WO2021100999A1 - Brain-implanted antenna utilizing ultrapure water-based insulator - Google Patents

Brain-implanted antenna utilizing ultrapure water-based insulator Download PDF

Info

Publication number
WO2021100999A1
WO2021100999A1 PCT/KR2020/007407 KR2020007407W WO2021100999A1 WO 2021100999 A1 WO2021100999 A1 WO 2021100999A1 KR 2020007407 W KR2020007407 W KR 2020007407W WO 2021100999 A1 WO2021100999 A1 WO 2021100999A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
brain
slot
ultrapure water
insulating layer
Prior art date
Application number
PCT/KR2020/007407
Other languages
French (fr)
Korean (ko)
Inventor
윤익재
신건영
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Publication of WO2021100999A1 publication Critical patent/WO2021100999A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0026Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the transmission medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/076Permanent implantations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6868Brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/168Fluid filled sensor housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/18Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage

Definitions

  • the present invention relates to a brain implanted antenna to which an ultrapure water-based insulator is applied, and an ultrapure water (UPW)-based dielectric is used as an insulating layer of a human body insertion antenna in order to reduce the size of the implantable antenna and improve the radiation efficiency and gain characteristics of the antenna.
  • the present invention relates to a brain implanted antenna to which an ultrapure water-based insulator capable of securing matching characteristics of an antenna covering an ultra-wide band through a broadband feed line provided with a shaped open stub is applied.
  • an implantable antenna technology is essential.
  • MICS Medical Implant Communication System
  • MedRadio Medical Device Radiocommunication Service
  • ISM Industrial Scientific and Medical
  • 3 ⁇ 10GHz band the 3 ⁇ 10GHz band.
  • UWB Ultra Wide Band
  • the human body insertion type antenna is generally placed in an environment where it is difficult to radiate due to dielectric loss in the human body.
  • the antenna inserted into the human body requires additional design conditions to the conventional antenna used in a free space. That is, miniaturization for insertion of the human body, broadband for securing personal matching characteristics, gain for stable communication reliability, and suitability for the human body are required.
  • an implantable antenna technology as one of the core technologies for implementing various medical sensor devices for implantation in the body such as brain signal processing and wireless transmission systems in the body.
  • the technical problem to be achieved by the present invention is to solve the disadvantages of the prior art, and an object thereof is to improve the radiation efficiency and gain characteristics of the human body insertion type antenna.
  • the brain implanted antenna to which the ultrapure water-based insulator is applied may include an upper antenna housing, an insulating layer, a slot antenna, an RF substrate, a broadband feed line, and a lower antenna housing.
  • the upper antenna housing is made of a biocompatible material to insulate the brain-inserted antenna from living tissue and protect it from the introduction of foreign substances.
  • the insulating layer is formed of a dielectric based on ultrapure water (UPW) or distilled water, which is an extremely low lossy medium, and is disposed between the upper antenna housing and the slot antenna.
  • UW ultrapure water
  • distilled water which is an extremely low lossy medium
  • the slot antenna is formed of a circular conductive metal and is disposed on an RF substrate, and a rectangular slot is provided inside the slot antenna.
  • the broadband feed line is formed as a microstrip line of a conductive metal in order to induce an impedance matching characteristic and an efficient radiation mode of the slot antenna, and is disposed at the lower end of the RF substrate, and has an impedance For matching, two L-shaped open stubs are symmetrically provided at the end of the line.
  • the lower antenna housing is made of a biocompatible material at the lower end of the broadband feed line to block the inflow of foreign substances.
  • the brain-inserted antenna to which the ultrapure water-based insulator according to the present invention is applied uses the ultrapure water-based dielectric as an insulator or superstrate of the human body-inserted antenna, reducing the size of the implantable antenna and radiating efficiency and gain characteristics of the antenna There is an effect that can improve. In addition, there is an effect of securing matching characteristics of an antenna covering an ultra-wide band through a broadband feed line provided with an L-shaped open stub.
  • FIG. 1 is a block diagram showing a brain implanted antenna to which an ultrapure water-based insulator is applied according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a slot antenna according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a broadband feed line according to an embodiment of the present invention.
  • FIGS. 4A and 4B are diagrams showing a real brain implanted antenna to which an ultrapure water-based insulator is applied according to an embodiment of the present invention.
  • SPM Shell Problem Model
  • 6A, 6B, and 6C are graphs showing the maximum transmission efficiency (MPTE) according to the size of the non-loss region.
  • FIG. 7 is a graph showing antenna radiation efficiency according to dielectric constant of an insulating layer.
  • FIG. 8 is a graph showing reflection coefficients and gain characteristics of an antenna depending on whether or not a broadband feed line is applied.
  • FIG. 1 is a block diagram showing a brain implantation antenna 10 to which an ultrapure water-based insulator is applied according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a slot antenna 300 according to an embodiment of the present invention
  • FIG. 3 Is a configuration diagram showing a broadband feed line 500 according to an embodiment of the present invention.
  • FIGS. 4A and 4B are diagrams showing the real thing of the brain implantation antenna 10 to which an ultrapure water-based insulator is applied according to an embodiment of the present invention. That is, FIG. 4A is a plan view of the brain implantation antenna 10 to which an ultrapure water-based insulator is applied according to an embodiment of the present invention, and FIG. 4B is an ultrapure water-based insulator implemented in real life according to an embodiment of the present invention. It is a bottom view of the brain insertion antenna 10.
  • the dielectric loss medium called the human body inevitably causes loss from the viewpoint of radiation from the antenna.
  • an insulating layer or housings 100 and 600 are essential for the antenna for implantation in the body to insulate from a living tissue and protect the implanted device.
  • the brain insertion antenna 10 to which the ultrapure water-based insulator is applied according to an embodiment of the present invention can minimize the loss that inevitably occurs according to the configuration of the housings 100 and 600.
  • the brain insertion antenna 10 to which the ultrapure water-based insulator is applied according to an embodiment of the present invention is inserted into the human body and transmits a biological signal or a brain signal measured in the body to the receiving antenna 20 outside the biological tissue.
  • a radio frequency (RF) signal may be transmitted/received between the brain insertion antenna 10 and the reception antenna 20.
  • RF radio frequency
  • the brain insertion antenna 10 to which the ultrapure water-based insulator is applied includes an upper antenna housing 100, an insulating layer 200, a slot antenna 300, an RF substrate 400, a broadband feed line 500 And a lower antenna housing 600.
  • the upper antenna housing 100 is made of a biocompatible material to insulate the brain insertion antenna 10 from living tissues and protects it from the introduction of foreign substances. That is, the upper antenna housing 100 may prevent metal oxidation and an electrical short circuit.
  • the biocompatible material may be a nylon-12-based material that satisfies the US Pharmacopeia-biological test class VI.
  • the insulating layer 200 is formed of a dielectric based on ultrapure water (UPW) or distilled water, which is an extremely low lossy medium, and is disposed between the upper antenna housing 100 and the slot antenna 300 to provide an improved antenna. Implement radiation characteristics.
  • UPF ultrapure water
  • distilled water which is an extremely low lossy medium
  • the ultrapure water has a dielectric loss close to 0 and a relative dielectric constant of 80. That is, the insulating layer 200 may be formed by filling a container made of a biocompatible material with an ultrapure water (UPW) or a dielectric based on distilled water.
  • the slot antenna 300 is formed of a circular conductive metal and is disposed on the RF substrate 400.
  • a rectangular slot 310 is provided inside the slot antenna 300.
  • the slot antenna 300 may include a radiation prevention layer 320 and a rectangular slot 310 formed inside the radiation prevention layer 320.
  • the width (D, Depth) of the radiation prevention layer 320 may be 10 mm, and the length (L, Length) of the radiation prevention layer 320 may be 11 mm.
  • the slot 310 may have a width Sw (Slot width) of 7.5 mm, and the slot 310 may have a length Sl (Slot length) of 1.5 mm.
  • the present invention may be implemented in various different forms and is not limited to the embodiments described herein.
  • the RF substrate 400 may be a Rogers 4350B substrate. That is, the slot antenna 300 and the broadband feed line 500 may be disposed on the upper and lower ends of the RF substrate 400, respectively.
  • the broadband feed line 500 is formed as a microstrip line of a conductive metal to cause a broadband matching of the slot antenna 300 and an efficient radiation mode. Is placed in, the broadband feed line 500 may include a feed line 510 and a feed resonator 520.
  • the broadband feed line 500 is applied for excitation of the slot 310 shown in FIG. 2.
  • the feed line 510 may be connected to the cable 700 to receive a signal transmitted through the cable 700. That is, the measuring unit (not shown) may measure a biological signal inside the biological tissue and transmit the measured signal to the feed line 510 through the cable 700.
  • the feed line 510 receives a signal transmitted from the cable 700 and transmits it to the feed resonator 520, and the feed resonator 520 generates resonance based on the received signal.
