WO2021103000A1 - 光开关及其控制方法、显示装置 - Google Patents

光开关及其控制方法、显示装置 Download PDF

Info

Publication number
WO2021103000A1
WO2021103000A1 PCT/CN2019/122185 CN2019122185W WO2021103000A1 WO 2021103000 A1 WO2021103000 A1 WO 2021103000A1 CN 2019122185 W CN2019122185 W CN 2019122185W WO 2021103000 A1 WO2021103000 A1 WO 2021103000A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
optical switch
microfluid
substrate
Prior art date
Application number
PCT/CN2019/122185
Other languages
English (en)
French (fr)
Inventor
孟宪芹
孟宪东
王维
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19948864.4A priority Critical patent/EP4067967A4/en
Priority to CN201980002709.6A priority patent/CN113272709B/zh
Priority to US16/971,400 priority patent/US11860501B2/en
Priority to PCT/CN2019/122185 priority patent/WO2021103000A1/zh
Publication of WO2021103000A1 publication Critical patent/WO2021103000A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/348Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on the deformation of a fluid drop, e.g. electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits

Definitions

  • the present disclosure relates to the field of display technology, and in particular to an optical switch, a control method thereof, and a display device.
  • a display device including an optical waveguide In a display device including an optical waveguide, light from its light source can be coupled into or out of the corresponding optical waveguide through a grating to complete the display of the display device.
  • an optical switch includes: a plurality of microgrooves, a microfluid arranged in each of the plurality of microgrooves, and a driving electrode arranged corresponding to the microfluid in each of the microgrooves.
  • the driving electrode is configured to provide voltage to the corresponding microfluid to control the light transmittance of the area where the microfluid is located.
  • the microfluidics include liquid crystal or electrowetting microfluidics.
  • the driving electrode includes a first electrode and a second electrode that are arranged opposite to each other.
  • the microfluid is located between the corresponding first electrode and the second electrode.
  • the driving electrode further includes at least one third electrode located on the inner sidewall of each microgroove.
  • One of the first electrode and the second electrode is electrically connected to the at least one third electrode, and the other is insulated from the at least one third electrode.
  • the driving electrode includes a first electrode and a second electrode located on the same plane and spaced apart.
  • the microfluid is located on the same side of the corresponding first electrode and the second electrode.
  • At least two of the first electrodes are electrically connected; and/or, at least two of the second electrodes are electrically connected.
  • the optical switch further includes a plurality of first signal lines and a plurality of second signal lines.
  • the first electrodes in at least one row are electrically connected to the same first signal line, and the second electrodes in at least one column are electrically connected to the same second signal line.
  • the first electrode and the second electrode include light-transmitting electrodes.
  • the microfluidic is an electrowetting microfluid.
  • the electrowetting microfluid includes a light-transmitting microfluid and an impermeable microfluid that is not compatible with the light-transmitting microfluid.
  • the contact angle of one of the light-transmitting microfluid and the non-light-transmitting microfluid can be changed under the driving of the corresponding driving electrode.
  • the light-impermeable microfluidic includes a light-absorbing microfluidic.
  • the optical switch further includes: a first substrate and a second substrate disposed opposite to each other, and a plurality of light shielding parts disposed between the first substrate and the second substrate.
  • the plurality of light-shielding parts surround the plurality of microgrooves on the first substrate or the second substrate.
  • the optical switch further includes: at least one spacer disposed between the first substrate and the second substrate.
  • the control method of the optical switch includes: inputting a voltage to at least one driving electrode in the target area, and using the at least one driving electrode to control the light transmittance of the corresponding area where the microfluid is located.
  • control method of the optical switch further includes: inputting different voltages to the same driving electrode in the target area in time sharing, or inputting different voltages to different driving electrodes at the same time, respectively, In order to control the corresponding regions of the microfluid to have different light transmittances.
  • a display device in another aspect, includes the optical switch as described in any of the above embodiments.
  • the display device further includes: at least one set of gratings.
  • the optical switch is located on the light exit side of the at least one set of gratings.
  • the display device further includes an AR display screen.
  • the optical switch is located on the light incident side of the ambient light of the AR display screen.
  • Fig. 1 is a schematic diagram of an optical switch according to some embodiments of the present disclosure
  • Fig. 2 is a schematic diagram of another optical switch according to some embodiments of the present disclosure.
  • Fig. 3 is a schematic diagram of another optical switch according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of another optical switch according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of the optical switch shown in FIG. 2 in an on state
  • Fig. 6 is a schematic diagram of the optical switch shown in Fig. 2 in a gated state
  • FIG. 7 is a schematic diagram of the optical switch shown in FIG. 2 in another gated state
  • FIG. 8 is a schematic diagram of still another optical switch in some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of still another optical switch in some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram of another optical switch according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram of a driving electrode according to some embodiments of the present disclosure.
  • FIG. 12 is a schematic diagram of another driving electrode according to some embodiments of the present disclosure.
  • FIG. 13 is a schematic diagram of another driving electrode according to some embodiments of the present disclosure.
  • FIG. 14 is a schematic diagram of a display device in some embodiments of the present disclosure.
  • FIG. 15 is a schematic diagram of another display device according to some embodiments of the present disclosure.
  • FIG. 16 is a schematic diagram of another display device according to some embodiments of the present disclosure.
  • FIG. 17 is a schematic diagram of the display device shown in FIG. 16 in a VR state
  • FIG. 18 is a schematic diagram of another display device according to some embodiments of the present disclosure.
  • FIG. 19 is a schematic diagram of the display device shown in FIG. 18 in a VR state.
  • Fraunhofer diffraction is a type of wave diffraction, which usually occurs when field waves pass through a circular hole or slit. This also leads to the fact that if the orthographic projection area of the grating on the display surface of the display device containing the optical waveguide is small, then when light is coupled into or out of the corresponding optical waveguide through the grating, it is likely to be caused by Fraunhofer diffraction. Light crosstalk occurs due to the occurrence of, that is, it has an adverse effect on the display effect of the display device, for example, the display screen of the display device has uneven brightness and blur, or display distortion. In addition, in the display device adopting the pinhole imaging technology, Fraunhofer diffraction is also prone to occur when light exits through the pinhole, thereby reducing the display effect of the display device.
  • the optical switch includes: a plurality of microgrooves 1, a microfluidic 2 arranged in each microgroove 1 of the plurality of microgrooves 1, and a microfluidic device in each microgrooves 2
  • the driving electrode 3 is configured to provide voltage to the corresponding microfluid 2 to control the light transmittance of the area where the microfluid is located.
  • the aforementioned microgrooves 1 are usually formed on a corresponding carrier.
  • the carrier is, for example, a glass substrate, or a light-transmitting substrate made of a light-transmitting resin or a light-transmitting polyester compound.
  • the specifications of the carrier for example, the thickness of the transparent substrate
  • the upper and lower surfaces of the transparent substrate have better flatness and parallelism.
  • microgrooves 1 are formed in the corresponding carrier by etching, or multiple retaining walls are formed on the corresponding carrier, so that each microgroove 1 is enclosed by multiple retaining walls, both of which are allowed. Some embodiments of the present disclosure do not limit the formation method of the microgrooves 1.
  • notch shape of the microgrooves 1 can be selected and set according to actual needs, for example, rectangular, diamond, circular or other shapes.
  • the size of the microgrooves 1 is on the order of micrometers ( ⁇ m), that is, the dimensions of the microgrooves 1 (such as groove depth, groove width, etc.) are measured in micrometers as the smallest unit.
  • the value range of the groove depth of the micro groove 1 is 2 ⁇ m-20 ⁇ m.
  • the microfluidic 2 is arranged in the corresponding microfluid 1, and the area where the microfluid is located refers to a space area configured to contain the microfluid 2 in the corresponding microfluid 1.
  • the structures of multiple microgrooves 1 may be the same or different.
  • a plurality of microgrooves 1 are uniformly or non-uniformly distributed on the carrier, which can be selected and set according to actual needs.
  • the multiple microgrooves 1 have the same structure and are distributed in an array on the carrier, that is, the spacing between every two adjacent microgrooves 1 is the same.
  • the plurality of microgrooves are unevenly distributed on the carrier, that is, the carrier has at least two regions, and the distribution density of the microgrooves 1 in each of the at least two regions is different.
  • the carrier has two first and second areas with the same area, and the number of microgrooves 1 distributed in the first area is different from the number of microgrooves 1 distributed in the second area.
  • the distance between two adjacent microgrooves 1 is related to the control accuracy of the light-emitting area in the optical switch. For example, in an area of equal area, if the distance between two adjacent microgrooves 1 is small, the distribution density of the microgrooves 1 in this area is relatively large, which can ensure that the control accuracy of the light-emitting area in the optical switch is high. .
  • the microfluid 2 in each of the above-mentioned microgrooves 1 is correspondingly provided with a driving electrode 3.
  • the microfluidic 2 is liquid crystal.
  • the driving electrodes 3 By providing voltages of different magnitudes by the driving electrodes 3, the light transmittance of the corresponding microfluid (ie, liquid crystal) can be controlled to change.
  • the microfluid 2 is an electrowetting microfluid.
  • the contact angle between the corresponding microfluid 2 (ie, electrowetting microfluid) and the bottom surface of the groove can be changed, so that the distribution state of the microfluid 2 in the corresponding micro groove 1 can be used to control the The light transmittance of the area where the microfluid 1 is located.
  • selecting liquid crystal or electrowetting microfluid as the microfluid 2 in the optical switch can obtain a faster response speed (for example, the response time ⁇ 30ms), thereby realizing the fast response of the optical switch, and also That is, the light switch is used to realize the regulation of light that is not observed by the human eye.
  • the material of the microfluid 2 is not limited to liquid crystal or electrowetting microfluid, and other materials with similar properties are also applicable to the present disclosure.
