WO2021103312A1 - 一种可参与电网辅助服务的集中式云储能运行决策方法 - Google Patents

一种可参与电网辅助服务的集中式云储能运行决策方法 Download PDF

Info

Publication number
WO2021103312A1
WO2021103312A1 PCT/CN2020/074192 CN2020074192W WO2021103312A1 WO 2021103312 A1 WO2021103312 A1 WO 2021103312A1 CN 2020074192 W CN2020074192 W CN 2020074192W WO 2021103312 A1 WO2021103312 A1 WO 2021103312A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
grid
period
cloud
during
Prior art date
Application number
PCT/CN2020/074192
Other languages
English (en)
French (fr)
Inventor
张宁
刘静琨
王毅
康重庆
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021103312A1 publication Critical patent/WO2021103312A1/zh
Priority to US17/824,113 priority Critical patent/US20220294224A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Definitions

  • the invention relates to a centralized cloud energy storage operation decision-making method that can participate in grid auxiliary services, and belongs to the application field of energy storage technology in the grid.
  • the existing cloud energy storage concept is a grid-based shared energy storage technology that allows users to use shared energy storage resources composed of centralized or distributed energy storage facilities anytime, anywhere, and on demand, and according to usage needs And pay the service fee.
  • the existing cloud energy storage system mainly includes 4 parts, namely cloud energy storage users, cloud energy storage service providers, centralized energy storage facilities, and power grids.
  • Two-way energy transmission is realized through electrical connections between cloud energy storage users and the grid, and between centralized energy storage facilities and the grid.
  • the two-way transmission of information between cloud energy storage users and the power grid, between cloud energy storage users and cloud energy storage service providers, and between cloud energy storage service providers and centralized energy storage facilities is achieved through wired or wireless communication, respectively.
  • the power grid transmits information unidirectionally to cloud energy storage service providers.
  • Cloud energy storage service providers control energy storage devices to meet the charging and discharging needs of cloud energy storage users, while maximizing the use of energy storage resources.
  • Available energy storage resources are not only shared by many cloud energy storage users, but also dynamically allocated to corresponding cloud energy storage users based on charging and discharging needs. Improve system operation efficiency by optimizing planning and coordinated control of energy storage facilities.
  • Cloud Energy Storage has changed the original trend by charging and discharging from the distribution feeder. Cloud energy storage users and energy storage facilities are in the same power distribution network. When a cloud energy storage user charges its allocated energy storage resources, the energy storage facility is charged by sucking energy into the grid. When a cloud energy storage user discharges the cloud battery to use the stored energy, the energy storage facility releases energy to the grid to compensate for the load of the corresponding user.
  • Cloud energy storage service providers can take advantage of the complementarity and non-simultaneity of charging and discharging requirements between massive distributed users to realize that the energy capacity and power capacity of the energy storage facilities they build are lower than all distributed energy storage systems in the cloud.
  • energy and information and communication technologies are increasingly deeply integrated, which provides hardware and software support for the construction of cloud energy storage systems.
  • the current cloud energy storage system does not consider the application of the centralized energy storage device corresponding to the cloud energy storage to the grid auxiliary service in the decision-making, only considers how to use the energy storage resources to serve the cloud energy storage users, and does not maximize the use of energy storage The value of resources.
  • Model Predictive Control (MPC) theory (see the following papers: Liu Xiangjie, Kong Xiaobing. Model Predictive Control of Complex Systems in the Power Industry-Status Quo and Development. Proceedings of the Chinese Society of Electrical Engineering, 2013, 33(05): 79 -85.) is an optimal control theory, which came out in the 1970s, mainly for control problems with optimization requirements, and has successful applications in complex industrial control. Based on the information that can be obtained at the current moment and the information for future predictions, this theory only uses the current moment control strategy after optimizing the solution of the control strategy, and obtains the real-time control strategy through rolling optimization. This theory can be used to determine the parameters in the power system dispatch model, such as unit output.
  • the purpose of the present invention is to overcome the limitation that the existing centralized cloud energy storage system is only used to meet the charging and discharging needs of users, and to propose a centralized cloud energy storage operation decision-making method that can participate in grid auxiliary services.
  • the energy storage system has been expanded to include the grid control center in the cloud energy storage system, allowing cloud energy storage service providers to participate in auxiliary services of the grid, such as frequency modulation and peak shaving.
  • the model predictive control theory is also used to propose a cloud energy storage service provider operation decision model and method, which provides support for the cloud energy storage service provider to actually participate in auxiliary services.
  • the present invention proposes a centralized cloud energy storage operation decision method that can participate in grid auxiliary services, which is characterized in that it includes the following steps:
  • the objective function represents the sum of minimizing the operating cost of the centralized energy storage facility in the current period and the operating cost expected to occur within the set time range;
  • ⁇ t is the basic time interval of the model predictive control model
  • T t is the current period; ⁇ is any period within 5 min immediately after the current period t; T t is the set of all periods within 5 min immediately after the current period t;
  • ⁇ t is the unit price of electricity that the cloud energy storage service provider needs to pay to the grid when the centralized energy storage facility obtains power from the grid during the period t;
  • the centralized energy storage facility obtains electric energy from the grid during the period of ⁇ , the predicted value of the unit price of electricity that the cloud energy storage service provider needs to pay to the grid;
  • ⁇ t is the unit price of electricity that the cloud energy storage service provider obtains from the grid when the centralized energy storage facility feeds back energy to the grid during the period t;
  • P t C, CU is the charging power used by centralized energy storage facilities to provide cloud energy storage services to cloud energy storage users during t period;
  • P t D,CU is the discharge power used by centralized energy storage facilities to provide cloud energy storage services to cloud energy storage users during t period;
  • p t C,DG ⁇ is the sum of the charging power of local distributed energy used by cloud energy storage users during t period
  • P t C, AS is the charging power used by the centralized energy storage facility to provide auxiliary services to the grid during the period t;
  • P t D, AS is the discharge power used by the centralized energy storage facility to provide auxiliary services to the grid during the period t;
  • the charging power realized by the cloud energy storage service provider is required for grid auxiliary services during t period;
  • the discharge power realized by the cloud energy storage service provider is required for grid auxiliary services in t period;
  • the charging power of the cloud energy storage service provider during the t period cannot meet the demand for grid auxiliary services, that is And the unit price of the penalty electricity fee that needs to be paid to the grid;
  • the charging power of the cloud energy storage service provider during ⁇ cannot meet the demand for grid auxiliary services, namely And the predicted value of the unit price of the penalty electricity fee that needs to be paid to the grid;
  • the discharge power of the cloud energy storage service provider during the period t cannot meet the demand for grid auxiliary services, that is And the unit price of the penalty electricity fee that needs to be paid to the grid;
  • the discharge power of the cloud energy storage service provider during the ⁇ period cannot meet the demand for grid auxiliary services, namely And the predicted value of the unit price of the penalty electricity fee that needs to be paid to the grid;
  • the charging power of the cloud energy storage service provider during the t period meets the demand for grid auxiliary services, namely , And the unit energy reward obtained from the grid;
  • the charging power of the cloud energy storage service provider during the ⁇ period meets the demand for grid auxiliary services, namely And the predicted value of the unit energy reward obtained from the grid;
  • the discharge power of the cloud energy storage service provider during the t period meets the grid auxiliary service demand, that is, A t D ⁇ P t D,AS , and the unit energy reward obtained from the grid
  • the discharge power of the cloud energy storage service provider during the ⁇ period meets the demand for grid auxiliary services, namely And the predicted value of the unit energy reward obtained from the grid;
  • E t is the power of the centralized energy storage facility at the end of t period
  • E ⁇ is the predicted value of the electricity of the centralized energy storage facility at the end of the ⁇ period
  • P Cap is the power capacity of the centralized energy storage facility
  • E Min is the minimum power of the centralized energy storage facility
  • SOC Min is the minimum state of charge of the centralized energy storage facility
  • E Cap is the energy capacity of the centralized energy storage facility
  • S is the self-discharge rate of the centralized energy storage facility at each time interval ⁇ t
  • ⁇ C is the charging efficiency of the centralized energy storage facility
  • ⁇ D is the discharge efficiency of the centralized energy storage facility
  • SOC 0 is the initial charge of the centralized energy storage facility status
  • the cloud energy storage service provider obtains the operating parameters of the current period t from the grid control center, including: the cloud energy storage service provider needs to pay to the grid when the centralized energy storage facility obtains power from the grid during the period t
  • the unit price of electricity ⁇ t the unit price of electricity that the cloud energy storage service provider obtains from the grid when the centralized energy storage facility feeds back energy to the grid during t period ⁇ t
