WO2021100888A1 - Heat dissipation module comprising heat dissipation layer comprising light-sintered metal-nano composite, and lighting device comprising same - Google Patents

Heat dissipation module comprising heat dissipation layer comprising light-sintered metal-nano composite, and lighting device comprising same Download PDF

Info

Publication number
WO2021100888A1
WO2021100888A1 PCT/KR2019/015772 KR2019015772W WO2021100888A1 WO 2021100888 A1 WO2021100888 A1 WO 2021100888A1 KR 2019015772 W KR2019015772 W KR 2019015772W WO 2021100888 A1 WO2021100888 A1 WO 2021100888A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
dissipation layer
lighting device
nano
Prior art date
Application number
PCT/KR2019/015772
Other languages
French (fr)
Korean (ko)
Inventor
김광석
최두영
한장우
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to PCT/KR2019/015772 priority Critical patent/WO2021100888A1/en
Publication of WO2021100888A1 publication Critical patent/WO2021100888A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present application relates to a heat dissipation module including a photo-sintered metal-nano composite heat dissipation layer, and a lighting device including the same, and in detail, excellent high thermal conductivity is implemented by including the photo-sintered metal-nano composite heat dissipation layer.
  • a heat dissipation module including a photo-sintered metal-nano composite heat dissipation layer
  • a lighting device including the same, and in detail, excellent high thermal conductivity is implemented by including the photo-sintered metal-nano composite heat dissipation layer.
  • lighting devices have been pursuing lighter, thinner, smaller, and multifunctional.
  • special LED lighting devices that implement various functions by generating a specific level of light spectrum using a high-power light source are attracting attention.
  • thermoelectric filler material such as a carbon material or a ceramic material and a polymer material are mixed.
  • thermoelectric filler material there is a problem in that it is difficult to uniformly disperse in a matrix made of a polymer material, and for this reason, there is a problem in that there is a limitation in sufficiently dissipating heat generated from electronic parts and devices.
  • the present application provides a heat dissipation module including a photo-sintered metal-nano composite heat dissipation layer and a lighting device including the same.
  • the present application relates to a heat dissipation module including a photo-sintered metal-nano composite heat dissipation layer. Since the heat dissipation module includes a heat dissipation layer having high thermal conductivity including a metal-carbon nanocomposite manufactured through a photo-sintering process using light energy, it may contribute to improving performance and securing productivity when applied to a product.
  • FIG. 1 is a cross-sectional view illustrating an exemplary heat dissipation module or lighting device according to the present application.
  • the heat dissipation module includes a heat source 100, a heat dissipation layer 200 for dissipating heat from the heat source, and a heat sink 300 provided on the heat dissipation layer.
  • the heat source is a device that generates heat, and the type of the heat source is not particularly limited because it may vary depending on the field to which the heat dissipation module is applied.
  • the heat dissipation layer functions to transfer heat generated from a heat source to a heat sink.
  • the heat sink is a device that discharges heat transferred from the heat dissipation layer to the outside.
  • the heat sink includes a heat sink attached to the heat sink to transmit (or absorb) heat, and a plurality of heat sink fins connected to the heat sink to emit heat to the outside.
  • the heat dissipation plate may be attached to the heat dissipation layer by fastening an adhesive or bolt.
  • the heat dissipation fin may dissipate more heat by increasing the area of the heat dissipation plate.
  • the heat dissipation layer includes a photo-sintered metal-nanocarbon composite, the content of nano-carbon in the composite is less than 3% by weight based on the total weight of the metal, and the thermal conductivity of the heat dissipation layer is 15 to 30w/mK.
  • the metal may be a metal filler, and a specific type thereof will be described later.
  • the thermal conductivity is measured using a known thermal conductivity measurement method such as a HotDisk method or a laser flash analysis (LFA) measurement method. According to the LFA measurement method, the thermal conductivity of the heat dissipation layer can be measured based on the ASTM E1461 standard with a netchwisa equipment (model name: LFA467) using an InSb sensor at room temperature.
  • heat conduction heat may be controlled within the above range.
  • the content of nano carbon in the composite may be less than 3% by weight, less than 2.8% by weight, less than 2.7% by weight, less than 2.5% by weight, less than 2.3% by weight, or less than 2.1% by weight.
  • the lower limit of the content is not particularly limited, but may be more than 0.1% by weight, more than 0.3% by weight, more than 0.5% by weight, more than 0.7% by weight, or more than 0.9% by weight.
  • the thermal conductivity of the heat dissipation layer may be 15 to 30w/mK, 17 to 30w/mK, or 20 to 30w/mK.
  • the thermal conductivity may be adjusted by the content of nano carbon. For example, as the nano-carbon content increases, the thermal conductivity tends to increase. However, when the nano-carbon content is 3% by weight or more, the thermal conductivity tends to decrease, which is due to partial agglomeration and partial sintering of the nano-carbon during the photo-sintering process.
  • partial sintering refers to a phenomenon in which nano-carbon interferes with sintering of metals in the periphery due to a high nano-carbon content during sintering. Means phenomenon.
  • the heat dissipation layer may be photo-sintered by applying a metal paste to one surface of a heat source, applying a nano-carbon paste onto the metal paste, and irradiating light toward the nano-carbon paste.
  • the heat dissipation layer manufactured through the photo-sintering process as described above may include a photo-sintered metal-nano-carbon composite.
  • thermal sintering rather than photo sintering, since the metal-nano-carbon composite is not formed with uniform physical properties, it may be difficult to implement the desired physical properties.
  • the metal paste may include a metal, a solvent, a polymer dispersant, and a binder.
  • the polymeric dispersant has a molecular weight of 10,000 to 360,000, and a viscosity of 1 to 100000 cP, specifically 1 to 50000 cP, 5 to 40000 cP or 5 to 30000 cP, 5 to 25000 cP, or 5 to 20000 cP.
  • the molecular weight of the polymer dispersant that can be used in the present invention is 10,000 to 360,000, for example, 11,000 to 200,000, 12,000 to 100,000, or 15,000 to 70,000. When the molecular weight is within the above range, excellent dispersibility and viscosity required to apply the solution composition to the substrate can be secured.
  • the viscosity of the metal paste is 1 to 50000 cP, 5 to 40000 cP or 5 to 30000 cP, 5 to 25000 cP, or 5 to 20000 cP.
  • the viscosity as well as the molecular weight of the polymeric dispersant is adjusted to the above range, the dispersibility of the particles and the conditions of the coating process can be satisfied.
  • the content of the polymer dispersant is, for example, 1 to 15% by weight, specifically 1 to 10% by weight, and 2 to 10% by weight based on the total weight of the solution composition.
  • the thermal conductivity of the heat dissipating layer it is necessary to control the content of the dispersant within the above range.
  • the kind of the polymer dispersant may be, for example, an amine polymer dispersant such as polyethylene imine and polyvinylpyrrolidone; Hydrocarbon-based polymer dispersants having a carboxylic acid group in a molecule such as polyacrylic acid and carboxymethylcellulose; And a polymer dispersant having a polar group such as a polyvinyl alcohol, a styrene-maleic acid copolymer, an olefin-maleic acid copolymer, or a copolymer having a polyethylene imine moiety and a polyethylene oxide moiety in one molecule.
  • an amine polymer dispersant such as polyethylene imine and polyvinylpyrrolidone
  • Hydrocarbon-based polymer dispersants having a carboxylic acid group in a molecule such as polyacrylic acid and carboxymethylcellulose
  • a polymer dispersant having a polar group such as a polyvinyl alcohol, a styrene-
  • the polymer dispersant may be a water-soluble polymer, specifically an amine-based polymer, particularly polyvinylpyrrolidone (PVP).
  • PVP polyvinylpyrrolidone
  • an aqueous solvent can be used, so environmental pollution can be minimized even when manufacturing a large-area heat dissipation layer.
  • the type of the binder is not particularly limited, but for example, a cellulose resin, a polyvinyl chloride resin, a polyvinyl alcohol resin, a polyvinylpyrrolidone resin, an acrylic resin, a vinyl acetate-acrylic acid. It is at least one selected from the group consisting of ester copolymer resins, butyral resins, alkyd resins, epoxy resins, phenol resins, rosin ester resins, polyester resins, and silicone resins.
  • the content of the binder is, for example, 1 to 50% by weight, specifically 3 to 40% by weight, and 5 to 30% by weight based on the total weight of the solution composition. If the content of the binder exceeds 30% by weight, there is a concern that it may not be completely dissolved in the solvent, and may aggregate over time, and if it is less than 1% by weight, there is a concern that the adhesive strength with the substrate may decrease.
  • the type of the solvent is not particularly limited, but, for example, water, hydrocarbon-based solvent, chlorinated hydrocarbon-based solvent, cyclic ether-based solvent, ketone-based solvent, alcohol, polyhydric alcohol-based solvent, acetate-based solvent, polyhydric alcohol It is at least one selected from the group consisting of an ether-based solvent or a terpene-based solvent.
  • the type of solvent may be appropriately selected depending on the polymeric binder and dispersant used, but in consideration of environmental factors, dispersion characteristics, and drying time, it is preferable to use a mixture of water and alcohol. Specifically, when considering wettability, it is preferable to use alcohol.
  • the alcohol is not particularly limited, but an alcohol having a linear alkyl group having 2 to 6 carbon atoms, for example, ethanol, propanol, or butanol, may be used. In consideration of the drying time, it is preferable to use ethanol with a low boiling point.
  • the weight ratio of water and alcohol may be mixed and used in a ratio of, for example, 1: 0.5 to 1.5, specifically 1: 0.7 to 1.3, and 1: 0.8 to 1.2.
  • the weight ratio of water and alcohol is controlled within the above range, the binder and the dispersant can be sufficiently dissolved and an appropriate viscosity can be maintained.
  • an organic solvent may be used in addition to water and alcohol.
  • the organic solvent is from the group consisting of terpineol, dihydroterpineol, ethylcarbitol, butylcarbitol, dihydroterpineol acetate, ethylcarbitol acetate, butylcarbitol acetate, or mixtures thereof. It may include one or more selected.
  • the nano carbon paste may include nano carbon, a solvent, a polymer dispersant, and a binder.
  • the solvent, polymer dispersant, and binder of the nano-carbon paste may have the same composition as the metal paste described above.
  • a photo-sintered composite and a heat dissipating layer having a desired thermal conductivity may be manufactured by appropriately designing the specific conditions of the photo-sintering process within a range to be described later.
  • the light sintering condition may include the type of light, the applied voltage (output voltage), the pulse width, the number of pulses (the number of repeated irradiation of light), the pulse interval (frequency), and the like.
  • the light may be white light applied from a xenon lamp, a voltage of 10 to 1500 V, a pulse number of 1 to 500 times, a pulse interval of 1 to 10 Hz, and a pulse width of 0.1 to 10 ms.
  • the total energy is determined by the output voltage, pulse width, pulse interval, and number of pulses.
  • the number of pulses may be appropriate, for example, 1 to 400 times, 1 to 350 times, 1 to 200 times, or 1 to 100 times.
  • the processing time may decrease due to an increase in average power applied per second.
  • the average power is determined by the output voltage, pulse width, and pulse interval.
  • evaporation of the solvent may occur from a pulse interval of 1 Hz or more, and if the pulse interval is less than 1 Hz, the bed temperature may rise rapidly, thereby causing physical deformation of the heat dissipation layer.