  • the power supply resonator 520 includes two L-shaped open stubs to improve the impedance matching characteristics of the microstrip line, and the two L-shaped open stubs Are formed symmetrically left and right, and are connected to form one body at the end of the feed line 510 or the microstrip line.
  • the width fw of the feed line 510 may be 0.5 mm, and the length fl of the feed line 510 may be 8 mm.
  • the width mw of the feed resonator 520 may be 5 mm, and the length (ml) of the feed resonator 520 may be 1.25 mm.
  • the present invention may be implemented in various different forms and is not limited to the embodiments described herein.
  • the lower antenna housing 600 is made of a biocompatible material and is disposed under the RF substrate 400 and the broadband power supply line 500. That is, the lower antenna housing 600 may insulate the broadband feed line 500 from a living body tissue and block the inflow of foreign substances to protect it.
  • the brain-inserting antenna 10 to which an ultrapure water-based insulator is applied has an effect of securing a broadband matching characteristic of the antenna through a feed structure for efficient aperture radiation.
  • the features and effects of the brain implantation antenna 10 to which the ultrapure water-based insulator is applied according to an embodiment of the present invention can be confirmed as follows.
  • FIG. 5 is a diagram illustrating a Shell Problem Model (SPM) according to an embodiment of the present invention. That is, FIG. 5 is a diagram showing a Shell Problem Model (SPM) for analyzing propagation characteristics in a human brain environment. Here, a configuration including all of a Tx antenna 301, an insulating layer 201, and a housing 101 excluding the outermost head model 800 is seen. Corresponds to the brain insertion antenna 10 of the invention.
  • SPM Shell Problem Model
  • the Tx antenna 301 of FIG. 5 corresponds to the slot antenna 300 of FIG. 1
  • the insulating layer 201 of FIG. 5 corresponds to the insulating layer 200 of FIG.
  • the housing 101 of FIG. 5 corresponds to the upper antenna housing 100 of FIG. 1, respectively.
  • the insulating layer 201 has an appropriate thickness and dielectric constant, it is possible to minimize reflection loss and dielectric loss of power radiated from an antenna in an environment where radio waves are barren such as a human head tissue. That is, in FIG. 5, radiation characteristics of the antenna may be improved according to a combination of an appropriate thickness and dielectric constant of the insulating layer 201 and the housing 101.
  • the radio wave environment in which the inserted antenna 10 and the receiving antenna 20 are present in the human body can be simplified into a model in the form of a shell problem.
  • the analytical solution using the spherical wave theory designs insulating layers 200 and 201 having an optimized dielectric constant and thickness to have high reliability in wireless signal transmission. can do.
  • each hair tissue can be replaced with a homogeneous head model as shown in [Table 1] below.
  • the dielectric constant, the permeability, and the dielectric loss as well as the thickness may be set as design variables.
  • the brain implantation antenna 10 since the brain implantation antenna 10 according to an embodiment of the present invention has a very small electrical size, it can be assumed that only the lowest order TM 10 and TE 10 spherical models are radiated. In addition, additional propagation scattering by the shell is not taken into account.
  • Equation 1 represents the magnetic vector potential that causes the TM mode in each region indicated in the shell problem of FIG. 5, and specific coefficients (a 1 , b 1 , c 1 , d 1 , e 1 , f 1 ) is divided into a multiplied traveling wave and a standing wave component.
  • each region can be obtained through the vector potential, and coefficients (a 1: TM , b) as shown in [Equation 2] below through the boundary conditions between regions 1:TM , c 1:TM , d 1:TM , e 1:TM , f 1:TM ) system of equations can be derived.
  • the PTE (PTE TM ) value between the transmitting and receiving antennas operating in the TM mode may be calculated as shown in [Equation 3] below using a coefficient obtained through [Equation 2].
  • Equation 4 an equation for an electric vector potential that causes a TE mode can be extracted, and can be divided into a traveling wave and a standing wave component according to each region indicated in FIG. I can.
  • the E and H-field components of each region can be obtained through the vector potential, and the coefficients (a 1:TE , b) as shown in [Equation 5] below through the boundary conditions between the regions 1:TE , c 1:TE , d 1:TE , e 1:TE , f 1:TE ) system of equations can be derived.
  • PTE (PTE TE ) value between the transmitting and receiving antennas operating in the TE mode may be calculated as shown in [Equation 6] below.
  • the insulating layer 200 having a dielectric constant and thickness optimized for the brain implanted antenna 10 may be designed through power transmission efficiency (PTE).
  • FIGS. 6A, 6B, and 6C are graphs showing the maximum power transfer efficiency (MPTE) according to the size of a non-loss region in an antenna of the same size. That is, FIGS. 6A, 6B, and 6C show the maximum power transfer efficiency (MPTE) transmitted to the reception antenna 20 outside the living tissue when a free space, which is a non-loss medium, exists in the housing of the implantable antenna. Is the result of deriving.
  • MPTE maximum power transfer efficiency
  • FIG. 6A is 403.5 MHz corresponding to the MICS frequency band
  • FIG. 6B is 2.4 GHz corresponding to the ISM frequency band
  • FIG. 6C shows the operation of 5.8 GHz corresponding to the UWB frequency band.
  • MPTE maximum transmission efficiency
  • FIG. 7 is a graph showing antenna radiation efficiency according to the dielectric constant of the insulating layer 200. That is, FIG. 7 is a graph showing comparison of antenna radiation efficiencies according to dielectric characteristics of a dielectric with low high dielectric constant, which is a non-loss medium inserted into the antenna.
  • the implantable antenna requires a low-profile design for insertion into the human body. Therefore, securing a large size of the non-loss region is inevitably limited.
  • the higher the dielectric constant of the dielectric inserted into the antenna the higher the radiation efficiency. That is, it can be seen that the radiation efficiency of the antenna is improved as the dielectric constant of the non-loss region inserted into the antenna is increased, although the same is the same non-loss region.
  • the dielectric loss is close to 0 and the relative dielectric constant reaches 80.
  • the brain implantation antenna 10 to which the ultrapure water-based insulator is applied according to the embodiment of the present invention uses an ultrapure water (UPW)-based dielectric as the insulating layer of the human body insertion antenna, so that about 50% compared to using the free space (Air). There is an effect that can improve the radiation efficiency of.
  • UW ultrapure water
  • FIG. 8 is a graph showing reflection coefficients and gain characteristics of an antenna according to whether or not a broadband feed line 500 is applied. That is, FIG. 8 is a diagram showing a reflection coefficient characteristic and a gain characteristic of an antenna according to the presence or absence of an L-shaped open stub of the broadband feed line 500 according to an embodiment of the present invention.
  • the blue solid line representing the reflection coefficient when the L-shaped open stub is not applied is not impedance matched below -10dB, but represents the reflection coefficient when the L-shaped open stub is applied.
  • the blue dotted line shows that impedance matching is made below -10dB in the target ultra-wide band.
  • a red dotted line indicating a gain when an L-shaped open stub is applied is a red solid line indicating a gain when an L-shaped open stub is not applied.
  • the gain of 1dB or more appears higher over the entire band.
  • the brain insertion antenna 10 to which the L-shaped open stub indicated by the dotted line in FIG. 8 is applied exhibits an impedance matching characteristic in the target band and an average gain of about -20 dB or more in the aiming region. .
  • the brain implanted antenna 10 to which the ultrapure water-based insulator is applied according to an exemplary embodiment of the present invention satisfies a broadband operating band and satisfies a gain characteristic of a very high level compared to a conventional implantable antenna. Accordingly, there is an effect of ensuring a high information transmission rate and stable transmission through securing a broadband/high gain characteristic.
  • the present invention is not limited to the above embodiments, and is easily changed from the embodiments of the present invention by those of ordinary skill in the art to which the present invention pertains. Includes all changes to the extent deemed acceptable.
  • feed resonance part 600 lower antenna housing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Neurology (AREA)
  • Physiology (AREA)
  • Details Of Aerials (AREA)

Abstract

The present invention relates to a brain-implanted antenna utilizing an ultrapure water (UPW)-based insulator, in which a UPW-based dielectric is used as an insulating layer of a human body-implanted antenna so as to reduce the size of the implanted antenna and improve the radiation efficiency and gain characteristics of the antenna, and antenna matching characteristics covering the ultra-wideband can be obtained by a wideband power feeding line provided with an L-shaped open stub. A brain-implanted antenna utilizing a UPW-based insulator according to an embodiment of the present invention may comprise an upper end antenna housing, an insulating layer, a slot antenna, an RF substrate, a wideband power feeding line, and a lower end antenna housing. The upper end antenna housing and the lower end antenna housing are made of a biocompatible material and block the inflow of foreign substances. The insulating layer is made of a dielectric based on UPW or distilled water, which is an extremely low lossy medium, and disposed between the upper end antenna housing and the slot antenna. The slot antenna is made of circular conductive metal and disposed on the RF substrate, and a rectangular slot is provided inside the slot antenna. The wideband power feeding line is made of a microstrip line of conductive metal and disposed below the RF substrate so as to bring about impedance matching characteristics and an efficient radiating mode of the slot antenna, and two L-shaped open stubs are provided in left-right symmetry at an end portion of the line in order to bring about the impedance matching.

