WO2021102909A1 - 显示装置及其驱动方法 - Google Patents

显示装置及其驱动方法 Download PDF

Info

Publication number
WO2021102909A1
WO2021102909A1 PCT/CN2019/121966 CN2019121966W WO2021102909A1 WO 2021102909 A1 WO2021102909 A1 WO 2021102909A1 CN 2019121966 W CN2019121966 W CN 2019121966W WO 2021102909 A1 WO2021102909 A1 WO 2021102909A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
sub
pixels
display unit
axis
Prior art date
Application number
PCT/CN2019/121966
Other languages
English (en)
French (fr)
Inventor
高健
董学
陈小川
洪涛
祝明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/981,768 priority Critical patent/US11818330B2/en
Priority to PCT/CN2019/121966 priority patent/WO2021102909A1/zh
Priority to EP19945394.5A priority patent/EP4067989A4/en
Priority to CN201980002693.9A priority patent/CN113366382A/zh
Publication of WO2021102909A1 publication Critical patent/WO2021102909A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/14Display of multiple viewports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/383Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes

Definitions

  • the embodiments of the present disclosure relate to the field of naked-eye 3D display technology, and in particular, to a display device and a driving method thereof.
  • the display area of the display panel can be divided into a left-eye display area and a right-eye display area.
  • each column of pixels alternately belongs to the left-eye display area and the right-eye display area;
  • the left-eye display area displays the left-eye image
  • the right-eye display area displays the right-eye image
  • a grating is set outside the display panel;
  • the grating can refract the light emitted from the left-eye display area to a viewing area (left-eye viewing area)
  • the light emitted from the right-eye display area is refracted to another viewing area (right-eye viewing area); thus, when the user’s eyes are in two viewing areas, they can see the desired left-eye image and right-eye image respectively, and feel To the three-dimensional effect.
  • the embodiments of the present disclosure provide a display device and a driving method thereof.
  • an embodiment of the present disclosure provides a display device, which includes:
  • Refractive structures corresponding to the display units one-to-one each refraction structure is located on the light exit side of its corresponding display unit, and each refraction structure is used to emit each sub-pixel of its corresponding display unit The light of is refracted to the corresponding viewing zone of the sub-pixel.
  • the m sub-pixel arrays of each display unit are arranged, and the arrangement of the sub-pixels of any two display units is the same.
  • the m sub-pixels of each display unit are arranged in an M ⁇ N matrix, where M is an integer greater than or equal to 2, and N is an integer greater than or equal to 2.
  • each of the viewing areas is arranged in an orthographic projection array on a reference plane parallel to the light-emitting surface of the sub-pixels, and the arrangement is similar to the arrangement of the sub-pixels of the display unit The same way.
  • the sub-pixels located at the same relative position in all the display units correspond to the same viewing zone.
  • each of the refractive structures is equivalent to a plano-convex lens, and the plane side of the equivalent plano-convex lens faces the display unit;
  • the light-emitting surfaces of all sub-pixels of each display unit are located in the focal plane of a plano-convex lens with an equivalent refractive structure corresponding to the display unit.
  • the light-emitting surfaces of all the sub-pixels are located in the same plane.
  • the plane sides of all the equivalent plano-convex lenses are located in the same plane.
  • all the equivalent plano-convex lenses have the same focal length.
  • the orthographic projection of the display unit on a reference surface parallel to the light-emitting surface of the sub-pixel is a display projection
  • the orthographic projection of the sub-pixel on the reference surface is a pixel projection
  • the orthographic projection of the refraction structure on the reference plane is a refraction projection
  • All the graphics formed by the display projection are symmetrical with respect to the X-axis and the Y-axis, and the X-axis and the Y-axis are located in the reference plane and are perpendicular to each other;
  • All the graphics formed by the refraction projection are respectively symmetrical with respect to the X axis and the Y axis;
  • the graphics projected by all the pixels in each of the display projections are respectively axially symmetrical with respect to a direction parallel to the X axis and a direction parallel to the Y axis;
  • the geometric centers of other display projections are farther away from the X-axis than the geometric centers of their corresponding refraction projections.
  • the display projection is rectangular, with a first side parallel to the X axis and a second side parallel to the Y axis, and each of the display projections is closely arranged;
  • the refraction projection is rectangular, having a third side parallel to the X axis and a fourth side parallel to the Y axis, and each of the refraction projections is closely arranged;
  • the length of the first side of the display projection is greater than the length of the third side of the corresponding refraction projection, and the length of the second side of the display projection is greater than the length of the corresponding refraction projection.
  • the length of the fourth side is greater than the length of the first side of the display projection.
  • the refraction structure is an optical plano-convex lens made of a transparent material, and the optical plano-convex lens has opposite flat sides and convex curved sides, and the flat sides face the display unit.
  • the refractive structure is a diffractive plano-convex lens composed of a transparent material, and the diffractive plano-convex lens has opposite plane sides and diffractive structure sides, and the plane side faces the display unit.
  • the colors of the m sub-pixels of the same display unit are the same;
  • All the sub-pixels are divided into at least two different colors.
  • each of the sub-pixels includes one light-emitting device.
  • the display device further includes:
  • the position module is used to detect the position of the user's eyes
  • the control module is used to determine the visual zone where the user's eyes are located according to the position of the user's eyes, and control the sub-pixels of each display unit corresponding to the visual zone to display.
  • embodiments of the present disclosure provide a driving method of the above-mentioned display device, which includes:
  • the left-eye viewing area is the user The viewing zone where the left eye is located, and the right eye viewing zone is the viewing zone where the right eye of the user is located.
  • FIG. 1 is a schematic diagram of a top view structure of a part of a display unit in a display device provided by an embodiment of the present disclosure (refractive structure is not shown);
  • FIG. 2 is a schematic diagram of the correspondence between the light emitted by some sub-pixels and the viewing zone in some related technologies
  • FIG. 3 is a schematic diagram of the correspondence between the light emitted by some sub-pixels and the viewing area in another display device provided by an embodiment of the disclosure;
  • FIG. 4 is a schematic diagram of a partial cross-sectional structure of a display unit in another display device provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a top view structure of another display device provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a partial cross-sectional structure along the Y axis of another display device according to an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the correspondence between the light emitted by each sub-pixel and the viewing area in another display device provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of a three-dimensional structure of an optical plano-convex lens in another display device provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a partial cross-sectional structure of several diffractive plano-convex lenses with different numbers of steps in another display device provided by an embodiment of the disclosure.
  • FIG. 10 is a partial top view structural diagram of a two-step diffractive plano-convex lens in another display device according to an embodiment of the disclosure
  • FIG. 11 is a block diagram of another display device provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a driving method of a display device according to an embodiment of the disclosure.
  • FIG. 13 is a block diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 14 is a block diagram of the composition of a refractive substrate provided by an embodiment of the disclosure.
  • Display unit 11. Sub-pixel; 19. Pixel; 5. Refraction structure; 51. Plano-convex lens; 52. Optical plano-convex lens; 53, Diffractive plano-convex lens; 8. Viewing area; 9. Substrate; 91. Anode; 92. Light emitting layer; 921, light emitting surface; 93, cathode; 94, encapsulation layer; 95, pixel defining layer; OLED, organic light emitting diode.
  • an embodiment of the present disclosure provides a display device.
  • the display device of the embodiment of the present disclosure can realize naked-eye 3D display, that is, the user can feel the stereoscopic effect by directly viewing the display device with the naked eye without wearing auxiliary equipment such as 3D glasses.
  • each display unit 1 includes m sub-pixels 11, and m sub-pixels 11 of each display unit 1 correspond to m predetermined viewing areas 8 one-to-one, and m is greater than or equal to 2 Integer.
  • the refraction structure 5 corresponds to the display unit 1 one-to-one; each refraction structure 5 is located on the light-emitting side of its corresponding display unit 1, and each refraction structure 5 is used to transfer the light emitted by each sub-pixel 11 of the corresponding display unit 1 Refraction to the viewing zone 8 corresponding to the sub-pixel 11 respectively.
  • the display device of the embodiment of the present disclosure includes a plurality of display units 1 arranged in an array, and each display unit 1 includes a plurality (m) of sub-pixels 11.
  • each display unit 1 may be various. For example, referring to FIG. 1, the display units 1 of different rows in different arrays are staggered by half of the position; or, referring to FIG. 5, each display unit 1 is arranged in a standard "matrix" composed of multiple rows and multiple columns.
  • the sub-pixel 11 is the smallest unit that can independently display, that is, each sub-pixel 11 can independently display required content. Therefore, each sub-pixel 11 should have an individually controllable driving structure.
  • the sub-pixels 11 can be driven by gate lines and data lines that are arranged crosswise, and each crossing position of the gate lines and the data lines defines a sub-pixel 11. Therefore, it can also be understood that every m sub-pixels 11 arranged together in position constitute a display unit 1.
  • a corresponding refraction structure 5 is also provided, and the refraction structure 5 is used for the light emitted by each sub-pixel 11 of the display unit 1. Refraction to a corresponding viewing zone 8.
  • the display device of the embodiment of the present disclosure has m (that is, the number of sub-pixels 11 in each display unit 1) viewing areas 8.
  • m that is, the number of sub-pixels 11 in each display unit 1
  • the m sub-pixels 11 in each display unit 1 emit The light is refracted to m viewing zones 8 respectively; on the contrary, the light in each viewing zone 8 comes from one sub-pixel 11 in each display unit 1 respectively.
  • a plurality of (for example, three) sub-pixels 11 arranged together in the display panel constitute a pixel 19, which is a "display point" visually; and different pixels 19
  • the light is then refracted by gratings and other structures to the two viewing areas 8 (left eye viewing area and right eye viewing area), that is, the light emitted from the sub-pixels 11 that are arranged together and form a unit (a pixel 19) The same direction.
  • the related technology can only form two viewing zones 8, and only when the user is located in a specific position to ensure that the eyes are located in the two viewing zones 8 respectively, can the three-dimensional effect be felt.
  • the light emitted by m (for example, 3) sub-pixels 11 in each display unit 1 is refracted to m viewing zones 8 respectively, that is, they are arranged together and form a unit ( The light emitted by the sub-pixels 11 of a display unit 1) is directed in different directions.
  • the number of viewing zones 8 that can be formed in the embodiment of the present disclosure is equal to the number m of sub-pixels 11 in each display unit 1, so that it can form more than two viewing zones 8, and the user’s eyes only need Being in any two different viewing zones 8 respectively, the stereo effect can be felt and the naked eye 3D display can be realized.
  • the user can move in a larger range when viewing the display device of the embodiment of the present disclosure, the viewing position is more flexible, and the degree of freedom is better.
  • m is greater than or equal to 3, so that the display device of the embodiment of the present disclosure can form at least three viewing zones 8.
  • the above multiple viewing zones 8 may be arranged in an array, that is, there are multiple viewing zones 8 in at least two different directions; therefore, when the lines of the user's eyes are in different directions, it is possible to make The eyes are located in different viewing zones 8 to feel the stereoscopic effect, that is, the display device of the embodiment of the present disclosure can realize rotating viewing, for example, realizing 360-degree rotating viewing.
  • the display device of the embodiment of the present disclosure has four or more viewing zones 8, there may be multiple users whose eyes are located in different viewing zones 8 at the same time, that is, the display device of the embodiment of the present disclosure can provide multiple Users watch at the same time.
  • the display device of the embodiment of the present disclosure can greatly improve the viewing experience and the resolution felt by the user.
  • the above multiple display units 1 may be located in one display panel, or in other words, the arrangement of the sub-pixels 11 in the display panel may comply with the above rules.
  • the above refractive structure 5 may be directly formed on the light emitting side of the above display panel by means of deposition or the like.
  • all the refraction structures 5 can also be formed in an independent plate-shaped device, that is, all the refraction structures 5 can form an independent "refractive substrate", and the refraction substrate is provided on the above display panel.
  • the display device of the embodiment of the present disclosure can also be obtained.
