WO2021100876A1 - Zirconia composition, zirconia calcined body, and zirconia sintered body, and production method therefor - Google Patents

Zirconia composition, zirconia calcined body, and zirconia sintered body, and production method therefor Download PDF

Info

Publication number
WO2021100876A1
WO2021100876A1 PCT/JP2020/043513 JP2020043513W WO2021100876A1 WO 2021100876 A1 WO2021100876 A1 WO 2021100876A1 JP 2020043513 W JP2020043513 W JP 2020043513W WO 2021100876 A1 WO2021100876 A1 WO 2021100876A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
sintered body
temperature
composition
producing
Prior art date
Application number
PCT/JP2020/043513
Other languages
French (fr)
Japanese (ja)
Inventor
恭敬 工藤
紘之 坂本
承央 伊藤
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to CN202080080453.3A priority Critical patent/CN114650967A/en
Priority to JP2021512288A priority patent/JP6920573B1/en
Publication of WO2021100876A1 publication Critical patent/WO2021100876A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel

Definitions

  • the present disclosure relates to compositions primarily containing zirconia (zirconium oxide (IV); ZrO 2).
  • the present disclosure also relates to a calcined body and a sintered body of zirconia. Furthermore, the present disclosure relates to a method for producing a zirconia composition, a calcined body and a sintered body.
  • Zirconia is a compound in which a phase transition occurs between a plurality of crystal systems. Therefore, yttria (yttrium oxide; Y 2 O 3) a stabilizing agent phase transition is suppressed by a solid solution in the zirconia partially stabilized zirconia, such as (PSZ; Partially-Stabilized Zirconia) and fully stabilized zirconia various fields It is used in.
  • yttria yttrium oxide; Y 2 O 3
  • PSZ Partially-Stabilized Zirconia
  • Patent Document 1 discloses a partially stabilized zirconia sintered body for use in dental materials.
  • the translucent zirconia sintered body described in Patent Document 1 is produced by sintering a press-molded zirconia powder under the conditions of 1450 ° C., a heating rate of 300 ° C./hr, and a holding time of 2 hours.
  • the zirconia powder contains 2 to 4 mol% yttria and 0.1 to 0.2 wt% alumina, has a BET specific surface area of 5 to 15 m 2 / g, and has an average particle size of 0.3 to 0. It is 7 ⁇ m.
  • a tooth serving as an abutment is formed by cutting a caries-affected part, and a zirconia crown processed to fit the abutment tooth is used by coalescing. There is a use.
  • the zirconia crown is required to have a certain degree of low translucency (high shielding property) in order to shield the discolored abutment tooth.
  • the zirconia described in Patent Document 1 has insufficient shielding property.
  • the zirconia sintered body obtained by sintering zirconia particles (powder) usually has high strength, it is not easy to directly machine the zirconia sintered body into a desired shape. Therefore, in the molding of the zirconia sintered body, a press-molded body of zirconia powder (including a molded body subjected to CIP (Cold Isostatic Pressing) treatment) is fired at a temperature that does not lead to sintering ( It may be performed in a calcined body that has been blocked by (hereinafter referred to as "temporary firing").
  • CIP Cold Isostatic Pressing
  • the block body of the zirconia calcined body is formed into a desired shape by cutting or the like, and the molded calcined body is fired at a temperature higher than the sinterable temperature to prepare a zirconia sintered body having a desired shape.
  • a zirconia sintered body containing a colorant is produced so as to have a color close to that of natural teeth.
  • the zirconia powder press-molded product When the zirconia powder press-molded product is fired, it shrinks depending on the firing temperature. For example, a press-molded body shrinks about 1% when it becomes a calcined body by firing, and shrinks about 20% when it becomes a sintered body. Therefore, in consideration of these shrinkage rates, the calcined body is molded to be larger than the size of the sintered body, which is the final target product. For example, the size of the molded calcined body was calculated by subtracting the shrinkage rate from the press-molded body to the calcined body from the shrinkage rate from the powder press-molded body to the sintered body. Determined based on the coefficient.
  • the holding time at the maximum firing temperature is 2 hours.
  • Such long-term firing lowers production efficiency and increases energy costs.
  • the patient cannot be treated with the prosthesis on the day of the examination and another day to be treated with the prosthesis. I have to go to the hospital again.
  • the zirconia powder as described in Patent Document 1 if the holding time at the maximum firing temperature is shortened, the zirconia powder becomes cloudy and the color development deteriorates.
  • the present inventors have a specific crystal system, have an average particle size of specific zirconia particles, and develop a specific saturation at the time of firing.
  • the present invention includes the following.
  • the zirconia powder contains zirconia particles having an average particle size of more than 0.17 ⁇ m and 0.4 ⁇ m or less.
  • At least a part of the stabilizer is not dissolved in zirconia.
  • (3) When the composition was fired at 1300 to 1600 ° C., the saturation C * (30) of the sintered body when held at the temperature for 30 minutes and the sintered body when held at the temperature for 120 minutes.
  • the ratio C * (30) / C * (120) of saturation C * (120) is 0.4 or more.
  • I m (111) and I m (11-1) shows a peak intensity of (111) plane of the monoclinic zirconia in the X-ray diffraction pattern and (11-1) plane
  • I t (111) indicates the peak intensity of the (111) plane of tetragonal zirconia in the X-ray diffraction pattern
  • I c (111) indicates the peak intensity of cubic (111) plane of the zirconia in the X-ray diffraction pattern.
  • a method for producing a zirconia calcined body which is produced by using the zirconia composition according to any one of [1] to [10].
  • the method for producing a zirconia calcined product according to [11] which comprises firing a press-molded product composed of the zirconia composition according to any one of [1] to [10] at 800 to 1200 ° C.
