WO2021102752A1 - 低功耗电机起动器及制冷设备 - Google Patents

低功耗电机起动器及制冷设备 Download PDF

Info

Publication number
WO2021102752A1
WO2021102752A1 PCT/CN2019/121327 CN2019121327W WO2021102752A1 WO 2021102752 A1 WO2021102752 A1 WO 2021102752A1 CN 2019121327 W CN2019121327 W CN 2019121327W WO 2021102752 A1 WO2021102752 A1 WO 2021102752A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
compressor
voltage
controller
low
Prior art date
Application number
PCT/CN2019/121327
Other languages
English (en)
French (fr)
Inventor
许明
刘兆雷
曹洁
于帮兴
陈浩
李霞
Original Assignee
Tcl家用电器(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl家用电器(合肥)有限公司 filed Critical Tcl家用电器(合肥)有限公司
Priority to PCT/CN2019/121327 priority Critical patent/WO2021102752A1/zh
Publication of WO2021102752A1 publication Critical patent/WO2021102752A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor

Definitions

  • This application relates to the field of household appliances, in particular to a low-power motor starter and refrigeration equipment.
  • the refrigeration equipment with refrigeration function as the core of the refrigeration equipment-the compressor, which generally uses a single-phase asynchronous motor, and a single-phase asynchronous motor mainly includes a running winding and For a starter winding, at the beginning of energization, both the running winding and the starter winding have larger currents.
  • a starter winding at the beginning of energization, both the running winding and the starter winding have larger currents.
  • the starter winding current is cut off or limited to a smaller value. Therefore, a switch circuit is often connected in series to the start winding of this type of motor. When the motor starts to be energized, the switch circuit is turned on. The motor speed increases to close to the synchronous speed and the switch circuit is turned off.
  • Such a circuit is usually called a starter circuit to achieve this.
  • a device with this function is usually called a starter.
  • the common starter used to realize the above-mentioned functions is the PTC starter.
  • the PTC starter is in a small resistance conduction state at normal temperature.
  • the temperature of the PTC element rises in a short time due to the thermal effect of the current.
  • the resistance value rapidly increases to more than tens of kiloohms
  • the impedance ratio with the starter winding is equivalent to an open circuit, and the current of the starter winding in series with it drops to less than ten milliamperes.
  • the motor starting process is completed and the motor enters normal operation.
  • the PTC will always flow a small current, and there will always be standby power consumption, which is about a few watts.
  • the value does not seem to be very large, the total consumption of the refrigeration equipment for long-term use It is still relatively large, and it also leads to a waste of electrical energy.
  • a low-power motor starter that can improve the power consumption of the starter is not completely reduced is provided.
  • a low-power motor starter including compressor motor circuit, compressor protection circuit, voltage sampling circuit and processing circuit:
  • the compressor protection circuit is coupled to the input end of the compressor motor circuit; wherein, the compressor motor circuit includes a compressor starting circuit;
  • the voltage sampling circuit is coupled to both ends of the compressor protection circuit, and is used to collect the voltage at both ends of the compressor protection circuit;
  • the processing circuit is connected to the voltage sampling circuit, and is configured to output a switch signal for shutting off the compressor starting circuit when the voltage across the compressor protection circuit is less than a preset voltage threshold.
  • this application also provides a refrigeration device, including:
  • the compressor is arranged in the main body of the equipment.
  • the control system is integrated on the device body, and the control system includes the aforementioned low-power motor starter.
  • this application also provides a refrigeration device, including:
  • the device body includes a refrigerating chamber and a freezing chamber;
  • the compressor is arranged in the main body of the equipment
  • a thermostat connected to the compressor, for controlling the working state of the compressor according to the sampling temperature of the refrigerating chamber and the freezing chamber;
  • the above-mentioned low-power motor starters and refrigeration equipment take advantage of the large current difference before and after the compressor motor is successfully started.
  • the compressor protection circuit is connected in series to the compressor motor circuit, and then a voltage sampling circuit is set to collect the compressor protection circuit The voltage at both ends, and finally set the processing circuit according to the size relationship between the collected voltage and the preset voltage threshold as the judgment condition for shutting down the compressor starting circuit, which can reduce the standby power consumption of the compressor starting circuit after the compressor motor is successfully started. , Avoid excessive waste of electric energy.
  • Figure 1 is a schematic structural diagram of a low-power motor starter in an embodiment
  • Figure 2 is a schematic structural diagram of a low-power motor starter in another embodiment
  • Figure 3 is a schematic structural diagram of a refrigeration device in an embodiment
  • Fig. 4 is a schematic diagram of the circuit principle of a low-power motor starter in an embodiment
  • Figure 5 is a schematic diagram of the principle of a low-power motor starter in another embodiment
  • FIG. 6 is a schematic diagram of the principle of a power supply module in an embodiment
  • FIG. 7 is a schematic diagram of the principle of a power module in another embodiment
  • FIG. 8 is a schematic diagram of the circuit principle of the controller in an embodiment
  • FIG. 9 is a schematic diagram of the principle of a temperature collection circuit in an embodiment
  • Figure 10 is a schematic diagram of the principle of a box door switch detection circuit in an embodiment
  • FIG. 11 is a schematic diagram of the principle of an LED display driving circuit in an embodiment
  • FIG. 12 is a schematic diagram of the principle of a box door switch detection circuit in another embodiment
  • FIG. 13 is a schematic diagram of the principle of a heater driving circuit in an embodiment
  • Fig. 14 is a schematic diagram of the principle of a compressor drive circuit in an embodiment
  • 15 is a schematic diagram of the principle of a gear setting circuit in an embodiment
  • FIG. 16 is a schematic diagram of the principle of the gear display circuit in an embodiment.
  • the low-power motor starter may include a compressor motor circuit 10, a compressor protection circuit 20, a voltage sampling circuit 30 and a processing circuit 40; wherein the compressor protection circuit 20 is coupled to the input end of the compressor motor circuit 10.
  • the compressor motor circuit 10 may include a compressor starting circuit 110; the voltage sampling circuit 30 is coupled to both ends of the compressor protection circuit 20, and is used to collect the compressor protection circuit 20. The voltage at both ends; the processing circuit 40 is connected to the voltage sampling circuit 30, and is used to output a switch signal to turn off the compressor starting circuit 110 when the voltage at both ends of the compressor protection circuit is less than a preset voltage threshold .
  • the compressor motor needs a relatively large current to ensure the normal operation of the compressor motor since it is energized, when the compressor motor speed increases to close to the synchronous speed, the compressor motor is deemed to have started successfully.
  • the compressor motor circuit is The current will become smaller; this application connects the compressor protection circuit 20 to the compressor motor circuit 10 in series based on the difference between the currents before and after the compressor motor starts, and then sets the voltage sampling circuit 30 to collect the compressor protection circuit 20.
  • the processing circuit 40 is set to control the compressor starting circuit 110 to shut off after the compressor motor is started according to the relationship between the collected voltage and the preset voltage threshold, which can minimize the compressor starting circuit.
  • the standby power consumption of 110 after the compressor motor is successfully started close to 0W), so as to avoid excessive waste of electric energy.
  • the electrical part is usually composed of a rotor, a stator composed of a starting winding and a running winding, a PTC, and a running capacitor.
  • PTC is the abbreviation of Positive Temperature Coefficient, which means a positive temperature coefficient, and generally refers to semiconductor materials or components with a large positive temperature coefficient.
  • PTC thermistor referred to as PTC thermistor or thermistor PTC.
  • PTC thermistor As the current passing through it increases, the PTC resistance will increase rapidly.
  • the circuit where the PTC and the starting winding are located is usually called the starting circuit; the circuit where the operating winding is located is called the operating circuit; the starting circuit and the operating circuit together constitute the motor circuit of the compressor.
  • FIG. 2 is a schematic structural diagram of a low-power motor starter in another embodiment.
  • the compressor motor circuit 10 of the present application may further include a compressor operating circuit 120, which is connected in parallel with the compressor starting circuit 110.
  • the compressor operating circuit 120 of the present application is the same as the compressor operating circuit described above, and both represent the operating winding position.
  • the compressor starting circuit 110 of the present application is the same as the compressor starting circuit described above, and both represent the circuit in which the thermistor PTC and the starting winding are located.
  • FIG. 4 is a schematic diagram of the circuit principle of a low-power motor starter in an embodiment.
  • La represents the running winding and Lb represents the starting winding; accordingly, the loop where the running winding La is located
  • the compressor operating circuit 120 the compressor starting circuit 110 may include the thermistor PTC, the triac TR1 and the starting winding Lb; one end of the starting winding Lb is connected to the AC neutral line ACL , The other end is connected to the thermistor PTC; the other end of the thermistor PTC is connected to the first anode (not shown) of the triac TR1; the gate of the triac TR1 (Not shown) is connected to the output terminal of the processing circuit 40, and the second anode (not shown) is connected to the AC live wire ACN.
  • FIG. 2 It is a schematic diagram of the structure of a low-power motor starter in another embodiment.
  • the compressor protection circuit 20 can be regarded as an overload protector, and the overload protector 20 is used to shut off the compressor when the current input to the compressor motor circuit 10 exceeds a preset current value.
  • the overload protector 20 may include a sampling resistor R, which is usually formed by a bimetallic piece in series.
  • the overload protector 20 usually also has a Normally closed contact, corresponding to the working principle of the overload protector 20 is: under normal circumstances, the contact of the overload protector 20 is normally closed, when the current is too large, the sampling resistor R generates thermal deformation, and the normally closed contact is controlled to open.
