WO2021103038A1 - 下行信道检测方法及装置 - Google Patents

下行信道检测方法及装置 Download PDF

Info

Publication number
WO2021103038A1
WO2021103038A1 PCT/CN2019/122289 CN2019122289W WO2021103038A1 WO 2021103038 A1 WO2021103038 A1 WO 2021103038A1 CN 2019122289 W CN2019122289 W CN 2019122289W WO 2021103038 A1 WO2021103038 A1 WO 2021103038A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
coreset
pdcch candidate
serving cell
upper limit
Prior art date
Application number
PCT/CN2019/122289
Other languages
English (en)
French (fr)
Inventor
纪刘榴
杭海存
张旭
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/122289 priority Critical patent/WO2021103038A1/zh
Publication of WO2021103038A1 publication Critical patent/WO2021103038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technologies, and in particular to a method and device for detecting downlink channels.
  • Co-frequency deployment In modern communication systems, in order to improve spectrum utilization, co-frequency deployment is the main focus. In other words, multiple cells in the network can be deployed in the same frequency band. In this way, the user may receive signals from multiple cells. Then, when the user is in an edge area, it may be interfered by signals from neighboring cells outside the cell, resulting in poor channel conditions. In order to better solve the interference between cells and increase the user rate, the coordinated multi-point transmission technology (Coordinated Multi-Point, CoMP) can be widely used.
  • CoMP Coordinatd Multi-Point
  • TRP Transmission Reception Point
  • Multiple TRPs can be physically a group of antennas.
  • Its architecture can be that the baseband processing unit of a base station is in a geographic location, and it connects multiple radio frequency processing units to multiple geographic locations, and each of these multiple geographic locations has a set of antennas.
  • the distance from the baseband processing unit to the radio frequency processing unit can be hundreds of meters away, and they can be connected by optical fibers, so the transmission time between them is shorter and the transmission capacity is larger.
  • each of the multiple transmission points transmits the Physical Downlink Control Channel (PDCCH). .
  • PDCH Physical Downlink Control Channel
  • multiple TRPs can belong to different base stations. For example, if multiple TRPs belong to different sites, the information exchange delay between multiple sites is longer, and the capacity is also limited.
  • the PDCCH is generated by the baseband processing unit of each base station and sent by these transmission points respectively. In other words, multiple base stations can schedule data relatively independently under limited interaction.
  • a control resource set (COREST) is configured for the terminal device at the same time, which is used to define the possibility of the terminal device detecting the frequency domain of the PDCCH.
  • the base station can configure the terminal equipment with the CORESET identifier, PDCCH demodulation reference signal (Demodulation Reference Signal, DMRS) scrambling ID, frequency domain precoding granularity, symbol length, frequency domain position, control channel element (CCE) Information such as the mapping method with resource element group (REG), the quasi co-location assumption for receiving PDCCH, and whether there is a TCI field in the DCI of the PDCCH received in this CORESET.
  • DMRS Demodulation Reference Signal
  • CCE control channel element
  • the embodiments of this application provide a downlink channel detection method and device.
  • CORESET groups can be set to group according to different CORESETs.
  • the CORESET index in the Hash factor can solve the problem of increasing the repetition rate of the hash factor obtained due to the increase in the number of CORESETs, thereby improving the randomness of the CCE index value obtained according to the hash factor, and reducing the amount of PDCCH resources obtained during blind detection. Overlapping issues.
  • a downlink channel detection method including:
  • the downlink channel parameter information includes a control resource set CORESET grouping and CORESET index
  • Blind detection is performed according to the index value of the control channel element CCE of the PDCCH candidate.
  • the CCE index value of the PDCCH candidate obtained by calculating according to the hash factor satisfies the following formula:
  • k represents the CCE index value of the PDCCH candidate
  • N CCE,p represents the number of CCEs in CORESETp
  • n CI is the value indicated by the carrier indicator field
  • the method before performing blind detection according to the CCE index value of the PDCCH candidate, the method further includes:
  • the PDCCH candidate for blind detection is determined according to the PDCCH candidate detection upper limit value supported by one or more CORESET groups and the PDCCH candidate detection upper limit value supported by the serving cell corresponding to the one or more CORESET groups.
  • the determining the PDCCH candidates for blind detection according to the PDCCH candidate detection upper limit value supported by one or more CORESET groups includes:
  • the PDCCH candidate for blind detection is determined according to the PDCCH candidate of the serving cell.
  • the blind detection is determined based on the PDCCH candidate detection upper limit value supported by one or more CORESET groups and the PDCCH candidate detection upper limit value supported by the serving cell corresponding to the one or more CORESET groups.
  • the PDCCH candidates include:
  • the PDCCH candidates for blind detection are determined according to the PDCCH candidates of the one or more CORESET groups.
  • the blind detection is determined based on the upper limit of PDCCH candidate detection supported by one or more CORESET groups and the upper limit of PDCCH candidate detection supported by the serving cell corresponding to the one or more CORESET groups.
  • the method further includes:
  • the PDCCH candidate whose search space is CSS is determined to be the PDCCH candidate for blind detection.
  • a downlink channel detection device including:
  • the communication unit is configured to obtain downlink channel parameter information, where the downlink channel parameter information includes a control resource set CORESET grouping and a CORESET index;
  • the processing unit is configured to determine a hash factor according to the downlink channel parameter information, calculate and obtain the CCE index value of the control channel element of the physical downlink control channel PDCCH candidate according to the hash factor, and perform processing according to the CCE index value of the PDCCH candidate Blind inspection.
  • the CCE index value of the PDCCH candidate obtained by calculating according to the hash factor satisfies the following formula:
  • k represents the CCE index value of the PDCCH candidate
  • N CCE,p represents the number of CCEs in CORESETp
  • n CI is the value indicated by the carrier indicator field
  • processing unit is further configured to:
  • the PDCCH candidate for blind detection is determined according to the PDCCH candidate detection upper limit value supported by one or more CORESET groups and the PDCCH candidate detection upper limit value supported by the serving cell corresponding to the one or more CORESET groups.
  • processing unit is specifically configured to:
  • the PDCCH candidate for blind detection is determined according to the PDCCH candidate of the serving cell.
  • processing unit is specifically configured to:
  • the PDCCH candidates for blind detection are determined according to the PDCCH candidates of the one or more CORESET groups.
  • processing unit is further configured to:
  • the PDCCH candidate whose search space is CSS is determined to be the PDCCH candidate for blind detection.
  • the embodiments of the present application provide another downlink channel detection method, including:
  • the communication device obtains downlink channel parameter information, where the downlink channel parameter information includes a CORESET index, and the CORESET index is determined according to an agreed parameter;
  • the communication device determines a hash factor according to the CORESET index and the agreed parameter
  • the communication device calculates and obtains the CCE index value of the physical downlink control channel PDCCH candidate according to the hash factor;
  • the communication device performs blind detection according to the CCE index value of the PDCCH candidate.
  • the agreed parameter includes an upper limit value of CORESET supported by the communication device.
  • the agreed parameter includes the number of CORESET configured by the base station.
  • an embodiment of the present application provides a downlink channel detection device, which includes:
  • the transmission interface is used to input and/or output signals; the processor calls the executable program code stored in the memory to enable the device to implement any method described in the first aspect or the third aspect.
  • the device further includes: the memory, coupled with the processor.
  • an embodiment of the present invention provides a computer-readable storage medium.
  • the computer storage medium includes program instructions.
  • the program instructions run on a computer, the computer executes the operations described in the first or third aspect. Either method.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer or processor, cause the computer or processor to execute the above-mentioned first aspect and third aspect or any one of them.
  • the method in one possible implementation.
  • FIG. 1 is a schematic diagram of signal transmission in a serving cell provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of multiple TRP coordinated scheduling according to an embodiment of the application
  • FIG. 3 is a schematic flowchart of a downlink channel detection method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of determining the number of PDCCH candidates for blind detection according to an embodiment of the application
  • FIG. 5 is another schematic diagram of determining the number of PDCCH candidates for blind detection according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of a process of selecting PDCCH candidates for blind detection according to an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a method for determining the number of PDCCH candidates for blind detection according to an embodiment of the application
  • FIG. 8 is a downlink channel detection device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a device provided by an embodiment of the application.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • CoMP is widely used. That is, multiple TRPs use cooperative technology to cooperate to serve users in the downlink, or to cooperatively receive users' uplink signals.
  • FIG. 1 is a schematic diagram of signal transmission in a serving cell provided by an embodiment of this application.
  • edge users receive signals from their own cell while being interfered by neighboring cells, as shown in Figure 1.
  • arrow A, arrow B, and arrow C indicate interference signals in neighboring cells.
  • the JT technology shown in Figure 1 (b) multiple cells jointly send data to this user, and the user receives multiple copies of useful data, so the transmission rate can be increased.
  • the CS/CB technology shown in Figure 1(c) the interference of neighboring cells is coordinated.
  • the neighboring cell can adjust the transmitted signal to avoid the direction of strong interference, that is, the direction of the dashed arrow to the user equipment (user equipment).
  • UE sends a signal, which reduces the interference level of the UE.
  • the network dynamically selects a better transmission point in the same cell or neighboring cell to serve the user, so that the user can be assured of a stronger cell signal.
  • the weaker cell signal becomes interference, and the difference between the channels of this multiple TRP can be used to improve the signal-to-interference-to-noise ratio of the user.
  • TRPs can be physically a group of antennas.
  • Its architecture can be that the baseband processing unit of a base station is in a geographic location, and it connects multiple radio frequency processing units to multiple geographic locations, and each of these multiple geographic locations has a set of antennas.
  • the distance from the baseband processing unit to the radio frequency processing unit can be hundreds of meters away, and they can be connected by optical fibers, so the transmission time between them is shorter and the transmission capacity is larger. In this way, after the baseband signal is processed by the baseband processing unit, if a control channel signal is generated, it is then transmitted to multiple transmission points, and the multiple transmission points each send out the PDCCH.
  • Figure 2 is a schematic diagram of multiple TRP coordinated scheduling provided by an embodiment of this application.
  • multiple TRPs can belong to different base stations, and the information exchange delay between multiple sites Longer, the capacity is also limited.
  • the multiple PDCCHs corresponding to the multiple TRPs are generated by the baseband processing unit of each base station and sent by these transmission points respectively.
  • multiple base stations can schedule data relatively independently under limited interaction.
  • the basic unit that carries Downlink Control Information (DCI) is the Control Channel Element (CCE).
  • CCE Control Channel Element
  • One PDCCH occupies one or more CCEs. The more CCEs occupied, the higher the reliability of the PDCCH and the more resources consumed.
  • a user-specific PDCCH occupies a part of the CCE, the PDCCHs of other users generally do not occupy this part of the CCE. In other words, when the total number of resources is limited, the total number of scheduled PDCCHs that can be supported is limited.
  • the number of CCEs that make up the PDCCH is called the aggregation level of the CCEs.
  • the UE uses a possible aggregation level to detect the PDCCH. For example, the UE tries to use the aggregation level 4 to detect whether there is a PDCCH in a resource composed of 4 CCEs according to the rules, and whether the PDCCH can be demodulated correctly. The UE will also try other aggregation levels. These possible aggregation level candidates can be allocated to the UE by the base station.
  • the UE generally does not know what format (Format) information the current DCI transmits, nor does it know where the information it needs is located. However, the UE knows what information it is currently expecting. For example, after the UE initiates random access (Random Access), it expects RACH Response; when there is uplink data waiting to be sent, it expects UL Grant, etc. For different expected information, the UE uses the corresponding radio network temporary identity (RNTI Radio Network Temporary Identity, X-RNTI) to perform a Cyclic Redundancy Check (CRC) check with the CCE information. If the CRC check is successful , Then the UE knows that this information is needed by itself, and also knows the corresponding DCI format and modulation mode, so as to further decode the DCI content. This is the "blind inspection" process.
  • RTI Radio Network Temporary Identity
  • the UE When the UE performs blind inspection, it is assumed that the index numbers of the available CCEs are from 0 to NCCE-1. If CCE 0 starts to traverse each time the blind inspection is performed, the blind inspection efficiency will be very low. Therefore, in the NR system, the UE needs to know the possible positions of the PDCCH in the frequency domain and the time domain during blind detection, that is, to know the control resource set (Control Resource Set, CORESET) and search space (Search Space) corresponding to the PDCCH to obtain the PDCCH The CCE index value corresponding to the candidate (candidate) is then subjected to targeted blind inspection, which can greatly improve the efficiency of blind inspection. Among them, CORESET defines the possibility of detecting the frequency domain of the PDCCH.
