WO2021102895A1 - 用于随机接入的方法和装置 - Google Patents

用于随机接入的方法和装置 Download PDF

Info

Publication number
WO2021102895A1
WO2021102895A1 PCT/CN2019/121924 CN2019121924W WO2021102895A1 WO 2021102895 A1 WO2021102895 A1 WO 2021102895A1 CN 2019121924 W CN2019121924 W CN 2019121924W WO 2021102895 A1 WO2021102895 A1 WO 2021102895A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
terminal device
access resource
correspondence
detection sequence
Prior art date
Application number
PCT/CN2019/121924
Other languages
English (en)
French (fr)
Inventor
黄煌
邵华
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980102588.2A priority Critical patent/CN114731702A/zh
Priority to EP19954114.5A priority patent/EP4054272A4/en
Priority to CA3163123A priority patent/CA3163123A1/en
Priority to PCT/CN2019/121924 priority patent/WO2021102895A1/zh
Publication of WO2021102895A1 publication Critical patent/WO2021102895A1/zh
Priority to US17/827,518 priority patent/US20220287109A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • This application relates to the communication field, and more specifically, to a method and apparatus for random access in the communication field.
  • terminal equipment obtains uplink synchronization with network equipment through a random access process.
  • the terminal device needs to first determine the random access resource according to the random resource configuration information broadcast by the network device, where the random resource configuration information is used to indicate the correspondence between the reference signal and the random access resource; specifically, When a terminal device detects a certain reference signal, it determines a random access resource according to the random resource configuration information, and sends a random access preamble to the network device on the determined random access resource.
  • the network device may send one reference signal through one beam, and each reference signal sent by each beam corresponds to a corresponding random access resource.
  • SSB synchronization signals/physical broadcast channels
  • the terminal device When the terminal device receives the SSB, it cannot determine on which crest of a beam the SSB is received. Accordingly, the terminal device cannot determine whether to send random access.
  • the resources of the preamble make it impossible to initiate random access. Therefore, a method for determining random access resources is urgently needed.
  • the present application provides a method and device for random access, which can determine random access resources, and use the random access resources to initiate random access, thereby improving the success rate of random access.
  • a method for random access including: a terminal device obtains reference signal grouping information, where the grouping information is used to indicate the grouping status of the reference signal; if the terminal device detects the network The at least one reference signal sent by the device determines the first random access resource for sending the random access preamble according to the grouping information; the terminal device sends the random access resource to the network device on the first random access resource. Enter the preamble.
  • the terminal device can use the grouping information of the reference signal to determine the first random access resource for sending the random access preamble, which helps the terminal device to send random access to the network device on the first random access resource.
  • the preamble can improve the success rate of random access.
  • the reference signal may be SSB.
  • the terminal device may obtain the grouping information from the network device.
  • the grouping information is used to indicate the quantity of each group of reference signals, for example, there is a group of reference signals by default, and there is no need to indicate the quantity of groups.
  • the grouping information is used to indicate the total number of groups of reference signals. For example, there is one reference signal per group of reference signals by default, and the number of reference signals per group is not indicated.
  • the grouping information is used to indicate that the M reference signals are a group, and there are a total of N groups of reference signals, and M and N are positive integers.
  • the terminal device determines the first random access resource for sending the random access preamble according to the grouping information includes: the terminal device determines the first detection sequence according to the grouping information; the terminal device determines the first detection sequence according to the grouping information; The first detection sequence determines the first random access resource.
  • the length of the first detection sequence is related to M.
  • the first detection sequence may be a quantized detection sequence.
  • the first detection sequence consists of 0 and 1. 1 means that the reference signal is received, and 0 means that the reference signal is not received.
  • the terminal device determining the first random access resource according to the first detection sequence includes:
  • the terminal device determines a first random access resource for transmitting the random access preamble according to the first detection sequence and a first correspondence, and the first correspondence is used to indicate that at least one detection sequence is associated with at least one random access resource.
  • the at least one detection sequence includes the first detection sequence
  • the at least one random access resource includes the first random access resource.
  • the method further includes: the terminal device obtains the first correspondence from the network device.
  • the first correspondence relationship may be stipulated in an agreement.
  • the terminal device determining the first random access resource according to the first detection sequence includes: the terminal device determining the first random access resource according to the first detection sequence and the second correspondence relationship
  • the network device sends the first peak of the at least one reference signal, the second correspondence is used to indicate that at least one detection sequence corresponds to the at least one peak, the at least one detection sequence includes the first detection sequence, and the At least one wave crest includes the first wave crest;
  • the terminal device determines the first random access resource for sending the random access preamble according to the first wave crest and a third correspondence, and the third correspondence is used to indicate that the at least one wave crest is associated with at least One random access resource corresponds, and the at least one random access resource includes the first random access resource.
  • the method further includes: the terminal device obtains the second correspondence and the third correspondence from the network device.
  • the second correspondence and the third correspondence may be stipulated in an agreement.
  • the terminal device detects the at least one reference signal
  • the first detection sequence is obtained according to the grouping information and the index of the at least one reference signal.
  • the terminal device can determine the total number of reference signals according to the grouping information, and can preset the index of the reference signal. For example, if the terminal device determines that the number of reference signals is M*N, the indexes of the M*N reference signals are respectively 0, 1, ..., M*N-1, where * means multiplication operation.
  • the grouping information is also used to indicate the peak information of each group of reference signals to be sent.
  • the terminal device determines the first random access resource for sending the random access preamble according to the grouping information:
  • the terminal device determines the first wave crest according to the grouping information
  • the terminal device determines the first random access resource for sending the random access preamble according to the first wave crest and a fourth correspondence, and the fourth correspondence is used to indicate that at least one wave crest is associated with at least one random access resource.
  • the at least one wave crest includes the first wave crest
  • the at least one random access resource includes the first random access resource.
  • the crest information of each group of reference signals is used to indicate the crest used by the network device to send each group of reference signals.
  • the terminal device detects at least one reference signal sent by the network device, the first peak is determined according to the value of the reference signal, the N sets of reference signals indicated by the grouping information, and the peak information of each set of reference signals .
  • the terminal device may also obtain a parameter for determining the first wave crest from the network device.
  • a parameter for determining the first wave crest For example, the peak base parameter.
  • the method further includes: the terminal device obtains a reference signal received power RSRP threshold from the network device; the method further includes: if the RSRP of the at least one reference signal is greater than the RSRP Threshold, the terminal device determines that the at least one reference signal is detected.
  • the RSRP threshold may be preset.
  • the terminal device acquiring the grouping information of the reference information includes:
  • the terminal device obtains the grouping information of the reference signal from a network device.
  • the method further includes: the terminal device receives the total number of peaks of the reference signal sent by the network device.
  • the method further includes: the terminal device may receive the number of peaks of each reference signal sent by the network device.
  • the terminal device may determine the correspondence between the crest of each reference signal and the random access resource according to the correspondence between the beam and the random access resource.
  • a method for random access including: a network device sends reference signal grouping information to a terminal device, the grouping information is used for the grouping of the reference signal, and the grouping information is used for the The terminal device determines the first random access resource; the network device sends a reference signal;
  • the network device receives a random access preamble from the terminal device on the first random access resource.
  • the network device can send the grouping information of the reference signal to the terminal device, and the terminal device can use the grouping information to determine the first random access resource for sending the random access preamble, thereby improving the success rate of random access.
  • the reference signal may be SSB.
  • the grouping information is used to indicate the quantity of each group of reference signals, for example, there is a group of reference signals by default, and there is no need to indicate the quantity of groups.
  • the grouping information is used to indicate the total number of groups of reference signals. For example, there is one reference signal for each group of reference signals by default, and the number of reference signals for each group is not indicated.
  • the grouping information is used to indicate that the M reference signals are a group, and there are N groups of reference signals in total, and M and N are positive integers.
  • the grouping information is specifically used for the terminal device to determine a first detection sequence, and the first detection sequence is used for the terminal device to determine the first random access resource.
  • the grouping information is used to indicate that M reference signals are a group, there are N groups of reference signals in total, and M and N are positive integers, then the length of the first detection sequence is related to M.
  • the first detection sequence may be a quantized detection sequence.
  • the first detection sequence consists of 0 and 1. 1 means that the reference signal is received, and 0 means that the reference signal is not received.
  • the grouping information is specifically used by the terminal device to determine a first peak, and the first peak is used by the terminal device to determine the first random access resource.
  • the method further includes: the network device determines, according to the first random access resource, a first peak for sending the random access response to the terminal device;
  • the network device sends the random access response to the terminal device through the first wave crest.
  • the determining, according to the first random access resource, by the network device to send the first peak of the random access response to the terminal device includes:
  • the network device determines the first detection sequence according to a first correspondence and the first random access resource, where the first correspondence is used to indicate that at least one detection sequence corresponds to at least one random access resource, and At least one detection sequence includes the first detection sequence, and the at least one random access resource includes the first random access resource;
  • the network device determines the first wave peak for sending the random access response to the terminal device according to the second correspondence and the first detection sequence, and the second correspondence is used to indicate that at least one detection sequence is Corresponds to at least one peak, the at least one detection sequence includes the first detection sequence, and the at least one peak includes the first peak.
  • the method further includes: the network device sending the first correspondence and the second correspondence to the terminal device.
  • the determining, by the network device, according to the first random access resource, the first peak of the random access response to the terminal device includes: the network device according to the third The correspondence relationship and the first random access resource determine the first wave crest for sending the random access response to the terminal device, and the third correspondence relationship is used to indicate that the at least one wave crest is associated with at least one random access resource.
  • the at least one random access resource includes the first random access resource.
  • the method further includes: the network device sends the third correspondence to the terminal device.
  • the grouping information is also used to indicate the peak information of each group of reference signals, and the grouping information is specifically used for the terminal device to determine the first peak, and the first peak is used for the terminal.
  • the device determines the first random access resource; wherein, the network device determines, according to the first random access resource, a first wave crest for sending the random access response to the terminal device;
  • the network device determines the first wave crest for sending the random access response to the terminal device according to the first random access resource and a fourth correspondence, and the fourth correspondence is used to indicate that at least one wave crest is associated with at least Corresponding to one random access resource, the at least one crest includes the first crest, and the at least one random access resource includes the first random access resource.
  • the method further includes: the network device sends a reference signal received power RSRP threshold to the terminal device. In some possible implementation manners, the method further includes: the network device sends the total number of peaks of the reference signal to the terminal device.
  • the method further includes: the network device sends the number of peaks of each reference signal to the terminal device.
  • an apparatus for random access is provided, and the apparatus is configured to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the apparatus may include a module for executing the first aspect or the method in any possible implementation manner of the first aspect.
  • an apparatus for random access is provided, and the apparatus is configured to execute the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • the device may include a module for executing the second aspect or the method in any possible implementation manner of the second aspect.
  • a communication device in a fifth aspect, includes a processor, the processor is coupled with a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions stored in the memory, so that the first The method in the aspect is executed.
  • the processor is configured to execute computer programs or instructions stored in the memory, so that the communication device executes the method in the first aspect.
  • the communication device includes one or more processors.
  • the communication device may further include a memory coupled with the processor.
  • the communication device may include one or more memories.
  • the memory can be integrated with the processor or provided separately.
  • the communication device may also include a transceiver.
  • a communication device in a sixth aspect, includes a processor, the processor is coupled with a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions stored in the memory, so that the second The method in the aspect is executed.
  • the processor is configured to execute a computer program or instruction stored in the memory, so that the communication device executes the method in the second aspect.
  • the communication device includes one or more processors.
  • the communication device may further include a memory coupled with the processor.
  • the communication device may include one or more memories.
  • the memory can be integrated with the processor or provided separately.
  • the communication device may also include a transceiver.
  • the present application provides a communication system, which includes the device provided in the third aspect and the device provided in the fourth aspect; or
  • the system includes the device provided in the fifth aspect and the device provided in the sixth aspect.
  • a computer-readable storage medium on which a computer program (also referred to as an instruction or code) for implementing the method in the first aspect is stored.
  • the computer when the computer program is executed by a computer, the computer can execute the method in the first aspect.
  • the computer may be a communication device.
  • a computer-readable storage medium on which a computer program (also referred to as an instruction or code) for implementing the method in the first aspect or the second aspect is stored.
  • the computer when the computer program is executed by a computer, the computer can execute the method in the second aspect.
  • the computer may be a communication device.
  • this application provides a chip including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the method in the first aspect and any possible implementation manners thereof.
  • the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip further includes a communication interface.
  • the present application provides a chip including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the method in the second aspect and any possible implementation manners thereof.
  • the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip further includes a communication interface.
  • the present application provides a computer program product
  • the computer program product includes a computer program (also referred to as instructions or code), when the computer program is executed by a computer, the computer realizes the method.
  • the computer may be a communication device.
  • the present application provides a computer program product
  • the computer program product includes a computer program (also referred to as instructions or code), when the computer program is executed by a computer, the computer realizes the second aspect method.
  • the computer may be a communication device.
  • Fig. 1 is an architecture diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a random access process provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of sending a reference signal through multiple crests of a beam according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of wave crests provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a method for random access provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another method for random access provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of another method for random access provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another method for random access provided by an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of an apparatus for random access provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of another apparatus for random access according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and wireless communication.
  • the network device in the embodiment of the present application may be any device with a wireless transceiver function.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system access Point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be the fifth generation (the fifth generation) , 5G) system, for example, the gNB or transmission point (TRP or TP) in the new radio (NR), one or a group of (including multiple antenna panels) antenna panels of the base station in the 5G system, or It may be a network node that constitutes a
  • the gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU , Or, sent by DU+AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • FIG. 1 is an architecture diagram of a communication system suitable for an embodiment of the present application.
  • the wireless communication system may include at least one network device 101, and the network device 101 communicates with one or more terminal devices (for example, the terminal device 102 and the terminal device 103 shown in FIG. 1).
  • the network device When a network device sends a signal, the network device is the transmitter and the terminal device is the receiver. Conversely, when a terminal device sends a signal, the terminal device is the transmitter and the network device is the receiver.
  • FIG. 2 is a schematic diagram 200 of the random access process, including:
  • the network device sends a broadcast message to the terminal device.
  • the broadcast message carries resource configuration information.
  • the resource configuration information is used to indicate synchronization signal/physical broadcast channel (synchronization signal/physical broadcast channel, SS/PBCH) and random access resources. The corresponding relationship.
  • the random access resource may include one or more of time domain, frequency domain, and code domain resources.
  • the network device sends the SSB in a spatial scanning mode, and the terminal device detects the SSB.
  • the network device transmits one SSB through one transmission beam, and one transmission beam corresponds to a unique SSB. That is, the resource configuration information in S220 can also be understood as indicating the correspondence between the transmission beam and the random access resource.
  • One transmit beam of corresponds to one (group) random access resource.
  • S230 The terminal device determines a random access resource according to the detected SSB and the resource configuration information in S210.
  • S240 The terminal device sends a random access preamble (also called message 1) to the network device on the random access resource determined in S230, and the network device receives the random access preamble sent by the terminal device on the random access resource. .
  • a random access preamble also called message 1
  • the network device determines a sending beam for sending a random access response (RAR) according to the random access resource of S240 and the resource configuration information of S210.
  • RAR random access response
  • S250 includes: on which random access resource the network device receives the random access preamble, it can determine the SSB on which beam the terminal device received according to the resource configuration information, and use the beam to send the RAR.