  • discharge power The unit price of the penalty electricity fee paid to the grid when the charging power of the cloud energy storage service provider cannot meet the needs of the grid auxiliary service during t
  • the unit price of the penalty electricity fee paid to the grid when the discharge power of the cloud energy storage service provider during t cannot meet the needs of the grid's auxiliary services
  • the cloud energy storage service provider predicts the operating parameters within the time range T t based on historical data, including the predicted unit price of the electricity bill paid by the cloud energy storage service provider to the grid when the centralized energy storage facility obtains power from the grid during the period of ⁇ ⁇
  • ⁇ time grid auxiliary service needs the predicted value of the charging power realized by the cloud energy storage service provider
  • the predicted value of the unit price of the penalty electricity fee paid to the grid when the charging power of the cloud energy storage service provider during ⁇ cannot meet the needs of the grid auxiliary service , Predicted value of the unit price of the penalty electricity fee paid to the grid when the discharge power of the
  • the centralized energy storage facility in t period is used to provide cloud energy storage services to cloud energy storage users
  • the cloud energy storage service provider sets the charging power of the centralized energy storage facility in period t as P t C,CU +P t C,AS , and the discharge power as P t D,CU + P t D,AS ;
  • the centralized energy storage facility works according to the set charging power and discharging power;
  • the cloud energy storage service provider obtains the actual value of the power of the centralized energy storage facility at the end of period t through its sensors installed on the centralized energy storage facility as a parameter for the next decision period; return to step 2) to start the next decision cycle.
  • the invention improves the decision model of the cloud energy storage service provider, so that the cloud energy storage service provider can participate in the auxiliary service of the grid, and responds to the charging issued by the grid control center. And the discharge command realizes the participation in the auxiliary service of the frequency and peak regulation of the power grid.
  • cloud energy storage service providers adopt the idea of model predictive control in their operational decision-making, and make rolling decisions on the charging and discharging instructions of current centralized energy storage facilities based on existing and predicted information.
  • the method of the invention can broaden the source of grid auxiliary service participants, provide beneficial support for auxiliary service requirements such as frequency modulation and peak shaving of the grid, and can further improve the utilization rate of the centralized energy storage facility in the cloud energy storage system.
  • Cloud energy storage service providers can use more predicted parameters to make their operational decisions to meet the needs of cloud energy storage users for charging and discharging and grid auxiliary services more scientific and reasonable.
  • a centralized cloud energy storage operation decision method that can participate in grid auxiliary services proposed by the present invention includes the following steps:
  • the objective function represents the sum of minimizing the operating cost of the centralized energy storage facility in the current period and the operating cost expected to occur within the set time range;
  • ⁇ t is the basic time interval of the model predictive control model, which is set to 2s in this embodiment
  • T t is the current period; ⁇ is any period within 5 min immediately after the current period t; T t is the set of all periods within 5 min immediately after the current period t;
  • ⁇ t is the unit price of electricity that the cloud energy storage service provider needs to pay to the grid when the centralized energy storage facility obtains power from the grid during the period t;
  • the centralized energy storage facility obtains electric energy from the grid during the period of ⁇ , the predicted value of the unit price of electricity that the cloud energy storage service provider needs to pay to the grid;
  • ⁇ t is the unit price of electricity that the cloud energy storage service provider obtains from the grid when the centralized energy storage facility feeds back energy to the grid during the period t;
  • P t C, CU is the charging power used by centralized energy storage facilities to provide cloud energy storage services to cloud energy storage users during t period;
  • P t D,CU is the discharge power used by centralized energy storage facilities to provide cloud energy storage services to cloud energy storage users during t period;
  • P t C, AS is the charging power used by the centralized energy storage facility to provide auxiliary services to the grid during the period t;
  • P t D, AS is the discharge power used by the centralized energy storage facility to provide auxiliary services to the grid during the period t;
  • the charging power realized by the cloud energy storage service provider is required for grid auxiliary services during t period;
  • the discharge power realized by the cloud energy storage service provider is required for grid auxiliary services in t period;
  • the charging power of the cloud energy storage service provider during the t period cannot meet the demand for grid auxiliary services, that is And the unit price of the penalty electricity fee that needs to be paid to the grid;
  • the charging power of the cloud energy storage service provider during ⁇ cannot meet the demand for grid auxiliary services, namely And the predicted value of the unit price of the penalty electricity fee that needs to be paid to the grid;
  • the discharge power of the cloud energy storage service provider during the t period cannot meet the grid auxiliary service demand, that is, A t D >P t D,AS , and the unit price of the penalty electricity fee that needs to be paid to the grid;
  • the discharge power of the cloud energy storage service provider during the ⁇ period cannot meet the demand for grid auxiliary services, namely And the predicted value of the unit price of the penalty electricity fee that needs to be paid to the grid;
  • the charging power of the cloud energy storage service provider during the t period meets the demand for grid auxiliary services, namely , And the unit energy reward obtained from the grid;
  • the charging power of the cloud energy storage service provider during the ⁇ period meets the demand for grid auxiliary services, namely And the predicted value of the unit energy reward obtained from the grid;
  • the discharge power of the cloud energy storage service provider during the t period meets the demand for grid auxiliary services, namely , And the unit energy reward obtained from the grid;
  • the discharge power of the cloud energy storage service provider during the ⁇ period meets the demand for grid auxiliary services, namely And the predicted value of the unit energy reward obtained from the grid;
  • E t is the power of the centralized energy storage facility at the end of t period
  • E ⁇ is the predicted value of the electricity of the centralized energy storage facility at the end of the ⁇ period
  • P Cap is the power capacity of the centralized energy storage facility
  • E Min is the minimum power of the centralized energy storage facility
  • SOC Min is the minimum state of charge of the centralized energy storage facility
  • E Cap is the energy capacity of the centralized energy storage facility
  • S is the self-discharge rate of the centralized energy storage facility at each time interval ⁇ t
  • ⁇ C is the charging efficiency of the centralized energy storage facility
  • ⁇ D is the discharge efficiency of the centralized energy storage facility.
  • the model setting of the energy storage facility is a known value
  • the cloud energy storage service provider obtains the operating parameters of the current period t from the grid control center, including: the cloud energy storage service provider needs to pay to the grid when the centralized energy storage facility obtains power from the grid during the period t
  • the unit price of electricity ⁇ t the unit price of electricity that the cloud energy storage service provider obtains from the grid when the centralized energy storage facility feeds back energy to the grid during t period ⁇ t
  • discharge power The unit price of the penalty electricity fee paid to the grid when the charging power of the cloud energy storage service provider cannot meet the needs of the grid auxiliary service during t
  • the unit price of the penalty electricity fee paid to the grid when the discharge power of the cloud energy storage service provider during t cannot meet the needs of the grid's auxiliary services
  • the cloud energy storage service provider predicts the operating parameters within the time range T t based on historical data, including the predicted unit price of the electricity bill paid by the cloud energy storage service provider to the grid when the centralized energy storage facility obtains power from the grid during the period of ⁇ ⁇
  • ⁇ time grid auxiliary service needs the predicted value of the charging power realized by the cloud energy storage service provider
  • the predicted value of the unit price of the penalty electricity fee paid to the grid when the charging power of the cloud energy storage service provider during ⁇ cannot meet the needs of the grid auxiliary service , Predicted value of the unit price of the penalty electricity fee paid to the grid when the discharge power of the
  • step 2) and step 3 the following decision variables are solved through the linear programming solver:
  • the centralized energy storage facility in t period is used to provide cloud energy storage users
  • the charging power P t C, CU and the discharging power P t D, CU , and the charging power P t C, AS and the discharging power P t D used by the centralized energy storage facility to provide auxiliary services to the grid to provide cloud energy storage services
  • AS the calculated value of the electricity E t of the centralized energy storage facility at the end of the t period (the calculated electricity value is used as the intermediate variable of the model);
  • the cloud energy storage service provider sets the charging power of the centralized energy storage facility in period t as P t C,CU +P t C,AS , and the discharge power as P t D,CU + P t D,AS ;
  • the centralized energy storage facility works according to the set charging power and discharging power;
  • the cloud energy storage service provider obtains the actual value of the power of the centralized energy storage facility at the end of period t through its sensors installed on the centralized energy storage facility as the parameter of the next decision-making cycle; return to step 2) Start the next cycle Decision-making.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种可参与电网辅助服务的集中式云储能运行决策方法。本方法利用模型预测控制模型,该模型以最小化集中式储能设施在当前时段产生的运行成本与其预计在设定时间范围内产生的运行成本的总合作为目标函数,以充放电功率和集中式储能设施电量作为约束条件;云储能服务提供商根据从电网调控中心获取的当前时段运行参数和根据历史数据预测的运行参数利用上述模型求解出当前时段集中式储能设施用于向云储能用户提供云储能服务的充、放电功率和其用于向电网提供辅助服务的充、放电功率,得到集中式储能设施的控制指令。本发明通过响应电网调控中心发出的充电和放电命令实现对电网调频调峰辅助服务的参与,可提高集中式储能设施的利用率。