  • each sub-pixel 11 includes one light emitting device.
  • the light emitting device is an organic light emitting diode OLED.
  • each sub-pixel 11 can realize light emission and display through a light emitting device, and the light emitting device may further be an organic light emitting diode OLED, that is, the above display panel may be an organic light emitting diode display panel.
  • the light emitting device may further be an organic light emitting diode OLED, that is, the above display panel may be an organic light emitting diode display panel.
  • the organic light-emitting diode OLED can be arranged on the substrate 9 and consists of a stacked anode 91, a light-emitting layer 92, and a cathode 93; on the side of the organic light-emitting diode OLED away from the substrate 9, there is also an encapsulation layer 94 and other structures. .
  • other structures such as gate lines, data lines, and pixel circuits may also be provided.
  • each sub-pixel 11 at least one of the cathode 93 and the anode 91 of the different sub-pixels 11 should be independent of each other (in FIG. 4, the independent anode 91 is taken as an example);
  • the adjacent sub-pixels 11 (including adjacent sub-pixels 11 in one display unit 1 and adjacent sub-pixels 11 in different display units 1) may be separated by a pixel defining layer 95 (PDL) or the like.
  • PDL pixel defining layer 95
  • the organic light-emitting diode OLED does not necessarily occupy the entire sub-pixel 11, but only corresponds to a part of the sub-pixel 11 (that is, the anode 91, The layer 92 and the cathode 93 are only overlapped at a part of the position); obviously, the part of the sub-pixel 11 corresponding to the organic light-emitting diode OLED is the area where the sub-pixel 11 actually emits light.
  • the above display panel may be a liquid crystal display panel.
  • the display device of the embodiment of the present disclosure further includes:
  • Position module used to detect the position of the user's eyes
  • the control module is used for determining the viewing zone 8 where the user's eyes are located according to the position of the user's eyes, and controlling the sub-pixels 11 corresponding to the viewing zone 8 of each display unit 1 to display.
  • the display device of the embodiment of the present disclosure has multiple viewing zones 8, and furthermore, the user's eyes may also be located in different viewing zones 8. Therefore, a position module can be set to detect the position of the user's eyes in real time.
  • the position module may be a camera set in the above display panel, which can determine the position of the user's eyes by collecting the user's image and analyzing it.
  • control module (such as a processor) can continue to calculate which viewing zone 8 the user’s eyes are in, and control the sub-pixels 11 corresponding to the corresponding viewing zone 8 to display the corresponding image, so that the user feels Three-dimensional effect.
  • the display device of the embodiment of the present disclosure can display according to the actual position of the user to obtain a better display effect; at the same time, it can also turn off the sub-pixels corresponding to the viewing zone 8 that currently has no eyes of the user to reduce power consumption. And drive the amount of computing.
  • the above position module and control module may not be included in the display device of the embodiment of the present disclosure.
  • multiple viewing positions can be pre-defined (that is, the user must watch at a specific viewing position).
  • the user's left eye must be in some viewing zones 8 and the right eye must be in other viewing zones 8 Therefore, as long as the above two types of viewing areas 8 directly display the left-eye image and the right-eye image respectively, it can ensure that the user feels the stereoscopic effect.
  • the m sub-pixels 11 of each display unit 1 are arranged in an array, and the arrangement of the sub-pixels 11 of any two display units 1 is the same.
  • the sub-pixels 11 in each display unit 1 can be arranged in an array in the same manner.
  • the m sub-pixels 11 of each display unit 1 are arranged in an M ⁇ N matrix, where M is an integer greater than or equal to 2 and N is an integer greater than or equal to 2.
  • the sub-pixels 11 in each display unit 1 can also be arranged in a standard "matrix" composed of multiple rows and multiple columns, and the number of sub-pixels 11 in each row is at least 2. , The number of sub-pixels 11 in each column is also at least 2.
  • the viewing areas 8 are arranged in an orthographic projection array on a reference plane parallel to the light emitting surface 921 of the sub-pixels 11, and the arrangement is the same as the arrangement of the sub-pixels 11 of the display unit 1.
  • the cutout patterns of each viewing area 8 may also be arranged in an array, and the arrangement is similar to that of the sub-pixels in the display unit 1.
  • the arrangement of 11 is the same.
  • each display unit 1 For example, if the sub-pixels 11 in each display unit 1 are arranged in a matrix of more than M ⁇ N, the total number of view areas 8 is also equal to M ⁇ N, and each view area 8 is also arranged in an M ⁇ N matrix.
  • the user's eyes when the user's eyes are located in two mutually perpendicular directions, both eyes can be divided into different viewing zones 8, and 360-degree rotating viewing can be realized.
  • the sub-pixels 11 in the same relative position in all the display units 1 correspond to the same viewing zone 8.
  • each display unit 1 the light emitted by the sub-pixels 11 located at the same relative position will be refracted to the same viewing zone 8.
  • the light emitted by the sub-pixel 11 in the upper left corner of each display unit 1 is refracted to the same viewing zone 8
  • the light emitted by the second sub-pixel 11 from the left in the top row of each display unit 1 is refracted to the same Viewport 8, etc., and so on.
  • the colors of the m sub-pixels 11 of the same display unit 1 are the same; all the sub-pixels 11 are divided into at least two different colors, and can be further divided into three different colors.
  • the sub-pixels 11 can be divided into different colors (for example, divided into red sub-pixels 11, green sub-pixels 11, and blue sub-pixels 11), so that the display device can realize color display.
  • each display unit 1 has the same color sub-pixels 11, or it can be considered that the display unit 1 also has "color", for example, in each row, you can The red display unit 1, the green display unit 1, and the blue display unit 1 are arranged in turn; the color arrangement order of the display units 1 in different groups can be different.
  • the light-emitting layer 92 is produced by an evaporation process, and each display unit 1 can correspond to an opening on the FMM (Fine Metal Mask) to obtain the structure shown in FIG. 4; thus, in the same display unit 1
  • the light-emitting layers 92 corresponding to the multiple sub-pixels 11 are integrated and have the same light-emitting color, and different signals are loaded through multiple independent anodes 91, so that the multiple sub-pixels 11 in the same display unit 1 emit light of different brightness (including light-emitting And no light).
  • each refractive structure 5 is equivalent to a plano-convex lens 51, and the plane side of the equivalent plano-convex lens 51 faces the display unit 1.
  • the light-emitting surfaces 921 of all sub-pixels 11 of each display unit 1 are located at The refractive structure 5 corresponding to the display unit 1 is in the focal plane of an equivalent plano-convex lens 51.
  • each refraction structure 5 should be equivalent to a plano-convex lens 51, where the plano-convex lens 51 refers to a convex arc surface (convex arc surface side) on one side and a flat surface on the other side ( Plane side) lens.
  • plano-convex lens 51 refers to a convex arc surface (convex arc surface side) on one side and a flat surface on the other side ( Plane side) lens.
  • the refraction structure 5 is equivalent to the plano-convex lens 51" means that no matter what the form of the refraction structure 5 itself, its optical effect is equal to that of the plano-convex lens 51.
  • the refractive structure 5 may specifically be an optical plano-convex lens 52, a diffractive plano-convex lens 53, etc., or may also be a liquid crystal lens, etc., which will be described in detail later.
  • plano-convex lens 51 can be equivalently obtained, the plano-convex lens 51 is directly shown in Figs. 4, 6, etc.; however, it should be understood that these drawings do not represent that the actual ones are physical. Plano-convex lens 51.
  • the shape of the orthographic projection of the above equivalent plano-convex lens 51 on the reference plane parallel to the light-emitting surface 921 of the sub-pixel 11 needs to match the shape of the area occupied by the display unit 1. For example, referring to FIG. 5, if the display unit 1 occupies a rectangular area, the above equivalent plano-convex lens 51 should also occupy a rectangular area.
  • the structural design of the refraction structure 5 should ensure that the plane side of the equivalent plano-convex lens 51 faces the display unit 1, and the light-emitting surface 921 of the sub-pixel 11 of the display unit 1 is located at the focal plane of the equivalent plano-convex lens 51 (Focal surface) in.
  • the above “light-emitting surface 921 of the sub-pixel 11 ” means that the light of the sub-pixel 11 can be regarded as emitted from the light-emitting surface 921.
  • the light-emitting surface 921 may be the surface of the light-emitting layer 92 of the organic light-emitting diode OLED near the light-emitting side; therefore, a cathode is also provided outside the light-emitting surface 921 93, the encapsulation layer 94 and other structures, and then the refractive structure 5 (equivalent to the plano-convex lens 51) can be provided, but the light-emitting surface 921 should still be located in the focal plane of the plano-convex lens 51.
  • n j is the equivalent refractive index of all the media (cathode 93, encapsulation layer 94, etc.) between the plano-convex lens 51 and the light-emitting surface 921.
  • the plano-convex lens 51 Based on the properties of the plano-convex lens 51, it can refract the light emitted from the same position of its focal plane (that is, the light emitted from the same position of the light-emitting surface 921) to the same direction. Therefore, the above method can ensure that the equivalent plano-convex lens 51 can refract the light from different sub-pixels 11 (that is, from different positions of the focal plane) to different viewing zones 8.
  • the light-emitting surfaces 921 of all the sub-pixels 11 are located in the same plane.
  • the light-emitting surfaces 921 of all the sub-pixels 11 may be located in the same plane.
  • the plane sides of all equivalent plano-convex lenses 51 are located in the same plane.
  • the plane sides of the plano-convex lenses 51 equivalent to all the refractive structures 5 can also be located in the same plane.
  • all equivalent plano-convex lenses 51 have the same focal length.
  • all plano-convex lenses 51 equivalent to the refractive structure 5 can have the same focal length.
  • the same plano-convex lens 51 has different refraction effects on light of different wavelengths, that is, the focal lengths of light corresponding to different wavelengths are different. Therefore, when the sub-pixels 11 in each display unit 1 are of the same color, the focal length and focal plane of the plano-convex lens 51 equivalent to the refractive structure 5 of each display unit 1 should be specific to the display unit 1 The color of the sub-pixel 11.
  • the focal length f and the curvature radius R (referring to the curvature radius on the convex arc surface) of the plano-convex lens 51 satisfy the following formula:
  • n s is the refractive index of the plano-convex lens 51 for light with a wavelength of s (for example, the wavelength of red light)
  • n s ′ is the refractive index of the environmental medium (such as air) where the plano-convex lens 51 is located for light with a wavelength of s.
  • the radius of curvature R of the equivalent plano-convex lens 51 of the display unit 1 corresponding to different colors may be different.
  • the refractive indices n R , n G , and n B of the plano-convex lens 51 for red, green, and blue light satisfy n R ⁇ n G ⁇ n B ;
  • the curvatures R R , R G , and R B should satisfy R R ⁇ R G ⁇ R B.
  • the orthographic projection of the display unit 1 on the reference plane parallel to the light-emitting surface 921 of the sub-pixel 11 is the display projection
  • the orthographic projection of the sub-pixel 11 on the reference plane is the pixel projection
  • the refractive structure 5 is on the reference plane.
  • the orthographic projection on is the refraction projection
  • the graphics formed by all display projections are symmetrical with respect to the X-axis and Y-axis, and the X-axis and Y-axis are located in the reference plane and are perpendicular to each other;
  • the graphics formed by all refraction projections are symmetrical with respect to the X-axis and Y-axis respectively;
  • the graphics formed by the projection of all pixels in each display projection are respectively axisymmetric with respect to the direction parallel to the X axis and the direction parallel to the Y axis;
  • the geometric centers of other display projections are farther away from the X axis than the geometric centers of their corresponding refraction projections.
  • the plano-convex lens 51 when the refraction structure 5 is equivalent to the plano-convex lens 51, if the focal length of each equivalent plano-convex lens 51 is the same and the relative position of the corresponding display unit 1 is the same, then the plano-convex lens 51 will affect the different display units 1 The lights at the same relative position are emitted in multiple directions parallel to each other, and it is impossible to make these lights all enter one viewing zone 8.
  • all the display units 1 and the refraction structure 5 are arranged in an axisymmetric manner, that is, all the display units 1 are symmetric with respect to the X axis and the Y axis respectively, and all the refraction structures 5 are also arranged with respect to the X axis. It is axisymmetric with the Y axis.
  • the sub-pixels 11 in each display unit 1 are also axisymmetric with respect to two directions parallel to the X axis and the Y axis (but not necessarily the X axis and the Y axis).
  • the center of each refraction projection is closer to the corresponding axis of symmetry than the center of the corresponding display projection.
  • the display structure and its equivalent plano-convex lens 51 should be closer to the center of symmetry O (that is, the intersection of the X axis and the Y axis) than the corresponding display unit 1. Therefore, except for the display unit 1 located at the center of symmetry, each of the other display units 1 and the corresponding plano-convex lens 51 are "relatively offset", and all the plano-convex lenses 51 are more deviated to the center of symmetry O than the display unit 1.