  • a first molded product is obtained by molding a zirconia composition containing the zirconia powder according to any one of [1] to [10] and a stabilizer capable of suppressing the phase transition of the zirconia powder.
  • the mixture of the zirconia powder and the stabilizer is pulverized so that the zirconia powder contains the average particle size of the zirconia particles of more than 0.17 ⁇ m and 0.4 ⁇ m or less.
  • a calcining step of firing the first molded body at a temperature at which zirconia particles do not reach sintering is further included to prepare a zirconia calcined body.
  • a second molding step of molding the zirconia calcined body to prepare a second molded body is further included.
  • the method for producing a zirconia sintered body according to [20] wherein the second molded body is fired in the sintering step.
  • the zirconia sintered body having high shielding properties and good color development while shortening the production time of the sintered body.
  • the production efficiency of the product can be increased and the energy cost can be reduced.
  • the zirconia sintered body is applied to a dental prosthesis, the time burden on the patient can be reduced.
  • since it has excellent shielding properties it is possible to shield the color of the discolored abutment tooth, and the zirconia sintered body is used for dental treatment of a patient having the abutment tooth discolored due to a lesion or lifestyle. It can be suitably applied as a prosthesis.
  • the zirconia composition of the present disclosure contains a zirconia powder and a stabilizer capable of suppressing the phase transition of the zirconia powder, and satisfies all of the following (1) to (3).
  • the zirconia powder contains zirconia particles having an average particle size of more than 0.17 ⁇ m and 0.4 ⁇ m or less.
  • At least a part of the stabilizer is not dissolved in zirconia.
  • the ratio C * (30) / C * (120) of the saturation C * (120) is 0.4 or more.
  • the zirconia composition in the present disclosure can be a precursor (intermediate product) of a zirconia sintered body and a calcined product.
  • the zirconia composition of the present disclosure contains a zirconia powder and a stabilizer capable of suppressing the phase transition of zirconia.
  • the stabilizer is preferably one capable of forming partially stabilized zirconia.
  • As the stabilizer for example, calcium oxide (CaO), magnesium oxide (MgO), yttria (yttrium oxide; Y 2 O 3), cerium oxide (CeO 2), scandium oxide (Sc 2 O 3), lanthanum oxide ( La 2 O 3 ), Elbium Oxide (Er 2 O 3 ), Placeodym Oxide (Pr 6 O 11 ), Samalium Oxide (Sm 2 O 3 ), Europium Oxide (Eu 2 O 3 ) and Thurium Oxide (Tm 2 O 3 ) Oxides such as.
  • the content of the stabilizer in the zirconia composition, calcined body and sintered body can be measured by, for example, inductively coupled plasma (ICP) emission spectroscopic analysis, fluorescent X-ray analysis and
  • the stabilizer exists so that at least a part of the zirconia crystals is monoclinic. It is important that at least some of the stabilizers are not dissolved in zirconia. It can be confirmed by, for example, an X-ray diffraction (XRD) pattern that a part of the stabilizer is not dissolved in zirconia. When a peak derived from the stabilizer is confirmed in the XRD pattern of the zirconia composition, it means that the stabilizer that is not dissolved in zirconia is present in the zirconia composition.
  • XRD X-ray diffraction
  • the stabilizer When the entire amount of the stabilizer is dissolved, basically no peak derived from the stabilizer is confirmed in the XRD pattern. However, depending on the conditions such as the crystal state of the stabilizer, the stabilizer may not be dissolved in zirconia even when the peak of the stabilizer does not exist in the XRD pattern. If the predominant crystal system of zirconia is tetragonal and / or cubic and there are no stabilizer peaks in the XRD pattern, then most, essentially all, of the stabilizer will be zirconia. It is considered that it is solidly dissolved.
  • the stabilizer is yttria.
  • the yttria content is preferably 3 mol% or more with respect to the total mol of zirconia and yttria, and when combined with zirconia powder having a predetermined average particle size, the discolored abutment tooth color is sufficiently obtained. From the viewpoint of being able to shield and having more excellent shielding property, it is more preferably 3.3 mol% or more, and further preferably 3.5 mol% or more. When the yttria content is 3 mol% or more, the phase transformation of the zirconia sintered body can be suppressed.
  • the yttria content is preferably 7.5 mol% or less, more preferably 7 mol% or less, still more preferably 6.5 mol% or less, based on the total mol of zirconia and yttria. , 6 mol% or less is particularly preferable.
  • the yttria content is 7.5 mol% or less, the decrease in strength of the zirconia sintered body can be suppressed.
  • Prevalence f y yttria that is not solid solution in the zirconia in the zirconia compositions of the present disclosure can be calculated based on the following equation (i).
  • Prevalence f y undissolved yttria preferably greater than 0%, more preferably 1% or more, more preferably 2% or more, and still further preferably 3% or more.
  • the preferable upper limit of the existence ratio f y undissolved yttria is dependent on the content of yttria in zirconia composition.
  • f y When the content of yttria is less than 7.5 mol% relative to the total mol of zirconia and yttria, from the viewpoint of short firing, f y can be 15% or less. For example, when the content of yttria is not more than 3.5 mol% or more 4.5 mol%, f y may be 7% or less. When the yttria content is more than 4.5 mol% and 6 mol% or less, fy can be 10% or less. When the content of yttria is not more than 6 mol% ultra 7.5 mol%, f y may be a 11% or less.
  • I m (111) and I m (11-1) shows a peak intensity of zirconia monoclinic (111) plane and (11-1) plane.
  • I t (111) indicates the peak intensity of the (111) plane of tetragonal zirconia.