  • the optical switch further includes: a first substrate 41 and a second substrate 42 disposed opposite to each other, and a plurality of light shielding parts 5 disposed between the first substrate 41 and the second substrate 42.
  • the plurality of light-shielding parts 5 surround the plurality of microgrooves 1 in some of the above-mentioned embodiments on the first substrate 41 or the second substrate 42.
  • each light-shielding part 5 serves as a barrier wall corresponding to the microgrooves 1, and the shape, size and manufacturing material of each light-shielding part 5 can be selected and set according to actual needs.
  • the shading part 5 is a black matrix (Black Matrix, BM for short), which has a simple structure and is convenient to manufacture.
  • the multiple light shielding parts 5 can effectively control the thickness of the area where the corresponding microfluidics are located (ie, microfluidics).
  • the thickness of the area where each microfluid is located can also be controlled by the light shielding part 5 combined with spacers.
  • the optical switch further includes at least one supporting portion 6 disposed between the first substrate 41 and the second substrate 42.
  • the at least one supporting portion 6 is usually located at the edge of the first substrate 41 and is connected to the second substrate 42 to support and connect the first substrate 41 and the second substrate 42 to the box, thereby effectively controlling the first substrate 41 and the second substrate 42.
  • the thickness between the second substrates 42 that is, the interval between the first substrate 41 and the second substrate 42.
  • the shape and size of the support part 6 and its manufacturing materials can be selected and set according to actual requirements.
  • the support part 6 is a spacer (Photo Spacer, PS for short) made of a photoresist material.
  • the supporting portion 6 is made of the same black photoresist material as the black matrix.
  • each support part 6 is made of the same material as the aforementioned light shielding part 5, which is beneficial to simplify the manufacturing process, reduce the production cost, and effectively prevent the interference of ambient light.
  • the driving electrode 3 includes a first electrode 31 and a second electrode 32. There are many ways to set the first electrode 31 and the second electrode 32, which can be selected and set according to actual needs.
  • the first electrode 31 and the second electrode 32 are arranged opposite to each other, and a vertical electric field is formed between the first electrode 31 and the second electrode 32.
  • the microfluid 2 is located between the corresponding first electrode 31 and the second electrode 32.
  • the first electrode 31 provides a driving voltage signal
  • the second electrode 32 provides a common voltage signal
  • both the first electrode 31 and the second electrode 32 use surface electrodes.
  • the second electrode 32 provides a common voltage signal
  • the second electrode 32 of each driving electrode 3 is integrally connected.
  • the first electrode 31 and the second electrode 32 are insulated, and the first electrode 31 and the second electrode 32 are located on the same side of the corresponding microfluid 2, and the first electrode 31 and the second electrode An arc-shaped electric field is formed between the two electrodes 32.
  • the second electrode 32, the insulating medium 7 and the first electrode 31 are sequentially stacked and formed on the side of the first substrate 41 close to the microfluid 2.
  • the driving electrode 3 further includes at least one third electrode 33 on the inner side wall of each microgroove 1.
  • One of the first electrode 31 and the second electrode 32 of the same driving electrode 3 is electrically connected to the at least one third electrode 33, and the other is insulated from the at least one third electrode 33.
  • the third electrode 33 is electrically connected to the first electrode 31 and insulated from the second electrode 32; or, as shown in FIG. 4, the third electrode 33 It is electrically connected to the second electrode 32 and insulated from the first electrode 31; both are allowed. Some embodiments of the present disclosure do not limit this.
  • each microgroove 1 includes four inner side walls surrounding a rectangle, and at least one inner side wall is provided with the third electrode 33.
  • the third electrodes 33 are connected to each other and can be regarded as one electrode.
  • the driving electrode 3 is composed of a first electrode 31, a second electrode 32, and a third electrode 33, which can realize multi-directional electric field control in the microgroove 1, thereby facilitating the realization of the driving electrode 3 pairing the corresponding micro Accurate control of fluid 2.
  • the first electrode 31, the second electrode 32, and the third electrode 33 of the driving electrode 3 are all transparent electrodes.
  • the first electrode 31, the second electrode 32, and the third electrode 33 may be made of materials such as indium tin oxide (ITO) or metals (for example, molybdenum Mo, silver Ag).
  • ITO indium tin oxide
  • metals for example, molybdenum Mo, silver Ag.
  • the thickness of the first electrode 31, the second electrode 32, and the third electrode 33 can be selected and set according to actual requirements, and it is generally appropriate to meet the requirements of the applied voltage. In some examples, the thickness of the first electrode 31, the second electrode 32, or the third electrode 33 ranges from 50 nm to 1000 nm. Typically, the thickness of the first electrode 31, the second electrode 32 or the third electrode 33 ranges from
  • control of the optical switch in the off state, the on state, or the gate state is achieved, which is related to the material corresponding to the microfluid 2 in the plurality of microgrooves 1.
  • the microfluid 2 is an electrowetting microfluid 21.
  • the electrowetting microfluid 21 includes a light-transmitting microfluid 211 and a light-impermeable microfluid 212 that is incompatible with the light-transmitting microfluid 211, and the light-transmitting microfluid 211 is in contact with one of the light-impermeable microfluid 212 The angle can be changed under the driving of the corresponding driving electrode 3.
  • the contact angle of the light-transmitting microfluid 211 is changed under the driving of the corresponding driving electrode 3.
  • the opaque microfluid 212 is a conductive medium, the contact angle of the opaque microfluid 212 is changed under the driving of the corresponding driving electrode 3.
  • the opaque microfluid 212 is a non-conductive fluid medium, such as oil doped with a plurality of light-shielding particles.
  • the opaque microfluid 212 is a light-absorbing microfluid, and the light-shielding particles are made of melanin (including natural melanin, synthetic melanin, or oxidized melanin, etc.) materials.
  • the light-transmitting microfluid 211 is a conductive fluid medium, such as water.
  • the opaque microfluid 212 is a conductive fluid medium.
  • the opaque microfluid 212 includes water and a water-soluble melanin solvent.
  • water is a conductive substance and is not compatible with the light-transmitting microfluid 211.
  • the light-transmitting microfluid 211 is an organic substance that is insoluble in water and non-conductive, such as gasoline.
  • the weight percentage of the melanin solute in the opaque microfluid 212 ranges from 0.5 wt% to 5 wt%.
  • the material of the opaque microfluid 212 is not limited to this.
  • Other materials such as electronic ink (E-ink), carbon black, or black metal oxides that can appear opaque and exist in a fluid manner are used. It can be used as an opaque microfluid 212.
  • the light-transmitting microfluid 211 is matched and set according to the material of the opaque microfluid 212.
  • the materials and ratios of the transparent microfluid 211 and the opaque microfluid 212 in the electrowetting microfluidic 21 can be different, that is, they can be selected and set according to actual needs. Some disclosed embodiments do not limit this.
  • the microfluid 2 is the electrowetting microfluid 21
  • the light-transmitting microfluid 211 is water (conductive)
  • the light-impermeable microfluid 212 is doped with multiple
  • the oil (non-conductive) of melanin particles is taken as an example, and the use of the optical switch is explained as follows.
  • the surface energy of the light-transmitting microfluid 211 is the largest, and it has the largest contact angle with the bottom surface of the corresponding microgroove 1, that is, the light-transmitting microfluid 211
  • the bottom surface of the groove corresponding to the micro groove 1 cannot be wetted. Since the light-transmitting microfluid 211 is not compatible with the light-impermeable microfluid 212, the light-impermeable microfluid 212 in each microgroove 1 is incompatible with the light-opaque microfluid 212 and the light-opaque microfluid 212.
  • the light-transmitting microfluid 211 can be spread parallel to the bottom surface of the corresponding microgroove 1. In this way, the light incident to the optical switch can be absorbed by the opaque microfluid 212 in each microgroove 1, so that no light is emitted through the optical switch, that is, the optical switch is in an off state.
  • each driving electrode 3 after voltage is applied to each driving electrode 3, the voltage provided by each driving electrode 3 can reduce the surface energy of the corresponding light-transmitting microfluid 211.
  • the light-transmitting microfluid 211 has the smallest surface energy, it has the smallest contact angle with the groove bottom surface of the corresponding microgroove 1, that is, the light-transmitting microfluid 211 can wet the groove bottom surface of the corresponding microgroove 1.
  • the light-transmitting microfluid 211 and the light-impermeable microfluid 212 are not compatible, the light-transmitting microfluid 211 in each microgroove 1 can be parallel due to the rejection of the light-transmitting microfluid 211 and the light-impermeable microfluid 212 Spread out on the bottom surface of the corresponding microgroove 1, and push the opaque microfluid 212 to the inner groove wall on at least one side of the corresponding microgroove 1. In this way, the light incident to the optical switch can pass through the light-transmitting microfluid 211 in each microgroove 1 and be emitted, that is, the optical switch is in a conducting state.
  • the on-state or off-state of the above-mentioned optical switch is for the optical switch as a whole. That is to say, when the materials of the microfluidic 2 are the same, the same control conditions (such as driving voltage) are provided to the microfluidic 2 in each microgroove 1 in the optical switch, and the light transmittance of the area where each microfluid is located will be the same . Of course, if different control conditions are provided for each microfluid located in different areas of the optical switch, the light transmittance of the area where each microfluid is located will be different, so that the optical switch can achieve the selectivity of one or more different areas. Turn on or off, that is, the optical switch is in the gated state.
  • a target area is selected in the optical switch, and at least one micro-slot 1 is provided in the target area.
  • a voltage is input to at least one drive electrode 3 in the target area, and the at least one drive electrode 3 can be used to control the light transmittance of the area where the corresponding microfluid is located.
  • two target areas are selected in the optical switch, namely the first target area A1 and the second target area A2.
  • the light-transmitting microfluid 211 corresponding to each microgroove 1 in the two areas (A1 and A2) is parallel to The groove bottom surface of the corresponding micro groove 1 is spread, and the opaque micro fluid 212 in the same micro groove 1 is pushed onto the inner groove wall on at least one side of the corresponding micro groove 1.
  • the first target area A1 and the third target area A2 of the optical switch are light-transmissive, and other corresponding areas of the optical switch to which no voltage is applied are opaque, and the optical switch is in a gated state.