  • CORESET defines the possibility of detecting the frequency domain of the PDCCH.
  • the base station can configure the UE with the CORESET identifier, PDCCH demodulation reference signal (Demodulation Reference Signal, DMRS) scrambling ID, frequency domain precoding granularity, symbol length, frequency
  • PDCCH demodulation reference signal (Demodulation Reference Signal, DMRS) scrambling ID
  • frequency domain precoding granularity symbol length
  • TCI transmission control indicator
  • Search Space defines the possibility of detecting PDCCH in the time domain.
  • the base station can configure the UE with the search space identifier, the associated CORESET identifier, the PDCCH detection cycle time unit period and time unit offset, the time domain detection mode, and the number of possible PDCCH candidates for each aggregation level (which can include 0).
  • the type of Search Space the configuration related to the DCI format (such as the format possibility of the DCI to be detected), and the continuous length.
  • the type of Search Space includes Common Search Space (CSS) and UE-specific search space (UE-Specific Search Space, USS).
  • the time domain detection mode is used to indicate the possible position of the UE to detect the PDCCH symbol in a time slot.
  • the time domain detection mode can indicate one or more symbol positions. These symbol positions correspond to the first symbol position where possible PDCCH starts. If the time domain detection mode can indicate symbol positions 11, 12, and 13, the UE may detect the PDCCH at positions starting with 11, 12, and 13 respectively.
  • the number of possible PDCCH candidates for each aggregation level refers to the number of possible PDCCH candidates that the base station can configure for the UE in a search space for different aggregation levels.
  • the continuous length refers to the duration of this Search space in the time domain time unit. Take the time slot as an example. If the configured period is k and the duration is d, it means that starting from a time unit (slot) that meets the period and offset of the Search space, all d continuous slots can be in this Search space. Detect PDCCH.
  • the UE can support fewer CORESETs, for example, the upper limit is 3.
  • the corresponding relationship between the CORESET index value and the CCE index value is that the CCE index between the upper limit CORESET is designed to be randomly different from each other as much as possible, and the calculation process is simple.
  • more frequency domain resources can be allocated to the UE, and the number of CORESETs that the same UE can support increases.
  • the process of calculating the CCE index value also needs to be improved accordingly to avoid the overlapping of the obtained CCE index values of different PDCCH candidates, which may cause signal interference.
  • FIG. 3 is a schematic flowchart of a downlink channel detection method provided by an embodiment of the application. As shown in FIG. 3, the method includes the following steps:
  • the communication device acquires downlink channel parameter information, where the downlink channel parameter information includes a control resource set CORESET grouping and CORESET index;
  • the communication device determines a hash factor according to the downlink channel parameter information.
  • the communication device is a transposition for communicating with the base station, including terminal equipment (terminal equipment), user equipment (UE), mobile station (MS), mobile terminal (mobile terminal, MT), etc.
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, and Internet of Things devices.
  • terminal devices can be: mobile phones (mobile phones), tablets, laptops, handheld computers, mobile Internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • It can also be a terminal device in a 5G network, a public land mobile communication network (Public Land Mobile Network, PLMN) that will evolve in the future, or a terminal device in other communication systems in the future.
  • PLMN public land mobile communication network
  • the UE When performing blind detection on the PDCCH in the traditional method, the UE needs to know the position where the PDCCH may appear, that is, calculate and obtain the CCE index value corresponding to the PDCCH candidate.
  • the value of the CCE index value can be calculated and determined according to the downlink channel parameters issued by the base station.
  • the downlink channel parameters may include the aforementioned CORESET index value, search space location, search space type, aggregation level of PDCCH candidates, and the like.
  • the blind detection of PDCCH when multiple TRPs are coordinated in NR scheduling also needs to be calculated to obtain the CCE index value corresponding to the PDCCH candidate, but the relevant parameter information of the downlink channel that needs to be obtained before the calculation is different.
  • the number of CORESETs that the UE can support may be 3, 5, or other numbers.
  • the base station can directly download the CORESET for the UE.
  • Each COERSET index can be calculated to obtain a hash factor, and then the subsequent CCE index value calculation is performed according to the hash factor. As follows:
  • Ap represents the hash factor
  • p represents the COERSET index
  • mod represents the modulus
  • 3 represents the modulus parameter X.
  • the formula here means that when CORESET's index p modulo 3 is 0, the hash factor A p is 39827; when CORESET index p modulo 3 is 1, the hash factor A p is 39829; When CORESET's index p modulates 3 and the result is 2, the hash factor Ap is 39839.
  • the hash factor is a random number that is not repeated as much as possible to ensure that the CCE index values obtained according to the hash factor are different, and avoid signal interference caused by overlapping CCE index values.
  • Alienation CORESET refers to differentially marking CORESETs with the same index value, so that the same CORESET can obtain different hash factors according to different markings. For example, when the number of CORESETs that the UE can support is 3 and 5 respectively, although the base station side issues a CORESET with an index value of 2, for UEs in the two support modes, the index value is different. The hash factor calculated by the index value will also be different.
  • Differential marking can be performed by establishing CORESET groups.
  • the number of corresponding CORESETs in different groups can be the same or different, and the modulus parameters can be the same or different.
  • the CORESET index p in different groups modulates the modulus parameter X, the same modulus result corresponds to different Ap values, so even if the CORESET modulus result is the same, but the corresponding groups are different, different ha
  • the Greek factor is calculated to obtain different CCE index values.
  • the grouping can be based on predefined rules or base station notifications, or jointly determined based on predefined rules and base station notifications.
  • the base station can allocate the aforementioned group to CORESET, such as through high-level configuration, MAC CE configuration, DCI notification, etc.;
  • the predefined rule means that, for example, the relationship between the CORESET index and the group can be predefined.
  • the relationship between the index of the predefined CORESET and the group For example, there is a correspondence between COREST index and group ID. For example: assuming there are only 2 groups, you can define the rule that CORSET index is odd as the first group; CORESET index is even as the second group. The corresponding relationship can also be reversed.
  • Base station notification and predefined rules can also be used in combination.
  • the base station can configure one or more groups to which the CORSET belongs, and for CORESET that is not configured with the group to which it belongs, the group to which it belongs can be predefined.
  • the above predefined rules can be used.
  • the identity of this specific group may be predefined, such as 0 or 1, or it may be configured by the base station.
  • the base station and the communication device reach an agreement on the correspondence between the CORESET grouping, the CORESET index value, and the hash factor. Specific examples are as follows:
  • One of the CORESET values can only be assigned to two Ap values, so the result of p modulo 3 is 1 and 2 corresponding to the same hash factor, that is, different CORESET index values can also correspond to one hash factor.
  • the CORESET of different groups even if the result of pmod3 is the same, the corresponding Ap value is different.
  • the value of X is different
  • the corresponding Ap value is different
  • the UE by setting the CORESET group, and then sending the CORESET group and the CORESET index to the UE, the UE obtains the corresponding hash factor according to the CORESET group and the CORESET index, even if the CORESET index value is the same, because the CORESET group Different, different hash factors can also be obtained, which reduces the probability of the obtained CCE index value being repeated.
  • the UE obtains the modulus result by modulating 3, and then obtains the hash factor corresponding to the modulus result.
  • the base station sends 5 different CORESET index values , Some CORESET indexes have the same modulus value for 3. According to these same modulus results, the same hash factor will be obtained. Then the CCE index calculated based on these hash factors cannot be very random. ⁇ .
  • the agreed parameter may be the upper limit of CORESET supported by the UE reported by the UE. It can also be the number of CORESET determined by the base station side. For example, the number of CORESET supported by the UE is 5, and it is sent to the base station side as an agreed parameter, then the CORESET index issued by the base station ranges from 1 to 5. Or, the base station side determines that the number of supported CORESETs is 3, then the issued CORESET index ranges from 1 to 3, and the base station side notifies the UE of the number of supported CORESETs as an agreed parameter.
  • the CORESET index value obtained by the communication device is determined by the agreed parameters, so that the obtained CORESET index is adapted to the UE, and different CORESET indexes are reduced.
  • the foregoing embodiment related to the agreed parameter and the foregoing embodiment of the CORESET grouping are mutually independent embodiments and can be executed separately.
  • the CORESET group can also be formulated and selected according to the agreed parameters.
  • the communication device calculates and obtains the CCE index value of the physical downlink control channel PDCCH candidate according to the hash factor.
  • the CCE index value of the PDCCH candidate can be calculated according to the hash factor and other known parameters.
  • the corresponding PDCCH candidate The aggregation level L, in time unit (slot) above, on a carrier (the carrier corresponding to n CI ), the CCE index value of this PDCCH candidate is obtained according to the following formula
  • k is the CCE index value, for any CSS, For USS,
  • n CI is the value indicated by the carrier indicator field (if there is this indicator field), or 0 (if there is no such indicator field). It is the number of PDCCH candidates whose aggregation level is L that the UE needs to detect for search space sets s in the serving cell corresponding to n CI.
  • the number of PDCCH candidates for CSS and USS are determined in different ways.
  • the sum of the number of PDCCH candidates of each aggregation level corresponding to the USS can be obtained; for CSS, only the number of PDCCH candidates of one aggregation level can be calculated.
  • the hash factor Ap can be calculated according to the CORESET index value, CORESET grouping and agreed parameters issued by the base station, and finally the final k value can be calculated according to formula (1) , That is, the CCE index value.
  • the communication device performs blind detection according to the CCE index value of the PDCCH candidate.
  • the UE After the UE calculates and obtains the CCE index value corresponding to the PDCCH candidate, it can perform blind detection at the corresponding time-frequency position to determine whether there is a PDCCH matching the UE at the corresponding position.
  • the PDCCH candidates configured by the base station for the UE may exceed the detection limit of the UE, and the UE cannot perform blind detection on all PDCCH candidates. In this case, the PDCCH candidates need to be screened to determine the PDCCH candidates that the UE actually performs blind detection.
  • the PDCCH detection upper limit corresponding to each TRP is the detection upper limit of each CORESET group.
  • the PDCCH candidates with the search space of CSS must be blindly detected, and the number of PDCCH candidates with the search space of USS can be configured to exceed the upper limit of the UE's capabilities.
  • the UE needs to determine which parts are exceeded No detection is required. This is done mainly for the flexibility of configuration of the base station.
  • FIG. 4 is a schematic diagram of determining the number of PDCCH candidates for blind detection according to an embodiment of the application.
  • the number of corresponding PDCCH candidates for example, the number of PDCCH candidates corresponding to CORESET group 1, CORESET group 2, and CORESET group 3 are R1, R2, R3, and the upper limit of PDCCH candidate detection corresponding to these three CORESET groups is R (The upper limit of PDCCH candidate detection corresponding to different CORESET groups can be the same or different), where R1 ⁇ R, R2 ⁇ R, indicating that the number of PDCCH candidates corresponding to CORESET group 1 and CORESET group 2 does not exceed the CORESET group Corresponding to the upper limit of PDCCH detection, all PDCCH candidates in these two groups can be blindly detected.
  • R3>R indicating that the number of PDCCH candidates corresponding to CORESET group 3 exceeds the upper limit of PDCCH candidate detection corresponding to this group, and only R of the R3 PDCCH candidates corresponding to this group can perform blind detection. Therefore, the UE needs to determine R PDCCH candidates that need to be detected among the R3 configured PDCCH candidates. For PDCCH candidates that do not need to be detected, the UE does not detect them during blind detection. Of course, the determined R should be less than or equal to the candidate detection upper limit of the corresponding group. Finally, it is determined that the number of PDCCH candidate detections for CORESET is: R1+R2+R.
  • CORESET group 3 is a mandatory detection group (that is, when the base station is configured, it will ensure that the number of PDCCH candidates corresponding to the CORESET configuration of this group will not exceed the PDCCH candidate detection upper limit of this CORESET group), Then only CORESET group 1 and CORESET group 2 need to perform the operation of Rn ⁇ R judgment.
  • the number of PDCCH candidate detections for CORESET is finally determined as: R1+R2+R3. If the judgment is not established, the number of PDCCH candidate detections corresponding to the failed CORESET group is R at most.