  • each plano-convex lens 51 can refract the light of each sub-pixel 11 in the corresponding display unit 1 to the desired viewing zone 8.
  • FIG. 5 is a top view, the position distribution of each structure is equivalent to the position distribution of the orthographic projection of each structure on the reference plane; at the same time, since the refraction structure 5 is actually "blocked" in front of the display unit 1. Therefore, the refraction structure 5 in FIG. 5 is represented by a dashed line.
  • the display projection is rectangular, with a first side parallel to the X axis and a second side parallel to the Y axis, and each display projection is closely arranged;
  • the refraction projection is rectangular, with a third side parallel to the X-axis and a fourth side parallel to the Y-axis, and the refraction projections are closely arranged;
  • the length of the first side of the display projection is greater than the length of the third side of its corresponding refraction projection, and the length of the second side of the display projection is greater than the length of the fourth side of its corresponding refraction projection.
  • each refractive structure 5 and the display unit 1 may both be rectangular and arranged closely without gaps.
  • each refractive structure 5 is "smaller” than its corresponding display unit 1.
  • the aperture of each equivalent plano-convex lens 51 is smaller than the size of the corresponding display unit 1, that is, the equivalent plano-convex lens 51 has "aperture shrinkage”.
  • the arrangement of the refraction structure 5 and the display unit 1 can be easily realized to meet the above requirements.
  • the dimensions of the display unit 1, the sub-pixel 11, the equivalent plano-convex lens 51, etc., in the display device that meets the requirements of the above embodiments will be exemplified below.
  • each display unit 1 is rectangular, in which the two sides of the rectangle are parallel to the X axis and the Y axis, and a plurality of display units 1 are arranged in a matrix, and the column direction and row direction of the array are parallel to the X axis and Y axis, respectively , And the entire matrix is symmetrical with respect to the X-axis and Y-axis.
  • the center of symmetry O is also the geometric center of the matrix of all display units 1.
  • the refractive structure 5 (plano-convex lens 51) is also a matrix, arranged in a matrix, and is also axisymmetric in the above manner; and the rectangle of the refractive structure 5 is smaller than the rectangle of the display unit 1.
  • the total size of all display units 1 in the X-axis direction (that is, the size of the display area of the display panel) is w x , the total size w y in the y-axis direction; the size of each display unit 1 in the X-axis direction Is x, the size in the y-axis direction is y; the size (pitch) of each sub-pixel 11 in the X-axis direction is p x , and the size (pitch) in the y-axis direction is p y ; , actual emission region (e.g., is formed above the organic light emitting diode OLED region) dimension in the X axis direction is t x, the dimension in the y-axis direction is t y.
  • the plano-convex lens 51 equivalent to the refractive structure 5 has an equivalent aperture (size) in the X-axis direction as D x , and an aperture (size) in the y-axis direction as D y
  • M viewing areas 8 are formed.
  • FIG. 7 only shows the light emitted from each sub-pixel 11 in the two display units 1 located at both ends and the one display unit 1 located in the middle.
  • the number of view zones 8 in FIG. 7 does not exactly correspond to the number of sub-pixels 11 in FIG. 5. This is to clearly show the sub-pixels 11 in FIG. 5 and avoid that the sub-pixels 11 are too small.
  • the light in each viewing zone 8 comes from the sub-pixels 11 arranged in the same relative position in each display unit 1.
  • the light emitted by the leftmost sub-pixel 11 in each display unit 1 is refracted to the rightmost viewing zone 8
  • the light emitted by the rightmost sub-pixel 11 in each display unit 1 Are refracted to the leftmost viewing zone 8.
  • the distance between the position with the largest width of the viewing zone 8 (that is, the position where adjacent viewing zones 8 are in contact with each other) and the display device is the best viewing distance L, and the closest viewing distance is smaller than the best viewing distance L by L 1 , the farthest The viewing distance is larger than the best viewing distance L by L 2 .
  • each viewing zone 8 at the optimal viewing distance L is a y
  • the distance between adjacent viewing zones 8 at the closest viewing distance is b y
  • the distance between adjacent viewing zones 8 at the farthest viewing distance is c y .
  • interpupillary distance e should preferably satisfy the following formula:
  • the formula (1) is to ensure that at the optimal viewing distance L, the user's eyes will not be in the same viewing zone 8 at the same time, that is, the user's eyes will always be in different viewing zones 8 respectively.
  • the formula (3) indicates that at the farthest viewing distance, the distance c y between the viewing zones 8 is smaller than the interpupillary distance. Therefore, when one eye of the user is located in one viewing zone 8, the other eye may enter another viewing zone 8 , And will not "reach" another view zone8.
  • the above viewing zones 8 are obtained by refracting the light emitted by each sub-pixel 11 by a plano-convex lens 51 with a focal length of f. Therefore, according to the triangular relationship, the following formula can be further obtained:
  • the i-th (i is a positive integer less than or equal to M) sub-pixel 11 from the right is emitted from the center of the sub-pixel 11
  • the light that should be refracted refers to the center of the (M+1)-ith viewing zone 8 from the right, and the Y-axis coordinate value of the viewing zone 8 (the center of symmetry above is the origin) is:
  • the above coordinate values may be negative, which means that the viewing zone 8 may be located on the left side of the origin (the center of symmetry O).
  • the distance between the center of the i-th sub-pixel 11 and its corresponding equivalent plano-convex lens 51 is d k,i .
  • the light emitted from the two sides of the above i-th sub-pixel 11 should also be refracted to the two sides of the above (M+1)-i-th viewing zone 8 respectively, so there is a further formula:
  • the refractive structure 5 can be designed according to the above formula, so that the aperture D y of the equivalent plano-convex lens 51 in the Y-axis direction conforms to the above formulas (4) and (5) Requirements.
  • the focal length f is determined according to the following method: the size y of the light-emitting area of the above sub-pixel 11 is 54.9 ⁇ m, corresponding to the size, the minimum focal length f of the plano-convex lens 51 achievable in process is 76.58 ⁇ m.
  • the furthest distance from the viewing optic zone 8 is adjacent c y value of 77.61mm, which is larger than the normal range IPD; this indicates, L corresponding to at least the farthest 261.19mm 2 At the viewing distance, the user's eyes usually cannot be in different viewing zones 8 at the same time.
  • L 2 corresponding to the farthest viewing distance that is feasible in practical applications should be 218.79mm.
  • the refraction structure 5 is an optical plano-convex lens 52 made of a transparent material.
  • the optical plano-convex lens 52 has opposite flat sides and convex curved sides, and the flat side faces the display unit 1.
  • a transparent material with a certain refractive index can be used to form a solid optical plano-convex lens 52 with a convex arc on one side and a plane on the other side as the above refraction structure 5.
  • each optical plano-convex lens 52 of each entity should be directly equal to the corresponding value of the above-mentioned equivalent plano-convex lens 51.
  • the actual plane side of each optical plano-convex lens 52 may be located in the same plane, and the plane may directly contact the surface of the light-emitting side of the display panel (such as the surface of the encapsulation layer 94 away from the substrate 9).
  • the refractive structure 5 is a diffractive plano-convex lens 53 made of a transparent material, such as a Fresnel lens.
  • the diffractive plano-convex lens 53 has opposite plane sides and diffractive structure sides, and the plane side faces the display unit 1.
  • a solid diffractive plano-convex lens 53 can also be used as the above refractive structure 5.
  • the diffractive plano-convex lens 53 has a plane on one side and a diffractive structure on the other side.
  • the diffractive structure can diffract the light and change the direction.
  • the diffraction effect can be equal to that of a convex arc.
  • the refraction effect can make the diffractive structure equivalent to different convex arc surfaces, that is, make the diffractive plano-convex lens 53 equivalent to different plano-convex lenses 51.
  • the actual plane side of the above diffractive plano-convex lens 53 may be located in the same plane, and the plane may directly contact the surface of the light-emitting side of the display panel (for example, the surface of the encapsulation layer 94 away from the substrate 9).
  • the diffractive structure can be divided into K-level ring-shaped gratings (K is an integer greater than or equal to 2) as shown in FIG. 9; wherein, K is determined by the maximum aperture of the diffractive plano-convex lens 53, and approximately outside The higher the number of grating levels.
  • the convex lens 53 may be "two steps”, “four steps”, “eight steps”, “sixteen steps”...etc.
  • "two-step”, “four-step”, and “eight-step” diffractive plano-convex lens 53 are shown as examples.
  • the greater the number of steps P the closer the effect of the diffraction structure is to the convex arc, but the greater the processing difficulty, so the appropriate P can be selected according to the difficulty of the process.
  • phase difference of the light at any two adjacent steps is 2 ⁇ /P.
  • the height h of each step is the same, which is determined by the refractive index of the diffractive plano-convex lens 53 to the light that needs to be refracted.
  • the height h of each step should satisfy the following formula:
  • n s is the refractive index of the diffractive plano-convex lens 53 to light with a wavelength of s (for example, the wavelength of red light)
  • n s ' is the refractive index of the diffractive plano-convex lens 53 to light with a wavelength of s (such as air). Refractive index.
  • n R , n G , and n B of the diffractive plano-convex lens 53 for red, green, and blue light satisfy n R ⁇ n G ⁇ n B , it corresponds to the diffraction of the red, green, and blue display unit 1
  • the heights h R , h G , and h B of the steps in the plano-convex lens 53 should satisfy h R >R G >R B.
  • the u-th (u is a positive integer less than or equal to K) grating is the v-th from the inside to the outside (v is less than Or equal to a positive integer of P) the outer radius of the step is q u,v .
  • each ring (including a hollow ring and a filled ring) is a stepped surface, and it should be understood that the steps therein belong to multiple gratings of different levels.
  • the width Z u,v of the v-th step counted from the inside to the outside in the u-th grating is the difference of the outer radius of two adjacent rings, namely:
  • the above outer radius q u,v , the focal length f and wavelength ⁇ of the diffractive plano-convex lens 53 also satisfy the following formula:
  • the width q u,v that each step should have can be calculated.
  • the outer step width is smaller, or the grating with a larger number of steps has a smaller width.
  • an embodiment of the present disclosure provides a driving method of the above-mentioned display device.
  • the driving method is used to drive the above-mentioned display device to realize naked eye 3D display.
  • the left-eye viewing zone is the viewing zone where the user's left eye is located
  • the right-eye viewing zone is the viewing zone where the user's right eye is located.
  • the above display device When the above display device is used for naked-eye 3D display, first determine that the viewing zone of the current user's left eye is the left-eye viewing zone, and the viewing zone of the current user's right eye is the right-eye viewing zone; and each display unit In the sub-pixels corresponding to the two viewing areas, the left-eye image and the right-eye image are displayed, so that the user's eyes can see the desired images (left-eye image and right-eye image) respectively, and feel a three-dimensional effect.
  • the specific position of the user's eyes can be determined according to the detection result of the position module, and then the two specific viewing zones are determined as the left eye viewing zone and the right eye viewing zone.
  • the viewing position etc., it can be ensured that certain viewing zones must correspond to the user's left eye, and other viewing zones must correspond to the user's right eye, so that all the viewing zones that must correspond to the user's left eye are defaulted to the left eye viewing zone. , The viewing zone that must correspond to the user's right eye is all defaulted to the right eye viewing zone.
  • the display device can only be viewed by one user, that is, there is only one left-eye viewing zone and one right-eye viewing zone at the same time.
  • the display device can also be watched by multiple users at the same time, that is, there are multiple "pairs" of left-eye and right-eye views at the same time.
  • the images displayed in the viewing zones for different users to watch may be the same or different, that is, multiple users may see the same content or different content.
  • the sub-pixels corresponding to other viewing zones in each display unit can be turned off or still display.
  • an embodiment of the present disclosure provides a display panel, which includes a plurality of display units arranged in an array in the above-mentioned display device.
  • the above multiple display units can be arranged in one display panel, so that the display panel of the embodiment of the present disclosure includes multiple sub-pixels, and these sub-pixels constitute the above arrayed display units.
  • control module and position module can also be included in the display panel.
  • the display panel of the embodiment of the present disclosure is matched with the above refraction structure (such as the refraction substrate), a naked eye 3D display can be realized.
  • an embodiment of the present disclosure provides a refractive substrate, which includes a plurality of refractive structures in the above-mentioned display device.
  • a plurality of refraction structures in the above display device can be formed into an independent plate-shaped device (refraction substrate), so that by arranging the refraction substrate of the embodiment of the present disclosure outside the above display panel, naked eye 3D display can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