Description

一种可参与电网辅助服务的集中式云储能运行决策方法
相关申请的交叉引用
本申请要求清华大学于2019年11月28日提交的、发明名称为“一种可参与电网辅助服务的集中式云储能运行决策方法”的、中国专利申请号“201911191015.X”的优先权。
技术领域
本发明涉及一种可参与电网辅助服务的集中式云储能运行决策方法,属于电网中储能技术应用领域。
背景技术
随着分布式发电技术和实时电价的推广,用户日益希望自主选择储能装置及其充放电时机,实现合理的储能资源利用。用户投资使用本地的实体储能装置可能会面临着过高的单位成本,而且也需要花费一定的精力进行维护。利用共享式云端虚拟储能代替用户本地的实体储能装置是一种较好的替代方式,如已有的一种用于住宅和小型用户的云储能装置(Liu J, Zhang N, Kang C, et al. Cloud energy storage for residential and small commercial consumers: A business case study[J]. Applied Energy. 2017, 188: 226-236.)。现有的云储能概念是一种基于电网的共享式储能技术,使用户可以随时、随地、按需使用由集中式或分布式的储能设施构成的共享储能资源,并按照使用需求而支付服务费。现有云储能系统主要包括4部分,分别是云储能用户、云储能服务提供商、集中式储能设施以及电网。云储能用户和电网之间以及集中式储能设施和电网之间分别通过电气连接实现能量的双向传输。云储能用户和电网之间、云储能用户和云储能服务提供商之间、云储能服务提供商和集中式储能设施之间分别通过有线或无线通信方式实现信息的双向传输,电网向云储能服务提供商单向传输信息。
云储能服务提供商控制储能装置满足云储能用户的充电和放电需求,同时最大化利用储能资源。可用的储能资源不仅被许多云储能用户所分享,同时也根据充放电需求动态地分配给相应云储能用户。通过优化计划和储能设施的协调控制,提高系统运行效率。云储能通过从配电馈线充放电改变了原有的潮流。云储能用户与储能设施处于同一配电网中。当一个云储能用户向其所分配到的储能资源充电时,储能设施通过向电网吸入能量而充电。当云储能用户使其云端电池放电来使用所存储的能量时,储能设施向电网释放能量去补偿相应用户的负荷。
云储能服务提供商可以利用海量分布式用户之间充电和放电需求的互补性和非同时性实现其所建设的储能设施的能量容量与功率容量分别低于云储能系统中所有分布式用户的能量容量需求总合与功率容量需求总合。如今能源与信息通讯技术愈发深度融合,这就给构建云储能系统提供了软硬件的支撑。目前的云储能系统在决策时未考虑到将云储能所对应的集中式储能装置运用于电网辅助服务,仅考虑如何利用储能资源服务云储能用户,没有最大化地发挥储能资源的价值。
此外,模型预测控制(Model Predictive Control,MPC)理论(可参见以下论文:刘向杰,孔小兵.电力工业复杂系统模型预测控制——现状与发展.中国电机工程学报,2013,33(05):79-85.)是一种优化控制理论,该理论于上世纪70年代问世,主要针对有优化需求的控制问题,在复杂工业控制中有成功的应用。该理论根据当前时刻能够获取的信息和对于未来预测的信息,优化求解控制策略之后只采用当前时刻的控制策略,通过滚动优化得到实时的控制策略。该理论可以用于决策电力系统调度模型中的参数,例如机组出力。
目前还没有详细介绍可参与电网辅助服务的云储能系统及其使用MPC方法进行参与电网辅助服务决策的相关报道。
发明内容
本发明的目的是为克服现有集中式云储能系统仅仅用于满足用户的充电放电需求的局限性,提出一种可参与电网辅助服务的集中式云储能运行决策方法,本发明对云储能系统进行了拓展,将电网调控中心包含在云储能系统内,使得云储能服务提供商可以参与电网的辅助服务,例如调频、调峰。在此基础上,还运用模型预测控制理论,提出了云储能服务提供商运行决策模型与方法,为云储能服务提供商实际参与辅助服务提供了支持。
为了实现上述目的,本发明采用如下技术方案:
本发明提出的一种可参与电网辅助服务的集中式云储能运行决策方法,其特征在于,包括以下步骤:
1)建立如下模型预测控制模型:
1-1)设所述模型预测控制模型的目标函数为:
Figure PCTCN2020074192-appb-000001
该目标函数表示最小化集中式储能设施在当前时段产生的运行成本与其预计在设定时间范围内产生的运行成本的总合;式中,
(·) +和(·) -分别定义为取括号中的正值和负值部分,即:
Figure PCTCN2020074192-appb-000002
Figure PCTCN2020074192-appb-000003
Δt为模型预测控制模型的基本时段间隔;
t为当前时段;τ为紧邻当前时段t之后5min内的任一时段;T t为紧邻当前时段t之后5min内的所有时段的集合;
Figure PCTCN2020074192-appb-000004
为集中式储能设施在t时段产生的运行成本与其预计在T t时间范围内产生的运行成本的总合;
λ t为t时段集中式储能设施从电网获取电能时,云储能服务提供商需要支付给电网的电费单价;
Figure PCTCN2020074192-appb-000005
为τ时段集中式储能设施从电网获取电能时,云储能服务提供商需要支付给电网的电费单价预测值;
θ t为t时段集中式储能设施向电网回馈电能时,云储能服务提供商从电网获得的电费单价;
Figure PCTCN2020074192-appb-000006
为τ时段集中式储能设施向电网回馈电能时,云储能服务提供商从电网获得的电费 单价预测值;
P t C,CU为t时段集中式储能设施用于向云储能用户提供云储能服务的充电功率;
Figure PCTCN2020074192-appb-000007
为τ时段集中式储能设施用于向云储能用户提供云储能服务的充电功率的预测值;
P t D,CU为t时段集中式储能设施用于向云储能用户提供云储能服务的放电功率;
Figure PCTCN2020074192-appb-000008
为τ时段集中式储能设施用于向云储能用户提供云储能服务的放电功率的预测值;
Figure PCTCN2020074192-appb-000009
为t时段云储能用户放电功率的总合;
Figure PCTCN2020074192-appb-000010
为τ时段云储能用户放电功率的总合的预测值;
p t C,DGΣ为t时段云储能用户使用本地分布式能源充电功率的总合;
Figure PCTCN2020074192-appb-000011
为τ时段云储能用户使用本地分布式能源充电功率的总合的预测值;
P t C,AS为t时段集中式储能设施用于向电网提供辅助服务的充电功率;
Figure PCTCN2020074192-appb-000012
为τ时段集中式储能设施用于向电网提供辅助服务的充电功率的预测值;
P t D,AS为t时段集中式储能设施用于向电网提供辅助服务的放电功率;
Figure PCTCN2020074192-appb-000013
为τ时段集中式储能设施用于向电网提供辅助服务的放电功率的预测值;
Figure PCTCN2020074192-appb-000014
为t时段电网辅助服务需要云储能服务提供商实现的充电功率;
Figure PCTCN2020074192-appb-000015
为τ时段电网辅助服务需要云储能服务提供商实现的充电功率的预测值;
Figure PCTCN2020074192-appb-000016
为t时段电网辅助服务需要云储能服务提供商实现的放电功率;
Figure PCTCN2020074192-appb-000017
为τ时段电网辅助服务需要云储能服务提供商实现的放电功率的预测值;
Figure PCTCN2020074192-appb-000018
为t时段云储能服务提供商的充电功率不能满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000019
而需要向电网支付的惩罚电费单价;
Figure PCTCN2020074192-appb-000020
为τ时段云储能服务提供商的充电功率不能满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000021
而需要向电网支付的惩罚电费单价的预测值;
Figure PCTCN2020074192-appb-000022
为t时段云储能服务提供商的放电功率不能满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000023
而需要向电网支付的惩罚电费单价;
Figure PCTCN2020074192-appb-000024
为τ时段云储能服务提供商的放电功率不能满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000025
而需要向电网支付的惩罚电费单价的预测值;
Figure PCTCN2020074192-appb-000026
为t时段云储能服务提供商的充电功率满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000027
,而从电网获得的单位能量奖励;
Figure PCTCN2020074192-appb-000028
为τ时段云储能服务提供商的充电功率满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000029
而从电网获得的单位能量奖励的预测值;
Figure PCTCN2020074192-appb-000030
为t时段云储能服务提供商的放电功率满足电网辅助服务需求,即A t D≤P t D,AS,而从电网获得的单位能量奖励;
Figure PCTCN2020074192-appb-000031