  • the appropriate voltage at which no physical deformation occurs is 10 to 1500V, 50 to 1500V, 100 to 1500V, 200 to 1300V, It may be in the range of 300 to 1200V or 300 to 1000V.
  • a suitable pulse width may be in the range of 0.1 to 10 ms, 0.5 to 8 ms, 0.9 to 5 ms, or 1 to 3 ms.
  • the heat dissipation layer may have porosity as a space between the aggregates is formed while adhesion between the metal-nanocarbon composites occurs during the photosintering process to form an aggregate (eg, cluster). Since the cluster formed by aggregation serves as a thermal path, thermal conductivity may be improved.
  • the heat dissipation layer may have a porosity of 1 to 15%, 2 to 15%, 3 to 15%, 4 to 15%, or 5 to 15%.
  • the size of the pores may be, for example, in the range of 1 to 100 nm.
  • a metal-nano-carbon composite may be formed if it proceeds for a long time.
  • the metal-nano-carbon nanocomposite formed by heat sintering promotes adhesion with other adjacent composites, thereby rapidly increasing the pore size to reach the above range. It is difficult to control.
  • the uniformity of heat transfer characteristics can be ensured higher than that of heat sintering.
  • the metal may be at least one selected from the group including silver, copper, nickel, tin, and gold, and preferably silver or copper.
  • Silver has high oxidation resistance, especially because of the high thermal conductivity of silver oxide, so it exhibits stable heat transfer characteristics, and copper is more economical than silver, a noble metal in terms of price, and is a native oxide layer formed on the surface of the composite material after photo-sintering. It can exhibit stable thermal conductivity.
  • the nano-carbon may be at least one selected from the group including carbon nanotubes (CNT), graphene, fullerene, and diamond, and preferably carbon nanotubes (CNT) or graphene.
  • the carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes. In the case of the carbon nanotubes or graphene, it has the advantage of being easy to manufacture as a paste.
  • the composite may have an average particle diameter of 15 to 1000 nm.
  • the average particle diameter can be measured using various known methods.
  • the heat dissipation layer may have a thickness of 0.1 to 5 ⁇ m.
  • the heat dissipation layer may have a first surface facing the heat source and a second surface opposite to the first surface, and adhesive strengths between the first surface and the second surface may be different.
  • the present application also relates to a lighting device. Specifically, it relates to a special lighting device that performs a special function.
  • a special lighting device performs a special function by generating a light spectrum of a specific wavelength using a high-power light source. If the heat generated from a light source that irradiates a specific wavelength is not sufficiently dissipated, a wavelength shift occurs. There may be difficulties in performing special functions. For example, pests are known to prefer light with a wavelength of 300 to 450 nm and hate light with a wavelength of 600 to 700 nm. Therefore, in order to combat pests, the light source must irradiate a wavelength of 600 to 700 nm. In this case, if heat dissipation is not sufficiently performed, the wavelengths in the above range are shifted to 700 nm or more, so that smooth pest control cannot be performed.
  • the lighting device includes a photo-sintered metal-carbon nanocomposite heat dissipation layer, excellent heat dissipation properties are implemented, and thus has an advantageous advantage when applied to a special lighting device that performs a special function as described above.
  • the lighting device includes a light source 100, a heat dissipation layer 200 for dissipating heat from the heat source, and a heat sink 300 provided on the heat dissipation layer.
  • the light source is a device that generates light, and may be, for example, an LED module having a high output rated voltage of 20W or more, 30W or more, 40W or more, or 50W or more, but is not limited thereto.
  • an LED module having a rated voltage of 50w or more may be used as the light source.
  • a wavelength shift and a heat sink temperature during operation of a light source can be controlled within a range to be described later.
  • a special function is improved when a special lighting device is applied, and even when used for a long time, the function can be maintained without modification.
  • the lighting device according to the present application may satisfy the following General Formula 1.
  • ⁇ P max is the first measured maximum intensity peak when exposed for 3,000 hours at 85°C and 85% relative humidity after measuring the wavelength of the maximum intensity peak (P max ) when the light source of the lighting device is operated. It represents the wavelength shift of (P max ).
  • the lighting device may have a ⁇ max value of 30 nm or less, 25 nm or less, 20 nm or less, 15 nm or less, 10 nm or less, 5 nm or less, 1 nm or less, or 0.1 nm or less according to the following General Formula 1.
  • the general formula 1 means that even when the light source is used for a long time, the change in wavelength shift of the maximum intensity peak is not large. Therefore, the lighting device satisfying the general formula 1 can stably emit light of the same wavelength continuously.
  • a special lighting device since a specific wavelength for a special function of a light source is implemented as a maximum intensity peak, when a lighting device that satisfies General Formula 1 is applied to a special lighting device, the special function can be maintained continuously.
  • the temperature of the heat sink may be maintained at 75°C or less.
  • the fact that the temperature of the heat sink is maintained within the above range suggests that the heat generated from the light source is effectively released.
  • the temperature of the heat sink is measured by measuring the temperature converged when the temperature of the bottom of the heat sink is heated for a sufficient time for 30 minutes or more with a thermocouple.
  • the heat dissipation module of the present application may have excellent thermal conductivity as a photo-sintered metal-nano composite heat dissipation layer is applied.
  • the lighting device of the present application since the lighting device of the present application has excellent thermal conductivity, there is no change in the wavelength shift of the light source, so when applied to a special lighting device, the maintenance of special functions is sustainable.
  • FIG. 1 is a cross-sectional view illustrating an exemplary heat dissipation module or lighting device according to the present application.
  • FIG. 4 is an optical spectrum evaluation graph of the lighting device according to Example 1.
  • FIG. 5 is an optical spectrum evaluation graph of the lighting device according to Example 1.
  • a metal paste (A) was prepared by mixing copper (Cu), ⁇ -terpineol (solvent), cellulose (binder), and polyvinylpyrrolidone (PVP, dispersant) in the following composition ratio.
  • Nanocarbon paste (B) was prepared by mixing carbon nanotubes (CNT), ⁇ -terpineol (solvent), cellulose (binder), and polyvinylpyrrolidone (PVP, dispersant) in the following composition ratio.
  • CNT carbon nanotubes
  • ⁇ -terpineol solvent
  • cellulose binder
  • PVP polyvinylpyrrolidone
  • the metal paste (A) and the nano-carbon paste (B) prepared in the above Preparation Example were sequentially applied on the heat source so that the content of the nano-carbon tube was 2% by weight based on the total weight of copper. Then, light was irradiated to the side of the nano carbon paste to photo-sinter to prepare a heat dissipating layer. Then, a heat sink was attached to the heat radiation layer by bolting to fabricate a heat radiation module. The light sintering was performed using white light applied from a xenon lamp, the applied voltage was 500V, the number of pulses was 30 times, the pulse width was 2.0ms, the pulse interval was 1Hz, and the sintering atmosphere was used as an atmospheric atmosphere.
  • the metal paste (A) and the nano carbon paste (B) prepared in Preparation Example were sequentially applied on a light source so that the content of the nano carbon tube was 2% by weight based on the total weight of copper.
  • a light source a light source of an optical sintering system composed of a 400mm xenon lamp from Heraeus and a HI-PULSE 45000 power supply from PSTEK was used.
  • light was irradiated to the nano carbon face side to lightly sinter to form a heat dissipating layer, which was bonded to a heat sink to manufacture a lighting device.
  • the light sintering was performed using white light applied from a xenon lamp, the applied voltage was 500V, the number of pulses was 30 times, the pulse width was 2.0ms, the pulse interval was 1Hz, and the sintering atmosphere was used as an atmospheric atmosphere.
  • a heat dissipation module and a lighting device were manufactured in the same manner as in Example 1, except that the metal paste (A) and the nano-carbon paste (B) prepared in Preparation Example were sequentially applied on a heat source, and an applied voltage of 300 V for light sintering was used. .
  • a heat dissipation module and a lighting device were manufactured in the same manner as in Example 1, except that the metal paste (A) and the nano-carbon paste (B) prepared in Preparation Example were sequentially applied on a heat source, and an applied voltage of 700 V for light sintering was used. .
  • the heat dissipation module in the same manner as in Example 1 except that the metal paste (A) and the nano-carbon paste (B) prepared in Preparation Example were sequentially applied on the heat source, and the applied voltage of light sintering was 700 V and a pulse width of 2.5 ms was used. And a lighting device.
  • a heat dissipation module and a lighting device were manufactured in the same manner as in Example 1 without the metal paste (A) and the nano carbon paste (B).
  • a heat dissipation module and a lighting device were manufactured in the same manner as in Example 1, except that only the metal paste (A) prepared in Preparation Example was applied on the heat source.
  • Example 2 The same method as in Example 1, except that the metal paste (A) and the nano carbon paste (B) prepared in Preparation Example were sequentially applied to the heat source so that the content of the nano carbon tube was 3% by weight based on the total weight of copper. A heat dissipation module and a lighting device were manufactured.
  • the thermal conductivity of the heat dissipation layer was measured at room temperature using an InSb sensor, based on ASTM E1461 standard with a NETZSCH equipment (model name: LFA467).
  • the temperature of the heat sink was measured when the temperature at the bottom of the heat sink was heated for a sufficient period of time for 30 minutes or more with a thermocouple, and the results are shown in Table 3, FIGS. 2 and 3 below. The results are shown in Table 3 and FIG. 2 below. 2 is a graph of the thermal conductivity of the heat dissipating layer manufactured in Examples and Comparative Examples
  • FIG. 3 is a graph of the temperature of the heat sink manufactured in Examples and Comparative Examples.
  • the wavelengths of the maximum intensity peaks (P max ) of the lighting devices prepared in Example 1 and Comparative Examples 1 and 2 when operating as a light source were 618 nm, 685 nm, and 655 nm, respectively.
  • the spectrum was measured with a luminous flux to evaluate and compare how much the wavelength shift of the first measured peak of the highest intensity was achieved. .
  • FIGS. 4 to 6. 4 is an optical spectrum evaluation graph of the lighting device according to Example 1
  • FIG. 5 is an optical spectrum evaluation graph of the lighting device according to Example 1
  • FIG. 6 is an optical spectrum evaluation graph of the lighting device according to Comparative Example 2.
  • FIG. 4 to 5 it was confirmed that the lighting device according to Example 1 had almost no wavelength shift of P max , whereas the lighting devices according to Comparative Examples 1 and 2 had a wavelength shift of P max of 30 nm or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present application provides a heat dissipation module comprising a heat dissipation film having high thermal conductivity, and a lighting device comprising same. The present application provides a heat dissipation module comprising: a heat source; a heat dissipation layer for dissipating heat from the heat source; and a heat sink provided on the heat dissipation layer, wherein the heat dissipation layer comprises a light-sintered metal-nanocarbon composite, the amount of nanocarbon contained in the composite is less than 3 wt% with respect to the total weight of the metal, and the thermal conductivity of the heat dissipation layer is 15-30 W/mK.