  • the compressor motor circuit 10 is cut off from the entire circuit, so that the motor can be effectively protected.
  • the voltage across the compressor protection circuit 20 collected by the voltage sampling circuit 30 is the voltage across the sampling resistor R collected. That is to say, the voltage sampling circuit 30 of the present application is mainly coupled to both ends of the sampling resistor R. Since the sampling resistor R is connected in series with the compressor motor circuit 10, when the current in the compressor motor circuit 10 is caused by the thermistor PTC When the characteristic becomes smaller, the current flowing through both ends of the sampling resistor R also becomes smaller, and the voltage sampled by the voltage sampling circuit 30 also becomes smaller.
  • the voltage sampling circuit 30 may include a bridge rectifier circuit. Two input terminals (not shown) of the bridge rectifier circuit are connected to both ends of the sampling resistor R. One output terminal (not shown) of the bridge rectifier circuit is grounded, and the other output terminal (not shown) of the bridge rectifier circuit is connected to the input terminal of the processing circuit 40.
  • the bridge rectifier circuit can be connected to a bridge form by four diodes D5, D6, D7 and D8; wherein the junction of the anode of diode D7 and the cathode of diode D5 serves as a bridge rectifier circuit
  • the input terminal is connected to one end of the sampling resistor R; the junction of the anode of the diode D8 and the cathode of the diode D6 serves as the other input terminal of the bridge rectifier circuit, and the input terminal is connected to the other end of the sampling resistor R;
  • the junction of the anode of D5 and the anode of diode D6 serves as an output terminal of the bridge rectifier circuit, and the output terminal is connected to the input terminal of the processing circuit 40;
  • the junction of the cathode of diode D7 and the cathode of diode D8 serves as the other output terminal of the bridge rectifier circuit , The output terminal is grounded.
  • the low-power motor starter of the present application is provided with a processing circuit 40 according to the voltage change on the sampling resistor R.
  • This processing circuit 40 is mainly used to compare the voltage value on the sampling resistor R with the preset voltage threshold, and when the voltage of the sampling resistor R is less than the preset voltage, it outputs the circuit (compressor starting circuit) where the thermistor PTC is turned off.
  • the switch signal can minimize the standby power consumption (close to 0W) of the compressor starting circuit 110 after the compressor motor is successfully started, thereby avoiding excessive waste of electric energy.
  • the low-power motor starter of the present application may further include a power module (not shown in the figure) for providing electrical energy to the processing circuit 40.
  • a power module (not shown in the figure) for providing electrical energy to the processing circuit 40.
  • FIG. 6, is a schematic diagram of the circuit principle of the power supply module in an embodiment.
  • the power supply module may be a non-isolated power supply.
  • the non-isolated power supply module 310 may include FR1 (current fuse), ZR1 (varistor), Rectifier diodes (D1 and D2, where D2 is to improve surge and lightning strikes), rectification and filtering and EMC parts (electrolytic capacitor EC1, electrolytic capacitor EC3, differential mode inductor L1) form a half-wave rectifier circuit, which is composed of a BUCK (buck) chip U1 , Electrolytic capacitor EC2, electrolytic capacitor EC4, electrolytic capacitor EC5, differential mode inductor L2, diodes D3, D4, and resistor R1 constitute a BUCK rectifier filter circuit to obtain the required power supply voltage +5V.
  • the connection relationship of the various components can be referred to the drawings, which will not be further described here.
  • the use of non-isolated power supply as the power module has the advantages of high conversion efficiency, relatively small size, relatively low cost and easy design.
  • FIG. 7 is a schematic circuit diagram of a power module in another embodiment.
  • the power module may be a RC step-down power supply.
  • the RC step-down power supply may include a resistor R16, a varistor ZR2, a resistor R20, a safety capacitor C7, a rectifier diode D9 to D12, an electrolytic capacitor EC6, and a voltage regulator. Diode D13, the output voltage of this circuit is +5V.
  • the processing circuit 40 may include a transistor Q5, a controllable stabilized voltage source U10, a resistor R44, and a resistor R20; the cathode K of the controllable stabilized source U10 passes through the resistor 44 and The output terminal of the voltage sampling circuit 30 is connected, the anode A of the controllable stabilized voltage source U10 is grounded, and the reference electrode R of the controllable stabilized voltage source U10 passes through the resistor 20 and the gate of the triac TR1
  • the base of the transistor Q5 is connected to the cathode K of the controllable voltage-stabilizing source U10, the collector of the transistor Q5 is connected to the output terminal of the voltage sampling circuit, and the emitter of the transistor Q5 is connected to The resistor R20 is connected.
  • the controllable voltage stabilizing source U10 selects a precision controllable voltage stabilizing source, and the triode can be replaced with a MOS tube.
  • the working principle of the low power consumption motor starter of this specific embodiment is as follows:
  • the bridge rectifier circuit 30 samples the AC voltage drop on the sampling resistor R of the overload protector, and the DC voltage after rectification and filtering is marked as Uo.
  • the voltage of the reference pole R in the controllable stabilized voltage source U10 is working When the time remains unchanged, this voltage is recorded as Uref; the voltage drop when the be pin of the transistor Q5 is turned on is recorded as Ube; the gate voltage when the triac TR1 is turned on is defined as Vgt; because U10 is a controllable precision Regulated source, so Ube+Uref+Vgt is variable or configurable.
  • the current of the thermistor PTC in the compressor starting circuit 110 becomes smaller due to heat, and the current flowing through the sampling resistor R becomes smaller, so that the voltage Uo sampled by the bridge rectifier circuit 30 becomes smaller.
  • Uo ⁇ Ube+Uref+Vgt the transistor Q5 is turned off, and the gate trigger signal of the triac TR1 is removed, so that the triac TR1 is disconnected, so that the compressor starting circuit 110 is cut off, and the temperature sensitive
  • the resistance PTC is not energized, so that the power consumption on the thermistor PTC is reduced to zero, and the compressor operating circuit 120 works (current flow: AC neutral line ACL ⁇ overload protector 20 ⁇ operation winding La ⁇ AC live wire ACN).
  • FIG. 5 is a schematic diagram of the principle of a low-power motor starter in another embodiment.
  • the processing circuit 40 in FIG. 5 may include a comparator U1 and a resistor R3.
  • the non-inverting input terminal U+ of the comparator U1 is connected to the output terminal of the voltage sampling circuit 30, and the reverse input terminal U- is connected to a reference.
  • the voltage (the voltage divided by the resistor R4 can be set as required), and the output terminal OUT is connected to the gate (not shown) of the triac TR1 through the resistor R3.
  • the working principle of the low power consumption motor starter of this specific embodiment is as follows:
  • the bridge rectifier circuit 30 samples the AC voltage drop on the sampling resistor R of the overload protector, and the DC voltage after rectification and filtering is denoted as U1, and the reference voltage is denoted as U-.
  • the current of the thermistor PTC in the compressor starting circuit 110 becomes smaller due to heat, and the current flowing through the sampling resistor R becomes smaller, so that the voltage U1 sampled by the bridge rectifier circuit 30 becomes smaller.
  • U1 ⁇ U- the output pin OUT of the comparator U1 is low level, and the gate trigger signal of the triac TR1 is removed, so that the triac TR1 is disconnected, thereby making the compressor start circuit 110 is cut off, the thermistor PTC is not charged, and the power consumption on the corresponding thermistor PTC is reduced to zero.
  • the present application also provides a refrigeration device, which may be a refrigerator, specifically, referring to FIG. 3, which is a schematic structural diagram of the refrigeration device in an embodiment provided by this application.
  • the refrigeration equipment may include an equipment body (not shown in the figure), which can be understood as the cabinet of the refrigerator; the compressor M is arranged in the equipment body, usually at the bottom of the refrigerator; the compressor is used as the entire refrigeration equipment Its main working principle is: suck in low-temperature, low-pressure refrigerant, compress it into high-temperature, high-pressure superheated gas, and finally discharge it.
  • the control system (not shown) is integrated on the main body of the equipment.
  • the control system includes a low power consumption motor starter (not shown).
  • the low power consumption motor starter includes: a compressor protection circuit 20, a coupling Is connected to the input end of the compressor motor circuit 10; wherein, the compressor motor circuit 10 includes a compressor starting circuit 110; a voltage sampling circuit 30, coupled to both ends of the compressor protection circuit 20, is used to collect The magnitude of the voltage flowing through the compressor protection circuit 20; and a processing circuit 40, connected to the voltage sampling circuit 30, for outputting a shutdown when the voltage collected by the voltage sampling circuit 30 is less than a preset voltage threshold The switch signal of the compressor starting circuit 110.
  • the low-power motor starter in this specific embodiment may also have the same parts as those in the foregoing low-power motor starter embodiments. For details, please refer to the relevant description of the foregoing embodiment, which will not be repeated here.
  • the control system may further include a controller 510, and the controller 510 may be used to perform control functions of the control system.
  • FIG. 8 is a schematic circuit diagram of the controller in an embodiment.
  • the controller 510 mainly takes the control chip U3 as the core.
  • the control chip U3 has a variety of control functions, such as current sampling and temperature sampling.
  • the specific functions such as LED driving, heater driving, and motor driving can be embodied in the subsequent embodiments, and will not be repeated here.
  • the device body includes at least one refrigerating chamber (not shown in FIG. 3) and at least one freezing chamber (not shown in FIG. 3), wherein the temperature range in the refrigerating chamber may be 0 ⁇ 10°, the temperature of the freezing chamber can be -15° ⁇ -24°;
  • the control system may also include a temperature collection circuit 520, which is connected to the controller 30, and the temperature collection circuit 520 is used for To collect the temperatures of the refrigerating chamber and the freezing chamber.
  • the temperature collection circuit 520 of the present application may be provided with one or more temperature sensors to collect the temperature of the refrigerating chamber and the freezing chamber, and then output to the control chip U3.