显示装置,包括:多个阵列排布的显示单元(1);每个显示单元(1)包括m个子像素(11),每个显示单元(1)的m个子像素(11)与m个预定的视区(8)一一对应,m为大于或等于2的整数;与显示单元(1)一一对应的折射结构(5);每个折射结构(5)位于其对应的显示单元(1)的出光侧,每个折射结构(5)用于将其对应的显示单元(1)的每个子像素(11)射出的光分别折射向该子像素(11)对应的视区(8)。

Description

显示装置及其驱动方法 技术领域
本公开实施例涉及裸眼3D显示技术领域,特别涉及显示装置及其驱动方法。
背景技术
为实现裸眼3D(三维)显示(立体显示),可将显示面板的显示区划分为左眼显示区和右眼显示区,例如,各列像素轮流属于左眼显示区和右眼显示区;之后,使左眼显示区显示左眼图像,右眼显示区显示右眼图像,并在显示面板外设置光栅;光栅能将左眼显示区发出的光折射向一个视区(左眼视区),将右眼显示区发出的光折射向另一视区(右眼视区);从而,当用户双眼分别处于两个视区时,可分别看到所需的左眼图像和右眼图像,感受到立体效果。
根据以上裸眼3D显示技术,仅能形成两个视区,故用户双眼必须分别处于两个特定位置(视区)时才能感到立体效果,观看角度和位置受到很大限制,自由度差。
发明内容
本公开实施例提供一种显示装置及其驱动方法。
第一方面,本公开实施例提供一种显示装置,其包括:
多个阵列排布的显示单元;每个所述显示单元包括m个子像素,每个所述显示单元的m个所述子像素与m个预定的视区一一对应,m为大于或等于2的整数;
与所述显示单元一一对应的折射结构;每个所述折射结构位于其对应的显示单元的出光侧,每个所述折射结构用于将其对应的显示单元的每个所述子像素射出的光分别折射向该子像素对应的视区。
在一些实施例中,每个所述显示单元的m个所述子像素阵列排布,且任意两个所述显示单元的所述子像素的排布方式均相同。
在一些实施例中,每个所述显示单元的m个所述子像素排布为M×N的矩阵,其中M为大于或等于2的整数,N为大于或等于2的整数。
在一些实施例中,各所述视区在平行于所述子像素的出光面的基准面上的正投影阵列排布,且排布的方式与所述显示单元的所述子像素的排布方式相同。
在一些实施例中,所有所述显示单元中位于相同的相对位置的所述子像素均对应同一所述视区。
在一些实施例中,每个所述折射结构等效于一个平凸透镜,所述等效的平凸透镜的平面侧朝向所述显示单元;
每个所述显示单元的所有子像素的出光面,均位于该显示单元对应的折射结构等效的平凸透镜的焦平面中。
在一些实施例中,所有所述子像素的出光面均位于同一平面中。
在一些实施例中,所有所述等效的平凸透镜的平面侧位于同一平面中。
在一些实施例中,所有所述等效的平凸透镜的焦距相同。
在一些实施例中,所述显示单元在平行于所述子像素的出光面的基准面上的正投影为显示投影,所述子像素在所述基准面上的正投影为像素投影,所述折射结构在所述基准面上的正投影为折射投影;
所有所述显示投影构成的图形分别相对X轴和Y轴轴对称,所述X轴和所述Y轴位于所述基准面中且相互垂直;
所有所述折射投影构成的图形分别相对所述X轴和所述Y轴轴对称;
每个所述显示投影中的所有所述像素投影成的图形,分别相对平行于所述X轴的方向和平行于所述Y轴的方向轴对称;
除几何中心位于所述Y轴上的所述显示投影外,沿所述X轴方向, 其它所述显示投影的几何中心均比其对应的折射投影的几何中心更远离所述Y轴;
除几何中心位于所述X轴上的所述显示投影外,沿所述Y轴方向,其它所述显示投影的几何中心均比其对应的折射投影的几何中心更远离所述X轴。
在一些实施例中,所述显示投影为矩形,具有平行于所述X轴的第一边和平行于所述Y轴的第二边,各所述显示投影紧密排布;
所述折射投影为矩形,具有平行于所述X轴的第三边和平行于所述Y轴的第四边,各所述折射投影紧密排布;
所述显示投影的所述第一边的长度大于其对应的所述折射投影的所述第三边的长度,所述显示投影的所述第二边的长度大于其对应的所述折射投影的所述第四边的长度。
在一些实施例中,所述折射结构为由透明材料构成的光学平凸透镜,所述光学平凸透镜具有相对的平面侧和凸弧面侧,所述平面侧朝向所述显示单元。
在一些实施例中,所述折射结构为由透明材料构成的衍射式平凸透镜,所述衍射式平凸透镜具有相对的平面侧和衍射结构侧,所述平面侧朝向所述显示单元。
在一些实施例中,同一所述显示单元的m个所述子像素的颜色相同;
所有所述子像素至少分为两种不同颜色。
在一些实施例中,每个所述子像素包括一个发光器件。
在一些实施例中,所述显示装置还包括:
位置模块,用于检测用户眼睛的位置;
控制模块,用于根据所述用户眼睛的位置,确定用户眼睛所在的视区,并控制各所述显示单元的与该视区对应的子像素进行显示。
第二方面,本公开实施例提供一种上述显示装置的驱动方法,其包括:
驱动各所述显示单元中对应左眼视区的子像素显示左眼图像,驱动各所述显示单元中对应右眼视区的子像素显示左眼图像;其中,所述左眼视区为用户左眼所在的视区,所述右眼视区为用户右眼所在的视区。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为本公开实施例提供的一种显示装置中部分显示单元的俯视结构示意图(未示出折射结构);
图2为一些相关技术中部分子像素发出的光与视区的对应关系示意图;
图3为本公开实施例提供的另一种显示装置中部分子像素发出的光与视区的对应关系示意图;
图4为本公开实施例提供的另一种显示装置中一个显示单元处的局部剖面结构示意图;
图5为本公开实施例提供的另一种显示装置的俯视结构示意图;
图6为本公开实施例提供的另一种显示装置的沿Y轴方向的局部剖面结构示意图;
图7为本公开实施例提供的另一种显示装置中各子像素发出的光与视区的对应关系示意图;
图8为本公开实施例提供的另一种显示装置中光学平凸透镜的立体结构示意图;
图9为本公开实施例提供的另一种显示装置中几种台阶数不同的 衍射式平凸透镜的局部剖面结构示意图;
图10为本公开实施例提供的另一种显示装置中二台阶的衍射式平凸透镜的局部俯视结构示意图;
图11为本公开实施例提供的另一种显示装置的组成框图;
图12为本公开实施例提供的一种显示装置的驱动方法的流程示意图;
图13为本公开实施例提供的一种显示面板的组成框图;
图14为本公开实施例提供的一种折射基板的组成框图;
其中,附图标记意义如下:
1、显示单元;11、子像素;19、像素;5、折射结构;51、平凸透镜;52、光学平凸透镜;53、衍射式平凸透镜;8、视区;9、基底;91、阳极;92、发光层;921、出光面;93、阴极;94、封装层;95、像素界定层;OLED、有机发光二极管。
具体实施方式
为使本领域的技术人员更好地理解本公开实施例的技术方案,下面结合附图对本公开实施例提供的显示装置及其驱动方法进行详细描述。
在下文中将参考附图更充分地描述本公开实施例,但是所示的实施例可以以不同形式来体现,且不应当被解释为限于本公开阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本公开实施例可借助本公开的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。
本公开所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本公开所使用的术语“和/或”包括一个或多个相关列举条目的任何和 所有组合。如本公开所使用的单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。如本公开所使用的术语“包括”、“由……制成”,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本公开所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本公开明确如此限定。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。
第一方面,参照图1至图11,本公开实施例提供一种显示装置。
本公开实施例的显示装置可实现裸眼3D显示,即用户在不佩戴3D眼镜等辅助设备的情况下,通过裸眼直接观看该显示装置可感受到立体效果。
本公开实施例的显示装置包括:
多个阵列排布的显示单元1;每个显示单元1包括m个子像素11,每个显示单元1的m个子像素11与m个预定的视区8一一对应,m为大于或等于2的整数。
与显示单元1一一对应的折射结构5;每个折射结构5位于其对应的显示单元1的出光侧,每个折射结构5用于将其对应的显示单元1的每个子像素11射出的光分别折射向该子像素11对应的视区8。
参照图1(其中未示出折射结构),本公开实施例的显示装置包括多个排成阵列的显示单元1,每个显示单元1又包括多个(m个)子像素11。
应当理解,各显示单元1构成的阵列的形式可以是多样的。例如,可参照图1,不同阵列中不同行的显示单元1错开半个位置;或者,也可参照图5,各显示单元1排成由多行和多列构成的标准的“矩阵”。
其中,子像素11是能独立进行显示的最小单元,即每个子像素11可独立的显示所需内容。因此,每个子像素11应具有可单独控制的驱动结构。例如,可通过交叉设置的栅线和数据线驱动子像素11,而栅线和数据线的每个交叉位置定义出一个子像素11。因此,也可理解为,每m个在位置上排在一起的子像素11构成一个显示单元1。
参照图4,本公开实施例的显示装置,在每个显示单元1的出光侧,还设有对应的折射结构5,该折射结构5用于将该显示单元1的每个子像素11发出的光折射向一个对应的视区8。
由此,本公开实施例的显示装置共具有m个(即每个显示单元1中的子像素11数)视区8,在进行显示时,每个显示单元1中的m个子像素11发出的光分别被折射向m个视区8;相对的,每个视区8中的光,分别来自每个显示单元1中的一个子像素11。
在一些相关技术中,参照图2,显示面板中的多个(如3个)排在一起的子像素11构成一个像素19,该像素19在视觉上为一个“显示点”;而不同像素19的光再被光栅等结构分别折射向两个视区8(左眼视区和右眼视区),即其中排在一起且构成一个单元(一个像素19)的子像素11发出的光射向同一方向。
可见,相关技术仅能形成两个视区8,只有当用户位于特定位置,保证双眼分别位于两个视区8中时,才能感到立体效果。
参照图3,本公开实施例中,每个显示单元1中的m个(如3个)子像素11发出的光被分别折射向m个视区8,即其中排在一起且构成一个单元(一个显示单元1)的子像素11发出的光射向不同方向。
由此,本公开实施例中能形成的视区8的个数等于每个显示单元1中的子像素11的个数m,从而其可形成多于两个的视区8,而用户双眼只要分别处于任意两个不同视区8中,即可感到立体效果,实现裸眼3D显示。
由此,用户观看本公开实施例的显示装置时可在较大范围内移动,观看位置更加灵活,自由度更好。
因此,在一些实施例中,m大于或等于3,以使本公开实施例的显示装置能形成至少3个视区8。
进一步的,以上多个视区8可以是排成阵列,即在至少两个不同方向上,都有多个视区8;因此,当用户双眼的连线处于不同方向上时,都有可能使双眼分别处于不同视区8而感到立体效果,即本公开实施例的显示装置可实现旋转观看,例如实现360度的旋转观看。
另外,若本公开实施例的显示装置具有四个或更多的视区8,则可能有多个用户的双眼同时分别位于不同视区8中,即本公开实施例的显示装置可供多个用户同时观看。
总之,本公开实施例的显示装置可大大提升观看体验,以及提高用户感受到的分辨率。
在一些实施例中,以上多个显示单元1可位于一个显示面板中,或者说该显示面板中的子像素11的排布方式可符合以上规律。
在一些实施例中,以上折射结构5可通过沉积等方式直接形成在以上显示面板出光侧。
或者,在另一些实施例中,所有折射结构5也可形成在一个独立的板状器件中,即所有折射结构5可构成一个独立的“折射基板”,而通过将折射基板设于以上显示面板的出光侧,也可得到本公开实施例的显示装置。
在一些实施例中,参照图4,每个子像素11包括一个发光器件。在一些实施例中,发光器件为有机发光二极管OLED。
具体的,每个子像素11可通过一个发光器件实现发光、显示,该发光器件进一步可为有机发光二极管OLED,即以上显示面板可为有机发光二极管显示面板。
参照图4,有机发光二极管OLED可设于基底9上,并由叠置的阳极91、发光层92、阴极93构成;在有机发光二极管OLED远离基底9一侧,还设有封装层94等结构。而且,在实际的有机发光二极管显示面板中,还可设有栅线、数据线、像素电路等其它结构。