为τ时段云储能服务提供商的放电功率满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000032
而从电网获得的单位能量奖励的预测值;
E t为t时段末集中式储能设施的电量;
E τ为τ时段末集中式储能设施的电量的预测值;
1-2)设所述模型预测控制模型的约束条件为:
1-2-1)充放电功率约束
Figure PCTCN2020074192-appb-000033
Figure PCTCN2020074192-appb-000034
Figure PCTCN2020074192-appb-000035
Figure PCTCN2020074192-appb-000036
Figure PCTCN2020074192-appb-000037
P t C,CU+P t C,AS≤P Cap
Figure PCTCN2020074192-appb-000038
P t D,CU+P t D,AS≤P Cap
Figure PCTCN2020074192-appb-000039
式中,P Cap为集中式储能设施的功率容量;
1-2-2)集中式储能设施最小电量约束
E Min=SOC Min·E Cap
式中,E Min为集中式储能设施的最小电量;SOC Min为集中式储能设施的最小荷电状态;E Cap为集中式储能设施的能量容量;
1-2-3)集中式储能设施电量约束
E Min≤E t,E τ≤E Cap
1-2-4)相邻时段集中式储能设施电量约束
Figure PCTCN2020074192-appb-000040
Figure PCTCN2020074192-appb-000041
Figure PCTCN2020074192-appb-000042
式中:S为集中式储能设施在每个时间间隔Δt的自放电率,η C为集中式储能设施的充电效率,η D为集中式储能设施的放电效率;E t-1为t-1时段末通过传感器获取的集中式储能设施的实际电量,令初始时刻集中式储能设施的电量为E 0=SOC 0·E Cap,SOC 0为集中式储能设施的初始荷电状态;
2)当前决策周期开始时刻,云储能服务提供商从电网控制中心获取当前时段t的运行参数,包括:t时段集中式储能设施从电网获取电能时云储能服务提供商需要支付给电网的电费单价λ t、t时段集中式储能设施向电网回馈电能时云储能服务提供商从电网获得的电费单价θ t、t时段电网辅助服务需要云储能服务提供商实现的充电功率
Figure PCTCN2020074192-appb-000043
和放电功率
Figure PCTCN2020074192-appb-000044
、t时段云储能服务提供商的充电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价
Figure PCTCN2020074192-appb-000045
、t时段云储能服务提供商的放电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价
Figure PCTCN2020074192-appb-000046
、t时段云储能服务提供商的充电功率满足电网辅助服务需求时从电网获得的单位能量奖励
Figure PCTCN2020074192-appb-000047
、t时段云储能服务提供商的放电功率满足电网辅助服务需求时从电网获得的单位能量奖励
Figure PCTCN2020074192-appb-000048
;通过安装在云储能用户的便携设备上的应用程序实时收集和量测得到t时段云储能用户放电功率的总合
Figure PCTCN2020074192-appb-000049
、t时段云储能用户使用本地分布式能源充电功率的总合
Figure PCTCN2020074192-appb-000050
3)云储能服务提供商根据历史数据预测得到T t时间范围内的运行参数,包括τ时段集中式储能设施从电网获取电能时云储能服务提供商支付给电网的电费单价预测值
Figure PCTCN2020074192-appb-000051
、τ时段集中式储能设施向电网回馈电能时云储能服务提供商从电网获得的电费单价预测值
Figure PCTCN2020074192-appb-000052
、τ时段云储能用户放电功率的总合的预测值
Figure PCTCN2020074192-appb-000053
、τ时段云储能用户使用本地分布式能源充电 功率的总合的预测值
Figure PCTCN2020074192-appb-000054
、τ时段电网辅助服务需要云储能服务提供商实现的充电功率的预测值
Figure PCTCN2020074192-appb-000055
和放电功率的预测值
Figure PCTCN2020074192-appb-000056
、τ时段云储能服务提供商的充电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价的预测值
Figure PCTCN2020074192-appb-000057
、τ时段云储能服务提供商的放电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价的预测值
Figure PCTCN2020074192-appb-000058
、τ时段云储能服务提供商的充电功率满足电网辅助服务需求时从电网获得的单位能量奖励的预测值
Figure PCTCN2020074192-appb-000059
、τ时段云储能服务提供商的放电功率满足电网辅助服务需求时从电网获得的单位能量奖励的预测值
Figure PCTCN2020074192-appb-000060
4)根据步骤2)和步骤3)得到的运行参数及步骤1)建立的模型预测控制模型,求解出以下决策变量:t时段集中式储能设施用于向云储能用户提供云储能服务的充电功率P t C,CU和放电功率P t D,CU、t时段集中式储能设施用于向电网提供辅助服务的充电功率P t C,AS和放电功率P t D,AS
5)云储能服务提供商根据步骤4)得到的决策变量设定t时段集中式储能设施的充电功率为P t C,CU+P t C,AS,放电功率为P t D,CU+P t D,AS;集中式储能设施按照该设定的充电功率和放电功率工作;
6)云储能服务提供商通过其安装在集中式储能设施上的传感器获取t时段末集中式储能设施的电量的实际值作为下一决策周期的参数;返回步骤2)开始下一决策周期。
本发明的特点及有益效果:
本发明针对现有云储能系统不能实现参与电网辅助服务的问题,改进云储能服务提供商决策模型,使云储能服务提供商可以参与电网的辅助服务,通过响应电网调控中心发出的充电和放电命令实现对电网调频调峰辅助服务的参与。为了提升决策的准确性,云储能服务提供商的运行决策采用模型预测控制的思想,根据现有和预测信息滚动决策当前的集中式储能设施的充电和放电指令。
本发明方法能够拓宽电网辅助服务参与者的来源,为电网的调频、调峰等辅助服务需求提供有益的支撑,还可以使得云储能系统中集中式储能设施的利用率进一步提高。云储能服务提供商可利用更多预测得到的参数,使其满足云储能用户充电放电和电网辅助服务需求的运行决策更加科学合理。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
本发明提出的一种可参与电网辅助服务的集中式云储能运行决策方法,包括以下步骤:
1)建立如下模型预测控制模型:
1-1)设所述模型预测控制模型的目标函数为:
Figure PCTCN2020074192-appb-000061
该目标函数表示最小化集中式储能设施在当前时段产生的运行成本与其预计在设定时间范围内产生的运行成本的总合;式中,
(·) +和(·) -分别定义为取括号中的正值和负值部分,即:
Figure PCTCN2020074192-appb-000062
Figure PCTCN2020074192-appb-000063
Δt为模型预测控制模型的基本时段间隔,本实施例设定为2s;
t为当前时段;τ为紧邻当前时段t之后5min内的任一时段;T t为紧邻当前时段t之后5min内的所有时段的集合;
Figure PCTCN2020074192-appb-000064
为集中式储能设施在t时段产生的运行成本与其预计在T t时间范围内产生的运行成本的总合;
λ t为t时段集中式储能设施从电网获取电能时,云储能服务提供商需要支付给电网的电费单价;
Figure PCTCN2020074192-appb-000065
为τ时段集中式储能设施从电网获取电能时,云储能服务提供商需要支付给电网的电费单价预测值;
θ t为t时段集中式储能设施向电网回馈电能时,云储能服务提供商从电网获得的电费单价;
Figure PCTCN2020074192-appb-000066
为τ时段集中式储能设施向电网回馈电能时,云储能服务提供商从电网获得的电费单价预测值;
P t C,CU为t时段集中式储能设施用于向云储能用户提供云储能服务的充电功率;
Figure PCTCN2020074192-appb-000067
为τ时段集中式储能设施用于向云储能用户提供云储能服务的充电功率的预测值;
P t D,CU为t时段集中式储能设施用于向云储能用户提供云储能服务的放电功率;
Figure PCTCN2020074192-appb-000068
为τ时段集中式储能设施用于向云储能用户提供云储能服务的放电功率的预测值;
Figure PCTCN2020074192-appb-000069
为t时段云储能用户放电功率的总合;
Figure PCTCN2020074192-appb-000070
为τ时段云储能用户放电功率的总合的预测值;
Figure PCTCN2020074192-appb-000071
为t时段云储能用户使用本地分布式能源充电功率的总合;
Figure PCTCN2020074192-appb-000072
为τ时段云储能用户使用本地分布式能源充电功率的总合的预测值;
P t C,AS为t时段集中式储能设施用于向电网提供辅助服务的充电功率;