Description

초순수 기반 절연체가 적용된 뇌삽입 안테나Brain implanted antenna with ultrapure water based insulator
본 발명은 초순수 기반 절연체가 적용된 뇌삽입 안테나에 관한 것으로서, 삽입형 안테나의 소형화와 안테나의 방사 효율 및 이득 특성을 향상하기 위해 초순수(UPW) 기반의 유전체를 인체 삽입 안테나의 절연층으로 사용하고, L자형 개방 스터브(stub)가 구비되는 광대역 급전 선로를 통해 초광대역을 아우르는 안테나의 정합 특성을 확보할 수 있는 초순수 기반 절연체가 적용된 뇌삽입 안테나에 관한 것이다.The present invention relates to a brain implanted antenna to which an ultrapure water-based insulator is applied, and an ultrapure water (UPW)-based dielectric is used as an insulating layer of a human body insertion antenna in order to reduce the size of the implantable antenna and improve the radiation efficiency and gain characteristics of the antenna. The present invention relates to a brain implanted antenna to which an ultrapure water-based insulator capable of securing matching characteristics of an antenna covering an ultra-wide band through a broadband feed line provided with a shaped open stub is applied.
고령 인구의 증대로 인해서 퇴행성 뇌질환(치매, 알츠하이머)의 예방 및 치료 시장의 규모가 지속적으로 성장할 것으로 전망된다. 이를 위해서는 환자의 뇌신호를 실시간으로 모니터링하고 분석하는 기술이 요구된다. 또한, 인체 내의 미약한 뇌신호를 외부의 모니터링 시스템에 안정적으로 전송할 수 있는 기술이 확보되어야 한다.With the increase of the elderly population, the size of the prevention and treatment market for degenerative brain diseases (dementia, Alzheimer's) is expected to continue to grow. For this, a technology for monitoring and analyzing the patient's brain signals in real time is required. In addition, a technology capable of stably transmitting a weak brain signal in the human body to an external monitoring system must be secured.
한편, 체내 이식용 의료기기의 무선통신 신뢰성 확보를 위해서는 삽입형 안테나 기술이 필수적이다. 이러한 체내 이식용 의료기기의 무선통신에는 400MHz 대역의 MICS(Medical Implant Communication System) 및 MedRadio(Medical Device Radiocommunication Service)와, 900MHz 또는 2.4GHz 대역의 ISM(Industrial Scientific and Medical)과, 3~10GHz 대역의 UWB(Ultra Wide Band) 주파수 대역이 주로 사용된다.On the other hand, in order to secure the reliability of wireless communication of medical devices for implantation in the body, an implantable antenna technology is essential. For wireless communication of such implantable medical devices, MICS (Medical Implant Communication System) and MedRadio (Medical Device Radiocommunication Service) in the 400MHz band, Industrial Scientific and Medical (ISM) in the 900MHz or 2.4GHz band, and the 3~10GHz band. UWB (Ultra Wide Band) frequency band is mainly used.
하지만, 인체 삽입형 안테나는 일반적으로 인체에서의 유전 손실로 인해 방사하기 어려운 환경에 놓여 있다. 또한, 인체에 삽입되는 안테나는 자유공간에서 이용되는 종래의 안테나에 추가적인 설계조건이 요구된다. 즉, 인체의 삽입을 위한 소형화, 개개인에서의 정합 특성 확보를 위한 광대역화, 안정적인 통신 신뢰도를 위한 이득 및 인체 적합성 등이 필요하다.However, the human body insertion type antenna is generally placed in an environment where it is difficult to radiate due to dielectric loss in the human body. In addition, the antenna inserted into the human body requires additional design conditions to the conventional antenna used in a free space. That is, miniaturization for insertion of the human body, broadband for securing personal matching characteristics, gain for stable communication reliability, and suitability for the human body are required.
이러한 제한적인 설계 조건에도 불구하고 뇌신호 처리 및 체내 무선전송 시스템 등 다양한 체내 이식용 의료 센서 기기의 구현을 위한 핵심 기술 중 하나로 삽입형 안테나 기술의 확보가 필수적이다.In spite of these limited design conditions, it is essential to secure an implantable antenna technology as one of the core technologies for implementing various medical sensor devices for implantation in the body such as brain signal processing and wireless transmission systems in the body.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
대한민국 등록특허 제10-1699130호(2017년 01월 23일 공고)Republic of Korea Patent Registration No. 10-1699130 (announced on January 23, 2017)
따라서, 본 발명이 이루고자 하는 기술적 과제는 종래의 단점을 해결한 것으로서, 인체 삽입형 안테나의 방사 효율 및 이득 특성을 향상시키고자 하는데 그 목적이 있다. 또한, 인체 삽입형 안테나의 임피던스 정합 특성을 개선하여 초광대역을 아우르는 안테나의 정합 특성을 확보하고자 하는데 그 목적이 있다.Accordingly, the technical problem to be achieved by the present invention is to solve the disadvantages of the prior art, and an object thereof is to improve the radiation efficiency and gain characteristics of the human body insertion type antenna. In addition, there is an object to improve the impedance matching characteristics of the human body insertion type antenna to secure the matching characteristics of the antenna covering an ultra-wide band.
이러한 기술적 과제를 이루기 위한 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나는 상단 안테나 하우징, 절연층, 슬롯 안테나, RF 기판, 광대역 급전 선로 및 하단 안테나 하우징을 포함할 수 있다.The brain implanted antenna to which the ultrapure water-based insulator is applied according to an embodiment of the present invention for achieving this technical problem may include an upper antenna housing, an insulating layer, a slot antenna, an RF substrate, a broadband feed line, and a lower antenna housing.
상기 상단 안테나 하우징은 생체 적합성 재료(biocompatible material)로 이루어져 뇌삽입 안테나를 생체 조직으로부터 절연시키고 이물질의 유입으로부터 보호한다. 상기 절연층은 초저손실(extremely low lossy) 매질인 초순수(UPW, Ultrapure water) 또는 증류수 기반의 유전체로 형성되어 상기 상단 안테나 하우징과 슬롯 안테나 사이에 배치된다.The upper antenna housing is made of a biocompatible material to insulate the brain-inserted antenna from living tissue and protect it from the introduction of foreign substances. The insulating layer is formed of a dielectric based on ultrapure water (UPW) or distilled water, which is an extremely low lossy medium, and is disposed between the upper antenna housing and the slot antenna.
상기 슬롯 안테나는 원형의 도전성 금속으로 형성되어 RF 기판 상에 배치되고, 상기 슬롯 안테나의 내측에는 직사각형의 슬롯(Slot)이 구비된다.The slot antenna is formed of a circular conductive metal and is disposed on an RF substrate, and a rectangular slot is provided inside the slot antenna.
상기 광대역 급전 선로는 상기 슬롯 안테나의 임피던스(impedance) 정합 특성과 효율적인 방사 모드를 야기 시키기 위해 도전성 금속의 마이크로스트립 선로(microstrip line)로 형성되어 상기 RF 기판의 하단에 배치되고, 임피던스(impedance)의 정합을 위해 선로의 단부에 2개의 L자형 개방 스터브(stub)가 좌우 대칭적으로 구비된다.The broadband feed line is formed as a microstrip line of a conductive metal in order to induce an impedance matching characteristic and an efficient radiation mode of the slot antenna, and is disposed at the lower end of the RF substrate, and has an impedance For matching, two L-shaped open stubs are symmetrically provided at the end of the line.
또한, 상기 하단 안테나 하우징은 상기 광대역 급전 선로 하단에서 생체 적합성 재료(biocompatible material)로 이루어져 이물질의 유입을 차단한다.In addition, the lower antenna housing is made of a biocompatible material at the lower end of the broadband feed line to block the inflow of foreign substances.
이상에서 설명한 바와 같이, 본 발명에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나는 초순수 기반의 유전체를 인체 삽입형 안테나의 절연체 또는 수퍼스트레이트(superstrate)로 사용하여 삽입형 안테나의 소형화와 안테나의 방사 효율 및 이득 특성을 향상할 수 있는 효과가 있다. 또한, L자형 개방 스터브(stub)가 구비되는 광대역 급전 선로를 통해 초광대역을 아우르는 안테나의 정합 특성을 확보할 수 있는 효과가 있다.As described above, the brain-inserted antenna to which the ultrapure water-based insulator according to the present invention is applied uses the ultrapure water-based dielectric as an insulator or superstrate of the human body-inserted antenna, reducing the size of the implantable antenna and radiating efficiency and gain characteristics of the antenna There is an effect that can improve. In addition, there is an effect of securing matching characteristics of an antenna covering an ultra-wide band through a broadband feed line provided with an L-shaped open stub.
도 1은 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나를 나타내는 구성도이다.1 is a block diagram showing a brain implanted antenna to which an ultrapure water-based insulator is applied according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 슬롯 안테나를 나타내는 구성도이다.2 is a block diagram illustrating a slot antenna according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 광대역 급전 선로를 나타내는 구성도이다.3 is a block diagram showing a broadband feed line according to an embodiment of the present invention.
도 4a 및 도 4b는 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나의 실물을 나타내는 도면이다.4A and 4B are diagrams showing a real brain implanted antenna to which an ultrapure water-based insulator is applied according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 SPM(Shell Problem Model)을 나타내는 도면이다.5 is a diagram illustrating a Shell Problem Model (SPM) according to an embodiment of the present invention.
도 6a, 도 6b 및 도 6c는 비손실 영역의 크기에 따른 최대전송효율(MPTE)을 나타내는 그래프이다.6A, 6B, and 6C are graphs showing the maximum transmission efficiency (MPTE) according to the size of the non-loss region.
도 7은 절연층의 유전율에 따른 안테나 방사 효율을 나타내는 그래프이다.7 is a graph showing antenna radiation efficiency according to dielectric constant of an insulating layer.
도 8은 광대역 급전 선로의 적용 유무에 따른 안테나의 반사계수 및 이득 특성을 나타내는 그래프이다.8 is a graph showing reflection coefficients and gain characteristics of an antenna depending on whether or not a broadband feed line is applied.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and similar reference numerals are assigned to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 또는 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary. In addition, terms such as "...unit", "...group", and "...module" described in the specification mean a unit that processes at least one function or operation, which is implemented by hardware or software, or a combination of hardware and software. Can be.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail by describing a preferred embodiment of the present invention with reference to the accompanying drawings.