Description

광소결된 금속-나노 복합재 방열층을 포함하는 방열 모듈 및 이를 포함하는 조명 장치A heat dissipation module including a photo-sintered metal-nano composite heat dissipation layer and a lighting device including the same
본 출원은 광소결된 금속-나노 복합재 방열층을 포함하는 방열 모듈 및 이를 포함하는 조명 장치에 관한 것으로, 상세하게는 광소결된 금속-나노 복합재 방열층을 포함함에 따라 우수한 고 열전도성이 구현되는 방열 모듈 및 조명 장치를 제공한다.The present application relates to a heat dissipation module including a photo-sintered metal-nano composite heat dissipation layer, and a lighting device including the same, and in detail, excellent high thermal conductivity is implemented by including the photo-sintered metal-nano composite heat dissipation layer. Provides heat dissipation modules and lighting devices.
최근 자동차, 전기·전자 분야 등에서 사용되고 있는 전자 기기는 경량화, 박형화, 소형화, 다기능화가 추구되고 있다. 이러한 전자소자가 고집적화 될수록 더욱 많은 열이 발생하는데, 이러한 방출열은 소자의 기능을 저하시킬 뿐만 아니라 주변 소자의 오작동, 기판 열화 등의 원인이 되고 있어 방출 열을 제어하는 기술에 대해 많은 관심과 연구가 이루어지고 있다. In recent years, electronic devices used in automobiles and electric/electronic fields are pursuing weight reduction, thinness, miniaturization, and multifunctionalization. As such electronic devices become highly integrated, more heat is generated.This radiated heat not only degrades the function of the device, but also causes malfunction of peripheral devices and substrate deterioration.Therefore, there is much interest and research on technology that controls radiated heat. Is being done.
특히, 최근 조명 장치는 경량화, 박형화, 소형화, 다기능화가 추구되고 있다. 특히 조명 장치는 고출력의 광원을 이용하여 특정 수준의 광 스펙트럼을 발생시켜 다양한 기능이 구현되는 LED 특수 조명 장치가 주목 받고 있다.In particular, recently, lighting devices have been pursuing lighter, thinner, smaller, and multifunctional. In particular, special LED lighting devices that implement various functions by generating a specific level of light spectrum using a high-power light source are attracting attention.
이러한 LED 특수 조명 장치는 고출력의 광원에서 많은 열이 발생하는데, 이러한 방출열은 광원에서 방출되는 파장들의 파장 시프트를 일으켜 특수 조명 장치의 기능을 저하시킬 뿐만 아니라 주변 LED 소자의 오작동, 기판 열화 등의 원인이 되고 있어 방출 열을 제어하는 기술에 대해 많은 관심과 연구가 이루어지고 있다.These special LED lighting devices generate a lot of heat from a high-power light source, and this radiated heat causes wavelength shifts of the wavelengths emitted from the light source to deteriorate the function of the special lighting device, as well as malfunction of peripheral LED devices and substrate deterioration. As it is a cause, a lot of interest and research are being made on a technology for controlling radiated heat.
한편, 방열 재료의 소재 성분을 살펴보면 탄소재료나 세라믹 소재 같은 고열전도성 필러 소재와 고분자 소재가 혼합된 복합 소재가 대부분이다. 그러나 고열전성 필러 소재의 경우 고분자 소재로 이루어진 매트릭스 내에 균일하게 분산시키는데 어려움이 있었고, 이로 인해 전자부품 및 소자에서 발생되는 열을 충분히 방출시키는데 한계가 있다는 문제가 있다.On the other hand, looking at the material components of heat dissipating materials, most of them are composite materials in which a high thermal conductivity filler material such as a carbon material or a ceramic material and a polymer material are mixed. However, in the case of a high thermoelectric filler material, there is a problem in that it is difficult to uniformly disperse in a matrix made of a polymer material, and for this reason, there is a problem in that there is a limitation in sufficiently dissipating heat generated from electronic parts and devices.
본 출원은 광소결된 금속-나노 복합재 방열층을 포함하는 방열 모듈 및 이를 포함하는 조명 장치를 제공한다.The present application provides a heat dissipation module including a photo-sintered metal-nano composite heat dissipation layer and a lighting device including the same.
본 출원은 광소결된 금속-나노 복합재 방열층을 포함하는 방열 모듈에 관한 것이다. 상기 방열 모듈은 광에너지를 이용한 광소결 과정을 거쳐 제조된 금속-탄소나노 복합체를 포함하는 고열전도성을 갖는 방열층을 포함함에 따라, 제품에 적용 시 성능 향상 및 생산성 확보에 기여할 수 있다.The present application relates to a heat dissipation module including a photo-sintered metal-nano composite heat dissipation layer. Since the heat dissipation module includes a heat dissipation layer having high thermal conductivity including a metal-carbon nanocomposite manufactured through a photo-sintering process using light energy, it may contribute to improving performance and securing productivity when applied to a product.
도 1은 본 출원에 따른 예시적인 방열 모듈 또는 조명 장치를 나타내는 단면도이다.1 is a cross-sectional view illustrating an exemplary heat dissipation module or lighting device according to the present application.
도 1을 참조하면, 상기 방열 모듈은 열원(100), 상기 열원으로부터 열을 방열시키기 위한 방열층(200), 상기 방열층 상에 마련된 히트 싱크(300)를 포함한다. Referring to FIG. 1, the heat dissipation module includes a heat source 100, a heat dissipation layer 200 for dissipating heat from the heat source, and a heat sink 300 provided on the heat dissipation layer.
상기 열원은 열을 발생하는 장치로서, 그 종류는 방열 모듈이 적용되는 분야에 따라 다양할 수 있으므로, 특별히 제한되지 않는다. 상기 방열층은 열원으로부터 발생된 열을 히트 싱크로 전달하는 기능을 한다. 상기 히트 싱크는 방열층으로부터 전달받은 열을 외부로 방출하는 장치이다. 예를 들어, 상기 히트 싱크는 방열층에 부착되어 열을 전달(또는 흡수)받는 방열판과, 상기 방열판에 연결되어 외부로 열을 방출하는 복수 개의 방열핀을 포함한다. 상기 방열판은 접착제 또는 볼트 체결로 방열층에 부착될 수 있다. 또한, 상기 방열핀은 방열판의 면적을 넓혀 보다 많은 열을 방출할 수 있다.The heat source is a device that generates heat, and the type of the heat source is not particularly limited because it may vary depending on the field to which the heat dissipation module is applied. The heat dissipation layer functions to transfer heat generated from a heat source to a heat sink. The heat sink is a device that discharges heat transferred from the heat dissipation layer to the outside. For example, the heat sink includes a heat sink attached to the heat sink to transmit (or absorb) heat, and a plurality of heat sink fins connected to the heat sink to emit heat to the outside. The heat dissipation plate may be attached to the heat dissipation layer by fastening an adhesive or bolt. In addition, the heat dissipation fin may dissipate more heat by increasing the area of the heat dissipation plate.
그리고, 상기 방열층은 광소결된 금속-나노탄소 복합체를 포함하고, 상기 복합체에서 나노 탄소의 함량은 금속의 총 중량에 대하여 3중량%미만이며, 상기 방열층의 열전도율은 15 내지 30w/mK이다. 상기 금속은 금속 필러일 수 있고, 이의 구체적인 종류는 후술하기로 한다. 상기 열전도율은 HotDisk 방식 또는 LFA(Laser flash analysis) 측정 방식과 같이 공지된 열전도율 측정 방식을 이용하여 측정된 것이다. LFA 측정 방식에 따르면, 방열층의 열전도율은 상온에서 InSb 센서를 이용하여 네취사 장비(모델명: LFA467)로 ASTM E1461 기준에 근거하여 측정할 수 있다.In addition, the heat dissipation layer includes a photo-sintered metal-nanocarbon composite, the content of nano-carbon in the composite is less than 3% by weight based on the total weight of the metal, and the thermal conductivity of the heat dissipation layer is 15 to 30w/mK. . The metal may be a metal filler, and a specific type thereof will be described later. The thermal conductivity is measured using a known thermal conductivity measurement method such as a HotDisk method or a laser flash analysis (LFA) measurement method. According to the LFA measurement method, the thermal conductivity of the heat dissipation layer can be measured based on the ASTM E1461 standard with a netchwisa equipment (model name: LFA467) using an InSb sensor at room temperature.
상기 방열층은 광소결되되 나노 탄소의 함량이 상기 범위를 만족하는 금속-탄소 나노 복합체를 포함함에 따라, 열전도열이 상기 범위 내로 제어될 수 있다. As the heat dissipation layer includes a metal-carbon nanocomposite that is photo-sintered but the content of nano-carbon satisfies the above range, heat conduction heat may be controlled within the above range.
예를 들어, 상기 복합체에서 나노 탄소의 함량은 3중량%미만, 2.8중량%미만, 2.7중량%미만, 2.5중량% 미만, 2.3중량%미만 또는 2.1중량% 미만일 수 있다. 상기 함량의 하한은 특별히 한정되는 것은 아니나, 0.1중량% 초과, 0.3중량% 초과, 0.5중량% 초과, 0.7중량% 초과, 또는 0.9중량%초과일 수 있다. For example, the content of nano carbon in the composite may be less than 3% by weight, less than 2.8% by weight, less than 2.7% by weight, less than 2.5% by weight, less than 2.3% by weight, or less than 2.1% by weight. The lower limit of the content is not particularly limited, but may be more than 0.1% by weight, more than 0.3% by weight, more than 0.5% by weight, more than 0.7% by weight, or more than 0.9% by weight.
그리고, 상기 방열층의 열전도율은 15 내지 30w/mK, 17 내지 30w/mK 또는 20 내지 30w/mK일 수 있다. 상기 열전도율은 나노 탄소의 함량에 의해 조절될 수 있다. 예를 들어, 나노 탄소 함량이 증가할수록 열전도율이 증가하는 경향을 나타낸다. 다만, 나노 탄소 함량이 3 중량% 이상에서는 오히려 열전도율이 떨어지는 경향을 나타내는데, 이는 광소결 과정에서 나노 탄소의 부분 응집과 부분 소결에 기인한 것이다. 여기서, 부분 소결이란 소결 시 높은 나노 탄소 함량에 의해 나노 탄소가 주변부에 있는 금속들의 소결을 방해하는 현상을 의미하고, 부분 응집이란 소결 시 높은 나노 탄소 함량에 의해 나노 탄소의 분산도가 떨어져 응집되는 현상을 의미한다.In addition, the thermal conductivity of the heat dissipation layer may be 15 to 30w/mK, 17 to 30w/mK, or 20 to 30w/mK. The thermal conductivity may be adjusted by the content of nano carbon. For example, as the nano-carbon content increases, the thermal conductivity tends to increase. However, when the nano-carbon content is 3% by weight or more, the thermal conductivity tends to decrease, which is due to partial agglomeration and partial sintering of the nano-carbon during the photo-sintering process. Here, partial sintering refers to a phenomenon in which nano-carbon interferes with sintering of metals in the periphery due to a high nano-carbon content during sintering. Means phenomenon.
하나의 예시에서, 상기 방열층은 열원의 일면에 금속 페이스트가 도포되고, 금속 페이스트 상에 나노 탄소 페이스트가 도포된 후, 나노 탄소 페이스트 측으로 광이 조사되어 광소결될 수 있다. 상기와 같은 광소결 과정을 거쳐 제조된 방열층은 광소결된 금속-나노 탄소 복합체를 포함할 수 있다. 한편, 광소결이 아닌 열소결을 진행할 경우, 금속-나노 탄소 복합체가 균일한 물성으로 형성되지 않기 때문에, 원하는 물성 구현이 어려울 수 있다. In one example, the heat dissipation layer may be photo-sintered by applying a metal paste to one surface of a heat source, applying a nano-carbon paste onto the metal paste, and irradiating light toward the nano-carbon paste. The heat dissipation layer manufactured through the photo-sintering process as described above may include a photo-sintered metal-nano-carbon composite. On the other hand, in the case of thermal sintering rather than photo sintering, since the metal-nano-carbon composite is not formed with uniform physical properties, it may be difficult to implement the desired physical properties.
상기 금속 페이스트는 금속, 용매, 고분자 분산제, 바인더를 포함할 수 있다. 상기 고분자 분산제의 분자량은 10,000 내지 360,000이고, 점도는 1 내지 100000cP, 구체적으로 1 내지 50000cP, 5 내지 40000cP 또는 5 내지 30000cP, 5 내지 25000cP 또는 5 내지 20000cP인 조성물을 사용할 수 있다.The metal paste may include a metal, a solvent, a polymer dispersant, and a binder. The polymeric dispersant has a molecular weight of 10,000 to 360,000, and a viscosity of 1 to 100000 cP, specifically 1 to 50000 cP, 5 to 40000 cP or 5 to 30000 cP, 5 to 25000 cP, or 5 to 20000 cP.
