WO2020080794A1 - Implantable antenna for collecting biosignals - Google Patents

Implantable antenna for collecting biosignals Download PDF

Info

Publication number
WO2020080794A1
WO2020080794A1 PCT/KR2019/013508 KR2019013508W WO2020080794A1 WO 2020080794 A1 WO2020080794 A1 WO 2020080794A1 KR 2019013508 W KR2019013508 W KR 2019013508W WO 2020080794 A1 WO2020080794 A1 WO 2020080794A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
antenna
length
radiating portion
radiating
Prior art date
Application number
PCT/KR2019/013508
Other languages
French (fr)
Korean (ko)
Inventor
정재영
비스와루프라나
심재연
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Publication of WO2020080794A1 publication Critical patent/WO2020080794A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • An embodiment relates to an implantable antenna, and more particularly, to an implantable antenna for collecting a biosignal that is compact and supports broadside radiation.
  • the brain is the most important body part that directly affects judgment, cognition, and behavior, and is still an unknown area due to the limitations of brain science and medical technology. It is judged to be high.
  • the existing implantable antenna has a large area or thickness of the antenna, so it is difficult to insert it in the brain, and is not designed to radiate in the direction of the head. ) It was not designed considering the insulator, and was not designed considering the brain insertion environment (brain material).
  • Patent Document 1 Publication No. 10-2013-0081821
  • Patent Document 2 Registered Patent Publication No. 10-1078421
  • Embodiments may provide an implantable antenna for collecting biosignals that are compact and capable of supporting broadside radiation.
  • An implantable antenna includes a substrate;
  • the meander type microstrip line having an asymmetric structure on both sides based on each of the first center line in the first axial direction and the second center line in the second axial direction perpendicular to the first axial direction disposed on the substrate.
  • the patch is formed of a microstrip line having an 'd' shape having an asymmetric structure, and includes a first radiating portion; A second radiating portion disposed at one side of the first radiating portion and one end connected to one end of the first radiating portion; A third radiating portion disposed on the other side of the first radiating portion and having one end connected to the other end of the first radiating portion; A first connection part connecting the first radiation part and the second radiation part; And a second connection part connecting the first radiation part and the third radiation part.
  • the separation distance between the first radiation portion and the second radiation portion may be smaller than the separation distance between the first radiation portion and the third radiation portion.
  • the length of the first radiation portion in the second axis direction may be smaller than the length of the second radiation portion and the third radiation portion in the second axis direction.
  • the length of the first radiating portion in the first axis direction may be smaller than the length of the second radiating portion in the first axis direction, and may be larger than the length of the third radiating portion in the first axis direction.
  • the feeding part may be formed at a predetermined point in the second radiation part.
  • the feeding part may be formed at a point between the first radiating part and the first connecting part.
  • the implantable antenna includes a first insulator disposed on the patch; And a second insulator disposed under the ground plane.
  • the resonant frequency of the antenna may be adjusted as the length in the first axis direction or the length in the second axis direction of each of the second radiation portion and the third radiation portion is adjusted.
  • the resonant frequency of the antenna may be adjusted as the position of the power supply is adjusted.
  • the meander microstrips having both sides have an asymmetric structure based on each of the first center line in the first axial direction and the second center line in the second axial direction perpendicular to the first axial direction, according to an embodiment
  • broadside emission may be supported.
  • the embodiment may be easy to combine with the RF Front-End due to the simple structure.
  • it may be applicable to a bio application field for implantation in various purposes and a next-generation medical application field, and localization of a core component of wireless communication may be possible.
  • FIGS. 1A to 1B are diagrams showing a structure of an implantable antenna according to an embodiment of the present invention.
  • FIG. 2 is a view showing the design parameters of the patch shown in FIG. 1B and an actual manufactured implantable antenna.
  • 3A to 3C are diagrams showing a multilayer tissue model and electrical characteristics of each tissue for simulating the performance of an implantable antenna according to an embodiment of the present invention.
  • 4A to 4B are diagrams showing a result of measuring a resonance frequency of an implantable antenna according to an embodiment of the present invention.
  • FIG. 5 is a view showing a radiation pattern of an implantable antenna according to an embodiment of the present invention.
  • 6A to 6D are diagrams showing a current distribution of an implantable antenna according to an embodiment of the present invention.
  • FIGS. 7A to 7D are diagrams illustrating reflection coefficients according to design parameters of an implantable antenna according to an embodiment of the present invention.
  • FIG. 8 is a view showing a reflection coefficient according to a feeding position of an implantable antenna according to an embodiment of the present invention.
  • a singular form may also include a plural form unless specifically stated in the phrase, and is combined with A, B, C when described as “at least one (or more than one) of A and B, C”. It can contain one or more of all possible combinations.
  • first, second, A, B, (a), and (b) may be used.
  • a component when a component is described as being 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also to the component It may also include the case of 'connected', 'coupled' or 'connected' due to another component between the other components.
  • the upper (upper) or lower (lower) when described as being formed or disposed in the “upper (upper) or lower (lower)” of each component, the upper (upper) or lower (lower) is one as well as when the two components are in direct contact with each other. It also includes a case in which another component described above is formed or disposed between two components.
  • up (up) or down (down) when expressed as “up (up) or down (down)”, it may include the meaning of the downward direction as well as the upward direction based on one component.
  • the micro-sized microstructure having both sides having an asymmetric structure based on each of the first center line in the first axial direction and the second center line in the second axial direction perpendicular to the first axial direction in the embodiment
  • a new antenna structure is proposed, which is formed in a strip line.
  • FIGS. 1A to 1B are diagrams showing a structure of an implantable antenna according to an embodiment of the present invention.
  • the implantable antenna is installed inside the human body can measure a biological signal, in particular, a brain signal, the first insulator 100, patch (patch) 200, It may include a power supply unit 200a, a substrate 300, a ground plane 400, and a second insulator 500.
  • the implantable antenna may be formed in a size suitable for living body transplantation, for example, 10 mm ⁇ 10 mm ⁇ 0.5 mm suitable for brain transplantation.
  • the patch 200 may be formed on the substrate 300 and may be formed as a meander type microstip line having an asymmetric structure. Referring to FIG. 1B, the patch 200 is formed in an 'd' shape, and both sides are formed in an asymmetric structure based on each of the first center line L1 in the first axis direction and the second center line L2 in the second axis direction. You can.
  • a power supply unit 200a for feeding power from the electronic device may be formed in the patch 200.