  • the sending beam determined in S250 is used by the network device to send the RAR to the terminal device, which is also referred to as message 2.
  • the RAR carries at least one of uplink authorization information, temporary cell radio network temporary identifier (T-CRNTI), and timing advance (TA).
  • T-CRNTI temporary cell radio network temporary identifier
  • TA timing advance
  • the uplink authorization information is used to indicate the resource for sending the initial uplink information
  • the TA is used for the terminal device to learn the uplink timing.
  • the terminal device sends initial uplink information to the base station on the resource indicated by the uplink authorization information, which is also called message 3.
  • the initial uplink information carries the contention resolution identity of the terminal device (UE Contention Resolution Identity).
  • the terminal device When the terminal device receives the SSB, it cannot determine which crest of a beam received. Correspondingly, in the above-mentioned random access process, in S230 The terminal device cannot determine the resource for sending the random access preamble, which leads to the failure to initiate random access, and the network device sends the SSB through multiple crests but cannot determine on which crest the terminal device receives the SSB, even if the network device receives the SSB. When it comes to the random access preamble, the network device cannot determine which wave peak is used to send the random access response to the terminal device in S250, and therefore, random access will fail.
  • the wave crest in the embodiment of the present application may be a component or sub-component of a beam, and the wave crest may also be referred to as a narrow peak, sub-beam, narrow beam or beam component.
  • the wave crest can be a sub-direction of a certain beam or the L degree of a certain beam, such as L and so on.
  • the method 500 includes:
  • the network device sends the grouping information of the reference signal to the terminal device, where the grouping information is used to indicate the grouping situation of the reference signal.
  • the terminal device receives the grouping information of the reference information sent by the network device.
  • the method 500 may not include S510, the network device does not need to configure the grouping information of the reference signal, the terminal device may obtain the grouping information of the reference signal according to the protocol, or the reference signal may not be grouped, and all reference signals are a group .
  • the grouping information is used to indicate the quantity of each group of reference signals, for example, there is a group of reference signals by default, and there is no need to indicate the quantity of groups.
  • the grouping information is used to indicate the total number of groups of reference signals. For example, there is one reference signal for each group of reference signals by default, and the number of reference signals for each group is not indicated.
  • the grouping information is used to indicate that the M reference signals are a group, and there are a total of N groups of reference signals, and M and N are positive integers.
  • the grouping information is used to indicate that 4 reference signals are grouped into a group, a total of 16 groups of reference signals; for another example, the grouping information is used to indicate that 64 participating signals are grouped into a group, and a group of reference signals are totaled.
  • the reference signal mentioned in the embodiment of this application may be SSB, which includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (physical broadcast channel, PBCH), and a demodulation reference signal (DMRS) required to demodulate the PBCH.
  • PSS and SSS are used for terminal equipment to perform downlink synchronization, including timing synchronization, frame synchronization, and symbol synchronization; PSS and SSS are also used to obtain cell identification (ID) and measure cell signal quality.
  • S520 The network device sends a reference signal to the terminal device.
  • S520 includes: the network device sends the reference signal by broadcasting.
  • S520 includes that the network device sends M*N reference signals to the terminal device.
  • the network device can send M*N reference signals through M*N beams, one beam corresponds to one reference signal, and the network device sends M*N beams each beam has multiple peaks, so that one can use one The multiple crests of the beam send SSB, where * represents the multiplication operation.
  • the terminal device detects the reference signal sent by the network device. If the terminal device detects at least one reference signal, the terminal device determines the first random access resource for sending the random access preamble according to the grouping information.
  • S530 includes: the terminal device determines a first detection sequence according to the grouping information; the terminal device determines the first random access resource according to the first detection sequence.
  • the grouping information is used to indicate that the M reference signals are a group, there are N groups of reference signals in total, and the length of the first detection sequence is related to M.
  • the terminal device may obtain the first detection sequence according to the grouping information and the index of the at least one reference signal. Specifically, the terminal device can determine the total number of reference signals according to the grouping information, and can preset the index of the reference signal. For example, if the terminal device determines that the number of reference signals is M*N, the indexes of the M*N reference signals are respectively 0, 1, ..., M*N-1.
  • the terminal device For example, if the grouping information indicates that 4 reference signals are a group, a total of 16 groups of reference signals, assuming that the indexes of the default 64 reference signals are 0,..., 63, then if the terminal device only receives the index of one reference signal If it is 62, it can be determined that the first detection sequence is 0010; if the indexes of the two reference signals received by the terminal device are 56 and 57 respectively, it can be determined that the first detection sequence is 1100, that is, the first detection sequence is Quantify the resulting sequence.
  • the terminal device can select the received power of the reference signal
  • the reference signal receiving power (RSRP) is larger or the largest to determine the first detection sequence, or the terminal device can arbitrarily select one to determine the first detection sequence.
  • RSRP reference signal receiving power
  • the terminal device can choose one of these two sequences as the first detection sequence, or the terminal device determines The index of the reference signal with the highest RSRP among the three reference signals with indexes 56, 57, and 62, for example, the reference signal with index 62 has the highest RSRP, the terminal device may determine that the first detection sequence is 0010.
  • the terminal device can determine whether the reference signal is detected according to the RSRP threshold. If the RSRP of a reference signal is greater than the RSRP threshold, it can determine that the reference signal is detected. If the RSRP of a reference signal is less than the RSRP threshold, it can be determined No reference signal is detected.
  • the RSRP threshold may be preset or sent by the network device to the terminal device.
  • the following describes how to determine the first random access resource according to the first detection sequence in combination with two methods.
  • the terminal device determines the first random access resource for transmitting the random access preamble according to the first detection sequence and the first correspondence, and the first correspondence is used to indicate the at least one detection sequence and the at least one random access resource
  • the at least one detection sequence includes the first detection sequence
  • the at least one random access resource includes the first random access resource.
  • the first correspondence is used to indicate that each detection sequence in the at least one detection sequence corresponds to each random access resource in the at least one random access resource in a one-to-one correspondence.
  • the terminal device stores the first correspondence relationship, and the first correspondence relationship may be sent by the network device to the terminal device (for example, sent by the broadcast message in S210) or specified by the protocol.
  • the first correspondence is shown in Table 1.
  • n is a positive integer, for example, n is 16.
  • Detection sequence Random access resources Detection sequence 1 Random access resource 1 Detection sequence 2 Random access resource 2 Detection sequence 3 Random access resource 3 Detection sequence 4 Random access resource 4 ... ... Detection sequence n Random access resource n
  • Manner 2 The terminal device determines the first peak of the at least one reference signal sent by the network device according to the first detection sequence and the second correspondence, and the second correspondence is used to indicate that the at least one detection sequence corresponds to the at least one peak, and the at least one detection The sequence includes the first detection sequence, and the at least one peak includes the first peak.
  • the second correspondence is used to indicate that each detection sequence in the at least one detection sequence corresponds to each peak in the at least one peak;
  • the crest and the third correspondence determine the first random access resource for transmitting the first random access preamble, and the third correspondence is used to indicate that at least one crest corresponds to at least one random access resource, and the at least one random access resource
  • the first random access resource is included, for example, the third correspondence is used to indicate that each of the at least one wave crest corresponds to each of the at least one random access resource in a one-to-one correspondence.
  • the terminal device stores the second correspondence and the third correspondence.
  • the second correspondence and the third correspondence may be sent by the network device to the terminal device (for example, sent by the broadcast message in S210), or may be stipulated by the protocol.
  • one of the second correspondence and the third correspondence is sent by the network device to the terminal device, and the other one may be specified by the protocol.
  • the second correspondence is shown in Table 2, and the third correspondence is shown in Table 3.
  • m is a positive integer, for example, m is 15.
  • the aforementioned first correspondence between the detection sequence and the random access resource, or the third correspondence between the crest and the random access resource, the random access resource mentioned may be the random access configured by the network device
  • the resource may also be determined according to the correspondence between the beam and the random access resource.
  • the resource configuration information that can be used in S210 may configure a first correspondence or a third correspondence, or the resource configuration information in S210 may indicate the relationship between beams and random access resources and configure each beam (every beam).
  • the number of crests of each reference signal in this way, the terminal device can determine the random access resource corresponding to each crest according to the relationship between the beam and the random access resource and the number of crests of each beam.
  • the resource configuration information indicates that there are a total of 64 random access preambles on a random access opportunity (RACH occasion, RO) (random access resources may include random access preambles), and there are a total of 8 beams, each beam has 4 crests (here is an example, the crest data of each beam can be different), in this way, each crest corresponds to 2 ((64/8)/4) random access preambles, and two consecutive random access preambles of a beam can be combined.
  • the access preamble is assigned to a crest.
  • S530 includes: the terminal device determines the first wave crest according to the grouping information.
  • the terminal device determines the first random access resource for sending the random access preamble according to the first wave crest and the fourth correspondence.
  • the fourth correspondence is used to indicate that at least one crest corresponds to at least one random access resource, the at least one crest includes the first crest, and the at least one random access resource includes the first random access resource
  • the fourth correspondence can be as shown in Table 3.
  • the terminal device may determine the first wave crest by using the values (unquantized values) of a set of received reference signals and a preset algorithm according to the grouping information of the reference signals.
  • the terminal device can calculate the first wave peak according to the value of the received set of reference signals, and the terminal device receives
  • DFT discrete Fourier transformation
  • the multi-peak information of a reference signal is used to indicate which peaks the reference signal can be sent through.
  • the multi-peak information of a reference signal is (100010011010111) T , where 0 means that the peak No reference signal is sent on the above, and 1 means that the reference signal is sent on the peak. In this way, the reference signal can be sent through 8 of the 15 peaks.
  • z i is noise.
  • D can be preset or configured by the network device, and b i can also be preset or configured by the network device.
  • the terminal device can determine y i after receiving the reference signal once, and the terminal device will receive When a set of reference signals is reached, it can be determined according to the above formula that among the N columns of a and a, the peak corresponding to the column with the largest value is the first peak.
  • the M reference signals indicated by the grouping information of the reference signals can be configured as M in a group, which is sufficient to determine a through the foregoing algorithm.
  • the number of non-sparse elements in a can be equal to M, and the non-sparse elements of a can be greater than a preset value (for example, the preset value is 0).
  • a preset value for example, the preset value is 0.
  • the foregoing is only an example of how to obtain the first wave crest by calculation, and the first wave crest may also be obtained in other ways, which is not limited in this application.
  • the parameter used to calculate the first wave crest may be preset or configured by the network device, which is not limited in this application.
  • S540 The terminal device sends the random access preamble to the network device on the first random access resource.
  • the network device receives the random access preamble sent by the terminal device on the first random access resource.
  • the method 500 further includes: the network device determines, according to the first random access resource, a first wave peak for sending a random access response to the terminal device. In this way, the network device can send a random access response to the terminal device through the first wave peak. Into the response.
  • the first detection sequence is used for the terminal device to determine the first random access resource, and the network device determines the random access response to the terminal device according to the first random access resource.
  • the first wave crest can be achieved in one of the following two ways:
  • Manner 1 The network device determines a first detection sequence according to the aforementioned first correspondence and the first random access resource; the network device determines to send to the terminal device according to the second correspondence and the first detection sequence The first wave crest of the random access response;
  • the network device can determine the first detection sequence obtained by the terminal device according to the first correspondence between the random access resource and the detection sequence, and the network device then determines the first wave crest based on the correspondence between the detection sequence and the wave crest.
  • the upper terminal device receives the reference signal sent by the network device.
  • the network device can send a random access response on the first wave crest.
  • the terminal device can also receive the random access response sent by the network device on the first wave crest. , Which can improve the success rate of random access.
  • the first correspondence and the second correspondence may be determined by the network device and sent to the terminal device (for example, sent by the broadcast message in S210), or may be specified by the protocol, or the first correspondence and the second correspondence One of the relationships is determined by the network device and sent to the terminal device, and the other is specified by the protocol, which is not limited in the embodiment of this application.
  • Manner 2 The network device determines the first wave peak for sending the random access response to the terminal device according to the third correspondence and the first random access resource.
  • the network device can determine the reference signal received by the terminal device on the first wave crest based on the third correspondence between the random access resource and the crest, and it can also ensure that the terminal device can receive the random access signal sent by the network device on the first crest. Response, which can improve the success rate of random access.
  • the third correspondence relationship may be determined by the network device and sent to the terminal device, or may be specified by the protocol, which is not limited in the embodiment of the present application.
  • the network device may determine the first random access resource according to the foregoing fourth correspondence and the first random access resource. crest.
  • the network device can determine the reference signal received by the terminal device on the first wave crest according to the fourth correspondence between the random access resource and the crest, and it can also ensure that the terminal device can receive the random access signal sent by the network device on the first crest. Response, which can improve the success rate of random access.
  • the fourth correspondence relationship may be determined by the network device and sent to the terminal device, or may be specified by the protocol, which is not limited in the embodiment of the present application.
  • the method 600 is described by taking the reference signal as the SSB as an example, which should not cause any limitation to the embodiment of the present application.
  • the method 600 includes:
  • the network device sends the first correspondence.
  • the network device may send the first correspondence to one or more terminal devices.
  • the terminal device receives the first correspondence sent by the network device.
  • the network device may send the first correspondence to the terminal device in a manner such as broadcast/multicast.
  • the network device sends the grouping information of the SSB, where the grouping information is used to indicate that the M reference signals are in one group, and there are N groups of reference signals in total.
  • the terminal device receives the SSB packet information sent by the network device.
  • the network device can send the first correspondence and the grouping information of the SSB to the terminal device in the same broadcast message, or can send the first correspondence and the grouping information of the SSB to the terminal device in a different broadcast message.
  • This application is implemented The case is not limited.
  • the network device sends multiple SSBs. For example, the network device sends multiple SSBs to one or more terminal devices.
  • the terminal device detects the SSB.
  • the network device can broadcast or multicast multiple SSBs.
  • the first detection sequence may be determined according to the grouping information of the SSB in S620.
  • the manner in which the terminal device determines the first detection sequence refers to the description of the method 500.
  • S650 The terminal device determines the first random access resource according to the first detection sequence and the first correspondence in S610.
  • the terminal device may determine the first random random access resource according to Table 1.
  • S660 The terminal device sends a random access preamble to the network device on the first random access resource.
  • the network device receives the random access preamble sent by the terminal device on the first random access resource.
  • S670 The network device determines the first detection sequence according to the first correspondence.
  • S680 The network device determines the first wave crest according to the first detection sequence and the second correspondence.
  • a network device sends four SSBs according to the following matrix.
  • Each row of the matrix represents one SSB.
  • the four rows from top to bottom correspond to SSB1, SSB2, SSB3, and SSB4.
  • Each column represents a crest, and there are 15 columns in total.
  • Corresponding to 15 crests there are 8 1s in the first row, indicating that the network device sends SSB1 on these 8 crests, and there are 8 1s in the second row, indicating that the network device sends SSB2 on these 8 crests, and so on.
  • An element with 0 in the middle indicates that no SSB is sent on the peak.
  • the corresponding second correspondence is shown in Table 4.
  • the detection sequence in Table 4 is a certain column in the matrix.
  • the terminal device can It is determined that the SSB2 sent by the network device is received at the second peak, and the first peak is the second peak.
  • the network device sends a random access response to the terminal device through the second peak.
  • the network device may determine the first correspondence.
  • the network device may determine the first correspondence according to the correspondence between the beam and the random access resource.
  • Random access resources can include random access preambles
  • a total of 4 Beam each beam corresponds to 8 random access preambles
  • each beam has 8 crests (here is an example, the crest data of each beam can be different), so that each crest corresponds to 1((32/4)/ 8)
  • Random access preambles for example, SSB1, SSB2, SSB3, SSB4 are respectively sent on 4 beams, originally SSB1 sent on beam 1 corresponds to random access preamble 1, random access preamble 2, ..., random access
  • SSB1, SSB2, SSB3, SSB4 are respectively sent on 4 beams, originally SSB1 sent on beam 1 corresponds to random access preamble 1, random access preamble 2, ..., random access
  • SSB1 has 8 crests
  • the first peak of SSB1 is assigned random access preamble 1 (correspondingly, sequence 1000 corresponds to random access preamble 1)
  • the fifth peak of SSB1 is assigned random access preamble 2 (correspondingly, sequence 1100 corresponds to random access preamble 2)
  • Allocate random access preamble 3 for the 8th peak of SSB1 correspondly, sequence 1101 corresponds to random access preamble 2)
  • random access preamble 4 for the 9th peak of SSB1 (correspondingly, sequence 1010 corresponds to random access)
  • random access preamble 5 is allocated to the 11th peak of SSB1 (correspondingly, sequence 1110 corresponds to random access preamble 5)
  • random access preamble 6 is allocated to the 13th peak of SSB1 (corresponding to sequence 1111)
  • Random access preamble 6 random access preamble 7 is allocated to the 14th peak of SSB1 (correspondingly sequence 1011 corresponds to random access preamble 7), and random access preamble 8 is allocated to the
  • Random access preamble 1 1100 Random access preamble 2 1101 Random access preamble 3
  • Random access preamble 4 1110 Random access preamble 5
  • Random access preamble 6 1011 Random access preamble 7 1001 Random access preamble 8
  • S690 The network device sends a random access response to the terminal device through the first wave crest.