  • I c (111) indicates the peak intensity of the (111) plane of the cubic system of zirconia.
  • the main crystal system of zirconia in the zirconia composition of the present disclosure is preferably a monoclinic system.
  • the main crystal system is a monoclinic system
  • XRD by CuK ⁇ ray with respect to the total amount of all crystal systems (monoclinic system, square system and cubic system) in zirconia. is calculated by the following equation (ii) based on the peak, the ratio f m of monoclinic zirconia refers to those accounts for 55% or more.
  • the meaning of each symbol in the mathematical formula (ii) is the same as that in the mathematical formula (i).
  • the ratio f m of monoclinic zirconia is at least 55%, more preferably 60% or more, more preferably 70% or more, 80 % Or more is even more preferable, 90% or more is particularly preferable, and 95% or more is most preferable.
  • the main crystal system in the zirconia composition may contribute to raising the shifting temperature and shortening the firing time.
  • the zirconia composition of the present disclosure contains zirconia powder.
  • the powder may be an aggregate of granules.
  • Granules are aggregates of primary particles and / or secondary particles in which primary particles are aggregated.
  • the "primary particle” in the present disclosure means a spherical particle having the smallest unit.
  • primary particles refer to spheres that appear to be in a separable state without being bonded to each other in an electron microscope (for example, a scanning electron microscope).
  • the "secondary particles” referred to in the present disclosure refer to particles in a state in which particles that look like primary particles in an electron microscope are aggregated.
  • the secondary particles also include agglomerates in which the primary particles are crushably attached, and agglomerates in which the primary particles are inseparably fused to form a single particle. In the electron microscope image, the secondary particles are often not spherical and have a distorted shape.
  • the particles constituting the granules are mainly primary particles.
  • the number of primary particles is preferably larger than the number of secondary particles.
  • the average particle size of the zirconia particles in the present disclosure is important to exceed 0.17 ⁇ m, preferably 0.18 ⁇ m or more, preferably 0.19 ⁇ m or more when measured by the laser diffraction / scattering type particle size distribution measuring method. Is more preferable. Since the zirconia powder contains zirconia particles having an average particle size of more than 0.17 ⁇ m, the shielding property is excellent. Further, when the zirconia powder contains only zirconia particles having an average particle size of 0.17 ⁇ m or less, the shielding property becomes insufficient. Further, it is important that the average particle size is 0.40 ⁇ m or less, preferably 0.35 ⁇ m or less, and more preferably 0.30 ⁇ m or less.
  • the "average particle size of zirconia particles” in the present disclosure is a particle size measured without distinguishing between primary particles and secondary particles. In one preferred embodiment, “average particle size of zirconia particles” means primary particles. In another preferred embodiment, “average particle size of zirconia particles” means secondary particles. When the zirconia powder is granules, it refers to the average particle size of the particles constituting the granules.
  • the laser diffraction / scattering method uses, for example, a laser diffraction type particle size distribution measuring device (“SALD-2300” manufactured by Shimadzu Corporation, etc.) and ethanol or a 0.2% sodium hexametaphosphate aqueous solution as a dispersion medium on a volume basis. Can be measured.
  • SALD-2300 laser diffraction type particle size distribution measuring device
  • ethanol or a 0.2% sodium hexametaphosphate aqueous solution as a dispersion medium on a volume basis. Can be measured.
  • the BET specific surface area of the zirconia powder in the present disclosure is preferably 7.0 m 2 / g or more, and more preferably 7.5 m 2 / g or more when measured in accordance with JIS Z 8830 (2013). It is preferably 8 m 2 / g or more, and more preferably 8 m 2 / g or more. If it is less than 7.0 m 2 / g, it is difficult to sinter, or even if it can be sintered, the sintered body becomes cloudy.
  • the BET specific surface area is preferably 30 m 2 / g or less, more preferably 25 m 2 / g or less, and even more preferably 20 m 2 / g or less.
  • the BET specific surface area referred to here is a specific surface area measured without distinguishing between primary particles and secondary particles.
  • zirconia powders in the zirconia composition of the present disclosure 50% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more of the zirconia powder can take the granular form.
  • the average particle size of the granules (secondary particles) in the zirconia composition of the present disclosure is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more. It is more preferably 14 ⁇ m or more. If the average particle size of the granules is less than 10 ⁇ m, air may be entrained when the granules are placed in a mold, deaeration may be insufficient during molding, and a uniform and dense molded product may not be produced. In addition, granules may be ejected from the gap during molding to produce a molded product that does not meet a predetermined required amount.
  • the average particle size of the granules is preferably 200 ⁇ m or less, more preferably 190 ⁇ m or less, further preferably 180 ⁇ m or less, further preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less. preferable. If the average particle size of the granules exceeds 200 ⁇ m, cavities are likely to be formed inside the granules. In addition, gaps are likely to occur when the granules are placed in the mold. Due to these phenomena, deaeration may be insufficient during molding, and a dense molded product may not be produced. In addition, shrinkage becomes large during molding, and there is a possibility that a molded body having a desired size cannot be manufactured.
  • the average particle size of the granules is preferably measured by a method that does not destroy the granules.
  • the average particle size of the granules can be measured by, for example, a dry sieving method or a wet sieving method.
  • the dry sieving method can be measured according to the sieving test method described in JIS Z 8815: 1994, and manual sieving and mechanical sieving can be used, and mechanical sieving is preferable.
  • the sieve used in the sieving method the sieve described in JIS Z 8801-1: 2019 test sieve can be used.
  • the measuring device used in the sieving method for example, a low-tap type sieving shaker or a sonic vibration type sieving measuring device can be used for measurement.
  • Examples of the low-tap type sieve shaker include “RPS-105M” manufactured by Seishin Enterprise Co., Ltd.
