WO2021103337A1 - 精对苯二甲酸残渣无害化回收焚烧处理方法 - Google Patents

精对苯二甲酸残渣无害化回收焚烧处理方法 Download PDF

Info

Publication number
WO2021103337A1
WO2021103337A1 PCT/CN2020/077672 CN2020077672W WO2021103337A1 WO 2021103337 A1 WO2021103337 A1 WO 2021103337A1 CN 2020077672 W CN2020077672 W CN 2020077672W WO 2021103337 A1 WO2021103337 A1 WO 2021103337A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
incineration
reactor
terephthalic acid
purified terephthalic
Prior art date
Application number
PCT/CN2020/077672
Other languages
English (en)
French (fr)
Inventor
沈福昌
沈烨
沈倖
沈琛博
沈嘉麒
沈濋琳
沈承昱
Original Assignee
沈福昌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911200129.6A external-priority patent/CN110864308B/zh
Priority claimed from CN201922102837.8U external-priority patent/CN211399805U/zh
Application filed by 沈福昌 filed Critical 沈福昌
Publication of WO2021103337A1 publication Critical patent/WO2021103337A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals

Definitions

  • the invention relates to a method for processing chemical residues, in particular to a method for harmless recovery and incineration of purified terephthalic acid residues.
  • Purified terephthalic acid is the basic raw material for the production of polyester fiber and PET resin.
  • Purified terephthalic acid residue is a chemical waste discharged from the process of preparing purified terephthalic acid. Landfill treatment or arbitrary stacking will cause pollution to the environment.
  • the patent application number is 01134015.0, and the name is Purified Terephthalic Acid Residue Incineration Method. This method is based on the water content of the purified terephthalic acid residue. Perform dehydration treatment to make the water content less than 60%.
  • the dehydrated material is heated by heating equipment to melt it into a paste material, and the melted paste material is sprayed into an incinerator for incineration.
  • this method has the following shortcomings in actual use:
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art, and provide a method that can not only reuse the residues, can effectively extract the useful resources in the residues, but also can greatly increase the amount of incineration, and the combustion is more fully and without
  • the harmless recycling and incineration treatment method of purified terephthalic acid residue is more thorough and has lower residue treatment cost.
  • the present invention adopts such a method for the harmless recovery and incineration of purified terephthalic acid residues.
  • the incinerator is used as the incineration treatment equipment, and the reactor is used as the harmless recovery and treatment equipment.
  • the reactor has A rectifying tower, a first condenser and a second condenser, the bottom of the first condenser is provided with a gas inlet and a liquid receiving pan, the top of the first condenser is provided with a gas outlet, and the second condenser
  • the bottom of the second condenser is provided with a liquid outlet
  • the top of the second condenser is provided with a gas inlet
  • the gas inlet of the first condenser is connected with the gas outlet of the rectification tower
  • the second condenser is connected in series with the first condenser Connected
  • the gas inlet of the second condenser is communicated with the gas outlet of the first condenser
  • the method includes the following steps:
  • Feeding send the residue of purified terephthalic acid into the reactor;
  • Dehydration control the temperature in the reactor at 80-120°C, while the reactor is evacuated, the vacuum of the reactor is controlled at -0.02 ⁇ -0.08Mpa, the second condenser is activated, and the first condenser is not activated.
  • a condenser for dehydration of the purified terephthalic acid residue, and the temperature of the purified terephthalic acid residue is measured in real time during the dehydration process. When the temperature of the purified terephthalic acid residue is greater than or equal to 120°C, the dehydration is completed;
  • Benzoic acid recovery control the temperature in the reactor at 180 ⁇ 250°C, control the vacuum of the reactor at -0.06 ⁇ -0.09Mpa, activate the first condenser, and control the working temperature of the first condenser At 90-110°C, the recovery of liquid benzoic acid is started, and the recovered liquid benzoic acid is output through the wetted pan of the first condenser. When there is no output of liquid benzoic acid from the wetted pan, the recovery of benzoic acid ends;
  • Waste residue crushing the waste residue after the recovery of benzoic acid in the reactor is output to the waste residue cooling box and cooled at room temperature. The cooled waste residue is sent to the crusher for crushing, and then the crushed waste residue is sent Into the front silo of the incinerator;
  • Waste residue incineration The waste residue after being ground by a ball mill is sprayed into an incinerator for incineration.
  • the temperature in the reactor is controlled at 80-100°C, the reactor is evacuated, and the vacuum degree of the reactor is controlled at -0.02 to -0.05Mpa.
  • the working temperature of the second condenser is controlled at 20-40°C, and the liquid outlet of the second condenser is connected to the waste water tank.