  • some embodiments of the present disclosure also provide a method for controlling an optical switch.
  • the control method of the optical switch includes: inputting a voltage to at least one driving electrode in the target area, and using the at least one driving electrode to control the light transmittance of the area where the corresponding microfluid is located. It can be seen that, in some embodiments of the present disclosure, accurate local dynamic dimming can be achieved by controlling the gating state of the optical switch.
  • inputting different voltages to the same driving electrode in the target area in 3 time divisions can control the corresponding microfluidic area to have different light transmittances, that is, the same area can have different light transmittances at different times. ⁇ Transmittance.
  • inputting different voltages to different driving electrodes 3 at the same time can also control the regions where the corresponding microfluid is located to have different light transmittances, that is, different regions at the same time have different light transmittances.
  • the light-transmitting microfluid 211 in each microgroove 1 will have different surface energies, and the opaque microfluid 212 will be in the microgroove 1.
  • the internal distribution is shown in FIG. 7, that is, under the control of the voltage applied to each driving electrode 3, the spreading area of each opaque microfluid 212 in the microgroove 1 in a direction parallel to the bottom surface of the groove is different. In this way, the area where each microfluid is located will have a different luminous flux (ie, light transmittance).
  • light transmission or opacity is not an absolute state, that is, light transmission is not light emission without light loss, and light opacity does not mean that there is no light signal.
  • light transmission means that its corresponding light transmittance is greater than or equal to 90%, and opaque means its corresponding light transmittance is less than or equal to 10%.
  • the microfluid 2 is liquid crystal 22.
  • the material of the liquid crystal 22 can be selected and set according to actual needs.
  • the liquid crystal 22 is a twisted nematic (TN) liquid crystal, which can ensure that the optical switch has a high response speed.
  • TN twisted nematic
  • the driving electrode 3 corresponding to the TN liquid crystal in each microgroove 1 includes a first electrode 31 and a second electrode 32 disposed on opposite sides of the TN liquid crystal, wherein the first electrode 31 is configured to provide a driving voltage to the corresponding TN liquid crystal Signal, the second electrode 32 is configured to provide a common voltage signal to the corresponding TN liquid crystal.
  • TN liquid crystal transmits light when it is not energized.
  • the third target area A3 is selected in the optical switch, and a voltage is input to each driving electrode 3 in the third target area A3, so that the liquid crystal molecules of the corresponding TN liquid crystal can form an electric field on the driving electrode 3 Under the action of deflection, the TN liquid crystal in the third target area A3 is converted from light-transmitting to opaque. In this way, the third target area A3 in the optical switch does not transmit light, and other corresponding areas in the optical switch to which no voltage is applied transmit light, and the optical switch is in a gated state.
  • the liquid crystal 22 is an In-Plane Switching IPS liquid crystal or an Advanced Super Dimension Switch (ADS) liquid crystal.
  • ADS Advanced Super Dimension Switch
  • the liquid crystal 22 is an IPS liquid crystal.
  • the driving electrode 3 corresponding to the IPS liquid crystal in each microgroove 1 includes a first electrode 31 and a second electrode 32 disposed on both sides of the IPS liquid crystal, wherein the first electrode 31 is configured to provide a driving voltage signal to the corresponding IPS liquid crystal , The second electrode 32 is configured to provide a common voltage signal to the corresponding IPS liquid crystal.
  • IPS liquid crystal does not transmit light when it is not energized.
  • the fourth target area A4 is selected in the optical switch, and a voltage is input to each driving electrode 3 in the fourth target area A4, so that the liquid crystal molecules of the corresponding IPS liquid crystal can form an electric field on the driving electrode 3 Under the action of deflection, the IPS liquid crystal in the fourth target area A4 is converted from opaque to transparent. In this way, the fourth target area A4 in the optical switch transmits light, and other corresponding areas in the optical switch to which no voltage is applied are opaque, and the optical switch is in a gated state.
  • each drive electrode 3 located in the corresponding target area in the optical switch is separately controlled, so that the light can be made according to the fitting shape of the area where the microfluid corresponding to each drive electrode 3 is located.
  • the switch has a certain light-emitting area shape in the gated state, such as a circle or a rectangle. The greater the distribution density of the microgrooves 1 in the optical switch, that is, the greater the number of corresponding drive electrodes 3 in the same area, the higher the forming accuracy of the light-emitting area shape of the optical switch that can be controlled by each drive electrode 3 , So as to achieve precise control of the light-emitting area in the optical switch.
  • the driving electrode 3 corresponding to the microfluid 2 in each microgroove 1 includes a first electrode 31 and a second electrode 32. Whether the first electrode 31 or the second electrode 32 corresponding to the different microfluidic 2 is electrically connected is related to the voltage signal provided by it.
  • the first electrode 31 provides a driving voltage signal
  • the second electrode 32 provides a common voltage signal.
  • the at least two first electrodes 31 are electrically connected, and the pattern shape formed by the electrical connection of the at least two first electrodes 31 can be used to ensure that the optical switch has a certain light-emitting area shape when a driving voltage signal is input thereto.
  • each second electrode 32 corresponding to the at least two first electrodes 31 may be electrically connected or not connected.
  • At least two first electrodes 31 are electrically connected to form a square electrode.
  • the light transmittance of the area where the square electrode is located can be controlled to Make the light-emitting area of the optical switch a square shape.
  • the first electrode 31 provides a common voltage signal
  • the second electrode 32 provides a driving voltage signal.
  • the at least two second electrodes 32 are electrically connected, and the pattern shape formed by the electrical connection of the at least two second electrodes 32 can be used to ensure that the optical switch has a certain light-emitting area shape when a driving voltage signal is input thereto.
  • each first electrode 31 corresponding to the at least two second electrodes 32 may be electrically connected or not connected.
  • At least two second electrodes 32 are electrically connected to form a ring electrode.
  • the light transmittance of the area where the ring electrode is located can be controlled to Make the light-emitting area of the optical switch a ring shape.
  • the plurality of microgrooves 1 are distributed in an array.
  • the optical switch further includes a plurality of first signal wires 81 and a plurality of second signal wires 82, wherein the plurality of first signal wires 81 and the plurality of second signal wires 82 are insulated and arranged crosswise .
  • the first electrodes 31 of at least one row are electrically connected to the same first signal line 81
  • the second electrodes 32 of at least one column are electrically connected to the same second signal line 82.
  • the voltage signal input to the corresponding first electrode 31 through the first signal line 81 and the voltage signal input to the corresponding second electrode 32 through the second signal line 82 can correspondingly control the first signal line 81 and the second signal in the optical switch Line 82 is the light transmittance of the corresponding area at the staggered node.
  • the shape of the light exit area of the optical switch can be effectively controlled, such as a square, a rectangle, or a circle.
  • the fifth target area A5 and the sixth target area A6 are selected in the optical switch.
  • the optical switch Using voltage signals input from each of the first signal lines 81 and each of the second signal lines 82 passing through the fifth target area A5, it is possible to control the optical switch to have a square light exit area with the same shape as the fifth target area A5.
  • the optical switch can be controlled to have a circular light-emitting area with the same shape as the sixth target area A6.
  • the circle shown in the sixth target area A6 is only a schematic illustration.
  • the corresponding area at the intersecting node of the first signal line 81 and the second signal line 82 can be regarded as a point. In this way, by controlling the light transmittance of the corresponding area in the optical switch, the circular light-emitting area can be obtained by fitting.
  • the optical switch is composed of a plurality of microgrooves 1, microfluidics 2 arranged in each microgrooves 1, and driving electrodes 3 arranged corresponding to the microfluidics 2 in each microgroove 1.
  • the structure is light and thin, and can be applied to display devices with gratings such as optical waveguide display devices to achieve ultra-light and thin display devices.
  • each drive electrode 3 in the optical switch that is, controlling the gate state of the optical switch, local dynamic dimming can be effectively realized.
  • the optical switch is applied to a display device with a grating or a display device using a small aperture imaging technology
  • the light diffracted by the grating or the light emitted from the small aperture is controlled by the optical switch, for example, the dynamic light of the optical switch Control the light transmission of the area that needs to emit light, and control the corresponding area where the interference light is opaque or effectively absorb the interference light, which can effectively reduce or eliminate the optical crosstalk caused by the Fraunhofer diffraction diffraction, thereby improving the display device The display effect.
  • optical switch can also be applied to other devices or equipment that require dimming, such as Augmented Reality (AR) and Virtual Reality (VR) display devices, smart windows, glass or glasses, etc. .
  • AR Augmented Reality
  • VR Virtual Reality
  • Some embodiments of the present disclosure also provide a display device applying the above-mentioned optical switch.
  • the display device includes an optical switch 100 and at least one set of gratings 12, and the optical switch 100 is located on the light exit side of the at least one set of gratings 12.
  • the light diffracted from the at least one set of gratings 12 can be accurately emitted under the gating control of the optical switch 100.
  • the corresponding area is opaque or effectively absorbs interference light), so that the light emitted by the optical switch 100 in the display device can be the light required for display (that is, the collimated diffracted light of the grating), thereby reducing or eliminating Infraun
  • the optical switch 100 in some of the above embodiments can be directly attached to the display as a finished product. The corresponding location in the device.
  • the display device is an optical waveguide display device.
  • the display device includes: an optical waveguide 10, a backlight 9 arranged on the light entrance side of the optical waveguide 10, at least one set of gratings 12 arranged on the light exit side of the optical waveguide 10, and at least one set of gratings 12 arranged on the light exit side of the at least one set of gratings 12 ⁇ 100 ⁇ 100 of the optical switch.
  • each group of gratings 12 includes a plurality of sub-gratings, where the number of sub-gratings and the distance between two adjacent sub-gratings can be selected and set according to actual requirements.