  • the terminal device receives the random access response sent by the network device through the first wave crest.
  • the method 700 for random access mentioned in the embodiment of the present application is described below with reference to FIG. 7.
  • the method 700 is described by taking the reference signal as an SSB as an example, which should not cause any limitation to the embodiment of the present application.
  • the method 700 includes:
  • the network device sends the second correspondence and the third correspondence.
  • the network device may send the second correspondence and the third correspondence to one or more terminal devices.
  • the terminal device receives the second correspondence and the third correspondence sent by the network device.
  • the network device may send the second correspondence and the third correspondence to the terminal device in a manner such as broadcast/multicast.
  • the network device may send the second correspondence and the third correspondence in one broadcast message or multicast message, or may send the second correspondence and the third correspondence in different broadcast messages and multicast messages. .
  • S720 The network device sends SSB grouping information, where the grouping information is used to indicate that the M reference signals are in one group, and there are N groups of reference signals in total.
  • the terminal device receives the SSB packet information sent by the network device.
  • the network device may send the second correspondence, the third correspondence, and the grouping information of the SSB to the terminal device in the same broadcast message, and may also send the second correspondence and the third correspondence to the terminal device in different broadcast messages.
  • the relationship and the grouping information of the SSB are not limited in the embodiment of this application.
  • the network device sends multiple SSBs. For example, the network device sends multiple SSBs to one or more terminal devices.
  • the terminal device detects the SSB.
  • the network device can broadcast or multicast multiple SSBs.
  • the first detection sequence may be determined according to the grouping information of the SSB in S620.
  • S750 The terminal device determines the first wave crest random access resource according to the first detection sequence and the second correspondence in S710.
  • the second correspondence is shown in Table 2 or Table 4.
  • the terminal device may determine the first random random access resource according to Table 2 or Table 4.
  • the terminal device determines the first random access resource according to the third correspondence and the first wave crest.
  • the third correspondence may be as shown in Table 6.
  • S770 The terminal device sends a random access preamble to the network device on the first random access resource.
  • the network device receives the random access preamble sent by the terminal device on the first random access resource.
  • S780 The network device determines the first wave crest according to the first random access resource and the third correspondence.
  • S790 The network device sends a random access response to the terminal device through the first wave crest.
  • the terminal device receives the random access response sent by the network device through the first wave crest.
  • the method 800 is described by taking the reference signal as the SSB as an example, which should not cause any limitation to the embodiment of the present application.
  • the method 800 includes:
  • the network device sends the fourth correspondence.
  • the network device may send the fourth correspondence to one or more terminal devices.
  • the terminal device receives the fourth correspondence sent by the network device.
  • the network device may send the fourth correspondence to the terminal device in a manner such as broadcast/multicast.
  • the method 800 further includes: the network device determines a fourth correspondence.
  • the network device may determine the fourth correspondence according to the correspondence between the beam and the random access resource.
  • the resource configuration information broadcast by the network device indicates that there are a total of 32 random access preambles on an RO (random access resources may include random access preambles), there are a total of 4 beams (each beam corresponds to 8 Random access preamble), each beam has 8 crests (here is an example, the crest data of each beam can be different), so each crest corresponds to 1 ((32/4)/8) random access preamble,
  • SSB1, SSB2, SSB3, and SSB4 are sent on the 4 beams.
  • SSB1 sent on beam 1 corresponds to random access preamble 1, random access preamble 2, ..., random access preamble 8, because SSB1 has 8 Crest, the 8 crests of SSB1 include the first crest, the fifth crest, the eighth crest, the ninth crest, the 11th crest, the 13th crest, the 14th crest, and the 15th crest correspond to Random access preamble 1, random access preamble 2, ..., random access preamble 8, ..., and so on.
  • the network device sends the grouping information of the SSB, where the grouping information is used to indicate that the M reference signals are a group, a total of N groups of reference signals and the peak information of each group of reference signals.
  • the terminal device receives the SSB packet information sent by the network device.
  • the matrix in the method 600 may be the peak information of a group of reference signals, and the peak information of each group of reference signals may be the same or different. That is, if there are 16 sets of reference signals, the peak information of each set of reference signals may be as shown in the matrix in the method 600 or the peak information of a set of reference signals may be as shown in the matrix in the method 600.
  • the network device may send the fourth correspondence and the SSB grouping information to the terminal device in the same broadcast message, or may send the fourth correspondence and the SSB grouping information to the terminal device in a different broadcast message.
  • This application is implemented The case is not limited.
  • the network device sends multiple SSBs. For example, the network device sends multiple SSBs to one or more terminal devices.
  • the terminal device detects the SSB.
  • the network device can broadcast or multicast multiple SSBs.
  • the first wave crest may be determined according to the grouping information of the SSB in S820.
  • the manner in which the terminal device determines the first wave crest refers to the algorithm described in the method 500.
  • the terminal device determines the first random access resource according to the first wave crest and the fourth correspondence in S810.
  • the terminal device may determine the first random random access resource according to Table 3.
  • the terminal device sends a random access preamble to the network device on the first random access resource.
  • the network device receives the random access preamble sent by the terminal device on the first random access resource.
  • the network device determines the first wave crest according to the first random access resource and the fourth correspondence.
  • S880 The network device sends a random access response to the terminal device through the first wave crest.
  • the terminal device receives the random access response sent by the network device through the first wave crest.
  • the resource used to send the random access preamble is defined as the first random access resource
  • the determined network device sends the reference signal peak and sends the random access resource.
  • the peak of the incoming response is defined as the first peak.
  • the values of the first random access resource and the first peak may be different, which is not limited in this application.
  • the methods and operations implemented by the terminal device in the foregoing method embodiments can also be implemented by components (such as chips or circuits) that can be used in the terminal device.
  • the methods and operations implemented by the network device in the foregoing method embodiments may also Operations can also be implemented by components (such as chips or circuits) that can be used in network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of protection of this application.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules based on the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one process.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other feasible division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 9 is a schematic block diagram of an apparatus 900 for random access according to an embodiment of the application.
  • the communication device 900 includes a transceiver unit 910 and a processing unit 920.
  • the transceiver unit 910 can communicate with the outside, and the processing unit 910 is used for data processing.
  • the transceiving unit 910 may also be referred to as a communication interface or a communication unit.
  • the device 900 can be used to perform the actions performed by the terminal device in the above method embodiment.
  • the communication device 900 can be referred to as a terminal device, and the transceiver unit 910 is used to perform the transceiver on the terminal device side in the above method embodiment.
  • the processing unit 920 is configured to perform processing related operations on the terminal device side in the foregoing method embodiments.
  • the transceiving unit 910 is configured to obtain grouping information of the reference signal, and the grouping information is used to indicate the grouping of the reference signal; the processing unit 920, if the transceiving unit detects at least one reference signal sent by the network device, Determine the first random access resource for sending the random access preamble according to the grouping information; the transceiver unit 910 is further configured to send the random access preamble to the network device on the first random access resource.
  • the processing unit 920 is specifically configured to determine a first detection sequence according to the grouping information; and determine the first random access resource according to the first detection sequence.
  • processing unit 920 is specifically configured to:
  • the at least one detection sequence includes the first detection sequence
  • the at least one random access resource includes the first random access resource
  • the transceiving unit 910 is further configured to: obtain the first correspondence from the network device.
  • the processing unit 920 is specifically configured to: determine, according to the first detection sequence and the second correspondence, the first peak of the at least one reference signal sent by the network device, and the second correspondence The relationship is used to indicate that at least one detection sequence corresponds to at least one peak, the at least one detection sequence includes the first detection sequence, and the at least one peak includes the first peak;
  • the first random access resource for transmitting the random access preamble is determined according to the first wave crest and the third correspondence, and the third correspondence is used to indicate the at least one wave crest and the at least one random access Resource correspondence, the at least one random access resource includes the first random access resource.
  • the transceiving unit 910 is further configured to: obtain the second correspondence and the third correspondence from the network device.
  • the processing unit 920 is specifically configured to obtain the first detection sequence according to the grouping information and the index of the at least one reference signal.
  • the grouping information is further used to indicate the crest information of each group of reference signals to be sent, and the processing unit 920 is specifically configured to: determine the first crest according to the grouping information; The fourth correspondence relationship determines the first random access resource for transmitting the random access preamble, and the fourth correspondence relationship is used to indicate that at least one wave crest corresponds to at least one random access resource, and the at least one wave crest includes In the first wave crest, the at least one random access resource includes the first random access resource.
  • the transceiving unit 910 is further configured to: obtain a reference signal received power RSRP threshold value from the network device;
  • the processing unit 920 is further configured to: if the RSRP of the at least one reference signal is greater than the RSRP threshold, determine that the at least one reference signal is detected.
  • the transceiving unit 920 is specifically configured to obtain the grouping information of the reference signal from a network device.
  • the processing unit 920 in the above embodiment may be implemented by a processor or a processor-related circuit.
  • the transceiver unit 910 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiving unit 910 may also be referred to as a communication unit or a communication interface.
  • FIG. 10 is a schematic block diagram of an apparatus 1000 for random access according to an embodiment of the application.
  • the communication device 1000 includes a sending unit 1010 and a receiving unit 1020.
  • the sending unit 1010 and the receiving unit 1020 can communicate with the outside.
  • the sending unit 1010 and the receiving unit 1020 may also be referred to as a communication interface or a communication unit.
  • the device 1000 further includes a processing unit 1030, and the processing unit 1030 is configured to perform data processing
  • the device 1000 can be used to perform the actions performed by the network device in the above method embodiment.
  • the communication device 1000 can be called a network device, and the sending unit 1010 is used to perform the sending on the network device side in the above method embodiment.
  • the receiving unit 1020 is used to perform operations related to receiving on the network device side in the above method embodiment, and the processing unit 1030 is used to perform processing related operations on the network device side in the above method embodiment.
  • the sending unit 1010 is configured to send the grouping information of the reference signal to the terminal device, the grouping information is used for the grouping of the reference signal, and the grouping information is used for the terminal device to determine the first random access resource;
  • the sending unit 1010 is further configured to send a reference signal to the terminal device
  • the receiving unit 1020 is configured to receive a random access preamble from the terminal device on the first random access resource.
  • the processing unit 1030 is configured to determine, according to the first random access resource, a first peak for sending the random access response to the terminal device;
  • the sending unit 1010 is further configured to send the random access response to the terminal device through the first wave crest.
  • the grouping information is specifically used for the terminal device to determine a first detection sequence, and the first detection sequence is used for the terminal device to determine the first random access resource.
  • the processing unit 1030 is specifically configured to: determine the first detection sequence according to a first correspondence and the first random access resource, and the first correspondence is used to indicate at least one detection The sequence corresponds to at least one random access resource, the at least one detection sequence includes the first detection sequence, and the at least one random access resource includes the first random access resource;
  • the first wave peak for sending the random access response to the terminal device is determined according to the second correspondence and the first detection sequence, and the second correspondence is used to indicate that at least one detection sequence and the at least one wave peak are Correspondingly, the at least one detection sequence includes the first detection sequence, and the at least one peak includes the first peak.
  • the sending unit 1010 is further configured to: send the first correspondence and the second correspondence to the terminal device.
  • the processing unit 1030 is specifically configured to: determine, according to the third correspondence relationship and the first random access resource, the first random access response that sends the random access response to the terminal device.
  • a crest, the third correspondence is used to indicate that the at least one crest corresponds to at least one random access resource, and the at least one random access resource includes the first random access resource.
  • the sending unit 1010 is further configured to: send the third correspondence to the terminal device.
  • the grouping information is further used to indicate the peak information of each group of reference signals, and the grouping information is specifically used for the terminal device to determine the first peak, and the first peak is used for the terminal device Determining the first random access resource;
  • the processing unit 1030 is specifically configured to: determine a first peak for sending the random access response to the terminal device according to the first random access resource and a fourth correspondence, and the fourth correspondence is used to indicate At least one crest corresponds to at least one random access resource, the at least one crest includes the first crest, and the at least one random access resource includes the first random access resource.
  • the sending unit 1010 is further configured to send a reference signal received power RSRP threshold to the terminal device.
  • an embodiment of the present application also provides a communication device 1100.
  • the communication device 1100 includes a processor 1110, the processor 1110 is coupled with a memory 1120, the memory 1120 is used to store computer programs or instructions, and the processor 1110 is used to execute the computer programs or instructions stored in the memory 1120, so that the The method is executed.
  • the communication device 1100 may further include a memory 1120.
  • the communication device 1100 may further include a transceiver 1130, and the transceiver 1130 is used for receiving and/or sending signals.
  • the processor 1110 is configured to control the transceiver 1130 to receive and/or send signals.
  • the communication device 1100 is used to implement the operations performed by the terminal device in the foregoing method embodiments.
  • the processor 1110 is used to implement the processing-related operations performed by the terminal device in the foregoing method embodiment
  • the transceiver 1130 is used to implement the transceiving-related operations performed by the terminal device in the foregoing method embodiment.
  • the communication device 1100 is used to implement the operations performed by the network device in the above method embodiments.
  • the processor 1110 is used to implement the processing-related operations performed by the network device in the above method embodiment
  • the transceiver 1130 is used to implement the transceiving-related operations performed by the network device in the above method embodiment.
  • the embodiment of the present application also provides a communication device 1200, and the communication device 1200 may be a terminal device or a chip.
  • the communication apparatus 1200 can be used to perform operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 12 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiving unit 1210 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 1220 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiver unit 1210 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1210 as the sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiving unit 1210 is used to perform the receiving operations in S510, S520, and S540 in FIG. 5, and/or the transceiving unit 1210 is also used to perform other transceiving-related steps performed by the terminal device.
  • the transceiver unit 1210 is further configured to receive at least one of the first correspondence, the second correspondence, the third correspondence, the fourth correspondence, and the RSRP threshold.
  • the processing unit 1220 is configured to perform other processing-related steps performed by the terminal device in the embodiment of the present application.
  • the processing unit 1220 is configured to parse the resource configuration information of the reference signal received by the transceiver unit 1210, and then obtain the reference signal resource.
  • FIG. 12 is only an example and not a limitation, and the foregoing terminal device including a transceiving unit and a processing unit may not rely on the structure shown in FIG. 12.
  • the chip When the communication device 1200 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 1300, and the communication device 1300 may be a network device or a chip.
  • the communication device 1300 may be used to perform operations performed by a network device in the foregoing method embodiments.
  • FIG. 13 shows a simplified schematic diagram of the base station structure.
  • the base station includes 1310 parts and 1320 parts.
  • the 1310 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1320 part is mainly used for baseband processing and control of network equipment.
  • the part 1310 can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the part 1320 is usually the control center of the network device, and can usually be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiment.
  • the transceiver unit of part 1310 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1310 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 1310 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 1320 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit in part 1310 is used to perform the sending operations in S510, S520, and S540 in FIG. 5, and/or the transceiver unit in part 1310 is also used to perform the network equipment in the embodiment of this application.
  • Other steps related to sending and receiving are performed, for example, part 1310 is also used to send at least one of the first correspondence, the second correspondence, the third correspondence, the fourth correspondence, the RSRP threshold, and the random access response.
  • Part 1320 is used to perform steps S670 and S680 in FIG. 6, or used to perform S780 in FIG. 7, or used to perform S870 in FIG. 8, and/or part 1320 is also used to perform steps S670 and S680 in the embodiment of this application. Steps related to the processing performed.
  • FIG. 13 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 13.
  • the chip When the communication device 1300 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication system, including the network device and the terminal device in the above embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system at the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of the application, as long as the program that records the code of the method provided in the embodiment of the application can be executed according to the method provided in the embodiment of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • Computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.), etc. ), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM may include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Direct RAM Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the essence of the technical solution of this application, or the part that contributes to the existing technology, or the part of the technical solution, can be embodied in the form of a computer software product, and the computer software product is stored in a storage
  • the computer software product includes several instructions, which are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium may include but is not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks, etc., which can store programs The medium of the code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于随机接入的方法和装置。该方法中终端设备可以利用参考信号的分组信息确定发送随机接入前导码的第一随机接入资源,有助于终端设备在第一随机接入资源上向网络设备发送随机接入前导码,从而可以提高随机接入的成功率。