  • Examples of the sonic vibration type sieving measuring instrument include “Robot Shifter RPS-01” and “Robot Shifter RPS-02” manufactured by Seishin Enterprise Co., Ltd.
  • the zirconia composition of the present disclosure has a high degree of sphericity of the granules.
  • the sphericity of the granules By increasing the sphericity of the granules, it is possible to cause mixing at the interface between the layers when zirconia powders with different compositions are laminated. Further, when zirconia powder is filled in a mold to prepare a molded product, even if the average particle size is the same, the higher the sphericity, the higher the packing density.
  • the strength of the sintered body can be increased by filling a specific mold (mold or the like) with zirconia powder or zirconia granules and increasing the packing density, which is the density of the molded product formed into a specific shape by pressure.
  • the sphericity of the granules can be represented by, for example, the circularity based on the projected image, the angle of repose, the light bulk density, the heavy bulk density, and the like.
  • the average circularity based on the projected image of the granules in the zirconia composition of the present disclosure is preferably 0.81 or more, more preferably 0.85 or more, still more preferably 0.90 or more. It is even more preferably 0.95 or more.
  • the circularity can be calculated as the ratio of the perimeter of a circle equal to the area of the granules to the perimeter of the granules in the projected image. That is, the circularity can be calculated from the following formula.
  • the angle of repose of the zirconia composition of the present disclosure is preferably 35 ° or less, more preferably 32 ° or less, further preferably 28 ° or less, still more preferably 26 ° or less. , 24 ° or less is particularly preferable.
  • the angle of repose can be measured in accordance with JIS R 9301-2-2: 1999.
  • the light bulk density of the zirconia composition of the present disclosure is preferably 1.0 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, and 1.2 g / cm 3 or more. It is more preferably 1.3 g / cm 3 or more, and particularly preferably 1.3 g / cm 3. Light bulk density can be measured in accordance with JIS R9301-2-3: 1999.
  • the heavy bulk density of the zirconia composition of the present disclosure is preferably 1.3 g / cm 3 or more, more preferably 1.4 g / cm 3 or more, and 1.5 g / cm 3 or more. Is even more preferable.
  • the heavy bulk density can be measured according to JIS R 9301-2-3: 1999.
  • the zirconia composition of the present disclosure may contain additives other than the zirconia powder and the stabilizer.
  • Additives include, for example, colorants (including pigments, composite pigments and fluorescent agents), binders, dispersants, defoamers, alumina (Al 2 O 3 ), titanium oxide (TIO 2 ), silica (SiO 2 ). And so on.
  • colorants including pigments, composite pigments and fluorescent agents
  • binders include, for example, colorants (including pigments, composite pigments and fluorescent agents), binders, dispersants, defoamers, alumina (Al 2 O 3 ), titanium oxide (TIO 2 ), silica (SiO 2 ).
  • As the additive one kind may be used alone, or two or more kinds may be used in combination. The content of these additives can be appropriately set in consideration of the desired saturation C *.
  • the colorant is selected from the group of, for example, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Sb, Bi, Ce, Pr, Sm, Eu, Gd, Tb and Er.
  • examples thereof include oxides of at least one element (specifically, NiO, Cr 2 O 3, etc.).
  • the composite pigment include (Zr, V) O 2 , Fe (Fe, Cr) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4 ⁇ ZrSiO 4 , (Co, Zn) Al. composite oxides such as 2 O 4.
  • Examples of the fluorescent agent include Y 2 SiO 5 : Ce, Y 2 SiO 5 : Tb, (Y, Gd, Eu) BO 3 , Y 2 O 3 : Eu, YAG: Ce, ZnGa 2 O 4 : Zn, BaMgAl. 10 O 17 : Eu and the like can be mentioned.
  • binder examples include an organic binder.
  • acrylic binders, paraffin binders, fatty acid binders, polyvinyl alcohol binders and the like can be mentioned.
  • the zirconia composition of the present disclosure may be in a dry state, may be in a state containing a liquid, or may be in a state of being contained in a liquid.
  • the zirconia composition can be in the form of powder, paste, slurry or the like.
  • the zirconia composition may be a molded product having a predetermined shape (hereinafter referred to as "first molded product").
  • Density of the first molded body is preferably at 2.75 g / cm 3 or more, more preferably 2.80 g / cm 3 or more, still more preferably 2.85 g / cm 3 or more, more preferably more that it is 2.90 g / cm 3 or more, particularly preferably 3.00 g / cm 3 or more.
  • the density can be calculated as, for example, (mass of the first molded product) / (volume of the first molded product).
  • the degree of color development of the zirconia sintered body can be represented by the saturation C * , and the zirconia composition of the present invention has a saturation C * of 3 or more when fired at 1300 to 1600 ° C. Is preferable, 5 or more is more preferable, and 7 or more is further preferable.
  • the saturation C * in the present invention is the C * value of the chromaticity (color space) in the L * a * b * color system (JIS Z 8781-4: 2013), and is a zirconia firing having a thickness of 1.2 mm. It can be calculated by using the formula (iii) from the a * value and b * value measured with the background of the boiled sample black.
  • the saturation C * when firing at at least one temperature in the range of 1300 to 1600 ° C. satisfies the above range.
  • C * ⁇ (a * ) 2 + (b * ) 2 ⁇ (1/2) (iii)
  • the zirconia composition for example, granules
  • CIP molding for example, a disk having a diameter of 19 mm.
  • a shaped molded product can be produced.
  • the molded product can be fired under predetermined firing conditions to prepare a sample zirconia sintered body having a thickness of 1.2 mm.
  • a color difference meter for example, dental color measuring device "Crystal Eye CE100-DC / JP" (manufactured by Olympus Corporation)).