본 발명에서 사용할 수 있는 고분자 분산제의 분자량은 10,000 내지 360,000, 예를 들어 11,000 내지 200,000, 12,000 내지 100,000, 또는 15,000 내지 70,000이다. 분자량이 상기 범위 내에 있는 경우에 우수한 분산성과 용액 조성물을 기재에 도포하는 데 필요한 점도를 확보할 수 있다. The molecular weight of the polymer dispersant that can be used in the present invention is 10,000 to 360,000, for example, 11,000 to 200,000, 12,000 to 100,000, or 15,000 to 70,000. When the molecular weight is within the above range, excellent dispersibility and viscosity required to apply the solution composition to the substrate can be secured.
상기 금속 페이스트의 점도는 1 내지 50000cP, 5 내지 40000cP 또는 5 내지 30000cP, 5 내지 25000cP 또는 5 내지 20000cP이다. 고분자 분산제의 분자량뿐만 아니라 점도 역시 상기 범위로 조정하는 경우 입자의 분산성 및 도포 공정의 조건을 만족시킬 수 있다.The viscosity of the metal paste is 1 to 50000 cP, 5 to 40000 cP or 5 to 30000 cP, 5 to 25000 cP, or 5 to 20000 cP. When the viscosity as well as the molecular weight of the polymeric dispersant is adjusted to the above range, the dispersibility of the particles and the conditions of the coating process can be satisfied.
상기 금속 페이스트에서, 고분자 분산제의 함량은 예를 들어 용액 조성물 총 중량에 대하여 1 내지 15 중량%, 구체적으로 1 내지 10 중량%, 2 내지 10 중량%이다. 방열층의 열전도성을 제어하기 위해서 분산제의 함량을 상기 범위로 제어하는 것이 필요하다. In the metal paste, the content of the polymer dispersant is, for example, 1 to 15% by weight, specifically 1 to 10% by weight, and 2 to 10% by weight based on the total weight of the solution composition. In order to control the thermal conductivity of the heat dissipating layer, it is necessary to control the content of the dispersant within the above range.
상기 고분자 분산제의 종류는, 예를 들어, 폴리에틸렌 이민, 폴리바이닐피롤리돈 등의 아민계 고분자 분산제; 폴리아크릴산, 카복시메틸셀룰로스 등의 분자 중에 카복실산기를 갖는 탄화수소계 고분자 분산제; 및 폴리비닐알코올, 스타이렌-말레산 공중합체, 올레핀-말레산 공중합체, 또는 1분자 중에 폴리에틸렌 이민 부분과 폴리에틸렌옥사이드 부분을 갖는 공중합체 등의 극성기를 갖는 고분자 분산제로 이루어진 그룹 중에서 선택된 하나 이상이다.The kind of the polymer dispersant may be, for example, an amine polymer dispersant such as polyethylene imine and polyvinylpyrrolidone; Hydrocarbon-based polymer dispersants having a carboxylic acid group in a molecule such as polyacrylic acid and carboxymethylcellulose; And a polymer dispersant having a polar group such as a polyvinyl alcohol, a styrene-maleic acid copolymer, an olefin-maleic acid copolymer, or a copolymer having a polyethylene imine moiety and a polyethylene oxide moiety in one molecule. .
일 구체예에서 상기 고분자 분산제는 수용성 고분자, 구체적으로 아민계 고분자, 특히 폴리바이닐피롤리돈(PVP)을 사용할 수 있다. PVP를 사용하는 경우 수성 용매를 사용할 수 있어, 친환경적이므로 대면적의 방열층을 제조함에 있어서도 환경 오염을 최소화시킬 수 있다.In one embodiment, the polymer dispersant may be a water-soluble polymer, specifically an amine-based polymer, particularly polyvinylpyrrolidone (PVP). When PVP is used, an aqueous solvent can be used, so environmental pollution can be minimized even when manufacturing a large-area heat dissipation layer.
상기 금속 페이스트에서, 상기 바인더의 종류는, 특별히 제한되는 것은 아니나, 예를 들어, 셀룰로오스계 수지, 폴리염화비닐수지, 폴리비닐알코올계 수지, 폴리비닐피롤리돈계 수지, 아크릴 수지, 아세트산비닐-아크릴산에스테르 공중합 수지, 부티랄 수지, 알키드 수지, 에폭시 수지, 페놀 수지, 로진에스테르 수지, 폴리에스테르 수지 및 실리콘 수지로 이루어진 그룹 중에서 선택된 하나 이상이다.In the metal paste, the type of the binder is not particularly limited, but for example, a cellulose resin, a polyvinyl chloride resin, a polyvinyl alcohol resin, a polyvinylpyrrolidone resin, an acrylic resin, a vinyl acetate-acrylic acid. It is at least one selected from the group consisting of ester copolymer resins, butyral resins, alkyd resins, epoxy resins, phenol resins, rosin ester resins, polyester resins, and silicone resins.
상기 바인더의 함량은 예를 들어, 용액 조성물 총 중량에 대하여 1 내지 50 중량%, 구체적으로 3 내지 40중량%, 5 내지 30 중량%이다. 바인더의 함량이 30 중량 %를 초과하는 경우 용매에 완전히 용해되지 않을 우려가 있고, 시간의 경과 따라 응집할 수 있으며, 1 중량% 미만이면 기재와의 접착력이 떨어질 우려가 있다.The content of the binder is, for example, 1 to 50% by weight, specifically 3 to 40% by weight, and 5 to 30% by weight based on the total weight of the solution composition. If the content of the binder exceeds 30% by weight, there is a concern that it may not be completely dissolved in the solvent, and may aggregate over time, and if it is less than 1% by weight, there is a concern that the adhesive strength with the substrate may decrease.
상기 용매의 종류는, 특별히 제한되는 것은 아니나, 예를 들어, 물, 탄화수소계 용매, 염소화탄화수소계 용매, 고리형 에테르계 용매, 케톤계 용매, 알코올, 다가알코올계 용매, 아세테이트계 용매, 다가알코올의 에테르계 용매 또는 테르펜계 용매로 이루어진 그룹 중에서 선택된 하나 이상이다. 용매의 종류는 사용하는 고분자 바인더 및 분산제에 따라 적절한 것을 선택할 수 있으나, 환경적 요인, 분산 특성 및 건조 시간을 고려하면 물 및 알코올의 혼합물을 사용하는 것이 바람직하다. 구체적으로 젖음성을 고려할 때, 알코올을 사용하는 것이 바람직하다. 알코올은 특별히 제한되지 않으나 탄소수 2 내지 6의 직쇄 알킬기를 가지는 알코올, 예를 들어, 에탄올, 프로판올, 또는 부탄올 등을 사용할 수 있다. 건조시간을 고려할 때, 끓는점이 낮은 에탄올을 사용하는 것이 바람직하다.The type of the solvent is not particularly limited, but, for example, water, hydrocarbon-based solvent, chlorinated hydrocarbon-based solvent, cyclic ether-based solvent, ketone-based solvent, alcohol, polyhydric alcohol-based solvent, acetate-based solvent, polyhydric alcohol It is at least one selected from the group consisting of an ether-based solvent or a terpene-based solvent. The type of solvent may be appropriately selected depending on the polymeric binder and dispersant used, but in consideration of environmental factors, dispersion characteristics, and drying time, it is preferable to use a mixture of water and alcohol. Specifically, when considering wettability, it is preferable to use alcohol. The alcohol is not particularly limited, but an alcohol having a linear alkyl group having 2 to 6 carbon atoms, for example, ethanol, propanol, or butanol, may be used. In consideration of the drying time, it is preferable to use ethanol with a low boiling point.
이 때 물 및 알코올 중량비는 예를 들어 1 : 0.5 내지 1.5, 구체적으로 1 : 0.7 내지 1.3, 1 : 0.8 내지 1.2의 비율로 혼합하여 사용할 수 있다. 물과 알코올 중량비를 상기 범위 내로 제어하는 경우 바인더 및 분산제를 충분히 용해시킬 수 있고, 적정한 점도를 유지할 수 있다.In this case, the weight ratio of water and alcohol may be mixed and used in a ratio of, for example, 1: 0.5 to 1.5, specifically 1: 0.7 to 1.3, and 1: 0.8 to 1.2. When the weight ratio of water and alcohol is controlled within the above range, the binder and the dispersant can be sufficiently dissolved and an appropriate viscosity can be maintained.
그리고, 상기 용매는 물 및 알코올 외에도 유기 용매를 사용할 수 있다. 예를 들어, 상기 유기 용매는 테르피네올, 디하이드로테르피네올, 에틸카비톨, 부틸카비톨, 디하이드로테르피네올 아세테이트, 에틸카비톨 아세테이트, 부틸카비톨 아세테이트 또는 이들의 혼합물로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.In addition, as the solvent, an organic solvent may be used in addition to water and alcohol. For example, the organic solvent is from the group consisting of terpineol, dihydroterpineol, ethylcarbitol, butylcarbitol, dihydroterpineol acetate, ethylcarbitol acetate, butylcarbitol acetate, or mixtures thereof. It may include one or more selected.
또한, 상기 나노 탄소 페이스트는 나노 탄소, 용매, 고분자 분산제, 바인더를 포함할 수 있다. 상기 나노 탄소 페이스트의 용매, 고분자 분산제 및 바인더는 전술한 금속 페이스트와 동일한 조성을 사용할 수 있다. In addition, the nano carbon paste may include nano carbon, a solvent, a polymer dispersant, and a binder. The solvent, polymer dispersant, and binder of the nano-carbon paste may have the same composition as the metal paste described above.
또 하나의 예시에서, 상기 광소결 과정의 구체적인 조건을 후술하는 범위 내로 적절히 설계함으로써 광소결된 복합체 및 목적하는 열전도성을 갖는 방열층을 제조할 수 있다. In another example, a photo-sintered composite and a heat dissipating layer having a desired thermal conductivity may be manufactured by appropriately designing the specific conditions of the photo-sintering process within a range to be described later.
구체적으로, 광소결 조건으로는 광의 종류, 인가되는 전압(출력 전압), 펄스 폭, 펄스 수 (광의 반복 조사 횟수), 펄스 간격(진동수) 등이 예시될 수 있다. 예를 들어, 광은 제논 램프에서 인가되는 백색광을 사용할 수 있고, 전압은 10 내지 1500V, 펄스 수는 1 내지 500 회, 펄스 간격은 1 내지 10Hz, 펄스 폭은 0.1 내지 10ms일 수 있다.Specifically, the light sintering condition may include the type of light, the applied voltage (output voltage), the pulse width, the number of pulses (the number of repeated irradiation of light), the pulse interval (frequency), and the like. For example, the light may be white light applied from a xenon lamp, a voltage of 10 to 1500 V, a pulse number of 1 to 500 times, a pulse interval of 1 to 10 Hz, and a pulse width of 0.1 to 10 ms.
상기 펄스 수가 증가할수록 총 에너지가 증가하여 용매의 제거가 효과적으로 일어나지만, 펄스 수가 지나치게 높은 경우 총 에너지(Total energy)가 증가하여 방열층의 물리적 변형이 발생될 수 있다. 상기 총 에너지는 출력 전압, 펄스 폭, 펄스 간격, 펄스 수에 의해 결정된다. 상기 펄스 수는 예를 들어 1 내지 400회, 1 내지 350 회, 1 내지 200회 또는 1 내지 100회가 적절할 수 있다. As the number of pulses increases, the total energy increases to effectively remove the solvent. However, when the number of pulses increases, the total energy increases, thereby causing physical deformation of the heat dissipation layer. The total energy is determined by the output voltage, pulse width, pulse interval, and number of pulses. The number of pulses may be appropriate, for example, 1 to 400 times, 1 to 350 times, 1 to 200 times, or 1 to 100 times.
또한, 펄스 간격이 감소할수록 초당 인가되는 평균 전력(average power)의 증가로 공정시간이 감소될 수 있다. 상기 평균 전력은 출력 전압, 펄스 폭, 펄스 간격에 의해 결정된다. 다만, 펄스 간격이 1Hz 이상부터 용매의 증발이 이루어질 수 있고, 1Hz 미만인 경우 베드 온도가 급격히 상승하게 되어 방열층의 물리적 변형이 발생될 수 있다. In addition, as the pulse interval decreases, the processing time may decrease due to an increase in average power applied per second. The average power is determined by the output voltage, pulse width, and pulse interval. However, evaporation of the solvent may occur from a pulse interval of 1 Hz or more, and if the pulse interval is less than 1 Hz, the bed temperature may rise rapidly, thereby causing physical deformation of the heat dissipation layer.
그리고, 출력 전압이 증가할수록 유기물의 제거가 효과적으로 일어나지만, 방열층의 물리적 변형이 발생될 수 있으며, 물리적 변형이 일어나지 않는 적정 전압은 10 내지 1500V, 50 내지 1500V, 100 내지 1500V, 200 내지 1300V, 300 내지 1200V 또는 300 내지 1000V 범위 내일 수 있다.And, as the output voltage increases, the organic matter is effectively removed, but physical deformation of the heat dissipation layer may occur, and the appropriate voltage at which no physical deformation occurs is 10 to 1500V, 50 to 1500V, 100 to 1500V, 200 to 1300V, It may be in the range of 300 to 1200V or 300 to 1000V.
또한, 상기 펄스 폭은 일정 횟수를 넘어서면 방열층의 물리적 변형이 발생하여 열전도성이 떨어질 수 있고, 일정 횟수 미만인 경우 복합체 형성이 안될 수 있다. 따라서, 적절한 펄스 폭은 0.1 내지 10ms, 0.5 내지 8ms, 0.9 내지 5ms 또는 1 내지 3ms 범위 내일 수 있다.In addition, when the pulse width exceeds a certain number of times, physical deformation of the heat dissipation layer may occur, resulting in poor thermal conductivity, and if less than a certain number of times, a composite may not be formed. Thus, a suitable pulse width may be in the range of 0.1 to 10 ms, 0.5 to 8 ms, 0.9 to 5 ms, or 1 to 3 ms.