  • the optical waveguide 10 adopts a light guide plate with a refractive index of 1.52, and the backlight source 9 is located on the side of the light guide plate.
  • the display device further includes a reflective layer 13 provided on the side of the optical waveguide 10 opposite to the backlight 9.
  • the light incident from the backlight 9 in the light guide plate can propagate in the light guide plate in a manner of total reflection and be coupled out of the area where each group of gratings 12 is located.
  • the reflective layer 13 can reflect the light in the light guide plate to prevent the leakage of light signals and effectively improve the light energy utilization rate of the backlight 9.
  • the display device further includes a flat layer 11 disposed on a side of the at least one set of gratings 12 facing away from the optical waveguide 10.
  • the first substrate 41 in the optical switch 100 is attached to the surface of the flat layer 11 facing away from the at least one set of gratings 12.
  • the optical signals coupled from the area where each group of gratings 12 are located can be collimated and emitted under the control of the optical switch 100.
  • the microfluid 2 uses an electrowetting microfluid 21, the light-transmitting microfluid 211 in the electrowetting microfluid 21 is water (conductive), and the light-impermeable microfluid 212 is doped with much Oil of two melanin particles (non-conductive).
  • the first electrode 31 of the driving electrode 3 provides a driving voltage signal, and the second electrode 32 provides a common voltage signal. In this case, by inputting different voltages to different first electrodes 31, different grayscale displays can be obtained.
  • the driving voltage input to the first electrode 31 is the threshold voltage Vth, and the area where the microfluid 2 corresponding to the first electrode 31 is located will have the largest light transmittance and can correspondingly display the largest gray scale (for example, gray scale). Order 255).
  • the driving voltage input to the first electrode 31 is 0V (that is, no voltage is applied), the area where the microfluid 2 corresponding to the first electrode 31 is located is opaque, and can correspond to the smallest gray scale (for example, gray scale 0).
  • the driving voltage input to the first electrode 31 is between 0V and Vth, and the light transmittance of the area where the microfluid 2 corresponding to the first electrode 31 is located is between the maximum and the minimum, which can correspond to the display at the maximum gray scale.
  • the optical switch 100 in some of the foregoing embodiments may be integrated in On the display substrate of the display device, the ultra-light and thin display device can be realized.
  • part of the structure in the display device is corresponding to the part of the structure in the display device shown in FIG. 14.
  • the parts with the same structure of the two will not be described in detail here, and only the differences between the two will be described below.
  • the backlight source 9 includes a light bar 91 and a reflector 92, wherein the light bar 91 is disposed in the reflector 92, and the light emitted by the light bar 91 can be reflected by the reflector 92 It is incident into the corresponding optical waveguide 10 under the action.
  • the light bar 91 is a light-emitting diode (Light-Emitting Diode, LED for short) light bar.
  • the multiple microgrooves 1 in the optical switch 100 can be directly formed in or on the surface of the flat layer 11, that is, the flat layer 11 is used as the surface of the microgrooves 1 in the optical switch.
  • the carrier integrates the optical switch 100 on the display substrate of the display device to further reduce the thickness of the display device.
  • the display device is an AR and VR display device, which can realize switching display between AR and VR.
  • the display device includes an optical switch 100 and an AR display screen 14, and the optical switch 100 is located on the ambient light incident side of the AR display screen 14.
  • the AR display screen 14 includes an optical waveguide display substrate 140 and a display portion 141 located on the light-incident side of the display light of the optical waveguide display substrate 140.
  • the optical waveguide display substrate 140 is provided with an in-coupling grating 142 and an out-coupling grating 143.
  • the edge of the optical switch 100 is adhered to the AR display screen 14 through an adhesive layer 15, and an air barrier 16 is provided between the optical switch 100 and the AR display screen 14, which can reflect the refraction of the first substrate 41 in the optical switch 100.
  • the air barrier 16 is used to prevent the optical switch 100 from interfering with the total reflection of the display optical signal in the optical waveguide display substrate 140.
  • the display light entrance side and the ambient light entrance side are respectively located on both sides of the optical waveguide display substrate 140, and the display portion 141 is a display light source.
  • the optical switch 100 When the display device is used to implement AR display, as shown in FIG. 16, the optical switch 100 is in an on state or a gated state, and the ambient light signal can pass through the light-transmitting area in the optical switch 100 and enter the AR display screen 14. At this time, after the display light signal emitted by the display light source enters the optical waveguide display substrate 140 through the coupling grating 142, it can propagate in the optical waveguide display substrate 140 in a manner of total reflection. After the ambient light signal passes through the light-transmitting area in the optical switch 100 and enters the optical waveguide display substrate 140, it can be combined with the display light signal and emitted to the human eye through the coupling grating 143, so that the human eye can see the combination of virtual and real. AR image.
  • the area of the optical switch 100 that is directly opposite to the peripheral area of the coupling-in grating 142 is opaque, and the area of the optical switch 100 that is directly opposite to the peripheral area of the coupling-out grating 143 is controlled to be opaque.
  • the area is opaque, and the boundary between the light-transmitting area and the opaque area in the optical switch 100 can also be used to effectively reduce the undesirable crosstalk between the ambient light signal and the diffracted light of the grating.
  • the optical switch 100 When the display device is used to implement VR display, as shown in FIG. 17, the optical switch 100 is in an off state, and ambient light cannot pass through the optical switch 100 and enter the AR display screen 14. After the display light signal emitted by the display light source 141 enters the optical waveguide display substrate 140 through the coupling grating 142, it can propagate in the optical waveguide display substrate 140 in a manner of total reflection, and then exit to the human eye through the coupling grating 143 , For the human eye to see the virtual VR image.
  • the display light entrance side and the ambient light entrance side are respectively located on the same side of the optical waveguide display substrate 140, and the display portion 141 includes the display light signal incident direction arranged in sequence.
  • the optical switch 100 When the display device is used to implement AR display, as shown in FIG. 18, the optical switch 100 is in the on state or the gated state, and both the display light signal and the ambient light signal can pass through the light-transmitting area in the optical switch 100 and enter the AR.
  • the display light signal emitted by the micro display screen 1411 is filtered by the color filter part 1412 and the light collimation part 1413 is light collimated, passes through the light-transmitting area in the optical switch 100 and passes through the coupling grating 142 It enters into the optical waveguide display substrate 140, and then propagates in the optical waveguide display substrate 140 in a manner of total reflection.
  • the ambient light signal After the ambient light signal passes through the light-transmitting area in the optical switch 100 and enters the optical waveguide display substrate 140, it can be combined with the display light signal and emitted to the human eye through the coupling grating 143, so that the human eye can see the combination of virtual and real. AR image.
  • the area of the optical switch 100 that is directly opposite to the peripheral area of the coupling-in grating 142 is opaque, and the area of the optical switch 100 that is directly opposite to the peripheral area of the coupling-out grating 143 is controlled to be opaque.
  • the area is opaque, and the boundary between the light-transmitting area and the opaque area in the optical switch 100 can also be used to effectively reduce the undesirable crosstalk between the ambient light signal and the diffracted light of the grating.
  • the area of the optical switch 100 that is directly opposite to the coupling grating 142 is controlled to transmit light, and the other areas are controlled to not transmit light. In this way, the ambient light signal cannot pass through the optical switch 100 and enter the AR display screen 14.
  • the display light signal emitted by the micro display screen 1411 passes through the light-transmitting area in the optical switch 100 and enters the light through the coupling grating 142.
  • the waveguide display substrate 140 then propagates in the optical waveguide display substrate 140 in the manner of total reflection, and finally exits to the human eye through the coupling grating 143 so that the human eye can view the virtual VR image.
  • the optical switch 100 is set on the ambient light incident side of the AR display screen 14, and the display device can be switched between AR display and VR display by controlling the optical switch 100, and the operation is simple Convenience.
  • the optical switch can be dynamically adjusted to reduce the adverse interference caused by grating diffraction or pinhole diffraction in the AR display screen 14, so as to ensure that the AR display screen 14 displays a clear and accurate center image (that is, removing grating diffraction or pinhole diffraction). Picture after diffraction interference).
  • the light effects of the coupled light signals within the observable range of the human eye through the above optical switch are basically the same, so that the human eye can see a continuous picture with the same brightness.
  • the display device further includes a human eye tracking sensor located on the display light emitting side of the AR display screen 14.
  • the eye tracking sensor is used to track the position observed by the human eye.
  • the light switch and the on or off state of the coupled-in grating and the coupled-out grating in the AR display screen 14 can be dynamically adjusted, thereby taking into account both The maximum light effect (convenient to see the clear and high-contrast picture in the outdoor environment) and uniform light (to ensure uniform brightness of the entire picture) display effect.
  • the structure and use of the above-mentioned eye tracking sensor can be selected and set according to actual needs.
  • the size of the area of the coupled-in grating and the coupled-out grating in the AR display screen 14 and the setting position thereof can also be selected and set according to actual needs.
  • the drive signal of the dynamic control optical switch and the drive signal of the corresponding display light signal in the AR display device are synchronous signals, that is, the size of the light signal coupling area and the grating can be adjusted by the same controller or processor.
  • the diffraction intensity and the diffraction range of the grating are pre-judged, so as to output the drive signal in real time to dynamically adjust the optical switch, thereby using the optical switch to reduce the light crosstalk and interference caused by the diffraction of the grating.
  • FIGS. 1 to 19 are only used to indicate the transmission direction of the light, and are not limited to the actual transmission path of the light.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种光开关,包括:多个微槽;设置于所述多个微槽中的每个微槽内的微流体;以及,与所述每个微槽内的微流体对应设置的驱动电极。所述驱动电极配置为向对应的所述微流体提供电压,以控制所述微流体所在区域的光透过率。