应当理解,为实现各子像素11的独立控制,故不同子像素11的阴极93和阳极91中,应有至少一者是相互独立的(图4中以阳极91独立为例);而且,相邻子像素11(包括一个显示单元1中的相邻子像素11,也包括不同显示单元1中的相邻子像素11)间,可以通过像素界定层95(PDL)等隔开。
当然,为设置像素界定层95、栅线、数据线等结构,故参照图4,有机发光二极管OLED不一定占满整个子像素11,而是仅对应子像素11的一部分(即阳极91、发光层92、阴极93仅在部分位置叠置);显然,子像素11中对应有机发光二极管OLED的部分为子像素11的实际发光的区域。
当然,如果子像素11采用其它形式也是可行的,例如,以上显示面板可为液晶显示面板。
在一些实施例中,参照图11,本公开实施例的显示装置还包括:
位置模块,用于检测用户眼睛的位置;
控制模块,用于根据用户眼睛的位置,确定用户眼睛所在的视区8,并控制各显示单元1的与该视区8对应的子像素11进行显示。
本公开实施例的显示装置具有多个视区8,进而,用户的眼睛也可能位于不同的视区8中。因此,可设置位置模块以实时检测用户眼睛的位置。例如,位置模块可为设于以上显示面板中的摄像头,通过采集用户的图像后进行分析,确定用户眼睛的位置。
进而,在确定用户眼睛的位置后,可继续通过控制模块(例如处理器)计算出用户双眼分别各在哪个视区8,并控制对应相应视区8的子像素11显示相应图像,让用户感到立体效果。
由此,本公开实施例的显示装置可根据用户的实际位置进行显示,获得更好的显示效果;同时,其还可使当前无用户眼睛的视区8对应的子像素关闭,以降低功耗和驱动运算量。
当然,本公开实施例的显示装置中也可没有以上位置模块和控制模块。例如,可预先规定多个观看位置(即要求用户必须在特定的观看位置观看),当用户位于任意观看位置时,用户左眼必定在某些视区8,右眼必定在另一些视区8,从而只要让以上两类视区8分别直接显示左眼图像右眼图像,即可保证用户感到立体效果。
在一些实施例中,每个显示单元1的m个子像素11阵列排布,且任意两个显示单元1的子像素11的排布方式均相同。
参照图1,为便于折射结构5的设计,各显示单元1中的子像素11,均可按照相同的方式排成阵列。
在一些实施例中,每个显示单元1的m个子像素11排布为M×N的矩阵,其中M为大于或等于2的整数,N为大于或等于2的整数。
进一步的,参照图1,每个显示单元1的中的各子像素11,也可排成由多行和多列构成的标准的“矩阵”,且每行中的子像素11数量至少为2,每列中的子像素11数量也至少为2。
在一些实施例中,各视区8在平行于子像素11的出光面921的基准面上的正投影阵列排布,且排布的方式与显示单元1的子像素11的排布方式相同。
进一步的,在与出光面921平行且与出光面921有一定距离的截面中,各视区8被截出的图形也可以是阵列排布的,且其排布方式与显示单元1中子像素11的排布方式相同。
例如,每个显示单元1中各子像素11排布以上M×N的矩阵,则视区8总数也等于M×N,且各视区8也排成M×N的矩阵。由此,当用户双眼分别位于两个相互垂直的方向上时,双眼均可分为位于不同视区8中,可实现360度的旋转观看。
在一些实施例中,所有显示单元1中位于相同的相对位置的子像素11均对应同一视区8。
进一步的,各显示单元1中,位于相同的相对位置的子像素11发出的光会被折射到同一视区8。例如,参照图5,其中各显示单元1的左上角的子像素11发出的光被折射到同一视区8,各显示单元1的最上排左边数第二个子像素11发出的光被折射到同一视区8等,并以此类推。
在一些实施例中,同一显示单元1的m个子像素11的颜色相同;所有子像素11至少分为两种不同颜色,且进一步可分为三种不同颜色。
也就是说,子像素11可分为不同颜色(如分为红色子像素11、绿色子像素11、蓝色子像素11),从而使显示装置可实现彩色显示。在彩色显示的情况下,从均匀和简便的角度考虑,优选每个显示单元1中均是同颜色的子像素11,或者说可认为显示单元1也有“颜色”,例如在每行中,可以是红色显示单元1、绿色显示单元1、蓝色显示单元1轮流排布;而不同行中显示单元1的颜色排布顺序可不同。
在实际制作中,发光层92采用蒸镀工艺制作,每一个显示单元1可以对应FMM(精细金属掩模版)上的一个开孔,得到如图4所示的结构;从而在同一个显示单元1中,多个子像素11对应的发光层92是一体的且发光颜色相同,通过多个独立的阳极91加载信号的不同,使得同一显示单元1中的多个子像素11发出不同亮度的光(包括发光和不发光)。
在一些实施例中,每个折射结构5等效于一个平凸透镜51,等效的平凸透镜51的平面侧朝向显示单元1;每个显示单元1的所有子像素11的出光面921,均位于该显示单元1对应的折射结构5等效的平凸透镜51的焦平面中。
也就是说,每个折射结构5在光学上所起的效果,应当相当于一个平凸透镜51,其中,平凸透镜51指一侧为凸弧面(凸弧面侧),另一侧为平面(平面侧)的透镜。
应当理解,“折射结构5等效于平凸透镜51”是指,不论折射结构 5本身为什么形式,其所起的光学效果等于平凸透镜51。例如,折射结构5具体可为光学平凸透镜52、衍射式平凸透镜53等,或者也可为液晶透镜等,后续再详细描述。
当然,由于“平凸透镜51”可以是等效得到的,故在图4、图6等中直接示出了平凸透镜51;但应当理解,这些附图并不代表其中的实际就够就是实体的平凸透镜51。
应当理解,以上等效的平凸透镜51在平行于子像素11的出光面921的基准面上的正投影的形状,需要与显示单元1所占据的区域的形状匹配。例如,参照图5,若显示单元1所占据一个矩形区域,则以上等效的平凸透镜51也应占据一个矩形区域。
其中,该折射结构5的结构设计应当保证,其等效的平凸透镜51的平面侧朝向显示单元1,且显示单元1的子像素11的出光面921位于该等效的平凸透镜51的焦平面(焦面)中。
其中,以上“子像素11的出光面921”是指,子像素11的光可视为从该出光面921发出。例如,参照图4,对以上包括有机发光二极管OLED的子像素11,其出光面921可为有机发光二极管OLED的发光层92的靠近出光侧的表面;故在出光面921外,还设有阴极93、封装层94等结构,之后才可设置折射结构5(等效于平凸透镜51),但该出光面921仍然应当位于平凸透镜51的焦平面中。
其中,参照图4,出光面921与折射结构5之间还具有一些电极(如阴极93)、封装层94等结构,故为保证出光面921位于等效的平凸透镜51的焦平面,等效的平凸透镜51的最上端与出光面921之间的距离H、平凸透镜51的焦距f还应满足以下公式:
H=n jf;
其中,n j为平凸透镜51与出光面921之间的全部介质(阴极93、封装层94等)等效的折射率。
基于平凸透镜51的性质,其可将从其焦平面的同一个位置发出的光(即从出光面921的同一个位置发出的光)折射向相同的方向。因此,以上方式即可保证该等效的平凸透镜51可将来自不同子像素11(即来 自焦平面的不同位置)的光,折射向不同的视区8。
在一些实施例中,所有子像素11的出光面921均位于同一平面中。
参照图4,为简化显示面板的结构,可使所有子像素11的出光面921位于同一个平面中。
在一些实施例中,所有等效的平凸透镜51的平面侧位于同一平面中。
参照图4,为简化结构,可使所有折射结构5等效的平凸透镜51的平面侧也位于同一平面中。
在一些实施例中,所有等效的平凸透镜51的焦距相同。
为简化结构,可使所有折射结构5等效的平凸透镜51具有相同的焦距。
其中,同一个平凸透镜51对不同波长的光的折射效果不同,即对应不同波长的光的焦距不同。因此,当每个显示单元1中的子像素11为同样颜色时,每个显示单元1对应的折射结构5等效出的平凸透镜51的焦距和焦平面,应当均是针对该显示单元1中的子像素11的颜色的。
具体的,而平凸透镜51的焦距f、曲率半径R(指凸弧面侧的曲率半径)满足如下公式:
R=(n s-n s')f;
其中,n s为平凸透镜51对波长为s(例如红光波长)的光的折射率,n s’为平凸透镜51所处环境介质(如空气)对波长为s的光的折射率。
由此可见,为保证焦距f相同,故对应不同颜色的显示单元1的等效的平凸透镜51的曲率半径R可不同。例如,因为平凸透镜51对红色、绿色、蓝色光的折射率n R、n G、n B满足n R<n G<n B;故对应红色、绿色、蓝色显示单元1的平凸透镜51的曲率R R、R G、R B应满足R R<R G<R B
在一些实施例中,显示单元1在平行于子像素11的出光面921的基准面上的正投影为显示投影,子像素11在基准面上的正投影为像素投影,折射结构5在基准面上的正投影为折射投影;
所有显示投影构成的图形分别相对X轴和Y轴轴对称,X轴和Y轴位于基准面中且相互垂直;
所有折射投影构成的图形分别相对X轴和Y轴轴对称;
每个显示投影中的所有像素投影构成的图形,分别相对平行于X轴的方向和平行于Y轴的方向轴对称;
除几何中心位于Y轴上的显示投影外,沿X轴方向,其它显示投影的几何中心均比其对应的折射投影的几何中心更远离Y轴;
除几何中心位于X轴上的显示投影外,沿Y轴方向,其它显示投影的几何中心均比其对应的折射投影的几何中心更远离X轴。
如前,当折射结构5等效于平凸透镜51时,若各等效的平凸透镜51的焦距相同,且与对应的显示单元1的相对位置相同,则平凸透镜51会将不同显示单元1中处于相同相对位置的光出射向多个相互平行的方向,而无法使这些光均射入一个视区8。
为此,可参照图5,使所有显示单元1和折射结构5均以轴对称的形式排布,即所有显示单元1分别相对X轴和Y轴轴对称,所有折射结构5也分别相对X轴和Y轴轴对称。同时,每个显示单元1中的子像素11也是分别相对与X轴和Y轴平行的两个方向(但不一定是X轴和Y轴)轴对称。
进一步的,分别在X轴和Y轴的方向上,每个折射投影的中心均比其对应的显示投影的中心更靠近相应的对称轴。
也就是说,参照图5、图6,显示结构及其等效的平凸透镜51,应当都比其对应的显示单元1更靠近对称中心O(即X轴和Y轴的交点)。由此,除位于对称中心的显示单元1,其它每个显示单元1与对应的平凸透镜51都是“相对偏移”的,且都是平凸透镜51比显示单元1更加偏向对称中心O。
通过这种平凸透镜51与显示单元1位置的“相对偏移”,即可使各平凸透镜51能将其对应的显示单元1中各子像素11的光折射向所需视区8。
应当理解,由于图5是俯视图,故其中各结构的位置分布,也就相当于各结构在基准面的正投影的位置分布;同时,由于折射结构5实际是“挡在”显示单元1前的,故图5中折射结构5用虚线表示。
在一些实施例中,显示投影为矩形,具有平行于X轴的第一边和平行于Y轴的第二边,各显示投影紧密排布;
折射投影为矩形,具有平行于X轴的第三边和平行于Y轴的第四边,各折射投影紧密排布;
显示投影的第一边的长度大于其对应的折射投影的第三边的长度,显示投影的第二边的长度大于其对应的折射投影的第四边的长度。
也就是说,参照图5、图6,折射结构5和显示单元1可以均是矩形的,且间无间隙的紧密排布,同时个折射结构5均比其对应的显示单元1“更小”;或者说,每个等效的平凸透镜51口径均比相应的显示单元1的尺寸小,即等效的平凸透镜51存在“口径收缩”。
参照图5、图6,根据以上条件,在位于对称中心O的折射结构5和显示单元1对齐的情况下,其它折射结构5自然会在X轴方向和Y轴方向上,都比其对应的显示单元1更偏向对称中心O;且距离对称中心越远时,折射结构5与对应的显示单元1之间的位置偏移就越大。
根据以上方式,可简便的实现折射结构5与显示单元1的排布满足以上需求。
下面对符合以上实施例的要求的显示装置中的显示单元1、子像素11、等效的平凸透镜51等的尺寸进行示例性的分析。
参照图5,每个显示单元1为均矩形,其中矩形两边分别与X轴和Y轴平行;而多个显示单元1排成矩阵,阵列的列方向和行方向分别与X轴和Y轴平行,且矩阵整体分别相对X轴和Y轴轴对称。由此,对称中心O也就是所有显示单元1的矩阵的几何中心。
每个显示单元1中有M×N=m个排成矩阵的子像素11,其中,沿Y 轴方向,每个显示单元1中每排有M个子像素11;而沿X轴方向,每个显示单元1中每排有N个子像素11。而且,每个显示单元1中的子像素11的矩阵整体分别相对平行于X轴的方向和平行于Y轴的方向轴对称。相应的,显示装置共对应有M×M个排成矩阵的视区8。
其中,折射结构5(平凸透镜51)也为矩阵,也排成矩阵,也按照以上方式轴对称;且折射结构5的矩形比显示单元1的矩形更小。