상기 방열층은 광소결 과정에서, 금속-나노 탄소 복합체간 유착이 발생하여 응집체(예를 들어, 클러스터)를 형성하면서 응집체 사이에 공간이 형성됨에 따라, 다공성을 가질 수 있다. 상기 응집되어 형성된 클러스터는 열 경로(thermal path) 역할을 하므로 열전도도를 향상시킬 수 있다. The heat dissipation layer may have porosity as a space between the aggregates is formed while adhesion between the metal-nanocarbon composites occurs during the photosintering process to form an aggregate (eg, cluster). Since the cluster formed by aggregation serves as a thermal path, thermal conductivity may be improved.
예를 들어, 상기 방열층은 1 내지 15%, 2 내지 15%, 3 내지 15%, 4 내지 15% 또는 5 내지 15%의 기공도를 가질 수 있다. 상기 기공의 크기는 예를 들어 1 내지 100 nm 범위 내 일 수 있다.For example, the heat dissipation layer may have a porosity of 1 to 15%, 2 to 15%, 3 to 15%, 4 to 15%, or 5 to 15%. The size of the pores may be, for example, in the range of 1 to 100 nm.
한편, 열 소결의 경우에도 장시간 진행하면 금속-나노 탄소 복합체가 형성될 수 있는데, 열소결로 형성된 금속-나노 탄소 나노 복합체는 인접한 다른 복합체와 유착이 촉진되어 기공 크기가 급격하게 증가하여 상기 범위로 조절되기 어렵다. 더욱이, 광소결의 경우, 금속 매트릭스 내에 나노 탄소가 랜덤하게 분포하고, 광에너지의 순간적인 조사로 분산성을 확보하기 때문에, 열소결에 비해 열전달 특성 균일도가 높게 확보될 수 있다.On the other hand, even in the case of thermal sintering, a metal-nano-carbon composite may be formed if it proceeds for a long time.The metal-nano-carbon nanocomposite formed by heat sintering promotes adhesion with other adjacent composites, thereby rapidly increasing the pore size to reach the above range. It is difficult to control. Moreover, in the case of photosintering, since nano-carbons are randomly distributed in the metal matrix and dispersibility is secured by instantaneous irradiation of light energy, the uniformity of heat transfer characteristics can be ensured higher than that of heat sintering.
일 구체예에서, 상기 금속은 은, 구리, 니켈, 주석 및 금을 포함하는 그룹으로부터 선택된 하나 이상일 수 있고, 바람직하게는 은 또는 구리일 수 있다. 은의 경우 산화저항성이 높고, 특히 은산화물의 열전도도가 높아 안정적인 열전달 특성을 나타내며, 구리의 경우는 가격측면에서 귀금속인 은에 비해 경제적이며 광소결 후 복합재 표면에 생성되는 자연산화막(native oxide layer)으로 안정적인 열전도성을 나타낼 수 있다.In one embodiment, the metal may be at least one selected from the group including silver, copper, nickel, tin, and gold, and preferably silver or copper. Silver has high oxidation resistance, especially because of the high thermal conductivity of silver oxide, so it exhibits stable heat transfer characteristics, and copper is more economical than silver, a noble metal in terms of price, and is a native oxide layer formed on the surface of the composite material after photo-sintering. It can exhibit stable thermal conductivity.
상기 나노 탄소는 탄소 나노 튜브(CNT), 그래핀, 플러렌 및 다이아몬드를를 포함하는 그룹으로부터 선택된 하나 이상일 수 있고, 바람직하게는 탄소 나노 튜브(CNT) 또는 그래핀일 수 있다. 예를 들어, 상기 탄소 나노 튜브는 단일벽 탄소 나노튜브 또는 다중벽 탄소 나노 튜브일 수 있다. 상기 탄소 나노 튜브 또는 그래핀의 경우, 페이스트로 제조하기 용이한 장점을 가진다.The nano-carbon may be at least one selected from the group including carbon nanotubes (CNT), graphene, fullerene, and diamond, and preferably carbon nanotubes (CNT) or graphene. For example, the carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes. In the case of the carbon nanotubes or graphene, it has the advantage of being easy to manufacture as a paste.
상기 복합체는 15 내지 1000nm의 평균 입경을 가질 수 있다. 상기 평균 입경은 공지된 다양한 방식을 이용하여 측정할 수 있다.The composite may have an average particle diameter of 15 to 1000 nm. The average particle diameter can be measured using various known methods.
상기 방열층은 0.1 내지 5㎛두께를 가질 수 있다.The heat dissipation layer may have a thickness of 0.1 to 5 μm.
상기 방열층을 열원과 마주하는 제1 면 및 제1 면의 반대 방향인 제2 면을 갖고, 상기 제1 면과 제2 면의 접착 강도가 상이할 수 있다.The heat dissipation layer may have a first surface facing the heat source and a second surface opposite to the first surface, and adhesive strengths between the first surface and the second surface may be different.
본 출원은 또한 조명 장치에 관한 것이다. 상세하게는 특수 기능을 수행하는 특수 조명 장치에 관한 것이다. The present application also relates to a lighting device. Specifically, it relates to a special lighting device that performs a special function.
구체적으로, 특수 조명 장치는, 고출력의 광원을 이용하여 특정 파장의 광 스펙트럼을 발생시켜 특수 기능을 수행하는데, 특정 파장을 조사하는 광원에서 발생하는 열을 충분히 방열시키지 않으면 파장 시프트가 발생하여 목적하는 특수 기능을 수행하는데 어려움이 있을 수 있다. 예를 들어, 해충은 300 내지 450nm 파장의 빛을 선호하고, 600 내지 700 nm 파장의 빛을 싫어하는 것으로 알려져 있다. 따라서, 해충을 퇴치하기 위해서는 광원은 600 내지 700nm의 파장을 조사해야 하는데, 이 때, 방열이 충분하게 이루어지지 않는다면 상기 범위의 파장들이 700nm이상으로 파장 시프트되어 원활한 해충 퇴치를 수행할 수 없게 된다.Specifically, a special lighting device performs a special function by generating a light spectrum of a specific wavelength using a high-power light source.If the heat generated from a light source that irradiates a specific wavelength is not sufficiently dissipated, a wavelength shift occurs. There may be difficulties in performing special functions. For example, pests are known to prefer light with a wavelength of 300 to 450 nm and hate light with a wavelength of 600 to 700 nm. Therefore, in order to combat pests, the light source must irradiate a wavelength of 600 to 700 nm. In this case, if heat dissipation is not sufficiently performed, the wavelengths in the above range are shifted to 700 nm or more, so that smooth pest control cannot be performed.
본 출원에 따른 조명 장치는 광소결된 금속-탄소 나노 복합재 방열층을 포함함에 따라, 우수한 방열성이 구현되어 상기와 같이 특수 기능을 수행하는 특수 조명 장치에 적용 시 유리한 장점을 가진다.As the lighting device according to the present application includes a photo-sintered metal-carbon nanocomposite heat dissipation layer, excellent heat dissipation properties are implemented, and thus has an advantageous advantage when applied to a special lighting device that performs a special function as described above.
도 1을 참조하면, 상기 조명 장치는 광원(100), 상기 열원으로부터 열을 방열시키기 위한 방열층(200), 상기 방열층 상에 마련된 히트 싱크(300)를 포함한다. Referring to FIG. 1, the lighting device includes a light source 100, a heat dissipation layer 200 for dissipating heat from the heat source, and a heat sink 300 provided on the heat dissipation layer.
상기 광원은 광을 발생하는 장치로서, 예를 들어, 20W 이상, 30W 이상, 40W 이상 또는 50W 이상의 고출력의 정격 전압을 갖는 LED 모듈일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 특수 조명 장치에서 해충 퇴치 기능이 구현되기 위해서는, 상기 광원은 50w 이상의 정격 전압을 갖는 LED 모듈이 이용될 수 있다. The light source is a device that generates light, and may be, for example, an LED module having a high output rated voltage of 20W or more, 30W or more, 40W or more, or 50W or more, but is not limited thereto. For example, in order to implement a pest control function in a special lighting device, an LED module having a rated voltage of 50w or more may be used as the light source.
상기 방열층 및 히트 싱크와 관련된 자세한 설명은 중복된 내용되므로 이하에서 생략하기로 한다.Detailed descriptions related to the heat dissipation layer and the heat sink are redundant and will be omitted below.
본 출원에 따른 조명 장치는 방열층이 상술한 열전도율을 만족함에 따라, 광원 작동 시 파장 시프트 및 히트 싱크 온도가 후술하는 범위 내로 제어 가능하다. 파장 시프트 및 히트 싱크의 온도가 후술하는 범위 내로 제어 가능함에 따라, 특수 조명 장치 적용 시 특수 기능 향상되고, 장시간 사용하더라도 기능 변형 없이 유지될 수 있다.In the lighting device according to the present application, as the heat dissipation layer satisfies the above-described thermal conductivity, a wavelength shift and a heat sink temperature during operation of a light source can be controlled within a range to be described later. As the wavelength shift and the temperature of the heat sink can be controlled within a range to be described later, a special function is improved when a special lighting device is applied, and even when used for a long time, the function can be maintained without modification.
하나의 예시에서, 본 출원에 따른 조명 장치는 하기 일반식 1을 만족할 수 있다.In one example, the lighting device according to the present application may satisfy the following General Formula 1.
[일반식 1][General Formula 1]
△Pmax<30nm△P max <30nm
상기 일반식 1에서, △Pmax는 조명 장치의 광원 작동 시 최대 강도 피크(Pmax)의 파장을 측정한 후, 85℃, 85% 상대습도에서 3,000시간 노출하였을 때 상기 최초 측정한 최대 강도 피크(Pmax)의 파장 시프트를 나타낸다. 예를 들어, 상기 조명 장치는 하기 일반식 1에 따른 βmax값이 30nm 이하, 25nm 이하, 20nm 이하, 15nm 이하, 10 nm 이하, 5nm 이하, 1nm 이하 또는 0.1 nm 이하일 수 있다. In General Formula 1, ΔP max is the first measured maximum intensity peak when exposed for 3,000 hours at 85°C and 85% relative humidity after measuring the wavelength of the maximum intensity peak (P max ) when the light source of the lighting device is operated. It represents the wavelength shift of (P max ). For example, the lighting device may have a βmax value of 30 nm or less, 25 nm or less, 20 nm or less, 15 nm or less, 10 nm or less, 5 nm or less, 1 nm or less, or 0.1 nm or less according to the following General Formula 1.
상기 일반식 1은 광원을 장시간 사용하더라도 최대 강도 피크의 파장 이동 변화가 크지 않다는 것을 의미한다. 따라서, 일반식 1을 만족하는 조명 장치는 안정적으로 동일한 파장의 광을 지속적으로 방출시킬 수 있다. 일반적으로 특수 조명 장치에서 광원은 특수 기능을 하기 위한 특정 파장이 최대 강도 피크로 구현되기 때문에, 일반식 1을 만족하는 조명 장치를 특수 조명 장치에 적용 시 특수 기능이 지속적으로유지 가능한 장점을 가진다.The general formula 1 means that even when the light source is used for a long time, the change in wavelength shift of the maximum intensity peak is not large. Therefore, the lighting device satisfying the general formula 1 can stably emit light of the same wavelength continuously. In general, in a special lighting device, since a specific wavelength for a special function of a light source is implemented as a maximum intensity peak, when a lighting device that satisfies General Formula 1 is applied to a special lighting device, the special function can be maintained continuously.
또한, 광원 작동 시, 히트 싱크의 온도는 75℃이하로 유지될 수 있다. 히트 싱크의 온도가 상기 범위로 유지된다는 것은 광원에서 발생된 열이 효과적으로 방출되었음을 시사한다. 상기 히트 싱크의 온도는 열전대로 히트싱크의 바닥부분 온도를 30분 이상 충분한 시간 동안 가열하였을 때 수렴한 온도를 측정한 것이다.In addition, when the light source is operated, the temperature of the heat sink may be maintained at 75°C or less. The fact that the temperature of the heat sink is maintained within the above range suggests that the heat generated from the light source is effectively released. The temperature of the heat sink is measured by measuring the temperature converged when the temperature of the bottom of the heat sink is heated for a sufficient time for 30 minutes or more with a thermocouple.
본 출원의 방열 모듈은 광소결된 금속-나노 복합재 방열층이 적용됨에 따라, 열전도도가 우수할 수 있다. 그리고, 본 출원의 조명 장치는 열전도성이 우수하여 광원의 파장 시프트 변화가 없어 특수 조명 장치에 적용 시 특수 기능 유지가 지속 가능한 장점을 가진다.The heat dissipation module of the present application may have excellent thermal conductivity as a photo-sintered metal-nano composite heat dissipation layer is applied. In addition, since the lighting device of the present application has excellent thermal conductivity, there is no change in the wavelength shift of the light source, so when applied to a special lighting device, the maintenance of special functions is sustainable.
도 1은 본 출원에 따른 예시적인 방열 모듈 또는 조명 장치를 나타내는 단면도이다.1 is a cross-sectional view illustrating an exemplary heat dissipation module or lighting device according to the present application.