  • the number of PDCCH candidates for blind detection is not only limited by the detection capability of CORESET, but also limited by the detection capability of the serving cell. Assuming that the upper limit value of the detection capability of the serving cell corresponding to CORESET group 1, CORESET group 2 and CORESET group 3 is R', and R1+R2+R ⁇ R', it means that the number of PDCCH candidates that can be blindly detected in each CORESET group is Within the detection capability of the serving cell, it can be determined that the final number of PDCCH candidates for blind detection is R1+R2+R. Conversely, if R1+R2+R>R', the UE needs to determine R'PDCCH candidates to be detected among the R1+R2+R candidates.
  • the number of candidate detections After determining the number of candidate detections, first subtract the number of PDCCH candidates whose search space is CSS from all PDCCH candidates, and determine the number of remaining PDCCH candidates that require blind detection. This means that all PDCCH candidates whose search space is CSS must be blindly checked. Then, the PDCCH candidates are blindly detected according to the USS index sequence and the remaining number of PDCCH candidates that need to be blindly detected.
  • subtracting the number of PDCCH candidates whose search space is CSS includes the following meanings:
  • the number of PDCCH candidates whose search space is CSS may be subtracted from the upper limit corresponding to all or part of the CORESET group.
  • Subtracting the number of PDCCH candidates whose search space is CSS can also be performed before determining the number of PDCCH candidates for blind detection.
  • the number of PDCCH candidates obtained through the above process are all PDCCH candidates whose search space is USS and need to be blindly detected. Number.
  • the number of PDCCH candidate detections in the serving cell can be determined according to the upper limit of the detection capability of the serving cell, and then the PDCCH candidate detection upper limit supported by multiple CORESET groups corresponding to the serving cell is used to determine the number of PDCCH candidates actually detected. Number, the specific process is:
  • FIG. 5 is another schematic diagram of determining the number of PDCCH candidates for blind detection according to an embodiment of the application.
  • the PDCCH candidate detection upper limit value of the serving cell is R'
  • the number of all PDCCH candidates is R1+R2+R3, and R1+R2+R3 ⁇ R', indicating that the number of all PDCCH candidates does not exceed the upper limit of the PDCCH candidate detection ability of the serving cell, and the PDCCH detection ability of the serving cell is limited
  • all PDCCH candidates can be blindly detected.
  • R1+R2+R3>R' it means that the number of all PDCCH candidates exceeds the upper limit of the PDCCH candidate detection capability of the serving cell, and the PDCCH candidate of the serving cell is determined to be R'.
  • the corresponding PDCCH candidate in each CORESET group exceeds the upper limit of detection capability. It is only necessary to determine whether the PDCCH candidate corresponding to each CORESET group exceeds its corresponding upper limit of detection capability. As shown in Figure 5, the PDCCH candidates corresponding to CORESET group 1 and CORESET group 2 have not exceeded the upper limit of the PDCCH detection ability of this group, and blind detection can be performed; while in COERSET group 3, R3>R exceeds the upper limit of the detection ability of this group. , Among the R3 PDCCH candidates, only R PDCCH candidates can be blindly detected. Finally, it is determined that the number of PDCCH candidates for blind detection is less than or equal to R1+R2+R, such as R1+R2+R.
  • CORESET group 3 is the mandatory inspection group, then only CORESET group 1 and CORESET group 2 need to perform Rn ⁇ R judgment operation, and finally determine the number of PDCCH candidate detections for CORESET: R1+R2+R3. And it is known that R1+R2+R3 ⁇ R', then it is finally determined that the number of PDCCH candidates for blind detection is R1+R2+R3. If R1+R2+R3>R', then CORESET group 1 or CORESET group 2 needs to be further reduced in the number of PDCCH candidate detections to ensure that the PDCCH candidate detection in CORESET group 3 takes priority.
  • the number of PDCCH candidates for blind detection is finally determined by the PDCCH candidate detection upper limit that can be supported by the serving cell and CORESET group, which can improve the efficiency of blind detection by the UE and improve the blind detection effect.
  • FIG. 6 is a schematic diagram of a process of selecting PDCCH candidates for blind detection according to an embodiment of the application. As shown in FIG.
  • the number of PDCCH candidates for blind detection is determined to be m
  • the PDCCH allocated by the base station The number of candidates is n
  • m PDCCH candidates are selected from n PDCCH candidates in the order of the USS index for blind detection, and finally a downlink channel connection between the UE and the base station is established.
  • the communication device first obtains downlink channel parameter information, and the downlink channel parameter information includes CORESET grouping and CORESET index; then the communication device determines the hash factor according to the downlink channel parameter information; calculates the physical downlink according to the hash factor The CCE index value of the control channel PDCCH candidate; finally, the communication device performs blind detection according to the CCE index value of the PDCCH candidate.
  • the communication device when multiple CORESETs are allocated to the UE, by setting the CORESET group, and then obtaining the hash factor according to the CORESET index in the different CORESET groups, it can solve the problem of increasing the repetition rate of the obtained hash factor due to the increase in the number of CORESETs. Furthermore, the randomness of the CCE index value obtained according to the hash factor is improved, and the overlap problem of obtaining PDCCH resources during blind detection is reduced.
  • FIG. 7 is a schematic flowchart of a method for determining the number of PDCCH candidates for blind detection according to an embodiment of the application. As shown in FIG. 7, the method includes the following steps:
  • the communication device determines the number of PDCCH candidates for blind detection according to the upper limit of PDCCH candidate detection supported by multiple CORESET groups and the upper limit of PDCCH candidate detection supported by serving cells corresponding to the multiple CORESET groups;
  • the communication device selects PDCCH candidates corresponding to the number of PDCCH candidates for blind detection according to the order of the index values of the search space.
  • each TPR has its corresponding PDCCH candidate detection upper limit, which is expressed as the detection upper limit of the CORESET group.
  • the CORESET group can be determined according to the detection upper limit of each CORESET group and the number of allocated PDCCH candidates. Then if multiple TRPs correspond to a serving cell, the number of PDCCH candidates that the UE can perform blind detection is determined according to the upper limit of PDCCH candidate detection of this serving cell and the number of candidate detections in the CORESET group.
  • the number of PDCCH candidates detected in each serving cell is determined according to the upper limit of PDCCH candidate detection of each serving cell, and finally the UE can be determined based on the sum of the number of PDCCH candidates detected in multiple serving cells.
  • the number of PDCCH candidates for blind detection is determined according to the upper limit of PDCCH candidate detection of each serving cell.
  • the number of PDCCH candidates for the serving cell may be determined according to the number of PDCCH candidates allocated to the UE and the PDCCH candidate detection upper limit of one or more serving cells when the UE performs multiple TRP coordinated scheduling; According to the upper limit of candidate detection of multiple CORESET groups corresponding to multiple TRPs, the number of PDCCH candidates that the UE can perform blind detection is finally determined.
  • the number of PDCCH candidates for blind detection After determining the number of PDCCH candidates for blind detection, if its value is equal to the number of PDCCH candidates allocated by the base station to the UE, it means that all the PDCCH candidates corresponding to the UE can be blindly detected.
  • the blind detection can be performed in the order of search space index. . If the number of PDCCH candidates obtained for blind detection is less than the number of PDCCH candidates allocated by the base station to the UE, it means that only some of the PDCCH candidates corresponding to the UE can be blindly detected.
  • the number of PDCCH candidates whose search space is CSS is first subtracted from the determined number of PDCCH candidates for blind detection. Then, among the remaining PDCCH candidates, search according to The index sequence of the spatial USS extracts the PDCCH candidates for blind detection.
  • subtracting the number of PDCCH candidates whose search space is CSS includes the following meanings:
  • the number of PDCCH candidates whose search space is CSS may be subtracted from the upper limit corresponding to all or part of the CORESET group.
  • the manner of determining part or all of the CORESET group please refer to the corresponding description in steps 101-104, which will not be repeated here.
  • the PDCCH candidate detection upper limit that each TPR can support and the PDCCH candidate detection upper limit that the serving cell can support are considered to determine the PDCCH that the UE can perform blind detection.
  • the number of candidates is obtained and the PDCCH candidates for blind detection are finally obtained according to the index order of the search space USS, which improves the accuracy of the determined PDCCH candidates for blind detection, thereby improving the blind detection efficiency of the UE.
  • the device 800 includes:
  • the communication unit 301 is configured to obtain downlink channel parameter information, where the downlink channel parameter information includes a control resource set CORESET group and CORESET index;
  • the processing unit 302 is configured to determine a hash factor according to the downlink channel parameter information, calculate and obtain the CCE index value of the physical downlink control channel PDCCH candidate according to the hash factor, and perform blind detection according to the CCE index value of the PDCCH candidate .
  • the downlink channel detection device first obtains downlink channel parameter information.
  • the downlink channel parameter information includes the control resource set CORESET grouping and CORESET index; then the hash factor is determined according to the downlink channel parameter information; the hash factor is calculated Obtain the CCE index value of the PDCCH candidate of the physical downlink control channel; finally, perform blind detection according to the CCE index value of the PDCCH candidate.
  • the hash factor is determined according to the downlink channel parameter information
  • the hash factor is calculated Obtain the CCE index value of the PDCCH candidate of the physical downlink control channel; finally, perform blind detection according to the CCE index value of the PDCCH candidate.
  • the CORESETs when multiple CORESETs are allocated to the UE, by setting the CORESET group, and then obtaining the hash factor according to the CORESET index in the different CORESET groups, it can solve the problem of increasing the repetition rate of the obtained hash factor due to the increase in the number of CORESETs.
  • the CCE index value of the PDCCH candidate obtained by calculating according to the hash factor satisfies the following formula:
  • k represents the CCE index value of the PDCCH candidate
  • N CCE,p represents the number of CCEs in CORESETp
  • n CI is the value indicated by the carrier indicator field
  • processing unit 302 is further configured to:
  • the PDCCH candidate for blind detection is determined according to the PDCCH candidate detection upper limit value supported by one or more CORESET groups and the PDCCH candidate detection upper limit value supported by the serving cell corresponding to the one or more CORESET groups.
  • processing unit 302 is specifically configured to:
  • the PDCCH candidate for blind detection is determined according to the PDCCH candidate of the serving cell.
  • processing unit 302 is specifically configured to:
  • the PDCCH candidates for blind detection are determined according to the PDCCH candidates of the one or more CORESET groups.
  • processing unit 302 is further configured to:
  • the PDCCH candidate whose search space is CSS is determined to be the PDCCH candidate for blind detection.
  • the apparatus 400 includes at least one processor 401, at least one memory 402, and at least one communication interface 403.
  • the processor 401 is connected to the memory 402 and the communication interface 403 with each other.
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a graphics processing unit (GPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more An integrated circuit used to control the execution of the program above.
  • CPU central processing unit
  • GPU graphics processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 403 is used for optical fiber communication with other devices or communication networks.
  • the memory 402 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 402 is used to store application program codes and program execution results for executing the above solutions, and the processor 401 controls the execution.
  • the processor 401 is configured to execute application program codes stored in the memory 402.
  • the code stored in the memory 402 can execute the downlink channel detection method provided above, for example:
  • the downlink channel parameter information includes a control resource set CORESET grouping and a CORESET index
  • Blind detection is performed according to the CCE index value of the PDCCH candidate.
  • the device 400 in the embodiment of the present application may also be specifically implemented by a complex programmable logic device (CPLD), a field-programmable gate array (Field-Programmable Gate Array, FPGA), etc. This embodiment of the present application Not limited.
  • CPLD complex programmable logic device
  • FPGA Field-Programmable Gate Array
  • the embodiments of the present application also provide a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer or a processor, the computer or the processor executes any one of the above methods. Or multiple steps. If each component module of the above-mentioned signal processing device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in the computer readable storage medium.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer or a processor, cause the computer or the processor to execute any of the methods provided in the embodiments of the present application.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions. This allows a computer device or a processor therein to execute all or part of the steps of the method described in each embodiment of the present application.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in each embodiment of the present application.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the program can be stored in a computer-readable memory, such as the aforementioned memory 402. I won't repeat them here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种下行信道检测方法及装置,其中方法包括:获取下行信道参数信息,下行信道参数信息包括控制资源集合CORESET分组和CORESET索引;根据下行信道参数信息确定哈希因子;根据哈希因子计算获得物理下行控制信道PDCCH候选的CCE索引值;根据PDCCH候选的CCE索引值进行盲检。本申请实施例通过设置CORESET分组,进而根据不同CORESET分组中的CORESET索引获取哈希因子,可以解决因CORESET数量增加造成获取的哈希因子重复率提升问题,进而提升了根据哈希因子获得的CCE索引值的随机性,减少盲检时获得PDCCH资源的重叠问题。