  • step c the recovered liquid benzoic acid is output to a microtome for slicing through the liquid receiving plate of the first condenser, and the working temperature of the microtome is controlled at 25-40 °C.
  • step d the particle size of the waste residue after being crushed by a crusher is controlled at 30-50mm; in step e, the particle size of the waste residue after being ground by a ball mill is controlled at 60 ⁇ 150 mesh; In step f, the waste residue after being ground by a ball mill is sprayed into an incinerator through a grinding fan for incineration, and the temperature of the incinerator is controlled at 1100-1300°C.
  • a membrane wall boiler is arranged in the furnace of the incinerator, and the thermal energy generated during incineration is directly transferred to the membrane wall boiler, and the membrane wall boiler uses the thermal energy output.
  • the reactor is a thermal oil reactor or a steam reactor.
  • the present invention has the following beneficial effects:
  • the invention recovers the benzoic acid in the purified terephthalic acid residue, which not only achieves waste recycling, extracts useful benzoic acid as raw materials for other products, but also realizes the reduction of incineration residues and reduces the amount of incineration treatment. , Which protects the environment and further reduces the cost of residue disposal.
  • the water content of the waste residue after extracting benzoic acid that is, the distillation residue, is almost zero.
  • the crushed and ground waste residue greatly increases the specific surface area Compared with the prior art, the amount of incineration is increased by at least three times, which greatly increases the amount of incineration, and the crushed and ground waste residue is burned more fully, the harmless treatment is more thorough, and it is more conducive to environmental protection.
  • the invention can completely incinerate the organic matter in the flue gas during incineration, the ash and slag thermal reduction rate is lower, the amount of ash and slag produced is greatly reduced, and the flue gas discharged from the incinerator has minimal impact on the environment.
  • the temperature in the reactor is controlled at 80-100°C, and the reactor is evacuated. This way, on the one hand, it can prevent the solidification of the purified terephthalic acid residue during feeding, and on the other hand, under negative pressure Under the action, the feeding speed and efficiency can be improved, and volatile harmful gases can be effectively prevented from entering the air during feeding.
  • the waste residue after being pulverized and ground by the ball mill is fully burned before falling into the grate of the incinerator, so that the coking phenomenon of the grate is avoided, the shutdown time of the incinerator is shortened, and the ash removal cycle becomes longer.
  • the waste residue When the invention sprays the waste residue after being ground by the ball mill into the incinerator for incineration, the waste residue does not need to be heated and can directly enter the incinerator, thereby reducing the cost of residue treatment.
  • the second condenser and the first condenser are connected in series.
  • the first condenser is not activated, and the first condenser is only used as a gas to flow through the channel, so that the purified terephthalic acid is removed from the water during dehydration.
  • the first condenser is continuously cleaned, thereby ensuring that the first condenser is not blocked, and further ensuring that the benzoic acid recovery step can be carried out smoothly and stably.
  • a membrane wall boiler is arranged in the furnace of the incinerator, which not only improves the utilization rate of waste heat, but also increases the incineration treatment capacity, and the generated heat energy is also greatly increased accordingly.
  • Fig. 1 is a schematic diagram of a treatment process of the harmless recovery and incineration treatment method of purified terephthalic acid residue of the present invention.
  • the present invention provides a method for harmless recovery and incineration of purified terephthalic acid residues.
  • the incinerator 1 is used as the incineration treatment equipment, and the reactor 2 is used as the harmless recovery and treatment equipment.
  • the reactor 2 It has a rectification tower 2-1, a first condenser 2-2 and a second condenser 2-3, and the first condenser 2-2 and the second condenser 2-3 are preferably commercially available water-cooled condensers ,
  • the bottom of the first condenser 2-2 is provided with a gas inlet 2a and a liquid receiving pan 2b, the top of the first condenser 2-2 is provided with a gas outlet 2c, and the second condenser 2-3
  • the bottom is provided with a liquid outlet 2d
  • the top of the second condenser 2-3 is provided with a gas inlet 2e
  • the gas inlet 2a of the first condenser 2-2 is connected to the gas outlet 2f of the rectification tower 2-1
  • Feeding send the purified terephthalic acid residue A into the reactor 2;