도 2는 실시예 및 비교예에서 제조된 방열층의 열전도도에 대한 그래프이다.2 is a graph of the thermal conductivity of the heat dissipation layer prepared in Examples and Comparative Examples.
도 3은 실시예 및 비교예에서 제조된 히트 싱크 온도에 대한 그래프이다.3 is a graph of heat sink temperatures manufactured in Examples and Comparative Examples.
도 4는 실시예 1에 따른 조명 장치의 광학 스펙트럼 평가 그래프이다.4 is an optical spectrum evaluation graph of the lighting device according to Example 1. FIG.
도 5는 실시예 1에 따른 조명 장치의 광학 스펙트럼 평가 그래프이다.5 is an optical spectrum evaluation graph of the lighting device according to Example 1. FIG.
도 6은 비교예 2에 따른 조명 장치의 광학 스펙트럼 평가 그래프이다.6 is an optical spectrum evaluation graph of the lighting device according to Comparative Example 2.
이하 실시예 및 비교예를 통하여 상기 기술한 내용을 보다 구체적으로 설명한다. 그러나, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the above-described contents will be described in more detail through Examples and Comparative Examples. However, the scope of the present application is not limited by the following examples.
제조예Manufacturing example
금속 페이스트 제조Metal paste manufacturing
하기 조성비로 구리(Cu), α-terpineol (용매), cellulose (바인더), polyvinylpyrrolidone(PVP, 분산제)를 혼합하여 금속 페이스트(A)를 제조하였다.A metal paste (A) was prepared by mixing copper (Cu), α-terpineol (solvent), cellulose (binder), and polyvinylpyrrolidone (PVP, dispersant) in the following composition ratio.
Cu(중량%)Cu (% by weight) α-terpineol(중량%)α-terpineol (% by weight) cellulose(중량%)Cellulose (% by weight) PVP(중량%)PVP (% by weight)
AA 66 2.252.25 0.750.75 1One
나노 탄소 페이스트 제조Nano Carbon Paste Manufacturing
하기 조성비로 탄소나노튜브(CNT), α-terpineol (용매), cellulose (바인더), polyvinylpyrrolidone(PVP, 분산제)를 혼합하여 나노탄소 페이스트(B)를 제조하였다.Nanocarbon paste (B) was prepared by mixing carbon nanotubes (CNT), α-terpineol (solvent), cellulose (binder), and polyvinylpyrrolidone (PVP, dispersant) in the following composition ratio.
CNT중량%)CNT weight%) α-terpineol(중량%)α-terpineol (% by weight) cellulose(중량%)Cellulose (% by weight) PVP(중량%)PVP (% by weight)
BB 5.55.5 2.52.5 1One 1One
실시예 1Example 1
<방열 모듈 제조><Manufacture of heat dissipation module>
상기 제조예에서 제조된 금속 페이스트(A) 및 나노 탄소 페이스트(B)를 열원 상에 나노 탄소 튜브의 함량이 구리 총 중량에 대하여 2 중량%가 되도록 순차적으로 도포하였다. 그리고, 나노 탄소 페이스트 측으로 광을 조사하여 광소결시켜 방열층을 제조하였다. 그리고, 방열층 상에 히트 싱크를 볼트 체결로 부착시켜 방열 모듈을 제조하였다. 상기 광소결은 제논 램프에서 인가되는 백색광을 사용하였고, 인가 전압은 500V, 펄스 수는 30회, 펄스 폭은 2.0ms, 펄스 간격은 1Hz, 소결 분위기는 대기 분위기를 사용하였다. The metal paste (A) and the nano-carbon paste (B) prepared in the above Preparation Example were sequentially applied on the heat source so that the content of the nano-carbon tube was 2% by weight based on the total weight of copper. Then, light was irradiated to the side of the nano carbon paste to photo-sinter to prepare a heat dissipating layer. Then, a heat sink was attached to the heat radiation layer by bolting to fabricate a heat radiation module. The light sintering was performed using white light applied from a xenon lamp, the applied voltage was 500V, the number of pulses was 30 times, the pulse width was 2.0ms, the pulse interval was 1Hz, and the sintering atmosphere was used as an atmospheric atmosphere.
<조명 장치 제조><Manufacture of lighting equipment>
상기 제조예에서 제조된 금속 페이스트(A) 및 나노 탄소 페이스트(B)를 광원 상에 나노 탄소 튜브의 함량이 구리 총 중량에 대하여 2 중량%가 되도록 순차적으로 도포하였다. 상기 광원으로는 Heraeus 사 400mm 제논램프와 PSTEK 사의 HI-PULSE 45000 전원공급장치로 구성된 광소결 시스템의 광원을 사용하였다. 그리고, 나노 탄소 페이스 측으로 광을 조사하여 광소결시켜 방열층을 형성하였고, 이를 히트 싱크와 접착하여 조명 장치를 제조하였다. 상기 광소결은 제논 램프에서 인가되는 백색광을 사용하였고, 인가 전압은 500V, 펄스 수는 30회, 펄스 폭은 2.0ms, 펄스 간격은 1Hz, 소결 분위기는 대기 분위기를 사용하였다.The metal paste (A) and the nano carbon paste (B) prepared in Preparation Example were sequentially applied on a light source so that the content of the nano carbon tube was 2% by weight based on the total weight of copper. As the light source, a light source of an optical sintering system composed of a 400mm xenon lamp from Heraeus and a HI-PULSE 45000 power supply from PSTEK was used. In addition, light was irradiated to the nano carbon face side to lightly sinter to form a heat dissipating layer, which was bonded to a heat sink to manufacture a lighting device. The light sintering was performed using white light applied from a xenon lamp, the applied voltage was 500V, the number of pulses was 30 times, the pulse width was 2.0ms, the pulse interval was 1Hz, and the sintering atmosphere was used as an atmospheric atmosphere.
실시예 2Example 2
제조예에서 제조된 금속 페이스트(A)와 나노 탄소 페이스트(B)을 열원 상에 순차적으로 도포하고, 광소결의 인가 전압 300V 사용한 것을 제외하고 실시예 1과 동일한 방법으로 방열 모듈 및 조명 장치를 제조하였다.A heat dissipation module and a lighting device were manufactured in the same manner as in Example 1, except that the metal paste (A) and the nano-carbon paste (B) prepared in Preparation Example were sequentially applied on a heat source, and an applied voltage of 300 V for light sintering was used. .
실시예 3Example 3
제조예에서 제조된 금속 페이스트(A)와 나노 탄소 페이스트(B)을 열원 상에 순차적으로 도포하고, 광소결의 인가 전압 700V 사용한 것을 제외하고 실시예 1과 동일한 방법으로 방열 모듈 및 조명 장치를 제조하였다.A heat dissipation module and a lighting device were manufactured in the same manner as in Example 1, except that the metal paste (A) and the nano-carbon paste (B) prepared in Preparation Example were sequentially applied on a heat source, and an applied voltage of 700 V for light sintering was used. .
실시예 4Example 4
제조예에서 제조된 금속 페이스트(A)와 나노 탄소 페이스트(B)을 열원 상에 순차적으로 도포하고, 광소결의 인가 전압 700V, 펄스 폭 2.5ms를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 방열 모듈 및 조명 장치를 제조하였다.The heat dissipation module in the same manner as in Example 1 except that the metal paste (A) and the nano-carbon paste (B) prepared in Preparation Example were sequentially applied on the heat source, and the applied voltage of light sintering was 700 V and a pulse width of 2.5 ms was used. And a lighting device.
비교예 1Comparative Example 1
금속 페이스트(A)와 나노 탄소 페이스트(B) 없이 실시예 1과 동일한 방법으로 방열 모듈 및 조명 장치를 제조하였다.A heat dissipation module and a lighting device were manufactured in the same manner as in Example 1 without the metal paste (A) and the nano carbon paste (B).
비교예 2Comparative Example 2
제조예에서 제조된 금속 페이스트(A)만 열원 상에 도포한 것을 제외하고 실시예 1과 동일한 방법으로 방열 모듈 및 조명 장치를 제조하였다.A heat dissipation module and a lighting device were manufactured in the same manner as in Example 1, except that only the metal paste (A) prepared in Preparation Example was applied on the heat source.
비교예 3Comparative Example 3
제조예에서 제조된 금속 페이스트(A)와 나노 탄소 페이스트(B)를 열원 상에 나노 탄소 튜브의 함량이 구리 총 중량에 대하여 3 중량%가 되도록 순차적으로 도포한 것을 제외하고 실시예 1과 동일한 방법으로 방열 모듈 및 조명 장치를 제조하였다.The same method as in Example 1, except that the metal paste (A) and the nano carbon paste (B) prepared in Preparation Example were sequentially applied to the heat source so that the content of the nano carbon tube was 3% by weight based on the total weight of copper. A heat dissipation module and a lighting device were manufactured.
실험예 1- 열전도성 평가 및 히트 싱크의 온도 평가 Experimental Example 1 -Evaluation of thermal conductivity and temperature of heat sink
방열층의 열전도성 측정은 상온에서 InSb 센서를 이용하여 네취사 장비(모델명: LFA467)로 ASTM E1461 기준에 근거하여 측정하였다. 그리고, 히트 싱크의 온도는 열전대로 히트싱크의 바닥부분 온도를 30분 이상 충분한 시간 동안 가열하였을 때 수렴한 온도를 측정하였고, 그 결과를 아래 표 3, 도 2 및 도 3에 나타내었다. 그 결과를 아래 표 3과 도 2에 나타내었다. 도 2는 실시예 및 비교예에서 제조된 방열층의 열전도도에 대한 그래프이고, 도 3은 실시예 및 비교예에서 제조된 히트 싱크의 온도에 대한 그래프이다.The thermal conductivity of the heat dissipation layer was measured at room temperature using an InSb sensor, based on ASTM E1461 standard with a NETZSCH equipment (model name: LFA467). In addition, the temperature of the heat sink was measured when the temperature at the bottom of the heat sink was heated for a sufficient period of time for 30 minutes or more with a thermocouple, and the results are shown in Table 3, FIGS. 2 and 3 below. The results are shown in Table 3 and FIG. 2 below. 2 is a graph of the thermal conductivity of the heat dissipating layer manufactured in Examples and Comparative Examples, and FIG. 3 is a graph of the temperature of the heat sink manufactured in Examples and Comparative Examples.
조건Condition 방열층의 열전도도(W/mK)Thermal conductivity of heat dissipation layer (W/mK) 히트싱크 온도(℃)Heat sink temperature (℃)
실시예 1Example 1 27.15±1.4027.15±1.40 70.970.9
실시예 2Example 2 20.24±1.8320.24±1.83 74.374.3
실시예 3Example 3 26.64±1.5526.64±1.55 71.371.3
실시예 4Example 4 25.81±1.1925.81±1.19 71.871.8
비교예 1Comparative Example 1 -- 107.5107.5
비교예 2Comparative Example 2 11.07±0.5211.07±0.52 84.184.1
비교예3Comparative Example 3 13.85±0.7413.85±0.74 82.082.0
실험예 2- 조명장치의 광학 스펙트럼 평가 Experimental Example 2 -Evaluation of the optical spectrum of the lighting device
실시예 1, 비교예 1 및 2에서 제조한 조명장치의 광원 작동 시 최대 강도 피크(Pmax)의 파장은 각각 618 nm, 685 nm, 655 nm 이였다. 그리고, 상기 조명 장치를 가속환경시험 조건인 85℃, 85% 상대습도에 3,000시간 노출 후 광속구로 스펙트럼을 측정하여 처음 측정된 가장 높은 세기의 피크(peak)이 얼마나 파장 시프트가 이루어졌는지 평가 비교하였다. 그 결과는 도 4 내지 6에 도시하였다. 도 4는 실시예 1에 따른 조명 장치의 광학 스펙트럼 평가 그래프이고, 도 5는 실시예 1에 따른 조명 장치의 광학 스펙트럼 평가 그래프이며, 도 6은 비교예 2에 따른 조명 장치의 광학 스펙트럼 평가 그래프이다. 도 4 내지 5를 참조하면, 실시예 1에 따른 조명 장치는 Pmax의 파장 시프트가 거의 이루어지지 않은 반면, 비교예 1 및 2에 따른 조명 장치는 Pmax의 파장 시프트가 30nm 이상 발생하는 것을 확인할 수 있었다. The wavelengths of the maximum intensity peaks (P max ) of the lighting devices prepared in Example 1 and Comparative Examples 1 and 2 when operating as a light source were 618 nm, 685 nm, and 655 nm, respectively. In addition, after 3,000 hours exposure of the lighting device to an accelerated environmental test condition of 85°C and 85% relative humidity, the spectrum was measured with a luminous flux to evaluate and compare how much the wavelength shift of the first measured peak of the highest intensity was achieved. . The results are shown in FIGS. 4 to 6. 4 is an optical spectrum evaluation graph of the lighting device according to Example 1, FIG. 5 is an optical spectrum evaluation graph of the lighting device according to Example 1, and FIG. 6 is an optical spectrum evaluation graph of the lighting device according to Comparative Example 2. . 4 to 5, it was confirmed that the lighting device according to Example 1 had almost no wavelength shift of P max , whereas the lighting devices according to Comparative Examples 1 and 2 had a wavelength shift of P max of 30 nm or more. Could.
부호의 설명Explanation of the sign
100: 열원 또는 광원100: heat source or light source
200: 방열층200: heat dissipation layer
300: 히트 싱크300: heat sink