Description

下行信道检测方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种下行信道检测方法及装置。
背景技术
现代通信系统,为了提高频谱利用率,往往以同频部署为主。也就是说网络中的多个小区可以部署在相同的频段。这样,用户可能会收到来自多个小区的信号,那么,当用户处于边缘地区时,可能会受到本小区以外的邻区信号的干扰,从而导致了信道状况比较差。为了更好地解决小区之间的干扰,提高用户速率,协作多点传输技术(Coordinated Multi-Point,CoMP)可以得到广泛的应用。
网络设备通过交互信息进行协作,从而可以有效地避免干扰,提高速率,多个传输点(Transmission Reception Point,TRP)可以通过协作为用户下行服务,或者可以协作接收用户的上行信号。
多个TRP在物理上实质可以是一组天线。其架构可以是一个基站的基带处理单元在一个地理位置,它连接了多个射频处理单元到多个地理位置,而这多个地理位置上各自有一组天线。从基带处理单元到射频处理单元之间的距离可以有上百米远,它们之间可以用光纤连接,因此它们之间的传输时间较短,传输容量较大。这样,基带处理单元在处理好基带信号后,如生成了控制信道的信号,再传输到多个传输点上,由多个传输点各自将物理下行控制信道(Physical Downlink Control Channel,PDCCH)发送出来。
或者多个TRP可以属于不同的基站。比如说,多个TRP属于不同的站点,多个站点之间的信息交互时延较长,容量也受限。PDCCH是由各基站的基带处理单元生成并由这些传输点分别发送的。也就是说,多个基站可以在有限的交互下,相对独立地调度数据。
在基站通过多个TRP进行PDCCH发送时,同时会为终端设备配置控制资源集合(control resource set,COREST),用来定义终端设备检测PDCCH的频域的可能性。基站可以给终端设备配置CORESET的标识、PDCCH的解调参考信号(Demodulation Reference Signal,DMRS)加扰ID、频域预编码粒度、符号长度、频域位置、控制信道单元(control channel element,CCE)与资源元素组(resource element group,REG)之间的映射方式、接收PDCCH的准共址假设、这个CORESET中所收到的PDCCH的DCI中是否有TCI域等信息。在单个TRP场景下发PDCCH时,为终端设备配置的COREST个数已经不能满足多个TRP场景下的终端设备需求,而如何在为终端设备配置更多的CORESET时,通过盲检检测获得PDCCH,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种下行信道检测方法及装置,采用本申请实施例的方案,可以在UE因为进行多个TRP协同调度被分配更多CORESET时,通过设置CORESET分组,进而根据不同CORESET分组中的CORESET索引获取哈希因子,可以解决因CORESET数量增加造成获取的哈希因子重复率提升问题,进而提升了根据哈希因子获得的CCE索引值的随机性,减少盲检时获得PDCCH资源的重叠问题。
第一方面,提供了一种下行信道检测方法,包括:
获取下行信道参数信息,所述下行信道参数信息包括控制资源集合CORESET分组和CORESET索引;
根据所述下行信道参数信息确定哈希因子;
根据所述哈希因子计算获得物理下行控制信道PDCCH候选的CCE索引值;
根据所述PDCCH候选的控制信道元素CCE索引值进行盲检。
在一个可选的示例中,所述根据所述哈希因子计算获得PDCCH候选的CCE索引值满足如下公式:
Figure PCTCN2019122289-appb-000001
其中k表示PDCCH候选的CCE索引值;
对于任何CSS,
Figure PCTCN2019122289-appb-000002
对于USS,
Figure PCTCN2019122289-appb-000003
A p表示哈希因子,Y p,-1=n RNTI≠0,D=65537;
i=0,…,L-1;N CCE,p表示CORESETp中的CCE个数;
n CI是载波指示域指示的值;
Figure PCTCN2019122289-appb-000004
是在n CI所对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数;
对于任何CSS,
Figure PCTCN2019122289-appb-000005
对于USS,
Figure PCTCN2019122289-appb-000006
是n CI所有配置中的最大值对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数。
在一个可选的示例中,在根据所述PDCCH候选的CCE索引值进行盲检之前,所述方法还包括:
根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选。
在一个可选的示例中,所述根据一个或多个CORESET组支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选,包括:
根据所述一个或多个CORESET组支持的PDCCH候选上限值,确定一个或多个每个CORESET组的PDCCH候选;
根据所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值和所述一个或多个CORESET组对应的PDCCH候选检测个数确定所述服务小区的PDCCH候选;
根据所述服务小区的PDCCH候选确定进行盲检的PDCCH候选。
在一个可选的示例中,所述根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选,包括:
根据所述服务小区的PDCCH候选检测上限值确定所述服务小区的PDCCH候选;
根据确定所述服务小区对应的一个或多个CORESET组支持的PDCCH候选检测上限值和所述服务小区的PDCCH候选,确定所述一个或多个CORESET组的PDCCH候选;
根据所述一个或多个CORESET组的PDCCH候选确定进行盲检的PDCCH候选。
在一个可选的示例中,在根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选之前,所述方法还包括:
确定搜索空间为CSS的PDCCH候选为进行盲检的PDCCH候选。
第二方面,提供了一种下行信道检测装置,包括:
通信单元,用于获取下行信道参数信息,所述下行信道参数信息包括控制资源集合CORESET分组和CORESET索引;
处理单元,用于根据所述下行信道参数信息确定哈希因子,根据所述哈希因子计算获得物理下行控制信道PDCCH候选的控制信道元素CCE索引值,并根据所述PDCCH候选的CCE索引值进行盲检。
在一个可选的示例中,所述根据所述哈希因子计算获得PDCCH候选的CCE索引值满足如下公式:
Figure PCTCN2019122289-appb-000007
其中k表示PDCCH候选的CCE索引值;
对于任何CSS,
Figure PCTCN2019122289-appb-000008
对于USS,
Figure PCTCN2019122289-appb-000009
A p表示哈希因子,Y p,-1=n RNTI≠0,D=65537;
i=0,…,L-1;N CCE,p表示CORESETp中的CCE个数;
n CI是载波指示域指示的值;
Figure PCTCN2019122289-appb-000010
是在n CI所对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数;
对于任何CSS,
Figure PCTCN2019122289-appb-000011
对于USS,
Figure PCTCN2019122289-appb-000012
是n CI所有配置中的最大值对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数。
在一个可选的示例中,所述处理单元还用于:
根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选。
在一个可选的示例中,所述处理单元具体用于:
根据所述一个或多个CORESET组支持的PDCCH候选上限值,确定一个或多个每个CORESET组的PDCCH候选;
根据所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值和所述一个或多个CORESET组对应的PDCCH候选检测个数确定所述服务小区的PDCCH候选;
根据所述服务小区的PDCCH候选确定进行盲检的PDCCH候选。
在一个可选的示例中,所述处理单元具体用于:
根据所述服务小区的PDCCH候选检测上限值确定所述服务小区的PDCCH候选;
根据确定所述服务小区对应的一个或多个CORESET组支持的PDCCH候选检测上限值和所述服务小区的PDCCH候选,确定所述一个或多个CORESET组的PDCCH候选;
根据所述一个或多个CORESET组的PDCCH候选确定进行盲检的PDCCH候选。
在一个可选的示例中,所述处理单元还用于:
确定搜索空间为CSS的PDCCH候选为进行盲检的PDCCH候选。
第三方面,本申请实施例提供了另一种下行信道检测方法,包括:
通信装置获取下行信道参数信息,所述下行信道参数信息包括CORESET索引,所述CORESET索引根据约定参数确定;
通信装置根据所述CORESET索引和所述约定参数确定哈希因子;
通信装置根据所述哈希因子计算获得物理下行控制信道PDCCH候选的CCE索引值;
通信装置根据所述PDCCH候选的CCE索引值进行盲检。
在一个可选的示例中,所述约定参数包括所述通信装置支持的CORESET上限值。
在一个可选的示例中,所述约定参数包括基站配置的CORESET个数。
第四方面,本申请实施例提供了一种下行信道检测装置,该装置包括:
处理器和传输接口;
所述传输接口,用于输入和/或输出信号;所述处理器调用存储器中存储的可执行程序代码,以使得所述装置实现第一方面或第三方面所述的任一方法。
在一个可选的示例中,该装置还包括:该存储器,与该处理器耦合。
第五方面,本发明实施例提供了一种计算机可读存储介质,该计算机存储介质包括程 序指令,该程序指令在计算机上运行时,使该计算机执行如第一方面或第三方面所述的任一方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机或处理器上运行时,使得该计算机或处理器执行如上述第一方面和第三方面或者其任一种可能的实施方式中的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的服务小区信号传输示意图;
图2为本申请实施例提供的一种多个TRP协调调度示意图;
图3为本申请实施例提供的一种下行信道检测方法的流程示意图;
图4为本申请实施例提供的一种确定进行盲检的PDCCH候选个数示意图;
图5为本申请实施例提供的另一种确定进行盲检的PDCCH候选个数示意图;
图6为本申请实施例提供的一种选取进行盲检的PDCCH候选过程示意图;
图7为本申请实施例提供的一种进行盲检的PDCCH候选个数确定方法流程示意图;
图8为本申请实施例提供的一种下行信道检测装置;
图9为本申请实施例提供的一种装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案说明。
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
在现代通信系统中,同频部署可能存在相邻小区的信号干扰,为了更好地解决小区之间的干扰,提高用户速率,CoMP被广泛应用。即多个TRP采用协作技术协作为用户下行服务,或者协作接收用户的上行信号。
协作技术主要分为联合传输(Joint transmission,JT),动态点/小区选择(Dynamic cell/Point selection,DCS/DPS),协调干扰/调度(Coordinated beamforming/scheduling,CB/CS)等。请参阅图1,图1为本申请实施例提供的服务小区信号传输示意图,在非协作(NO coordination)场景中,边缘用户接收本小区的信号,同时受到邻区的干扰,如图1中的(a)所示,箭头A、箭头B和箭头C指示的即为邻区的干扰信号。在如图1中的(b)所示的JT技术中,多个小区联合给这个用户发送数据,用户收到多份有用数据,因此可以提高传输的速率。在如图1中的(c)所示的CS/CB技术中,协调邻区的干扰,如邻区可以对发送信号进行调整,避免在强干扰方向,即虚线箭头方向给用户设备(user equipment,UE)发送信号,这样减少UE的干扰水平。在如图1中的(d)所示的DPS/DCS技术中,网络动态选择同小区或邻区中更好的传输点为用户服务,这样使得用户能够保证是在更强的小区信号下,而较弱的小区信号则成为干扰,利用这种多个TRP的信道的差异,可以提高用户的信号信干噪比。
多个TRP在物理上实质可以是一组天线。其架构可以是一个基站的基带处理单元在一个地理位置,它连接了多个射频处理单元到多个地理位置,而这多个地理位置上各自有一组天线。从基带处理单元到射频处理单元之间的距离可以有上百米远,它们之间可以用光纤连接,因此它们之间的传输时间较短,传输容量较大。这样,基带处理单元在处理好基带信号后,如生成了控制信道的信号,再传输到多个传输点上,由多个传输点各自将PDCCH发送出来。
或者,请参阅图2,图2为本申请实施例提供的一种多个TRP协调调度示意图,如图2所示,多个TRP可以属于不同的基站,多个站点之间的信息交互时延较长,容量也受限。那么这多个TRP对应的多个PDCCH由各基站的基带处理单元生成并由这些传输点分别发送的。也就是说,多个基站可以在有限的交互下,相对独立地调度数据。
在PDCCH上,承载下行链路控制信息(Downlink Control Information,DCI)的基本单元是控制信道元素(Control Channel Element,CCE)。一个PDCCH占据一个或者多个CCE。占据的CCE越多,则PDCCH的可靠性越高,消耗的资源也越多。一个用户特定的PDCCH占据了一部分CCE时,其他用户的PDCCH一般不占据这部分CCE。也就是说,在总资源数有限的情况下,能够支持的调度的PDCCH的总数是有限的。
组成PDCCH的CCE的个数叫做CCE的聚合级别。对于一个用户,它可能要检测多个聚合级别的可能性,如1,2,4,8,16等。在特定的资源范围内,UE用可能的聚合级别去检测PDCCH,如UE尝试用聚合级别4按照规则去检测4个CCE组成的资源内是否存在PDCCH,能不能正确将PDCCH解调出来。UE还会尝试其他的聚合级别。这些可能的聚合级别备选可以由基站配给UE。
UE一般不知道当前DCI传送的是什么格式(Format)的信息,也不知道自己需要的信息在哪个位置。但是UE知道自己当前在期待什么信息,例如在UE发起随机访问(Random Access)后期待的是RACH Response;在有上行数据等待发送的时候期待UL Grant等。对于不同的期望信息UE用相应的无线网络临时标识(RNTI Radio Network Temporary Identity,X-RNTI)去和CCE信息做循环冗余校验码(Cyclic Redundancy Check,CRC)校验,如果CRC校验成功,那么UE就知道这个信息是自己需要的,也知道相应的DCI format, 调制方式,从而进一步解出DCI内容。此即“盲检”过程。