  • the a * value and b * value of a black background can be measured using the soft "Crystal Eye” (manufactured by Olympus Corporation).
  • the black background means the black part of the concealment rate test paper described in JIS K 5600-4-1: 1999, Part 4, Section 1.
  • As the contact liquid for example, one having a refractive index nD measured at a measurement wavelength of 589 nm (sodium D line) and having a refractive index of 1.60 can be used.
  • the zirconia composition of the present invention shows good color development even when fired for a short time, and a zirconia sintered body showing a desired saturation C * can be obtained.
  • the saturation C * (30) of the sintered body when held at the above temperature for 30 minutes and the saturation C * (30) when held at the above temperature for 120 minutes It is important that the ratio C * (30) / C * (120) of the saturation C * (120) of the sintered body is 0.4 or more, preferably 0.6 or more, and 0.8 The above is more preferable, 0.9 or more is further preferable, and 0.93 or more is particularly preferable.
  • C * (30) / C * (120) is less than 0.4, the color development during short-time firing is poor, and the desired saturation C * cannot be obtained.
  • the saturation ratio C * (30) / C * (120) when firing at at least one specific temperature satisfies the above range.
  • the zirconia composition as described above is calcined at a temperature in the range of 1300 to 1600 ° C. and directly sintered.
  • a sample that has passed through the baked state for example, a sample of a zirconia sintered body that is first fired at a temperature in the range of 800 to 1200 ° C. to obtain a zirconia calcined product and then fired at a temperature in the range of 1300 to 1600 ° C. You may use it.
  • the shrinkage rate from the press-molded zirconia to the sintered body is not constant with respect to the firing temperature, and the shrinkage rate is low up to a certain temperature, but the shrinkage rate is high at the certain temperature.
  • the temperature at which the contraction speed changes is referred to as "shift temperature" in the present disclosure.
  • the shifting temperature can be set to 1050 ° C. or higher, preferably 1100 ° C. or higher.
  • the shrinkage rate to the calcined body is achieved between the plurality of press-molded bodies. It is preferable that the variation of is small. If the shrinkage rate varies widely, when the calcined product is molded, the same coefficient is applied to the lot to determine the dimensions of the molded product, and zirconia sintering does not have the desired dimensions. The body is obtained. This point is particularly problematic in the case of products such as dental prostheses that require a high degree of dimensional accuracy. Therefore, a block body whose shrinkage rate is out of the permissible range in one lot cannot be used as a product, and the yield is lowered.
  • the variation in the shrinkage rate in one lot can be reduced with respect to the firing temperature (for example, about 1000 ° C.) for producing the block body of the zirconia calcined body.
  • the maximum firing temperature for producing a zirconia calcined body (hereinafter referred to as "temporary calcining temperature") is close to the shifting temperature.
  • temporary calcining temperature Normally, at the calcining temperature, a temperature difference (temperature unevenness) of about 20 to 50 ° C. occurs in the firing furnace. Therefore, when the shifting temperature is near the calcining temperature, the lot of the composition is strongly affected by this temperature unevenness.
  • the shrinkage rate is significantly different between the zirconia calcined body in the place where the temperature is low and the zirconia calcined product in the place where the temperature is high. Since the zirconia calcined product whose shrinkage rate is out of the allowable range cannot be produced as a product, the yield is lowered.
  • the zirconia composition of the present disclosure the shifting temperature can be raised and the difference between the shifting temperature and the calcining temperature can be reduced. Therefore, in one lot, the difference in shrinkage between the zirconia calcined body in the low temperature portion and the zirconia calcined product in the high temperature portion can be reduced.
  • the shrinkage rate from the press-molded body to the calcined body is unidirectional. It is preferably 1% or less with respect to the dimension of.
  • the shrinkage rate from the press-molded body to the calcined body is unidirectional. It is preferably 5% or less with respect to the size.
  • a molded article obtained by press-molding zirconia powder at a predetermined pressure for example, 300 kg / cm 2
  • CIP treatment for example, 1700 kg / cm 2
  • zirconia composition of the present disclosure and the zirconia calcined product produced from the zirconia composition, it is possible to produce a final product (zirconia sintered body) with high dimensional accuracy regardless of any block body in one lot. it can.
  • the zirconia composition and the zirconia calcined product of the present disclosure are particularly useful for producing products (for example, dental products) that require a high degree of dimensional accuracy.
  • the zirconia composition and the zirconia calcined product of the present disclosure have further advantages.
  • the firing time for producing the zirconia sintered body can be shortened without lowering the strength of the produced zirconia sintered body.
  • the holding time at the maximum firing temperature for producing the zirconia sintered body can be shortened (short-time firing).
  • the production efficiency can be increased and the manufacturing cost can be reduced.
  • the mooring time for holding the zirconia composition or the zirconia calcined body in the firing furnace is preferably 60 minutes or less at the maximum firing temperature.
  • the zirconia composition and zirconia calcined body of the present disclosure are applied to a dental product, the time from determining the dimensions of the dental product to be used for treatment until the dental product can be treated. Can be shortened, and the time burden on the patient can be reduced.
  • the zirconia powder and the stabilizer are mixed at a predetermined ratio to prepare a mixture (mixing step).
  • the mixing ratio can be the same as the yttria content in the zirconia composition described above.
  • the mixing may be carried out dry or wet.
  • the zirconia composition of the present disclosure can be produced by pulverizing the mixture until it reaches the average particle size of the above-mentioned zirconia particles and, if necessary, the BET specific surface area of the zirconia powder (first pulverization). Process).
  • the mixing step and the first crushing step can be performed in the same step.
  • the pulverization can be carried out using a ball mill after dispersing the mixture in a solvent such as water.