Claims (11)

  1. 열원;Heat source;
    상기 열원으로부터 열을 방열시키기 위한 방열층; 및A heat dissipation layer for dissipating heat from the heat source; And
    상기 방열층 상에 마련된 히트 싱크를 포함하며,It includes a heat sink provided on the heat dissipation layer,
    상기 방열층은 광소결된 금속-나노탄소 복합체를 포함하고,The heat dissipation layer includes a photo-sintered metal-nanocarbon composite,
    상기 복합체에서 나노 탄소의 함량은 금속의 총 중량에 대하여 3중량%미만이며,The content of nano carbon in the composite is less than 3% by weight based on the total weight of the metal,
    상기 방열층의 열전도율은 15 내지 30W/mK인 방열 모듈.The heat dissipation module having a thermal conductivity of 15 to 30W/mK of the heat dissipation layer.
  2. 제 1 항에 있어서, 방열층은 열원의 일면에 금속 페이스트가 도포되고, 금속 페이스트 상에 나노탄소 페이스트가 도포된 후, 나노탄소 페이스트 측으로 광이 조사되어 광소결된, 방열 모듈.The heat dissipation module according to claim 1, wherein the heat dissipation layer is photo-sintered by irradiating light to the nano-carbon paste after a metal paste is applied to one surface of the heat source and a nano-carbon paste is applied on the metal paste.
  3. 제 1 항에 있어서, 상기 방열층은 1 내지 15 %의 기공도를 갖는, 방열 모듈. The heat dissipation module according to claim 1, wherein the heat dissipation layer has a porosity of 1 to 15%.
  4. 제 1 항에 있어서, 상기 금속은 은, 구리, 니켈, 금, 주석 및 알루미늄을 포함하는 그룹으로부터 선택된 하나 이상인, 방열 모듈.The heat dissipation module of claim 1, wherein the metal is at least one selected from the group comprising silver, copper, nickel, gold, tin, and aluminum.
  5. 제 1 항에 있어서, 상기 나노 탄소는, CNT, 그래핀, 플러렌 및 다이아몬드를 포함하는 그룹으로부터 선택된 하나 이상인, 방열 모듈.The heat dissipation module of claim 1, wherein the nano-carbon is at least one selected from the group comprising CNT, graphene, fullerene, and diamond.
  6. 제 1 항에 있어서, 상기 복합체는 15 내지 1000nm의 평균 입경을 갖는 방열 모듈.The heat dissipation module of claim 1, wherein the composite has an average particle diameter of 15 to 1000 nm.
  7. 제 1 항에 있어서, 상기 방열층은 0.1 내지 5㎛의 두께를 갖는 방열 모듈.The heat dissipation module of claim 1, wherein the heat dissipation layer has a thickness of 0.1 to 5 μm.
  8. 제 1 항에 있어서, 상기 방열층은 열원과 마주하는 제1 면 및 제1 면의 반대방향의 제2 면을 갖고, The method of claim 1, wherein the heat dissipation layer has a first surface facing the heat source and a second surface opposite to the first surface,
    제1 면과 제2 면의 접착 강도가 상이한, 방열 모듈.The heat dissipation module, wherein the first and second surfaces have different adhesive strengths.
  9. 광원;Light source;
    상기 열원으로부터 열을 방열시키기 위한 방열층; 및A heat dissipation layer for dissipating heat from the heat source; And
    상기 방열층 상에 마련된 히트 싱크를 포함하며,It includes a heat sink provided on the heat dissipation layer,
    상기 방열층은 광소결된 금속-나노탄소 복합체를 포함하고,The heat dissipation layer includes a photo-sintered metal-nanocarbon composite,
    상기 복합체에서 나노 탄소의 함량은 금속의 총 중량에 대하여 3중량% 미만이며,The content of nano-carbon in the composite is less than 3% by weight based on the total weight of the metal,
    상기 방열층의 열전도율은 15 내지 30W/mK인 조명 장치.A lighting device having a thermal conductivity of 15 to 30W/mK of the heat dissipation layer.
  10. 제 9 항에 있어서, 하기 일반식 1을 만족하는, 조명 장치.The lighting device according to claim 9, which satisfies the following general formula (1).
    [일반식 1][General Formula 1]
    △Pmax<30nm△P max <30nm
    상기 일반식 1에서, △Pmax는 조명 장치의 광원 작동 시 최대 강도 피크(Pmax)의 파장을 측정한 후, 85℃, 85% 상대습도에서 3,000시간 노출하였을 때 상기 최초 측정한 최대 강도 피크(Pmax)의 파장 시프트를 나타낸다.In General Formula 1, ΔP max is the first measured maximum intensity peak when exposed for 3,000 hours at 85°C and 85% relative humidity after measuring the wavelength of the maximum intensity peak (P max ) when the light source of the lighting device is operated. It represents the wavelength shift of (P max ).
  11. 제 9 항에 있어서, 광원 작동 시, 히트 싱크의 온도는 75℃이하로 유지되는, 조명 장치.The lighting device according to claim 9, wherein when the light source is operated, the temperature of the heat sink is maintained below 75°C.
PCT/KR2019/015772 2019-11-18 2019-11-18 Heat dissipation module comprising heat dissipation layer comprising light-sintered metal-nano composite, and lighting device comprising same WO2021100888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/015772 WO2021100888A1 (en) 2019-11-18 2019-11-18 Heat dissipation module comprising heat dissipation layer comprising light-sintered metal-nano composite, and lighting device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/015772 WO2021100888A1 (en) 2019-11-18 2019-11-18 Heat dissipation module comprising heat dissipation layer comprising light-sintered metal-nano composite, and lighting device comprising same