在UE进行盲检时,假设可用的CCE的索引编号是从0到NCCE-1,如果每次盲检都CCE 0开始遍历,将会使得盲检效率十分低下。因此在NR系统中,UE盲检时需要获知PDCCH在频域上和时域上可能的位置,即获知PDCCH对应的控制资源集合(Control Resource Set,CORESET)和搜索空间(Search Space),得到PDCCH候选(candidate)对应的CCE索引值,再进行有针对性的盲检,可以大大提升盲检效率。其中,CORESET定义了检测PDCCH的频域的可能性,基站可以给UE配置CORESET的标识、PDCCH的解调参考信号(Demodulation Reference Signal,DMRS)加扰ID、频域预编码粒度、符号长度、频域位置、CCE与REG之间的映射方式、接收PDCCH的准共址假设、这个CORESET中所收到的PDCCH的DCI中是否有传输控制指示(Transmission control indicator,TCI)域等信息。Search Space定义了检测PDCCH的时域上的可能性。基站可以给UE配置Search space的标识、其关联的CORESET的标识、PDCCH的检测周时间单元周期和时间单元偏移、时域检测模式、对于各聚合级别可能的PDCCH候选的个数(可以包括0个)、Search Space的类型、与DCI格式相关的配置(如要检测的DCI的格式可能性),连续长度,其中Search Space的类型包括公共搜索空间(Common Search Space,CSS)和UE特定搜索空间(UE-Specific Search Space,USS)。
其中,时域检测模式用于指示UE在一个时隙内可能的检测PDCCH的符号位置。如时域检测模式可以指示一个或者多个符号位置。这些符号位置分别对应了可能的PDCCH所开始的第一个符号位置。如时域检测模式可以指示符号位置l1、l2、l3,则UE可能分别在以l1、l2、l3为起始符号的位置检测到PDCCH。
其中,对于各聚合级别可能的PDCCH候选的个数是指基站可以给UE配置对于一个搜索空间内,不同的聚合级别各自可能的PDCCH的备选的个数。
其中,连续长度是指这个Search space在时域时间单元的持续长度。以时隙为例,如配置的周期是k,持续长度是d,则意味着在满足Search space的周期和偏移的一个时间单元(slot)开始,持续的d个slot都可以在这个Search space检测PDCCH。
在传统的信号传输场景中,UE能够支持的CORESET较少,例如上限为3个。那么在根据PDCCH相关参数计算获得PDCCH候选对应的CCE索引值时,CORESET索引值与CCE索引值的对应关系是这个上限的CORESET之间CCE索引尽量随机地互不相同设计的,计算过程简单。在多个TRP调度的场景下,更多的频域资源可以分配给UE,同一个UE能够支持的CORESET数量增加。计算CCE索引值的过程也需要相应改进,以避免获得的不同PDCCH候选的CCE索引值重叠,造成信号干扰。
针对上述问题,请参阅图3,图3为本申请实施例提供的一种下行信道检测方法的流程示意图,如图3所示,所述方法包括如下步骤:
101、通信装置获取下行信道参数信息,所述下行信道参数信息包括控制资源集合CORESET分组和CORESET索引;
102、通信装置根据所述下行信道参数信息确定哈希因子。
通信装置是用于与基站进行通信的转置,包括终端设备(terminal equipment),用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal, MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备、物联网设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。还可以是5G网络中的终端设备、未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)或未来的其他通信系统中的终端设备等。
在传统方法中对PDCCH进行盲检时,UE需要知道PDCCH可能会出现的位置,即计算获得PDCCH候选对应的CCE索引值。CCE索引值的值可以根据基站下发的下行信道参数计算确定。下行信道参数可以包括上述描述的CORESET索引值,搜索空间位置,搜索空间类型,PDCCH候选的聚合级别等值。
在NR中进行多个TRP协同调度时的PDCCH盲检同样需要计算获得PDCCH候选对应的CCE索引值,但是在计算之前所需要获得的下行信道相关参数信息有所区别。因为在多个TRP协同调度时,UE能够支持的CORESET个数可能是3个,也可能是5个或者其他个数,当UE能够支持的CORESET个数为3个时,基站可以直接为UE下发其对应的CORESET索引值,即为CORESET 1~CORESET 3,每一个COERSET index可以对应计算获得一个哈希因子,再根据哈希因子进行后续的CCE索引值计算。如下所示:
A p=39827 for p mod 3=0;
A p=39829 for p mod 3=1;
A p=39839 for p mod 3=2;
其中A p表示哈希因子,p表示COERSET index,mod表示取模,3为取模参数X。这里公式的意思是,当CORESET的index p对3取模的结果为0时,哈希因子A p为39827;当CORESET的index p对3取模的结果为1时,哈希因子A p为39829;当CORESET的index p对3取模的结果为2时,哈希因子A p为39839。哈希因子是尽量不重复的随机数字,够保证根据哈希因子获得的CCE索引值不同,避免CCE索引值重叠造成信号干扰。
但是当UE能够支持的CORESET个数为5个甚至更多个数时,如果还是采用传统方式瑞3进行取模,并根据每一个取模结果获得一个哈希因子,会导致获得的哈希因子重复,那根据这些哈希因子计算获得的CCE index就不能够很好地随机化。这样造成了这些CORESET可能会存在重叠的CCE,给基站的调度带来难度,可能影响PDCCH的接收性能和系统容量。
可以通过异化CORESET从而获得不同的哈希因子来解决上述问题。异化CORESET是指对索引值相同的CORESET进行差异化标记,使得同一个CORESET可以根据不同的标记获得不同的哈希因子。例如当UE能够支持的CORESET个数分别为3和5时,虽然基站侧都为其下发索引值为2的CORESET,但是对于两种支持模式的UE来说,该索引值是不同的,根据该索引值计算获得的哈希因子也会有所不同。
可以通过建立CORESET分组来进行差异化标记,不同分组中对应的CORESET个数可以相同,也可以不同,取模参数可以相同也可以不同。但是不同分组中的CORESET索引p对取模参数X取模时,相同的取模结果对应的A p值不同,这样即使CORESET取模结果相同,但是其对应的分组不同,也可以获得不同的哈希因子,进而计算获得不同的CCE索引值。
其中分组可以基于预定义规则或基站通知,或者根据预定义规则和基站通知共同确定。
基站可以给CORESET分配所述的组,如通过高层配置、MAC CE配置、DCI通知等;
预定义规则是说比如可以预定义CORESET index和所述组的关系。比如,预定义CORESET的index和组的联系。如COREST index和组的标识之间有对应关系。举例如:假设只有2个组,可以定义规则CORSET index为奇数的为第一组;CORESET index为偶数的为第二组。也可以是反过来的对应关系。
基站通知和预定义规则也可以结合起来使用。比如说,基站可以配置一个或多个CORSET所属的组,而对于未配置所属组的CORESET,可以预定义其属于的组。可以用上面的预定义规则。或者,预定义所有未配置分组的CORESET都属于某一特定组。这个特定组的标识可以是预定义的,比如为0,或为1;也可以是基站配置的。
具体地,在通信装置从基站获取下行信道参数信息之前,基站和通信装置对CORESET分组、CORESET索引值和哈希因子之间的对应关系达成一致,具体示例如下:
表1 示例1
Figure PCTCN2019122289-appb-000013
表2 示例2
Figure PCTCN2019122289-appb-000014
表3 示例3
Figure PCTCN2019122289-appb-000015
在表1的示例1中,包括两个CORESET分组,且两个分组中X=3,两个CORESET组对应的A p值各不相同。其中有一个CORESET因为只能分配到2个A p值,则p对3取模的结果为1和2时对应同一个哈希因子,即不同的CORESET索引值也可以对应一个哈希因子。而不同的组的CORESET,即使pmod3的结果一样,其对应的Ap值也不一样。
在表2的示例2中,包括两个CORESET分组,且两个分组中X=3。在同一个CORESET组内,对X取模的值不同,对应的A p值各不相同;在不同的CORESET组间,对X取模的值相同时,A p值不同,例如CORESET组1中p mod 3=0时,A p=39827,CORESET组2中p mod 3=0时,Ap=39828;对X取模的值不同时,A p值可以相同,例如CORESET组1中p mod 3=0时,与CORESET组2中p mod 3=2时,对应的A p值都为39827。上述本方案中的A p值取值398XX的数字都是举例,它可以是质数,或者是参数D=65537的原根。
在表3的示例3中,包括2个CORESET分组和部分未分组。在CORESET组1中X=3,在CORESET组2中X=5。同样的,在同一个CORESET组内对X取模的值不同,对应的Ap值各不相同;在不同的CORESET组之间,CORESET索引值对X取模的值相同,对应 的A p值可以相同也可以不同,CORESET索引值对X取模的值不同,对应的Ap值可以相同也可以不同。即A p的取值可以由对不同的X取模区分开。
可见,在本申请实施例中,通过设置CORESET分组,然后将CORESET分组与CORESET索引一起下发给UE,UE根据CORESET分组与CORESET索引获得对应的哈希因子,即使CORESET索引值相同,因为CORESET分组不同,也可以获得不同的哈希因子,降低了获得的CCE索引值重复的概率。
另外,在一个可选的示例中,UE通过对3取模获得取模结果,再获得取模结果对应的哈希因子这一传统实施方式,当基站侧下发5个不同的CORESET索引值时,有一些CORESET的索引对3取模的值是相同的,根据这些相同的取模结果将会获得相同的哈希因子,那根据这些哈希因子计算获得的CCE索引就不能够很好地随机化。
针对这个问题,还可以通过异化取模结果从而获得不同的哈希因子来解决。
具体地,基站侧和UE需要根据约定参数进行约定,确定基站下发的CORESET索引范围。其中约定参数可以是UE上报的自身支持的CORESET上限。也可以是基站侧确定的CORESET个数。例如UE支持的CORESET个数为5个,将其作为约定参数发送给基站侧,那么基站下发的CORESET index范围为1~5。或者,基站侧确定支持的CORESET个数为3个,那么其下发的CORESET index范围为1~3,同时基站侧将支持的CORESET个数作为约定参数通知给UE。
假设UE接收到的CORESET索引p=3,已知约定参数为5,那么UE可以确定取模参数X=5,那么Ap根据p mod 5的值来确定,可以避免取模参数小于CORESET个数造成取模值相同,造成获取的哈希因子相同,进而使得获得的CCE重叠的问题。
可见,在本申请实施例中,当多个TRP调度场景下为UE分配更多CORESET时,通过约定参数确定通信装置获得的CORESET索引值,使获得的CORESET索引与UE适配,减少不同CORESET索引获得相同哈希因子的概率,进而有效减少获得的CCE索引值重复的概率。
上述约定参数相关的实施例与上述CORESET分组的实施例为相互独立的实施例,可以单独执行。或者,也可以根据约定参数制定和选取CORESET分组。
103、所述通信装置根据所述哈希因子计算获得物理下行控制信道PDCCH候选的CCE索引值。
根据哈希因子和其他已知参数可以计算获得PDCCH候选的CCE索引值。
具体地,对于关联CORESET p的space set s内,对应PDCCH候选
Figure PCTCN2019122289-appb-000016
的聚合级别L,在时间单元(slot)
Figure PCTCN2019122289-appb-000017
上,在一个载波(n CI对应的载波)上,这个PDCCH候选的CCE索引值是根据下面的公式得到的
Figure PCTCN2019122289-appb-000018
其中,k为CCE索引值,对于任何CSS,
Figure PCTCN2019122289-appb-000019
对于USS,
Figure PCTCN2019122289-appb-000020
Y p,-1=n RNTI≠0,D=65537;i=0,…,L-1;N CCE,p是CORESETp中的CCE个数。
n CI是载波指示域指示的值(如果有这个指示域的话),或者为0(没有这个指示域的话)。
Figure PCTCN2019122289-appb-000021
是在n CI所对应的服务小区内,对于search space set s,UE所需要检测的聚合级别为L的PDCCH候选个数。
对于任何CSS,
Figure PCTCN2019122289-appb-000022
对于USS,
Figure PCTCN2019122289-appb-000023
是n CI所有配置中的最大值对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数。
由上述内容可知,CSS和USS的PDCCH候选的个数确定方式不一样。根据公式(1)可以获得USS对应的各个聚合级别的PDCCH候选个数之和;对于CSS只能计算获得一个聚合级别的PDCCH候选个数。计算CCE索引值时,其他参数可以直接获取,而哈希因子A p可以根据基站下发的CORESET索引值、CORESET分组以及约定参数计算获得,最后即可根据公式(1)计算获取最终的k值,即CCE索引值。
104、所述通信装置根据所述PDCCH候选的CCE索引值进行盲检。
在UE计算获得PDCCH候选对应的CCE索引值后,即可在相应的时频位置进行盲检,确定相应位置是否有与UE相匹配的PDCCH。
在一些情况下,基站为UE配置的PDCCH候选可能是超过UE的检测上限的,UE并不能够对全部的PDCCH候选进行盲检。在这种情况下,需要对PDCCH候选进行筛选,确定UE实际进行盲检的PDCCH候选。
在进行PDCCH候选的筛选时,要确定一个服务小区中每个TRP对应的PDCCH候选是否超过PDCCH检测上限,还需要确定该服务小区对应的PDCCH候选是否超过检测上限。每个TRP对应的PDCCH检测上限即为每个CORESET组的检测上限。
其中,搜索空间为CSS的PDCCH候选是必须要进行盲检的,而搜索空间为USS的PDCCH候选个数是可以配置后导致超出UE能力上限的,一般来说,UE需要去确定哪些超出的部分是不需要检测的。这么做主要是为了基站有配置的灵活度。
在确定进行盲检的PDCCH候选个数时,可以先根据每个CORESET组的检测能力上限确定每个CORESET组实际检测的PDCCH候选个数,再根据相应服务小区的检测能力上限确定最终实际检测的PDCCH候选个数,具体过程为:
41、确定PDCCH候选对应的CORESET分组;
42、按照全部或部分CORESET组对应的PDCCH候选检测上限值确定CORESET的PDCCH候选;
43、确定CORESET组对应服务小区的PDCCH候选检测上限值;
44、根据服务小区的PDCCH候选检测上限值和CORESET的PDCCH候选确定服务小区的PDCCH候选;
45、根据服务小区的PDCCH候选确定进行盲检的PDCCH候选。
具体地,请参阅图4,图4为本申请实施例提供的一种确定进行盲检的PDCCH候选个数示意图,如图4所示,首先确定PDCCH候选所属的CORESET组,得到每个CORESET 组对应的PDCCH候选个数,例如CORESET组1,CORESET组2和CORESET组3分别对应的PDCCH候选个数为R1,R2,R3,并且这三个CORESET组对应的PDCCH候选检测上限值都为R(不同的CORESET组对应的PDCCH候选检测上限值可以相同,也可以不同),其中R1<R,R2<R,说明CORESET组1和CORESET组2对应的PDCCH候选个数都没有超过该CORESET组对应的PDCCH检测上限,这两个组的PDCCH候选全部能够进行盲检。而R3>R,说明CORESET组3对应的PDCCH候选个数超过了该组对应的PDCCH候选检测上限值,该组对应的R3个PDCCH候选中只有R个能够进行盲检。因此,UE需要在R3个配置的PDCCH候选中确定出R个需要检测的PDCCH候选,对于不需要检测的PDCCH候选,UE在盲检的时候不去检测它们。当然,确定出来的R应当是小于等于对应组的候选检测上限值的。最终确定CORESET的PDCCH候选检测个数为:R1+R2+R。