각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.The same reference numerals shown in each drawing indicate the same members.
도 1은 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)를 나타내는 구성도이고, 도 2는 본 발명의 실시 예에 따른 슬롯 안테나(300)를 나타내는 구성도이며, 도 3은 본 발명의 실시 예에 따른 광대역 급전 선로(500)를 나타내는 구성도이다.1 is a block diagram showing a brain implantation antenna 10 to which an ultrapure water-based insulator is applied according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a slot antenna 300 according to an embodiment of the present invention, and FIG. 3 Is a configuration diagram showing a broadband feed line 500 according to an embodiment of the present invention.
또한, 도 4a 및 도 4b는 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)의 실물을 나타내는 도면이다. 즉, 도 4a는 본 발명의 실시 예에 따라 실물로 구현된 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)의 평면도이고, 도 4b는 본 발명의 실시 예에 따라 실물로 구현된 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)의 저면도이다.In addition, FIGS. 4A and 4B are diagrams showing the real thing of the brain implantation antenna 10 to which an ultrapure water-based insulator is applied according to an embodiment of the present invention. That is, FIG. 4A is a plan view of the brain implantation antenna 10 to which an ultrapure water-based insulator is applied according to an embodiment of the present invention, and FIG. 4B is an ultrapure water-based insulator implemented in real life according to an embodiment of the present invention. It is a bottom view of the brain insertion antenna 10.
일반적으로 인체라는 유전손실 매질은 안테나의 방사 관점에서 필연적으로 손실을 발생시킨다. 또한, 체내 이식용 안테나는 생체 조직과의 절연과 이식되는 장치의 보호를 위해 도 1에서 도시된 바와 같이 절연층 또는 하우징(100, 600)이 필수적이다.In general, the dielectric loss medium called the human body inevitably causes loss from the viewpoint of radiation from the antenna. In addition, as shown in FIG. 1, an insulating layer or housings 100 and 600 are essential for the antenna for implantation in the body to insulate from a living tissue and protect the implanted device.
본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)는 이러한 하우징(100, 600)의 구성에 따라 필연적으로 발생하는 손실을 최소화할 수 있다. 또한, 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)는 인체 내에 삽입되어 체내에서 측정된 생체 신호 또는 뇌신호를 생체 조직 외부의 수신 안테나(20)에 전송한다.The brain insertion antenna 10 to which the ultrapure water-based insulator is applied according to an embodiment of the present invention can minimize the loss that inevitably occurs according to the configuration of the housings 100 and 600. In addition, the brain insertion antenna 10 to which the ultrapure water-based insulator is applied according to an embodiment of the present invention is inserted into the human body and transmits a biological signal or a brain signal measured in the body to the receiving antenna 20 outside the biological tissue.
이때, 뇌삽입 안테나(10)와 수신 안테나(20) 간에는 RF(Radio Frequency) 신호가 송수신될 수 있다.In this case, a radio frequency (RF) signal may be transmitted/received between the brain insertion antenna 10 and the reception antenna 20.
본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)는 상단 안테나 하우징(100), 절연층(200), 슬롯 안테나(300), RF 기판(400), 광대역 급전 선로(500) 및 하단 안테나 하우징(600)을 포함할 수 있다.The brain insertion antenna 10 to which the ultrapure water-based insulator is applied according to an embodiment of the present invention includes an upper antenna housing 100, an insulating layer 200, a slot antenna 300, an RF substrate 400, a broadband feed line 500 And a lower antenna housing 600.
상단 안테나 하우징(100)은 생체 적합성 재료(biocompatible material)로 이루어져 뇌삽입 안테나(10)를 생체 조직으로부터 절연시키고 이물질의 유입으로부터 보호한다. 즉, 상단 안테나 하우징(100)은 금속의 산화와 전기적 단락(short circuit)을 방지할 수 있다.The upper antenna housing 100 is made of a biocompatible material to insulate the brain insertion antenna 10 from living tissues and protects it from the introduction of foreign substances. That is, the upper antenna housing 100 may prevent metal oxidation and an electrical short circuit.
여기에서, 상기 생체 적합성 재료(biocompatible material)는 미국의 약전-생물학적 테스트 VI(Pharmacopeia-biological test class VI)를 만족하는 나일론-12(Nylon-12) 기반 물질이 될 수 있다.Here, the biocompatible material may be a nylon-12-based material that satisfies the US Pharmacopeia-biological test class VI.
절연층(200)은 초저손실(extremely low lossy) 매질인 초순수(UPW, Ultrapure water) 또는 증류수 기반의 유전체로 형성되어 상단 안테나 하우징(100)과 슬롯 안테나(300) 사이에 배치되어 개선된 안테나의 방사 특성을 구현한다.The insulating layer 200 is formed of a dielectric based on ultrapure water (UPW) or distilled water, which is an extremely low lossy medium, and is disposed between the upper antenna housing 100 and the slot antenna 300 to provide an improved antenna. Implement radiation characteristics.
일반적으로 상기 초순수(UPW, Ultrapure water)는 유전손실이 0에 가까우며, 비유전율이 80에 달하는 물성 특성을 갖는다. 즉, 절연층(200)은 생체 적합성 재료(biocompatible material)로 이루어지는 용기 내에 초순수(UPW, Ultrapure water) 또는 증류수 기반의 유전체가 채워져 구성될 수 있다.In general, the ultrapure water (UPW) has a dielectric loss close to 0 and a relative dielectric constant of 80. That is, the insulating layer 200 may be formed by filling a container made of a biocompatible material with an ultrapure water (UPW) or a dielectric based on distilled water.
슬롯 안테나(300)는 원형의 도전성 금속으로 형성되어 RF 기판(400) 상에 배치된다. 또한, 슬롯 안테나(300)의 내측에는 직사각형의 슬롯(Slot)(310)이 구비된다. 도 2에서 도시된 바와 같이 슬롯 안테나(300)는 방사방지층(320)과 방사방지층(320)의 내측에 형성되는 직사각형의 슬롯(Slot)(310)으로 이루어질 수 있다.The slot antenna 300 is formed of a circular conductive metal and is disposed on the RF substrate 400. In addition, a rectangular slot 310 is provided inside the slot antenna 300. As shown in FIG. 2, the slot antenna 300 may include a radiation prevention layer 320 and a rectangular slot 310 formed inside the radiation prevention layer 320.
예를 들어, 방사방지층(320)의 폭(D, Depth)은 10mm, 방사방지층(320)의 길이(L, Length)는 11mm로 형성될 수 있다. 또한, 슬롯(Slot)(310)의 너비(Sw, Slot width)는 7.5mm, 슬롯(Slot)(310)의 길이(Sl, Slot length)는 1.5mm로 형성될 수 있다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.For example, the width (D, Depth) of the radiation prevention layer 320 may be 10 mm, and the length (L, Length) of the radiation prevention layer 320 may be 11 mm. In addition, the slot 310 may have a width Sw (Slot width) of 7.5 mm, and the slot 310 may have a length Sl (Slot length) of 1.5 mm. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.
RF 기판(400)은 로저스(Rogers) 4350B 기판(Substrate)이 사용될 수 있다. 즉, RF 기판(400)의 상단과 하단에 각각 슬롯 안테나(300)와 광대역 급전 선로(500)가 배치될 수 있다.The RF substrate 400 may be a Rogers 4350B substrate. That is, the slot antenna 300 and the broadband feed line 500 may be disposed on the upper and lower ends of the RF substrate 400, respectively.
도 3에서 도시된 바와 같이 광대역 급전 선로(500)는 슬롯 안테나(300)의 광대역 정합 및 효율적인 방사모드를 야기 시키기 위해 도전성 금속의 마이크로스트립 선로(microstrip line)로 형성되어 RF 기판(400)의 하단에 배치된다. 또한, 광대역 급전 선로(500)는 급전선(510)과 급전공진부(520)로 이루어질 수 있다.As shown in FIG. 3, the broadband feed line 500 is formed as a microstrip line of a conductive metal to cause a broadband matching of the slot antenna 300 and an efficient radiation mode. Is placed in In addition, the broadband feed line 500 may include a feed line 510 and a feed resonator 520.
즉, 광대역 급전 선로(500)는 도 2에서 도시된 슬롯(Slot)(310)의 여기(excitation)를 위해 적용된다.That is, the broadband feed line 500 is applied for excitation of the slot 310 shown in FIG. 2.
급전선(510)은 케이블(700)에 연결되어 케이블(700)을 통해 전송되는 신호를 입력받을 수 있다. 즉, 측정부(미도시)가 생체 조직 내부에서 생체 신호를 측정하고 케이블(700)을 통해 측정된 신호를 급전선(510)에 전송할 수 있다.The feed line 510 may be connected to the cable 700 to receive a signal transmitted through the cable 700. That is, the measuring unit (not shown) may measure a biological signal inside the biological tissue and transmit the measured signal to the feed line 510 through the cable 700.
급전선(510)은 케이블(700)로부터 전송되는 신호를 입력받아 급전공진부(520)로 전송하고, 급전공진부(520)는 입력받은 신호를 토대로 공진을 발생시킨다.The feed line 510 receives a signal transmitted from the cable 700 and transmits it to the feed resonator 520, and the feed resonator 520 generates resonance based on the received signal.
이때, 급전공진부(520)는 마이크로스트립 선로(microstrip line)의 임피던스(impedance) 정합 특성을 개선하기 위해 2개의 L자형 개방 스터브(stub)를 포함하고, 상기 2개의 L자형 개방 스터브(stub)는 좌우 대칭적으로 형성되어 급전선(510) 또는 마이크로스트립 선로(microstrip line)의 끝단에서 한 몸체를 이루어 연결된다.At this time, the power supply resonator 520 includes two L-shaped open stubs to improve the impedance matching characteristics of the microstrip line, and the two L-shaped open stubs Are formed symmetrically left and right, and are connected to form one body at the end of the feed line 510 or the microstrip line.