  • the temperature of the refrigerating chamber and the freezing chamber are adjusted by controlling the compressor to keep the temperature of the two chambers within a preset range.
  • the device body of the present application may also have multiple refrigerating chambers and multiple freezing chambers, wherein the temperature between each refrigerating chamber is different, and the temperature between each freezing chamber is different.
  • FIG. 9, is a schematic diagram of the temperature collection circuit 520.
  • the temperature collection circuit 520 may include a plurality of sensor interfaces Sensor1, Sensor2, Sensor3, Sensor4, and each sensor interface Sensor1, Sensor2, Sensor3, Sensor4 passes through a resistor R7 on the one hand.
  • R8, R10, and R11 are connected to the temperature sensors in the circuit (refrigeration, freezing, defrosting, environment), on the other hand, the resistors R15, R14, R18, R17 and capacitors C4, C5, C6, and C3 are grounded.
  • the resistors R15, R14, R18, R17 and capacitors C4, C5, C6, and C3 are grounded.
  • the control system is also provided with a box door switch detection circuit 530, the box door switch detection circuit 530 is connected to the controller 510, and the box door switch detection circuit 530 is used for It is detected whether the door of the refrigerating chamber is opened; the controller 510 outputs an LED driving signal when the door switch detection circuit 530 detects that the door is opened.
  • the box door switch detection circuit 530 of the present application can set a detection sensor at the junction of the box door to collect the opening and closing signal of the box door, and then output it to the controller 510. After processing by the controller 510, the LED drive signal is output. .
  • the box door switch detection circuit 510 may include multiple door switch detection interfaces SWTICH1, SWTICH2, SWTICH3, SWTICH4, and door switch detection interfaces SWTICH1.
  • SWTICH2, SWTICH3, and SWTICH4 are connected to the gate switch in the circuit through resistors R19, R21, R22, and R23 on the one hand, and grounded through resistors R27, R25, R24, R28 and capacitors C15, C13, C14, and C16 on the other hand.
  • resistors R19, R21, R22, and R23 on the one hand
  • resistors R27, R25, R24, R28 and capacitors C15, C13, C14, and C16 on the other hand.
  • the control system of the present application is further provided with an LED display driving circuit 540, which is connected to the controller 510,
  • the LED display driving circuit 540 is used for receiving and responding to the LED driving signal.
  • the LED display driving circuit 540 drives the LED to emit light to illuminate the chamber.
  • FIG. 11 is a schematic diagram of the principle of the LED display driving circuit in an embodiment.
  • the driving circuit includes a transistor Q1 and three light-emitting diode LEDs, LED1, LED2, and LED3, and a resistor R15; the specific circuit connection relationship can refer to the attached drawings, which will not be repeated here.
  • the control system of the present application is also provided with a heater drive circuit 550, which is combined with the controller 510 Connected, the heater driving circuit 550 is used to drive a heater (not shown) under the control of the controller 510 to heat the refrigerating chamber or the freezing chamber.
  • the controller 510 controls the heater driving circuit 550 to drive the heater to heat up when it is detected that the number of times of opening and closing the door of the refrigerating chamber or the freezing chamber reaches a preset number of times, or it can be done when all the times are detected. It is made when the opening time of the door of the refrigerating chamber or the freezing chamber reaches a preset period of time, or it may be automatically made after accumulating the preset period of time.
  • FIG. 13 is a schematic diagram of the principle of the heater driving circuit in an embodiment.
  • the driving circuit includes two heaters, heater 1 and heater 2, respectively.
  • the thyristor TR3, the transistor Q2 and the thyristor TR2, and the transistor Q1 are connected to the heater1 port and the heater2 port of the controller 510.
  • the two heaters can be placed in different chambers to realize the heating.
  • the connection relationship of the various components can be referred to the drawings, which will not be further described here.
  • the control system of the present application may further include a compressor drive circuit 560, the compressor drive circuit 560 is connected to the controller 510, the compressor drive circuit 560 is used in all The compressor M is driven to work under the control of the controller 510.
  • the compressor driving circuit 560 may include a transistor Q4 and a thyristor TR4; wherein the base 1 of the transistor Q4 is connected to the COMP port of the controller 510, and the emitter 2 is connected to the thyristor TR4.
  • the gate electrode, one of the anodes of the thyristor TR4 is connected to the compressor M, and the controller 510 outputs high and low levels to control the on or off of the transistor Q4, and then control the thyristor TR4 to turn on or off, thereby controlling the compressor M starts or stops.
  • control system may further include a gear setting circuit 570, the gear setting circuit 570 is connected to the controller 510, and the gear setting circuit 570 It is used to receive the user's operation of setting the gear of the refrigeration equipment. Specifically, the user can set the temperature of the refrigerating chamber and the freezing chamber of the refrigeration equipment according to the actual situation, so that the temperature of the two chambers can match the actual season and ambient temperature. 15 is a schematic diagram of the principle of the gear setting circuit 570.
  • the gear setting circuit 570 may include two buttons S1 and S2, capacitors C10 and C12, resistors R16, R17, R20, R26; button S1 One end of and S2 is grounded, and the other end is connected to the SW1 and SW2 ports of the controller 30 through resistors R17 and R26, respectively, to transmit the user's triggering of buttons S1 and S2 to the controller 510, and the controller 510 uses the compressor M to adjust the temperature of the refrigeration equipment.
  • the connection relationship of each component can be referred to the attached drawings, which will not be further described here.
  • the control system of the present application is also provided with a gear position display circuit 580.
  • the gear position display circuit 580 is connected to the controller 510 and includes a plurality of light emitting devices.
  • the gear display circuit 580 is used to display the color corresponding to the gear, that is, when the user adjusts a gear through the gear setting circuit 570, the light emitting diode corresponding to the gear will be triggered. bright.
  • Figure 16 which is a schematic diagram of the principle of the gear display circuit.
  • the gear display circuit may include four light-emitting diodes LED4, LED5, LED6, LED7, and a transistor Q4; wherein the anode of the light-emitting diode LED4 is connected to the controller through a resistor R30 Connect the SEG1 port of the 510, the anode of the light-emitting diode LED5 is connected to the SEG2 port of the controller 30 through a resistor R33, the anode of the light-emitting diode LED6 is connected to the SEG3 port of the controller 510 through a resistor R35, and the anode of the light-emitting diode LED6 is connected to the controller through a resistor R37.
  • the SEG4 port of the controller 30 is connected; the cathodes of the light-emitting diodes LED4, LED5, LED6, and LED7 are all connected to the collector 3 of the transistor Q4, the base 2 of the transistor Q4 is connected to the COM1 port of the controller 510, and the emitter 1 is connected to the positive electrode of the power supply. 5V connection.
  • the connection relationship of the various components can be referred to the drawings, which will not be further described here.
  • the refrigeration equipment of the present application may also include other components required for refrigeration, such as condensers, evaporators, capillary restrictors and other components.
  • components required for refrigeration such as condensers, evaporators, capillary restrictors and other components.
  • condensers such as condensers, evaporators, capillary restrictors and other components.
  • the refrigeration equipment in this embodiment is equipped with the controller 510, the refrigeration equipment in the present application may be a common electronically controlled refrigerator.
  • the present application also provides a refrigerating device, which may also be a refrigerator, and the refrigerating device may include: a device body (not shown); the device body includes a refrigerating chamber (not shown) And the freezing chamber (not shown in the figure); the compressor (not shown in the figure) is arranged in the main body of the equipment; the thermostat (not shown in the figure) is connected to the compressor (not shown in the figure) for The sampling temperature of the refrigerating chamber and the freezing chamber controls the working state of the compressor; a low-power motor starter (not shown), the low-power motor starter includes: a compressor protection circuit ( Not shown), coupled to the input end of the compressor motor circuit (not shown); wherein, the compressor motor circuit includes a compressor starting circuit (not shown); a voltage sampling circuit (not shown), Is coupled to both ends of the compressor protection circuit, and is used to collect the magnitude of the voltage flowing through the compressor protection circuit; and a processing circuit (not shown), which is connected to the voltage sampling circuit, and is used in
  • FIG. 12 it is a schematic diagram of the principle of the door switch detection circuit used in the specific embodiment.
  • the box door switch detection circuit includes a switch S1, three light-emitting diodes LED1, LED2, LED3, and a resistor R31.
  • the specific circuit connection relationship can be referred to the accompanying drawings, which will not be repeated here.
  • the switch S1 is usually set at the junction of the door of the refrigerator, so that the switch S1 can be turned on or off by opening the door to realize the lighting function of the refrigerator.
  • the circuit uses fewer components and is simple. , Which can reduce costs.
  • the refrigeration equipment of the present application may further include an evaporator (not shown in the figure), which is connected to the temperature controller and used to vaporize the liquid flowing through the evaporator; the refrigerating chamber and the freezing chamber The sampling temperature of the chamber is obtained by sampling the temperature of the evaporator.
  • an evaporator (not shown in the figure), which is connected to the temperature controller and used to vaporize the liquid flowing through the evaporator; the refrigerating chamber and the freezing chamber The sampling temperature of the chamber is obtained by sampling the temperature of the evaporator.
  • the refrigeration equipment of the present application may also include other components required for refrigeration, such as condensers, capillary restrictors and other components.
  • components required for refrigeration such as condensers, capillary restrictors and other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本申请提供一种低功耗电机起动器及制冷设备。该低功耗电机起动器包括压缩机电机回路(10),压缩机保护电路(20),电压采样电路(30)和处理电路(40);压缩机保护电路(20)耦接在压缩机电机回路(10)的输入端;其中,压缩机电机回路(10)包括一压缩机起动回路(110);电压采样电路(30)耦接在所述压缩机保护电路(20)的两端,用于采集所述压缩机保护电路(20)两端的电压;以及处理电路(40),与所述电压采样电路(30)连接,用于在所述压缩机保护电路(20)两端的电压小于预设电压阈值时输出一关断所述压缩机起动回路(110)的开关信号。