  • the power supply unit 200a may be formed to be located at any point in the center of the radiation region between the two sides of the radiation region having the largest magnitude of the current in the patch 200.
  • the power supply unit 200a must be impedance-matched with the coaxial cable 600.
  • the ground surface 400 may be disposed under the substrate 300.
  • the first insulator 100 may be disposed on the top of the patch 200, and the second insulator 500 may be disposed on the bottom of the ground plane 400.
  • the thickness of the first insulator 100 and the thickness of the second insulator 500 may be the same.
  • the substrate 300, the first insulator 100, and the second insulator 500 may be formed of the same material.
  • the coaxial cable 600 is extended from the wireless electronic device and connected to the power supply unit 200a formed in the patch 200 through the ground plane 400 and the substrate 300 in turn, and can perform power supply to the patch 200. have.
  • FIG. 2 is a view showing the design parameters of the patch shown in FIG. 1B and an actual manufactured implantable antenna.
  • the patch 200 has a 'd' shape, the first radiating portion 210, the second radiating portion 220, the third radiating portion 230 , It may include a first connection portion 240, the second connection portion 250.
  • the total size of the substrate 300 that is, the total length in the first axial direction may be L, and the total length in the second axial direction may be W, where L is 10 mm and W is equal to 10 mm.
  • the power supply unit 200a may be formed to be positioned between the first radiation unit and the first connection unit.
  • the first radiating part 210 may be located at the upper center of the substrate 300.
  • the first radiating portion 210 may be designed such that the length in the first axis direction is 2.5 mm and the length W2 in the second axis direction is 9 mm.
  • the second radiating portion 220 is spaced apart from one side of the first radiating portion 210, and one end may be connected to one end of the first radiating portion.
  • the second radiating portion 220 may be designed such that the length L1 in the first axis direction is 3 mm and the length W1 in the second axis direction is 9.4 mm.
  • the length W1 in the second axis direction of the second radiation unit 220 is designed to be longer than the length W2 in the second axis direction of the first radiation unit 210.
  • first connection part 240 may connect the first radiation part 210 and the second radiation part 220.
  • the separation distance g1 between the second radiating portion 220 and the first radiating portion 210 may be designed to be 0.5 mm.
  • the third radiating portion 230 is spaced apart from the other side of the first radiating portion 210, and one end may be connected to the other end of the first radiating portion 210.
  • the third radiating portion 230 may be designed such that the length L5 in the first axis direction is 2 mm and the length W3 in the second axis direction is 9.4 mm.
  • the length W3 in the second axis direction of the third radiation part 230 is designed to be longer than the length W2 in the second axis direction of the first radiation part 210.
  • connection part 250 may connect the first radiation part 210 and the third radiation part 230.
  • the separation distance g2 between the third radiating portion 230 and the first radiating portion 210 may be designed to be 1 mm.
  • the separation distance g1 between the first radiating portion 210 and the second radiating portion 220 is designed to be smaller than the separation distance g2 between the first radiating portion 210 and the third radiating portion 230.
  • the design parameters of the patch 200 are not limited to the above values and may be changed.
  • 3A to 3C are diagrams showing a multilayer tissue model and electrical characteristics of each tissue for simulating the performance of an implantable antenna according to an embodiment of the present invention.
  • the reliability of the antenna performance was insufficient because it is conventionally measured in a phantom having one electrical characteristic. Therefore, in the present invention, it is intended to reflect the performance and operating characteristics of the antenna measured using the brain-mimicking phantom of the 7th floor where the antenna is actually implanted.
  • a multi-layer tissue model for simulating the performance of an implantable antenna according to an embodiment of the present invention is skin, fat, bone, Dura, spinal fluid (CSF), gray matter (Grey Matter) ), White Matter.
  • the implanted antenna according to the embodiment is positioned between the bone and the Dura of the multilayered tissue model constructed as described above.
  • FIG. 3c it shows the relative dielectric constant, loss tangent, and thickness information of each brain tissue in a multi-layered tissue model actually implemented.
  • the electrical characteristics of each brain tissue vary depending on the frequency. Since the proposed antenna is an antenna for operating at 2.4 GHz, the characteristics of each brain tissue are set to 2.4 GHz.
  • 4A to 4B are diagrams showing a result of measuring a resonance frequency of an implantable antenna according to an embodiment of the present invention.
  • the simulated resonant frequency in free space using the proposed implanted antenna is 2.88 GHz, and the measured resonant frequency is 2.97 GHZ.
  • FIG. 4b it shows the result of comparing the operating band of the implantable antenna in the brain simulation phantom.
  • the simulated resonance frequency in the brain simulation phantom using the proposed implanted antenna is 2.465 GHz, and the measured resonance frequency is 2.475 GHZ.
  • FIG. 5 is a view showing a radiation pattern of an implantable antenna according to an embodiment of the present invention.
  • the implantable antenna according to an embodiment of the present invention shows a broadcast radiation pattern, here shows a 2D radiation pattern.
  • Implantable antennas are small and have the same (similar) radiation form as large patch antennas.
  • the maximum gain is -30 dBi, while the maximum gain in the broadside radiation pattern of the implanted antenna according to the embodiment of the present invention is -25 dBi.
  • 6A to 6D are diagrams showing an electric field distribution of an implantable antenna according to an embodiment of the present invention.
  • an implanted antenna shows an electric field distribution at an operating frequency of 2.465 GHz.
  • FIGS. 7A to 7D are diagrams illustrating reflection coefficients according to design parameters of an implantable antenna according to an embodiment of the present invention.
  • 7A to 7D reflection coefficients according to design parameters of an implantable antenna according to an embodiment of the present invention are illustrated.
  • 7A shows the reflection coefficient S 11 measured when the length W1 in the second axis of the second radiating part is different
  • FIG. 7B shows the reflection coefficient S 11 measured when the length W3 in the second axis direction of the third radiating part is different. Shows.
  • FIG. 7C shows the reflection coefficient S 11 measured when the length L1 in the first axis direction of the second radiation part varies
  • FIG. 7D shows the reflection coefficient S 11 measured when the length L5 in the first axis direction of the third radiation part varies. Shows.
  • the resonance frequency of the antenna may be adjusted as the lengths L1 and L5 in the first axis direction or the lengths W1 and W3 in the second axis direction of each of the second and third radiation parts are adjusted.
  • FIG. 8 is a view showing a reflection coefficient according to the position of the feeding portion of the implantable antenna according to an embodiment of the present invention.
  • FIG. 8 a reflection coefficient according to a position of a feeding part of an implantable antenna according to an embodiment of the present invention is illustrated. That is, it shows the reflection coefficient S 11 measured when the feeding portion of the implantable antenna moves in the first axial direction and is located at different points.
  • the resonant frequency of the antenna may be adjusted as the position of the power supply is adjusted.
  • the electrical characteristics that is, the reflection coefficient are changed according to the design parameters of the antenna.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