Description

光开关及其控制方法、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种光开关及其控制方法、显示装置。
背景技术
在包含光波导的显示装置中,其光源的光能够通过光栅耦入或耦出对应的光波导,以完成显示装置的显示。
发明内容
一方面,提供一种光开关。所述光开关包括:多个微槽、设置于所述多个微槽中的每个微槽内的微流体、以及与所述每个微槽内的微流体对应设置的驱动电极。所述驱动电极配置为向对应的所述微流体提供电压,以控制所述微流体所在区域的光透过率。
在一些实施例中,所述微流体包括液晶或电润湿微流体。
在一些实施例中,所述驱动电极包括相对设置的第一电极和第二电极。所述微流体位于对应的所述第一电极和所述第二电极之间。
在一些实施例中,所述驱动电极还包括位于所述每个微槽的内侧壁上的至少一个第三电极。所述第一电极和所述第二电极中的一者与所述至少一个第三电极电连接,且另一者与所述至少一个第三电极绝缘。
在一些实施例中,所述驱动电极包括位于同一平面且间隔设置的第一电极和第二电极。所述微流体位于对应的所述第一电极和所述第二电极的同一侧。
在一些实施例中,至少两个所述第一电极电连接;和/或,至少两个所述第二电极电连接。
在一些实施例中,所述光开关还包括多条第一信号线和多条第二信号线。至少一行的所述第一电极电连接同一条第一信号线,至少一列的所述第二电极电连接同一条第二信号线。
在一些实施例中,所述第一电极和所述第二电极包括透光电极。
在一些实施例中,所述微流体为电润湿微流体。所述电润湿微流体包括透光微流体、以及与所述透光微流体不相溶的不透光微流体。所述透光 微流体与所述不透光微流体中的一者的接触角能够在对应的所述驱动电极的驱动下改变。
在一些实施例中,所述不透光微流体包括吸光型微流体。
在一些实施例中,所述光开关还包括:相对设置的第一基板和第二基板、以及设置于所述第一基板和所述第二基板之间的多个遮光部。所述多个遮光部在所述第一基板或所述第二基板上围成所述多个微槽。
在一些实施例中,所述光开关还包括:设置于所述第一基板和所述第二基板之间的至少一个隔垫物。
另一方面,提供一种光开关的控制方法。所述光开关的控制方法,包括:向目标区域内的至少一个驱动电极输入电压,利用所述至少一个驱动电极控制对应的所述微流体所在区域的光透过率。
在一些实施例中,所述光开关的控制方法,还包括:向所述目标区域内的同一个驱动电极分时输入不同的电压,或在同一时刻向不同的驱动电极分别输入不同的电压,以控制对应的所述微流体所在区域具有不同的光透过率。
又一方面,提供一种显示装置。所述显示装置包括如上任一些实施例所述的光开关。
在一些实施例中,所述显示装置还包括:至少一组光栅。所述光开关位于所述至少一组光栅的出光侧。
在一些实施例中,所述显示装置还包括AR显示屏。所述光开关位于所述AR显示屏的环境光入光侧。
附图说明
为了更清楚地说明本公开一些实施例中的技术方案,下面将对一些实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据本公开一些实施例中的一种光开关的示意图;
图2为根据本公开一些实施例中的另一种光开关的示意图;
图3为根据本公开一些实施例中的又一种光开关的示意图;
图4为根据本公开一些实施例中的又一种光开关的示意图;
图5为图2所示的光开关在导通状态的示意图;
图6为图2所示的光开关在一种选通状态的示意图;
图7为图2所示的光开关在另一种选通状态的示意图;
图8为根据本公开一些实施例中的又一种光开关的示意图;
图9为根据本公开一些实施例中的又一种光开关的示意图;
图10为根据本公开一些实施例中的又一种光开关的示意图;
图11为根据本公开一些实施例中的一种驱动电极的示意图;
图12为根据本公开一些实施例中的另一种驱动电极的示意图;
图13为根据本公开一些实施例中的又一种驱动电极的示意图;
图14为根据本公开一些实施例中的一种显示装置的示意图;
图15为根据本公开一些实施例中的另一种显示装置的示意图;
图16为根据本公开一些实施例中的另一种显示装置的示意图;
图17为图16所示的一种显示装置在VR状态下的示意图;
图18为根据本公开一些实施例中的另一种显示装置的示意图;
图19为图18所示的一种显示装置在VR状态下的示意图。
具体实施方式
下面将结合本公开一些实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的一些实施例,本领域普通技术人员所能获得的所有其他实施例,都属于本公开保护的范围。
在光学领域,夫琅禾费衍射(又称远场衍射)属于一种波动衍射,通常在场波通过圆孔或狭缝时发生。这也就导致,在包含光波导的显示装置中,若光栅在其显示面上的正投影面积较小,那么光线通过光栅耦入或耦出对应的光波导时,容易因为夫琅禾费衍射的产生而出现光串扰,也即对显示装置的显示效果造成不良影响,例如导致显示装置的显示画面亮度不均且较为模糊、或显示失真等。此外,在采用了小孔成像技术的显示装置中,光线通过小孔出射时也容易产生夫琅禾费衍射,从而降低显示装置的显示效果。
基于此,本公开一些实施例提供了一种光开关。如图1所示,所述光开关包括:多个微槽1、设置于该多个微槽1中的每个微槽1内的微流体2、以及与每个微槽1内的微流体2对应设置的驱动电极3,该驱动电极3配置为向对应的微流体2提供电压,以控制所述微流体所在区域的光透过率。
上述微槽1通常形成在对应的载体上。该载体例如为玻璃基板,或者为采用透光树脂或透光聚酯化合物等制作形成的透光基板。此处,载体的 规格(例如透光基板的厚度),可以根据实际需求选择设置,例如综合考虑光开关的设计条件或工艺条件等确定。可选的,透光基板的上下表面具有较好的平整度及平行度。
上述多个微槽1采用刻蚀的方式形成在对应的载体中,或在对应的载体上形成多个挡墙,以由多个挡墙围截构成各微槽1,均是允许的。本公开一些实施例对微槽1的形成方式不做限定。
此外,微槽1的槽口形状,可以根据实际需求选择设置,例如为矩形、菱形、圆形或其它形状。
需要补充的是,上述微槽1的尺寸量级为微米(μm)级,也即微槽1的尺寸(例如槽深、槽宽等)采用微米作为最小单位进行计量。示例的,微槽1的槽深的取值范围为2μm-20μm。
微流体2设置于对应的微槽1中,微流体所在区域是指:对应微槽1内配置为容纳该微流体2的空间区域。在同一个光开关中,多个微槽1的结构相同或不同,均可。并且,多个微槽1在载体上均匀分布或非均匀分布,根据实际需求选择设置便可。
在一些示例中,多个微槽1的结构相同,并在载体上呈阵列状分布,也即每相邻的两个微槽1之间的间距相同。在另一些示例中,多个微槽在载体上不均匀分布,也即载体具有至少两个区域,且该至少两个区域中各区域内微槽1的分布密度不同。例如,载体具有两个面积相同的第一区域和第二区域,第一区域内分布的微槽1数量和第二区域内分布的微槽1数量不同。
此处,相邻两个微槽1之间的间距,与光开关中出光区的控制精度相关。示例的,在等面积的区域内,若相邻两个微槽1之间的间距较小,则该区域内微槽1的分布密度较大,可以确保光开关中出光区的控制精度较高。
上述每个微槽1内的微流体2对应设置有驱动电极3。在一些示例中,微流体2为液晶。通过驱动电极3提供不同大小的电压,能够控制对应的微流体(即液晶)自身的光透过率发生变化。在另一些示例中,微流体2为电润湿微流体。通过驱动电极3提供不同大小的电压,能够使得对应的微流体2(即电润湿微流体)与槽底面的接触角发生变化,从而利用微流体2在对应微槽1内的分布状态控制该微流体1所在区域的光透过率。在本公开一些实施例中,选用液晶或电润湿微流体作为光开关中的微流体2,能够获得较快 的响应速度(例如其响应时间<30ms),从而实现光开关的快速响应,也即利用光开关实现不被人眼观察到的光的调控。
当然,微流体2的材料并不仅限于液晶或电润湿微流体,其他具有类似性能的材料也均适用本公开。
在一些实施例中,请参阅图1,光开关还包括:相对设置的第一基板41和第二基板42,以及设置于第一基板41和第二基板42之间的多个遮光部5。该多个遮光部5在第一基板41或第二基板42上围成上述一些实施例中的多个微槽1。此处,各遮光部5作为对应微槽1的挡墙,各遮光部5的形状、尺寸及其制作材料可以根据实际需求选择设置。示例的,遮光部5为黑矩阵(Black Matrix,简称BM),其结构简单,制作方便。
在将第一基板41和第二基板42对盒,并灌入微流体2至对应的微槽1内后,通过该多个遮光部5,能够有效控制对应微流体所在区域的厚度(即微流体所在区域沿垂直于第一基板41的方向上的尺寸),并避免相邻两个微槽1之间的光线互相干扰,以利用光开关实现局域动态调光,以及有效阻隔环境光和其他杂散光的不良影响。此外,每一微流体所在区域的厚度还可以采用遮光部5结合隔垫物的方式予以控制。
在一些实施例中,请继续参阅图1,光开关还包括设置于第一基板41和第二基板42之间的至少一个支撑部6。该至少一个支撑部6通常位于第一基板41的边缘处,并与第二基板42相连,以对第一基板41和第二基板42的对盒进行支撑连接,从而有效控制第一基板41和第二基板42之间的厚度(即第一基板41和第二基板42之间的间隔)。此处,支撑部6的形状、尺寸及其制作材料可以根据实际需求选择设置,例如支撑部6为采用光阻材料制作形成的隔垫物(Photo Spacer,简称PS)。
示例的,支撑部6采用与黑矩阵相同的黑色光阻材料制作形成。这样各支撑部6与前述的遮光部5的制作材料相同,有利于简化制作工艺,降低生产成本,并有效防止环境光的干扰。
在一些实施例中,驱动电极3包括第一电极31和第二电极32。第一电极31和第二电极32的设置方式有多种,根据实际需求选择设置即可。
在一种示例中,如图8所示,第一电极31和第二电极32相对设置,第一电极31和第二电极32之间形成垂直电场。微流体2位于对应的第一电极31和第二电极32之间。可选的,第一电极31提供驱动电压信号,第二电极32提供公共电压信号,第一电极31和第二电极32均采用面电极。在第二电极 32提供公共电压信号的的情况下,各驱动电极3的第二电极32一体连接。
在另一种示例中,如图9所示,第一电极31和第二电极32绝缘设置,且第一电极31和第二电极32位于对应微流体2的同一侧,第一电极31和第二电极32之间形成弧形电场。示例的,第二电极32、绝缘介质7以及第一电极31依次层叠形成在第一基板41的靠近微流体2的一侧。
在又一种示例中,如图3和图4所示,驱动电极3还包括位于每个微槽1的内侧壁上的至少一个第三电极33。同一个驱动电极3的第一电极31和第二电极32中的一者与所述至少一个第三电极33电连接,且另一者与所述至少一个第三电极33绝缘。
可选的,在同一个驱动电极3中,如图3所示,第三电极33与第一电极31电连接,且与第二电极32绝缘;或者,如图4所示,第三电极33与第二电极32电连接,且与第一电极31绝缘;均是允许的。本公开一些实施例对此不做限定。
此外,第三电极33的数量及其在微槽1的内侧壁上的设置位置,可以根据实际需求选择设置。示例的,每个微槽1包括围绕呈矩形的四个内侧壁,至少一个内侧壁上设有所述第三电极33。在每个内侧壁上均设置有第三电极33的情况下,各第三电极33相互连接,可视为是一个电极。
本公开一些实施例中的驱动电极3由第一电极31、第二电极32和第三电极33构成,可以在微槽1内实现多方位的电场控制,从而有利于实现驱动电极3对对应微流体2的精准控制。
在一些示例中,驱动电极3的第一电极31、第二电极32和第三电极33均为透明电极。第一电极31、第二电极32和第三电极33可以采用氧化铟锡(Indium tin oxide,简称ITO)或金属(例如钼Mo、银Ag)等材料制作形成。此外,第一电极31、第二电极32和第三电极33的厚度可以根据实际需求选择设置,通常以能满足其施加电压的需求为宜。在一些示例中,第一电极31、第二电极32或第三电极33的厚度的取值范围为50nm-1000nm。典型的,第一电极31、第二电极32或第三电极33的厚度的取值范围为
70nm-300nm。
在上述一些实施例中,光开关在关断状态、导通状态或选通状态的控制实现,与对应多个微槽1内微流体2的材料相关。
在一些实施例中,如图2所示,微流体2为电润湿微流体21。所述电润湿微流体21包括透光微流体211以及与透光微流体211不相溶的不透光微流 体212,透光微流体211与不透光微流体212中的一者的接触角能够在对应的驱动电极3的驱动下改变。
此处,在透光微流体211为导电介质的情况下,透光微流体211的接触角在对应的驱动电极3的驱动下改变。在不透光微流体212为导电介质的情况下,不透光微流体212的接触角在对应的驱动电极3的驱动下改变。