Description

低功耗电机起动器及制冷设备 技术领域
本申请涉及家用电器领域,尤其涉及一种低功耗电机起动器及制冷设备。
背景技术
随着科技的不断发展,人们的生活也跟着发生本质的变化。以家用电器领域来说,不得不提的便是具备制冷功能的制冷设备,作为制冷设备的核心——压缩机,其一般采用单相异步电机,而单相异步电机主要包含有一个运行绕组和一个起动绕组,通电开始时运行绕组和起动绕组都有较大电流通过,当电动机转速增加到接近同步转速以后,起动绕组电流被关断或者被限制在一个较小的值。因此,在这类电动机的起动绕组上常会串联一个开关电路,当电机开始通电时开关电路导通,电机转速增加到接近同步转速后开关电路关断,这样的电路通常称为起动电路,实现这种功能的器件通常称为起动器。
目前常见的用于实现上述功能的起动器为PTC起动器。PTC起动器在常温下处于小阻值导通状态,当起动时因电流的热效应,PTC元件在短时间内温度升高,当达到居里点后,其电阻值迅速增加到几十千欧以上,此时与起动绕组的阻抗比相当于断路,与之串联的起动绕组的电流降至十几毫安以下,这时电机起动过程完成,进入正常运转。但是,只要电机一直在通电,PTC一直会流过较小的电流,一直有待机功耗,大约为几瓦,虽然数值看起来不是很大,但是对于长时间使用制冷设备而言,总的消耗还是比较大的,同时也导致电能的浪费。
发明内容
根据本申请的各种实施例,提供一种可以改善起动器功耗降低不够彻底的低功耗电机起动器。
一种低功耗电机起动器,包括压缩机电机回路,压缩机保护电路,电压采样电路和处理电路:
所述压缩机保护电路耦接在所述压缩机电机回路的输入端;其中,所述 压缩机电机回路包括一压缩机起动回路;
所述电压采样电路耦接在所述压缩机保护电路的两端,用于采集所述压缩机保护电路两端的电压;以及
所述处理电路与所述电压采样电路连接,用于在所述压缩机保护电路两端的电压小于预设电压阈值时输出一关断所述压缩机起动回路的开关信号。
基于同样的发明构思,本申请还提供一种制冷设备,包括:
设备本体;
压缩机,设置于所述设备本体内;以及
控制系统,集成于所述设备本体上,所述控制系统包括前述所述的低功耗电机起动器。
基于同样的发明构思,本申请还提供一种制冷设备,包括:
设备本体;所述设备本体包括冷藏腔室和冷冻腔室;
压缩机,设置于所述设备本体内;
温控器,与所述压缩机连接,用于根据所述冷藏腔室和所述冷冻腔室的采样温度控制所述压缩机的工作状态;以及
前述所述的低功耗电机起动器。
上述低功耗电机起动器及制冷设备,利用压缩机电机起动成功前后电流差异较大的特点,通过将压缩机保护电路串联接入压缩机电机回路,再设置电压采样电路来采集压缩机保护回路两端的电压,最后设置处理电路根据采集的电压与预设电压阈值之间的大小关系作为关断压缩机起动回路的判断条件,可降低压缩机起动回路在压缩机电机起动成功后的待机功耗,避免电能的过度浪费。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中的低功耗电机起动器的结构示意图;
图2为另一实施例中的低功耗电机起动器的结构示意图;
图3为一实施例中的制冷设备的结构示意图;
图4为一实施例中的低功耗电机起动器的电路原理示意图;
图5为另一实施例中的低功耗电机起动器的原理示意图;
图6为一实施例中的电源模块的原理示意图;
图7为另一实施例中的电源模块的原理示意图;
图8为一实施例中的控制器的电路原理示意图;
图9为一实施例中的温度采集电路的原理示意图;
图10为一实施例中的箱门开关检测电路的原理示意图;
图11为一实施例中的LED显示驱动电路的原理示意图;
图12为另一实施例中的箱门开关检测电路的原理示意图;
图13为一实施例中的加热器驱动电路的原理示意图;
图14为一实施例中的压缩机驱动电路的原理示意图;
图15为一实施例中的档位设定电路的原理示意图;
图16为一实施例中的档位显示电路的原理示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的可选的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,为一实施例中的低功耗电机起动器的结构示意图。该低功耗电机起动器可以包括压缩机电机回路10,压缩机保护电路20,电压采样电路30和处理电路40;其中,压缩机保护电路20耦接在压缩机电机回路10的输入端。本申请中,所述压缩机电机回路10可以包括一压缩机起动回路110;所述电压采样电路30耦接在所述压缩机保护电路20的两端,用于采集所述压缩机保护电路20两端的电压;所述处理电路40与所述电压采样电路30连接,用于在所述压缩机保护电路两端电压小于预设电压阈值时输出一关断所述压缩机起动回路110的开关信号。
由于压缩机电机自通电开始时会需要较大的电流来保证压缩机电机的 正常运行,当压缩机电机转速增加到接近同步转速以后,视为压缩机电机起动成功,此时压缩机电机回路的电流会变小;本申请正是基于压缩机电机起动开始和完成前后的电流不同,来将压缩机保护电路20串联接入压缩机电机回路10,再设置电压采样电路30来采集压缩机保护回路20两端的电压,最后设置处理电路40根据采集的电压与预设电压阈值之间的大小关系来控制压缩机起动回路110在压缩机电机启动完成后关断,可最大限度地降低压缩机起动回路110在压缩机电机起动成功后的待机功耗(接近0W),从而避免电能的过度浪费。
一般来说,压缩机或者其他用途的单相交流电机,电气部分通常由一个转子、起动绕组和运行绕组构成的定子、PTC、运行电容组成。其中,PTC:是Positive Temperature Coefficient的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件。通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻或热敏电阻PTC,随着通过其电流变大,PTC阻值会迅速升高。
为了便于描述和区分,通常将PTC和起动绕组所在的电路称为起动回路;运行绕组所处的回路称为运行回路;起动回路和运行回路一起构成压缩机的电机回路。
可选地,可参阅图2,为另一实施例中的低功耗电机起动器的结构示意图。本申请的压缩机电机回路10还可以包括压缩机运行回路120,其与压缩机起动回路110并联连接,本申请的压缩机运行回路120与前述描述的压缩机运行回路相同,均代表运行绕组所处的回路;本申请的压缩机起动回路110与前述描述的压缩机起动回路相同,均代表热敏电阻PTC和起动绕组所处的回路。
具体地,可辅助参阅图4,为一实施例中的低功耗电机起动器的电路原理示意图,图4中,La表示运行绕组,Lb表示起动绕组;相应地,运行绕组La所处的回路就为压缩机运行回路120;本具体实施例中,所述压缩机起动回路110可以包括热敏电阻PTC、双向可控硅TR1和起动绕组Lb;所述起动绕组Lb的一端接交流零线ACL,另一端与所述热敏电阻PTC连接;所述热敏电阻PTC的另一端与所述双向可控硅TR1的第一阳极(图未示)连接;所述双向可控硅TR1的门极(图未示)与所述处理电路40的输出端连接,第二阳极(图未示)接交流火线ACN。
可选地,可继续参阅图2。为另一实施例中的低功耗电机起动器的结构示 意图。图2中,所述压缩机保护电路20可以看作一过载保护器,所述过载保护器20用于在输入至所述压缩机电机回路10的电流超过预设电流值时关断所述压缩机电机回路10。
具体地,可继续参阅图2,该过载保护器20可以包括一采样电阻R,该采样电阻R通常由一个双金属片串联形成,为了实现过载保护功能,该过载保护器20通常还会具有一个常闭触点,相应该过载保护器20的工作原理为:一般情况下,过载保护器20的触点常闭,当电流过大时,采样电阻R产生热形变,控制常闭触点打开,使得压缩机电机回路10从整个电路中切断,从而可有效保护电机。通过选择过载保护器作为压缩机保护电路20可以避免输入的电流过大或者过载造成的压缩机电机回路10中的器件发生损坏。