Description

用于随机接入的方法和装置 技术领域
本申请涉及通信领域,并且更具体地,涉及通信领域中的用于随机接入的方法和装置。
背景技术
在无线通信技术中,终端设备通过随机接入过程获得和网络设备的上行同步。在发起随机接入过程中,终端设备需要先根据网络设备广播的随机资源配置信息确定随机接入资源,其中,随机资源配置信息用于指示参考信号与随机接入资源的对应关系;具体地,终端设备检测到某一参考信号,则根据该随机资源配置信息确定随机接入资源,并在确定的随机接入资源上向网络设备发送随机接入前导码(preamble)。其中,网络设备可以通过一个波束发送一个参考信号,每个波束发送的每个参考信号与相应的随机接入资源对应。
目前在新无线(new radio,NR)中,协议规定网络设备最多通过64个发送波束发送64个参考信号,随着网络吞吐量的增加,需要更高的频段,如果采用64个发送波束覆盖所有的频段则存在困难。为了覆盖所有的频段需要增加同步信号/物理广播信道SS/PBCH(以下简称SSB)的数量,这样导致SSB的开销增加,为了避免SSB的开销增加,可以采用一个波束的多个波峰发送一个SSB,这种多峰波束可以覆盖多个方向,从而可以降低SSB的开销。在这种情况下,一个波束的多个波峰发送一个SSB,终端设备接收到SSB时,无法确定是在一个波束的哪个波峰上接收到的SSB,相应地,终端设备也无法确定发送随机接入前导码的资源,从而导致无法发起随机接入,因此,亟需一种确定随机接入资源的方法。
发明内容
本申请提供一种用于随机接入的方法和装置,能够确定随机接入资源,并利用随机接入资源发起随机接入,从而可以提高随机接入的成功率。
第一方面,提供了一种用于随机接入的方法,包括:终端设备获取参考信号的分组信息,所述分组信息用于指示参考信号的分组情况;若所述终端设备检测到所述网络设备发送的至少一个参考信号,根据所述分组信息确定发送随机接入前导码的第一随机接入资源;所述终端设备在所述第一随机接入资源上向网络设备发送所述随机接入前导码。
在上述技术方案中,终端设备可以利用参考信号的分组信息确定发送随机接入前导码的第一随机接入资源,有助于终端设备在第一随机接入资源上向网络设备发送随机接入前导码,从而可以提高随机接入的成功率。
可选地,参考信号可以为SSB。
可选地,终端设备可以从网络设备获取所述分组信息。
可选地,所述分组信息用于指示每组参考信号的数量,例如,默认存在一组参考信号,不需要指示组的数量。可选地,所述分组信息用于指示参考信号的组的总数量,例如,默 认每组参考信号存在一个参考信号,不要指示每组参考信号的数量。
可选地,所述分组信息用于指示M个参考信号为一组,共N组参考信号,M和N为正整数。
可选地,所述终端设备根据所述分组信息确定发送随机接入前导码的第一随机接入资源,包括:所述终端设备根据所述分组信息确定第一检测序列;所述终端设备根据所述第一检测序列确定所述第一随机接入资源。
可选地,若分组信息用于指示M个参考信号为一组,共N组参考信号,M和N为正整数,则第一检测序列的长度与M相关。
可选地,第一检测序列可以为量化后的检测序列。例如,第一检测序列由0和1组成。1表示接收到参考信号,0表示没有接收到参考信号。
在一些可能的实现方式中,所述终端设备根据所述第一检测序列确定所述第一随机接入资源,包括:
所述终端设备根据所述第一检测序列与第一对应关系确定发送所述随机接入前导码的第一随机接入资源,所述第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个随机接入资源包括所述第一随机接入资源。
在一些可能的实现方式中,所述方法还包括:所述终端设备从所述网络设备获取所述第一对应关系。
可选地,第一对应关系可以是协议规定的。
在一些可能的实现方式中,所述终端设备根据所述第一检测序列确定所述第一随机接入资源,包括:所述终端设备根据所述第一检测序列与第二对应关系确定所述网络设备发送所述至少一个参考信号的第一波峰,所述第二对应关系用于指示至少一个检测序列与至少一个波峰中对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个波峰包括所述第一波峰;
所述终端设备根据所述第一波峰与第三对应关系确定发送所述随机接入前导码的所述第一随机接入资源,所述第三对应关系用于指示所述至少一个波峰与至少一个随机接入资源对应,所述至少一个随机接入资源包括所述第一随机接入资源。
在一些可能的实现方式中,所述方法还包括:所述终端设备从所述网络设备获取所述第二对应关系和所述第三对应关系。
可选地,第二对应关系和所述第三对应关系可以是协议规定的。
在一些可能的实现方式中,若所述终端设备检测到所述至少一个参考信号,根据所述分组信息和所述至少一个参考信号的索引得到所述第一检测序列。
具体地,终端设备可以根据分组信息确定总的参考信号数量,可以预设参考信号的索引,例如,若终端设备确定参考信号的数量为M*N,则M*N个参考信号的索引分别为0,1,……,M*N-1,其中*表示相乘运算。
在一些可能的实现方式中,所述分组信息还用于指示发送每组参考信号的波峰信息,
其中,所述终端设备根据所述分组信息确定发送随机接入前导码的第一随机接入资源:
所述终端设备根据所述分组信息确定第一波峰;
所述终端设备根据所述第一波峰和第四对应关系确定发送所述随机接入前导码的所述第一随机接入资源,所述第四对应关系用于指示至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源。
可选地,每组参考信号的波峰信息用于指示网络设备发送每组参考信号的所采用的波峰。
可选地,若所述终端设备检测到所述网络设备发送的至少一个参考信号,根据参考信号的值以及所述分组信息指示的N组参考信号以及每组参考信号的波峰信息确定第一波峰。
可选地,终端设备还可以从网络设备获取用于确定第一波峰的参数。例如,波峰基底参数。
在一些可能的实现方式中,所述方法还包括:所述终端设备从所述网络设备获取参考信号接收功率RSRP阈值;所述方法还包括:若所述至少一个参考信号的RSRP大于所述RSRP阈值,所述终端设备确定检测到所述至少一个参考信号。
可选地,RSRP阈值可以是预设的。
在一些可能的实现方式中,所述终端设备获取参考信息的分组信息,包括:
所述终端设备从网络设备获取所述参考信号的分组信息。
在一些可能的实现方式中,所述方法还包括:终端设备接收网络设备发送的参考信号总的波峰数目。
在一些可能的实现方式中,所述方法还包括:终端设备可以接收网络设备发送的每个参考信号的波峰数目。终端设备可以根据波束与随机接入资源的对应关系确定每个参考信号的波峰与随机接入资源的对应关系。
第二方面,提供了一种用于随机接入的方法,包括:网络设备向终端设备发送参考信号的分组信息,所述分组信息用于参考信号的分组情况,所述分组信息用于所述终端设备确定第一随机接入资源;所述网络设备发送参考信号;
所述网络设备在第一随机接入资源上从所述终端设备接收随机接入前导码,。
在上述技术方案中,网络设备可以向终端设备发送参考信号的分组信息,终端设备能够利用分组信息确定发送随机接入前导码的第一随机接入资源,从而可以提高随机接入的成功率。
可选地,参考信号可以为SSB。
可选地,所述分组信息用于指示每组参考信号的数量,例如,默认存在一组参考信号,不需要指示组的数量。可选地,所述分组信息用于指示参考信号的组的总数量,例如,默认每组参考信号存在一个参考信号,不要指示每组参考信号的数量。
可选地,所述分组信息用于指示M个参考信号为一组,共N组参考信号,M和N为正整数。
可选地,所述分组信息具体用于所述终端设备确定第一检测序列,所述第一检测序列用于所述终端设备确定所述第一随机接入资源。可选地,若分组信息用于指示M个参考信号为一组,共N组参考信号,M和N为正整数,则第一检测序列的长度与M相关。
可选地,第一检测序列可以为量化后的检测序列。例如,第一检测序列由0和1组成。 1表示接收到参考信号,0表示没有接收到参考信号。
可选地,所述分组信息具体用于所述终端设备确定第一波峰,所述第一波峰用于所述终端设备确定所述第一随机接入资源。
在一些可能的实现方式中,所述方法还包括:所述网络设备根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰;
所述网络设备通过所述第一波峰向所述终端设备发送所述随机接入响应。
在一些可能的实现方式中,所述网络设备根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰,包括:
所述网络设备根据第一对应关系和所述第一随机接入资源确定所述第一检测序列,所述第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个随机接入资源包括所述第一随机接入资源;
所述网络设备根据第二对应关系和所述第一检测序列确定向所述终端设备发送所述随机接入响应的所述第一波峰,所述第二对应关系用于指示至少一个检测序列与至少一个波峰中对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个波峰包括所述第一波峰。
在一些可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送所述第一对应关系和所述第二对应关系。
在一些可能的实现方式中,所述网络设备根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰,包括:所述网络设备根据所述第三对应关系和所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的所述第一波峰,所述第三对应关系用于指示所述至少一个波峰与至少一个随机接入资源对应,所述至少一个随机接入资源包括所述第一随机接入资源。
在一些可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送所述第三对应关系。
在一些可能的实现方式中,所述分组信息还用于指示每组参考信号的波峰信息,所述分组信息具体用于所述终端设备确定第一波峰,所述第一波峰用于所述终端设备确定所述第一随机接入资源;其中,所述网络设备根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰;
所述网络设备根据所述第一随机接入资源和第四对应关系确定向所述终端设备发送所述随机接入响应的第一波峰,所述第四对应关系用于指示至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源。
在一些可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送参考信号接收功率RSRP阈值。在一些可能的实现方式中,所述方法还包括:网络设备向终端设备发送参考信号总的波峰数目。
在一些可能的实现方式中,所述方法还包括:网络设备向终端设备发送每个参考信号的波峰数目。
第三方面,提供一种用于随机接入的装置,所述装置用于执行上述第一方面或第一方 面的任一可能的实现方式中的方法。具体地,所述装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块。
第四方面,提供一种用于随机接入的装置,所述装置用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块。
第五方面,提供一种用于通信装置,所述通信装置包括处理器,处理器与存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器存储的计算机程序或指令,使得第一方面中的方法被执行。
例如,处理器用于执行存储器存储的计算机程序或指令,使得该通信装置执行第一方面中的方法。
可选地,该通信装置包括的处理器为一个或多个。
可选地,该通信装置中还可以包括与处理器耦合的存储器。
可选地,该通信装置包括的存储器可以为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者分离设置。
可选地,该通信装置中还可以包括收发器。
第六方面,提供一种用于通信装置,所述通信装置包括处理器,处理器与存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器存储的计算机程序或指令,使得第二方面中的方法被执行。
例如,处理器用于执行存储器存储的计算机程序或指令,使得该通信装置执行第二方面中的方法。
可选地,该通信装置包括的处理器为一个或多个。
可选地,该通信装置中还可以包括与处理器耦合的存储器。
可选地,该通信装置包括的存储器可以为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者分离设置。
可选地,该通信装置中还可以包括收发器。
第七方面,本申请提供了一种通信系统,该系统包括上述第三方面提供的装置以及第四方面提供的装置;或者
该系统包括上述第五方面提供的装置以及第六方面提供的装置。
第八方面,提供一种计算机可读存储介质,其上存储有用于实现第一方面中的方法的计算机程序(也可称为指令或代码)。
例如,该计算机程序被计算机执行时,使得该计算机可以执行第一方面中的方法。该计算机可以为通信装置。
第九方面,提供一种计算机可读存储介质,其上存储有用于实现第一方面或者第二方面中的方法的计算机程序(也可称为指令或代码)。
例如,该计算机程序被计算机执行时,使得该计算机可以执行第二方面中的方法。该计算机可以为通信装置。
第十方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面及其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十一方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第二方面及其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十二方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序(也可称为指令或代码),所述计算机程序被计算机执行时使得所述计算机实现第一方面中的方法。所述计算机可以为通信装置。
第十三方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序(也可称为指令或代码),所述计算机程序被计算机执行时使得所述计算机实现第二方面中的方法。所述计算机可以为通信装置。
附图说明
图1是本申请实施例提供的通信系统的架构图。
图2是本申请实施例提供的随机接入过程示意图。
图3是本申请实施例提供的通过一个波束的多个波峰发送参考信号的示意图。
图4是本申请实施例提供的波峰示意图。
图5是本申请实施例提供的用于随机接入的方法示意图。
图6是本申请实施例提供的另一用于随机接入的方法示意图。
图7是本申请实施例提供的又一用于随机接入的方法示意图。
图8是本申请实施例提供的又一用于随机接入的方法示意图。
图9是本申请实施例提供的用于随机接入的装置的示意性框图。
图10是本申请实施例提供的另一用于随机接入的装置的示意性框图。
图11是本申请实施例提供的通信装置的示意性框图。
图12是本申请实施例提供的另一通信装置的示意性框图。
图13是本申请实施例提供的又一通信装置的示意性框图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol, SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为第五代(the fifth generation,5G)系统,例如,新空口(new radio,NR)中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,例如基带单元(BBU)或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
参见图1,图1是适用于本申请实施例的通信系统的架构图。如图1所示,该无线通信系统中可以包括至少一个网络设备101,网络设备101和一个或多个终端设备(例如图1中所示的终端设备102和终端设备103)进行通信。当网络设备发送信号时,网络设备为发射端,终端设备为接收端。反之,当终端设备发送信号时,终端设备为发射端,网络设备为接收端。
在无线通信系统中,终端设备在与网络设备进行通信之前,先要发起随机接入过程来获得与网络设备的上行同步,图2是随机接入过程示意图200,包括:
S210,网络设备向终端设备发送广播消息,该广播消息中携带资源配置信息,资源配置信息用于指示同步信号/物理广播信道块(synchronization signal/physical broadcast channel,SS/PBCH)与随机接入资源的对应关系。
其中,随机接入资源可以包括时域、频域和码域资源中的一种或多种。
S220,网络设备通过空间扫描方式发送SSB,终端设备检测SSB。
具体地,S220中,网络设备通过一个发送波束发送一个SSB,一个发送波束对应唯一的SSB,即S220中资源配置信息也可以理解为用于指示发送波束与随机接入资源的对应关系,网络设备的一个发送波束对应一个(组)随机接入资源。
S230,终端设备根据检测到的SSB与S210中的资源配置信息,确定随机接入资源。
S240,终端设备在S230确定的随机接入资源上向网络设备发送随机接入前导码(preamble),也称为消息1,网络设备在随机接入资源上接收终端设备发送的随机接入前导码。
S250,网络设备根据S240的随机接入资源以及S210的资源配置信息确定发送随机接入响应(random access response,RAR)的发送波束。
具体地,S250,包括:网络设备在哪个随机接入资源上接收到随机接入前导码则根据资源配置信息可以确定终端设备是在哪个波束上接收到的SSB,利用该波束发送RAR。
S260,网络设备利用时S250确定的发送波束向终端设备发送RAR,也称为消息2。RAR携带上行授权信息、临时小区无线网络临时标识(temporary cell radio network temporary identifier,T-CRNTI)、时间提前量(timing advance,TA)中的至少一种。
其中,上行授权信息用于指示发送初始上行信息的资源,TA用于终端设备获知上行定时。
S270,终端设备在上行授权信息指示的资源上向基站发送初始上行信息,也称为消息3,初始上行信息携带终端设备竞争解决的标识(UE Contention Resolution Identity)。