或者,在一些情况下,一些CORESET组对应的PDCCH候选必须进行盲检,那么只需要按照部分CORESET组对应的PDCCH候选检测上限确定CORESET的PDCCH候选检测个数。例如在图4中,CORESET组3为必检组(也就是说,基站在配置的时候,会保证这个组的CORESET配置对应的PDCCH候选个数不会超过这个CORESET组的PDCCH候选检测上限),那么只有CORESET组1和CORESET组2需要进行Rn<R判断的操作,如果Rn<R的判断成立,则最后确定CORESET的PDCCH候选检测个数为:R1+R2+R3。如果判断不成立,则不成立的CORESET组对应的PDCCH候选检测个数最多为R。
最终进行盲检的PDCCH候选个数除了受到CORESET检测能力的限制外,还受到服务小区的检测能力限制。假设CORESET组1,CORESET组2和CORESET组3对应的服务小区检测能力上限值为R’,且R1+R2+R<R’,说明各个CORESET组实际能进行盲检的PDCCH候选个数在服务小区的检测能力范围内,因此可以确定最终进行盲检的PDCCH候选个数即为R1+R2+R。反之,若R1+R2+R>R’,则UE需要在R1+R2+R个候选中确定出R’个需要检测的PDCCH候选。
确定候选检测个数后,首先从所有PDCCH候选中减去搜索空间为CSS的PDCCH候选个数,确定剩余的需要盲检的PDCCH候选个数。这意味着搜索空间为CSS的PDCCH候选全部都要进行盲检。然后再按照USS的索引顺序和剩余的需要盲检的PDCCH候选个数对PDCCH候选进行盲检。
其中,减去搜索空间为CSS的PDCCH候选个数,包括了如下含义:
在服务小区对应的上限中减去搜索空间为CSS的PDCCH候选个数;
进一步,还可以在全部或部分CORESET组对应的上限中减去搜索空间为CSS的PDCCH候选个数。
减去搜索空间为CSS的PDCCH候选个数也可以在确定进行盲检的PDCCH候选个数之前进行,这样通过上述过程获得的PDCCH候选个数全部为搜索空间为USS的需要进行盲检的PDCCH候选个数。
或者,也可以先根据服务小区的检测能力上限值确定服务小区的PDCCH候选检测个数,再根据服务小区对应的多个CORESET组支持的PDCCH候选检测上限值确定最终实际检测的PDCCH候选个数,具体过程为:
51、确定服务小区的PDCCH候选检测上限值;
52、根据PDCCH候选个数和所述服务小区的PDCCH候选检测上限值确定所述服务小区的PDCCH候选;
53、确定所述服务小区对应的CORESET组支持的PDCCH候选检测上限值;
54、根据所述CORESET组中全部或部分CORESET组支持的PDCCH候选上限值确定CORESET的PDCCH候选;
55、根据所述CORESET的PDCCH候选和所述服务小区的PDCCH候选确定进行盲检的PDCCH候选。
具体地,请参阅图5,图5为本申请实施例提供的另一种确定进行盲检的PDCCH候选个数示意图,如图5所示,服务小区的PDCCH候选检测上限值为R’,而所有的PDCCH候选个数为R1+R2+R3,且R1+R2+R3<R’,说明所有的PDCCH候选个数没有超过服务小区的PDCCH候选检测能力上限,在服务小区的PDCCH检测能力限制下,所有的PDCCH候选都能够进行盲检。反之,如果R1+R2+R3>R’,说明所有的PDCCH候选个数超过服务小区的PDCCH候选检测能力上限,确定服务小区的PDCCH候选为R’。
进一步地,还需要考虑每个CORESET组中对应的PDCCH候选是否超过检测能力上限值。分别确定每个CORESET组对应的PDCCH候选是否超过其对应的检测能力上限即可。如图5所示,CORESET组1和CORESET组2对应的PDCCH候选都没超过该组PDCCH检测能力上限,都可以进行盲检;而COERSET组3中R3>R,超过了该组的能力检测上限,R3个PDCCH候选中只能有R个PDCCH候选进行盲检。最终确定实际进行盲检的PDCCH候选个数小于或等于R1+R2+R,如为R1+R2+R。
同样的,在一些情况下,一些CORESET组对应的PDCCH候选必须进行盲检,那么只需要按照部分CORESET组对应的PDCCH候选检测上限确定CORESET的PDCCH候选检测个数。例如在图5中,CORESET组3为必检组,那么只有CORESET组1和CORESET组2需要进行Rn<R判断的操作,最后确定CORESET的PDCCH候选检测个数为:R1+R2+R3。而已知R1+R2+R3<R’,那么最终确定实际进行盲检的PDCCH候选个数为R1+R2+R3。如果R1+R2+R3>R’,那么需要进一步减少PDCCH候选检测个数的为CORESET组1或CORESET组2,以保证CORESET组3中的PDCCH候选检测为先。
上述两个确定进行盲检的PDCCH候选个数的过程只是确定顺序有所不同,最终确定的值是相同的。即都根据服务小区支持的PDCCH候选检测个数和多个CORESET组支持的PDCCH候选检测个数两者中的较小值确定。
上述描述中的“<”表示小于,在一些示例中,也可以包含等于的情况,即“<”可以等价替换为“≤”。
可见,在本申请实施例中,通过服务小区和CORESET组能够支持的PDCCH候选检测上限值最终确定进行盲检的PDCCH候选个数,可以提升进行UE进行盲检的效率,提升盲检效果。
另外,在从所有基站分配的PDCCH候选中选取指定个数的PDCCH候选进行盲检时,首先保证搜索空间CSS对应的PDCCH候选的检测,然后按照USS索引值先后顺序选取剩余的PDCCH候选。请参阅图6,图6为本申请实施例提供的一种选取进行盲检的PDCCH候选过程示意图,如图6所示,假设确定的进行盲检的PDCCH候选个数为m,基站分配的PDCCH候选个数为n,那么按照USS索引的顺序从n个PDCCH候选中选取m个PDCCH候选进行盲检,最终建立UE与基站之间的下行信道连接。
可见,在本申请实施例中,通信装置首先获取下行信道参数信息,下行信道参数信息包括CORESET分组和CORESET索引;然后通信装置根据下行信道参数信息确定哈希因子;根据哈希因子计算获得物理下行控制信道PDCCH候选的CCE索引值;最后通信装置 根据PDCCH候选的CCE索引值进行盲检。在这个过程中,在为UE分配多个CORESET时,通过设置CORESET分组,进而根据不同CORESET分组中的CORESET索引获取哈希因子,可以解决因CORESET数量增加造成获取的哈希因子重复率提升问题,进而提升了根据哈希因子获得的CCE索引值的随机性,减少盲检时获得PDCCH资源的重叠问题。
参见图7,图7为本申请实施例提供的一种进行盲检的PDCCH候选个数确定方法流程示意图,如图7所示,该方法包括如下步骤:
201、通信装置根据多个CORESET组支持的PDCCH候选检测上限值以及所述多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选个数;
202、所述通信装置按照搜索空间的索引值先后顺序选取进行盲检的PDCCH候选个数对应的PDCCH候选。
在多个TRP协同调度的场景下,在已知基站为UE分配的PDCCH候选个数时,可以进一步确定UE能够进行盲检的PDCCH候选个数。同样的,在多个TRP协同调度时,每个TPR有其对应的PDCCH候选检测上限,表现为CORESET组的检测上限,可以根据每个CORESET组的检测上限和分配的PDCCH候选个数确定CORESET组的候选检测个数;然后多个TRP如果对应一个服务小区,则再根据这个服务小区的PDCCH候选检测上限和CORESET组的候选检测个数确定UE能够进行盲检的PDCCH候选个数。如果多个TRP对应多个服务小区,则根据每个服务小区的PDCCH候选检测上限确定每个服务小区的PDCCH候选检测个数,最终根据多个服务小区的PDCCH候选检测个数之和确定UE能够进行盲检的PDCCH候选个数。
同样的,也可以先根据为UE分配的PDCCH候选个数,以及UE进行多个TRP协同调度时对应的一个或多个服务小区的PDCCH候选检测上限,确定服务小区的PDCCH候选检测个数;再根据多个TRP对应的多个CORESET组的候选检测上限最终确定UE能够进行盲检的PDCCH候选个数。
在确定进行盲检的PDCCH候选个数后,如果其值等于基站为UE分配的PDCCH候选个数,说明所有UE对应的PDCCH候选都可以进行盲检,按照搜索空间索引先后顺序进行盲检即可。如果获得的进行盲检的PDCCH候选个数小于基站为UE分配的PDCCH候选个数,说明UE对应的PDCCH候选只有部分能够进行盲检。
首先搜索空间为CSS的PDCCH候选都可以进行盲检,因此首先从确定的进行盲检的PDCCH候选个数中减去搜索空间为CSS的PDCCH候选个数,然后在剩余的PDCCH候选中,按照搜索空间USS的索引顺序提取进行盲检的PDCCH候选。
其中,减去搜索空间为CSS的PDCCH候选个数,包括了如下含义:
在服务小区对应的上限中减去搜索空间为CSS的PDCCH候选个数;
进一步,还可以在全部或部分CORESET组对应的上限中减去搜索空间为CSS的PDCCH候选个数。其中部分或全部CORESET组确定的方式可参见步骤101-104中的相应描述,这里不再赘述。
可见,在本申请实施例中,在多个TPR协同调度的场景下,同时考虑每个TPR能够支 持的PDCCH候选检测上限和服务小区能够支持的PDCCH候选检测上限来确定UE能够进行盲检的PDCCH候选个数,并按照搜索空间USS的索引顺序获取最终进行盲检的PDCCH候选,提升了确定的进行盲检的PDCCH候选的准确性,进而提升了UE的盲检效率。
参见图8,为本申请实施例提供的一种下行信道检测装置,如图8所示,所述装置800包括:
通信单元301,用于获取下行信道参数信息,所述下行信道参数信息包括控制资源集合CORESET分组和CORESET索引;
处理单元302,用于根据所述下行信道参数信息确定哈希因子,根据所述哈希因子计算获得物理下行控制信道PDCCH候选的CCE索引值,并根据所述PDCCH候选的CCE索引值进行盲检。
可见,本申请实施例提供的下行信道检测装置,首先获取下行信道参数信息,下行信道参数信息包括控制资源集合CORESET分组和CORESET索引;然后根据下行信道参数信息确定哈希因子;根据哈希因子计算获得物理下行控制信道PDCCH候选的CCE索引值;最后根据PDCCH候选的CCE索引值进行盲检。在这个过程中,在为UE分配多个CORESET时,通过设置CORESET分组,进而根据不同CORESET分组中的CORESET索引获取哈希因子,可以解决因CORESET数量增加造成获取的哈希因子重复率提升问题,进而提升了根据哈希因子获得的CCE索引值的随机性,减少盲检时获得PDCCH资源的重叠问题。
在可选的示例中,所述根据所述哈希因子计算获得PDCCH候选的CCE索引值满足如下公式:
Figure PCTCN2019122289-appb-000024
其中k表示PDCCH候选的CCE索引值;
对于任何CSS,
Figure PCTCN2019122289-appb-000025
对于USS,
Figure PCTCN2019122289-appb-000026
A p表示哈希因子,Y p,-1=n RNTI≠0,D=65537;
i=0,…,L-1;N CCE,p表示CORESETp中的CCE个数;
n CI是载波指示域指示的值;
Figure PCTCN2019122289-appb-000027
是在n CI所对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数;
对于任何CSS,
Figure PCTCN2019122289-appb-000028
对于USS,
Figure PCTCN2019122289-appb-000029
是n CI所有配置中的最大值对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数。
在可选的示例中,所述处理单元302还用于:
根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选。
在可选的示例中,所述处理单元302具体用于:
根据所述一个或多个CORESET组支持的PDCCH候选上限值,确定一个或多个每个CORESET组的PDCCH候选;
根据所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值和所述一个或多个CORESET组对应的PDCCH候选检测个数确定所述服务小区的PDCCH候选;
根据所述服务小区的PDCCH候选确定进行盲检的PDCCH候选。
在可选的示例中,所述处理单元302具体用于:
根据所述服务小区的PDCCH候选检测上限值确定所述服务小区的PDCCH候选;
根据确定所述服务小区对应的一个或多个CORESET组支持的PDCCH候选检测上限值和所述服务小区的PDCCH候选,确定所述一个或多个CORESET组的PDCCH候选;
根据所述一个或多个CORESET组的PDCCH候选确定进行盲检的PDCCH候选。
在可选的示例中,所述处理单元302还用于:
确定搜索空间为CSS的PDCCH候选为进行盲检的PDCCH候选。
本申请另外一种实施例,参见图9,装置400包括至少一个处理器401,至少一个存储器402以及至少一个通信接口403。所述处理器401与所述存储器402和所述通信接口403相互连接。
处理器401可以是通用中央处理器(central processing unit,CPU),图形处理器(graphics processing unit,GPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口403,用于与其他设备或通信网络进行光纤通信。
存储器402可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器402用于存储执行以上方案的应用程序代码以及程序执行结果,并由处理器401来控制执行。所述处理器401用于执行所述存储器402中存储的应用程序代码。
存储器402存储的代码可执行以上提供的下行信道检测方法,比如:
获取下行信道参数信息,所述下行信道参数信息包括控制资源集合CORESET分组和 CORESET索引;
根据所述下行信道参数信息确定哈希因子;
根据所述哈希因子计算获得物理下行控制信道PDCCH候选的CCE索引值;
根据所述PDCCH候选的CCE索引值进行盲检。
本申请实施例中的装置400,具体还可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)等实现,本申请实施例对此不作限定。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个方法中的一个或多个步骤。上述信号处理装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
基于这样的理解,本申请实施例还提供一种包含指令的计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行本申请实施例提供的任一个方法。本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备或其中的处理器执行本申请各个实施例所述方法的全部或部分步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出 来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器如前述存储器402,此处不再赘述。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (13)