其中,所有显示单元1在X轴方向上的总尺寸(即显示面板显示区的尺寸)为w x,在y轴方向上的总尺寸w y;每个显示单元1在X轴方向上的尺寸为x,在y轴方向上的尺寸为y;每个子像素11在X轴方向上的尺寸(pitch)为p x,在y轴方向上的尺寸(pitch)为p y;每个子像素11中,实际发光的区域(如形成以上有机发光二极管OLED的区域)在X轴方向上的尺寸为t x,在y轴方向上的尺寸为t y。而折射结构5等效出的平凸透镜51等效的在X轴方向上的口径(尺寸)为D x,在y轴方向上的口径(尺寸)为D y
参照图7,在平行于Y轴且垂直于子像素11的出光面921的截面中,会形成M个视区8(图中麻点区域)。
其中,为简便,图7中仅示出位于两端的两个显示单元1和位于中间的一个显示单元1中的各子像素11射出的光的情况。
同时,图7中视区8的数量与图5中子像素11的数量不是正好对应的,这是为了在图5中清楚的显示出各子像素11,避免子像素11过小。
参照图7,每个视区8中的光来自各显示单元1中排在相同相对位置的子像素11。例如,每个显示单元1中位于最左侧的子像素11发出的光,均被折射至最右侧的视区8中,每个显示单元1中位于最右侧的子像素11发出的光,均被折射至最左侧的视区8中。
可见,视区8宽度最大的位置(即相邻视区8相互接触的位置)与显示装置的距离为最佳观看距离L,而最近观看距离比最佳观看距离L还小L 1,最远观看距离则比最佳观看距离L还大L 2
进一步的,最佳观看距离L处每个视区8的宽度为a y,最近观看距离处相邻视区8间的距离为b y,最远观看距离处相邻视区8间的距离为 c y
从而可以得出,以上各距离与用户瞳距e间优选应满足以下公式:
a y≤e       (1);
(M-1)b y≥e     (2);
c y≤e      (3)。
其中,公式(1)是为了保证在最佳观看距离L处,用户双眼不会同时处于一个视区8,即用户双眼永远分别处于不同视区8中。
公式(3)表示在最远观看距离处,视区8之间的距离c y小于瞳距,故当用户一只眼睛位于一个视区8中时,另一只眼睛可能进入另一视区8,而不会“达不到”另一视区8。
从图7中可见,b y必定是小于c y的,故公式(2)表示在最近观看距离处,当用户一只眼睛位于一个视区8中时,另一只眼睛仍处于可能存在视区8的范围,而不是“超出可能存在视区8的范围”。
进一步的,参照图7,以上各视区8是由各子像素11发出的光经焦距为f的平凸透镜51折射得到的,故根据三角关系,可进一步得到下公式:
Figure PCTCN2019121966-appb-000001
Figure PCTCN2019121966-appb-000002
Figure PCTCN2019121966-appb-000003
Figure PCTCN2019121966-appb-000004
进一步整理,可得以下公式:
Figure PCTCN2019121966-appb-000005
Figure PCTCN2019121966-appb-000006
Figure PCTCN2019121966-appb-000007
Figure PCTCN2019121966-appb-000008
Figure PCTCN2019121966-appb-000009
进一步的,以位于对称中心O为基准,位于其任意一侧的第k个显示单元1中,从右起的第i个(i为小于或等于M的正整数)子像素11的中心发出的光,应被折射指从右起的第(M+1)-i个视区8的中心,而该视区8的Y轴坐标值(以上对称中心为原点)为:
[i-(M+1)/2]a y
其中,以上坐标值可为负,表示视区8可位于在原点(对称中心O)左侧。
同时,以上第k个显示单元1中,第i个子像素11与其对应的等效的平凸透镜51的中心间的距离为d k,i
在图5中,以k=3,i=2为例,示出了沿Y轴方向的距离d 3,2。应当理解,其它各d k,i的确定方式与此相同。
由此,参照图7,根据三角关系,可得出以下公式:
Figure PCTCN2019121966-appb-000010
Figure PCTCN2019121966-appb-000011
进一步整理可得:
Figure PCTCN2019121966-appb-000012
进一步的,参照图7,以上第i个子像素11两侧边发出的光,也应分别被折射到以上第(M+1)-i个视区8的两侧边,因此进一步有公式:
Figure PCTCN2019121966-appb-000013
进一步整理可得:
Figure PCTCN2019121966-appb-000014
由此,可以求出每个等效的平凸透镜51在Y轴方向上的口径D y的最佳尺寸是:
Figure PCTCN2019121966-appb-000015
且该尺寸D y可浮动的范围是:
Figure PCTCN2019121966-appb-000016
也就是说,可根据显示单元1和子像素11的尺寸,按照以上公式设计折射结构5,使其等效的平凸透镜51在Y轴方向上的口径D y符合以上公式(4)和(5)的要求。
同时,还可进一步得知,在Y轴方向上的3D视角范围ω y(即最外侧的两个视区的两个外侧边之间的夹角)满足以下公式(6):
Figure PCTCN2019121966-appb-000017
当然,应当理解,基于同样的原理,所有结构在X轴方向上所符合的关系均与以上公式(1)至(6)对应,只是其中所有的y应换成x,且所有的M换成N而已,在此不再详细描述。
示例性的,假设某本公开实施例的显示装置中,部分参数设定如下表。
表1、本公开实施例的显示装置中部分参数的设计值:
Figure PCTCN2019121966-appb-000018
其中,焦距f根据以下方式确定:以上子像素11发光区尺寸y为54.9μm,对应该尺寸,工艺上能实现的平凸透镜51的最小焦距f即为76.58μm。
由此,可根据以上公式(1)至(6),进一步计算得到部分结构的 参数如下表:
表2、本公开实施例的显示装置中部分参数的计算值:
Figure PCTCN2019121966-appb-000019
其中,上表中,最远观看距离处相邻视区8间的距离为c y取值为77.61mm,其大于通常的瞳距范围;这表明,在对应以上261.19mm的L 2的最远观看距离处,用户的双眼通常无法同时处于不同视区8中。
为此,以常规的瞳距为60mm进行重新计算,可确定在实际应用中可行(即能实现3D显示)的最远观看距离对应的L 2应为218.79mm。
在一些实施例中,折射结构5为由透明材料构成的光学平凸透镜52,光学平凸透镜52具有相对的平面侧和凸弧面侧,平面侧朝向显示单元1。
也就是说,参照图8,可采用具有一定折射率的透明材料,构成一侧为凸弧面、一侧为平面的,实体的光学平凸透镜52,作为以上折射结构5。
应当理解,此时每个实体的光学平凸透镜52的结构(如孔径、曲率半径等),就应当直接等于以上等效的平凸透镜51的相应值。例如,各光学平凸透镜52的实际存在的平面侧,可就是位于同一平面中,且该平面可直接与显示面板出光侧的表面(如封装层94远离基底9的表面)接触。
在一些实施例中,折射结构5为由透明材料构成的衍射式平凸透镜53,例如菲涅尔透镜,衍射式平凸透镜53具有相对的平面侧和衍射结构侧,平面侧朝向显示单元1。
也就是说,参照图9,也可用实体的衍射式平凸透镜53作为以上折射结构5。其中,衍射式平凸透镜53一侧为平面,另一侧设有的衍射结 构,衍射结构可使光发生衍射而改变方向,通过设计具体的衍射结构,可使其衍射效果等于一个凸弧面的折射效果,即可使该衍射结构等效于不同的凸弧面,也就是使衍射式平凸透镜53等效于不同的平凸透镜51。
其中,以上衍射式平凸透镜53的实际存在的平面侧,可就是位于同一平面中,且该平面可直接与显示面板出光侧的表面(如封装层94远离基底9的表面)接触。
具体的,衍射结构可参照图9所示,分为K级圆环状的光栅(K为大于或等于2的整数);其中,K由衍射式平凸透镜53的最大口径决定,而约靠外的光栅级数越高。
其中,每级光栅均由P=2 g个台阶组成,g为正整数,故每级光栅中的台阶数P均相同,可为2、4、8、16…等,即相应的衍射式平凸透镜53可为“二台阶”、“四台阶”、“八台阶”、“十六台阶”…等。图9中,示出了“二台阶”、“四台阶”、“八台阶”衍射式平凸透镜53作为例子。
其中,以上台阶数P越大,则衍射结构的作用越接近于凸弧面,但加工难度也越大,故可根据工艺难度选择合适的P。
其中,确定任意两相邻台阶处的光的相位差为2π/P。
其中,每个台阶的高度h均相同,其由衍射式平凸透镜53对需要折射的光的折射率决定,例如,对波长为s的光,每个台阶的高度h应满足以下公式:
Figure PCTCN2019121966-appb-000020
其中,n s为衍射式平凸透镜53对波长为s(例如红光波长)的光的折射率,n s’为衍射式平凸透镜53所处环境介质(如空气)对波长为s的光的折射率。
如前,因为衍射式平凸透镜53对红色、绿色、蓝色光的折射率n R、n G、n B满足n R<n G<n B;故对应红色、绿色、蓝色显示单元1的衍射式平凸透镜53中的台阶的高度h R、h G、h B应满足h R>R G>R B
其中,参照图10(其中以“二台阶”的衍射式平凸透镜53为例), 第u级(u为小于或等于K的正整数)光栅中从内向外数的第v个(v为小于或等于P的正整数)台阶的外圆半径为q u,v
图10中,每个圆环(包括空心圆环和有填充的圆环)为一个台阶的表面,应当理解,其中的台阶分别属于多个不同级的光栅。
显然,第u级光栅中从内向外数的第v个台阶的宽度Z u,v为相邻两个圆环的外圆半径的差,即:
Z u,v=q u,v-q u,v-1
同时,以上外圆半径q u,v、衍射式平凸透镜53的焦距f、波长λ还满足如下公式:
Figure PCTCN2019121966-appb-000021
由此,即可算出每个台阶应有的宽度q u,v,显然,根据以上公式,越靠外的台阶宽度越小,或者级数越大的光栅的宽度越小。
其中,由于红色、绿色、蓝色的光的波长λ R、λ G、λ B满足λ RGB;由此可知,在对应红色、绿色、蓝色的显示单元1的衍射式平凸透镜53中,对同级光栅中的同样次序的台阶的宽度也是逐渐降低的。
第二方面,参照图12,本公开实施例提供一种上述显示装置的驱动方法。
该驱动方法用于驱动上述显示装置实现裸眼3D显示。
本公开实施例的驱动方法具体包括:
S201、驱动各显示单元中对应左眼视区的子像素显示左眼图像,驱动各显示单元中对应右眼视区的子像素显示左眼图像。
其中,左眼视区为用户左眼所在的视区,右眼视区为用户右眼所在的视区。
当采用以上显示装置进行裸眼3D显示时,可首先确定当前用户左眼所在的视区为左眼视区,以及确定当前用户右眼所在的视区为右眼视区;并分别使各显示单元中,对应这两个视区的子像素显示左眼图像和 右眼图像,以使用户双眼分别看到所需的图像(左眼图像和右眼图像),感到立体效果。
其中,当显示装置包括以上位置模块和控制模块时,可根据位置模块的检测结果确定用户眼睛的具体位置,进而确定两个具体的视区为左眼视区和右眼视区。
或者,也可通过预先设定观看位置等方式,保证某些视区必然对应用户左眼,其它视区必然对应用户右眼,从而将必然对应用户左眼的视区全部默认为左眼视区,将必然对应用户右眼的视区全部默认为右眼视区。
其中,显示装置可仅供一个用户观看,即同时仅有一个左眼视区和一个右眼视区。
或者,显示装置也可供多个用户同时观看,即可同时存在多“对”左眼视区和右眼视区。进一步的,供不同用户观看的视区显示的图像可以相同,也可不同,即多个用户可看到相同的内容,也可分别看到不同的内容。
其中,当仅有部分视区为左眼视区和右眼视区时,各显示单元中对应其它视区的子像素可关闭,也可仍进行显示。
第三方面,参照图13,本公开实施例提供一种显示面板,其包括上述显示装置中的多个阵列排布的显示单元。
即可将以上多个显示单元设于一个显示面板中,从而本公开实施例的显示面板包括多个子像素,且这些子像素构成以上阵列排布的显示单元。
其中,以上控制模块和位置模块也可包括在该显示面板中。
由此,当本公开实施例的显示面板与以上折射结构(如折射基板)配合时,可实现裸眼3D显示。
第四方面,参照图14,本公开实施例提供一种折射基板,其包括上 述显示装置中的多个折射结构。
即,可将以上显示装置中的多个折射结构组成一个独立的板状器件(折射基板),从而通过将本公开实施例的折射基板设于以上显示面板外,可实现裸眼3D显示。
本公开已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (17)