  • the temperature in the reactor 2 is controlled at 80-120°C, while the reactor is evacuated, preferably through the vacuum pump 13 installed at the bottom of the second condenser 2-3, and the vacuum of the reactor is controlled at- 0.02 ⁇ -0.08Mpa, the second condenser 2-3 is activated, and the first condenser 2-2 is not activated.
  • the first condenser 2-2 is only used as a gas flow channel to treat the residue of purified terephthalic acid.
  • A is dehydrated, and the temperature of the purified terephthalic acid residue A is measured in real time during the dehydration process. It is preferable to measure the temperature of the residue in real time through a temperature sensor.
  • the light-removed gas evaporated from the purified terephthalic acid residue A enters the rectification tower 2-1, and flows through the first condenser 2-2 from the gas outlet 2f of the rectification tower 2-1, and enters the second condenser 2 In -3, under the condensation of the second condenser 2-3, the light-removed gas is condensed from a gaseous state to a liquid light-removed liquid, and flows out from the liquid outlet 2d at the bottom of the second condenser 2-3;
  • Benzoic acid recovery control the temperature in the reactor 2 at 180 ⁇ 250°C, control the vacuum of the reactor at -0.06 ⁇ -0.09Mpa, activate the first condenser 2-2, and the first condenser
  • the operating temperature of 2-2 is controlled at 90-110°C, and the recovery of liquid benzoic acid is started.
  • the recovered liquid benzoic acid is output through the wetted pan 2b of the first condenser 2-2.
  • Waste residue crushing The waste residue after the recovery of benzoic acid in the reactor 2 is output to the waste residue cooling box 3 and cooled at room temperature. The cooled waste residue is sent to the commercially available crusher 4 for crushing, and then the The crushed waste residue is sent to the front silo 5 of the incinerator through the pipe chain conveyor 11;
  • the waste residues of the front silo 5 of the incinerator are sent to a commercially available ball mill 6 through a screw conveyor 12 for pulverization and grinding;
  • Waste residue incineration the waste residue after being ground by the ball mill 6 is sprayed into the incinerator 1 for incineration.
  • the temperature in the reactor 2 is controlled at 80-100°C, and the reactor is evacuated, and the vacuum degree of the reactor is controlled at -0.02 ⁇ -0.05Mpa .
  • the purified terephthalic acid residue A can be prevented from solidifying during feeding, ensuring the smooth progress of the feeding, and on the other hand, the feeding speed and efficiency can be improved under the action of negative pressure, and it can be effective Prevent volatile harmful gases from entering the air during feeding.
  • the working temperature of the second condenser 2-3 is controlled at 20-40°C, and the liquid outlet of the second condenser 2-3 2d is connected to the waste water tank 9.
  • the light-removed liquid flows out from the liquid outlet 2d of the second condenser 2-3 and flows into the waste water tank 9 through a pipe, as shown in FIG. 1.
  • the recovered liquid benzoic acid is output to a commercially available microtome 7 for slicing through the liquid receiving pan 2b of the first condenser 2-2 through a pipe.
  • the working temperature of the slicer 7 is controlled at 25-40° C., under this temperature range, the liquid benzoic acid changes from liquid to solid.
  • the slicer 7 can be placed in an air-conditioned room, and the operating temperature of the slicer 7 can be adjusted through the air conditioner.
  • other methods such as using the recovered heat energy of the membrane wall boiler 10 can also be used to ensure the operating temperature of the slicer 7 .
  • step d the particle size of the waste residue after being crushed by the crusher 4 is controlled to be 30-50 mm; in step e, the particle size of the waste residue after being ground by the ball mill 6 is controlled In step f, the waste residue after being ground by the ball mill 6 is sprayed into the incinerator 1 through the grinding fan 8 for incineration, and the temperature of the incinerator 1 is preferably controlled at 1100-1300°C.
  • a membrane wall boiler 10 is provided in the furnace of the incinerator 1, and the heat generated during incineration is directly transferred to the membrane wall boiler 10, and the membrane wall boiler 10 transfers the heat energy Output utilization. Adopting such an embodiment not only improves the waste heat utilization rate, but also greatly increases the incineration treatment capacity.
  • the reactor 2 is preferably a heat-conducting oil reactor or a steam reactor.
  • conventional means such as heat-conducting oil or steam can be used to adjust the requirements of the reactor 2 in the above steps. Temperature in the kettle.
  • the present invention not only realizes the reuse of waste, extracts useful benzoic acid as raw materials for the production of polyester fiber and PET resin, but also increases the amount of incineration more than three times compared with the prior art, which greatly improves the incineration.
  • the residue burns more fully, the harmless treatment is more thorough, and it is more environmentally friendly. The energy consumption is low during the treatment, and the process is simple and easy to implement, and good results have been achieved.