  • the zirconia powder when the steps after the calcination step described later are not performed, has an average particle size of more than 0.17 ⁇ m and 0.4 ⁇ m due to the increase in the shifting temperature and / or the short-time firing. It comprises the step of grinding the mixture so as to include the following zirconia particles.
  • the average particle size can be measured by the laser diffraction / scattering type particle size distribution measuring method as described above.
  • the zirconia composition may be dried by spray drying with a spray dryer or the like to form the zirconia composition into the granule form as described above (first drying step). .. Thereby, the zirconia composition according to the present invention can be produced.
  • the mixture and / or the zirconia composition can be fired (ie, calcined) at a temperature at which the zirconia particles do not sinter (firing (temporary firing) step).
  • the firing conditions are preferably such that the main crystal system of zirconia when cooled after firing does not become a tetragonal system or a cubic system as described above. Further, the firing conditions are preferably such that at least a part of the stabilizer does not dissolve in zirconia.
  • the firing temperature is preferably 700 ° C. or higher, more preferably 800 ° C. or higher.
  • the firing temperature is preferably 1200 ° C. or lower, more preferably 1100 ° C. or lower, further preferably 1000 ° C. or lower, further preferably 980 ° C. or lower, and 950 ° C. or lower. It is particularly preferable to have. Firing can be performed in the atmosphere. By performing the calcining step, a part of the stabilizer is dissolved in zirconia, the stabilizer can be easily dissolved in the subsequent sintering step, and the properties of the zirconia sintered body are improved. It is thought that it can be done.
  • the zirconia composition can be dispersed in a solvent such as water to prepare a slurry, and additives such as a binder and a colorant can be added to the zirconia composition (addition step). ).
  • the zirconia composition can be pulverized to the average particle size of the zirconia particles described above, and if necessary, to the BET specific surface area of the zirconia powder described above (second pulverization step).
  • the addition step and the second pulverization step can be performed in the same step.
  • the second crushing step can be performed in the same manner as the first crushing step.
  • the zirconia composition may be dried by spray drying with a spray dryer or the like to form the zirconia composition into the granule form as described above (second drying step). ..
  • the zirconia composition can also be molded into a first molded product (first molding step).
  • the molding method is not limited to a specific method, and a suitable method can be appropriately selected depending on the intended purpose.
  • the zirconia composition can be molded by a molding method such as press molding, injection molding, or stereolithography to obtain a first molded body.
  • the zirconia composition may be press-molded and then further subjected to CIP treatment.
  • the above-mentioned additives such as binder and colorant can be appropriately added in each step.
  • the zirconia composition of the present invention can be produced.
  • Suitable methods for producing a zirconia composition include the above-mentioned production method capable of producing a zirconia composition capable of producing a zirconia composition having a high shifting temperature and / or a shortening of firing time for sintering. Shortening the baking time, the adjustment or selection of prevalence f y undissolved yttria described above, it can be adjusted by selection of the average particle diameter of the zirconia powder.
  • a zirconia calcined body can be suitably produced.
  • a zirconia sintered body can be suitably prepared by using the zirconia composition of the present disclosure or a zirconia calcined product prepared from the zirconia composition.
  • a specific description will be given.
  • the calcined product in the present disclosure can be a precursor (intermediate product) of a zirconia sintered body.
  • the zirconia calcined product may be, for example, a zirconia particle (powder) blocked in a state where it is not completely sintered.
  • the density of the zirconia calcined product of the present disclosure is preferably 2.7 g / cm 3 or more.
  • it said seal degree is preferably not more than 4.0 g / cm 3, more preferably 3.8 g / cm 3 or less, further preferably 3.6 g / cm 3 or less.
  • the density of the zirconia calcined body is within the range, the molding process can be easily performed.
  • the density can be calculated as, for example, (mass of calcined body) / (volume of calcined body).
  • the density of the zirconia calcined body is determined by filling the zirconia granules in a specific mold (mold, etc.) and heating the molded product, which has been shaped into a specific shape by pressure, at a temperature at which the binder can be removed to remove the binder, and then yttria. It means the density of the calcined body obtained by heating at a temperature at which it melts moderately and necking (fixation) is formed moderately.
  • the temperature at which the binder can be removed is not particularly limited as long as the binder can remove the binder, and may be 150 to 500 ° C.
  • the temperature at which yttria dissolves moderately and necking (fixation) forms moderately is not particularly limited, but may be 800 to 1050 ° C.
  • the preferable range of the content of the stabilizer in the zirconia calcined product of the present disclosure is the same as the content of the zirconia composition described above.
  • the stabilizer is preferably yttria.
  • the stabilizer is present so that at least a part of the zirconia crystals is monoclinic, that is, at least a part of the stabilizer is dissolved in zirconia. It is preferable not to.
  • the abundance of the stabilizer in the zirconia calcined body in an unsolid solution depends on the firing temperature at the time of preparing the zirconia calcined body, but is usually less than or equal to the abundance in the zirconia composition before the preparation of the zirconia calcined body. It is possible that there is.
  • Prevalence f y undissolved yttria in zirconia calcined body can be calculated based on the equation (i).
  • a preferred range of prevalence f y undissolved yttria in zirconia calcined body is the same as f y of the above-described zirconia composition.
  • the crystal system of zirconia in the zirconia calcined body of the present disclosure depends on the firing temperature at the time of preparing the zirconia calcined body, but is usually less than or equal to the ratio of the monoclinic system in the zirconia composition before the preparation of the zirconia calcined body. It is possible that there is.
