ridge 41 and the reflected light formed at the position of the valley 42 is different, and the magnitude of the current signal can be Perform fingerprint recognition. It should be noted that the touch body 4 may also be a palm or the like, that is, palm prints may also be used to realize the function of detection and recognition.
  • the light-transmitting area of the display module 1 includes a plurality of first light-transmitting areas D, and the area of each first light-transmitting area D is greater than or equal to 2.5% of the area occupied by a pixel unit. In the direction perpendicular to the display panel, the first light-transmitting area D is arranged adjacent to the potential connection point A.
  • a pixel unit includes a light-emitting unit 3 and a pixel drive circuit 6 corresponding to the light-emitting unit 3.
  • the area occupied by a pixel unit is the reflective electrode 31 in the light-emitting unit 3, the transistor and the capacitor in the pixel drive circuit 6
  • the area of the vertical projection of the structure along the direction perpendicular to the display panel, and the area of the overlapping area of the vertical projection is calculated only once. For example, by moving the reflective electrode 31 of the light-emitting unit 3 near the aforementioned potential connection point A and part of the structure in the pixel drive circuit 6, the overlapping area of the reflective electrode 31 of the light-emitting unit 3 and part of the structure in the pixel drive circuit 6 can be increased.
  • the area of the first light-transmitting area D is greater than or equal to 2.5% of the area occupied by a pixel unit, and is arranged in a direction perpendicular to the display panel.
  • the first light-transmitting area D is adjacent to the reflective electrode 31 of the light-emitting unit 3 and the light-emitting
  • the position of the potential connection point A of the pixel drive circuit 6 corresponding to the unit 3 is set, so that the area adjacent to the position where the reflective electrode 31 of the light-emitting unit 3 is electrically connected to the corresponding pixel drive circuit 6 forms a larger area in the display module 1
  • the first light-transmitting area D of the display module 1 is formed with a large hole capable of transmitting light, which increases the light-transmitting area, increases the light transmittance of the display module 1, and increases the light collection amount of the fingerprint recognition module 5. , Thereby improving the sensitivity and success rate of fingerprint identification by the fingerprint identification module 5.
  • the embodiment of the present application sets the area of the first light-transmitting area D to be greater than or equal to 2.5% of the area occupied by a pixel unit, which increases the number of large holes in the display module 1 or the display module
  • the small hole here can be defined as a hole whose area is less than 35% of the maximum hole area, or is exemplary.
  • the opposite side A hole with a minimum distance of less than 1.5 ⁇ m is regarded as a slit in the display module 1, and the slit is not conducive to image collection.
  • the area of the first light-transmitting area D is set to be greater than or equal to 2.5% of the area occupied by a pixel unit, which increases the difference in size between the large hole set for main light transmission and the small hole set for auxiliary light transmission , It also improves the fingerprint recognition module 5, which is caused by the small difference in the size of the large and small holes in the display module 1, will collect the primary and secondary diffraction spots at the same time, and the secondary diffraction spots will form a light reflection at the edge of the prism. Superimposed, when the secondary light intensity exceeds the primary light intensity, the fingerprint capture is abnormal, which improves the sensitivity and success rate of the fingerprint recognition function of the display panel.
  • the array substrate 2 is provided with one scanning signal line 7 and one light-emitting signal line 8 corresponding to each row of light-emitting units 3, along the column direction YY' in which the light-emitting units 3 are arranged, and the first light-transmitting area D is located between the adjacent rows of light-emitting units 3, for example, the scanning signal lines 7 and the light-emitting signal lines 8 corresponding to the first row of light-emitting units 33 and the second row of light-emitting units 32 in FIG.
  • One row of light-emitting units 3 corresponds to one row at a time, for example, every three horizontal wires correspond to one row of light-emitting units, and the three wires are the scan signal line, the reference signal line, and the light-emitting signal line in order from top to bottom.
  • FIG. 5 is a schematic structural diagram of a pixel driving circuit provided by an embodiment of the application. 2 to 4 and 5, the light-emitting unit 3 and the pixel drive circuit 6 are arranged in a one-to-one correspondence.
  • the pixel drive circuit 6 may be, for example, the pixel drive circuit 6 of the 7T1C structure shown in FIG. 5, that is, the pixel drive circuit 6 includes 7 With a transistor and a capacitor structure, the working principle of the 7T1C pixel driving circuit 6 is well known to those skilled in the art, and will not be repeated here.
  • the pixel drive circuit 6 of the 7T1C structure is connected to the scanning signals Sn and Sn-1 of two adjacent rows, and the light-emitting signal EM of the row is connected.
  • the same node of the pixel drive circuit 6 of each row is connected to the same scanning signal line 7 and
  • the same light-emitting signal line 8 that is, the array substrate 2 is provided with one scanning signal line 7 and one light-emitting signal line 8 for each row of light-emitting units 3.
  • the scanning signals Sn and Sn-1 are completely the same scanning signals. Both of them come from the same scanning signal line 7.
  • the scanning signals Sn and Sn-1 of the array substrate 2 corresponding to each row of light-emitting units 3 come from one scanning signal of the array substrate 2 corresponding to each row of light-emitting units 3 Line 7.
  • the first light-transmitting area D may be disposed between the scan signal line 7 and the light-emitting signal line 8 corresponding to the closest row of the light-emitting units 3. Exemplarily, as shown in FIG.
  • the light-emitting signal line 8 corresponding to each row of light-emitting units 3 in the array substrate 2 may be located below the scan signal line 7 corresponding to the row of light-emitting units 3, and the first light-transmitting area D is located In the array substrate 2, between the light-emitting signal lines 8 provided corresponding to a certain row of light-emitting units 33 and the scanning signal lines 7 provided corresponding to the next row of light-emitting units 32.
  • the embodiment of the present application is arranged along the column direction YY' of the light-emitting units 3, the first light-transmitting area D is arranged between the scanning signal line 7 and the light-emitting signal line 8 corresponding to the nearest row of the light-emitting units 3, and the array substrate 2 Correspondingly, the area between the light-emitting signal line 8 and the scanning signal line 7 that is the closest to the adjacent row of light-emitting units 3 does not have a large-area capacitor structure, which can meet the wiring requirements in the array substrate 2 without being affected by the circuit structure.
  • the first light-transmitting area D with a larger area is formed between the scanning signal line 7 and the light-emitting signal line 8 corresponding to the nearest row of the light-emitting units 3, which reduces the area where the display module 1 has a larger area.
  • FIG. 5 only exemplarily takes the pixel driving circuit 6 of the 7T1C structure as an example for description, and the embodiment of the present application does not limit the number of transistors and capacitors in the pixel driving circuit 6.
  • the scan signal line 7 and the light-emitting signal line 8 that are closest to each other can be arranged in the same layer, that is, the aforementioned scan signal line 7 and the light-emitting signal line 8 are located on the same layer in the array substrate 2.