Abstract

一种精对苯二甲酸残渣无害化回收焚烧处理方法,采用焚烧炉(1)作为焚烧处理设备,采用反应釜(2)作为无害化回收处理设备,反应釜(2)具有精馏塔(2-1)、第一冷凝器(2-2)和第二冷凝器(2-3),第一冷凝器(2-2)的气体进口(2a)与精馏塔(2-1)的气体出口(2f)相连通,第二冷凝器(2-3)与第一冷凝器(2-2)串联连接,第二冷凝器(2-3)的气体进口(2e)与第一冷凝器(2-2)的气体出口(2c)相连通,该方法包括以下步骤:进料、脱水、苯甲酸回收、废残渣破碎、废残渣研磨、废残渣焚烧步骤。该方法实现了废物再利用,无害化处理更彻底,更环保,工艺简便易行。

Description

精对苯二甲酸残渣无害化回收焚烧处理方法 技术领域
本发明涉及一种化工残渣的处理方法,特别是涉及一种精对苯二甲酸残渣无害化回收焚烧处理方法。
背景技术
精对苯二甲酸(PTA)是生产聚酯纤维和PET树脂的基本原料,精对苯二甲酸残渣是制备精对苯二甲酸过程中排出的化工废弃物,如果对精对苯二甲酸残渣进行填埋处理或者任意堆放,则会对环境造成污染。本申请人于2001年10月10日向中国专利局申请了发明专利,专利申请号为01134015.0,名称为精对苯二甲酸残渣焚烧方法,该方法是根据精对苯二甲酸残渣含水量大小对物料进行脱水处理,使之含水量低于60%,将脱水后的物料通过加热设备加热使之熔化成糊状物料,将熔化后的糊状物料喷射到焚烧炉中进行焚烧。但该方法在实际使用过程中存在以下几个方面的缺陷:
(1)由于直接焚烧而没有对残渣进行废物再利用,从而极大浪费了残渣内的有用资源;
(2)由于采用糊状物料喷射焚烧方法,因此不仅焚烧量小,而且燃烧不充分;
(3)由于糊状物料具有一定的水分,从而增加了焚烧炉的烟气处理量和处理难度;
(4)由于采用糊状物料喷射焚烧方法,导致糊状物料落入焚烧炉的 炉排上,产生结焦现象,需要经常停炉进行清理,因此增加了操作人员的工作量,降低了残渣处理效率;
(5)由于将熔化后的糊状物料喷射到焚烧炉中进行焚烧时,需要施加温度不低于50℃的外来压缩空气,导致增加了残渣处理成本。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种不仅能对残渣进行废物再利用,能有效提取残渣内的有用资源,而且能极大提高焚烧量,并且燃烧更充分、无害化处理更彻底、残渣处理成本更低的精对苯二甲酸残渣无害化回收焚烧处理方法。
为解决上述技术问题,本发明采用这样一种精对苯二甲酸残渣无害化回收焚烧处理方法,采用焚烧炉作为焚烧处理设备,采用反应釜作为无害化回收处理设备,所述反应釜具有精馏塔、第一冷凝器和第二冷凝器,所述第一冷凝器的底部设有气体进口和接液盘,所述第一冷凝器的顶部设有气体出口,所述第二冷凝器的底部设有出液口,所述第二冷凝器的顶部设有气体进口,所述第一冷凝器的气体进口与精馏塔的气体出口相连通,第二冷凝器与第一冷凝器串联连接,第二冷凝器的气体进口与第一冷凝器的气体出口相连通,该方法包括以下步骤:
a、进料:将精对苯二甲酸残渣送入反应釜中;
b、脱水:将反应釜的釜内温度控制在80~120℃,同时反应釜抽真空,反应釜真空度控制在-0.02~-0.08Mpa,启用所述第二冷 凝器,不启用所述第一冷凝器,对精对苯二甲酸残渣进行脱水,在脱水过程中实时测量精对苯二甲酸残渣温度,当精对苯二甲酸残渣温度≥120℃时,脱水结束;
c、苯甲酸回收:将反应釜的釜内温度控制在180~250℃,反应釜真空度控制在-0.06~-0.09Mpa,启用所述第一冷凝器,且第一冷凝器的工作温度控制在90~110℃,开始进行液态苯甲酸回收,回收的液态苯甲酸经所述第一冷凝器的接液盘输出,当接液盘无液态苯甲酸输出时,苯甲酸回收结束;
d、废残渣破碎:将反应釜内苯甲酸回收结束后的废残渣输出至废渣冷却箱内并在常温下冷却,冷却后的废残渣送入破碎机进行破碎,然后将破碎后的废残渣送入焚烧炉前料仓;
e、废残渣研磨:将焚烧炉前料仓的废残渣送入球磨机进行粉碎、研磨;