本申请中,电压采样电路30采集的所述压缩机保护电路20两端的电压大小是采集所述采样电阻R两端的电压大小。也就是说,本申请的电压采样电路30主要耦接在采样电阻R的两端,由于采样电阻R和压缩机电机回路10串联,所以当压缩机电机回路10中的电流由于热敏电阻PTC的特性变小时,流过采样电阻R两端的电流也变小,进而电压采样电路30采样的电压也会变小。
具体地,可参阅图4,所述电压采样电路30可以包括一桥式整流电路,所述桥式整流电路的两个输入端(图未示)接在所述采样电阻R两端,所述桥式整流电路的一个输出端(图未示)接地,所述桥式整流电路的另一个输出端(图未示)接所述处理电路40的输入端。可选地,如图4所示,该桥式整流电路可以由四个二极管D5、D6、D7和D8接成电桥形式;其中,二极管D7正极和二极管D5负极的连接处作为桥式整流电路的一个输入端,该输入端接在采样电阻R的一端;二极管D8正极和二极管D6负极的连接处作为桥式整流电路的另一个输入端,该输入端接在采样电阻R的另一端;二极管D5正极和二极管D6正极的连接处作为桥式整流电路的一个输出端,该输出端接处理电路40的输入端;二极管D7负极和二极管D8负极的连接处作为桥式整流电路的另一个输出端,该输出端接地。使用桥式整流电路作为电压采样电路30可以将交流压降整流滤波为直流电压,方便后续处理,同时,桥式整流电路的成本低,便于大规模使用。
为了保证压缩机起动回路110中的热敏电阻PTC能够在压缩机电机起动后及时关断,本申请的低功耗电机起动器根据采样电阻R上的电压变化设置了处理电路40,该处理电路40主要用于将采样电阻R上的电压值与预设的 电压阈值进行比较,并在采样电阻R的电压小于预设的电压时输出关断热敏电阻PTC所在电路(压缩机起动回路)的开关信号,可最大限度地降低压缩机起动回路110在压缩机电机起动成功后的待机功耗(接近0W),从而避免电能的过度浪费。
可选地,本申请的低功耗电机起动器还可以包括电源模块(图未示),用于为所述处理电路40提供电能。具体地,可参照图6,为一实施例中的电源模块的电路原理示意图,该电源模块可以为非隔离电源,非隔离电源模块310可以包括FR1(电流保险丝)、ZR1(压敏电阻)、整流二极管(D1和D2,其中D2是为了改善浪涌雷击)、整流滤波及EMC部分(电解电容EC1、电解电容EC3、差模电感L1)组成半波整流电路,由BUCK(降压)芯片U1、电解电容EC2、电解电容EC4、电解电容EC5、差模电感L2、二极管D3、D4、电阻R1构成BUCK整流滤波电路,从而得到所需的电源电压+5V。各部件的连接关系可参照附图,在此不作进一步赘述。采用非隔离电源作为电源模块具有转换效率高、体积比较小、成本比较低和容易设计等优点。
可参阅图7,为另一实施例中的电源模块的电路示意图。该电源模块可以为阻容降压电源,具体地,该阻容降压电源可以包括电阻R16、压敏电阻ZR2、电阻R20、安规电容C7、整流二极管D9~D12,电解电容EC6、稳压二极管D13,该电路输出电压为+5V。
进一步地,可辅助参阅图4,所述处理电路40可以包括三极管Q5、可控稳压源U10、电阻R44及电阻R20;所述可控稳压源U10的阴极K通过所述电阻44与所述电压采样电路30的输出端连接,所述可控稳压源U10的阳极A接地,所述可控稳压源U10的参考极R通过所述电阻20与所述双向可控硅TR1的门极连接;所述三极管Q5的基极与所述可控稳压源U10的阴极K连接,所述三极管Q5的集电极与所述电压采样电路的输出端连接,所述三极管Q5的发射极与所述电阻R20连接。进一步地,可控稳压源U10选用精密可控稳压源,三极管可以换成MOS管。
基于上述,本具体实施例的低功耗电机起动器的工作原理为:
为了便于描述,将桥式整流电路30采样过载保护器采样电阻R上的交流压降,并整流滤波后变成的直流电压记为Uo,可控稳压源U10中参考极R的电压在工作时始终保持不变,此电压记为Uref;三极管Q5的b-e脚在导通时的压降记为Ube;双向可控硅TR1导通时的门极电压定义为Vgt;由于U10为可控精密稳压源,所以Ube+Uref+Vgt是可变的,或可设定的。
当压缩机电机的电源接通,此时流过采样电阻R两端的电流较大,相应采集到的电压Uo较大,当Uo≥Ube+Uref+Vgt,三极管Q5导通,电流流经桥式整流电路、三极管Q5、电阻R20、双向可控硅TR1的门极、交流火线ACN,驱动双向可控硅TR1的门极触发,使得双向可控硅TR1导通,(此时电流由交流零线ACL流经过载保护器20、起动绕组Lb、热敏电阻PTC、双向可控硅TR1、交流火线ACN),从而使得压缩机起动回路110工作。
当压缩机电机起动完成后,压缩机起动回路110中的热敏电阻PTC由于发热导致电流变小,相应流过采样电阻R的电流变小,使得桥式整流电路30采样的电压Uo变小,当Uo<Ube+Uref+Vgt时,三极管Q5关断,双向可控硅TR1的门极触发信号被移除,使得双向可控硅TR1断开,从而使得压缩机起动回路110被切断,热敏电阻PTC不带电,进而使得热敏电阻PTC上的功耗降为零,压缩机运行回路120工作(电流流向:交流零线ACL→过载保护器20→运行绕组La→交流火线ACN)。
进一步地,可辅助参阅图5,为另一实施例中的低功耗电机起动器的原理示意图。该实施例中的低功耗电机起动器与前述实施例中不同之处在于,处理电路40的组成不同,其余部分可参照前述的有关描述。具体地,图5中的处理电路40可以包括一比较器U1和电阻R3,所述比较器U1的同向输入端U+接所述电压采样电路30的输出端,反向输入端U-接基准电压(经电阻R4分压后的电压,可根据需要进行设定),输出端OUT通过所述电阻R3与所述双向可控硅TR1的门极(图未示)连接。
基于上述,本具体实施例的低功耗电机起动器的工作原理为:
为了便于描述,将桥式整流电路30采样过载保护器采样电阻R上的交流压降,并整流滤波后变成的直流电压记为U1,基准电压记为U-。
当压缩机电机的电源接通,此时流过采样电阻R两端的电流较大,相应采集到的电压U1较大,当U1≥U-的时候,比较器U1输出端OUT脚输出高电平,驱动双向可控硅TR1的门极触发,使得双向可控硅TR1导通,从而使得压缩机起动回路110工作。
当压缩机电机起动完成后,压缩机起动回路110中的热敏电阻PTC由于发热导致电流变小,相应流过采样电阻R的电流变小,使得桥式整流电路30采样的电压U1变小,当U1<U-的时候,比较器U1输出端OUT脚输出为低电平,双向可控硅TR1的门极触发信号被移除,使得双向可控硅TR1断开,从而使得压缩机起动回路110被切断,热敏电阻PTC不带电,相应热敏电阻 PTC上的功耗降为零。
基于同样的发明构思,本申请还提供一种制冷设备,该制冷设备可以为冰箱,具体地,可参照图3,为本申请所提供的一实施例中的制冷设备的结构示意图。该制冷设备可以包括设备本体(图未示),该设备本体可以理解为冰箱的箱体;压缩机M,设置于所述设备本体内,通常设于冰箱的后下方;压缩机作为整个制冷设备的核心,其主要的工作原理是:吸入低温、低压的制冷剂,将之压缩成高温、高压的过热气体,最后排出。控制系统(图未示),集成于所述设备本体上,所述控制系统包括低功耗电机起动器(图未示),所述低功耗电机起动器包括:压缩机保护电路20,耦接在压缩机电机回路10的输入端;其中,所述压缩机电机回路10包括一压缩机起动回路110;电压采样电路30,耦接在所述压缩机保护电路20的两端,用于采集流过所述压缩机保护电路20的电压大小;以及处理电路40,与所述电压采样电路30连接,用于在所述电压采样电路30采集到的电压小于预设电压阈值时输出一关断所述压缩机起动回路110的开关信号。可以理解,本具体实施例中的低功耗电机起动器还可以具有和前述低功耗电机起动器实施例中相同的部分,具体可参阅前述实施例的有关描述,在此不作赘述。