예를 들어, 급전선(510)의 너비(fw)는 0.5mm, 급전선(510)의 길이(fl)는 8mm로 형성될 수 있다. 또한, 급전공진부(520)의 너비(mw)는 5mm, 급전공진부(520)의 길이(ml)는 1.25mm로 형성될 수 있다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.For example, the width fw of the feed line 510 may be 0.5 mm, and the length fl of the feed line 510 may be 8 mm. In addition, the width mw of the feed resonator 520 may be 5 mm, and the length (ml) of the feed resonator 520 may be 1.25 mm. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.
하단 안테나 하우징(600)은 생체 적합성 재료(biocompatible material)로 이루어져 RF 기판(400) 및 광대역 급전 선로(500)의 하단에 배치된다. 즉, 하단 안테나 하우징(600)은 광대역 급전 선로(500)를 생체 조직으로부터 절연시키고 이물질의 유입을 차단하여 보호할 수 있다.The lower antenna housing 600 is made of a biocompatible material and is disposed under the RF substrate 400 and the broadband power supply line 500. That is, the lower antenna housing 600 may insulate the broadband feed line 500 from a living body tissue and block the inflow of foreign substances to protect it.
이와 같이 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)는 효율적인 개구면 방사를 위한 급전 구조를 통해 안테나의 광대역 정합 특성을 확보할 수 있는 효과가 있다.As described above, the brain-inserting antenna 10 to which an ultrapure water-based insulator is applied according to an embodiment of the present invention has an effect of securing a broadband matching characteristic of the antenna through a feed structure for efficient aperture radiation.
또한, 이와 같은 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)는 아래와 같이 그 특징 및 효과가 확인될 수 있다.In addition, the features and effects of the brain implantation antenna 10 to which the ultrapure water-based insulator is applied according to an embodiment of the present invention can be confirmed as follows.
도 5는 본 발명의 실시 예에 따른 SPM(Shell Problem Model)을 나타내는 도면이다. 즉, 도 5는 인체 두뇌 환경에서의 전파 특성 분석을 위한 SPM(Shell Problem Model)을 나타내는 도면이다. 여기에서, 최외곽의 헤드 모델(Head model)(800)을 제외한 송신 안테나(Tx antenna)(301)와 절연층(Insulator)(201) 및 하우징(Housing)(101)을 모두 포함하는 구성이 본 발명의 뇌삽입 안테나(10)에 대응된다.5 is a diagram illustrating a Shell Problem Model (SPM) according to an embodiment of the present invention. That is, FIG. 5 is a diagram showing a Shell Problem Model (SPM) for analyzing propagation characteristics in a human brain environment. Here, a configuration including all of a Tx antenna 301, an insulating layer 201, and a housing 101 excluding the outermost head model 800 is seen. Corresponds to the brain insertion antenna 10 of the invention.
즉, 도 5의 송신 안테나(Tx antenna)(301)는 도 1의 슬롯 안테나(300)에 대응되고, 도 5의 절연층(Insulator)(201)은 도 1의 절연층(200)에 대응되며, 도 5의 하우징(Housing)(101)은 도 1의 상단 안테나 하우징(100)에 각각 대응된다.That is, the Tx antenna 301 of FIG. 5 corresponds to the slot antenna 300 of FIG. 1, and the insulating layer 201 of FIG. 5 corresponds to the insulating layer 200 of FIG. , The housing 101 of FIG. 5 corresponds to the upper antenna housing 100 of FIG. 1, respectively.
절연층(201)은 적절한 두께 및 유전율을 갖는 경우 인체의 머리 조직과 같은 전파 척박 환경의 안테나에서 방사되는 전력의 반사 손실 및 유전 손실을 최소화할 수 있다. 즉, 도 5에서 절연층(Insulator)(201)과 하우징(Housing)(101)의 적절한 두께 및 유전율의 조합에 따라 안테나의 방사 특성을 개선할 수 있다.When the insulating layer 201 has an appropriate thickness and dielectric constant, it is possible to minimize reflection loss and dielectric loss of power radiated from an antenna in an environment where radio waves are barren such as a human head tissue. That is, in FIG. 5, radiation characteristics of the antenna may be improved according to a combination of an appropriate thickness and dielectric constant of the insulating layer 201 and the housing 101.
이러한 전파 척박 환경에서 높은 신뢰성의 무선통신을 구현하고, 생체 원격측정(bio-telemetry) 기술을 뇌-컴퓨터 인터페이스(brain-computer-interface), 뇌 심부 자극술(DBS, Deep-brain-simulation) 등에 응용하기 위해서는 절연체 설계 사양의 최적화가 요구된다.Realizes highly reliable wireless communication in such a barren environment, and applies bio-telemetry technology to brain-computer-interface, deep-brain-simulation (DBS), etc. In order to do this, optimization of insulator design specifications is required.
한편, 삽입된 절연층(200, 201) 특성에 따른 안테나 방사 특성 해석을 전파 전자기(Full-wave electromagnetic) 시뮬레이션에 의존할 경우 많은 계산 시간이 소요되어 그 이용이 제한적이며 최적화에 애로 사항이 있다.On the other hand, when relying on full-wave electromagnetic simulation to analyze the antenna radiation characteristics according to the characteristics of the inserted insulating layers 200 and 201, it takes a lot of computation time, so its use is limited and there are difficulties in optimization.
도 5에서 도시된 바와 같이 인체 속에 위치하게 되는 삽입형 안테나(10)와 외부에 수신 안테나(20)가 존재하는 전파환경을 쉘 프라브럼(Shell problem) 형태의 모델로 단순화할 수 있다.As shown in FIG. 5, the radio wave environment in which the inserted antenna 10 and the receiving antenna 20 are present in the human body can be simplified into a model in the form of a shell problem.
본 발명의 실시 예에 따른 스페리컬 웨이브 이론(Spherical wave theory)을 이용한 분석 솔루션(analytic solution)은 무선 신호 전달에 있어 높은 신뢰성을 갖도록 최적화된 유전율과 두께를 갖는 절연층(200, 201)을 설계할 수 있다.The analytical solution using the spherical wave theory according to an embodiment of the present invention designs insulating layers 200 and 201 having an optimized dielectric constant and thickness to have high reliability in wireless signal transmission. can do.
또한, 각각의 머리 조직의 전기적 특성을 아래의 [표 1]과 같이 호모지니어스 헤드 모델(homogeneous head model)로 치환할 수 있다.In addition, the electrical characteristics of each hair tissue can be replaced with a homogeneous head model as shown in [Table 1] below.
[표 1] Homogeneous head model[Table 1] Homogeneous head model
Figure PCTKR2020007407-appb-I000001
Figure PCTKR2020007407-appb-I000001
상기 쉘 프라브럼(Shell problem)에서 절연층(Insulator)(201)의 두께(r1), 하우징(Housing)(101)의 두께(τ1), 머리(Head model)(800)의 두께(τ2), 송신 안테나(301)와 수신 안테나(20)가 이루는 각도(θ)에 따른 PTE(Power transmission efficiency,
Figure PCTKR2020007407-appb-I000002
, Port 1: 송신 안테나(301), Port 2 : 수신 안테나(20)) 계산식을 도출할 수 있다.
In the shell problem, the thickness of the insulating layer 201 (r1), the thickness of the housing 101 (τ 1 ), the thickness of the head model 800 (τ 2) ), Power transmission efficiency (PTE) according to the angle θ formed by the transmit antenna 301 and the receive antenna 20,
Figure PCTKR2020007407-appb-I000002
, Port 1: transmit antenna 301, Port 2: receive antenna (20)) It is possible to derive a calculation formula.
이때, 도 5에서 절연층(201) 및 헤드 모델(Head model)(800)의 경우 두께뿐만 아니라 유전율, 투자율 및 유전손실을 설계변수로 설정할 수 있다.In this case, in the case of the insulating layer 201 and the head model 800 in FIG. 5, the dielectric constant, the permeability, and the dielectric loss as well as the thickness may be set as design variables.
또한, 본 발명의 실시 예에 따른 뇌삽입 안테나(10)는 전기적으로 매우 작은 크기를 갖고 있기 때문에 가장 낮은 차수의 TM10, TE10 스페리컬 모델(Spherical model)만 방사된다고 가정할 수 있다. 또한, 쉘(Shell)에 의한 추가적인 전파 산란은 고려되지 않는다.In addition, since the brain implantation antenna 10 according to an embodiment of the present invention has a very small electrical size, it can be assumed that only the lowest order TM 10 and TE 10 spherical models are radiated. In addition, additional propagation scattering by the shell is not taken into account.
아래의 [수학식 1]은 도 5의 쉘 프라브럼(Shell problem)에 표시된 각 영역에서의 TM 모드(mode)를 야기하는 마그네틱 벡터 포텐셜(Magnetic vector potential)을 나타내며, 특정 계수(a1, b1, c1, d1, e1, f1)가 곱해진 진행파와 정재파 성분으로 구분된다.[Equation 1] below represents the magnetic vector potential that causes the TM mode in each region indicated in the shell problem of FIG. 5, and specific coefficients (a 1 , b 1 , c 1 , d 1 , e 1 , f 1 ) is divided into a multiplied traveling wave and a standing wave component.
[수학식 1][Equation 1]
Figure PCTKR2020007407-appb-I000003
Figure PCTKR2020007407-appb-I000003
여기에서, 상기 [수학식 1]의 각 항은 다음과 같다.Here, each term in [Equation 1] is as follows.
-
Figure PCTKR2020007407-appb-I000004
: 제 1종 르장드르 함수(Legendre function of the first kind)
-
Figure PCTKR2020007407-appb-I000004
: Legendre function of the first kind
-
Figure PCTKR2020007407-appb-I000005
: 제 2종 대체 구면 항켈 함수(Alternative spherical Hankel function of second kind)
-
Figure PCTKR2020007407-appb-I000005
: Alternative spherical Hankel function of second kind
-
Figure PCTKR2020007407-appb-I000006
: 제 1종과 제 2종 대체 구면 베셀 함수(Alternative Spherical Bessel function of the first and second kind)
-
Figure PCTKR2020007407-appb-I000006
: Alternative Spherical Bessel function of the first and second kind
이때, 벡터 포텐셜(Vector potential)을 통해 각 영역의 E, H-필드(field) 성분을 구할 수 있으며, 영역간의 경계조건을 통해 아래의 [수학식 2]와 같이 계수(a1:TM, b1:TM, c1:TM, d1:TM, e1:TM, f1:TM)에 관한 연립방정식을 도출할 수 있다.At this time, the E and H-field components of each region can be obtained through the vector potential, and coefficients (a 1: TM , b) as shown in [Equation 2] below through the boundary conditions between regions 1:TM , c 1:TM , d 1:TM , e 1:TM , f 1:TM ) system of equations can be derived.
[수학식 2][Equation 2]
Figure PCTKR2020007407-appb-I000007
Figure PCTKR2020007407-appb-I000007
TM 모드(mode)로 동작하는 송수신 안테나 사이의 PTE(PTETM) 값은 상기 [수학식 2]를 통해 구해진 계수를 이용하여 아래의 [수학식 3]과 같이 계산될 수 있다. The PTE (PTE TM ) value between the transmitting and receiving antennas operating in the TM mode may be calculated as shown in [Equation 3] below using a coefficient obtained through [Equation 2].
[수학식 3][Equation 3]
Figure PCTKR2020007407-appb-I000008
Figure PCTKR2020007407-appb-I000008
Figure PCTKR2020007407-appb-I000009