f、废残渣焚烧:将经过球磨机研磨后的废残渣喷射到焚烧炉中焚烧。
作为本发明的一种优选实施方式,在a步骤进料之前,将反应釜的釜内温度控制在80~100℃,且反应釜抽真空,反应釜真空度控制在-0.02~-0.05Mpa。
作为本发明的一种优选实施方式,在b步骤脱水过程中,将所述第二冷凝器的工作温度控制在20~40℃,所述第二冷凝器的出液口与废水池相连通。
作为本发明的一种优选实施方式,在c步骤中,所述回收的液态 苯甲酸经第一冷凝器的接液盘输出至切片机进行切片,所述切片机的工作温度控制在25~40℃。
作为本发明的一种优选实施方式,在d步骤中,经过破碎机破碎后的废残渣,粒径控制在30~50mm;在e步骤中,经过球磨机研磨后的废残渣,粒径控制在60~150目;在f步骤中,将经过球磨机研磨后的废残渣,通过磨粉风机喷射到焚烧炉中焚烧,焚烧炉的温度控制在1100~1300℃。
作为本发明的一种优选实施方式,在所述焚烧炉的炉膛内设置膜式壁锅炉,焚烧时产生的热能直接传递给所述膜式壁锅炉,由膜式壁锅炉将热能输出利用。
作为本发明的一种优选实施方式,所述反应釜为导热油反应釜或者蒸汽反应釜。
采用上述方法后,本发明具有以下有益效果:
本发明将精对苯二甲酸残渣中的苯甲酸进行回收,既做到了废物再利用,将有用的苯甲酸提取作为其他产品的原料,同时实现了焚烧的残渣减量化,降低了焚烧处理量,保护了环境,进一步降低了残渣处理成本。
本发明提取苯甲酸后的废残渣也即精馏残渣的含水率几乎为零,经球磨机粉碎、研磨后,利用风机直接喷入焚烧炉进行焚烧,粉碎、研磨后的废残渣大幅增加了比表面积,焚烧量与现有技术相比至少提高了三倍,极大提高了焚烧量,并且粉碎、研磨后的废残渣燃烧更充分,无害化处理更彻底,更有利于保护环境。
本发明焚烧时可将烟气中的有机物完全焚毁,灰渣热灼减率更低,灰渣产生量大幅减少,焚烧炉排出的烟气对环境影响极小。
本发明在进料之前,将反应釜的釜内温度控制在80~100℃,且反应釜抽真空,这样一方面能防止精对苯二甲酸残渣在进料时凝固,另一方面在负压作用下能提升进料速度和效率,并且能有效防止在进料时挥发性有害气体进入空气中。
本发明经球磨机粉碎、研磨后废残渣在落入焚烧炉的炉排之前就得到了充分燃烧,避免了炉排结焦现象,焚烧炉停炉时间缩短,清灰周期变长。
本发明将经过球磨机研磨后的废残渣喷射到焚烧炉中焚烧时,废残渣不需要加热,可直接进入焚烧炉中,从而降低了残渣处理成本。
本发明将第二冷凝器与第一冷凝器采用串联连接方式,在脱水步骤时,不启用第一冷凝器,第一冷凝器仅作为气体流经通道,这样在脱水时从精对苯二甲酸残渣中蒸发出的脱轻气体流经第一冷凝器时,不断地对第一冷凝器进行清洗,从而保证了第一冷凝器不堵塞,进一步保证了苯甲酸回收步骤能顺利稳定地进行。
本发明在焚烧炉的炉膛内设置膜式壁锅炉,既提高了余热利用率,同时提高了焚烧处理量,产生的热能也相应大幅增加。
附图说明
以下结合附图对本发明的具体实施方式作进一步的详细说明。图1为本发明精对苯二甲酸残渣无害化回收焚烧处理方法的一种处 理过程示意图。
具体实施方式
参见图1,本发明提供了一种精对苯二甲酸残渣无害化回收焚烧处理方法,采用焚烧炉1作为焚烧处理设备,采用反应釜2作为无害化回收处理设备,所述反应釜2具有精馏塔2-1、第一冷凝器2-2和第二冷凝器2-3,所述第一冷凝器2-2和第二冷凝器2-3优选为市售的水冷式冷凝器,所述第一冷凝器2-2的底部设有气体进口2a和接液盘2b,所述第一冷凝器2-2的顶部设有气体出口2c,所述第二冷凝器2-3的底部设有出液口2d,所述第二冷凝器2-3的顶部设有气体进口2e,所述第一冷凝器2-2的气体进口2a与精馏塔2-1的气体出口2f相连通,第二冷凝器2-3与第一冷凝器2-2串联连接,第二冷凝器2-3的气体进口2e与第一冷凝器2-2的气体出口2c相连通,该方法包括以下步骤:
a、进料:将精对苯二甲酸残渣A送入反应釜2中;