Figure PCTCN2020074192-appb-000073
为τ时段集中式储能设施用于向电网提供辅助服务的充电功率的预测值;
P t D,AS为t时段集中式储能设施用于向电网提供辅助服务的放电功率;
Figure PCTCN2020074192-appb-000074
为τ时段集中式储能设施用于向电网提供辅助服务的放电功率的预测值;
Figure PCTCN2020074192-appb-000075
为t时段电网辅助服务需要云储能服务提供商实现的充电功率;
Figure PCTCN2020074192-appb-000076
为τ时段电网辅助服务需要云储能服务提供商实现的充电功率的预测值;
Figure PCTCN2020074192-appb-000077
为t时段电网辅助服务需要云储能服务提供商实现的放电功率;
Figure PCTCN2020074192-appb-000078
为τ时段电网辅助服务需要云储能服务提供商实现的放电功率的预测值;
Figure PCTCN2020074192-appb-000079
为t时段云储能服务提供商的充电功率不能满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000080
而需要向电网支付的惩罚电费单价;
Figure PCTCN2020074192-appb-000081
为τ时段云储能服务提供商的充电功率不能满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000082
而需要向电网支付的惩罚电费单价的预测值;
Figure PCTCN2020074192-appb-000083
为t时段云储能服务提供商的放电功率不能满足电网辅助服务需求,即A t D>P t D,AS,而需要向电网支付的惩罚电费单价;
Figure PCTCN2020074192-appb-000084
为τ时段云储能服务提供商的放电功率不能满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000085
而需要向电网支付的惩罚电费单价的预测值;
Figure PCTCN2020074192-appb-000086
为t时段云储能服务提供商的充电功率满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000087
,而从电网获得的单位能量奖励;
Figure PCTCN2020074192-appb-000088
为τ时段云储能服务提供商的充电功率满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000089
而从电网获得的单位能量奖励的预测值;
Figure PCTCN2020074192-appb-000090
为t时段云储能服务提供商的放电功率满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000091
,而从电网获得的单位能量奖励;
Figure PCTCN2020074192-appb-000092
为τ时段云储能服务提供商的放电功率满足电网辅助服务需求,即
Figure PCTCN2020074192-appb-000093
而从电网获得的单位能量奖励的预测值;
E t为t时段末集中式储能设施的电量;
E τ为τ时段末集中式储能设施的电量的预测值;
1-2)设所述模型预测控制模型的约束条件为:
1-2-1)充放电功率约束
Figure PCTCN2020074192-appb-000094
Figure PCTCN2020074192-appb-000095
Figure PCTCN2020074192-appb-000096
Figure PCTCN2020074192-appb-000097
Figure PCTCN2020074192-appb-000098
P t C,CU+P t C,AS≤P Cap
Figure PCTCN2020074192-appb-000099
P t D,CU+P t D,AS≤P Cap
Figure PCTCN2020074192-appb-000100
式中,P Cap为集中式储能设施的功率容量;
1-2-2)集中式储能设施最小电量约束
E Min=SOC Min·E Cap
式中,E Min为集中式储能设施的最小电量;SOC Min为集中式储能设施的最小荷电状态;E Cap为集中式储能设施的能量容量;
1-2-3)集中式储能设施电量约束
E Min≤E t,E τ≤E Cap
1-2-4)相邻时段集中式储能设施电量约束
Figure PCTCN2020074192-appb-000101
Figure PCTCN2020074192-appb-000102
Figure PCTCN2020074192-appb-000103
式中:S为集中式储能设施在每个时间间隔Δt的自放电率,η C为集中式储能设施的充电效率,η D为集中式储能设施的放电效率,均分别根据集中式储能设施的型号设定,为已知值;E t-1为t-1时段末通过传感器获取的集中式储能设施的实际电量,令初始时刻集中式储能设施的电量为E 0=SOC 0·E Cap,SOC 0为集中式储能设施的初始荷电状态;
2)当前决策周期开始时刻,云储能服务提供商从电网控制中心获取当前时段t的运行参数,包括:t时段集中式储能设施从电网获取电能时云储能服务提供商需要支付给电网的电费单价λ t、t时段集中式储能设施向电网回馈电能时云储能服务提供商从电网获得的电费单价θ t、t时段电网辅助服务需要云储能服务提供商实现的充电功率
Figure PCTCN2020074192-appb-000104
和放电功率
Figure PCTCN2020074192-appb-000105
、t时段云储能服务提供商的充电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价
Figure PCTCN2020074192-appb-000106
、t时段云储能服务提供商的放电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价
Figure PCTCN2020074192-appb-000107
、t时段云储能服务提供商的充电功率满足电网辅助服务需求时从电网获得的单位能量奖励
Figure PCTCN2020074192-appb-000108
、t时段云储能服务提供商的放电功率满足电网辅助服务需求时从电网获得的单位能量奖励
Figure PCTCN2020074192-appb-000109
;通过安装在云储能用户的便携设备上的应用程序实时收集和量测得到t时段云储能用户放电功率的总合
Figure PCTCN2020074192-appb-000110
、t时段云储能用户使用本地分布式能源充电功率的总合
Figure PCTCN2020074192-appb-000111
3)云储能服务提供商根据历史数据预测得到T t时间范围内的运行参数,包括τ时段集中式储能设施从电网获取电能时云储能服务提供商支付给电网的电费单价预测值
Figure PCTCN2020074192-appb-000112
、τ时段集中式储能设施向电网回馈电能时云储能服务提供商从电网获得的电费单价预测值
Figure PCTCN2020074192-appb-000113
、τ时段云储能用户放电功率的总合的预测值
Figure PCTCN2020074192-appb-000114
、τ时段云储能用户使用本地分布式能源充电功率的总合的预测值
Figure PCTCN2020074192-appb-000115
、τ时段电网辅助服务需要云储能服务提供商实现的充电功率的预测值
Figure PCTCN2020074192-appb-000116
和放电功率的预测值
Figure PCTCN2020074192-appb-000117
、τ时段云储能服务提供商的充电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价的预测值
Figure PCTCN2020074192-appb-000118
、τ时段云储能服务提供商的放电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价的预测值
Figure PCTCN2020074192-appb-000119
、τ时段云储能服务提供商的充电功率满足电网辅助服务需求时从电网获得的单位能量奖励的预测值
Figure PCTCN2020074192-appb-000120
、τ时段云储能服务提供商的放电功率满足电网辅助服务需求时从电网获得的单位能量奖励的预测值
Figure PCTCN2020074192-appb-000121
4)根据步骤2)和步骤3)得到的运行参数及步骤1)建立的模型预测控制模型,通过线性规划求解器求解出以下决策变量:t时段集中式储能设施用于向云储能用户提供云储能服务的充电功率P t C,CU和放电功率P t D,CU、t时段集中式储能设施用于向电网提供辅助服务的充电功率P t C,AS和放电功率P t D,AS、t时段末集中式储能设施的电量E t的计算值(该电量计算值作为模型的中间变量);
5)云储能服务提供商根据步骤4)得到的决策变量设定t时段集中式储能设施的充电功率为P t C,CU+P t C,AS,放电功率为P t D,CU+P t D,AS;集中式储能设施按照该设定的充电功率和放电功率工作;
6)云储能服务提供商通过其安装在集中式储能设施上的传感器获取t时段末集中式储能设施的电量的实际值作为下一决策周期的参数;返回步骤2)开始下一周期的决策。
以上所述仅为本发明的实施例,并非因此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的保护范围内。