Figure PCTKR2020007407-appb-I000009
또한, 아래의 [수학식 4]와 같이 TE 모드(mode)를 야기하는 전기 벡터 포텐셜(electric vector potential)에 관한 식을 추출할 수 있으며, 도 5에서 표시된 각 영역에 따라 진행파와 정재파 성분으로 구분할 수 있다.In addition, as shown in [Equation 4] below, an equation for an electric vector potential that causes a TE mode can be extracted, and can be divided into a traveling wave and a standing wave component according to each region indicated in FIG. I can.
[수학식 4][Equation 4]
Figure PCTKR2020007407-appb-I000010
Figure PCTKR2020007407-appb-I000010
이때, 벡터 포텐셜(Vector potential)을 통해 각 영역의 E, H-필드(Field) 성분을 구할 수 있으며, 영역간의 경계조건을 통해 아래의 [수학식 5]와 같이 계수(a1:TE, b1:TE, c1:TE, d1:TE, e1:TE, f1:TE)에 관한 연립방정식을 도출할 수 있다.At this time, the E and H-field components of each region can be obtained through the vector potential, and the coefficients (a 1:TE , b) as shown in [Equation 5] below through the boundary conditions between the regions 1:TE , c 1:TE , d 1:TE , e 1:TE , f 1:TE ) system of equations can be derived.
[수학식 5][Equation 5]
Figure PCTKR2020007407-appb-I000011
Figure PCTKR2020007407-appb-I000011
또한, TE 모드(mode)로 동작하는 송수신 안테나 사이의 PTE(PTETE) 값은 아래의 [수학식 6]과 같이 계산될 수 있다. In addition, the PTE (PTE TE ) value between the transmitting and receiving antennas operating in the TE mode may be calculated as shown in [Equation 6] below.
[수학식 6][Equation 6]
Figure PCTKR2020007407-appb-I000012
Figure PCTKR2020007407-appb-I000012
Figure PCTKR2020007407-appb-I000013
Figure PCTKR2020007407-appb-I000013
이와 같이 전력전송효율(PTE, Power transmission efficiency)을 통해 뇌삽입 안테나(10)에 최적화된 유전율과 두께를 갖는 절연층(200)을 설계할 수 있다.In this way, the insulating layer 200 having a dielectric constant and thickness optimized for the brain implanted antenna 10 may be designed through power transmission efficiency (PTE).
도 6a, 도 6b 및 도 6c는 동일한 크기의 안테나에서 비손실 영역의 크기에 따른 최대전송효율(MPTE, Maximum power transfer efficiency)을 나타내는 그래프이다. 즉, 도 6a, 도 6b 및 도 6c는 이식형 안테나의 하우징에 비손실 매질인 자유공간이 존재할 때 생체 조직 외부의 수신 안테나(20)로 전달되는 최대 전력 전송 효율(MPTE, Maximum power transfer efficiency)을 도출한 결과이다.6A, 6B, and 6C are graphs showing the maximum power transfer efficiency (MPTE) according to the size of a non-loss region in an antenna of the same size. That is, FIGS. 6A, 6B, and 6C show the maximum power transfer efficiency (MPTE) transmitted to the reception antenna 20 outside the living tissue when a free space, which is a non-loss medium, exists in the housing of the implantable antenna. Is the result of deriving.
도 6a는 MICS 주파수 대역에 대응되는 403.5MHz이고, 도 6b는 ISM 주파수 대역에 대응되는 2.4GHz이며, 도 6c는 UWB 주파수 대역에 대응되는 5.8GHz의 동작을 나타낸다.FIG. 6A is 403.5 MHz corresponding to the MICS frequency band, FIG. 6B is 2.4 GHz corresponding to the ISM frequency band, and FIG. 6C shows the operation of 5.8 GHz corresponding to the UWB frequency band.
도 6a, 도 6b 및 도 6c에서 나타난 바와 같이 MICS, ISM 및 UWB의 주파수 대역 모두에서 비손실 영역을 확보하는 것이 보다 높은 최대전송효율(MPTE, Maximum power transfer efficiency)을 얻을 수 있음을 확인할 수 있다.As shown in FIGS. 6A, 6B, and 6C, it can be seen that securing a non-loss region in all of the frequency bands of MICS, ISM, and UWB can obtain higher maximum power transfer efficiency (MPTE). .
또한, 안테나의 크기가 동일한 경우에 절연층(201)인 비손실 영역의 크기(r1)가 클수록 삽입형 의료기기에 주로 활용되는 주파수 대역에서 최대전송효율(MPTE)이 개선되는 것을 확인할 수 있다. In addition, when the size of the antenna is the same, it can be seen that the larger the size (r 1 ) of the non-loss region, which is the insulating layer 201, the higher the maximum transmission efficiency (MPTE) in a frequency band mainly used for implantable medical devices.
도 7은 절연층(200)의 유전율에 따른 안테나 방사 효율을 나타내는 그래프이다. 즉, 도 7은 안테나에 삽입되는 비손실 매질인 고유전율 저손실 유전체의 유전특성에 따른 안테나 방사 효율을 비교하여 나타내는 그래프이다.7 is a graph showing antenna radiation efficiency according to the dielectric constant of the insulating layer 200. That is, FIG. 7 is a graph showing comparison of antenna radiation efficiencies according to dielectric characteristics of a dielectric with low high dielectric constant, which is a non-loss medium inserted into the antenna.
일반적으로 삽입형 안테나는 인체 내 삽입을 위해서 얇은 형태(low-profile)의 설계가 요구된다. 따라서 비손실 영역의 크기를 크게 확보하기는 매우 제한적이 될 수 밖에 없다.In general, the implantable antenna requires a low-profile design for insertion into the human body. Therefore, securing a large size of the non-loss region is inevitably limited.
도 7과 같이 안테나에 삽입되는 유전체의 유전율이 높을수록 보다 높은 방사효율을 나타낸다. 즉, 동일한 비손실 영역이지만 안테나에 삽입되는 비손실 영역의 유전율이 증가할수록 안테나의 방사효율이 개선됨을 알수 있다. 초순수(UPW, Ultrapure water)의 경우 유전손실이 0에 가까우며 비유전율이 80에 달하는 물성 특성을 나타낸다.As shown in FIG. 7, the higher the dielectric constant of the dielectric inserted into the antenna, the higher the radiation efficiency. That is, it can be seen that the radiation efficiency of the antenna is improved as the dielectric constant of the non-loss region inserted into the antenna is increased, although the same is the same non-loss region. In the case of ultrapure water (UPW), the dielectric loss is close to 0 and the relative dielectric constant reaches 80.
따라서, 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)는 초순수(UPW) 기반의 유전체를 인체 삽입 안테나의 절연층으로 사용함으로써 자유공간(Air)을 이용하는 것에 비해 약 50%의 방사효율을 개선할 수 있는 효과가 있다.Therefore, the brain implantation antenna 10 to which the ultrapure water-based insulator is applied according to the embodiment of the present invention uses an ultrapure water (UPW)-based dielectric as the insulating layer of the human body insertion antenna, so that about 50% compared to using the free space (Air). There is an effect that can improve the radiation efficiency of.
도 8은 광대역 급전 선로(500)의 적용 유무에 따른 안테나의 반사계수 및 이득 특성을 나타내는 그래프이다. 즉, 도 8은 본 발명의 실시 예에 따른 광대역 급전 선로(500)의 L자형 개방 스터브(stub) 유무에 따른 안테나의 반사계수(Reflection coefficient) 특성과, 이득(Gain) 특성을 나타내는 도면이다.8 is a graph showing reflection coefficients and gain characteristics of an antenna according to whether or not a broadband feed line 500 is applied. That is, FIG. 8 is a diagram showing a reflection coefficient characteristic and a gain characteristic of an antenna according to the presence or absence of an L-shaped open stub of the broadband feed line 500 according to an embodiment of the present invention.
도 8에서 L자형 개방 스터브(stub)가 적용되지 않는 경우의 반사계수를 나타내는 푸른색 실선은 -10dB 아래로 임피던스 정합이 되지 않지만, L자형 개방 스터브(stub)가 적용되는 경우의 반사계수를 나타내는 푸른색 점선은 목표하는 초광대역에서 -10dB 아래로 임피던스 정합이 이루어지는 것을 확인할 수 있다.In FIG. 8, the blue solid line representing the reflection coefficient when the L-shaped open stub is not applied is not impedance matched below -10dB, but represents the reflection coefficient when the L-shaped open stub is applied. The blue dotted line shows that impedance matching is made below -10dB in the target ultra-wide band.
또한, 도 8에서 L자형 개방 스터브(stub)가 적용되는 경우의 이득(Gain)을 나타내는 붉은색 점선이 L자형 개방 스터브(stub)가 적용되지 않는 경우의 이득(Gain)을 나타내는 붉은색 실선에 비해서 전대역에 걸쳐 1dB 이상 이득이 높게 나타나는 것을 확인할 수 있다.In addition, in FIG. 8, a red dotted line indicating a gain when an L-shaped open stub is applied is a red solid line indicating a gain when an L-shaped open stub is not applied. In comparison, it can be seen that the gain of 1dB or more appears higher over the entire band.
즉, 도 8에서 점선으로 표시되는 L자형 개방 스터브(stub)가 적용되는 뇌삽입 안테나(10)는 목표 대역에서의 임피던스 정합 특성과, 조준 영역에서 약 -20dB 이상의 평균 이득을 나타내는 것을 확인할 수 있다.That is, it can be seen that the brain insertion antenna 10 to which the L-shaped open stub indicated by the dotted line in FIG. 8 is applied exhibits an impedance matching characteristic in the target band and an average gain of about -20 dB or more in the aiming region. .
이와 같이 본 발명의 실시 예에 따른 초순수 기반 절연체가 적용된 뇌삽입 안테나(10)는 광대역의 동작 대역을 만족하면서 종래의 이식형 안테나에 비해서 매우 높은 수준의 이득 특성을 만족한다. 따라서, 광대역/고이득 특성의 확보를 통해 높은 정보 전송률과 안정적인 전송을 보장할 수 있는 효과가 있다.As described above, the brain implanted antenna 10 to which the ultrapure water-based insulator is applied according to an exemplary embodiment of the present invention satisfies a broadband operating band and satisfies a gain characteristic of a very high level compared to a conventional implantable antenna. Accordingly, there is an effect of ensuring a high information transmission rate and stable transmission through securing a broadband/high gain characteristic.
이상으로 본 발명에 관한 바람직한 실시 예를 설명하였으나, 본 발명은 상기 실시 예에 한정되지 아니하며, 본 발명의 실시 예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and is easily changed from the embodiments of the present invention by those of ordinary skill in the art to which the present invention pertains. Includes all changes to the extent deemed acceptable.
[부호의 설명][Explanation of code]
10 : 뇌삽입 안테나 20 : 수신 안테나10: brain insertion antenna 20: receiving antenna
100 : 상단 안테나 하우징 101 : 하우징(Housing)100: upper antenna housing 101: housing
200, 201 : 절연층 300 : 슬롯 안테나200, 201: insulating layer 300: slot antenna
301 : 송신 안테나(Tx) 310 : 슬롯301: transmit antenna (Tx) 310: slot
320 : 방사방지층 400 : RF 기판320: anti-radiation layer 400: RF substrate
500 : 광대역 급전 선로 510 : 급전선500: broadband feed line 510: feed line
520 : 급전공진부 600 : 하단 안테나 하우징520: feed resonance part 600: lower antenna housing
700 : 케이블 800 : 헤드 모델(Head model)700: cable 800: head model