在一个实施例中,如图3所示,所述控制系统还可以包括一控制器510,该控制器510可被用于执行所述控制系统的控制功能。具体地,可参阅图8,为一实施例中的控制器的电路原理图,该控制器510主要以控制芯片U3为核心,该控制芯片U3具备多种控制功能,例如,电流采样、温度采样、LED驱动、加热器驱动、电机驱动等功能,具体的可在后续的实施例中的得以体现,在此不做赘述。
进一步地,请继续参阅图3,所述设备本体包括至少一个冷藏腔室(图3未示)和至少一个冷冻腔室(图3未示),其中,冷藏腔室中的温度范围可以在0~10°,冷冻腔室的温度可以在-15°~-24°;所述控制系统还可以包括温度采集电路520,该温度采集电路520与所述控制器30连接,该温度采集电路520用于采集所述冷藏腔室和所述冷冻腔室的温度。具体地,本申请的温度采集电路520可以设置一个或多个温度传感器来采集所述冷藏腔室和所述冷冻腔室的温度,然后输出至控制芯片U3,经过控制芯片U3的处理后,可通过控制压缩机来调节冷藏腔室和冷冻腔室的温度以使两个腔室的温度保持在预设的范围内。可以理解,本申请的设备本体还可以具有多个冷藏腔室和多个冷 冻腔室,其中,每一个冷藏腔室之间的温度不相同,每个冷冻腔室之间的温度不相同。可进一步辅助参阅图9,为温度采集电路520的原理示意图,该温度采集电路520可以包括多个传感器接口Sensor1、Sensor2、Sensor3、Sensor4,各传感器接口Sensor1、Sensor2、Sensor3、Sensor4一方面通过电阻R7、R8、R10和R11与电路中的温度传感器(冷藏、冷冻、化霜、环境)连接,另一方面通过电阻R15、R14、R18、R17和电容C4、C5、C6、C3接地,各部件的连接关系可参照附图,在此不作进一步赘述。
在一个实施例中,请继续参阅图3,所述控制系统还设置有箱门开关检测电路530,该箱门开关检测电路530与所述控制器510连接,该箱门开关检测电路530用于检测所述冷藏腔室的箱门是否被打开;所述控制器510在所述箱门开关检测电路530检测到箱门被打开时输出LED驱动信号。具体地,本申请的箱门开关检测电路530可以在箱门的连接处设置一个检测传感器来采集箱门的开关信号,然后输出至控制器510,经过控制器510的处理后,输出LED驱动信号。
可辅助参阅图10,为一实施例中的箱门开关检测电路的原理示意图,该箱门开关检测电路510可以包括多个门开关检测接口SWTICH1、SWTICH2、SWTICH3、SWTICH4,门开关检测接口SWTICH1、SWTICH2、SWTICH3、SWTICH4一方面通过电阻R19、R21、R22、R23与电路中的门开关连接,另一方面通过电阻R27、R25、R24、R28和电容C15、C13、C14、C16接地,各部件的连接关系可参照附图,在此不作进一步赘述。
进一步地,为了方便用户取用制冷设备(冰箱)冷藏腔室中的物品,本申请的所述控制系统还设置有LED显示驱动电路540,该LED显示驱动电路540与所述控制器510连接,该LED显示驱动电路540用于接收并响应所述LED驱动信号。也即是说,当前述的箱门开关检测电路检测到箱门(主要是冷藏腔室)打开时,LED显示驱动电路540就驱动LED发光,以照亮腔室。具体地,可辅助参阅图11,为一实施例中的LED显示驱动电路的原理示意图。该驱动电路中包括了一个三极管Q1和三个发光二极管LED,分别是LED1、LED2和LED3,以及一个电阻R15;具体的电路连接关系可参照附图,在此不作赘述。
在一个实施例中,考虑到一般的制冷设备会随着时间的积累,在冷藏腔室和冷冻腔室形成一层厚厚的冰层,这样不仅会影响用户的体验,还会减少腔室的可使用面积,并且,对于冰层的去除也比较麻烦,基于此,请继续参阅 图3,本申请的控制系统还设置有加热器驱动电路550,该加热器驱动电路550与所述控制器510连接,该加热器驱动电路550用于在所述控制器510的控制下驱动加热器(图未示)为所述冷藏腔室或所述冷冻腔室进行加热。其中,控制器510控制加热器驱动电路550驱加热器加热可以是在检测到所述冷藏腔室或所述冷冻腔室的箱门开关次数达到预设次数时作出,也可以是在检测到所述冷藏腔室或所述冷冻腔室的箱门开启时间达到预设时长时作出,还可以是在累积预设时长后自动作出。
进一步地,可辅助参阅图13,为一实施例中的加热器驱动电路的原理示意图,该驱动电路中包括了两个加热器,分别是加热器1和加热器2,两个加热器分别通过可控硅TR3、三极管Q2和可控硅TR2、三极管Q1与控制器510的heater1端口和heater2端口连接,其中,两个加热器可以分别置于不同的腔室中,以实现对不同腔室的加热。各部件的连接关系可参照附图,在此不作进一步赘述。
在一个实施例中,请继续参阅图3,本申请的控制系统还可以包括压缩机驱动电路560,该压缩机驱动电路560与所述控制器510连接,该压缩机驱动电路560用于在所述控制器510的控制下驱动所述压缩机M工作。具体地,可辅助参阅图14,该压缩机驱动电路560可以包括三极管Q4、可控硅TR4;其中,三极管Q4的基极1接控制器510的COMP端口,发射极2接可控硅TR4的门极,可控硅TR4的其中一个阳极接压缩机M,通过控制器510输出高、低电平可控制三极管Q4导通或关闭,进而控制可控硅TR4导通或关闭,从而控制压缩机M起动或停机。
在一个实施例中,请继续参阅图3,所述控制系统还可以包括档位设定电路570,所述档位设定电路570与所述控制器510连接,所述档位设定电路570用于接收用户对所述制冷设备的档位设定操作。具体而言,用户可以根据实际的情况对制冷设备的冷藏腔室和冷冻腔室的温度进行设定,从而使得两个腔室的温度可以和实际季节、环境温度相匹配。可进一步辅助参阅图15,为档位设定电路570的原理示意图,该档位设定电路570可以包括两个按键S1和S2,电容C10、C12,电阻R16、R17、R20、R26;按键S1和S2的一端接地,另一端分别通过电阻R17和电阻R26与控制器30的SW1和SW2端口连接,用于将用户对按键S1和S2的触发情况传输至控制器510,控制器510通过压缩机M来调节制冷设备的温度。各部件的连接关系可参照附图,在此不作进一步赘述
进一步地,为了使用户更加清楚且明了的察觉到档位的变化,本申请的控制系统还设置有档位显示电路580,该档位显示电路580与所述控制器510连接,包括多个发光二极管,该档位显示电路580用于显示与档位对应的颜色,也就是说,当用户通过档位设定电路570调节一个档位后,相应与该档位对应的发光二极管会被触发点亮。可辅助参阅图16,为档位显示电路的原理示意图,该档位显示电路可以包括四个发光二极管LED4、LED5、LED6、LED7,三极管Q4;其中,发光二极管LED4的正极通过电阻R30与控制器510的SEG1端口连接,发光二极管LED5的正极通过电阻R33与控制器30的SEG2端口连接,发光二极管LED6的正极通过电阻R35与控制器510的SEG3端口连接,发光二极管LED6的正极通过电阻R37与控制器30的SEG4端口连接;发光二极管LED4、LED5、LED6、LED7的负极均与三极管Q4的集电极3连接,三极管Q4的基极2与控制器510的COM1端口连接,发射极1与电源正极+5V连接。各部件的连接关系可参照附图,在此不作进一步赘述。
尽管未示出,本申请的制冷设备还可以包括制冷所需的其他部件,例如冷凝器、蒸发器、毛细管节流器等部件,对于这些部件的具体连接方式、工作原理等可参照传统技术中的有关描述,在此不做进一步地赘述。
综上,本具体实施例中的制冷设备由于具备控制器510,所以本申请的制冷设备可以为普通的电控式冰箱。