  • the minimum distance between the scanning signal line 7 and the light-emitting signal line 8 corresponding to the adjacent row of light-emitting units 3 can be set to be greater than Or equal to 3 ⁇ m, and less than or equal to 4 ⁇ m, while considering whether the aforementioned scanning signal lines and light-emitting signal lines arranged in the same layer will cause interference or short-circuit problems with the surrounding wiring, and between the aforementioned scanning signal lines and light-emitting signal lines arranged in the same layer Whether there will be signal crosstalk, and the aforementioned scanning signal line and the line width of the light-emitting signal line itself to ensure that there is no disconnection and other factors, for example, consider the need to meet the need for the light-emitting signal line 8 to be located in the pixel drive circuit 6 where it is located.
  • the capacitor structure or transistor on the upper side does not interfere, and the scanning signal line 7 does not cause short-circuits with the devices and traces underneath it in the pixel drive circuit 6 where it is located, so as to maximize the number of adjacent rows.
  • the distance between the scanning signal line 7 and the light-emitting signal line 8 corresponding to the light-emitting unit 3 with the closest distance is reduced, and a larger area is formed between the scanning signal line 7 and the light-emitting signal line 8 corresponding to the light-emitting unit 3 in the adjacent row.
  • the difficulty of the first light-transmitting zone D is the difficulty of the first light-transmitting zone D.
  • the scan signal line 7 and the light-emitting signal line 8 that are closest to each other can also be arranged in different layers, that is, the aforementioned scan signal line 7 and the light-emitting signal line 8 are located in the array substrate 2 differently.
  • the minimum distance between the scan signal line 7 and the light emitting signal line 8 corresponding to the nearest row of light emitting units 3 in the orthographic projection perpendicular to the display panel direction is greater than or equal to 1.5 ⁇ m and less than or equal to 2 ⁇ m Similarly, consider whether the aforementioned scanning signal lines and light-emitting signal lines arranged in different layers will cause interference or short-circuit problems with the surrounding wiring, whether there will be signal crosstalk between the aforementioned scanning signal lines and light-emitting signal lines arranged in different layers, And the aforementioned scanning signal line and the line width of the light-emitting signal line itself to ensure that there is no disconnection and other factors, for example, consider the need to meet the needs of the light-emitting signal line 8 in the pixel driving circuit 6 where it is located and the capacitor structure located on the upper side or The transistor does not interfere, and the scanning signal line 7 is in the pixel driving circuit 6 where it is located, and the device and wiring below it are not short-circuited and other factors, to maximize the distance
  • three rows and two columns of light-emitting units are arranged corresponding to two rows and three columns of pixel drive circuits 6, that is, three rows and two columns of reflective electrodes 31 are arranged corresponding to two rows and three columns of pixel drive circuits 6.
  • the distribution area e of the circuit 6 is arranged at intervals of a set distance.
  • three rows and two columns of light-emitting units are provided corresponding to two rows and three columns of pixel drive circuits 6, that is, the area where three rows and two columns of light-emitting units 3 are provided is provided with two rows and three columns of pixel drive circuits 6.
  • the distribution area of the pixel drive circuit 6 is mainly concentrated in the dotted area e in FIG. 4, and the distribution area e of the pixel drive circuit 6 is the distribution area of the transistor and capacitor structures in the pixel drive circuit 6.
  • FIG. 6 is a schematic diagram of a top view structure of another display panel adopted in the related art. As shown in FIG. 6, three rows and two columns of light-emitting units are arranged corresponding to two rows and three columns of pixel drive circuits 6. The area occupied by the reflective electrodes 31 of the three rows and two columns of light-emitting units is the same as that of the two rows and three columns of pixel drive circuits 6.
  • the area occupied by the reflective electrodes 31 of the light-emitting units in three rows and two columns is approximately equal to 94.5*126, and the area occupied by the pixel drive circuits 6 in two rows and three columns is the same It is approximately equal to 94.5*126, which makes almost all the area in the display module occupied by the reflective electrode 31 of the light-emitting unit and the light-shielding structure in the pixel driving circuit 6, and it is difficult for the display module to form a large light-transmitting area.
  • the embodiment of the present application provides three rows and two columns of light-emitting units 3 corresponding to two rows and three columns of pixel drive circuits 6.
  • the distribution area e of the pixel drive circuits 6 is set at an interval setting distance, which reduces The area occupied by the pixel drive circuit 6, that is, the distribution of transistors and capacitors in the pixel drive circuit 6 is more compact, or the overlap area of the pixel drive circuit 6 and the reflective electrode 31 of the light-emitting unit 3 is increased, so that the distribution area of the pixel drive circuit 6 e Set the distance at intervals to provide a space for the first light-transmitting area D domain with a larger area in the display module 1 to reduce the scanning signal line 7 and the light-emitting signal line corresponding to the closest row of the light-emitting unit 3 in the adjacent row. It is difficult to form the first light-transmitting area D with a larger area between 8.
  • FIG. 7 is a schematic top view of another display panel according to an embodiment of the application. As shown in FIG. 7, on the basis of the above embodiment, a reference signal line 9 is further provided in the array substrate 2.
  • FIG. 8 is a schematic top view of a reference signal line provided by an embodiment of the application, in conjunction with FIGS. 2 to In FIGS. 4 and 5 to 8, the pixel driving circuits 6 corresponding to the light-emitting units 3 in two adjacent rows and located in adjacent columns share a reference signal line 9.
  • FIG. 9 is a schematic diagram of a top view structure of a display panel adopted in the related art.
  • the pixel driving circuits corresponding to the same column of light-emitting units share the same reference signal line 9, that is, the reference signal line 9 extends along the column direction YY' in which the light-emitting units 3 are arranged, so that the adjacent rows of light-emitting units in the display module It is inevitable that the reference signal line 9 appears in the area F between the scan signal line 7 and the light-emitting signal line 8 with the closest distance.
  • the reference signal line 9 is also an opaque structure, which affects the display module to form a larger light-transmitting area.
  • the embodiment of the present application provides that the pixel driving circuits 6 corresponding to the light-emitting units 3 in two adjacent rows and located in adjacent columns share a reference signal line 9, that is, adjacent columns in the upper and lower rows.
  • the pixel driving circuit 6 is misaligned and connected to the reference signal line 9, so that the reference signal line 9 forms a plurality of oblique traces 91.
  • the reference signal line 9 can be avoided as much as possible.
  • the area between the closest scan signal line 7 and the light emitting signal line 8 corresponding to the adjacent row of light-emitting units 3 is routed, which is beneficial to the scan signal corresponding to the closest row of light-emitting units 3 in the adjacent row.
  • the first light-transmitting area D with a larger area is formed between the line 7 and the light-emitting signal line 8, so that a larger area is formed between the scanning signal line 7 and the light-emitting signal line 8 corresponding to the closest row of the light-emitting unit 3
  • the difficulty of the first light transmission zone D is the difficulty of the first light transmission zone D.