Claims (1)

  1. 一种可参与电网辅助服务的集中式云储能运行决策方法,其特征在于,包括以下步骤:
    1)建立如下模型预测控制模型:
    1-1)设所述模型预测控制模型的目标函数为:
    Figure PCTCN2020074192-appb-100001
    该目标函数表示最小化集中式储能设施在当前时段产生的运行成本与其预计在设定时间范围内产生的运行成本的总合;式中,
    (·) +和(·) -分别定义为取括号中的正值和负值部分,即:
    Figure PCTCN2020074192-appb-100002
    Figure PCTCN2020074192-appb-100003
    Δt为模型预测控制模型的基本时段间隔;
    t为当前时段;τ为紧邻当前时段t之后5min内的任一时段;T t为紧邻当前时段t之后5min内的所有时段的集合;
    Figure PCTCN2020074192-appb-100004
    为集中式储能设施在t时段产生的运行成本与其预计在T t时间范围内产生的运行成本的总合;
    λ t为t时段集中式储能设施从电网获取电能时,云储能服务提供商需要支付给电网的电费单价;
    Figure PCTCN2020074192-appb-100005
    为τ时段集中式储能设施从电网获取电能时,云储能服务提供商需要支付给电网的电费单价预测值;
    θ t为t时段集中式储能设施向电网回馈电能时,云储能服务提供商从电网获得的电费单价;
    Figure PCTCN2020074192-appb-100006
    为τ时段集中式储能设施向电网回馈电能时,云储能服务提供商从电网获得的电费单价预测值;
    P t C,CU为t时段集中式储能设施用于向云储能用户提供云储能服务的充电功率;
    Figure PCTCN2020074192-appb-100007
    为τ时段集中式储能设施用于向云储能用户提供云储能服务的充电功率的预测值;
    P t D,CU为t时段集中式储能设施用于向云储能用户提供云储能服务的放电功率;
    Figure PCTCN2020074192-appb-100008
    为τ时段集中式储能设施用于向云储能用户提供云储能服务的放电功率的预测值;
    Figure PCTCN2020074192-appb-100009
    为t时段云储能用户放电功率的总合;
    Figure PCTCN2020074192-appb-100010
    为τ时段云储能用户放电功率的总合的预测值;
    Figure PCTCN2020074192-appb-100011
    为t时段云储能用户使用本地分布式能源充电功率的总合;
    Figure PCTCN2020074192-appb-100012
    为τ时段云储能用户使用本地分布式能源充电功率的总合的预测值;
    P t C,AS为t时段集中式储能设施用于向电网提供辅助服务的充电功率;
    Figure PCTCN2020074192-appb-100013
    为τ时段集中式储能设施用于向电网提供辅助服务的充电功率的预测值;
    P t D,AS为t时段集中式储能设施用于向电网提供辅助服务的放电功率;
    Figure PCTCN2020074192-appb-100014
    为τ时段集中式储能设施用于向电网提供辅助服务的放电功率的预测值;
    Figure PCTCN2020074192-appb-100015
    为t时段电网辅助服务需要云储能服务提供商实现的充电功率;
    Figure PCTCN2020074192-appb-100016
    为τ时段电网辅助服务需要云储能服务提供商实现的充电功率的预测值;
    Figure PCTCN2020074192-appb-100017
    为t时段电网辅助服务需要云储能服务提供商实现的放电功率;
    Figure PCTCN2020074192-appb-100018
    为τ时段电网辅助服务需要云储能服务提供商实现的放电功率的预测值;
    Figure PCTCN2020074192-appb-100019
    为t时段云储能服务提供商的充电功率不能满足电网辅助服务需求,即
    Figure PCTCN2020074192-appb-100020
    而需要向电网支付的惩罚电费单价;
    Figure PCTCN2020074192-appb-100021
    为τ时段云储能服务提供商的充电功率不能满足电网辅助服务需求,即
    Figure PCTCN2020074192-appb-100022
    而需要向电网支付的惩罚电费单价的预测值;
    Figure PCTCN2020074192-appb-100023
    为t时段云储能服务提供商的放电功率不能满足电网辅助服务需求,即
    Figure PCTCN2020074192-appb-100024
    而需要向电网支付的惩罚电费单价;
    Figure PCTCN2020074192-appb-100025
    为τ时段云储能服务提供商的放电功率不能满足电网辅助服务需求,即
    Figure PCTCN2020074192-appb-100026
    而需要向电网支付的惩罚电费单价的预测值;
    Figure PCTCN2020074192-appb-100027
    为t时段云储能服务提供商的充电功率满足电网辅助服务需求,即
    Figure PCTCN2020074192-appb-100028
    而从电网获得的单位能量奖励;
    Figure PCTCN2020074192-appb-100029
    为τ时段云储能服务提供商的充电功率满足电网辅助服务需求,即
    Figure PCTCN2020074192-appb-100030
    而从电网获得的单位能量奖励的预测值;
    Figure PCTCN2020074192-appb-100031
    为t时段云储能服务提供商的放电功率满足电网辅助服务需求,即
    Figure PCTCN2020074192-appb-100032
    而从电网获得的单位能量奖励;
    Figure PCTCN2020074192-appb-100033
    为τ时段云储能服务提供商的放电功率满足电网辅助服务需求,即
    Figure PCTCN2020074192-appb-100034
    而从电网获得的单位能量奖励的预测值;
    E t为t时段末集中式储能设施的电量;
    E τ为τ时段末集中式储能设施的电量的预测值;
    1-2)设所述模型预测控制模型的约束条件为:
    1-2-1)充放电功率约束
    Figure PCTCN2020074192-appb-100035
    Figure PCTCN2020074192-appb-100036