S280,基站接收到终端设备的初始上行信息之后,基站进行竞争解决,基站向终端设备发送竞争解决信息,也称为消息4。
在NR中,协议规定在S220中,网络设备最多通过64个发送波束发送64个参考信号,随着网络吞吐量的增加,需要更高的频段,如果采用64个发送波束覆盖所有的频段则存在困难。为了覆盖所有的频段需要增加SSB的数量,这样导致SSB的开销增加,并且发送更多数量的SSB需要占用更多的资源。为了降低SSB的数量,如图3所示,可以采用一个波束的多个波峰发送一个SSB,这种多峰波束可以覆盖多个方向,从而可以降低SSB的开销。在这种情况下,一个波束的多个波峰发送一个SSB,终端设备接收到SSB时,无法确定是在一个波束的哪个波峰上接收到的,相应地,在上述随机接入过程中,在S230中终端设备无法确定发送随机接入前导码的资源,从而导致无法发起随机接入,并且网络设备通过多个波峰发送了SSB但无法确定终端设备是在哪个波峰上接收到了SSB,即使网络设备接收到随机接入前导码,网络设备在S250中也无法确定采用哪个波峰向终端设备发送随机接入响应,因此,会导致随机接入失败。
可以理解的是,本申请实施例中的波峰可以是波束(beam)的一个分量或者子分量,波峰也可以称为窄峰、子波束(sub-beam)、窄波束或者波束分量(beam component)。如图4所示,波峰可以是某一个波束的一个子方向或者某一个波束的L度,如L等5。
下面结合附图描述本申请实施例提供的用于随机接入的方法500,方法500包括:
S510,网络设备向终端设备发送参考信号的分组信息,所述分组信息用于指示参考信号的分组情况。
相应地,终端设备接收网络设备发送的参考信息的分组信息。
可选地,方法500可以不包括S510,网络设备不需要配置参考信号的分组信息,终端设备可以根据协议规定获取参考信号的分组信息,或者参考信号可以不进行分组,所有的参考信号为一组。
可选地,所述分组信息用于指示每组参考信号的数量,例如,默认存在一组参考信号,不需要指示组的数量。
可选地,所述分组信息用于指示参考信号的组的总数量,例如,默认每组参考信号存在一个参考信号,不要指示每组参考信号的数量。
可选地,分组信息用于指示M个参考信号为一组,共N组参考信号,M和N为正整数。
例如,分组信息用于指示4个参考信号为一组,共16组参考信号;又例如,分组信息用于指示64个参加信号为一组,共一组参考信号。
需要说明的是,本申请实施例提到的参考信号可以为SSB,SSB包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、物理广播信道(physical broadcast channel,PBCH),以及为了解调PBCH所需的解调参考信号(demodulation reference signal,DMRS)。PSS和SSS用于终端设备进行下行同步,包括定时同步、帧同步和符号同步;PSS和SSS还用于获取小区标识(ID)以及测量小区信号质量。
S520,网络设备向终端设备发送参考信号。
具体地,S520,包括:网络设备通过广播的方式发送参考信号。
若分组信息用于指示M个参考信号为一组,共N组参考信号,则S520包括,网络设备向终端设备发送M*N个参考信号。可选地,网络设备可以通过M*N个波束发送M*N个参考信号,一个波束对应一个参考信号,并且,网络设备发送M*N个波束每个波束具有多个波峰,这样可以利用一个波束的多个波峰发送SSB,其中,*表示相乘运算。
需要说明的是,S510和S520的顺序不限。
S530,相应地,终端设备检测网络设备发送的参考信号,若终端设备检测到至少一个参考信号,终端设备根据分组信息确定发送随机接入前导码的第一随机接入资源。
在一种可能的实现方式中,S530,包括:所述终端设备根据所述分组信息确定第一检测序列;所述终端设备根据所述第一检测序列确定所述第一随机接入资源。
可选地,若分组信息用于指示M个参考信号为一组,共N组参考信号,第一检测序列的长度与M相关。
下面结合实施例描述如何确定第一检测序列。
具体地:若终端设备检测到至少一个参考信号,终端设备可以根据分组信息和至少一个参考信号的索引得到第一检测序列。具体地,终端设备可以根据分组信息确定总的参考信号数量,可以预设参考信号的索引,例如,若终端设备确定参考信号的数量为M*N,则M*N个参考信号的索引分别为0,1,……,M*N-1。
举例来说,若分组信息指示4个参考信号为一组,共16组参考信号,假设默认64参考信号的索引分别为0,……,63,则若终端设备只接收到一个参考信号的索引为62,则可以确定第一检测序列的为0010;若终端设备接收到两个参考信号的索引分别为56和57,则可以确定第一检测序列的为1100,即此时第一检测序列为量化得到的序列。
可选地,如果用一个bit指示是否检测到一个参考信号,则第一检测序列的长度为M;如果为p个比特指示是否检测到一个参考信号,则第一检测序列的长度为pM,例如p=2,结合上述例子,若终端设备接收到一个参考信号的索引为62,则可以确定第一检测序列的长度为00001100。
可以理解的是,若终端设备接收到两个或两个以上的参考信号,并且这两个或两个以上的参考信号的索引不是连续的几个索引,则终端设备可以选择参考信号的接收功率(reference signal receiving power,RSRP)较大或者最大的确定第一检测序列,或者终端设备可以任意选择一个确定第一检测序列。结合上述的例子,若终端设备接收到参考信号的索引分别为56、57和62,根据分组信息可知,索引为56和57的参考信号为一个组,但是与索引为62的参考信号不是一个组,这样索引为56和57的参考信号对应的序列为1100,索引为62的参考信号对应的序列为0010,终端设备可以在这两个序列中任意选择一个作为第一检测序列,或者终端设备确定索引为56、57和62的这三个参考信号中RSRP最高的参考信号的索引,例如索引为62的参考信号的RSRP最高,则终端设备可以确定第一检测序列为0010。
可选地,终端设备可以根据RSRP阈值确定是否检测到参考信号,若某一个参考信号的RSRP大于RSRP阈值,则可以确定检测到参考信号,如果某一个参考信号的RSRP小于RSRP阈值,则可以确定没有检测到参考信号。其中,RSRP阈值可以是预设的也可以是网络设备发送给终端设备的。
下面结合两种方式描述如何根据第一检测序列确定第一随机接入资源。
方式一,终端设备根据第一检测序列与第一对应关系确定发送所述随机接入前导码的第一随机接入资源,第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,至少一个检测序列包括所述第一检测序列,至少一个随机接入资源包括第一随机接入资源。例如,第一对应关系用于指示至少一个检测序列中每个检测序列与至少一个随机接入资源中每个随机接入资源一一对应。
可选地,终端设备保存有第一对应关系,第一对应关系可以是网络设备发送给终端设备的(例如通过S210中的广播消息发送)或者是协议规定的。第一对应关系如表1所示,表1中n为正整数,例如,n为16。
表1
检测序列 随机接入资源
检测序列1 随机接入资源1
检测序列2 随机接入资源2
检测序列3 随机接入资源3
检测序列4 随机接入资源4
…… ……
检测序列n 随机接入资源n
方式二,终端设备根据第一检测序列与第二对应关系确定网络设备发送所述至少一个参考信号的第一波峰,第二对应关系用于指示至少一个检测序列与至少一个波峰对应,至少一个检测序列包括第一检测序列,至少一个波峰包括第一波峰,例如,第二对应关系用 于指示至少一个检测序列中每个检测序列与至少一个波峰中每个波峰一一对应;终端设备根据第一波峰与第三对应关系确定发送所述第一随机接入前导码的第一随机接入资源,第三对应关系用于指示至少一个波峰与至少一个随机接入资源对应,至少一个随机接入资源包括第一随机接入资源,例如,第三对应关系用于指示至少一个波峰中每个波峰与至少一个随机接入资源中每个随机接入资源一一对应。
可选地,终端设备保存有第二对应关系和第三对应关系。第二对应关系和第三对应关系可以是网络设备发送给终端设备的(例如通过S210中的广播消息发送),也可以是协议规定的。可选地,第二对应关系和第三对应中的一个是网络设备发送给终端设备的,另外一个可以是协议规定的。第二对应关系如表2所示,第三对应关系如表3所示,表2和表3中m是正整数,例如m为15。
表2
检测序列 波峰
检测序列1 波峰1
检测序列2 波峰2
检测序列3 波峰3
检测序列4 波峰4
…… ……
检测序列m 波峰m
表3
波峰 随机接入资源
波峰1 随机接入资源1
波峰2 随机接入资源2
波峰3 随机接入资源3
波峰4 随机接入资源4
…… ……
波峰m 随机接入资源m
可选地,前述提到的检测序列与随机接入资源的第一对应关系,或者波峰与随机接入资源的第三对应关系中提到的随机接入资源可以是网络设备配置的随机接入资源也可以是根据波束与随机接入资源之间的对应关系确定的。具体来说,在S210中可以的资源配置信息可以配置第一对应关系或者第三对应关系,或者,在S210中的资源配置信息可以指示波束与随机接入资源的关系并且配置每个波束(每个参考信号)的波峰数目,这样,终端设备可以根据波束与随机接入资源的关系以及每个波束的波峰数目确定每个波峰对应的随机接入资源。举例来说,资源配置信息指示一个随机接入机会(RACH occasion,RO)上总共有64个随机接入前导(随机接入资源可以包括随机接入前导),共有8个波束,每个波束有4个波峰(这里是举例,每个波束的波峰数据可以不同),这样,每个波 峰对应2((64/8)/4)个随机接入前导,可以将一个波束的连续的2个随机接入前导分配给一个波峰。
在另一个可能的实现方式中,S530包括:所述终端设备根据所述分组信息确定第一波峰。所述终端设备根据所述第一波峰和第四对应关系确定发送所述随机接入前导码的所述第一随机接入资源。所述第四对应关系用于指示至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源,例如,第四对应关系可以如表3所示。
下面结合实施例描述如何确定第一波峰。
具体地,终端设备可以根据参考信号的分组信息,利用接收到的一组参考信号的值(未量化的值)以及预设算法确定第一波峰。
下面举例描述:
若参考信号的分组信息用于指示4个参考信号为一组,共16组参考信号,则终端设备可以根据接收到的一组参考信号的值来解算得到第一波峰,终端设备接收到的4次参考信号的值可以表示为:y i=aDb i+z i
其中,i=1,…,4,y i为接收到的一次参考信号的值,若某一次没有接收到参考信号,则该参考信号的值为0,a为1×N的复向量,N为参考信号总的波峰数量,a的第n(n=1,…,N)列的元素表示第n个波峰方向的信道复增益。D是N×N的波峰基底,D的某一列表示一个窄峰的指向向量,比如某一列可以为离散傅里叶变换(discrete fourier transformation,DFT)向量,b i为一个参考信号的多峰信息,b i为N×1的向量,一个参考信号的多峰信息用于指示该参考信号可以通过哪些波峰发送,例如一个参考信号的多峰信息为(100010011010111) T,其中,0表示在该波峰上没有发送参考信号,1表示在该波峰上发送参考信号,这样,可以通过15个波峰中的8个波峰发送该参考信号。z i为噪声。
在上述的公式中D可以是预设的或者是网络设备配置的,b i也可以是预设的或者网络设备配置的,终端设备接收到一次参考信号就可以确定y i,则终端设备当接收到一组参考信号时,可以根据上述公式确定a,a的N列中,值最大的一列对应的波峰即为第一波峰。需要说明的是,可以配置参考信号的分组信息所指示的M个参考信号为一组中的M,足够使得通过上述算法确定a。可以设置a中的非稀疏的元素的数量可以与M相等,a的非稀疏的元素可以为大于预设值(如预设值为0)。举例来说,上述的N=15,即a是1×15的复向量,则为了确定a的15个元素,至少需要15个等式(至少需要接收15次参考信号),但是由于a可能是稀疏矩阵,则可以接收少于15次参考信号,例如4次,即此时M=4。
本申请实施例中,上述只是举例说明如何解算得到第一波峰,还可以通过其他的方式得到第一波峰,本申请不予限制。在本申请实施例中用于解算得到第一波峰的参数可以是预设的或者是网络设备配置的,本申请不予限制。
S540,终端设备在第一随机接入资源上向网络设备发送所述随机接入前导码。
相应地,网络设备在第一随机接入资源上接收终端设备发送的随机接入前导码。
作为一个可选实施例,方法500还包括:网络设备根据第一随机接入资源确定向终端设备发送随机接入响应的第一波峰,这样,网络设备可以通过第一波峰向终端设备发送随机接入响应。
若分组信息用于确定所述终端设备第一检测序列,第一检测序列用于终端设备确定第 一随机接入资源,网络设备根据第一随机接入资源确定向终端设备发送随机接入响应的第一波峰可以通过以下两种方式中的一种方式实现:
方式一,所述网络设备根据前述的第一对应关系和所述第一随机接入资源确定第一检测序列;网络设备根据第二对应关系和所述第一检测序列确定向所述终端设备发送所述随机接入响应的所述第一波峰;
这样,网络设备可以根据随机接入资源和检测序列的第一对应关系确定终端设备得到的第一检测序列,网络设备再根据检测序列与波峰的对应关系确定的第一波峰,在该第一波峰上终端设备接收到了网络设备发送的参考信号,这样,网络设备可以在该第一波峰上发送随机接入响应,这样,终端设备也能接收网络设备在该第一波峰上发送的随机接入响应,从而可以提高随机接入的成功率。
可选地,第一对应关系和第二对应关系可以是网络设备确定的发送给终端设备(例如通过S210中的广播消息发送),或者可以是协议规定的,或者第一对应关系和第二对应关系中的一个是网络设备确定的并发送给终端设备,另外一个是协议规定的,本申请实施例不予限制。
方式二,所述网络设备根据所述第三对应关系和所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的所述第一波峰。
这样,网络设备可以根据随机接入资源与波峰的第三对应关系确定终端设备在第一波峰上接收到的参考信号,也可以保证终端设备能够接收到网络设备通过第一波峰上发送随机接入响应,从而可以提高随机接入的成功率。
可选地,第三对应关系可以是网络设备确定的发送给终端设备,或者可以是协议规定的,本申请实施例不予限制。
若分组信息用于确定所述终端设备第一波峰,第一波峰用于终端设备确定第一随机接入资源,则网络设备可以根据前述的第四对应关系以及第一随机接入资源确定第一波峰。
这样,网络设备可以根据随机接入资源与波峰的第四对应关系确定终端设备在第一波峰上接收到的参考信号,也可以保证终端设备能够接收到网络设备通过第一波峰上发送随机接入响应,从而可以提高随机接入的成功率。
可选地,第四对应关系可以是网络设备确定的发送给终端设备,或者可以是协议规定的,本申请实施例不予限制。
下面结合图6描述本申请实施例提到的用于随机接入的方法600,方法600以参考信号为SSB为例描述,不应该造成对本申请实施例的任何限制,方法600包括:
S610,网络设备发送第一对应关系,例如网络设备可以向一个或多个终端设备发送第一对应关系。
相应地,终端设备接收网络设备发送的第一对应关系。
具体地,网络设备可以通过广播/组播等方式向终端设备发送第一对应关系。
S620,网络设备发送SSB的分组信息,该分组信息用于指示M个参考信号为一组,共N组参考信号。
相应地,终端设备接收网络设备发送的SSB的分组信息。
需要说明的是,S610和S620的顺序不作限定,S610和S620可以同时执行也可以分分别执行。并且,网络设备可以在同一个广播消息中向终端设备发送第一对应关系和SSB 的分组信息,也可以在不同的广播消息中向终端设备发送第一对应关系和SSB的分组信息,本申请实施例不予限制。
S630,网络设备发送多个SSB,例如,网络设备向一个或多个终端设备发送多个SSB。
相应地,终端设备检测SSB。
可选地,网络设备可以广播或者组播多个SSB。
S640,若终端设备检测到至少一个SSB,则可以根据S620中的SSB的分组信息确定第一检测序列。
具体地,S640中,终端设备确定第一检测序列的方式参考方法500的描述。
S650,终端设备根据第一检测序列以及S610中的第一对应关系确定第一随机接入资源。
可选地,第一对应关系如表1所示。终端设备可以根据表1确定第一随机随机接入资源。
S660,终端设备在第一随机接入资源上向网络设备发送随机接入前导码(preamble)。
相应地,网络设备在第一随机接入资源上接收到终端设备发送的随机接入前导码。
S670,网络设备根据第一对应关系确定第一检测序列。
S680,网络设备根据第一检测序列以及第二对应关系确定第一波峰。
举例来说,网络设备按照如下矩阵发送四个SSB,该矩阵的每一行表示一个SSB,从上到下四行分别对应SSB1,SSB2,SSB3,SSB4,每一个列表示一个波峰,总共有15列对应15个波峰,第一行存在8个1表示网络设备在这8个波峰上发送SSB1,第二行也存在8个1,表示网络设备在这8个波峰上发送了SSB2,依次类推,矩阵中为0的元素表示在该波峰上没有发送SSB。相应的第二对应关系如表4所示,表4中的检测序列为该矩阵中的某一个列,以表4的第3行为例,若终端设备确定的检测序列为0100,则终端设备可以确定在第二个波峰接收到了网络设备发送的SSB2,则该第一波峰为第二个波峰。相应地,网络设备通过第二个波峰向终端设备发送随机接入响应。
Figure PCTCN2019121924-appb-000001
表4
检测序列 波峰
0000 000000000000000
1000 100000000000000
0100 010000000000000
0010 001000000000000
0001 000100000000000
1101 000010000000000
0110 000001000000000
0011 000000100000000
1101 000000010000000
1010 000000001000000
0101 000000000100000
1110 000000000010000
0111 000000000001000
1111 000000000000100
1011 000000000000010
1001 000000000000001