  • the array substrate 2 further includes a first power signal line 100 and a data signal line 110 extending along the column direction YY' in which the light emitting units 3 are arranged.
  • the reference signal line 9 overlaps with at least one of the first power signal line 100 and the data signal line 110. It should be noted that the overlap of the two signal lines indicates that the two signal lines are arranged in different layers.
  • the reference signal line 9 may overlap the first power signal line 100 (in this case, the reference signal line 9 and the first power signal line 100 are arranged in different layers), It may also overlap with the data signal line 110 (in this case, the reference signal line 9 and the data signal line 110 are arranged in different layers), or overlap with the first power signal line 100 and the data signal line 110 at the same time ( In this case, the reference signal line 9 and the first power signal line 100 are arranged in different layers, and the reference signal line 9 and the data signal line 110 are arranged in different layers, so as to increase the reference signal line 9 and the first power source that is originally shaded.
  • the overlapping area of the signal line 100 or the data signal line 110 is beneficial to reduce the light-shielding area occupied by the pixel driving circuit 6 and thereby form a larger area of the first light-transmitting area D domain in the display module 1.
  • the fingerprint identification module 5 includes a plurality of fingerprint identification units 51, the fingerprint identification unit 51 includes a photosensitive area, along the direction perpendicular to the display panel, the photosensitive area covers the corresponding first light transmission area D.
  • the fingerprint recognition unit 51 may be a fingerprint recognition sensor, and the fingerprint recognition unit 51 may include a photodiode.
  • the photodiode is configured to convert the light reflected by the touch body 4 into a current signal, and the photodiode is provided with anode-intrinsic-cathode (Positive-Intrinsic-Negative, PIN) junction.
  • the PIN junction has photosensitive characteristics and unidirectional conductivity.
  • the PIN junction In the absence of light, the PIN junction has a small saturated reverse leakage current, that is, dark current. At this time, the photosensitive The diode is off. In the case of exposure to light, the saturated reverse leakage current of the PIN junction greatly increases, forming a photocurrent, which changes with the intensity of the incident light. In this way, the photosensitive diode is the photosensitive module of the fingerprint recognition unit 51, and the area where the photosensitive diode is located is the photosensitive area of the fingerprint recognition unit 51.
  • the photosensitive area is set to cover the corresponding first light-transmitting area D, so that The light irradiated through the light-transmitting area of the display module 1 after being reflected by the touch body 4 can accurately illuminate the photosensitive area of the corresponding fingerprint recognition unit 51, increasing the amount of light collected by the fingerprint recognition unit 51, thereby improving the fingerprint recognition process Sensitivity and success rate.
  • the light emitting unit 3 provides a light source for the fingerprint recognition module 5, and the fingerprint recognition module 5 is configured to transmit light emitted by the light emitting unit 3 through the display module 1 after being reflected by the touch body 4 The light irradiated to the fingerprint identification module 5 is performed for fingerprint identification.
  • the light-emitting unit 3 may provide a light source for the fingerprint recognition module 5, and the fingerprint recognition module 5 is configured to reflect the light emitted by the light-emitting unit 3 through the light-transmitting area of the display module 1 and irradiate it to the fingerprint recognition after being reflected by the touch body 4.
  • the light of the module 5 performs fingerprint identification.
  • the display panel may be an organic light-emitting display panel
  • the light-emitting unit 3 may be an organic light-emitting element
  • the fingerprint recognition module 5 may perform fingerprint recognition according to the light emitted by the organic light-emitting element and reflected by the touch body 4 to the fingerprint recognition module 5, as shown in FIG.
  • the solid line shown in 3 represents the light. It should be noted that FIG.
  • the embodiment of the present application does not limit the relative position of the organic light-emitting element and the fingerprint recognition unit 51, as long as the organic light-emitting element is guaranteed to emit It suffices that the light of ⁇ can be reflected to the fingerprint identification unit 51 through the touch body 4.
  • the fingerprint recognition module 5 includes a substrate 52 and a plurality of fingerprint recognition units 51 located on the substrate 52, and a fingerprint recognition light source 12 located on the side of the substrate 52 away from the fingerprint recognition unit 51, fingerprint recognition
  • the light emitted by the light source 12 is irradiated to the touch body 4 through the gap between the two adjacent fingerprint recognition units 51, and the fingerprint recognition unit 51 is configured to reflect the light emitted by the fingerprint recognition light source 12 through the touch body 4 and then pass through the display module 1.
  • the light transmitted from the light-transmitting area irradiates the light on the fingerprint identification module 5 for fingerprint identification.
  • the fingerprint recognition light source 12 is located on the side of the substrate 52 away from the fingerprint recognition unit 51, and the fingerprint recognition unit 51 can reflect the light emitted by the fingerprint recognition light source 12 to the fingerprint recognition unit 51 via the touch body 4 to perform fingerprint recognition, as shown in FIG.
  • the light indicated by the dotted line shown in 3, the light emitted by the fingerprint recognition light source 12, is irradiated to the touch body 4 through the gap between two adjacent fingerprint recognition units 51.
  • the embodiment of the present application does not limit the position of the fingerprint recognition light source 12, as long as it is ensured that the light emitted by the fingerprint recognition light source 12 can be reflected to the fingerprint recognition unit 51 via the touch body 4.
  • the light indicated by the solid and dashed lines shown in FIG. 3 is only an example of a certain light emitted by the organic light-emitting element and the fingerprint recognition light source 12, and the light emitted by the organic light-emitting unit 3 and the fingerprint recognition light source 12 can be used. It is divergent.
  • FIG. 10 is a schematic diagram of a top view structure of a display device provided by an embodiment of the present application.
  • the display device 200 includes the display panel 190 of the foregoing embodiment.
  • the display device 200 may be an Organic Light Emitting Diode (OLED) display device, a Micro Light Emitting Diode (Micro LED) display device, etc.
  • the display device may include terminal devices such as mobile phones and computers.