  • Ratio f m of monoclinic in zirconia calcined body is monoclinic system, is preferably tetragonal and 60% or more with respect to the total amount of cubic, more preferably 70% or more , 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • the bending strength of the zirconia calcined product of the present disclosure measured in accordance with ISO6782: 2015 is preferably 15 MPa or more in order to secure the strength that enables mechanical processing. Further, the bending strength is preferably 70 MPa or less, and more preferably 60 MPa or less in order to facilitate mechanical processing.
  • the zirconia calcined product of the present disclosure can similarly contain the additives as described above for the zirconia composition.
  • the zirconia calcined body of the present disclosure may be a molded body having a predetermined shape (hereinafter referred to as "second molded body").
  • the zirconia calcined body can have a disc shape, a rectangular parallelepiped shape, and a dental product shape (for example, a crown shape).
  • Dental products for example, crown-shaped prostheses obtained by processing a calcined zirconia disc with a CAD / CAM (Computer-Aided Design / Computer-Aided Manufacturing) system are also included in the calcined body.
  • the zirconia calcined product of the present disclosure is produced so that the fluctuation of the shrinkage rate from the zirconia composition becomes small as described above.
  • the shrinkage rate from the calcined body to the sintered body can be made equal, and a zirconia sintered body having high dimensional accuracy can be produced.
  • the zirconia calcined product of the present disclosure as described above, a zirconia sintered body having high translucency can be produced even by firing for a short time. That is, the zirconia calcined product of the present disclosure has the above-mentioned advantages regarding short-time firing.
  • the zirconia calcined product of the present disclosure is produced by firing (that is, calcining) the press-molded product (first molded product) produced in the first molding step at a temperature at which the zirconia particles do not reach sintering. Can be done (temporary firing process). That is, as a method for producing the zirconia calcined product of the present disclosure, a production method including a calcining step of firing the first molded product at a temperature at which the zirconia particles do not reach sintering can be mentioned.
  • the manufacturing method may include a first molding step of molding a zirconia composition to prepare a first molded product. The first molding step is as described above for the zirconia composition.
  • the firing temperature is preferably, for example, 800 ° C. or higher, more preferably 900 ° C. or higher, and even more preferably 950 ° C. or higher in order to ensure blocking. Further, the firing temperature is preferably, for example, 1200 ° C. or lower, more preferably 1150 ° C. or lower, and further preferably 1100 ° C. or lower in order to improve the dimensional accuracy.
  • a press-molded product made of the zirconia composition of the present disclosure at 800 to 1200 ° C. to prepare a zirconia calcined product.
  • the zirconia powder before the first molding step, the zirconia powder is mixed with the zirconia powder so that the average particle size of the zirconia particles is more than 0.17 ⁇ m and 0.4 ⁇ m or less.
  • a pulverization step of pulverizing the mixture with the stabilizer to obtain a zirconia composition may be further included.
  • the crushing step is the same as the first crushing step.
  • the method for producing the zirconia calcined product of the present disclosure may further include a second pulverization step in addition to the first pulverization step or in place of the first pulverization step. The second pulverization step is as described above.
  • the method for producing the zirconia calcined product of the present disclosure may further include a drying step of atomizing the zirconia composition into granules before the first molding step.
  • the drying step is the same as the first drying step.
  • the method for producing the zirconia calcined product of the present disclosure may further include a second drying step in addition to or in place of the first drying step. The second drying step is as described above.
  • the zirconia calcined body of the present disclosure can be molded before the sintering step described later to produce a second molded body (second molding step).
  • the molding method is not limited to a specific method, and a suitable method can be appropriately selected depending on the intended purpose.
  • a second molded body can be produced by cutting a zirconia disc, which is also a zirconia calcined body, into the shape of a dental product (for example, a crown-shaped prosthesis) with a CAD / CAM system.
  • the zirconia calcined product of the present disclosure can be produced.
  • a suitable method for producing a zirconia calcined product is a method capable of producing a zirconia calcined product having a small fluctuation in shrinkage rate and / or producing a zirconia calcined product that can be fired for a short time.
  • Fluctuations in the shrinkage rate can be suppressed by adjusting the shifting temperature, selecting the main crystal system of zirconia, and the like.
  • the sintered body in the present disclosure can be said to be, for example, a zirconia particle (powder) that has reached a sintered state.
  • the relative density of the zirconia sintered body of the present disclosure is preferably 99.5% or more.
  • the relative density can be calculated as the ratio of the measured density measured by the Archimedes method to the theoretical density.
  • the relative density is the density d1 of a sintered body obtained by firing the molded product at a high temperature in a molded product obtained by filling a specific mold with zirconia particles or granules and forming a specific shape by pressure, theoretically (including voids inside). No) It means the value divided by the zirconia density d2.
  • the zirconia sintered body of the present disclosure includes not only a sintered body obtained by sintering molded zirconia particles under normal pressure or non-pressurization, but also HIP (Hot Isostatic Pressing) treatment or the like. It also includes sintered bodies that have been densified by high-temperature pressurization.
  • the preferable range of the content of the stabilizer in the zirconia sintered body of the present disclosure is the same as the content in the zirconia composition and / or the zirconia calcined body described above.
  • the crystal system of the zirconia in the zirconia sintered body of the present disclosure the ratio f m of monoclinic system, monoclinic system, it is 10% or less of the total amount of the tetragonal and cubic It is preferably 5% or less, and more preferably not substantially contained (0%).
  • the solid solution ratio of the stabilizer in the zirconia sintered body of the present disclosure it is preferable that 95% or more of the contained stabilizer is solid-solved in zirconia, and substantially all the stabilizers are dissolved. Is more preferably dissolved. If the stabilizing agent is yttria, prevalence f y undissolved yttria is preferably 5% or less, more preferably 1% or less, and is a solid solution substantially all the (0%) is more preferable.