可选地,在S610之前,网络设备可以确定第一对应关系,可选地,网络设备可以根据波束与随机接入资源的对应关系确定第一对应关系。结合上述的例子,若网络设备广播的资源配置信息指示一个随机接入机会(RACH occasion,RO)上总共有32个随机接入前导(随机接入资源可以包括随机接入前导),共有4个波束(每个波束对应8个随机接入前导),每个波束有8个波峰(这里是举例,每个波束的波峰数据可以不同),这样,每个波峰对应1((32/4)/8)个随机接入前导,例如,4个波束上分别发送SSB1,SSB2,SSB3,SSB4,本来波束1上发送的SSB1对应随机接入前导1、随机接入前导2,……,随机接入前导8,但是由于SSB1有8个波峰,结合表4以及上面的矩阵,SSB1的8个波峰包括第1个波峰、第5个波峰、第8个波峰、第9个波峰、第11个波峰、第13个波峰、第14个波峰、第15个波峰。则为SSB1的第1个波峰分配随机接入前导1(相应地序列1000对应随机接入前导1),为SSB1的第5个波峰分配随机接入前导2(相应地序列1100对应随机接入前导2),为SSB1的第8个波峰分配随机接入前导3(相应地序列1101对应随机接入前导2),为SSB1的第9个波峰分配随机接入前导4(相应地序列1010对应随机接入前导4),为SSB1的第11个波峰分配随机接入前导5(相应地序列1110对应随机接入前导5),为SSB1的第13个波峰分配随机接入前导6(相应地序列1111对应随机接入前导6),为SSB1的第14个波峰分配随机接入前导7(相应地序列1011对应随机接入前导7),为SSB1的第15个波峰分配随机接入前导8(相应地序列1001对应随机接入前导8),这样第一对应关系如表5所示。
表5
检测序列 随机接入资源
1000 随机接入前导1
1100 随机接入前导2
1101 随机接入前导3
1010 随机接入前导4
1110 随机接入前导5
1111 随机接入前导6
1011 随机接入前导7
1001 随机接入前导8
S690,网络设备通过第一波峰向终端设备发送随机接入响应。
相应地,终端设备接收网络设备通过第一波峰发送的随机接入响应。
下面结合图7描述本申请实施例提到的用于随机接入的方法700,方法700以参考信号为SSB为例描述,不应该造成对本申请实施例的任何限制,方法700包括:
S710,网络设备发送第二对应关系和第三对应关系,例如网络设备可以向一个或多个终端设备发送第二对应关系和第三对应关系。
相应地,终端设备接收网络设备发送的第二对应关系和第三对应关系。
具体地,网络设备可以通过广播/组播等方式向终端设备发送第二对应关系和第三对应关系。
当然,S710中,网络设备可以在一条广播消息或者组播消息中发送第二对应关系和第三对应关系,也可以在不同的广播消息和组播消息中发送第二对应关系和第三对应关系。
S720,网络设备发送SSB的分组信息,该分组信息用于指示M个参考信号为一组,共N组参考信号。
相应地,终端设备接收网络设备发送的SSB的分组信息。
需要说明的是,S710和S720的顺序不作限定,S710和S720可以同时执行也可以分分别执行。并且,网络设备可以在同一个广播消息中向终端设备发送第二对应关系、第三对应关系以及SSB的分组信息,也可以在不同的广播消息中向终端设备发送第二对应关系、第三对应关系以及SSB的分组信息,本申请实施例不予限制。
S730,网络设备发送多个SSB,例如,网络设备向一个或多个终端设备发送多个SSB。
相应地,终端设备检测SSB。
可选地,网络设备可以广播或者组播多个SSB。
S740,若终端设备检测到至少一个SSB,则可以根据S620中的SSB的分组信息确定第一检测序列。
具体地,S740中,终端设备确定第一检测序列的方式参考方法500的描述。
S750,终端设备根据第一检测序列以及S710中的第二对应关系确定第一波峰随机接入资源。
可选地,第二对应关系如表2或表4所示。终端设备可以根据表2或者表4确定第一随机随机接入资源。
S760,终端设备根据第三对应关系以及第一波峰确定第一随机接入资源。
结合方法600中的举例,第三对应关系可以如表6所示。
表6
波峰 随机接入资源
第1个波峰 随机接入前导1
第5个波峰 随机接入前导2
第8个波峰 随机接入前导3
第9个波峰 随机接入前导4
第11个波峰 随机接入前导5
第13个波峰 随机接入前导6
第14个波峰 随机接入前导7
第15个波峰 随机接入前导8
S770,终端设备在第一随机接入资源上向网络设备发送随机接入前导码(preamble)。
相应地,网络设备在第一随机接入资源上接收到终端设备发送的随机接入前导码。
S780,网络设备根据第一随机接入资源以及第三对应关系确定第一波峰。
S790,网络设备通过第一波峰向终端设备发送随机接入响应。
相应地,终端设备接收网络设备通过第一波峰发送的随机接入响应。
下面结合图8描述本申请实施例提到的用于随机接入的方法800,方法800以参考信号为SSB为例描述,不应该造成对本申请实施例的任何限制,方法800包括:
S810,网络设备发送第四对应关系,例如网络设备可以向一个或多个终端设备发送第四对应关系。
相应地,终端设备接收网络设备发送的第四对应关系。
具体地,网络设备可以通过广播/组播等方式向终端设备发送第四对应关系。
可选地,在S810之前,方法800还包括:网络设备确定第四对应关系,可选地,网络设备可以根据波束与随机接入资源的对应关系确定第四对应关系。结合方法600的例子,若网络设备广播的资源配置信息指示一个RO上总共有32个随机接入前导(随机接入资源可以包括随机接入前导),共有4个波束(每个波束对应8个随机接入前导),每个波束有8个波峰(这里是举例,每个波束的波峰数据可以不同),这样,每个波峰对应1((32/4)/8)个随机接入前导,例如,4个波束上分别发送SSB1,SSB2,SSB3,SSB4,本来波束1上发送的SSB1对应随机接入前导1、随机接入前导2,……,随机接入前导8,由于SSB1有8个波峰,则SSB1的8个波峰包括第1个波峰、第5个波峰、第8个波峰、第9个波峰、第11个波峰、第13个波峰、第14个波峰、第15个波峰分别对应随机接入前导1、随机接入前导2,……,随机接入前导8,……,依次类推。
S820,网络设备发送SSB的分组信息,该分组信息用于指示M个参考信号为一组,共N组参考信号以及每组参考信号的波峰信息。
相应地,终端设备接收网络设备发送的SSB的分组信息。
以方法600中的例子为例描述,方法600中的矩阵可以为一组参考信号的波峰信息,每组参考信号的波峰可以相同或者不同。即若存在16组参考信号,每组参考信号的波峰 信息可以如方法600中的矩阵所示或者一组参考信号的波峰信息可以如方法600中的矩阵所示。
需要说明的是,S810和S820的顺序不作限定,S810和S820可以同时执行也可以分分别执行。并且,网络设备可以在同一个广播消息中向终端设备发送第四对应关系和SSB的分组信息,也可以在不同的广播消息中向终端设备发送第四对应关系和SSB的分组信息,本申请实施例不予限制。
S830,网络设备发送多个SSB,例如,网络设备向一个或多个终端设备发送多个SSB。
相应地,终端设备检测SSB。
可选地,网络设备可以广播或者组播多个SSB。
S840,若终端设备检测到至少一个SSB,则可以根据S820中的SSB的分组信息确定第一波峰。
具体地,S840中,终端设备确定第一波峰的方式参考方法500的描述的算法。
S850,终端设备根据第一波峰以及S810中的第四对应关系确定第一随机接入资源。
可选地,第四对应关系如表3所示。终端设备可以根据表3确定第一随机随机接入资源。
S860,终端设备在第一随机接入资源上向网络设备发送随机接入前导码(preamble)。
相应地,网络设备在第一随机接入资源上接收到终端设备发送的随机接入前导码。
S870,网络设备根据第一随机接入资源以及第四对应关系确定第一波峰。
S880,网络设备通过第一波峰向终端设备发送随机接入响应。
相应地,终端设备接收网络设备通过第一波峰发送的随机接入响应。
需要说明的是,在本申请实施例中,为了描述方便,将用于发送随机接入前导码的资源定义为第一随机接入资源,将确定的网络设备发送参考信号的波峰以及发送随机接入响应的波峰定义为第一波峰,在不同的实施例中,第一随机接入资源和第一波峰的取值可以不同,本申请不予限制。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,上述各个方法实施例中由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文描述了本申请提供的方法实施例,下文将描述本申请提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上文主要从各个网元之间交互的角度对本申请实施例提供的方案进行了描述。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
本申请实施例可以根据上述方法示例,对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有其它可行的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图9为本申请实施例提供的用于随机接入的装置900的示意性框图。该通信装置900包括收发单元910和处理单元920。收发单元910可以与外部进行通信,处理单元910用于进行数据处理。收发单元910还可以称为通信接口或通信单元。
该装置900可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置900可以称为终端设备,收发单元910用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元920用于执行上文方法实施例中终端设备侧的处理相关的操作。
其中,收发单元910,用于获取参考信号的分组信息,所述分组信息用于指示参考信号的分组情况;处理单元920,若所述收发单元检测到所述网络设备发送的至少一个参考信号,根据所述分组信息确定发送随机接入前导码的第一随机接入资源;所述收发单元910还用于在所述第一随机接入资源上向网络设备发送所述随机接入前导码。
作为一个可选实施例,处理单元920具体用于根据所述分组信息确定第一检测序列;根据所述第一检测序列确定所述第一随机接入资源。
作为一个可选实施例,所述处理单元920具体用于:
根据所述第一检测序列与第一对应关系确定发送所述随机接入前导码的第一随机接入资源,所述第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个随机接入资源包括所述第一随机接入资源。
作为一个可选实施例,所述收发单元910还用于:从所述网络设备获取所述第一对应关系。
作为一个可选实施例,所述处理单元920具体用于:根据所述第一检测序列与第二对应关系确定所述网络设备发送所述至少一个参考信号的第一波峰,所述第二对应关系用于指示至少一个检测序列与至少一个波峰中对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个波峰包括所述第一波峰;
根据所述第一波峰与第三对应关系确定发送所述随机接入前导码的所述第一随机接入资源,所述第三对应关系用于指示所述至少一个波峰与至少一个随机接入资源对应,所述至少一个随机接入资源包括所述第一随机接入资源。
作为一个可选实施例,所述收发单元910还用于:从所述网络设备获取所述第二对应关系和所述第三对应关系。
作为一个可选实施例,所述处理单元920具体用于:根据所述分组信息和所述至少一个参考信号的索引得到所述第一检测序列。
作为一个可选实施例,所述分组信息还用于指示发送每组参考信号的波峰信息,所述处理单元920具体用于:根据所述分组信息确定第一波峰;根据所述第一波峰和第四对应关系确定发送所述随机接入前导码的所述第一随机接入资源,所述第四对应关系用于指示 至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源。
作为一个可选实施例,所述收发单元910还用于:从所述网络设备获取参考信号接收功率RSRP阈值;
所述处理单元920还用于:若所述至少一个参考信号的RSRP大于所述RSRP阈值,确定检测到所述至少一个参考信号。
作为一个可选实施例,所述收发单元920具体用于:从网络设备获取所述参考信号的分组信息。
上文实施例中的处理单元920可以由处理器或处理器相关电路实现。收发单元910可以由收发器或收发器相关电路实现。收发单元910还可称为通信单元或通信接口。
图10为本申请实施例提供的用于随机接入的装置1000的示意性框图。该通信装置1000包括发送单元1010和接收单元1020。发送单元1010和接收单元1020可以与外部进行通信。发送单元1010和接收单元1020还可以称为通信接口或通信单元。可选地,装置1000还包括处理单元1030,处理单元1030用于进行数据处理
该装置1000可以用于执行上文方法实施例中网络设备所执行的动作,这时,该通信装置1000可以称为网络设备,发送单元1010用于执行上文方法实施例中网络设备侧的发送相关的操作,接收单元1020用于执行上文方法实施例中网络设备侧接收相关的操作,、处理单元1030用于执行上文方法实施例中网络设备侧的处理相关的操作。
其中,发送单元1010,用于向终端设备发送参考信号的分组信息,所述分组信息用于参考信号的分组情况,所述分组信息用于所述终端设备确定第一随机接入资源;
所述发送单元1010还用于向所述终端设备发送参考信号;
接收单元1020,用于在所述第一随机接入资源上从所述终端设备接收随机接入前导码。
作为一个可选实施例,处理单元1030,用于根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰;
所述发送单元1010还用于通过所述第一波峰向所述终端设备发送所述随机接入响应。
作为一个可选实施例,所述分组信息具体用于所述终端设备确定第一检测序列,所述第一检测序列用于所述终端设备确定所述第一随机接入资源。
作为一个可选实施例,所述处理单元1030具体用于:根据第一对应关系和所述第一随机接入资源确定所述第一检测序列,所述第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个随机接入资源包括所述第一随机接入资源;
根据第二对应关系和所述第一检测序列确定向所述终端设备发送所述随机接入响应的所述第一波峰,所述第二对应关系用于指示至少一个检测序列与至少一个波峰中对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个波峰包括所述第一波峰。
作为一个可选实施例,所述发送单元1010还用于:向所述终端设备发送所述第一对应关系和所述第二对应关系。
作为一个可选实施例,所述处理单元1030具体用于:根据所述第三对应关系和所述 第一随机接入资源确定向所述终端设备发送所述随机接入响应的所述第一波峰,所述第三对应关系用于指示所述至少一个波峰与至少一个随机接入资源对应,所述至少一个随机接入资源包括所述第一随机接入资源。
作为一个可选实施例,所述发送单元1010还用于:向所述终端设备发送所述第三对应关系。
作为一个可选实施例,所述分组信息还用于指示每组参考信号的波峰信息,所述分组信息具体用于所述终端设备确定第一波峰,所述第一波峰用于所述终端设备确定所述第一随机接入资源;
所述处理单元1030具体用于;根据所述第一随机接入资源和第四对应关系确定向所述终端设备发送所述随机接入响应的第一波峰,所述第四对应关系用于指示至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源。
作为一个可选实施例,所述发送单元1010还用于:向所述终端设备发送参考信号接收功率RSRP阈值。
如图11所示,本申请实施例还提供一种通信装置1100。该通信装置1100包括处理器1110,处理器1110与存储器1120耦合,存储器1120用于存储计算机程序或指令,处理器1110用于执行存储器1120存储的计算机程序或指令,使得上文方法实施例中的方法被执行。
可选地,如图11所示,该通信装置1100还可以包括存储器1120。
可选地,如图11所示,该通信装置1100还可以包括收发器1130,收发器1130用于信号的接收和/或发送。例如,处理器1110用于控制收发器1130进行信号的接收和/或发送。
作为一种方案,该通信装置1100用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器1110用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器1130用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该通信装置1100用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器1110用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器1130用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置1200,该通信装置1200可以是终端设备也可以是芯片。该通信装置1200可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置1200为终端设备时,图12示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图12所示,终端设备包括收发单元1210和处理单元1220。收发单元1210也可以称为收发器、收发机、收发装置等。处理单元1220也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元1210用于执行图5中S510、S520和S540中的接收操作,和/或收发单元1210还用于执行由终端设备执行的其他收发相关的步骤。例如,收发单元1210还用于接收第一对应关系、第二对应关系、第三对应关系、第四对应关系和RSRP阈值中的至少一个。处理单元1220用于执行本申请实施例中由终端设备执行的其他处理相关的步骤,例如,处理单元1220用于解析收发单元1210接收到的参考信号的资源配置信息,进而获取参考信号资源。
应理解,图12仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图12所示的结构。