Abstract

本申请公开了一种显示面板及显示装置,显示面板包括显示模组,显示模组包括阵列基板以及位于阵列基板上的多个发光单元,,多个发光单元均包括电极,发光单元中的反射电极与对应的像素驱动电路在电位连接点处电连接,显示模组包括多个透光区,透光区位于阵列基板上;指纹识别模组,指纹识别模组位于阵列基板远离发光单元的一侧,指纹识别模组设置为根据经由触摸主体反射后透过显示模组的透光区照射至指纹识别模组的光线进行指纹识别;显示模组的透光区包括多个第一透光区,每个第一透光区的面积大于或等于一个像素单元所占面积的2.5%,沿垂直于显示面板的方向,第一透光区对应电位连接点设置。

Description

显示面板及显示装置
本申请要求在2019年11月29日提交中国专利局、申请号为201911205659.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,例如一种显示面板及显示装置。
背景技术
随着指纹采集技术的不断发展,目前手机等电子设备已经能够支持屏下指纹识别功能,但受到屏体透过率的影响,图像采集识别的成功率还达不到传统的指纹模组的同等要求。
另外,在显示模组中的稍大的透光孔和稍小的透光孔的尺寸差别不大的情况下,还会导致指纹的异常抓取,影响显示面板实现指纹识别功能的灵敏度和成功率。
发明内容
本申请提供一种显示面板及显示装置,增加了显示模组的透光率,提高了指纹识别模组的光采集量,同时改善了指纹抓取异常的情况,进而提高了指纹识别模组进行指纹识别的灵敏度和成功率。
第一方面,本申请实施例提供了一种显示面板,包括:
显示模组,所述显示模组包括阵列基板以及位于所述阵列基板上的多个发光单元,所述多个发光单元均包括电极,所述阵列基板包括多个像素驱动电路,所述发光单元中的电极与对应的所述像素驱动电路在电位连接点处电连接,所述显示模组包括多个透光区,所述透光区位于所述阵列基板上;
指纹识别模组,所述指纹识别模组位于所述阵列基板远离所述发光单元的一侧,所述指纹识别模组设置为根据经由触摸主体反射后透过所述显示模组的 透光区照射至所述指纹识别模组的光线进行指纹识别;
所述显示模组的透光区包括多个第一透光区,每个所述第一透光区的面积大于或等于一个像素单元所占面积的2.5%,沿垂直于所述显示面板的方向,所述第一透光区邻近所述电位连接点设置。
第二方面,本申请实施例还提供了一种显示装置,包括如第一方面的显示面板。
本申请实施例提供了一种显示面板及显示装置,显示面板包括显示模组和指纹识别模组,显示模组包括阵列基板以及位于阵列基板上的多个发光单元,阵列基板包括多个像素驱动电路,发光单元中的反射电极与对应的像素驱动电路在电位连接点处电连接,指纹识别模组位于阵列基板远离发光单元的一侧,指纹识别模组设置为根据经由触摸主体反射后透过显示模组的透光区照射至指纹识别模组的光线进行指纹识别,设置显示模组的透光区包括多个第一透光区,每个第一透光区的面积大于或等于一个发光单元所占面积的2.5%,且沿垂直于显示面板的方向,第一透光区邻近电连接点设置,增加了显示模组的透光率,提高了指纹识别模组的光采集量,同时改善了指纹抓取异常的情况,进而提高了指纹识别模组进行指纹识别的灵敏度和成功率。
附图说明
图1为相关技术采用的一种显示面板的俯视结构示意图;
图2为本申请一实施例提供的一种显示面板的俯视结构示意图;
图3为本申请一实施例提供的一种显示面板的剖面结构示意图;
图4为本申请一实施例提供的一种发光单元中反射电极的俯视结构示意图;
图5为本申请一实施例提供的一种像素驱动电路的结构示意图;
图6为相关技术采用的另一种显示面板的俯视结构示意图;
图7为本申请一实施例提供的另一种显示面板的俯视结构示意图;
图8为本申请一实施例提供的一种参考信号线的俯视结构示意图;
图9为相关技术采用的一种显示面板的俯视结构示意图;
图10为本申请一实施例提供的一种显示装置的俯视结构示意图。
具体实施方式
正如背景技术所述,具有指纹识别功能的显示面板一般将指纹识别模组设置于显示模组下方,光源发出的光经由触摸主体反射后穿过显示模组被显示模组下方的指纹识别模组接收,显示面板实现指纹识别功能,显示模组中包括金属层等不透光结构,受到屏体透过率的影响,图像采集识别的成功率还达不到传统的指纹模组的同等要求。图1为相关技术采用的一种显示面板的俯视结构示意图。图1中黑色区域均为金属不透光结构10,由此可见,相关技术中,显示模组中的透光区的面积大小差别不大,即显示模组中的稍大的透光孔和稍小的透光孔的尺寸差别不大,即图1中未设置黑色结构的孔的尺寸接近,在进行指纹图像采集的过程中,稍大的透光孔会产生主级衍射光斑,稍小的透光孔会形成次级衍射光斑,显示模组中的稍大的透光孔和稍小的透光孔的尺寸差别不大时,指纹识别模组会同时采集到主次一级的衍射光斑,在次级衍射光斑在棱镜边缘处形成光强的反射叠加,次级光强超过了主级光强的情况下,就会导致指纹的异常抓取,影响显示面板实现指纹识别功能的灵敏度和成功率。
本申请实施例在发光单元的反射电极与对应的像素驱动电路电连接的位置的邻近区域形成显示模组中面积较大的第一透光区,即形成显示模组中能够透光的大孔,增加了透光面积,增加了显示模组的透光率,提高了指纹识别模组的光采集量,进而提高了指纹识别模组进行指纹识别的灵敏度和成功率,且设置第一透光区的面积大于或等于一个像素单元所占面积的2.5%,增加了显示模组中大孔的数量或者增加了显示模组中大孔的尺寸,进而减少了显示模组中小孔的数量或者减小了显示模组中小孔的尺寸,进而增加了设置为主要透光的大孔与设置为辅助透光的小孔之间尺寸的差异,也就改善了指纹抓取异常的情况,提高了显示面板实现指纹识别功能的灵敏度和成功率,需要说明的是,本申请 实施例中的反射电极可以为阳极,也可以为阴极,本申请对此不做限定。
图2为本申请一实施例提供的一种显示面板的俯视结构示意图,图3为本申请一实施例提供的一种显示面板的剖面结构示意图,图4为本申请一实施例提供的一种发光单元中反射电极的俯视结构示意图。结合图2至图4,显示面板包括显示模组1和指纹识别模组5,显示模组1包括阵列基板2以及位于阵列基板2上的多个发光单元3,多个发光单元3均包括反射电极31,阵列基板2包括多个像素驱动电路6,发光单元3中的反射电极31与对应的像素驱动电路6在电位连接点A处电连接,显示模组1包括多个透光区,透光区位于阵列基板2上图2中对应图4所示反射电极31排布位置处的较大面积的黑色区域包括发光单元3中的反射电极31,其中,反射电极为对光具有高反射率的电极。
示例性的,像素驱动电路6与发光单元3一一对应设置,像素驱动电路6向对应的发光单元3提供驱动电流,发光单元3响应驱动电流发光,发光单元3例如可以为有机发光元件,反射电极31可以为有机发光元件的阳极,像素驱动电路6通过过孔与对应的发光单元3中的反射电极31电连接,过孔位置即为发光单元3中的反射电极31与对应的像素驱动电路6的电位连接点A,像素驱动电路6通过电位连接点A向对应的发光单元3中的反射电极31输出驱动电流。
结合图2至图4,设置指纹识别模组5位于阵列基板2远离发光单元3的一侧,显示模组1中未被金属不透光结构10遮挡的区域为显示模组1的透光区,图2中黑色区域均为金属不透光结构10,指纹识别模组5设置为根据经由触摸主体4反射后透光显示模组1的透光区照射至指纹识别模组5的光线进行指纹识别。
示例性的,触摸主体4通常为手指,指纹由位于指端皮肤表面的一系列脊41和谷42组成,由于脊41和谷42到指纹识别模组5的距离不同,指纹识别模组5接收到的脊41和谷42反射的光线强度不同,使得由在脊41的位置处形成的反射光和在谷42的位置处形成的反射光转换成的电流信号大小不同,进而根 据电流信号大小可以进行指纹识别。需要说明的是,触摸主体4也可以为手掌等,即也可以利用掌纹实现探测和识别的功能。