    Figure PCTCN2020074192-appb-100037
    Figure PCTCN2020074192-appb-100038
    Figure PCTCN2020074192-appb-100039
    P t C,CU+P t C,AS≤P Cap
    Figure PCTCN2020074192-appb-100040
    P t D,CU+P t D,AS≤P Cap
    Figure PCTCN2020074192-appb-100041
    式中,P Cap为集中式储能设施的功率容量;
    1-2-2)集中式储能设施最小电量约束
    E Min=SOC Min·E Cap
    式中,E Min为集中式储能设施的最小电量;SOC Min为集中式储能设施的最小荷电状态;E Cap为集中式储能设施的能量容量;
    1-2-3)集中式储能设施电量约束
    E Min≤E t,E τ≤E Cap
    1-2-4)相邻时段集中式储能设施电量约束
    Figure PCTCN2020074192-appb-100042
    Figure PCTCN2020074192-appb-100043
    Figure PCTCN2020074192-appb-100044
    式中:S为集中式储能设施在每个时间间隔Δt的自放电率,η C为集中式储能设施的充电效率,η D为集中式储能设施的放电效率;E t-1为t-1时段末通过传感器获取的集中式储能设施的实际电量,令初始时刻集中式储能设施的电量为E 0=SOC 0·E Cap,SOC 0为集中式储能设施的初始荷电状态;
    2)当前决策周期开始时刻,云储能服务提供商从电网控制中心获取当前时段t的运行参数,包括:t时段集中式储能设施从电网获取电能时云储能服务提供商需要支付给电网的电费单价λ t、t时段集中式储能设施向电网回馈电能时云储能服务提供商从电网获得的电费单价θ t、t时段电网辅助服务需要云储能服务提供商实现的充电功率
    Figure PCTCN2020074192-appb-100045
    和放电功率
    Figure PCTCN2020074192-appb-100046
    t时段云储能服务提供商的充电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价
    Figure PCTCN2020074192-appb-100047
    t时段云储能服务提供商的放电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价
    Figure PCTCN2020074192-appb-100048
    t时段云储能服务提供商的充电功率满足电网辅助服务需求时从电网获得的单位能量奖励
    Figure PCTCN2020074192-appb-100049
    t时段云储能服务提供商的放电功率满足电网辅助服务需求时从电网获得的单位能量奖励
    Figure PCTCN2020074192-appb-100050
    通过安装在云储能用户的便携设备上的应用程序实时收集和量测得到t时段云储能用户放电功率的总合
    Figure PCTCN2020074192-appb-100051
    t时段云储能用户使用本地分布式能源充电功率的总合
    Figure PCTCN2020074192-appb-100052
    3)云储能服务提供商根据历史数据预测得到T t时间范围内的运行参数,包括τ时段集中式储能设施从电网获取电能时云储能服务提供商支付给电网的电费单价预测值
    Figure PCTCN2020074192-appb-100053
    τ时段集中式储能设施向电网回馈电能时云储能服务提供商从电网获得的电费单价预测值
    Figure PCTCN2020074192-appb-100054
    τ时段云储能用户放电功率的总合的预测值
    Figure PCTCN2020074192-appb-100055
    τ时段云储能用户使用本地分布式能源充电功率的总合的预测值
    Figure PCTCN2020074192-appb-100056
    τ时段电网辅助服务需要云储能服务提供商实现的充电功率的预测值
    Figure PCTCN2020074192-appb-100057
    和放电功率的预测值
    Figure PCTCN2020074192-appb-100058
    τ时段云储能服务提供商的充电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价的预测值
    Figure PCTCN2020074192-appb-100059
    τ时段云储能服务提供商的放电功率不能满足电网辅助服务需求时向电网支付的惩罚电费单价的预测值
    Figure PCTCN2020074192-appb-100060
    τ时段云储能服务提供商的充电功率满足电网辅助服务需求时从电网获得的单位能量奖励的预测值
    Figure PCTCN2020074192-appb-100061
    τ时段云储能服务提供商的放电功率满足电网辅助服务需求时从电网获得的单位能量奖励的预测值
    Figure PCTCN2020074192-appb-100062
    4)根据步骤2)和步骤3)得到的运行参数及步骤1)建立的模型预测控制模型,求解出以下决策变量:t时段集中式储能设施用于向云储能用户提供云储能服务的充电功率P t C,CU和放电功率P t D,CU、t时段集中式储能设施用于向电网提供辅助服务的充电功率P t C,AS和放电功率P t D,AS
    5)云储能服务提供商根据步骤4)得到的决策变量设定t时段集中式储能设施的充电功率为P t C,CU+P t C,AS,放电功率为P t D,CU+P t D,AS;集中式储能设施按照该设定的充电功率和放电功率工作;
    6)云储能服务提供商通过其安装在集中式储能设施上的传感器获取t时段末集中式储能设施的电量的实际值作为下一决策周期的参数;返回步骤2)开始下一决策周期。
PCT/CN2020/074192 2019-11-28 2020-02-03 一种可参与电网辅助服务的集中式云储能运行决策方法 WO2021103312A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/824,113 US20220294224A1 (en) 2019-11-28 2022-05-25 Operation decision-making method for centralized cloud energy storage capable of participating in power grid auxiliary services