b、脱水:将反应釜2的釜内温度控制在80~120℃,同时反应釜抽真空,优选通过安装在第二冷凝器2-3底部的真空泵13抽真空,反应釜真空度控制在-0.02~-0.08Mpa,启用所述第二冷凝器2-3,不启用所述第一冷凝器2-2,第一冷凝器2-2仅作为气体流经通道,对精对苯二甲酸残渣A进行脱水,在脱水过程中实时测量精对苯二甲酸残渣A温度,优选通过温度传感器实时测量残渣温度,当精对苯二甲酸残渣温度≥120℃时,脱水结束;在脱水工作时,从精对 苯二甲酸残渣A中蒸发出的脱轻气体进入精馏塔2-1,并从精馏塔2-1的气体出口2f流经第一冷凝器2-2,进入第二冷凝器2-3内,在第二冷凝器2-3的冷凝作用下,脱轻气体从气态冷凝成为液态的脱轻液,并从第二冷凝器2-3底部的出液口2d流出;
c、苯甲酸回收:将反应釜2的釜内温度控制在180~250℃,反应釜真空度控制在-0.06~-0.09Mpa,启用所述第一冷凝器2-2,且第一冷凝器2-2的工作温度控制在90~110℃,开始进行液态苯甲酸回收,回收的液态苯甲酸经所述第一冷凝器2-2的接液盘2b输出,当接液盘2b无液态苯甲酸输出时,苯甲酸回收结束;工作时,从精对苯二甲酸残渣A中分离出的苯甲酸气体进入精馏塔2-1,并从精馏塔2-1的气体出口2f进入第一冷凝器2-2,在第一冷凝器2-2的冷凝作用下,苯甲酸气体从气态冷凝成为液态的苯甲酸液,并从第一冷凝器2-2的接液盘2b输出;
d、废残渣破碎:将反应釜2内苯甲酸回收结束后的废残渣输出至废渣冷却箱3内并在常温下冷却,冷却后的废残渣送入市售的破碎机4进行破碎,然后将破碎后的废残渣通过管链输送机11送入焚烧炉前料仓5;
e、废残渣研磨:将焚烧炉前料仓5的废残渣通过螺旋输送机12送入市售的球磨机6进行粉碎、研磨;
f、废残渣焚烧:将经过球磨机6研磨后的废残渣喷射到焚烧炉1中焚烧。
作为本发明的一种优选实施方式,在a步骤进料之前,将反应釜 2的釜内温度控制在80~100℃,且反应釜抽真空,反应釜真空度控制在-0.02~-0.05Mpa。采用这样的实施方式,一方面能防止精对苯二甲酸残渣A在进料时凝固,保证了进料的顺利进行,另一方面在负压作用下能提升进料速度和效率,并且能有效防止在进料时挥发性有害气体进入空气中。
作为本发明的一种优选实施方式,在b步骤脱水过程中,将所述第二冷凝器2-3的工作温度控制在20~40℃,所述第二冷凝器2-3的出液口2d与废水池9相连通,工作时,脱轻液从第二冷凝器2-3的出液口2d流出并通过管道流入废水池9中,如图1所示。
作为本发明的一种优选实施方式,在c步骤中,所述回收的液态苯甲酸经第一冷凝器2-2的接液盘2b通过管道输出至市售的切片机7进行切片,切片后进行包装输出,所述切片机7的工作温度控制在25~40℃,在该温度范围下,液态苯甲酸由液态转变成固态。实施时,可将切片机7放置在安装有空调的室内,通过空调调节切片机7的工作温度,当然也可采用其它方式例如利用膜式壁锅炉10的回收热能来保证切片机7的工作温度。
作为本发明的一种优选实施方式,在d步骤中,经过破碎机4破碎后的废残渣,粒径控制在30~50mm;在e步骤中,经过球磨机6研磨后的废残渣,粒径控制在60~150目;在f步骤中,将经过球磨机6研磨后的废残渣,通过磨粉风机8喷射到焚烧炉1中焚烧,焚烧炉1的温度优选控制在1100~1300℃。
作为本发明的一种优选实施方式,在所述焚烧炉1的炉膛内设置 膜式壁锅炉10,焚烧时产生的热能直接传递给所述膜式壁锅炉10,由膜式壁锅炉10将热能输出利用。采用这样的实施方式,不仅提高了余热利用率,同时大幅提高了焚烧处理量。
作为本发明的一种优选实施方式,所述反应釜2优选为导热油反应釜或者蒸汽反应釜,工作时,可通过导热油或者蒸汽等常规手段来调节反应釜2在上述步骤中所需的釜内温度。
经过试用,本发明不仅实现了废物再利用,将有用的苯甲酸提取用于生产聚酯纤维和PET树脂的原料,而且焚烧量与现有技术相比提高了三倍以上,极大提高了焚烧量,并且残渣燃烧更充分,无害化处理更彻底,更环保,处理时能耗低,工艺简便易行,取得了良好的效果。