  1. 一种下行信道检测方法,其特征在于,所述方法包括:
    获取下行信道参数信息,所述下行信道参数信息包括控制资源集合CORESET分组和CORESET索引;
    根据所述下行信道参数信息确定哈希因子;
    根据所述哈希因子计算获得物理下行控制信道PDCCH候选的控制信道元素CCE索引值;
    根据所述PDCCH候选的CCE索引值进行盲检。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述哈希因子计算获得PDCCH候选的CCE索引值满足如下公式:
    Figure PCTCN2019122289-appb-100001
    其中k表示PDCCH候选的CCE索引值;
    对于任何CSS,
    Figure PCTCN2019122289-appb-100002
    对于USS,
    Figure PCTCN2019122289-appb-100003
    A p表示哈希因子,
    Figure PCTCN2019122289-appb-100004
    D=65537;
    i=0,…,L-1;N CCE,p表示CORESETp中的CCE个数;
    n CI是载波指示域指示的值;
    Figure PCTCN2019122289-appb-100005
    是在n CI所对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数;
    对于任何CSS,
    Figure PCTCN2019122289-appb-100006
    对于USS,
    Figure PCTCN2019122289-appb-100007
    是n CI所有配置中的最大值对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数。
  3. 根据权利要求1或2任一项所述的方法,其特征在于,在根据所述PDCCH候选的CCE索引值进行盲检之前,所述方法还包括:
    根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选。
  4. 根据权利要求3所述的方法,其特征在于,所述根据一个或多个CORESET组支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选,包括:
    根据所述一个或多个CORESET组支持的PDCCH候选上限值,确定一个或多个每个CORESET组的PDCCH候选;
    根据所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值和所述一个或多个CORESET组对应的PDCCH候选检测个数确定所述服务小区的PDCCH候选;
    根据所述服务小区的PDCCH候选确定进行盲检的PDCCH候选。
  5. 根据权利要求3所述的方法,其特征在于,所述根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选,包括:
    根据所述服务小区的PDCCH候选检测上限值确定所述服务小区的PDCCH候选;
    根据确定所述服务小区对应的一个或多个CORESET组支持的PDCCH候选检测上限值和所述服务小区的PDCCH候选,确定所述一个或多个CORESET组的PDCCH候选;
    根据所述一个或多个CORESET组的PDCCH候选确定进行盲检的PDCCH候选。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,在根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选之前,所述方法还包括:
    确定搜索空间为CSS的PDCCH候选为进行盲检的PDCCH候选。
  7. 一种下行信道检测装置,其特征在于,所述装置包括:
    通信单元,用于获取下行信道参数信息,所述下行信道参数信息包括控制资源集合CORESET分组和CORESET索引;
    处理单元,用于根据所述下行信道参数信息确定哈希因子,根据所述哈希因子计算获得物理下行控制信道PDCCH候选的控制信道元素CCE索引值,并根据所述PDCCH候选的CCE索引值进行盲检。
  8. 根据权利要求7所述的装置,其特征在于,所述根据所述哈希因子计算获得PDCCH候选的CCE索引值满足如下公式:
    Figure PCTCN2019122289-appb-100008
    其中k表示PDCCH候选的CCE索引值;
    对于任何CSS,
    Figure PCTCN2019122289-appb-100009
    对于USS,
    Figure PCTCN2019122289-appb-100010
    A p表示哈希因子,
    Figure PCTCN2019122289-appb-100011
    D=65537;
    i=0,…,L-1;N CCE,p表示CORESETp中的CCE个数;
    n CI是载波指示域指示的值;
    Figure PCTCN2019122289-appb-100012
    是在n CI所对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数;
    对于任何CSS,
    Figure PCTCN2019122289-appb-100013
    对于USS,
    Figure PCTCN2019122289-appb-100014
    是n CI所有配置中的最大值对应的服务小区内,对于搜索空间集s,UE所需要检测的聚合级别为L的PDCCH候选个数。
  9. 根据权利要求7或8所述的装置,其特征在于,所述处理单元还用于:
    根据一个或多个CORESET组支持的PDCCH候选检测上限值以及所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值确定进行盲检的PDCCH候选。
  10. 根据权利要求9所述的装置,其特征在于,所述处理单元具体用于:
    根据所述一个或多个CORESET组支持的PDCCH候选上限值,确定一个或多个每个CORESET组的PDCCH候选;
    根据所述一个或多个CORESET组对应的服务小区支持的PDCCH候选检测上限值和所述一个或多个CORESET组对应的PDCCH候选检测个数确定所述服务小区的PDCCH候选;
    根据所述服务小区的PDCCH候选确定进行盲检的PDCCH候选。
  11. 根据权利要求9所述的装置,其特征在于,所述处理单元具体用于:
    根据所述服务小区的PDCCH候选检测上限值确定所述服务小区的PDCCH候选;
    根据确定所述服务小区对应的一个或多个CORESET组支持的PDCCH候选检测上限值和所述服务小区的PDCCH候选,确定所述一个或多个CORESET组的PDCCH候选;
    根据所述一个或多个CORESET组的PDCCH候选确定进行盲检的PDCCH候选。
  12. 根据权利要求9-11任一项所述的装置,其特征在于,所述处理单元还用于:
    确定搜索空间为CSS的PDCCH候选为进行盲检的PDCCH候选。
  13. 一种下行信道检测装置,其特征在于,包括:处理器和传输接口;
    所述传输接口,用于输入和/或输出信号;所述处理器调用存储器中存储的可执行程序代码,以使得所述装置实现如权利要求1-6任一项所述的方法。
PCT/CN2019/122289 2019-11-30 2019-11-30 下行信道检测方法及装置 WO2021103038A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122289 WO2021103038A1 (zh) 2019-11-30 2019-11-30 下行信道检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122289 WO2021103038A1 (zh) 2019-11-30 2019-11-30 下行信道检测方法及装置