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911191015.X 2019-11-28
CN201911191015.XA CN110890752B (zh) 2019-11-28 2019-11-28 一种可参与电网辅助服务的集中式云储能运行决策方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/824,113 Continuation US20220294224A1 (en) 2019-11-28 2022-05-25 Operation decision-making method for centralized cloud energy storage capable of participating in power grid auxiliary services

Publications (1)

Publication Number Publication Date
WO2021103312A1 true WO2021103312A1 (zh) 2021-06-03

Family

ID=69749212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074192 WO2021103312A1 (zh) 2019-11-28 2020-02-03 一种可参与电网辅助服务的集中式云储能运行决策方法

Country Status (3)

Country Link
US (1) US20220294224A1 (zh)
CN (1) CN110890752B (zh)
WO (1) WO2021103312A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555316B (zh) * 2020-04-22 2021-06-04 清华大学 一种可参与电网辅助服务的分布式云储能调度控制方法
CN111952956A (zh) * 2020-07-02 2020-11-17 清华大学 一种考虑电压敏感负荷备用的电力系统调度方法
CN111864770B (zh) * 2020-08-19 2022-11-15 国网河南省电力公司电力科学研究院 一种基于云储能的储能辅助调频调度方法
CN113315144B (zh) * 2021-05-24 2022-10-11 清华大学 一种新能源电厂共享储能参与调频的储能系统运行方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634142A (zh) * 2016-03-30 2016-06-01 四川大学 基于云储能终端的能源互联网系统构建方法和设备
US20180254637A1 (en) * 2017-03-03 2018-09-06 General Electric Company Energy management system and method
CN110335171A (zh) * 2019-06-18 2019-10-15 清华大学 集中式云储能系统及其交易结算方法、存储介质及终端
US20190356133A1 (en) * 2018-05-17 2019-11-21 Electric Power Board, an Independent Board of the City of Chattanooga System and method for utility energy storage and distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634142A (zh) * 2016-03-30 2016-06-01 四川大学 基于云储能终端的能源互联网系统构建方法和设备
US20180254637A1 (en) * 2017-03-03 2018-09-06 General Electric Company Energy management system and method
US20190356133A1 (en) * 2018-05-17 2019-11-21 Electric Power Board, an Independent Board of the City of Chattanooga System and method for utility energy storage and distribution
CN110335171A (zh) * 2019-06-18 2019-10-15 清华大学 集中式云储能系统及其交易结算方法、存储介质及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU JINGKUN; ZHANG NING; KANG CHONGQING; KIRSCHEN DANIEL S.; XIA QING: "Decision-Making Models for the Participants in Cloud Energy Storage", IEEE TRANSACTIONS ON SMART GRID, IEEE, USA, vol. 9, no. 6, 1 November 2018 (2018-11-01), USA, pages 5512 - 5521, XP011693384, ISSN: 1949-3053, DOI: 10.1109/TSG.2017.2689239 *
LIU, XIANGJIE ET AL.: "Present Situation and Prospect of Model Predictive Control Application in Complex Power Industrial Process", PROCEEDINGS OF THE CSEE, vol. 33, no. 5, 15 February 2013 (2013-02-15), pages 79 - 85,14, XP055814972, ISSN: 0258-8013 *

Also Published As

Publication number Publication date
CN110890752B (zh) 2020-10-20
CN110890752A (zh) 2020-03-17
US20220294224A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2021103312A1 (zh) 一种可参与电网辅助服务的集中式云储能运行决策方法
CN107069776B (zh) 一种平滑微网联络线功率的储能前瞻分布式控制方法
CN107612041B (zh) 一种考虑不确定性的基于事件驱动的微电网自动需求响应方法
US11941711B2 (en) Centralized cloud energy storage system and transaction settlement method thereof, storage medium, and terminal
CN104966127A (zh) 一种基于需求响应的电动汽车经济调度方法
Wang et al. Load curve smoothing strategy based on unified state model of different demand side resources
CN103187750A (zh) 兆瓦级电池储能电站实时功率控制方法及其系统
CN115765015A (zh) 面向电网实际应用场景的源网荷储协同互动方案制定方法
CN113783193B (zh) 一种基于边端协同的乡村供用能系统优化调控方法及系统
CN112234638A (zh) 基于负荷侧智能充电桩集群控制的电网调峰系统和方法
CN111641226A (zh) 一种计及自动需求响应的建筑型微电网光伏利用率提高方法
CN110065410A (zh) 一种基于模糊控制的电动汽车充放电率控制方法
JP2020524325A (ja) 環境コストおよびリアタイムの電気代の両方を考慮した変位可能な負荷モデルの構築方法
CN113263938A (zh) 一种基于边缘计算的智能有序充电系统及方法
CN115310291A (zh) 考虑电动汽车动态接入特性的智能楼宇群能量管理方法
CN108808655A (zh) 一种用于对电动汽车参与微网调频的经济性评估方法及系统
CN111555316B (zh) 一种可参与电网辅助服务的分布式云储能调度控制方法
CN110992206B (zh) 一种多源电场的优化调度方法及系统
CN112531785A (zh) 多时间尺度下光热-储热的主动配电网主辅联合调度方法
CN105391060A (zh) 含微电网的配电网优化调度方法
CN110048419A (zh) 一种工商业租赁云储能服务的用电降费可行方法
CN114549148A (zh) 虚拟电厂的竞价方法、装置、设备及存储介质
Gao et al. Optimal configuration of industrial user-side energy storage considering power demand income in life cycle
Zhu et al. Optimal Scheduling Model for Virtual Power Plant Participating in Energy and Regulation Markets
CN117200261B (zh) 一种基于电网调频的储能设备控制方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891855

Country of ref document: EP

Kind code of ref document: A1