  1. 一种显示装置,其包括:
    多个阵列排布的显示单元;每个所述显示单元包括m个子像素,每个所述显示单元的m个所述子像素与m个预定的视区一一对应,m为大于或等于2的整数;
    与所述显示单元一一对应的折射结构;每个所述折射结构位于其对应的显示单元的出光侧,每个所述折射结构用于将其对应的显示单元的每个所述子像素射出的光分别折射向该子像素对应的视区。
  2. 根据权利要求1所述的显示装置,其中,
    每个所述显示单元的m个所述子像素阵列排布,且任意两个所述显示单元的所述子像素的排布方式均相同。
  3. 根据权利要求2所述的显示装置,其中,
    每个所述显示单元的m个所述子像素排布为M×N的矩阵,其中M为大于或等于2的整数,N为大于或等于2的整数。
  4. 根据权利要求2所述的显示装置,其中,
    各所述视区在平行于所述子像素的出光面的基准面上的正投影阵列排布,且排布的方式与所述显示单元的所述子像素的排布方式相同。
  5. 根据权利要求2所述的显示装置,其中,
    所有所述显示单元中位于相同的相对位置的所述子像素均对应同一所述视区。
  6. 根据权利要求1所述的显示装置,其中,
    每个所述折射结构等效于一个平凸透镜,所述等效的平凸透镜的平面侧朝向所述显示单元;
    每个所述显示单元的所有子像素的出光面,均位于该显示单元对应的折射结构等效的平凸透镜的焦平面中。
  7. 根据权利要求6所述的显示装置,其中,
    所有所述子像素的出光面均位于同一平面中。
  8. 根据权利要求6所述的显示装置,其中,
    所有所述等效的平凸透镜的平面侧位于同一平面中。
  9. 根据权利要求6所述的显示装置,其中,
    所有所述等效的平凸透镜的焦距相同。
  10. 根据权利要求6所述的显示装置,其中,
    所述显示单元在平行于所述子像素的出光面的基准面上的正投影为显示投影,所述子像素在所述基准面上的正投影为像素投影,所述折射结构在所述基准面上的正投影为折射投影;
    所有所述显示投影构成的图形分别相对X轴和Y轴轴对称,所述X轴和所述Y轴位于所述基准面中且相互垂直;
    所有所述折射投影构成的图形分别相对所述X轴和所述Y轴轴对称;
    每个所述显示投影中的所有所述像素投影成的图形,分别相对平行于所述X轴的方向和平行于所述Y轴的方向轴对称;
    除几何中心位于所述Y轴上的所述显示投影外,沿所述X轴方向,其它所述显示投影的几何中心均比其对应的折射投影的几何中心更远离所述Y轴;
    除几何中心位于所述X轴上的所述显示投影外,沿所述Y轴方向,其它所述显示投影的几何中心均比其对应的折射投影的几何中心更远离所述X轴。
  11. 根据权利要求10所述的显示装置,其中,
    所述显示投影为矩形,具有平行于所述X轴的第一边和平行于所述Y轴的第二边,各所述显示投影紧密排布;
    所述折射投影为矩形,具有平行于所述X轴的第三边和平行于所述Y轴的第四边,各所述折射投影紧密排布;
    所述显示投影的所述第一边的长度大于其对应的所述折射投影的所述第三边的长度,所述显示投影的所述第二边的长度大于其对应的所述折射投影的所述第四边的长度。
  12. 根据权利要求6所述的显示装置,其中,
    所述折射结构为由透明材料构成的光学平凸透镜,所述光学平凸透镜具有相对的平面侧和凸弧面侧,所述平面侧朝向所述显示单元。
  13. 根据权利要求6所述的显示装置,其中,
    所述折射结构为由透明材料构成的衍射式平凸透镜,所述衍射式平凸透镜具有相对的平面侧和衍射结构侧,所述平面侧朝向所述显示单元。
  14. 根据权利要求1所述的显示装置,其中,
    同一所述显示单元的m个所述子像素的颜色相同;
    所有所述子像素至少分为两种不同颜色。
  15. 根据权利要求1所述的显示装置,其中,
    每个所述子像素包括一个发光器件。
  16. 根据权利要求1所述的显示装置,其中,还包括:
    位置模块,用于检测用户眼睛的位置;
    控制模块,用于根据所述用户眼睛的位置,确定用户眼睛所在的视区,并控制各所述显示单元的与该视区对应的子像素进行显示。
  17. 一种显示装置的驱动方法,其中,所述显示装置为权利要求1至16中任意一项所述的显示装置,所述驱动方法包括:
    驱动各所述显示单元中对应左眼视区的子像素显示左眼图像,驱动各所述显示单元中对应右眼视区的子像素显示左眼图像;其中,所述左眼视区为用户左眼所在的视区,所述右眼视区为用户右眼所在的视区。
PCT/CN2019/121966 2019-11-29 2019-11-29 显示装置及其驱动方法 WO2021102909A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/981,768 US11818330B2 (en) 2019-11-29 2019-11-29 Display device and driving method thereof
PCT/CN2019/121966 WO2021102909A1 (zh) 2019-11-29 2019-11-29 显示装置及其驱动方法
EP19945394.5A EP4067989A4 (en) 2019-11-29 2019-11-29 DISPLAY DEVICE AND RELATED DRIVE METHOD
CN201980002693.9A CN113366382A (zh) 2019-11-29 2019-11-29 显示装置及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121966 WO2021102909A1 (zh) 2019-11-29 2019-11-29 显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2021102909A1 true WO2021102909A1 (zh) 2021-06-03