Claims (5)

  1. RF 기판(Substrate)과;An RF substrate;
    도전성 금속으로 형성되어 상기 RF 기판 상에 배치되는 슬롯 안테나;A slot antenna formed of a conductive metal and disposed on the RF substrate;
    상기 슬롯 안테나 상에서 생체 적합성 재료(biocompatible material)로 이루어져 이물질의 유입을 차단하는 상단 안테나 하우징;An upper antenna housing made of a biocompatible material on the slot antenna to block the inflow of foreign substances;
    안테나의 방사 특성을 구현하고 산화되는 것을 방지하기 위해 상기 상단 안테나 하우징과 슬롯 안테나 사이에 배치되는 절연층;An insulating layer disposed between the upper antenna housing and the slot antenna to implement radiation characteristics of the antenna and prevent oxidation;
    상기 슬롯 안테나의 임피던스(impedance) 정합 특성과 효율적인 방사 모드를 야기 시키기 위해 도전성 금속의 마이크로스트립 선로(microstrip line)로 형성되어 상기 RF 기판의 하단에 배치되는 광대역 급전 선로; 및A broadband feed line formed as a microstrip line of a conductive metal and disposed at the lower end of the RF substrate to cause an impedance matching characteristic and an efficient radiation mode of the slot antenna; And
    상기 광대역 급전 선로 하단에서 생체 적합성 재료(biocompatible material)로 이루어져 이물질의 유입을 차단하는 하단 안테나 하우징을 포함하는 초순수 기반 절연체가 적용된 뇌삽입 안테나.A brain insertion antenna to which an ultrapure water-based insulator is applied, including a lower antenna housing made of a biocompatible material at the lower end of the broadband feed line to block the inflow of foreign substances.
  2. 제1항에 있어서,The method of claim 1,
    상기 절연층은 초저손실(extremely low lossy) 매질인 초순수 기반의 유전체로 이루어지는 것을 특징으로 하는 초순수 기반 절연체가 적용된 뇌삽입 안테나.The insulating layer is an ultra-pure water-based insulator applied to the brain implanted antenna, characterized in that made of an ultra-pure water-based dielectric, which is an extremely low lossy medium.
  3. 제1항에 있어서,The method of claim 1,
    상기 광대역 급전 선로는 임피던스(impedance)의 정합을 위해 선로의 단부에 2개의 L자형 개방 스터브(stub)가 좌우 대칭적으로 구비되는 것을 특징으로 하는 초순수 기반 절연체가 적용된 뇌삽입 안테나.The broadband feed line is an ultrapure water-based insulator-applied brain insertion antenna, characterized in that two L-shaped open stubs are symmetrically provided at the ends of the line to match impedance.
  4. 제3항에 있어서,The method of claim 3,
    상기 L자형 개방 스터브(stub)가 구비되는 광대역 급전 선로는 초광대역을 아우르는 안테나의 정합 특성을 토대로 MICS(Medical Implant Communication System) 및 MedRadio(Medical Device Radiocommunication Service)와, ISM(Industrial Scientific and Medical)과, UWB(Ultra Wide Band) 주파수 대역에서 전파를 방사하는 것을 특징으로 하는 초순수 기반 절연체가 적용된 뇌삽입 안테나.The broadband feed line provided with the L-shaped open stub includes MICS (Medical Implant Communication System) and MedRadio (Medical Device Radiocommunication Service), ISM (Industrial Scientific and Medical) based on the matching characteristics of the antenna covering the ultra-wide band. , Ultra-wide band (UWB), characterized in that for radiating radio waves in the frequency band, ultra-pure water-based insulator applied brain implanted antenna, characterized in that.
  5. 제1항에 있어서,The method of claim 1,
    상기 슬롯 안테나는 원형의 안테나로 형성되고, 내측에 직사각형의 슬롯(Slot)이 구비되는 것을 특징으로 하는 초순수 기반 절연체가 적용된 뇌삽입 안테나.The slot antenna is formed of a circular antenna, a brain insertion antenna to which an ultrapure water-based insulator is applied, characterized in that a rectangular slot is provided inside.
PCT/KR2020/007407 2019-11-19 2020-06-08 Brain-implanted antenna utilizing ultrapure water-based insulator WO2021100999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0148271 2019-11-19
KR1020190148271A KR102225125B1 (en) 2019-11-19 2019-11-19 Implanted antenna with ultrapure water based dielectric insulator