基于同样的发明构思,本申请还提供一种制冷设备,该制冷设备亦可以为冰箱,该制冷设备可以包括:设备本体(图未示);所述设备本体包括冷藏腔室(图未示)和冷冻腔室(图未示);压缩机(图未示),设置于所述设备本体内;温控器(图未示),与所述压缩机(图未示)连接,用于根据所述冷藏腔室和所述冷冻腔室的采样温度控制所述压缩机的工作状态;低功耗电机起动器(图未示),所述低功耗电机起动器包括:压缩机保护电路(图未示),耦接在压缩机电机回路(图未示)的输入端;其中,所述压缩机电机回路包括一压缩机起动回路(图未示);电压采样电路(图未示),耦接在所述压缩机保护电路的两端,用于采集流过所述压缩机保护电路的电压大小;以及处理电路(图未示),与所述电压采样电路连接,用于在所述电压采样电路采集到的电压小于预设电压阈值时输出一关断所述压缩机起动回路的开关信号。
可以理解,对于本具体实施例中出现的与前述制冷设备实施例中相同的 部分可参照前述的描述,不同之处在于,本申请的制冷设备采用温控器来调节制冷设备的温度,也即是说,本申请的制冷设备为传统的老式冰箱,进一步地,可辅助参阅图12,为本具体实施例所使用的箱门开关检测电路的原理示意图。该箱门开关检测电路包括一个开关S1,三个发光二极管LED1、LED2、LED3和一个电阻R31,具体的电路连接关系可参照附图,在此不作赘述。应当理解的是,该开关S1通常设于冰箱的箱门连接处,从而可通过打开箱门触发该开关S1导通或关闭,从而实现冰箱的照明功能,该电路使用的元器件少,电路简单,可降低成本。
进一步地,本申请的制冷设备还可以包括蒸发器(图未示),与所述温控器连接,用于将流经所述蒸发器的液体汽化;所述冷藏腔室和所述冷冻腔室的采样温度是通过采样所述蒸发器的温度获得。
尽管未示出,本申请的制冷设备还可以包括制冷所需的其他部件,例如冷凝器、毛细管节流器等部件,对于这些部件的具体连接方式、工作原理等可参照传统技术中的有关描述,在此不做进一步地赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种低功耗电机起动器,包括压缩机电机回路,压缩机保护电路,电压采样电路和处理电路:
    所述压缩机保护电路耦接在所述压缩机电机回路的输入端;其中,所述压缩机电机回路包括一压缩机起动回路;
    所述电压采样电路耦接在所述压缩机保护电路的两端,用于采集所述压缩机保护电路两端的电压;以及
    所述处理电路与所述电压采样电路连接,用于在所述压缩机保护电路两端的电压小于预设电压阈值时输出一关断所述压缩机起动回路的开关信号。
  2. 根据权利要求1所述的低功耗电机起动器,其中,所述压缩机保护电路包括一过载保护器,所述过载保护器用于在输入至所述压缩机电机回路的电流大于预设电流值时关断所述压缩机电机回路。
  3. 根据权利要求2所述的低功耗电机起动器,其中,所述过载保护器包括一采样电阻,所述电压采样电路采集的所述压缩机保护电路两端的电压大小是采集所述采样电阻两端的电压大小。
  4. 根据权利要求3所述的低功耗电机起动器,其中,所述电压采样电路包括一桥式整流电路,所述桥式整流电路的两个输入端分别接在所述采样电阻两端,所述桥式整流电路的一个输出端接地,所述桥式整流电路的另一个输出端接所述处理电路的输入端。
  5. 根据权利要求1所述的低功耗电机起动器,其中,所述处理电路包括一比较器U1和电阻R3,所述比较器U1的同向输入端接所述电压采样电路的输出端,反向输入端接基准电压,输出端通过所述电阻R3与所述双向可控硅TR1的门极连接。
  6. 根据权利要求1所述的低功耗电机起动器,其中,所述处理电路包括三极管Q5、可控稳压源U10、电阻R44及电阻R20;
    所述可控稳压源U10的阴极K通过所述电阻44与所述电压采样电路的输出端连接,所述可控稳压源U10的阳极A接地,所述可控稳压源U10的参考极R通过所述电阻20与所述双向可控硅TR1的门极连接;所述三极管Q5的基极与所述可控稳压源U10的阴极K连接,所述三极管Q5的集电极与所述电压采样电路的输出端连接,所述三极管Q5的发射极与所述电阻R20连接。
  7. 根据权利要求1所述的低功耗电机起动器,其中,还包括:
    电源模块,用于为所述处理电路提供电能。
  8. 根据权利要求1-7任一项所述的低功耗电机起动器,其中,所述压缩机起动回路包括热敏电阻PTC、双向可控硅TR1和起动绕组Lb;所述起动绕组Lb的一端接交流零线ACL,所述起动绕组Lb的另一端与所述热敏电阻PTC连接;所述热敏电阻PTC的另一端与所述双向可控硅TR1的第一阳极连接;所述双向可控硅TR1的门极与所述处理电路的输出端连接,所述双向可控硅TR1的第二阳极接交流火线ACN。
  9. 根据权利要求8所述的低功耗电机起动器,其中,所述压缩机电机回路还包括:
    压缩机运行回路,与所述压缩机起动回路并联连接。
  10. 一种制冷设备,包括:
    设备本体;
    压缩机,设置于所述设备本体内;以及
    控制系统,集成于所述设备本体上,所述控制系统包括权利要求1-9任一项所述的低功耗电机起动器。
  11. 根据权利要求10所述的制冷设备,其中,所述控制系统还包括一控制器,所述控制器用于执行所述控制系统的控制功能。
  12. 根据权利要求11所述的制冷设备,其中,所述设备本体包括至少一个冷藏腔室和至少一个冷冻腔室;所述控制系统还包括:
    温度采集电路,与所述控制器连接,用于采集所述冷藏腔室和所述冷冻腔室的温度。
  13. 根据权利要求12所述的制冷设备,其中,所述控制系统还包括箱门开关检测电路;
    所述箱门开关检测电路与所述控制器连接,所述箱门开关检测电路用于检测所述冷藏腔室的箱门是否被打开;
    所述控制器在所述箱门开关检测电路检测到箱门被打开时输出LED驱动信号。
  14. 根据权利要求13所述的制冷设备,其中,所述控制系统还包括LED显示驱动电路;
    所述LED显示驱动电路与所述控制器连接,所述LED显示驱动电路用于接收并响应所述LED驱动信号。
  15. 根据权利要求12所述的制冷设备,其中,所述控制系统还包括加热 器驱动电路;
    所述加热器驱动电路与所述控制器连接,所述加热器驱动电路用于在所述控制器的控制下驱动加热器为所述冷藏腔室或所述冷冻腔室进行加热。
  16. 根据权利要求11所述的制冷设备,其中,所述控制系统还包括压缩机驱动电路;
    所述压缩机驱动电路与所述控制器连接,所述压缩机驱动电路用于在所述控制器的控制下驱动所述压缩机工作。
  17. 根据权利要求11所述的制冷设备,其中,所述控制系统还包括档位设定电路;
    所述档位设定电路与所述控制器连接,所述档位设定电路用于接收用户对所述制冷设备的档位设定操作。
  18. 根据权利要求17所述的制冷设备,其中,所述控制系统还包括档位显示电路;
    所述档位显示电路与所述控制器连接,所述档位显示电路用于显示与档位对应的颜色。
  19. 一种制冷设备,包括:
    设备本体;所述设备本体包括冷藏腔室和冷冻腔室;
    压缩机,设置于所述设备本体内;
    温控器,与所述压缩机连接,用于根据所述冷藏腔室和所述冷冻腔室的采样温度控制所述压缩机的工作状态;以及
    如权利要求1-9任一项所述的低功耗电机起动器。
  20. 根据权利要求19所述的制冷设备,其中,所述制冷设备还包括蒸发器,所述蒸发器与所述温控器连接,所述蒸发器用于将流经所述蒸发器的液体汽化;所述冷藏腔室和所述冷冻腔室的采样温度是通过采样所述蒸发器的温度获得。
PCT/CN2019/121327 2019-11-27 2019-11-27 低功耗电机起动器及制冷设备 WO2021102752A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121327 WO2021102752A1 (zh) 2019-11-27 2019-11-27 低功耗电机起动器及制冷设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121327 WO2021102752A1 (zh) 2019-11-27 2019-11-27 低功耗电机起动器及制冷设备