当该通信装置1200为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1300,该通信装置1300可以是网络设备也可以是芯片。该通信装置1300可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置1300为网络设备时,例如为基站。图13示出了一种简化的基站结构示意图。基站包括1310部分以及1320部分。1310部分主要用于射频信号的收发以及射频信号与基带信号的转换;1320部分主要用于基带处理,对网络设备进行控制等。1310部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1320部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1310部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1310部分中用于实现接收功能的器 件视为接收单元,将用于实现发送功能的器件视为发送单元,即1310部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1320部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1310部分的收发单元用于执行图5中S510、S520和S540中的发送操作,和/或1310部分的收发单元还用于执行本申请实施例中由网络设备执行的其他收发相关的步骤,例如,1310部分还用于发送第一对应关系、第二对应关系、第三对应关系、第四对应关系、RSRP阈值和随机接入响应中的至少一个。1320部分用于执行图6中步骤S670和S680,或者用于执行图7中的S780,或者用于执行图8中的S870,和/或1320部分还用于执行本申请实施例中由网络设备执行的处理相关的步骤。
应理解,图13仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图13所示的结构。
当该通信装置1300为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,包括上文实施例中的网络设备与终端设备。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上,或者说对现有技术做出贡献的部分,或者该技术方案的部分,可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,该计算机软件产品包括若干指令,该指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。前述的存储介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种用于随机接入的方法,其特征在于,包括:
    终端设备获取参考信号的分组信息,所述分组信息用于指示参考信号的分组情况;
    若所述终端设备检测到所述网络设备发送的至少一个参考信号,所述终端设备根据所述分组信息确定发送随机接入前导码的第一随机接入资源;
    所述终端设备在所述第一随机接入资源上向网络设备发送所述随机接入前导码。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述分组信息确定发送随机接入前导码的第一随机接入资源,包括:
    所述终端设备根据所述分组信息确定第一检测序列;
    所述终端设备根据所述第一检测序列确定所述第一随机接入资源。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述第一检测序列确定所述第一随机接入资源,包括:
    所述终端设备根据所述第一检测序列与第一对应关系确定发送所述随机接入前导码的第一随机接入资源,所述第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个随机接入资源包括所述第一随机接入资源。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备获取所述第一对应关系。
  5. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述第一检测序列确定所述第一随机接入资源,包括:
    所述终端设备根据所述第一检测序列与第二对应关系确定所述网络设备发送所述至少一个参考信号的第一波峰,所述第二对应关系用于指示至少一个检测序列与至少一个波峰对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个波峰包括所述第一波峰;
    所述终端设备根据所述第一波峰与第三对应关系确定发送所述随机接入前导码的所述第一随机接入资源,所述第三对应关系用于指示所述至少一个波峰与至少一个随机接入资源对应,所述至少一个随机接入资源包括所述第一随机接入资源。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备获取所述第二对应关系和所述第三对应关系。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述终端设备根据所述分组信息确定第一检测序列,包括:
    根据所述分组信息和所述至少一个参考信号的索引得到所述第一检测序列。
  8. 根据权利要求1所述的方法,其特征在于,所述分组信息还用于指示发送每组参考信号的波峰信息,
    其中,所述终端设备根据所述分组信息确定发送随机接入前导码的第一随机接入资源:
    所述终端设备根据所述分组信息确定第一波峰;
    所述终端设备根据所述第一波峰和第四对应关系确定发送所述随机接入前导码的所述第一随机接入资源,所述第四对应关系用于指示至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备获取参考信号接收功率RSRP阈值;
    所述方法还包括:
    若所述至少一个参考信号的RSRP大于所述RSRP阈值,所述终端设备确定检测到所述至少一个参考信号。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述终端设备获取参考信息的分组信息,包括:
    所述终端设备从网络设备获取所述参考信号的分组信息。
  11. 一种用于随机接入的方法,其特征在于,包括:
    网络设备向终端设备发送参考信号的分组信息,所述分组信息用于参考信号的分组情况,所述分组信息用于所述终端设备确定第一随机接入资源;
    所述网络设备向所述终端设备发送参考信号;
    所述网络设备在所述第一随机接入资源上从所述终端设备接收随机接入前导码。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰;
    所述网络设备通过所述第一波峰向所述终端设备发送所述随机接入响应。
  13. 根据权利要求12所述的方法,其特征在于,所述分组信息具体用于所述终端设备确定第一检测序列,所述第一检测序列用于所述终端设备确定所述第一随机接入资源。
  14. 根据权利要求13所述的方法,其特征在于,所述网络设备根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰,包括:
    所述网络设备根据第一对应关系和所述第一随机接入资源确定所述第一检测序列,所述第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个随机接入资源包括所述第一随机接入资源;
    所述网络设备根据第二对应关系和所述第一检测序列确定向所述终端设备发送所述随机接入响应的所述第一波峰,所述第二对应关系用于指示至少一个检测序列与至少一个波峰对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个波峰包括所述第一波峰。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送所述第一对应关系和所述第二对应关系。
  16. 根据权利要求12或13所述的方法,其特征在于,所述网络设备根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰,包括:
    所述网络设备根据所述第三对应关系和所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的所述第一波峰,所述第三对应关系用于指示所述至少一个波峰与 至少一个随机接入资源对应,所述至少一个随机接入资源包括所述第一随机接入资源,所述至少一个波峰包括所述第一波峰。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送所述第三对应关系。
  18. 根据权利要求12所述的方法,其特征在于,所述分组信息还用于指示每组参考信号的波峰信息;
    其中,所述网络设备根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰;
    所述网络设备根据所述第一随机接入资源和第四对应关系确定向所述终端设备发送所述随机接入响应的第一波峰,所述第四对应关系用于指示至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送参考信号接收功率RSRP阈值。
  20. 一种用于随机接入的装置,其特征在于,包括:
    收发单元,用于获取参考信号的分组信息,所述分组信息用于指示参考信号的分组情况;
    处理单元,若所述收发单元检测到所述网络设备发送的至少一个参考信号,根据所述分组信息确定发送随机接入前导码的第一随机接入资源;
    所述收发单元还用于在所述第一随机接入资源上向网络设备发送所述随机接入前导码。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于:
    根据所述分组信息确定第一检测序列;
    根据所述第一检测序列确定所述第一随机接入资源。
  22. 根据权利要求21所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一检测序列与第一对应关系确定发送所述随机接入前导码的第一随机接入资源,所述第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个随机接入资源包括所述第一随机接入资源。
  23. 根据权利要求22所述的装置,其特征在于,所述收发单元还用于:
    从所述网络设备获取所述第一对应关系。
  24. 根据权利要求21所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一检测序列与第二对应关系确定所述网络设备发送所述至少一个参考信号的第一波峰,所述第二对应关系用于指示至少一个检测序列与至少一个波峰中对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个波峰包括所述第一波峰;
    根据所述第一波峰与第三对应关系确定发送所述随机接入前导码的所述第一随机接入资源,所述第三对应关系用于指示所述至少一个波峰与至少一个随机接入资源对应,所述至少一个随机接入资源包括所述第一随机接入资源。
  25. 根据权利要求24所述的装置,其特征在于,所述收发单元还用于:
    从所述网络设备获取所述第二对应关系和所述第三对应关系。
  26. 根据权利要求21至25中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述分组信息和所述至少一个参考信号的索引得到所述第一检测序列。
  27. 根据权利要求20所述的装置,其特征在于,所述分组信息还用于指示发送每组参考信号的波峰信息,
    所述处理单元具体用于:
    根据所述分组信息确定第一波峰;
    根据所述第一波峰和第四对应关系确定发送所述随机接入前导码的所述第一随机接入资源,所述第四对应关系用于指示至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源。
  28. 根据权利要求20至27中任一项所述的装置,其特征在于,所述收发单元还用于:
    从所述网络设备获取参考信号接收功率RSRP阈值;
    所述处理单元还用于:若所述至少一个参考信号的RSRP大于所述RSRP阈值,确定检测到所述至少一个参考信号。
  29. 根据权利要求20至28中任一项所述的装置,其特征在于,所述收发单元具体用于:
    从网络设备获取所述参考信号的分组信息。
  30. 一种用于随机接入的装置,其特征在于,包括:
    发送单元,用于向终端设备发送参考信号的分组信息,所述分组信息用于参考信号的分组情况,所述分组信息用于所述终端设备确定第一随机接入资源;
    所述发送单元还用于向所述终端设备发送参考信号;
    接收单元,用于在所述第一随机接入资源上从所述终端设备接收随机接入前导码。
  31. 根据权利要求30所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的第一波峰;
    所述发送单元还用于通过所述第一波峰向所述终端设备发送所述随机接入响应。
  32. 根据权利要求31所述的装置,其特征在于,所述分组信息具体用于所述终端设备确定第一检测序列,所述第一检测序列用于所述终端设备确定所述第一随机接入资源。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元具体用于:
    根据第一对应关系和所述第一随机接入资源确定所述第一检测序列,所述第一对应关系用于指示至少一个检测序列与至少一个随机接入资源对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个随机接入资源包括所述第一随机接入资源;
    根据第二对应关系和所述第一检测序列确定向所述终端设备发送所述随机接入响应的所述第一波峰,所述第二对应关系用于指示至少一个检测序列与至少一个波峰中对应,所述至少一个检测序列包括所述第一检测序列,所述至少一个波峰包括所述第一波峰。
  34. 根据权利要求33所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送所述第一对应关系和所述第二对应关系。
  35. 根据权利要求31或32所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第三对应关系和所述第一随机接入资源确定向所述终端设备发送所述随机接入响应的所述第一波峰,所述第三对应关系用于指示所述至少一个波峰与至少一个随机接入资源对应,所述至少一个随机接入资源包括所述第一随机接入资源。
  36. 根据权利要求35所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送所述第三对应关系。
  37. 根据权利要求31所述的装置,其特征在于,所述分组信息还用于指示每组参考信号的波峰信息,所述分组信息具体用于所述终端设备确定第一波峰,所述第一波峰用于所述终端设备确定所述第一随机接入资源;
    所述处理单元具体用于;
    根据所述第一随机接入资源和第四对应关系确定向所述终端设备发送所述随机接入响应的第一波峰,所述第四对应关系用于指示至少一个波峰与至少一个随机接入资源对应,所述至少一个波峰包括所述第一波峰,所述至少一个随机接入资源包括所述第一随机接入资源。
  38. 根据权利要求30至37中任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送参考信号接收功率RSRP阈值。
  39. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至10中任一项所述的方法被执行。
  40. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求11至19中任一项所述的方法被执行。
  41. 一种计算机可读存储介质,其特征在于,存储有用于实现权利要求1至10中任一项所述的方法的程序或者指令。
  42. 一种计算机可读存储介质,其特征在于,存储有用于实现权利要求11至19中任一项所述的方法的程序或者指令。
  43. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被计算机执行时使得权利要求1至10中任一项所述的方法被执行。
  44. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被计算机执行时使得权利要求11至19中任一项所述的方法被执行。
PCT/CN2019/121924 2019-11-29 2019-11-29 用于随机接入的方法和装置 WO2021102895A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980102588.2A CN114731702A (zh) 2019-11-29 2019-11-29 用于随机接入的方法和装置
EP19954114.5A EP4054272A4 (en) 2019-11-29 2019-11-29 METHOD AND APPARATUS FOR RANDOM ACCESS
CA3163123A CA3163123A1 (en) 2019-11-29 2019-11-29 Random access method and apparatus
PCT/CN2019/121924 WO2021102895A1 (zh) 2019-11-29 2019-11-29 用于随机接入的方法和装置
US17/827,518 US20220287109A1 (en) 2019-11-29 2022-05-27 Random access method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121924 WO2021102895A1 (zh) 2019-11-29 2019-11-29 用于随机接入的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/827,518 Continuation US20220287109A1 (en) 2019-11-29 2022-05-27 Random access method and apparatus