结合图2至图4,设置显示模组1的透光区包括多个第一透光区D,每个第一透光区D的面积大于或等于一个像素单元所占面积的2.5%,沿垂直于显示面板的方向,第一透光区D邻近电位连接点A设置,。
示例性的,一个像素单元包括发光单元3以及与该发光单元3对应的像素驱动电路6,一个像素单元所占面积即为发光单元3中的反射电极31、像素驱动电路6中的晶体管以及电容结构沿垂直于显示面板方向的垂直投影的面积,垂直投影存在交叠的区域的面积仅计算一次。例如可以通过移动前述电位连接点A附近的发光单元3的反射电极31以及像素驱动电路6中的部分结构,使得发光单元3的反射电极31以及像素驱动电路6中的部分结构的交叠面积增加,进而实现第一透光区D的面积大于或等于一个像素单元所占面积的2.5%,且设置沿垂直于显示面板的方向,第一透光区D邻近发光单元3的反射电极31与发光单元3对应的像素驱动电路6的电位连接点A的位置设置,这样,在发光单元3的反射电极31与对应的像素驱动电路6电连接的位置的邻近区域形成显示模组1中面积较大的第一透光区D,即显示模组1中形成能够透光的大孔,增加了透光面积,增加了显示模组1的透光率,提高了指纹识别模组5的光采集量,进而提高了指纹识别模组5进行指纹识别的灵敏度和成功率。
结合图2至图4,本申请实施例设置第一透光区D的面积大于或等于一个像素单元所占面积的2.5%,增加了显示模组1中大孔的数量或者说增加了显示模组1中大孔的尺寸,进而减少了显示模组1中小孔的数量(小孔合并成了大孔,因此增加了大孔数量的同时,小孔数量减少了)或者说减小了显示模组1中小孔的尺寸,这里的小孔可以定义为孔的面积不足最大孔面积35%的孔,或者是示例性的,在孔的形状为矩形或者平行四边形的情况下,将对边距离的最小值小于1.5μm的孔,认定为显示模组1中的狭缝,狭缝不利于图像的采集。本申请实施例设置第一透光区D的面积大于或等于一个像素单元所占面积的 2.5%,增加了设置为主要透光的大孔与设置为辅助透光的小孔之间尺寸的差异,也就改善了显示模组1中大小孔的尺寸差别不大导致的指纹识别模组5会同时采集到主次一级的衍射光斑,在次级衍射光斑在棱镜边缘处形成光强的反射叠加,次级光强超过了主级光强的情况下,指纹抓取异常的情况,提高了显示面板实现指纹识别功能的灵敏度和成功率。
可选地,结合图2至图4,阵列基板2对应每行发光单元3设置有一条扫描信号线7和一条发光信号线8,沿发光单元3排列的列方向YY’,第一透光区D位于相邻行发光单元3,例如图2中的第一行发光单元33和第二行发光单元32对应的距离最近的扫描信号线7和发光信号线8之间,图2中走线重复一次对应一行发光单元3,例如每三条横向走线对应一行发光单元,三条走线自上至下依次为扫描信号线、参考信号线和发光信号线。
图5为本申请一实施例提供的一种像素驱动电路的结构示意图。结合图2至图4以及图5,发光单元3与像素驱动电路6一一对应设置,像素驱动电路6例如可以为图5所示的7T1C结构的像素驱动电路6,即像素驱动电路6包括7个晶体管和一个电容结构,7T1C像素驱动电路6的工作原理为本领域技术人员熟知内容,这里不再赘述。
7T1C结构的像素驱动电路6接入相邻两行的扫描信号Sn和Sn-1,并接入所在行的发光信号EM,每行像素驱动电路6的相同节点接入同一条扫描信号线7和同一条发光信号线8,即阵列基板2对应每行发光单元3设置有一条扫描信号线7和一条发光信号线8,需要说明的是,扫描信号Sn和Sn-1是完全相同的扫描信号,两者均来自于同一条扫描信号线7,因此,阵列基板2对应每行发光单元3设置的扫描信号Sn和Sn-1,均来自于阵列基板2对应每行发光单元3设置的一条扫描信号线7。沿发光单元3排列的列方向YY’,第一透光区D可以设置于相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间。示例性地,如图2所示,可以设置阵列基板2中对应每行发光单元3的发光信号线8位于对应该行发光单元3的扫描信号线7的下方,则第一透光区D位于 阵列基板2中对应某一行发光单元33设置的发光信号线8与对应下一行发光单元32设置的扫描信号线7之间。
结合图2至图4以及图5,阵列基板2中对应同一行发光单元3的扫描信号线7和发光信号线8之间存在面积较大的电容结构C1,使得阵列基板2中对应同一行发光单元3的扫描信号线7和发光信号线8之间的空间很难形成大孔,即阵列基板2对应同一行发光单元3的扫描信号线7和发光信号线8之间的空间形成面积较大的透光区的难度较大。本申请实施例设置沿发光单元3排列的列方向YY’,第一透光区D设置于相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间,阵列基板2对应中对应相邻行发光单元3距离最近的发光信号线8和扫描信号线7之间的区域无面积较大的电容结构,可以在满足阵列基板2中布线要求的情况下,不受电路结构本身限制地在相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间形成面积较大的第一透光区D,降低了显示模组1形成面积较大的第一透光区D的难度。
需要说明的是,图5只是示例性地以7T1C结构的像素驱动电路6为例进行说明,本申请实施例对像素驱动电路6中晶体管以及电容的数量不作限定。
可选地,结合图2至图4以及图5,距离最近的扫描信号线7和发光信号线8可以同层设置,即前述扫描信号线7与发光信号线8位于阵列基板2中的同一层,例如可以与阵列基板2的像素驱动电路6中的晶体管栅极同层制作,则可以设置相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间的最小间距大于或等于3μm,且小于或等于4μm,同时考虑同层设置的前述扫描信号线以及发光信号线与周围走线是否会产生干涉或者短路问题、同层设置的前述扫描信号线与发光信号线之间是否会产生信号的串扰、以及前述扫描信号线以及发光信号线本身线宽以确保不会有断线情况存在等因素,例如考虑需要满足发光信号线8在其所在的像素驱动电路6中与位于其上侧的电容结构或者晶体管不产生干涉,扫描信号线7在其所在的像素驱动电路6中与位于其下方的器件以及走线不产生短路等因素的前提下,最大程度地增加相邻行发光单 元3对应的距离最近的扫描信号线7和发光信号线8之间的间距,降低在相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间形成面积较大的第一透光区D的难度。
可选地,结合图2至图4以及图5,距离最近的扫描信号线7和发光信号线8也可以异层设置,即前述扫描信号线7与发光信号线8位于阵列基板2中的不同层,则相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8在垂直于所述显示面板方向的正投影之间的最小间距大于或等于1.5μm,且小于或等于2μm,同样地,考虑异层设置的前述扫描信号线以及发光信号线与周围走线是否会产生干涉或者短路问题、异层设置的前述扫描信号线与发光信号线之间是否会产生信号的串扰、以及前述扫描信号线以及发光信号线本身线宽以确保不会有断线情况存在等因素,例如考虑需要满足发光信号线8在其所在的像素驱动电路6中与位于其上侧的电容结构或者晶体管不产生干涉,扫描信号线7在其所在的像素驱动电路6中与位于其下方的器件以及走线不产生短路等因素的前提下,最大程度增加相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间的间距,降低在相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间形成面积较大的第一透光区D的难度。