Publications (1)

Publication Number Publication Date
WO2021102752A1 true WO2021102752A1 (zh) 2021-06-03

Family

ID=76129825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121327 WO2021102752A1 (zh) 2019-11-27 2019-11-27 低功耗电机起动器及制冷设备

Country Status (1)

Country Link
WO (1) WO2021102752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708345A (zh) * 2021-08-01 2021-11-26 浙江迪贝智控科技有限公司 一种带压缩机保护与启动控制功能的制冷器具主控板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212193A (zh) * 2006-12-27 2008-07-02 谭琦 一种小型制冷压缩机电机起动器
CN201515338U (zh) * 2009-08-21 2010-06-23 常熟市天银机电有限公司 结合过载保护器的单相电机无功耗起动器
CN204388465U (zh) * 2015-01-09 2015-06-10 合肥美菱股份有限公司 一种应用在变频冰箱中的冰箱控制器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212193A (zh) * 2006-12-27 2008-07-02 谭琦 一种小型制冷压缩机电机起动器
CN201515338U (zh) * 2009-08-21 2010-06-23 常熟市天银机电有限公司 结合过载保护器的单相电机无功耗起动器
CN204388465U (zh) * 2015-01-09 2015-06-10 合肥美菱股份有限公司 一种应用在变频冰箱中的冰箱控制器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708345A (zh) * 2021-08-01 2021-11-26 浙江迪贝智控科技有限公司 一种带压缩机保护与启动控制功能的制冷器具主控板

Similar Documents

Publication Publication Date Title
US9628003B2 (en) Direct current power supply device, motor driving device, air conditioner, and refrigerator
CN208112227U (zh) 一种高可靠性的电吹风控制电路
CN107094337B (zh) 一种光控式宽电压led灯驱动电路
WO2021102752A1 (zh) 低功耗电机起动器及制冷设备
CN101056080A (zh) 无触点节能起动器
CN101212193A (zh) 一种小型制冷压缩机电机起动器
WO2021102771A1 (zh) 低功耗电机起动器及制冷设备
CN201956899U (zh) 一种特殊的加速启机电路及采用该电路的led驱动电路
CN102075124A (zh) 低功耗冰箱压缩机电机起动器
WO2012152215A1 (zh) Led通电发光电路
CA2716828C (en) Control circuit for single-phase ac motor of dryer
CN102611363A (zh) 一种制冷压缩机电机的微功耗起动器
CN213125881U (zh) 一种手持式加热风扇电路
CN209414123U (zh) 风扇缓启电路及系统
CN2821629Y (zh) 排气扇控制器
CN103480946B (zh) 一种双电压焊机的电路结构
CN106681207A (zh) 一种单片机电源开关兼换挡模块及其控制方法
CN207196824U (zh) 中央空调的跟踪调节节电装置
CN111405705A (zh) 一种调光led控制器和输出短路保护方法
CN110808694A (zh) 一种单相电动机零功耗电子启动器及启动系统
CN202103616U (zh) 一种带压缩机起动功能的电子温控器
CN115498605B (zh) 具有多重过温保护功能的温控系统及其方法
CN101320277B (zh) 一种电子温度控制器
CN212463094U (zh) 一种无ptc芯片、无触点的微功耗电子起动器
CN213245541U (zh) 气压泵半波整流电路、电路板及电动气压泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953929

Country of ref document: EP

Kind code of ref document: A1