Publications (1)

Publication Number Publication Date
WO2021100999A1 true WO2021100999A1 (en) 2021-05-27

Family

ID=75147751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007407 WO2021100999A1 (en) 2019-11-19 2020-06-08 Brain-implanted antenna utilizing ultrapure water-based insulator

Country Status (2)

Country Link
KR (1) KR102225125B1 (en)
WO (1) WO2021100999A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200277530Y1 (en) * 2002-03-12 2002-06-05 주식회사 한국안테나 Microstripline-fed slot antenna
US20100109958A1 (en) * 2008-10-31 2010-05-06 Haubrich Gregory J High Dielectric Substrate Antenna For Implantable Miniaturized Wireless Communications and Method for Forming the Same
KR20110029906A (en) * 2009-09-16 2011-03-23 한국전자통신연구원 Implantable antenna
KR20140119613A (en) * 2013-03-29 2014-10-10 한양대학교 산학협력단 Relay Antenna Attached to Human Body for Human Body Communication
KR20180130226A (en) * 2017-05-29 2018-12-07 울산대학교 산학협력단 Multiple bio-telemetric device with ultra-wideband antena

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699130B1 (en) 2014-10-29 2017-01-23 울산대학교 산학협력단 Implantable antenna and Implantable device with the antenna, Method for Wireless Power Transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200277530Y1 (en) * 2002-03-12 2002-06-05 주식회사 한국안테나 Microstripline-fed slot antenna
US20100109958A1 (en) * 2008-10-31 2010-05-06 Haubrich Gregory J High Dielectric Substrate Antenna For Implantable Miniaturized Wireless Communications and Method for Forming the Same
KR20110029906A (en) * 2009-09-16 2011-03-23 한국전자통신연구원 Implantable antenna
KR20140119613A (en) * 2013-03-29 2014-10-10 한양대학교 산학협력단 Relay Antenna Attached to Human Body for Human Body Communication
KR20180130226A (en) * 2017-05-29 2018-12-07 울산대학교 산학협력단 Multiple bio-telemetric device with ultra-wideband antena

Also Published As

Publication number Publication date
KR102225125B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
US7392091B2 (en) Implanted antenna and radio communications link
Samanta et al. Dual-band circular polarized flexible implantable antenna using reactive impedance substrate
WO2013147470A1 (en) Human body wearable antenna having dual bandwidth
Nikolayev et al. Impact of tissue electromagnetic properties on radiation performance of in-body antennas
Hout et al. Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom
US20100151113A1 (en) Manufacture of a radiating structure for a medical implant
WO2010068846A2 (en) Wireless communication with a medical implant
JP2008539903A (en) Wirelessly coupled magnetic resonance coil
CN107810644A (en) Audiphone with modular antenna
US10658745B2 (en) Implantable medical device with multi-band loop antenna
KR101533155B1 (en) Antenna for Wearable Device
Maity et al. Silicon‐based technology: Circularly polarized microstrip patch antenna at ISM band with miniature structure using fractal geometry for biomedical application
TW200425657A (en) Connector unit
WO2021100999A1 (en) Brain-implanted antenna utilizing ultrapure water-based insulator
Shin et al. A deionized water-infilled dual-layer insulator-applied brain-implanted UWB antenna for wireless biotelemetry applications
Misek et al. New radiofrequency exposure system with real telecommunication signals
Iqbal et al. Wireless powering and telemetry of deep-body ingestible bioelectronic capsule
Ashok Kumar et al. Implanted CPW fed monopole antenna for biomedical applications
CN211088504U (en) Square-ring-shaped capacitive loading implantation type circularly polarized antenna with double-bending resonant ring
Silue et al. Small antenna for leads pacemakers
Khaleghi et al. Capacitively coupled electrode antenna: A practical solution for biomedical implants
KR102250961B1 (en) Dual band antenna
WO2020080794A1 (en) Implantable antenna for collecting biosignals
KR102597078B1 (en) Self-diplexing antenna and implantable device comprising the same
Uddin et al. Bio-implantable antenna at human head model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890885

Country of ref document: EP

Kind code of ref document: A1