可选地,如图4所示,设置三行两列发光单元对应两行三列像素驱动电路6设置,即设置三行两列反射电极31对应两行三列像素驱动电路6设置,像素驱动电路6的分布区域e间隔设定距离设置。结合图2至图4以及图5,设置三行两列发光单元对应两行三列像素驱动电路6设置,即设置三行两列发光单元3所在区域设置有两行三列像素驱动电路6,像素驱动电路6分布区域主要集中在图4中的虚线区域e内,像素驱动电路6的分布区域e即为像素驱动电路6中晶体管以及电容结构的分布区域。
图6为相关技术采用的另一种显示面板的俯视结构示意图。如图6所示,三行两列发光单元对应两行三列像素驱动电路6设置,三行两列发光单元的反射电极31所占面积与两行三列像素驱动电路6所占面积相同,以像素密度 (Pixels Per Inch,PPI)为400左右的显示面板为例,三行两列发光单元的反射电极31所占面积约等于94.5*126,两行三列像素驱动电路6所占面积同样约等于94.5*126,这就使得显示模组中几乎全部区域均被发光单元的反射电极31以及像素驱动电路6中的遮光结构占据,很难使得显示模组形成面积较大的透光区域。
结合图2至图4以及图5,本申请实施例设置三行两列发光单元3对应两行三列像素驱动电路6设置,像素驱动电路6的分布区域e间隔设定距离设置,减小了像素驱动电路6所占面积,即像素驱动电路6中的晶体管和电容结构分布更紧凑,或者增加像素驱动电路6与发光单元3的反射电极31的交叠面积,使得像素驱动电路6的分布区域e间隔设定距离设置,为显示模组1中形成面积较大的第一透光区D域提供设置空间,降低在相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间形成面积较大的第一透光区D的难度。
图7为本申请一实施例提供的另一种显示面板的俯视结构示意图。如图7所示,在上述实施例的基础上,阵列基板2中还设置有参考信号线9,图8为本申请一实施例提供的一种参考信号线的俯视结构示意图,结合图2至图4以及图5至图8,相邻两行且位于相邻列的发光单元3对应的像素驱动电路6共用一条参考信号线9。
图9为相关技术采用的一种显示面板的俯视结构示意图。如图9所示,同一列发光单元对应的像素驱动电路共用同一条参考信号线9,即参考信号线9沿发光单3排列的列方向YY’延伸,使得显示模组中相邻行发光单元中距离最近的扫描信号线7和发光信号线8之间区域F难以避免地出现参考信号线9,参考信号线9同样为不透光结构,影响显示模组形成面积较大的透光区域。
结合图2至图4以及图5至图8,本申请实施例设置相邻两行且位于相邻列的发光单元3对应的像素驱动电路6共用一条参考信号线9,即上下行相邻列的像素驱动电路6错位连接参考信号线9,使得参考信号线9形成多段斜向走线 91,通过调整参考信号线9上斜向走线91的倾斜角度能够使得参考信号线9尽可能地避开显示模组1中相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间的区域进行走线,有利于在相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间形成面积较大的第一透光区D,降低在相邻行发光单元3对应的距离最近的扫描信号线7和发光信号线8之间形成面积较大的第一透光区D的难度。
可选地,结合图2至图4以及图5至图8,阵列基板2中还包括沿发光单元3排列的列方向YY’延伸的第一电源信号线100和数据信号线110,沿垂直于显示面板的方向,参考信号线9与第一电源信号线100和数据信号线110中的至少之一存在交叠。需要说明的是,两条信号线存在交叠,说明这两条信号线异层设置。示例性的,沿垂直于显示面板的方向,参考信号线9可以与第一电源信号线100存在交叠(在这种情况下,参考信号线9与第一电源信号线100异层设置),也可以与数据信号线110存在交叠(在这种情况下,参考信号线9与数据信号线110异层设置),也可以与第一电源信号线100和数据信号线110同时存在交叠(在这种情况下,参考信号线9与第一电源信号线100异层设置,且参考信号线9与数据信号线110异层设置),以增加参考信号线9与本来就遮光的第一电源信号线100或数据信号线110的交叠面积,有利于减小像素驱动电路6所占的遮光面积,进而在显示模组1中形成面积较大的第一透光区D域。
可选地,结合图2和图3,指纹识别模组5包括多个指纹识别单元51,指纹识别单元51包括感光区,沿垂直于显示面板的方向,感光区覆盖对应的第一透光区D。示例性的,指纹识别单元51可以为指纹识别传感器,指纹识别单元51可以包括光敏二极管,光敏二极管设置为将触摸主体4反射的光转换成电流信号,光敏二极管中设置有正极-本征-负极(Positive-Intrinsic-Negative,PIN)结,PIN结具有光敏特性,并且具有单向导电性,在无光照的情况下,PIN结有很小的饱和反向漏电流,即暗电流,此时光敏二极管截止。在受到光照的情况 下,PIN结的饱和反向漏电流大大增加,形成光电流,光电流随入射光强度的变化而变化。这样,光敏二极管为指纹识别单元51的感光模块,可以设置光敏二极管所在区域为指纹识别单元51的感光区,沿垂直于显示面板的方向,设置感光区覆盖对应的第一透光区D,使得经由触摸主体4反射后透过显示模组1的透光区照射回来的光线能够准确照射在对应的指纹识别单元51的感光区,增加指纹识别单元51的光采集量,进而提高指纹识别过程的灵敏度和成功率。
可选地,如图3所示,发光单元3为指纹识别模组5提供光源,指纹识别模组5设置为根据发光单元3发出的经由触摸主体4反射后透过显示模组1的透光区照射至指纹识别模组5上的光线进行指纹识别。
示例性的,发光单元3可以为指纹识别模组5提供光源,指纹识别模组5设置为根据发光单元3发出的经由触摸主体4反射后透过显示模组1的透光区照射至指纹识别模组5的光线进行指纹识别。显示面板可以是有机发光显示面板,发光单元3可以是有机发光元件,指纹识别模组5可以根据有机发光元件发出的经由触摸主体4反射到指纹识别模组5的光线以进行指纹识别,例如图3中所示的实线表示的光线。需要说明的是,图3只是示例性地设置了有机发光元件和指纹识别单元51的相对位置,本申请实施例对有机发光元件和指纹识别单元51的相对位置不作限定,只要保证有机发光元件发出的光线经由触摸主体4能够反射至指纹识别单元51即可。
可选地,如图3所示,指纹识别模组5包括基板52和位于基板52上的多个指纹识别单元51,以及位于基板52远离指纹识别单元51一侧的指纹识别光源12,指纹识别光源12发出的光线经由相邻的两个指纹识别单元51之间的间隙照射至触摸主体4,指纹识别单元51设置为根据指纹识别光源12发出的经由触摸主体4反射后透过显示模组1的透光区照射至指纹识别模组5上的光线进行指纹识别。
示例性的,指纹识别光源12位于基板52远离指纹识别单元51的一侧,指 纹识别单元51能够根据指纹识别光源12发出的光线经由触摸主体4反射到指纹识别单元51以进行指纹识别,例如图3中所示的虚线表示的光线,指纹识别光源12发出的光线,经由相邻两指纹识别单元51之间的间隙照射至触摸主体4。
需要说明的是,本申请实施例对指纹识别光源12的位置不作限定,只要保证指纹识别光源12发出的光线经由触摸主体4能够反射至指纹识别单元51上即可。同时,图3中所示的实线和虚线表示的光线只是示例性地给出了有机发光元件和指纹识别光源12发出的某条光线,有机发光单元3和指纹识别光源12发出的光线都可以是发散式的。
本申请实施例还提供了一种显示装置,图10为本申请一实施例提供的一种显示装置的俯视结构示意图,如图10所示,显示装置200包括上述实施例的显示面板190。示例性地,显示装置200可以为有机发光二极管(Organic Light Emitting Diode,OLED)显示装置、微型发光二极管(Micro Light Emitting Diode,Micro LED)显示装置等,显示装置可以包括手机、电脑等终端设备。