According to an embodiment, disclosed is an implantable antenna for collecting a biosignals. The implantable antenna comprises: a substrate; a patch disposed on the substrate and formed as a meandering microstrip line having a structure of which both sides are asymmetric with respect to each of a first center line in a first axial direction and a second center line in a second axial direction perpendicular to the first axial direction; a ground plane disposed below the substrate; and a power feeding part formed on the patch.

Description

생체 신호를 수집하기 위한 이식형 안테나Implantable antenna for collecting bio-signals
실시예는 이식형 안테나에 관한 것으로, 보다 상세하게는 소형이면서 브로드사이드 방사를 지원하도록 한 생체 신호를 수집하기 위한 이식형 안테나에 관한 것이다.An embodiment relates to an implantable antenna, and more particularly, to an implantable antenna for collecting a biosignal that is compact and supports broadside radiation.
고령 인구가 크게 증가하면서 향후 퇴행성 뇌질환 예컨대, 치매, 알츠하이머의 예방 및 치료 시작 규모는 지속적으로 성장할 것으로 전망되고 있다. 특히, 뇌는 판단, 인지, 행동 등에 직접적으로 영향을 주는 가장 중요한 신체 부위로, 아직까지는 뇌 과학 및 의료 기술의 한계로 인하여 미지의 영역으로 볼 수 있으며 인간의 건강한 생명 연장을 위해서는 뇌 연구의 중요성이 높아질 것으로 판단된다.As the elderly population increases significantly, the scale of prevention and treatment of degenerative brain diseases such as dementia and Alzheimer's is expected to continue to grow in the future. In particular, the brain is the most important body part that directly affects judgment, cognition, and behavior, and is still an unknown area due to the limitations of brain science and medical technology. It is judged to be high.
유럽과 북미를 중심으로 지난 2000년도 이전부터 주로 뇌, 심장, 청각, 시각 질환 치료 목적의 체내 이식용 전자장치 관련 연구 개발이 활발히 진행되어 왔다. 반면, 국내의 경우 체외 관련 전자장치의 연구 개발은 꾸준히 발전해 오고 있으나 상대적으로 체내 이식용 전자장치의 개발 기술은 미미한 단계에 있다.Since 2000, mainly in Europe and North America, research and development related to electronic devices for transplantation into the body have been actively conducted mainly for the treatment of brain, heart, hearing, and visual diseases. On the other hand, in Korea, research and development of electronic devices related to in vitro has been steadily developed, but the technology for developing electronic devices for implantation in the body is relatively insignificant.
최근 뇌질환 치료 혹은 뇌 기능 향상 등을 고려하여 안정적이고 효율적인 뇌 신호 정보 처리/전달 등을 목적으로 한 체내 이식용 전자장치의 핵심 구성 요소 대한 연구 개발이 진행되고 있는데, 이러한 전자장치의 핵식 구성 요소의 하나로 인체 내부에 설치되는 이식형 안테나가 사용된다.Recently, research and development of core components of an electronic device for implantation in the body for the purpose of stable and efficient brain signal information processing / transmission in consideration of the treatment of brain disease or improvement of brain function, etc. are being conducted. As one of the implantable antenna that is installed inside the human body is used.
하지만, 기존의 이식형 안테나는 안테나의 면적 또는 두께가 커서 뇌 삽입에 무리가 있고, 머리 위의 방향으로 방사하도록 설계되고 있지 않아 뇌 이식에 적합하지 않을 뿐 아니라, 안테나를 감싸고 있는 생체 적합(biocompatible) 절연체까지 고려하여 설계되지 않았고, 뇌 삽입 환경(뇌 물질)을 고려하여 설계되지 않았다.However, the existing implantable antenna has a large area or thickness of the antenna, so it is difficult to insert it in the brain, and is not designed to radiate in the direction of the head. ) It was not designed considering the insulator, and was not designed considering the brain insertion environment (brain material).
[선행기술문헌][Advanced technical literature]
[특허문헌][Patent Document]
(특허문헌 1) 공개특허공보 제10-2013-0081821호(Patent Document 1) Publication No. 10-2013-0081821
(특허문헌 2) 등록특허공보 제10-1078421호(Patent Document 2) Registered Patent Publication No. 10-1078421
실시예는, 소형이면서 브로드사이드 방사를 지원하도록 한 생체 신호를 수집하기 위한 이식형 안테나를 제공할 수 있다.Embodiments may provide an implantable antenna for collecting biosignals that are compact and capable of supporting broadside radiation.
본 발명의 일 실시예에 따른 이식형 안테나는 기판; 상기 기판의 상부에 배치되고, 제1 축 방향의 제1 중심선과 상기 제1 축 방향과 수직인 제2 축 방향의 제2 중심선 각각을 기준으로 양측이 비대칭 구조를 갖는 미앤더 형태의 마이크로스트립 라인으로 형성된 패치; 상기 기판의 하부에 배치되는 접지면; 및 상기 패치에 형성된 급전부를 포함할 수 있다.An implantable antenna according to an embodiment of the present invention includes a substrate; The meander type microstrip line having an asymmetric structure on both sides based on each of the first center line in the first axial direction and the second center line in the second axial direction perpendicular to the first axial direction disposed on the substrate. Patch formed of; A ground plane disposed under the substrate; And a feeding part formed in the patch.
상기 패치는, 비대칭 구조를 갖는 'ㄹ'자 형태의 마이크로스트립 라인으로 형성되고, 제1 방사부; 상기 제1 방사부의 일측에 이격 배치되고, 일단이 상기 제1 방사부의 일단과 연결되는 제2 방사부; 상기 제1 방사부의 타측에 이격 배치되고, 일단이 상기 제1 방사부의 타단과 연결되는 제3 방사부; 상기 제1 방사부와 상기 제2 방사부를 연결하는 제1 연결부; 및 상기 제1 방사부와 상기 제3 방사부를 연결하는 제2 연결부를 포함할 수 있다.The patch is formed of a microstrip line having an 'd' shape having an asymmetric structure, and includes a first radiating portion; A second radiating portion disposed at one side of the first radiating portion and one end connected to one end of the first radiating portion; A third radiating portion disposed on the other side of the first radiating portion and having one end connected to the other end of the first radiating portion; A first connection part connecting the first radiation part and the second radiation part; And a second connection part connecting the first radiation part and the third radiation part.
상기 제1 방사부와 상기 제2 방사부 사이의 이격 거리는 상기 제1 방사부와 제3 방사부 사이의 이격 거리보다 작을 수 있다.The separation distance between the first radiation portion and the second radiation portion may be smaller than the separation distance between the first radiation portion and the third radiation portion.
상기 제1 방사부의 제2축 방향의 길이는 상기 제2 방사부와 상기 제3 방사부의 제2 축 방향의 길이보다 작을 수 있다.The length of the first radiation portion in the second axis direction may be smaller than the length of the second radiation portion and the third radiation portion in the second axis direction.
상기 제1 방사부의 제1축 방향의 길이는 상기 제2 방사부의 제1축 방향의 길이보다 작고, 상기 제3 방사부의 제1축 방향의 길이보다 클 수 있다.The length of the first radiating portion in the first axis direction may be smaller than the length of the second radiating portion in the first axis direction, and may be larger than the length of the third radiating portion in the first axis direction.
상기 급전부는 상기 제2 방사부 내 소정의 지점에 형성될 수 있다.The feeding part may be formed at a predetermined point in the second radiation part.
상기 급전부는 상기 제1 방사부와 상기 제1 연결부 사이의 지점에 형성될 수 있다.The feeding part may be formed at a point between the first radiating part and the first connecting part.
상기 이식형 안테나는 상기 패치의 상부에 배치되는 제1 절연체; 및 상기 접지면의 하부에 배치되는 제2 절연체를 더 포함할 수 있다.The implantable antenna includes a first insulator disposed on the patch; And a second insulator disposed under the ground plane.
상기 제2 방사부와 상기 제3 방사부 각각의 상기 제1축 방향의 길이 또는 상기 제2축 방향의 길이가 조정됨에 따라 안테나의 공진 주파수가 조정될 수 있다.The resonant frequency of the antenna may be adjusted as the length in the first axis direction or the length in the second axis direction of each of the second radiation portion and the third radiation portion is adjusted.
상기 급전부의 위치가 조정됨에 따라 안테나의 공진 주파수가 조정될 수 있다.The resonant frequency of the antenna may be adjusted as the position of the power supply is adjusted.