在一些示例中,不透光微流体212为不导电的流体介质,例如为掺杂有多个遮光粒子的油。可选的,不透光微流体212为吸光型微流体,遮光粒子采用黑色素(包括天然黑色素、合成黑色素或者氧化黑色素等)材料制作形成。相应的,透光微流体211为导电的流体介质,例如水。
在又一些示例中,不透光微流体212为导电的流体介质,例如该不透光微流体212包括水以及溶于水的黑色素溶剂。此处,水为导电物质,且与透光微流体211不相溶。透光微流体211为不溶于水且不导电的有机物质,例如汽油等。
此外,可选的,不透光微流体212中黑色素溶质的重量百分比的取值范围在0.5wt%~5wt%。
当然,不透光微流体212的材料并不仅限于此,其他采用了诸如电子墨水(E-ink)、炭黑、或黑色金属氧化物等能够呈现不透光并以流体方式存在的材料,均可以用作不透光微流体212。相应的,透光微流体211根据不透光微流体212的材料匹配设置。
需要说明的是,根据光开关的不同应用,电润湿微流体21中透光微流体211和不透光微流体212的材料及其配比可以不同,也即能够根据实际需求选择设置,本公开一些实施例对此不做限定。
在微流体2为电润湿微流体21的情况下,请参阅图2以及图5~图7,以透光微流体211为水(导电),不透光微流体212为掺杂有多个黑色素粒子的油(不导电)为例,对光开关的使用进行说明如下。
请参阅图2,在未向各驱动电极3施加电压时,透光微流体211的表面能最大,其与对应微槽1的槽底面之间具有最大的接触角,也即透光微流体211不能润湿对应微槽1的槽底面。由于透光微流体211与不透光微流体212不相溶,所以在透光微流体211与不透光微流体212的排异作用下,各微槽1内的不透光微流体212与透光微流体211能够平行于对应微槽1的槽底面铺开。如此,入射至光开关的光线能够被各微槽1内的不透光微流体212吸收,从而无光线穿过光开关射出,也即光开关呈关断状态。
请参阅图5,在向各驱动电极3施加电压之后,每一驱动电极3提供的电压能够使得对应的透光微流体211的表面能减小。当透光微流体211具有最小的表面能时,其与对应微槽1的槽底面之间具有最小的接触角,也即透光微流体211能润湿对应微槽1的槽底面。由于透光微流体211与不透光微流体212不相溶,所以在透光微流体211与不透光微流体212的排异作用下,各微槽1内的透光微流体211能够平行于对应微槽1的槽底面铺开,并将不透光微流体212推挤至对应微槽1的至少一侧的内槽壁上。如此,入射至光开关的光线能够穿过各微槽1内的透光微流体211并射出,也即光开关呈导通状态。
上述光开关的导通状态或关断状态是针对光开关整体而言的。也就是说,在微流体2材料相同的情况下,向光开关中各微槽1内的微流体2提供相同的控制条件(例如驱动电压),各微流体所在区域的光透过率将相同。当然,若对光开关中位于不同区域的各微流体分别提供不同的控制条件,各微流体所在区域的光透过率将有所不同,这样光开关能够实现一个或多个不同区域的选择性导通或关断,也即光开关呈选通状态。
请参阅图6,在光开关中选定目标区域,该目标区域内设有至少一个微槽1。向目标区域内的至少一个驱动电极3输入电压,能够利用该至少一个驱动电极3控制对应微流体所在区域的光透过率。例如,在光开关中选定两个目标区域,分别为第一目标区域A1和第二目标区域A2。在向第一目标区域A1和第二目标区域A2内各微槽1对应的驱动电极3施加电压之后,该两个区域(A1和A2)内各微槽1对应的透光微流体211平行于对应微槽1的槽底面铺开,并将同一微槽1内的不透光微流体212推挤至对应微槽1的至少一侧的内槽壁上。如此,光开关中的第一目标区域A1和第三目标区域A2透光,光开关中其他未施加电压的对应的区域不透光,光开关呈选通状态。
由此,本公开一些实施例还提供了一种光开关的控制方法。所述光开关的控制方法,包括:向目标区域内的至少一个驱动电极输入电压,利用所述至少一个驱动电极控制对应的微流体所在区域的光透过率。可见,在本公开一些实施例中,通过对光开关选通状态的控制,能够实现精确的局域动态调光。
此外,在一些示例中,向目标区域内的同一个驱动电极3分时输入不同的电压,能够控制对应的微流体所在区域具有不同的光透过率,也即同一区域在不同时刻可以具有不同的光透过率。
当然,在同一时刻向不同的驱动电极3分别输入不同的电压,也能够控 制对应的微流体所在区域具有不同的光透过率,也即在同一时刻的不同区域具有不同的光透过率。示例的,在同一时刻向不同的驱动电极3输入不同的电压,对应各微槽1内的透光微流体211将分别具有不同的表面能,并使得各不透光微流体212在微槽1内的分布如图7所示,也即在各驱动电极3施加电压的控制下,各不透光微流体212在微槽1内沿平行于槽底面方向上的铺开面积不同。这样各微流体所在区域将具有不同的光通量(即光透过率)。
可以理解的是,在上述一些实施例的描述中,透光或不透光并非为绝对状态,也即透光并非无光损的出光,不透光也并非无一点光信号。可选的,透光是指其对应的光透过率大于或等于90%,不透光是指其对应的光透过率小于或等于10%。
在另一些实施例中,微流体2为液晶22。液晶22的材料可以根据实际需求选择设置。
在一些示例中,如图8所示,液晶22为扭曲向列型(Twisted Nematic,简称TN)液晶,能够确保光开关具有较高的响应速度。
每个微槽1内的TN液晶对应的驱动电极3包括相对设置于TN液晶的两侧的第一电极31和第二电极32,其中,第一电极31配置为向对应的TN液晶提供驱动电压信号,第二电极32配置为向对应的TN液晶提供公共电压信号。TN液晶在未通电的状态下透光。请参阅图9,在光开关中选定第三目标区域A3,并向第三目标区域A3内的各驱动电极3输入电压,这样对应的TN液晶的液晶分子能够在驱动电极3所形成的电场作用下偏转,使得第三目标区域A3内的TN液晶从透光转换为不透光。如此,光开关中的第三目标区域A3不透光,光开关中其他未施加电压的对应的区域透光,光开关呈选通状态。
在另一些示例中,如图10所示,液晶22为平面转换型(In-Plane Switching IPS)液晶或高级超维场转换型(Advanced Super Dimension Switch,简称ADS)液晶。
示例的,液晶22为IPS液晶。每个微槽1内的IPS液晶对应的驱动电极3包括设置于IPS液晶的两侧的第一电极31和第二电极32,其中,第一电极31配置为向对应的IPS液晶提供驱动电压信号,第二电极32配置为向对应的IPS液晶提供公共电压信号。IPS液晶在未通电的状态下不透光。请参阅图10,在光开关中选定第四目标区域A4,并向第四目标区域A4内的各驱动电极3输入电压,这样对应的IPS液晶的液晶分子能够在驱动电极3所形成的电 场作用下偏转,使得第四目标区域A4内的IPS液晶从不透光转换为透光。如此,光开关中的第四目标区域A4透光,光开关中其他未施加电压的对应的区域不透光,光开关呈选通状态。
在一些实施例中,根据光线出射形状的需求,分别控制光开关中位于对应目标区域内的各驱动电极3,便能够根据各驱动电极3对应的微流体所在区域的拟合形状,使得该光开关在选通状态下具有确定的出光区形状,例如圆形或矩形等。光开关中微槽1的分布密度越大,即在等面积区域内对应驱动电极3的数量越多,那么通过各驱动电极3所能控制的光开关的出光区形状的成形精度也就越高,从而能够实现光开关中出光区的精确控制。
在另一些实施例中,每个微槽1内微流体2对应的驱动电极3包括第一电极31和第二电极32。不同微流体2对应的第一电极31或第二电极32是否电连接,与其提供的电压信号相关。
在一些示例中,第一电极31提供驱动电压信号,第二电极32提供公共电压信号。至少两个第一电极31电连接,能够利用该至少两个第一电极31因电连接构成的图案形状,在向其输入一个驱动电压信号时便确保光开关具有确定的一出光区形状。相应的,与所述至少两个第一电极31对应的各第二电极32电连接或不连接,均可。
示例的,如图11所示,至少两个第一电极31电连接形成方形电极,通过向该方形电极施加一驱动电压信号,便可以对该方形电极所在区域的光透过率进行控制,以使得光开关的出光区呈方形。
在另一些示例中,第一电极31提供公共电压信号,第二电极32提供驱动电压信号。至少两个第二电极32电连接,能够利用该至少两个第二电极32电连接构成的图案形状,在向其输入一个驱动电压信号时便确保光开关具有一确定的出光区形状。相应的,与所述至少两个第二电极32对应的各第一电极31之间电连接或不连接,均可。
示例的,如图12所示,至少两个第二电极32电连接形成环形电极,通过向该环形电极施加一驱动电压信号,便可以对该环形电极所在区域的光透过率进行控制,以使得光开关的出光区呈环形。
在又一些实施例中,多个微槽1呈阵列状分布。请参阅图13,光开关还包括多条第一信号线81和多条第二信号线82,其中,所述多条第一信号线81和所述多条第二信号线82绝缘且交叉设置。至少一行的第一电极31电连 接同一条第一信号线81,至少一列的第二电极32电连接同一条第二信号线82。
通过第一信号线81向对应第一电极31输入的电压信号,以及第二信号线82向对应第二电极32输入的电压信号,能够对应控制光开关中该第一信号线81与第二信号线82交错节点处对应区域的光透过率。这样通过多条第一信号线81和多条第二信号线82的交错控制,能够有效控制光开关的出光区形状,例如为方形、或矩形、或圆形等。
示例的,请参阅图13,在光开关中选定第五目标区域A5和第六目标区域A6。利用穿过第五目标区域A5的各第一信号线81和各第二信号线82输入的电压信号,能够控制光开关具有与第五目标区域A5的形状相同的方形出光区。利用穿过第六目标区域A6的各第一信号线81和各第二信号线82输入的电压信号,能够控制光开关具有与第六目标区域A6的形状相同的圆形出光区。
此处,第六目标区域A6所示的圆形仅是示意性的说明。在第一信号线81和第二信号线82的分布密度无限小的情况下,第一信号线81与第二信号线82交错节点处的对应区域可视为一个点。如此,通过控制光开关内对应区域的光透过率,即可拟合获取到圆形出光区。
在本公开一些实施例中,光开关由多个微槽1、设置于每个微槽1内的微流体2、以及与各微槽1内的微流体2对应设置的驱动电极3构成,其结构轻薄,能够应用于光波导显示装置等具有光栅的显示装置中,以实现显示装置的超轻薄化。并且,通过对光开关中各驱动电极3的独立控制,也即对光开关选通状态的控制,能够有效实现局域的动态调光。如此,在将光开关应用于具有光栅的显示装置或采用了小孔成像技术的显示装置中后,利用光开关对光栅衍射出的光线或从小孔出射的光线进行调控,例如利用光开关动态控制需要出光的区域透光,并控制干扰光所在的对应区域不透光或对干扰光进行有效吸收,能够有效减小或消除因夫琅禾费衍射衍射带来的光串扰,从而提升显示装置的显示效果。
此外,上述的光开关还能应用于其他需要调光的装置或设备中,例如增强现实(Augmented Reality,简称AR)及虚拟现实(Virtual Reality,简称VR)显示装置、智能窗户、玻璃或眼镜等。
本公开一些实施例还提供了一种应用有上述光开关的显示装置。
在一些实施例中,请参阅图14和图15,该显示装置包括光开关100以及 至少一组光栅12,光开关100位于所述至少一组光栅12的出光侧。这样从该至少一组光栅12衍射出的光线,可以在光开关100的选通控制下实现精准出光。例如,控制光开关中与该至少一组光栅12正对的区域透光,并控制光开关中与该至少一组光栅12正对区域以外的其他区域不透光(也即控制干扰光所在的对应区域不透光或对干扰光进行有效吸收),可以使得显示装置中通过光开关100出射的光线为显示所需的光线(即光栅的准直衍射光),从而减小或消除因夫琅禾费衍射带来的光串扰影响。
在一些示例中,若显示装置的尺寸及重量对其使用效果无不良影响,例如显示装置为台式显示装置或监测仪等,则上述一些实施例中的光开关100可以作为成品直接贴合在显示装置内的对应位置处。
示例的,请参阅图14,所述显示装置为光波导显示装置。该显示装置包括:光波导10、设置于光波导10的入光侧的背光源9、设置于光波导10的出光侧的至少一组光栅12、以及设置于该至少一组光栅12的出光侧的光开关100。
此处,每组光栅12包括多个子光栅,其中,子光栅的数量以及相邻两个子光栅之间的间距根据实际需求选择设置即可。
此外,可选的,如图14所示,光波导10采用折射率为1.52的导光板,背光源9位于该导光板的一旁侧。显示装置还包括设置于光波导10的与背光源9相对的一侧的反射层13。导光板中由背光源9入射的光线能够以全反射的方式在导光板中进行传播,并从每组光栅12所在的区域耦出。反射层13能够对导光板中的光线进行反射,以防止光信号外漏,并有效提高背光源9的光能利用率。