Publications (1)

Publication Number Publication Date
WO2021103038A1 true WO2021103038A1 (zh) 2021-06-03

Family

ID=76129091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122289 WO2021103038A1 (zh) 2019-11-30 2019-11-30 下行信道检测方法及装置

Country Status (1)

Country Link
WO (1) WO2021103038A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074043A1 (ja) * 2017-10-12 2019-04-18 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN110235407A (zh) * 2017-02-03 2019-09-13 Idac控股公司 物理下行链路控制信道的传输和接收

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235407A (zh) * 2017-02-03 2019-09-13 Idac控股公司 物理下行链路控制信道的传输和接收
WO2019074043A1 (ja) * 2017-10-12 2019-04-18 シャープ株式会社 端末装置、基地局装置、および、通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues for physical downlink control channel", 3GPP DRAFT; R1-1812181, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051478324 *

Similar Documents

Publication Publication Date Title
US11363499B2 (en) Resource configuration method, apparatus, and system
US11632206B2 (en) Method and apparatus for obtaining resource indication value
JP7227297B2 (ja) データ通信方法、端末、および基地局
JP2020520584A (ja) 情報送受信方法及び関連するデバイス
CN112134664B (zh) 资源确定方法及装置
EP4192091A1 (en) Interference rejection combining method, resource indication method and communication apparatus
WO2014049417A2 (en) Method and apparatus for determining epdcch-based downlink control information
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
US20210014023A1 (en) Data transmission method, terminal device, and network device
US20200163105A1 (en) Communication method and device
US20220272745A1 (en) Communication method and communications apparatus
WO2021103038A1 (zh) 下行信道检测方法及装置
WO2021031874A1 (zh) 信号传输方法和通信装置
CA3067479A1 (en) Channel resource set indication method and device, and computer storage medium
WO2023051173A1 (zh) 数据传输方法及相关装置
CN111193581A (zh) 发送和接收物理下行控制信道的方法以及通信装置
WO2023130939A1 (zh) 资源选择方法及装置
CN111585731B (zh) 一种通信方法及装置
WO2022056856A1 (zh) 一种物理下行控制信道传输方法及装置
CN112106419B (zh) 一种资源分配方法、设备及系统
WO2020155059A1 (zh) 一种信息传输方法、相关设备及系统
CN114503487A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954579

Country of ref document: EP

Kind code of ref document: A1