Claims (19)

  1. 一种显示面板,包括:
    显示模组,所述显示模组包括阵列基板以及位于所述阵列基板上的多个发光单元,所述多个发光单元均包括反射电极,所述阵列基板包括多个像素驱动电路,所述发光单元中的反射电极与对应的所述像素驱动电路在电位连接点处电连接,所述显示模组包括多个透光区,所述透光区位于所述阵列基板上;
    指纹识别模组,所述指纹识别模组位于所述阵列基板远离所述发光单元的一侧,所述指纹识别模组设置为根据经由触摸主体反射后透过所述显示模组的透光区照射至所述指纹识别模组的光线进行指纹识别;
    所述显示模组的透光区包括多个第一透光区,每个所述第一透光区的面积大于或等于一个像素单元所占面积的2.5%,沿垂直于所述显示面板的方向,所述第一透光区邻近所述电位连接点设置。
  2. 根据权利要求1所述的显示面板,其中,所述阵列基板对应每行所述发光单元设置有一条扫描信号线和一条发光信号线,沿所述发光单元排列的列方向,所述第一透光区位于相邻行所述发光单元对应的距离最近的所述扫描信号线和所述发光信号线之间。
  3. 根据权利要求2所述的显示面板,其中,所述距离最近的所述扫描信号线和所述发光信号线同层设置,所述距离最近的所述扫描信号线和所述发光信号线之间的最小间距大于或等于3μm,且小于或等于4μm。
  4. 根据权利要求2所述的显示面板,其中,所述距离最近的所述扫描信号线和所述发光信号线异层设置,所述距离最近的所述扫描信号线和所述发光信号线在垂直于所述显示面板方向的正投影之间的最小间距大于或等于1.5μm,且小于或等于2μm。
  5. 根据权利要求1所述的显示面板,其中,三行两列发光单元对应两行三列所述像素驱动电路设置,所述像素驱动电路的分布区域间隔设定距离设置。
  6. 根据权利要求1所述的显示面板,其中,所述阵列基板中设置有参考信号线,相邻两行且位于相邻列的所述发光单元对应的所述像素驱动电路共用一 条所述参考信号线。
  7. 根据权利要求6所述的显示面板,其中,所述阵列基板中还包括沿所述发光单元排列的列方向延伸的第一电源信号线和数据信号线,所述沿垂直于所述显示面板的方向,所述参考信号线与所述第一电源信号线和所述数据信号线中的至少之一存在交叠。
  8. 根据权利要求1-7任一项所述的显示面板,其中,所述指纹识别模组包括多个指纹识别单元,所述指纹识别单元包括感光区,沿垂直于所述显示面板的方向,所述感光区覆盖对应的所述第一透光区。
  9. 根据权利要求1-7任一项所述的显示面板,其中,所述发光单元为所述指纹识别模组提供光源,所述指纹识别模组设置为根据所述发光单元发出的经由所述触摸主体反射后透过所述显示模组的透光区照射至所述指纹识别模组上的光线进行指纹识别。
  10. 根据权利要求1-7任一项所述的显示面板,其中,所述指纹识别模组包括基板和位于所述基板上的多个指纹识别单元,以及位于所述基板远离所述指纹识别单元一侧的指纹识别光源;
    所述指纹识别光源发出的光线经由相邻的两个所述指纹识别单元之间的间隙照射至所述触摸主体,所述指纹识别单元设置为根据所述指纹识别光源发出的经由所述触摸主体反射后透过所述显示模组的透光区照射至所述指纹识别模组上的光线进行指纹识别。
  11. 根据权利要求1所述的显示面板,其中,所述像素驱动电路与所述发光单元一一对应设置。
  12. 根据权利要求1所述的显示面板,其中,所述发光单元为有机发光元件,所述反射电极为所述有机发光元件的阳极。
  13. 根据权利要求1所述的显示面板,其中,所述发光单元中的反射电极与对应的所述像素驱动电路在电位连接点处电连接,包括:
    所述发光单元中的反射电极通过过孔与对应的所述像素驱动电路电连接, 所述过孔所在的位置为所述发光单元中的反射电极与对应的所述像素驱动电路的电位连接点的位置。
  14. 根据权利要求1所述的显示面板,其中,所述触摸主体为手指或手掌。
  15. 根据权利要求1所述的显示面板,其中,所述像素驱动电路为7T1C结构的像素驱动电路。
  16. 根据权利要求3所述的显示面板,其中,所述距离最近的所述扫描信号线和所述发光信号线与所述阵列基板中所述像素驱动电路的晶体管栅极同层制作。
  17. 根据权利要求8所述的显示面板,其中,所述指纹识别单元包括指纹识别传感器。
  18. 根据权利要求17所述的显示面板,其中,所述指纹识别单元包括光敏二极管,所述光敏二极管设置为将所述触摸主体反射的光线转换成电流信号。
  19. 一种显示装置,包括如权利要求1-18任一项所述的显示面板。
PCT/CN2020/109817 2019-11-29 2020-08-18 显示面板及显示装置 WO2021103665A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/519,037 US20220058366A1 (en) 2019-11-29 2021-11-04 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911205659.XA CN110875370B (zh) 2019-11-29 2019-11-29 显示面板及显示装置
CN201911205659.X 2019-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/519,037 Continuation US20220058366A1 (en) 2019-11-29 2021-11-04 Display panel and display device

Publications (1)

Publication Number Publication Date
WO2021103665A1 true WO2021103665A1 (zh) 2021-06-03

Family

ID=69717325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109817 WO2021103665A1 (zh) 2019-11-29 2020-08-18 显示面板及显示装置

Country Status (3)

Country Link
US (1) US20220058366A1 (zh)
CN (1) CN110875370B (zh)
WO (1) WO2021103665A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875370B (zh) * 2019-11-29 2022-08-26 昆山国显光电有限公司 显示面板及显示装置
CN111613646B (zh) * 2020-04-13 2022-11-22 昆山国显光电有限公司 一种显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160132712A1 (en) * 2014-11-12 2016-05-12 Shenzhen Huiding Technology Co., Ltd. Fingerprint sensors having in-pixel optical sensors
CN107133613A (zh) * 2017-06-06 2017-09-05 上海天马微电子有限公司 一种显示面板及显示装置
CN108520224A (zh) * 2018-04-02 2018-09-11 武汉天马微电子有限公司 一种显示面板及显示装置