请继续参阅图14,显示装置还包括设置于所述至少一组光栅12的背离光波导10的一侧的平坦层11。光开关100中的第一基板41贴合在平坦层11的背离所述至少一组光栅12的表面上。显示装置中从每组光栅12所在区域耦出的光信号,可以在光开关100的控制下准直出射。
值得一提的是,在显示装置中,向光开关100的目标区域内的同一个驱动电极3分时输入不同的电压,或向光开关100内不同的驱动电极3分别输入不同的电压,均能有效控制对应的微流体2所在区域具有不同的光透过率,从而实现显示装置中不同灰阶的快速切换。
示例的,请参阅图7,微流体2采用电润湿微流体21,该电润湿微流体21中的透光微流体211为水(导电),不透光微流体212为掺杂有多个 黑色素粒子的油(不导电)。驱动电极3中的第一电极31提供驱动电压信号,第二电极32提供公共电压信号。在此情况下,向不同的第一电极31分别输入不同电压,可以获得不同的灰阶显示。可选的,向第一电极31输入的驱动电压为阈值电压Vth,则该第一电极31对应的微流体2所在区域将具有最大的光透过率,能够对应显示最大的灰阶(例如灰阶255)。向第一电极31输入的驱动电压为0V(即未施加电压),则该第一电极31对应的微流体2所在区域不透光,能够对应显示最小的灰阶(例如灰阶0)。向第一电极31输入的驱动电压介于0V和Vth之间,则该第一电极31对应的微流体2所在区域具有的光透过率介于最大和最小之间,能够对应显示位于最大灰阶和最小灰阶之间的其他灰阶。
在另一些示例中,若显示装置的尺寸及重量对其使用效果影响较大,例如显示装置为头戴式显示装置或移动式显示装置等,则上述一些实施例中的光开关100可以集成在显示装置的显示基板上,以实现显示装置的超轻薄化。
示例的,请参阅图15,所述显示装置中的部分结构与图14所示的显示装置中的部分结构对应相同。此处不再对二者结构相同的部分进行详述,以下仅针对二者的不同之处予以说明。
请继续参阅图15,在该显示装置中,背光源9包括灯条91和反射罩92,其中,灯条91设置于反射罩92内,且灯条91的出射光能够在反射罩92的反射作用下入射至对应的光波导10中。可选的,灯条91为发光二极管(Light-Emitting Diode,简称LED)灯条。
在显示装置包括平坦层11的情况下,光开关100中的多个微槽1可以直接形成在平坦层11的表面中或表面上,也即以平坦层11作为光开关中各微槽1的载体,将光开关100集成在显示装置的显示基板上,以进一步减小显示装置的厚度。
在另一些实施例中,显示装置为AR及VR显示装置,能够实现AR和VR之间的切换显示。请参阅图16~图19,该显示装置包括光开关100以及AR显示屏14,该光开关100位于AR显示屏14的环境光入光侧。AR显示屏14包括光波导显示基板140以及位于光波导显示基板140的显示光入光侧的显示部141。光波导显示基板140中设有耦入光栅142和耦出光栅143。
可选的,光开关100的边缘通过胶层15与AR显示屏14粘接,光开关100与AR显示屏14之间设有空气隔层16,可以在光开关100中第一基板41的折 射率与AR显示屏14中光波导显示基板140的折射率相同或相近的情况下,利用空气隔层16避免光开关100对光波导显示基板140中显示光信号的全反射产生干扰。
在一些示例中,请参阅图16和图17,显示光入光侧和环境光入光侧分别位于光波导显示基板140的两侧,显示部141为显示光光源。
当显示装置用于实现AR显示时,如图16所示,光开关100呈导通状态或选通状态,环境光信号能够穿过光开关100中的透光区域入射至AR显示屏14中。此时,显示光光源出射的显示光信号在通过耦入光栅142进入光波导显示基板140中之后,能够以全反射的方式在光波导显示基板140中进行传播。环境光信号在穿过光开关100中的透光区域入射至光波导显示基板140中之后,能够与显示光信号汇合,并通过耦出光栅143出射至人眼中,以供人眼观看到虚实结合的AR图像。
此外,可选的,如图16所示,控制光开关100中与耦入光栅142的周边区域正对的区域不透光,以及控制光开关100中与耦出光栅143的周边区域正对的区域不透光,还能利用光开关100中透光区域与不透光区域的分界,有效减小环境光信号与光栅衍射光之间的不良串扰。
当显示装置用于实现VR显示时,如图17所示,光开关100呈关断状态,环境光无法穿过光开关100入射至AR显示屏14中。显示光光源141出射的显示光信号在通过耦入光栅142进入光波导显示基板140中之后,能够以全反射的方式在光波导显示基板140中进行传播,然后通过耦出光栅143出射至人眼中,以供人眼观看到虚拟的VR图像。
在另一些示例中,请参阅图18和图19,显示光入光侧和环境光入光侧分别位于光波导显示基板140的同一侧,显示部141包括沿显示光信号的入射方向依次设置的微显示屏1411、彩色滤光部1412和光线准直部1413。
当显示装置用于实现AR显示时,如图18所示,光开关100呈导通状态或选通状态,显示光信号和环境光信号均能够穿过光开关100中的透光区域入射至AR显示屏14中。此时,微显示屏1411出射的显示光信号在经由彩色滤光部1412进行滤光以及光线准直部1413进行光准直后,穿过光开关100中的透光区域并通过耦入光栅142进入到光波导显示基板140中,然后以全反射的方式在光波导显示基板140中进行传播。环境光信号在穿过光开关100中的透光区域入射至光波导显示基板140中之后,能够与显示光信号汇合,并通过耦出光栅143出射至人眼中,以供人眼观看到虚实结合的AR图 像。
此外,可选的,如图18所示,控制光开关100中与耦入光栅142的周边区域正对的区域不透光,以及控制光开关100中与耦出光栅143的周边区域正对的区域不透光,还能利用光开关100中透光区域与不透光区域的分界,有效减小环境光信号与光栅衍射光之间的不良串扰。
当显示装置用于实现VR显示时,如图19所示,控制光开关100中与耦入光栅142正对的区域透光,并控制除此之外的其他区域不透光。这样环境光信号无法穿过光开关100入射至AR显示屏14中。微显示屏1411出射的显示光信号在经由彩色滤光部1412进行滤光以及光线准直部1413进行光准直后,穿过光开关100中的透光区域并通过耦入光栅142进入到光波导显示基板140中,然后以全反射的方式在光波导显示基板140中进行传播,最后通过耦出光栅143出射至人眼中,以供人眼观看到虚拟的VR图像。
在本公开一些实施例中,将光开关100设置于AR显示屏14的环境光入光侧,能够通过对光开关100的控制,实现显示装置在AR显示和VR显示之间的切换,操作简单方便。并且,还可以通过动态调控光开关,降低AR显示屏14中因光栅衍射或小孔衍射带来的不良干扰,以确保AR显示屏14显示清楚且准确的中心画面(即去除光栅衍射或小孔衍射干扰后的画面)。
需要说明的是,通过上述光开关控制人眼可观察范围内的耦出光信号的光效基本一致,可以使人眼看到连续且亮度一致的画面。
此外,在又一些示例中,显示装置还包括位于AR显示屏14的显示光出光侧的人眼跟踪传感器。这样通过人眼跟踪传感器追踪人眼观察的位置,可以根据所述人眼观察的位置,动态调整光开关以及AR显示屏14中耦入光栅以及耦出光栅的导通或关断状态,从而兼顾光效最大(方便在室外环境中看到清晰高对比度的画面)和均匀出光(确保整幅画面亮度均匀)的显示效果。
上述人眼跟踪传感器的结构及其使用,可以根据实际需求选择设置。AR显示屏14中耦入光栅以及耦出光栅的区域大小及其设置位置,也可以根据实际需求选择设置。
在上述一些实施例中,动态调控光开关的驱动信号与对应AR显示装置中显示光信号的驱动信号为同步信号,也即可以通过同一控制器或处理器对光信号耦出区域的大小、光栅的衍射强度以及光栅的衍射范围进行预 判,从而实时输出驱动信号,以动态调控光开关,从而利用光开关降低因光栅衍射等带来的光线串扰和干扰。
需要说明的是,图1-图19中的各箭头“→”仅用于表示光线的传输方向,并不限制为光线的实际传输路径。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种光开关,包括:
    多个微槽;
    设置于所述多个微槽中的每个微槽内的微流体;
    以及,与所述每个微槽内的微流体对应设置的驱动电极,所述驱动电极配置为向对应的所述微流体提供电压,以控制所述微流体所在区域的光透过率。
  2. 根据权利要求1所述的光开关,其中,所述微流体包括液晶或电润湿微流体。
  3. 根据权利要求2所述的光开关,其中,所述驱动电极包括相对设置的第一电极和第二电极;所述微流体位于对应的所述第一电极和所述第二电极之间。
  4. 根据权利要求3所述的光开关,其中,所述驱动电极还包括位于所述每个微槽的内侧壁上的至少一个第三电极;
    所述第一电极和所述第二电极中的一者与所述至少一个第三电极电连接,且另一者与所述至少一个第三电极绝缘。
  5. 根据权利要求2所述的光开关,其中,所述驱动电极包括绝缘设置的第一电极和第二电极;所述微流体位于对应的所述第一电极和所述第二电极的同一侧。
  6. 根据权利要求3或5所述的光开关,其中,
    至少两个所述第一电极电连接;
    和/或,至少两个所述第二电极电连接。
  7. 根据权利要求3或5所述的光开关,还包括多条第一信号线和多条第二信号线;其中,至少一行的所述第一电极电连接同一条第一信号线,至少一列的所述第二电极电连接同一条第二信号线。
  8. 根据权利要求3或5所述的光开关,其中,所述第一电极和所述第二电极包括透光电极。
  9. 根据权利要求2~8任一项所述的光开关,其中,所述微流体为电润湿微流体;所述电润湿微流体包括透光微流体,以及与所述透光微流体不相溶的不透光微流体,所述透光微流体与所述不透光微流体中的一者的接触角能够在对应的所述驱动电极的驱动下改变。
  10. 根据权利要求9所述的光开关,其中,所述不透光微流体包括吸 光型微流体。
  11. 根据权利要求1所述的光开关,还包括:
    相对设置的第一基板和第二基板;以及,
    设置于所述第一基板和所述第二基板之间的多个遮光部,所述多个遮光部在所述第一基板或所述第二基板上围成所述多个微槽。
  12. 根据权利要求11所述的光开关,还包括:设置于所述第一基板和所述第二基板之间的至少一个支撑部。
  13. 一种光开关的控制方法,应用于如权利要求1~12任一项所述的光开关;所述光开关的控制方法,包括:
    向目标区域内的至少一个驱动电极输入电压,利用所述至少一个驱动电极控制对应的所述微流体所在区域的光透过率。
  14. 根据权利要求13所述的光开关的控制方法,其中,
    向所述目标区域内的同一个驱动电极分时输入不同的电压,或在同一时刻向不同的驱动电极分别输入不同的电压,以控制对应的所述微流体所在区域具有不同的光透过率。
  15. 一种显示装置,包括:如权利要求1~12任一项所述的光开关。
  16. 根据权利要求15所述的显示装置,还包括:至少一组光栅;
    所述光开关位于所述至少一组光栅的出光侧。
  17. 根据权利要求15所述的显示装置,还包括:AR显示屏;
    所述光开关位于所述AR显示屏的环境光入光侧。
PCT/CN2019/122185 2019-11-29 2019-11-29 光开关及其控制方法、显示装置 WO2021103000A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19948864.4A EP4067967A4 (en) 2019-11-29 2019-11-29 OPTICAL SWITCH AND METHOD FOR CONTROLLING IT, AND DISPLAY DEVICE
CN201980002709.6A CN113272709B (zh) 2019-11-29 2019-11-29 光开关及其控制方法、显示装置
US16/971,400 US11860501B2 (en) 2019-11-29 2019-11-29 Optical switch and control method thereof, and display apparatus
PCT/CN2019/122185 WO2021103000A1 (zh) 2019-11-29 2019-11-29 光开关及其控制方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122185 WO2021103000A1 (zh) 2019-11-29 2019-11-29 光开关及其控制方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021103000A1 true WO2021103000A1 (zh) 2021-06-03