실시예에 따르면, 기판의 상부에 배치되고, 제1 축 방향의 제1 중심선과 제1 축 방향과 수직인 제2 축 방향의 제2 중심선 각각을 기준으로 양측이 비대칭 구조를 갖는 미앤더 마이크로스트립 라인으로 형성하도록 함으로써, 생체 삽입에 적합한 간단한 구조의 소형 크기로 제작할 수 있다.According to an embodiment, the meander microstrips having both sides have an asymmetric structure based on each of the first center line in the first axial direction and the second center line in the second axial direction perpendicular to the first axial direction, according to an embodiment By forming in a line, it can be produced in a compact size with a simple structure suitable for bio-insertion.
실시예에 따르면, 브로드사이드 방사를 지원할 수 있다.According to an embodiment, broadside emission may be supported.
실시예에 따르면, 간단한 구조로 인해 RF Front-End와의 결합이 용이할 수 있다.According to the embodiment, it may be easy to combine with the RF Front-End due to the simple structure.
실시예에 따르면, 다양한 목적의 체내 이식용 바이오 응용 분야 및 차세대 의료 응용 분야에 적용이 가능할 수 있고, 무선 통신 핵심 부품의 국산화가 가능할 수 있다.According to an embodiment, it may be applicable to a bio application field for implantation in various purposes and a next-generation medical application field, and localization of a core component of wireless communication may be possible.
도 1a 내지 도 1b는 본 발명의 일 실시예에 따른 이식형 안테나의 구조를 나타내는 도면이다.1A to 1B are diagrams showing a structure of an implantable antenna according to an embodiment of the present invention.
도 2는 도 1b에 도시된 패치의 설계 변수와 실제 제작된 이식형 안테나를 나타내는 도면이다.FIG. 2 is a view showing the design parameters of the patch shown in FIG. 1B and an actual manufactured implantable antenna.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 이식형 안테나의 성능을 시뮬레이션하기 위한 다층 조직 모델과 각 조직의 전기적 특성을 보여주는 도면이다.3A to 3C are diagrams showing a multilayer tissue model and electrical characteristics of each tissue for simulating the performance of an implantable antenna according to an embodiment of the present invention.
도 4a 내지 도 4b는 본 발명의 일 실시예에 따른 이식형 안테나의 공진 주파수를 측정한 결과를 보여주는 도면이다.4A to 4B are diagrams showing a result of measuring a resonance frequency of an implantable antenna according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 이식형 안테나의 방사 패턴을 보여주는 도면이다.5 is a view showing a radiation pattern of an implantable antenna according to an embodiment of the present invention.
도 6a 내지 도 6d는 본 발명의 일 실시예에 따른 이식형 안테나의 전류 분포를 보여주는 도면이다.6A to 6D are diagrams showing a current distribution of an implantable antenna according to an embodiment of the present invention.
도 7a 내지 도 7d는 본 발명의 일 실시예에 따른 이식형 안테나의 설계 변수에 따른 반사 계수를 보여주는 도면이다.7A to 7D are diagrams illustrating reflection coefficients according to design parameters of an implantable antenna according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 이식형 안테나의 급전 위치에 따른 반사 계수를 보여주는 도면이다.8 is a view showing a reflection coefficient according to a feeding position of an implantable antenna according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.However, the technical spirit of the present invention is not limited to some embodiments described, but may be implemented in various different forms, and within the scope of the technical spirit of the present invention, one or more of its components between embodiments may be selectively selected. It can be used by bonding and substitution.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in the embodiments of the present invention, unless clearly defined and specifically described, can be generally understood by those skilled in the art to which the present invention pertains. It can be interpreted as a meaning, and terms that are commonly used, such as predefined terms, may be interpreted by considering the contextual meaning of the related technology.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.In addition, the terms used in the embodiments of the present invention are for describing the embodiments and are not intended to limit the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.In the present specification, a singular form may also include a plural form unless specifically stated in the phrase, and is combined with A, B, C when described as “at least one (or more than one) of A and B, C”. It can contain one or more of all possible combinations.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.In addition, in describing the components of the embodiments of the present invention, terms such as first, second, A, B, (a), and (b) may be used.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.These terms are only for distinguishing the component from other components, and the term is not limited to the nature, order, or order of the component.
그리고, 어떤 구성 요소가 다른 구성요소에 ‘연결’, ‘결합’ 또는 ‘접속’된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 ‘연결’, ‘결합’ 또는 ‘접속’ 되는 경우도 포함할 수 있다.And, when a component is described as being 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also to the component It may also include the case of 'connected', 'coupled' or 'connected' due to another component between the other components.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In addition, when described as being formed or disposed in the “upper (upper) or lower (lower)” of each component, the upper (upper) or lower (lower) is one as well as when the two components are in direct contact with each other. It also includes a case in which another component described above is formed or disposed between two components. In addition, when expressed as “up (up) or down (down)”, it may include the meaning of the downward direction as well as the upward direction based on one component.
실시예에서는, 기판의 상부에 배치되고, 제1 축 방향의 제1 중심선과 제1 축 방향과 수직인 제2 축 방향의 제2 중심선 각각을 기준으로 양측이 비대칭 구조를 갖는 미앤더 형태의 마이크로스트립 라인으로 형성하도록 한, 새로운 안테나 구조를 제안한다.In an exemplary embodiment, the micro-sized microstructure having both sides having an asymmetric structure based on each of the first center line in the first axial direction and the second center line in the second axial direction perpendicular to the first axial direction in the embodiment A new antenna structure is proposed, which is formed in a strip line.
도 1a 내지 도 1b는 본 발명의 일 실시예에 따른 이식형 안테나의 구조를 나타내는 도면이다.1A to 1B are diagrams showing a structure of an implantable antenna according to an embodiment of the present invention.
도 1a를 참조하면, 본 발명의 일 실시예에 따른 이식형 안테나는 인체 내부에 설치되어 생체 신호 특히, 뇌 신호를 측정할 수 있고, 제1 절연체(100), 패치(patch)(200), 급전부(200a), 기판(300), 접지면(ground plane)(400), 제2 절연체(500)를 포함할 수 있다.Referring to Figure 1a, the implantable antenna according to an embodiment of the present invention is installed inside the human body can measure a biological signal, in particular, a brain signal, the first insulator 100, patch (patch) 200, It may include a power supply unit 200a, a substrate 300, a ground plane 400, and a second insulator 500.
이러한 이식형 안테나는 생체 이식에 적합한 크기로 형성될 수 있는데, 예컨대, 뇌 이식에 적합한 10mm×10mm×0.5mm의 크기로 형성될 수 있다.The implantable antenna may be formed in a size suitable for living body transplantation, for example, 10 mm × 10 mm × 0.5 mm suitable for brain transplantation.
패치(200)는 기판(300)의 상부에 형성될 수 있고, 비대칭 구조를 갖는 미앤더 형태의(meander type) 마이크로스트립 라인(microstip line)으로 형성될 수 있다. 도 1b를 참조하면, 패치(200)는 'ㄹ'자 형태로 형성되되, 제1축 방향의 제1 중심선 L1과 제2축 방향의 제2 중심선 L2 각각을 기준으로 양측이 비대칭 구조로 형성될 수 있다.The patch 200 may be formed on the substrate 300 and may be formed as a meander type microstip line having an asymmetric structure. Referring to FIG. 1B, the patch 200 is formed in an 'd' shape, and both sides are formed in an asymmetric structure based on each of the first center line L1 in the first axis direction and the second center line L2 in the second axis direction. You can.