CN108805055A (zh) * 2018-05-29 2018-11-13 武汉天马微电子有限公司 一种显示面板及显示装置
CN108920994A (zh) * 2018-03-28 2018-11-30 上海天马微电子有限公司 一种显示面板及显示装置
CN110875370A (zh) * 2019-11-29 2020-03-10 昆山国显光电有限公司 显示面板及显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171176B1 (ko) * 2004-12-20 2012-08-06 삼성전자주식회사 박막 트랜지스터 표시판 및 표시 장치
JP5286992B2 (ja) * 2008-07-09 2013-09-11 セイコーエプソン株式会社 電気光学装置および電子機器
KR101947163B1 (ko) * 2012-02-10 2019-02-13 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102101182B1 (ko) * 2013-12-23 2020-04-16 엘지디스플레이 주식회사 유기 발광 표시 장치
KR20180075773A (ko) * 2016-12-26 2018-07-05 삼성디스플레이 주식회사 표시 장치
CN107122742B (zh) * 2017-04-27 2019-12-03 上海天马微电子有限公司 一种显示装置及其指纹识别方法、以及电子设备
KR102530926B1 (ko) * 2017-12-27 2023-05-09 엘지디스플레이 주식회사 지문 인식이 가능한 표시 장치
CN110032918B (zh) * 2018-01-12 2022-01-11 京东方科技集团股份有限公司 指纹识别装置及其制造方法、电子装置
CN108597374B (zh) * 2018-04-20 2021-02-02 上海天马有机发光显示技术有限公司 一种显示面板和显示装置
CN108598136B (zh) * 2018-06-21 2021-03-16 武汉天马微电子有限公司 一种显示面板及显示装置
CN108922469B (zh) * 2018-06-29 2021-04-02 武汉天马微电子有限公司 一种显示面板及显示装置
KR20200066502A (ko) * 2018-11-30 2020-06-10 삼성디스플레이 주식회사 표시 패널
CN110046611B (zh) * 2019-04-29 2021-05-07 上海天马微电子有限公司 一种显示面板和显示装置
CN110061042B (zh) * 2019-04-29 2021-02-02 上海天马微电子有限公司 一种显示面板和显示装置
WO2021035714A1 (zh) * 2019-08-30 2021-03-04 京东方科技集团股份有限公司 纹路图像获取装置、显示装置及准直部件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160132712A1 (en) * 2014-11-12 2016-05-12 Shenzhen Huiding Technology Co., Ltd. Fingerprint sensors having in-pixel optical sensors
CN107133613A (zh) * 2017-06-06 2017-09-05 上海天马微电子有限公司 一种显示面板及显示装置
CN108920994A (zh) * 2018-03-28 2018-11-30 上海天马微电子有限公司 一种显示面板及显示装置
CN108520224A (zh) * 2018-04-02 2018-09-11 武汉天马微电子有限公司 一种显示面板及显示装置
CN108805055A (zh) * 2018-05-29 2018-11-13 武汉天马微电子有限公司 一种显示面板及显示装置
CN110875370A (zh) * 2019-11-29 2020-03-10 昆山国显光电有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN110875370B (zh) 2022-08-26
US20220058366A1 (en) 2022-02-24
CN110875370A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
US10825875B2 (en) OLED display panel and display device
CN108615019B (zh) 一种显示面板及显示装置
CN106096595B (zh) 一种指纹识别模组、其制作方法及指纹识别显示装置
US10810397B2 (en) Display panel and display device
CN107480639B (zh) 一种触控显示面板和显示装置
CN106897699B (zh) 一种指纹识别器件、oled显示装置
CN110610990B (zh) 显示屏、显示装置及移动终端
CN108229394B (zh) 显示面板以及显示装置
US10803284B2 (en) Display panel with fingerprint recognition function and display device
CN112070018B (zh) 指纹识别装置和电子设备
US20210334504A1 (en) Display panel and display device
CN111291710B (zh) 指纹识别模组及显示装置
CN108287428B (zh) 一种显示面板及显示装置
WO2021103665A1 (zh) 显示面板及显示装置
WO2019148798A1 (en) Pattern identification device and display apparatus
US20220367582A1 (en) Display substrate and display apparatus
US11887401B2 (en) Display backplane, manufacturing method thereof, and full-screen fingerprint identification display device
WO2021136342A1 (zh) 指纹识别器件、指纹识别显示基板及其制作方法
CN113540190A (zh) 显示面板和显示装置
CN108878481B (zh) 一种显示面板及显示装置
US20230178578A1 (en) Fingerprint identification module and display device
US11769344B2 (en) Pattern identification device and display apparatus
JP2022002276A (ja) 検出装置
CN111652115A (zh) 显示模组、显示装置以及显示装置的指纹识别方法
TW202105714A (zh) 包含薄膜電晶體和有機光二極體的影像感測器矩陣陣列裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892476

Country of ref document: EP

Kind code of ref document: A1