Family

ID=76130050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122185 WO2021103000A1 (zh) 2019-11-29 2019-11-29 光开关及其控制方法、显示装置

Country Status (4)

Country Link
US (1) US11860501B2 (zh)
EP (1) EP4067967A4 (zh)
CN (1) CN113272709B (zh)
WO (1) WO2021103000A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360298B1 (en) 2021-10-15 2022-06-14 Applied Materials, Inc. Reflective display devices and components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504486A (zh) * 2008-02-05 2009-08-12 索尼株式会社 液体光学元件
CN101520565A (zh) * 2009-01-09 2009-09-02 中国工程物理研究院流体物理研究所 一种快速响应液晶光开关及制备方法
CN101685173A (zh) * 2008-09-26 2010-03-31 索尼株式会社 光学元件、成像装置以及驱动光学元件的方法
CN102253438A (zh) * 2011-08-02 2011-11-23 昆山龙腾光电有限公司 电润湿透镜的形成方法及电润湿透镜
CN102314028A (zh) * 2010-07-09 2012-01-11 索尼公司 透镜阵列单元和图像显示装置
US20130033476A1 (en) * 2011-08-04 2013-02-07 Dean Kenneth A Display apparatus
CN103901607A (zh) * 2014-04-02 2014-07-02 四川大学 一种基于电湿润效应的可变光孔液体光开关

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132927A1 (en) * 2004-11-30 2006-06-22 Yoon Frank C Electrowetting chromatophore
JP2007219510A (ja) * 2006-02-13 2007-08-30 Samsung Electronics Co Ltd ディスプレイ装置
KR101229053B1 (ko) 2006-05-15 2013-02-04 엘지디스플레이 주식회사 액정 표시 장치 및 그의 제조 방법
CN117389420A (zh) * 2017-04-14 2024-01-12 奇跃公司 多模式眼睛跟踪
WO2019017513A1 (en) 2017-07-20 2019-01-24 Lg Electronics Inc. VISIOCASQUE AND ITS CONTROL METHOD
CN107238974B (zh) 2017-07-24 2021-03-02 京东方科技集团股份有限公司 一种背光源及液晶显示模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504486A (zh) * 2008-02-05 2009-08-12 索尼株式会社 液体光学元件
CN101685173A (zh) * 2008-09-26 2010-03-31 索尼株式会社 光学元件、成像装置以及驱动光学元件的方法
CN101520565A (zh) * 2009-01-09 2009-09-02 中国工程物理研究院流体物理研究所 一种快速响应液晶光开关及制备方法
CN102314028A (zh) * 2010-07-09 2012-01-11 索尼公司 透镜阵列单元和图像显示装置
CN102253438A (zh) * 2011-08-02 2011-11-23 昆山龙腾光电有限公司 电润湿透镜的形成方法及电润湿透镜
US20130033476A1 (en) * 2011-08-04 2013-02-07 Dean Kenneth A Display apparatus
CN103901607A (zh) * 2014-04-02 2014-07-02 四川大学 一种基于电湿润效应的可变光孔液体光开关

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067967A4 *

Also Published As

Publication number Publication date
CN113272709A (zh) 2021-08-17
US20210325755A1 (en) 2021-10-21
CN113272709B (zh) 2023-12-01
US11860501B2 (en) 2024-01-02
EP4067967A1 (en) 2022-10-05
EP4067967A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
CN107817629B (zh) 一种液晶显示装置
WO2018161650A1 (zh) 显示面板和显示装置
US9322977B2 (en) Display apparatus
CN107219685B (zh) 显示装置及显示装置的显示方法
US20190121171A1 (en) Liquid crystal display panel, liquid crystal display device and display method thereof
CN108646493B (zh) 一种显示装置
WO2020253567A1 (zh) 透明显示基板及透明显示装置
US10627664B2 (en) Display panel, display device and display method
KR101549838B1 (ko) 표시 기판, 이의 제조 방법 및 이 표시 기판을 갖는 전기습윤 표시패널
US9891460B2 (en) Substrate for display, display panel and display device
WO2020007181A1 (zh) 显示面板及显示装置
KR20020010685A (ko) 고효율 가변 반사 이미지 디스플레이에 있어서 내부전반사의 전기영동과 고굴절률 및 상변화 제어를 이용하는반사 이미지 디스플레이장치 및 그 방법
TW201033640A (en) Electrowetting display devices
KR102527931B1 (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2021068661A1 (zh) 液晶显示面板及其驱动方法、显示装置
CN110646989B (zh) 显示面板、显示装置及其控制方法
WO2019134562A1 (zh) 背光源及其制作方法、显示装置
CN103926724B (zh) 一种tft驱动的显示装置
JP7320080B2 (ja) スクリーン指紋コンポーネント及び端末機器
TWI823910B (zh) 顯示設備及其製造方法
WO2021103000A1 (zh) 光开关及其控制方法、显示装置
WO2018082318A1 (zh) 一种显示面板及显示装置
CN115268159A (zh) 电致变色调控光栅和显示面板
CN110955078A (zh) 显示面板及其驱动方法、显示装置
KR20080061107A (ko) 액정표시장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019948864

Country of ref document: EP

Effective date: 20220629