또한 패치(200)에는 전자 장치로부터의 급전을 위한 급전부(200a)가 형성될 수 있다. 이때, 급전부(200a)는 패치(200) 내 전류의 크기가 가장 큰 양측 방사 영역 사이 즉, 중앙의 방사 영역 내의 임의의 지점에 위치하도록 형성될 수 있다. 또한, 급전부(200a)는 동축 케이블(600)과 임피던스 매칭(impedance matching) 되어야 한다.In addition, a power supply unit 200a for feeding power from the electronic device may be formed in the patch 200. At this time, the power supply unit 200a may be formed to be located at any point in the center of the radiation region between the two sides of the radiation region having the largest magnitude of the current in the patch 200. In addition, the power supply unit 200a must be impedance-matched with the coaxial cable 600.
접지면(400)은 기판(300)의 하부에 배치될 수 있다.The ground surface 400 may be disposed under the substrate 300.
제1 절연체(100)는 패치(200)의 상부에 배치되고, 제2 절연체(500)는 접지면(400)의 하부에 배치될 수 있다. 제1 절연체(100)의 두께와 제2 절연체(500)의 두께는 동일하게 형성될 수 있다.The first insulator 100 may be disposed on the top of the patch 200, and the second insulator 500 may be disposed on the bottom of the ground plane 400. The thickness of the first insulator 100 and the thickness of the second insulator 500 may be the same.
이때, 기판(300), 제1 절연체(100), 제2 절연체(500)는 동일한 물질로 형성될 수 있다. 예컨대, εr=3.5이고 tanδ = 0.0018인 Taconic RF-35가 사용될 수 있다.At this time, the substrate 300, the first insulator 100, and the second insulator 500 may be formed of the same material. For example, Taconic RF-35 with ε r = 3.5 and tanδ = 0.0018 can be used.
동축 케이블(600)은 무선 전자장치로부터 연장되어 접지면(400)과 기판(300)을 차례로 거쳐 패치(200)에 형성된 급전부(200a)에 접속되고, 패치(200)에 급전을 수행할 수 있다.The coaxial cable 600 is extended from the wireless electronic device and connected to the power supply unit 200a formed in the patch 200 through the ground plane 400 and the substrate 300 in turn, and can perform power supply to the patch 200. have.
도 2는 도 1b에 도시된 패치의 설계 변수와 실제 제작된 이식형 안테나를 나타내는 도면이다.FIG. 2 is a view showing the design parameters of the patch shown in FIG. 1B and an actual manufactured implantable antenna.
도 2를 참조하면, 본 발명의 일 실시예에 따른 패치(200)는 'ㄹ'자 형상을 갖고, 제1 방사부(210), 제2 방사부(220), 제3 방사부(230), 제1 연결부(240), 제2 연결부(250)를 포함할 수 있다.2, the patch 200 according to an embodiment of the present invention has a 'd' shape, the first radiating portion 210, the second radiating portion 220, the third radiating portion 230 , It may include a first connection portion 240, the second connection portion 250.
이러한 기판(300)의 전체 크기 즉, 제1 축 방향의 전체 길이는 L이고, 제2 축 방향의 전체 길이는 W일 수 있는데, 여기서 L은 10mm이고, W는 10mm로 동일하다.The total size of the substrate 300, that is, the total length in the first axial direction may be L, and the total length in the second axial direction may be W, where L is 10 mm and W is equal to 10 mm.
여기서 급전부(200a)는 제1 방사부와 제1 연결부 사이에 위치하도록 형성될 수 있다.Here, the power supply unit 200a may be formed to be positioned between the first radiation unit and the first connection unit.
제1 방사부(210)는 기판(300)의 상부 중심부에 위치할 수 있다. 예컨대, 제1 방사부(210)는 제1축 방향의 길이는 2.5mm이고 제2축 방향의 길이 W2는 9mm로 설계될 수 있다.The first radiating part 210 may be located at the upper center of the substrate 300. For example, the first radiating portion 210 may be designed such that the length in the first axis direction is 2.5 mm and the length W2 in the second axis direction is 9 mm.
제2 방사부(220)는 제1 방사부(210)의 일측에 이격 배치되고, 일단이 제1 방사부의 일단과 연결될 수 있다. 예컨대, 제2 방사부(220)는 제1 축 방향의 길이 L1은 3mm이고 제2축 방향의 길이 W1은 9.4mm로 설계될 수 있다. 이때, 제2 방사부(220)의 제2축 방향의 길이 W1은 제1 방사부(210)의 제2축 방향의 길이 W2보다 길게 설계된다.The second radiating portion 220 is spaced apart from one side of the first radiating portion 210, and one end may be connected to one end of the first radiating portion. For example, the second radiating portion 220 may be designed such that the length L1 in the first axis direction is 3 mm and the length W1 in the second axis direction is 9.4 mm. At this time, the length W1 in the second axis direction of the second radiation unit 220 is designed to be longer than the length W2 in the second axis direction of the first radiation unit 210.
또한, 제1 연결부(240)는 제1 방사부(210)와 제2 방사부(220)를 연결할 수 있다.Also, the first connection part 240 may connect the first radiation part 210 and the second radiation part 220.
또한 제2 방사부(220)와 제1 방사부(210) 사이의 이격 거리 g1은 0.5mm로 설계될 수 있다.In addition, the separation distance g1 between the second radiating portion 220 and the first radiating portion 210 may be designed to be 0.5 mm.
제3 방사부(230)는 제1 방사부(210)의 타측에 이격 배치되고, 일단이 제1 방사부(210)의 타단과 연결될 수 있다. 예컨대, 제3 방사부(230)는 제1 축 방향의 길이 L5은 2mm이고 제2축 방향의 길이 W3은 9.4mm로 설계될 수 있다. 이때, 제3 방사부(230)의 제2축 방향의 길이 W3은 제1 방사부(210)의 제2축 방향의 길이 W2보다 길게 설계된다.The third radiating portion 230 is spaced apart from the other side of the first radiating portion 210, and one end may be connected to the other end of the first radiating portion 210. For example, the third radiating portion 230 may be designed such that the length L5 in the first axis direction is 2 mm and the length W3 in the second axis direction is 9.4 mm. At this time, the length W3 in the second axis direction of the third radiation part 230 is designed to be longer than the length W2 in the second axis direction of the first radiation part 210.
또한, 제2 연결부(250)는 제1 방사부(210)와 제3 방사부(230)를 연결할 수 있다.In addition, the second connection part 250 may connect the first radiation part 210 and the third radiation part 230.
또한 제3 방사부(230)와 제1 방사부(210) 사이의 이격 거리 g2은 1mm로 설계될 수 있다. 이때, 제1 방사부(210)와 제2 방사부(220) 사이의 이격 거리 g1는 제1 방사부(210)와 제3 방사부(230) 사이의 이격 거리 g2보다 작게 설계된다.In addition, the separation distance g2 between the third radiating portion 230 and the first radiating portion 210 may be designed to be 1 mm. At this time, the separation distance g1 between the first radiating portion 210 and the second radiating portion 220 is designed to be smaller than the separation distance g2 between the first radiating portion 210 and the third radiating portion 230.
실시예에 따른 설계 변수는, L=10mm, W=10mm, L1=3mm, L2=6mm, L3=9mm, L4=5.5mm, L5=2mm, W1=9.4mm, W2=9mm, W3=9.4mm, g1=0.5mm, g2=1mm로 설정될 수 있다.The design parameters according to the embodiment are L = 10mm, W = 10mm, L1 = 3mm, L2 = 6mm, L3 = 9mm, L4 = 5.5mm, L5 = 2mm, W1 = 9.4mm, W2 = 9mm, W3 = 9.4mm , g1 = 0.5mm, g2 = 1mm.
이러한 패치(200)의 설계 변수들은 상기 수치에 한정되지 않고 변경될 수 있다.The design parameters of the patch 200 are not limited to the above values and may be changed.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 이식형 안테나의 성능을 시뮬레이션하기 위한 다층 조직 모델과 각 조직의 전기적 특성을 보여주는 도면이다.3A to 3C are diagrams showing a multilayer tissue model and electrical characteristics of each tissue for simulating the performance of an implantable antenna according to an embodiment of the present invention.
도 3a와 도 3b를 참조하면, 기존에는 하나의 전기적 특성을 갖는 팬텀 내에서 측정하기 때문에 안테나 성능에 대한 신뢰도가 부족하였다. 따라서 본 발명에서는 실제로 안테나가 이식되는 7층의 뇌 모사 팬텀을 이용하여 측정된 안테나의 성능 및 동작 특성을 반영하고자 한다.Referring to Figures 3a and 3b, the reliability of the antenna performance was insufficient because it is conventionally measured in a phantom having one electrical characteristic. Therefore, in the present invention, it is intended to reflect the performance and operating characteristics of the antenna measured using the brain-mimicking phantom of the 7th floor where the antenna is actually implanted.