Claims (7)

  1. 一种精对苯二甲酸残渣无害化回收焚烧处理方法,采用焚烧炉(1)作为焚烧处理设备,其特征在于:采用反应釜(2)作为无害化回收处理设备,所述反应釜(2)具有精馏塔(2-1)、第一冷凝器(2-2)和第二冷凝器(2-3),所述第一冷凝器(2-2)的底部设有气体进口(2a)和接液盘(2b),所述第一冷凝器(2-2)的顶部设有气体出口(2c),所述第二冷凝器(2-3)的底部设有出液口(2d),所述第二冷凝器(2-3)的顶部设有气体进口(2e),所述第一冷凝器(2-2)的气体进口(2a)与精馏塔(2-1)的气体出口(2f)相连通,第二冷凝器(2-3)与第一冷凝器(2-2)串联连接,第二冷凝器(2-3)的气体进口(2e)与第一冷凝器(2-2)的气体出口(2c)相连通,该方法包括以下步骤:
    a、进料:将精对苯二甲酸残渣送入反应釜(2)中;
    b、脱水:将反应釜(2)的釜内温度控制在80~120℃,同时反应釜抽真空,反应釜真空度控制在-0.02~-0.08Mpa,启用所述第二冷凝器(2-3),不启用所述第一冷凝器(2-2),对精对苯二甲酸残渣进行脱水,在脱水过程中实时测量精对苯二甲酸残渣温度,当精对苯二甲酸残渣温度≥120℃时,脱水结束;
    c、苯甲酸回收:将反应釜(2)的釜内温度控制在180~250℃,反应釜真空度控制在-0.06~-0.09Mpa,启用所述第一冷凝器(2-2),且第一冷凝器(2-2)的工作温度控制在90~110℃,开始进行液态苯甲酸回收,回收的液态苯甲酸经所述第一冷凝器(2-2) 的接液盘(2b)输出,当接液盘(2b)无液态苯甲酸输出时,苯甲酸回收结束;
    d、废残渣破碎:将反应釜(2)内苯甲酸回收结束后的废残渣输出至废渣冷却箱(3)内并在常温下冷却,冷却后的废残渣送入破碎机(4)进行破碎,然后将破碎后的废残渣送入焚烧炉前料仓(5);
    e、废残渣研磨:将焚烧炉前料仓(5)的废残渣送入球磨机(6)进行粉碎、研磨;
    f、废残渣焚烧:将经过球磨机(6)研磨后的废残渣喷射到焚烧炉(1)中焚烧。
  2. 根据权利要求1所述的精对苯二甲酸残渣无害化回收焚烧处理方法,其特征在于:在a步骤进料之前,将反应釜(2)的釜内温度控制在80~100℃,且反应釜抽真空,反应釜真空度控制在-0.02~-0.05Mpa。
  3. 根据权利要求1所述的精对苯二甲酸残渣无害化回收焚烧处理方法,其特征在于:在b步骤脱水过程中,将所述第二冷凝器(2-3)的工作温度控制在20~40℃,所述第二冷凝器(2-3)的出液口(2d)与废水池(9)相连通。
  4. 根据权利要求1所述的精对苯二甲酸残渣无害化回收焚烧处理方法,其特征在于:在c步骤中,所述回收的液态苯甲酸经第一冷凝器(2-2)的接液盘(2b)输出至切片机(7)进行切片,所述切片机(7)的工作温度控制在25~40℃。
  5. 根据权利要求1所述的精对苯二甲酸残渣无害化回收焚烧处理方 法,其特征在于:在d步骤中,经过破碎机(4)破碎后的废残渣,粒径控制在30~50mm;在e步骤中,经过球磨机(6)研磨后的废残渣,粒径控制在60~150目;在f步骤中,将经过球磨机(6)研磨后的废残渣,通过磨粉风机(8)喷射到焚烧炉(1)中焚烧,焚烧炉(1)的温度控制在1100~1300℃。
  6. 根据权利要求1所述的精对苯二甲酸残渣无害化回收焚烧处理方法,其特征在于:在所述焚烧炉(1)的炉膛内设置膜式壁锅炉(10),焚烧时产生的热能直接传递给所述膜式壁锅炉(10),由膜式壁锅炉(10)将热能输出利用。
  7. 根据权利要求1至6中任一项所述的精对苯二甲酸残渣无害化回收焚烧处理方法,其特征在于:所述反应釜(2)为导热油反应釜或者蒸汽反应釜。
PCT/CN2020/077672 2019-11-29 2020-03-04 精对苯二甲酸残渣无害化回收焚烧处理方法 WO2021103337A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911200129.6 2019-11-29
CN201911200129.6A CN110864308B (zh) 2019-11-29 2019-11-29 精对苯二甲酸残渣无害化回收焚烧处理方法
CN201922102837.8 2019-11-29
CN201922102837.8U CN211399805U (zh) 2019-11-29 2019-11-29 精对苯二甲酸残渣无害化焚烧处理装置