Publications (1)

Publication Number Publication Date
WO2021100888A1 true WO2021100888A1 (en) 2021-05-27

Family

ID=75981630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015772 WO2021100888A1 (en) 2019-11-18 2019-11-18 Heat dissipation module comprising heat dissipation layer comprising light-sintered metal-nano composite, and lighting device comprising same

Country Status (1)

Country Link
WO (1) WO2021100888A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108938A (en) * 2010-08-17 2013-05-15 株式会社百奥尼 Low heat capacity composite for thermal cycler
US20150252241A1 (en) * 2012-10-17 2015-09-10 Lms Co.,Ltd Coated particle, composition including same, and heat transfer sheet
KR20160119551A (en) * 2015-04-06 2016-10-14 한양대학교 산학협력단 Composition for forming conductive copper pattern by light sintering including carbon nanostructures, method for preparing conductive copper pattern by light sintering, and electronic device including the conductive copper pattern prepared therefrom
KR101765857B1 (en) * 2015-12-02 2017-08-10 주식회사 아모센스 Led lighting device
KR20170135311A (en) * 2016-05-31 2017-12-08 한국전기연구원 Metal/two-dimensional nanomaterial hybrid heating element and manufacturing method the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108938A (en) * 2010-08-17 2013-05-15 株式会社百奥尼 Low heat capacity composite for thermal cycler
US20150252241A1 (en) * 2012-10-17 2015-09-10 Lms Co.,Ltd Coated particle, composition including same, and heat transfer sheet
KR20160119551A (en) * 2015-04-06 2016-10-14 한양대학교 산학협력단 Composition for forming conductive copper pattern by light sintering including carbon nanostructures, method for preparing conductive copper pattern by light sintering, and electronic device including the conductive copper pattern prepared therefrom
KR101765857B1 (en) * 2015-12-02 2017-08-10 주식회사 아모센스 Led lighting device
KR20170135311A (en) * 2016-05-31 2017-12-08 한국전기연구원 Metal/two-dimensional nanomaterial hybrid heating element and manufacturing method the same

Similar Documents

Publication Publication Date Title
KR101125266B1 (en) Heat radiating sheet comprising adhesives with improved heat conductivity
KR100714325B1 (en) Process for improving the emission of electron field emitters
WO2016093617A1 (en) Heat radiation sheet
WO2014185101A1 (en) Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board
CN109181511B (en) High-thermal-conductivity insulating water-based paint
CN104152035A (en) Oil-based radiation heat-loss paint and preparation method thereof
WO2012058847A1 (en) Aluminium alloy material and method for preparing aluminium alloy back board
WO2018232804A1 (en) Method for preparing led device
KR102111551B1 (en) Material for radiating Heat and Method of forming the same
WO2021100888A1 (en) Heat dissipation module comprising heat dissipation layer comprising light-sintered metal-nano composite, and lighting device comprising same
JP2024508000A (en) Electric infrared heating film, its preparation method, electric infrared heating device
KR101856665B1 (en) Heat-radiating coating composition and preparation method thereof
WO2013081269A1 (en) Explosion-proof led-type lamp
KR101333260B1 (en) Resin compositon for highly thermal conductive insulating materail and insulating fime
KR102336503B1 (en) Lighting device including metal-nanocarbon composite intense-pulsed-light sintered
KR102115349B1 (en) Thermal adhesive containing tetrapod ZnO and alumina nanofiber
WO2015093825A1 (en) High-heat dissipation ceramic composite, method for manufacturing same, and use thereof
KR102201539B1 (en) A metal matrix composite substrate and the preparation method thereof
KR101977125B1 (en) method for fabricating PCB using carbon-based materal for LED lighting
KR102293022B1 (en) Heat dissipation module including metal-nanocarbon composite intense-pulsed-light sintered
WO2021015580A1 (en) Thermal dissipation composite material and manufacturing method thereof
KR101894522B1 (en) method for fabricating heat-disspating PCB using carbon-based materal for LED lighting
WO2021137363A1 (en) Carbon nanotube (cnt) paste emitter, method for manufacturing same, and x-ray tube apparatus using same
KR101856666B1 (en) Heatsink for LED and fabrication method thereof
KR102015915B1 (en) Heat discharging sheet and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953549

Country of ref document: EP

Kind code of ref document: A1