이를 위해, 본 발명의 일 실시예에 따른 이식형 안테나의 성능을 시뮬레이션하기 위한 다층 조직 모델은 피부(skin), 지방(fat), 뼈(bone), Dura, 척수액(CSF), 회백질(Grey Matter), 백질(White Matter)로 구현할 수 있다. 이렇게 구성된 다층 조직 모델의 뼈와 Dura 사이에 실시예에 따른 이식형 안테나가 위치한다.To this end, a multi-layer tissue model for simulating the performance of an implantable antenna according to an embodiment of the present invention is skin, fat, bone, Dura, spinal fluid (CSF), gray matter (Grey Matter) ), White Matter. The implanted antenna according to the embodiment is positioned between the bone and the Dura of the multilayered tissue model constructed as described above.
도 3c를 참조하면, 실제로 구현된 다층 조직 모델의 각 뇌 조직의 비유전율, 손실탄젠트, 두께 정보를 보여준다. 각 뇌 조직의 전기적 특성은 주파수에 따라 달라지는데, 제안하는 안테나가 2.4GHz에서 동작하기 위한 안테나이기 때문에 각 뇌 조직들의 특성은 2.4GHz의 특성으로 설정된다.Referring to Figure 3c, it shows the relative dielectric constant, loss tangent, and thickness information of each brain tissue in a multi-layered tissue model actually implemented. The electrical characteristics of each brain tissue vary depending on the frequency. Since the proposed antenna is an antenna for operating at 2.4 GHz, the characteristics of each brain tissue are set to 2.4 GHz.
도 4a 내지 도 4b는 본 발명의 일 실시예에 따른 이식형 안테나의 공진 주파수를 측정한 결과를 보여주는 도면이다.4A to 4B are diagrams showing a result of measuring a resonance frequency of an implantable antenna according to an embodiment of the present invention.
도 4a를 참조하면, 자유 공간에서의 이식형 안테나의 동작 대역을 비교한 결과를 보여준다. 제안한 이식형 안테나를 이용한 자유 공간에서의 시뮬레이션한 공진 주파수(resonant frequency)는 2.88GHz이고, 측정한 공진 주파수는 2.97GHZ이다.4A shows a result of comparing the operating bands of the implanted antenna in free space. The simulated resonant frequency in free space using the proposed implanted antenna is 2.88 GHz, and the measured resonant frequency is 2.97 GHZ.
도 4b를 참조하면, 뇌 모사 팬텀 내에서의 이식형 안테나의 동작 대역을 비교한 결과를 보여준다. 제안한 이식형 안테나를 이용한 뇌 모사 팬텀 내에서의 시뮬레이션한 공진 주파수는 2.465GHz이고, 측정한 공진 주파수는 2.475GHZ이다.Referring to Figure 4b, it shows the result of comparing the operating band of the implantable antenna in the brain simulation phantom. The simulated resonance frequency in the brain simulation phantom using the proposed implanted antenna is 2.465 GHz, and the measured resonance frequency is 2.475 GHZ.
도 5는 본 발명의 일 실시예에 따른 이식형 안테나의 방사 패턴을 보여주는 도면이다.5 is a view showing a radiation pattern of an implantable antenna according to an embodiment of the present invention.
도 5를 참조하면, 본 발명의 일 실시예에 따른 이식형 안테나는 브로드사이트 방사 패턴을 보이는데, 여기서는 2D 방사 패턴을 보여준다. 이식형 안테나는 소형이면서 큰 패치 안테나와 동일(유사)한 방사 형태를 갖는다.Referring to Figure 5, the implantable antenna according to an embodiment of the present invention shows a broadcast radiation pattern, here shows a 2D radiation pattern. Implantable antennas are small and have the same (similar) radiation form as large patch antennas.
이때, 기존의 이식형 안테나 구조의 경우 최대 이득이 -30 dBi인 반면, 본 발명의 실시예에 따른 이식형 안테나의 브로드사이드 방사 패턴에서의 최대 이득은 -25dBi이다.At this time, in the case of the conventional implanted antenna structure, the maximum gain is -30 dBi, while the maximum gain in the broadside radiation pattern of the implanted antenna according to the embodiment of the present invention is -25 dBi.
도 6a 내지 도 6d는 본 발명의 일 실시예에 따른 이식형 안테나의 전기장 분포를 보여주는 도면이다.6A to 6D are diagrams showing an electric field distribution of an implantable antenna according to an embodiment of the present invention.
도 6a 내지 도 6d를 참조하면, 본 발명의 일 실시예에 따른 이식형 안테나가 2.465GHz의 동작 주파수에서의 전기장 분포를 보여주고 있는데, 도 6a에서는 φ=0°인 경우, 도 6b에서는 φ=90°인 경우, 도 6c에서는 φ=180°인 경우, 도 6d에서는 φ=270°인 경우를 보여준다.6A to 6D, an implanted antenna according to an embodiment of the present invention shows an electric field distribution at an operating frequency of 2.465 GHz. In FIG. 6A, when φ = 0 °, in FIG. 6B, φ = In the case of 90 °, FIG. 6C shows the case of φ = 180 °, and in FIG. 6D the case of φ = 270 ° is shown.
도 7a 내지 도 7d는 본 발명의 일 실시예에 따른 이식형 안테나의 설계 변수에 따른 반사 계수를 보여주는 도면이다.7A to 7D are diagrams illustrating reflection coefficients according to design parameters of an implantable antenna according to an embodiment of the present invention.
도 7a 내지 도 7d를 참조하면, 본 발명의 일 실시예에 따른 이식형 안테나의 설계 변수에 따른 반사 계수를 보여주고 있다. 도 7a에서는 제2 방사부의 제2축 방향의 길이 W1가 달라질 때 측정된 반사 계수 S11를 보여주고, 도 7b에서는 제3 방사부의 제2축 방향의 길이 W3이 달라질 때 측정된 반사 계수 S11를 보여준다.7A to 7D, reflection coefficients according to design parameters of an implantable antenna according to an embodiment of the present invention are illustrated. 7A shows the reflection coefficient S 11 measured when the length W1 in the second axis of the second radiating part is different, and in FIG. 7B, the reflection coefficient S 11 measured when the length W3 in the second axis direction of the third radiating part is different. Shows.
도 7c에서는 제2 방사부의 제1축 방향의 길이 L1가 달라질 때 측정된 반사 계수 S11를 보여주고, 도 7d에서는 제3 방사부의 제1축 방향의 길이 L5가 달라질 때 측정된 반사 계수 S11를 보여준다.7C shows the reflection coefficient S 11 measured when the length L1 in the first axis direction of the second radiation part varies, and in FIG. 7D, the reflection coefficient S 11 measured when the length L5 in the first axis direction of the third radiation part varies. Shows.
이때, 제2 방사부와 제3 방사부 각각의 제1축 방향의 길이 L1, L5 또는 제2축 방향의 길이 W1, W3가 조정됨에 따라 안테나의 공진 주파수가 조정될 수 있다.At this time, the resonance frequency of the antenna may be adjusted as the lengths L1 and L5 in the first axis direction or the lengths W1 and W3 in the second axis direction of each of the second and third radiation parts are adjusted.
도 8은 본 발명의 일 실시예에 따른 이식형 안테나의 급전부의 위치에 따른 반사 계수를 보여주는 도면이다.8 is a view showing a reflection coefficient according to the position of the feeding portion of the implantable antenna according to an embodiment of the present invention.
도 8을 참조하면, 본 발명의 일 실시예에 따른 이식형 안테나의 급전부의 위치에 따른 반사 계수를 보여주고 있다. 즉, 이식형 안테나의 급전부가 제1 축 방향으로 이동하여 서로 다른 지점에 위치하였을 때 측정된 반사 계수 S11를 보여준다.Referring to FIG. 8, a reflection coefficient according to a position of a feeding part of an implantable antenna according to an embodiment of the present invention is illustrated. That is, it shows the reflection coefficient S 11 measured when the feeding portion of the implantable antenna moves in the first axial direction and is located at different points.
이때, 급전부의 위치가 조정됨에 따라 안테나의 공진 주파수가 조정될 수 있다.At this time, the resonant frequency of the antenna may be adjusted as the position of the power supply is adjusted.
이처럼 안테나의 설계 변수에 따라 전기적 특성 즉, 반사 계수가 달라짐을 알 수 있다.As described above, it can be seen that the electrical characteristics, that is, the reflection coefficient are changed according to the design parameters of the antenna.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to preferred embodiments of the present invention, those skilled in the art variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You can understand that you can.
[부호의 설명][Description of codes]
100: 제1 절연체100: first insulator
200: 패치200: patch
200a: 급전부200a: feeder
300: 기판300: substrate
400: 접지면400: ground plane
500: 제2 절연체500: second insulator
600: 동축 케이블600: coaxial cable