Publications (1)

Publication Number Publication Date
WO2021102895A1 true WO2021102895A1 (zh) 2021-06-03

Family

ID=76129856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121924 WO2021102895A1 (zh) 2019-11-29 2019-11-29 用于随机接入的方法和装置

Country Status (5)

Country Link
US (1) US20220287109A1 (zh)
EP (1) EP4054272A4 (zh)
CN (1) CN114731702A (zh)
CA (1) CA3163123A1 (zh)
WO (1) WO2021102895A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11641565B2 (en) * 2020-07-31 2023-05-02 Qualcomm Incorporated Multicast sensing-tracking reference signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092697A (zh) * 2017-05-11 2018-05-29 中兴通讯股份有限公司 信号的传输方法和装置
US20180279387A1 (en) * 2017-03-24 2018-09-27 Electronics And Telecommunications Research Institute Method and apparatus for transmitting ra preamble in nr system
US20190110314A1 (en) * 2017-10-09 2019-04-11 Qualcomm Incorporated Random access response techniques based on synchronization signal block transmissions
CN110099459A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种随机接入方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272534B2 (en) * 2017-10-27 2022-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Contention-free random access with multiple SSB
CN110475337B (zh) * 2018-05-11 2020-11-06 成都华为技术有限公司 通信方法及装置
CN109041593B (zh) * 2018-07-11 2021-04-06 北京小米移动软件有限公司 随机接入配置方法及装置、随机接入方法及装置和基站
CN109041250B (zh) * 2018-07-19 2022-03-18 宇龙计算机通信科技(深圳)有限公司 一种ssb的传输方法、客户端及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279387A1 (en) * 2017-03-24 2018-09-27 Electronics And Telecommunications Research Institute Method and apparatus for transmitting ra preamble in nr system
CN108092697A (zh) * 2017-05-11 2018-05-29 中兴通讯股份有限公司 信号的传输方法和装置
US20190110314A1 (en) * 2017-10-09 2019-04-11 Qualcomm Incorporated Random access response techniques based on synchronization signal block transmissions
CN110099459A (zh) * 2018-01-31 2019-08-06 华为技术有限公司 一种随机接入方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4054272A4 *
ZTE, SANECHIPS: "Remaining details of RACH procedure", 3GPP DRAFT; R1-1803610, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 6 April 2018 (2018-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051412927 *

Also Published As

Publication number Publication date
EP4054272A4 (en) 2022-11-09
CN114731702A (zh) 2022-07-08
US20220287109A1 (en) 2022-09-08
CA3163123A1 (en) 2021-06-03
EP4054272A1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
EP3817479B1 (en) Communication method and communication apparatus
US20200351130A1 (en) Sounding reference signal transmission method, network device and terminal device
US11729784B2 (en) Apparatus and system for obtaining resources using a coefficient
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
US20190274053A1 (en) Apparatus and Method for Configuring Dynamic Time Division Duplex and Communication System
CN111093293A (zh) 一种天线信号的处理方法及装置
US20210258965A1 (en) Method and apparatus for configuring physical uplink control channel resource set and determining starting symbol
US20220255668A1 (en) Sequence-based signal transmission method and communication apparatus
WO2020020315A1 (zh) 一种上下行时间资源配置的方法和装置
WO2019129253A1 (zh) 一种通信方法及装置
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
WO2021102895A1 (zh) 用于随机接入的方法和装置
WO2022077479A1 (zh) 一种通信方法及装置
JP2023521781A (ja) ランダムアクセス信号を送信するための方法および装置
US11743940B2 (en) Data transmission method and communications apparatus
AU2018417507B2 (en) Method and device for sending uplink channel, and method and device for receiving uplink channel
TWI788174B (zh) 資訊處理方法、裝置和可讀存儲介質
US11856539B2 (en) Method and device for transmitting downlink control information
WO2021027820A1 (zh) 一种通信方法及装置
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2018227493A1 (zh) 随机接入方法及相关装置
US20230077947A1 (en) Wireless communication method, terminal device, and network device
WO2023011617A1 (zh) 一种获取信息的方法和装置
WO2023093682A1 (zh) 通信的方法和装置
US20220132540A1 (en) Methods and apparatuses for transmitting and receiving uplink signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163123

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019954114

Country of ref document: EP

Effective date: 20220531

NENP Non-entry into the national phase

Ref country code: DE