Family

ID=76129005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121966 WO2021102909A1 (zh) 2019-11-29 2019-11-29 显示装置及其驱动方法

Country Status (4)

Country Link
US (1) US11818330B2 (zh)
EP (1) EP4067989A4 (zh)
CN (1) CN113366382A (zh)
WO (1) WO2021102909A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493427A (en) * 1993-05-25 1996-02-20 Sharp Kabushiki Kaisha Three-dimensional display unit with a variable lens
CN103792753A (zh) * 2012-10-31 2014-05-14 大昱光电股份有限公司 裸眼式立体显示装置及其液晶透镜
CN104035203A (zh) * 2014-06-28 2014-09-10 中航华东光电(上海)有限公司 一种亮度无损失视点可调的裸眼3d显示系统及方法
CN104155824A (zh) * 2014-08-08 2014-11-19 京东方科技集团股份有限公司 一种主动式光栅、裸眼3d显示装置及显示方法
US20160054573A1 (en) * 2013-06-05 2016-02-25 Panasonic Intellectual Property Management Co., Ltd. Image display apparatus
CN105446050A (zh) * 2016-01-08 2016-03-30 京东方科技集团股份有限公司 3d显示控制系统及方法
CN105933697A (zh) * 2016-06-30 2016-09-07 北京邮电大学 一种光栅参数输出的方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425408B (zh) * 2016-01-05 2017-11-24 京东方科技集团股份有限公司 一种三维显示装置及其驱动方法
CN105742328A (zh) * 2016-03-04 2016-07-06 京东方科技集团股份有限公司 一种显示基板、其制作方法及显示面板
CN106531767B (zh) * 2016-11-30 2019-07-12 上海天马有机发光显示技术有限公司 一种显示面板、驱动方法以及电子设备
CN106847208B (zh) * 2017-01-13 2020-11-17 京东方科技集团股份有限公司 一种液晶显示器及其驱动方法
FR3071625B1 (fr) * 2017-09-26 2019-09-27 Alioscopy Systeme et procede d'affichage d'une image autostereoscopique a 2 points de vue sur un ecran d'affichage autostereoscopique a n points de vue et procede de controle d'affichage sur un tel ecran d'affichage
CN107749282A (zh) * 2017-11-03 2018-03-02 惠科股份有限公司 一种显示面板及显示装置
CN107783304B (zh) 2017-11-08 2020-04-28 京东方科技集团股份有限公司 显示装置和显示装置的驱动方法
EP4006892A4 (en) * 2019-07-31 2022-12-21 BOE Technology Group Co., Ltd. DISPLAY BOARD, DISPLAY DEVICE AND DRIVE METHOD

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493427A (en) * 1993-05-25 1996-02-20 Sharp Kabushiki Kaisha Three-dimensional display unit with a variable lens
CN103792753A (zh) * 2012-10-31 2014-05-14 大昱光电股份有限公司 裸眼式立体显示装置及其液晶透镜
US20160054573A1 (en) * 2013-06-05 2016-02-25 Panasonic Intellectual Property Management Co., Ltd. Image display apparatus
CN104035203A (zh) * 2014-06-28 2014-09-10 中航华东光电(上海)有限公司 一种亮度无损失视点可调的裸眼3d显示系统及方法
CN104155824A (zh) * 2014-08-08 2014-11-19 京东方科技集团股份有限公司 一种主动式光栅、裸眼3d显示装置及显示方法
CN105446050A (zh) * 2016-01-08 2016-03-30 京东方科技集团股份有限公司 3d显示控制系统及方法
CN105933697A (zh) * 2016-06-30 2016-09-07 北京邮电大学 一种光栅参数输出的方法及装置

Also Published As

Publication number Publication date
US20230094018A1 (en) 2023-03-30
US11818330B2 (en) 2023-11-14
EP4067989A4 (en) 2022-11-09
EP4067989A1 (en) 2022-10-05
CN113366382A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2021244216A1 (zh) 一种显示面板及其显示方法和显示装置
US7474466B2 (en) Stereoimage formation apparatus and stereoimage display unit
KR102428834B1 (ko) 표시 장치
KR101796501B1 (ko) 개인 몰입형 장치의 표시장치
CN106019605B (zh) 近眼显示装置和方法
CN112652728B (zh) 一种显示面板及显示装置
CN103748874B (zh) 自动立体显示设备
US20100027113A1 (en) Display device
US20150009560A1 (en) Stereoscopic display device
US20240036351A1 (en) Display panel and display apparatus
US8743113B2 (en) Stereoscopic image display apparatus
CN111638600B (zh) 一种近眼显示的方法、装置及可穿戴设备
CN112987295B (zh) 近眼显示装置和虚拟/增强现实设备
WO2021102909A1 (zh) 显示装置及其驱动方法
JP2008304715A (ja) 表示装置及び照明装置
TWI765842B (zh) 裸視立體顯示裝置及顯示方法
US20240094538A1 (en) Near-eye Display Device and Construction Method for Metasurface Lens
US20130128351A1 (en) Prism array to mitigate moiré effect in autostereoscopic displays
WO2023216541A1 (zh) 显示装置
CN218272765U (zh) 用于3d显示的透镜及3d显示装置
CN115241257A (zh) 显示面板及显示装置
WO2022227025A1 (zh) 双栅线阵列基板、显示面板
WO2022198455A1 (zh) 显示装置及其显示方法
WO2024113267A1 (zh) 显示装置
WO2024036638A1 (zh) 显示面板以及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019945394

Country of ref document: EP

Effective date: 20220629