Publications (1)

Publication Number Publication Date
WO2021103337A1 true WO2021103337A1 (zh) 2021-06-03

Family

ID=76129113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077672 WO2021103337A1 (zh) 2019-11-29 2020-03-04 精对苯二甲酸残渣无害化回收焚烧处理方法

Country Status (1)

Country Link
WO (1) WO2021103337A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508443A (en) * 1994-05-12 1996-04-16 Exxon Chemical Patents Inc. Liquid phthalic anhydride recovery process
CN101513641A (zh) * 2008-04-03 2009-08-26 沈福昌 精对苯二甲酸废渣的资源化处理方法
CN107109272A (zh) * 2014-10-30 2017-08-29 埃科金苏斯有限责任公司 由混合固体废弃物形成的固体燃料组合物
CN108147489A (zh) * 2018-01-05 2018-06-12 侯长林 物理方法预处理高盐高浓度有机污染物废水工艺
CN108358407A (zh) * 2018-02-12 2018-08-03 常州德诚环境科技有限公司 Pta氧化残渣及污泥综合利用系统及方法
CN110836378A (zh) * 2019-11-29 2020-02-25 沈福昌 精对苯二甲酸残渣资源化回收焚烧处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508443A (en) * 1994-05-12 1996-04-16 Exxon Chemical Patents Inc. Liquid phthalic anhydride recovery process
CN101513641A (zh) * 2008-04-03 2009-08-26 沈福昌 精对苯二甲酸废渣的资源化处理方法
CN107109272A (zh) * 2014-10-30 2017-08-29 埃科金苏斯有限责任公司 由混合固体废弃物形成的固体燃料组合物
CN108147489A (zh) * 2018-01-05 2018-06-12 侯长林 物理方法预处理高盐高浓度有机污染物废水工艺
CN108358407A (zh) * 2018-02-12 2018-08-03 常州德诚环境科技有限公司 Pta氧化残渣及污泥综合利用系统及方法
CN110836378A (zh) * 2019-11-29 2020-02-25 沈福昌 精对苯二甲酸残渣资源化回收焚烧处理方法

Similar Documents

Publication Publication Date Title
WO2022061958A1 (zh) 一种油泥无害化、资源化集成处理方法和系统
CN103060494B (zh) 一种蒸汽回收型高炉冲渣水系统
CN104628237B (zh) 一种依托热电厂的污泥干化焚烧系统
CN102322642A (zh) 基于垃圾炉排炉焚烧的污泥干化焚烧系统及其处理方法
WO2019075956A1 (zh) 一种垃圾处理用燃烧炉及垃圾处理系统
CN103557529B (zh) 裂解废气焚烧热能循环及烟气净化系统
CN111170603A (zh) 一种污泥高效资源化利用系统及其处理方法
CN110052481A (zh) 一种餐厨及厨余垃圾干燥处理装置及方法
CN110836378B (zh) 精对苯二甲酸残渣资源化回收焚烧处理方法
CN106422703B (zh) 危废与高浓度含盐废水的协同处理系统及其方法
CN201753303U (zh) 一种污泥的蒸汽低温热调质干化成套处理装置
CN212222767U (zh) 一种污泥高效资源化利用系统
CN112536318B (zh) 智能化集成式高效环保热脱附设备及方法
WO2021103337A1 (zh) 精对苯二甲酸残渣无害化回收焚烧处理方法
CN110864308B (zh) 精对苯二甲酸残渣无害化回收焚烧处理方法
CN204529636U (zh) 一种依托热电厂的污泥干化焚烧系统
WO2021103338A1 (zh) 精对苯二甲酸残渣资源化回收焚烧处理方法
CN210304995U (zh) 一种餐厨及厨余垃圾干燥处理装置
CN111362551A (zh) 一种燃煤电厂的两段式污泥干化焚烧系统及运转方法
CN110835541A (zh) 一种中草药药渣资源化利用处理方法
CN110296594A (zh) 一种有机质淤泥的封闭处理工艺及设备
CN202118923U (zh) 基于垃圾炉排炉焚烧的污泥干化焚烧系统
CN211399805U (zh) 精对苯二甲酸残渣无害化焚烧处理装置
CN211399806U (zh) 精对苯二甲酸残渣资源化焚烧处理装置
CN212051067U (zh) 一种燃煤电厂的两段式污泥干化焚烧系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894752

Country of ref document: EP

Kind code of ref document: A1