Claims (10)

  1. 기판;Board;
    상기 기판의 상부에 배치되고, 제1 축 방향의 제1 중심선과 상기 제1 축 방향과 수직인 제2 축 방향의 제2 중심선 각각을 기준으로 양측이 비대칭 구조를 갖는 미앤더 형태의 마이크로스트립 라인으로 형성된 패치;The meander type microstrip line having an asymmetric structure on both sides based on each of the first center line in the first axial direction and the second center line in the second axial direction perpendicular to the first axial direction disposed on the substrate. Patch formed of;
    상기 기판의 하부에 배치되는 접지면; 및A ground plane disposed under the substrate; And
    상기 패치에 형성된 급전부를 포함하는, 이식형 안테나.Implanted antenna, including a feed formed in the patch.
  2. 제1항에 있어서,According to claim 1,
    상기 패치는, 비대칭 구조를 갖는 'ㄹ'자 형태의 마이크로스트립 라인으로 형성되고,The patch is formed of a micro strip line in the shape of an 'd' having an asymmetric structure,
    제1 방사부;A first radiating part;
    상기 제1 방사부의 일측에 이격 배치되고, 일단이 상기 제1 방사부의 일단과 연결되는 제2 방사부;A second radiating portion disposed at one side of the first radiating portion and one end connected to one end of the first radiating portion;
    상기 제1 방사부의 타측에 이격 배치되고, 일단이 상기 제1 방사부의 타단과 연결되는 제3 방사부;A third radiating portion disposed on the other side of the first radiating portion and having one end connected to the other end of the first radiating portion;
    상기 제1 방사부와 상기 제2 방사부를 연결하는 제1 연결부; 및A first connection part connecting the first radiation part and the second radiation part; And
    상기 제1 방사부와 상기 제3 방사부를 연결하는 제2 연결부를 포함하는, 이식형 안테나.And a second connecting portion connecting the first radiating portion and the third radiating portion.
  3. 제2항에 있어서,According to claim 2,
    상기 제1 방사부와 상기 제2 방사부 사이의 이격 거리는 상기 제1 방사부와 제3 방사부 사이의 이격 거리보다 작은, 이식형 안테나.Implantable antenna, the separation distance between the first radiation portion and the second radiation portion is smaller than the separation distance between the first radiation portion and the third radiation portion.
  4. 제2항에 있어서,According to claim 2,
    상기 제1 방사부의 제2축 방향의 길이는,The length in the second axis direction of the first radiation portion,
    상기 제2 방사부와 상기 제3 방사부의 제2 축 방향의 길이보다 작은, 이식형 안테나.An implantable antenna smaller than the length of the second radiating portion and the third radiating portion in a second axial direction.
  5. 제2항에 있어서,According to claim 2,
    상기 제1 방사부의 제1축 방향의 길이는,The length of the first radiation portion in the first axis direction,
    상기 제2 방사부의 제1축 방향의 길이보다 작고, 상기 제3 방사부의 제1축 방향의 길이보다 큰, 이식형 안테나.An implantable antenna that is smaller than the length of the second radiation portion in the first axis direction and larger than the length of the third radiation portion in the first axis direction.
  6. 제2항에 있어서,According to claim 2,
    상기 급전부는, 상기 제2 방사부 내 소정의 지점에 형성되는, 이식형 안테나.The feeding portion is formed at a predetermined point in the second radiation portion, the implantable antenna.
  7. 제2항에 있어서,According to claim 2,
    상기 급전부는, 상기 제1 방사부와 상기 제1 연결부 사이의 지점에 형성되는, 이식형 안테나.The feeding portion is formed at a point between the first radiation portion and the first connection portion, the implantable antenna.
  8. 제1항에 있어서,According to claim 1,
    상기 패치의 상부에 배치되는 제1 절연체; 및A first insulator disposed on the patch; And
    상기 접지면의 하부에 배치되는 제2 절연체;를 더 포함하는, 이식형 안테나.And a second insulator disposed under the ground plane.
  9. 제2항에 있어서,According to claim 2,
    상기 제2 방사부와 상기 제3 방사부 각각의 상기 제1축 방향의 길이 또는 상기 제2축 방향의 길이가 조정됨에 따라 안테나의 공진 주파수가 조정되는, 이식형 안테나.Implanted antenna, the resonant frequency of the antenna is adjusted as the length of the first axis direction or the length of the second axis of each of the second radiation portion and the third radiation portion is adjusted.
  10. 제1항에 있어서,According to claim 1,
    상기 급전부의 위치가 조정됨에 따라 안테나의 공진 주파수가 조정되는, 이식형 안테나.Implanted antenna, the resonance frequency of the antenna is adjusted as the position of the power supply is adjusted.
PCT/KR2019/013508 2018-10-18 2019-10-15 Implantable antenna for collecting biosignals WO2020080794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180124483A KR102018176B1 (en) 2018-10-18 2018-10-18 Implantable antenna for collecting bio signal
KR10-2018-0124483 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020080794A1 true WO2020080794A1 (en) 2020-04-23

Family

ID=67950716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013508 WO2020080794A1 (en) 2018-10-18 2019-10-15 Implantable antenna for collecting biosignals

Country Status (2)

Country Link
KR (1) KR102018176B1 (en)
WO (1) WO2020080794A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018176B1 (en) * 2018-10-18 2019-09-04 서울과학기술대학교 산학협력단 Implantable antenna for collecting bio signal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051249A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Multi-layer miniature antenna for implantable medical devices and method for forming the same
KR20130096009A (en) * 2012-02-21 2013-08-29 주식회사 에이스테크놀로지 Multi band patch antenna
KR20140013278A (en) * 2012-07-23 2014-02-05 엘지이노텍 주식회사 Antenna apparatus
KR20160092827A (en) * 2015-01-28 2016-08-05 한국전자통신연구원 Interstitial antenna
KR102018176B1 (en) * 2018-10-18 2019-09-04 서울과학기술대학교 산학협력단 Implantable antenna for collecting bio signal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078421B1 (en) 2009-09-16 2011-10-31 시스레인 주식회사 Implantable antenna
KR20130081821A (en) 2012-01-10 2013-07-18 (주) 제이디 The medical implant antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051249A1 (en) * 2008-10-31 2010-05-06 Medtronic, Inc. Multi-layer miniature antenna for implantable medical devices and method for forming the same
KR20130096009A (en) * 2012-02-21 2013-08-29 주식회사 에이스테크놀로지 Multi band patch antenna
KR20140013278A (en) * 2012-07-23 2014-02-05 엘지이노텍 주식회사 Antenna apparatus
KR20160092827A (en) * 2015-01-28 2016-08-05 한국전자통신연구원 Interstitial antenna
KR102018176B1 (en) * 2018-10-18 2019-09-04 서울과학기술대학교 산학협력단 Implantable antenna for collecting bio signal

Also Published As

Publication number Publication date
KR102018176B1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
US8718787B2 (en) Wireless communication with a medical implant
US20110022121A1 (en) Antenna for behind-the-ear (bte) devices
US7602059B2 (en) Lead pin, circuit, semiconductor device, and method of forming lead pin
JP2018046567A (en) Communication device
WO2010076982A2 (en) Infinite wavelength antenna device
WO2017086633A1 (en) Multi-band antenna
KR20150015759A (en) Antenna device and electronic device with the same
WO2020080794A1 (en) Implantable antenna for collecting biosignals
WO2002089260A3 (en) Separable power delivery connector
CA2203405A1 (en) Impedance imaging devices and multi-element probe
US5663646A (en) Head antenna for nuclear magnetic resonance examinations
KR101466440B1 (en) Wearable antenna with dual band
WO2020256498A1 (en) Antenna device for measuring biometric information by using magnetic dipole resonance
US6683254B1 (en) Low loss cable coupler
US20040105245A1 (en) EKG wiring system
EP3627846A2 (en) Ear-worn electronic device incorporating chip antenna loading of antenna structure
JP5587892B2 (en) Further use of screw threads
US6947011B2 (en) Connector unit
US20200020466A1 (en) Combination of an electricity conducting element, such as bushing, and a connector cable
EP1617441A3 (en) Flexible flat cable and method of manufacturing the same
US6368147B1 (en) Zero insertion force percutaneous connector and flexible brain probe assembly
Frank et al. Miniaturized ultra-wideband antenna design for human implants
JP2008022935A (en) In-vivo instrument
EP1439606A4 (en) Dielectric antenna
WO2014178560A1 (en) Magnetic resonance imaging apparatus having monopole antenna structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874533

Country of ref document: EP

Kind code of ref document: A1