  • the translucency ( ⁇ L * (WB)) of the zirconia sintered body of the present disclosure is preferably 11 or less, more preferably 9 or less, from the viewpoint of shielding the color of the discolored abutment tooth. , 7 or less is more preferable.
  • the term translucent and ([Delta] L * (W-B)) is, L * a * b * color system (JIS Z 8781-4: 2013) for L * values of chromaticity (color space) in thickness
  • the background of the 1.2 mm sample (sintered body) is white, the L * value measured is the first L * value, and for the same sample for which the first L * value is measured, the background of the sample is black.
  • the L * value measured in the above is used as the second L * value, and the value obtained by subtracting the second L * value from the first L * value.
  • a zirconia composition for example, granules
  • CIP molding is carried out to form a disk having a diameter of, for example, 19 mm.
  • the molded product can be fired under predetermined firing conditions to prepare a sintered body having a thickness of 1.2 mm as a sample.
  • a color difference meter for example, dental color measuring device "Crystal Eye CE100-DC / JP" (manufactured by Olympus Corporation), analysis software “Crystal Eye” (Manufactured by Olympus Corporation)
  • the white background means the white part of the hiding rate test paper described in JIS K 5600-4-1: 1999, Part 4, Section 1
  • the black background means the black part of the hiding rate test paper.
  • the contact liquid for example, one having a refractive index nD measured at a measurement wavelength of 589 nm (sodium D line) and having a refractive index of 1.60 can be used.
  • the translucency of the sintered body fired by holding the maximum firing temperature in the range of 1300 to 1600 ° C. for 30 minutes (measured value on the white background). And the difference between the measured values on a black background, hereinafter also referred to as “ ⁇ L * (30)”), and the sintered body that was fired by holding it at the same temperature as the maximum firing temperature of ⁇ L * (30) for 120 minutes.
  • the ratio ⁇ L * (30) / ⁇ L * (120) to the translucency (difference between the measured value on the white background and the measured value on the black background, hereinafter also referred to as “ ⁇ L * (120)”) is 0.
  • It is preferably .88 or more, and is suitably used as a dental prosthesis in the dental treatment of patients who have good color development while having high shielding properties and have abutment teeth that are discolored due to lesions and lifestyle. From the point of view, 0.90 or more is more preferable, and 0.95 or more is further preferable.
  • the zirconia sintered body of the present disclosure can similarly contain the additives as described above for the zirconia composition.
  • the zirconia sintered body of the present disclosure may be a molded body having a predetermined shape (hereinafter referred to as "third molded body").
  • the sintered body can have a disc shape, a rectangular parallelepiped shape, and a dental product shape (for example, a crown shape).
  • the zirconia sintered body of the present disclosure preferably has a saturation C * of 3 or more, more preferably 5 or more, and even more preferably 7 or more.
  • saturation C * and the method for measuring the saturation C * are as described above for the zirconia composition, but the firing temperature and firing time for evaluating the saturation C * of the zirconia sintered body are particularly limited. Not done.
  • the zirconia sintered body of the present disclosure refers to the temperature at which the zirconia particles of the zirconia composition (including the first molded body) and / or the zirconia calcined body (including the second molded body) of the present disclosure are sintered. It can be produced by firing at (sinterable temperature) or higher (sintering step).
  • One embodiment includes a method for producing a zirconia sintered body, which comprises a sintering step of firing the first molded body at a temperature above which it can be sintered.
  • the manufacturing method may include a first molding step of molding a zirconia composition to prepare a first molded product. The first molding step is as described above for the zirconia composition.
  • the sinterable temperature is, for example, preferably 1400 ° C. or higher, more preferably 1450 ° C. or higher.
  • the sinterable temperature is, for example, preferably 1650 ° C. or lower, and more preferably 1600 ° C. or lower.
  • the maximum firing temperature in the sintering step is preferably 1400 ° C. or higher, more preferably 1450 ° C. or higher.
  • the maximum firing temperature including the sinterable temperature is preferably 1650 ° C. or lower, and more preferably 1600 ° C. or lower.
  • the rate of temperature rise and temperature decrease is preferably 300 ° C./min or less.
  • a calcining step of firing the first molded product at a temperature at which the zirconia particles do not reach sintering may be further included to prepare a zirconia calcined product.
  • the calcination step is as described above in the method for producing the zirconia calcination body.
  • the method for producing the zirconia sintered body may further include a second molding step of molding the zirconia calcined body to produce a second molded body before the sintering step.
  • a method for producing a zirconia sintered body in which the second molded body is fired as the zirconia calcined body in the sintering step can be mentioned.
  • the holding time at the sinterable temperature is preferably less than 120 minutes, and the dentistry has high shielding properties and good color development while shortening the firing time. From the viewpoint that a product for use can be produced, it is more preferably 90 minutes or less, further preferably 75 minutes or less, further preferably 60 minutes or less, and particularly preferably 45 minutes or less. It is preferably 30 minutes or less, and most preferably 30 minutes or less.
  • the holding time is preferably 1 minute or longer, more preferably 5 minutes or longer, and even more preferably 10 minutes or longer.
  • the method for producing a zirconia sintered body of the present disclosure it is possible to suppress a decrease in the translucency of the produced zirconia sintered body even with such a firing time. Further, by shortening the firing time, it is possible to increase the production efficiency and reduce the energy cost.
  • the zirconia sintered body of the present disclosure can be molded to produce a third molded body (third molding step).
  • the molding method is not limited to a specific method, and a suitable method can be appropriately selected depending on the intended purpose.
  • a zirconia block which is also a zirconia sintered body, can be cut into the shape of a dental product (for example, a crown-shaped prosthesis) by a CAD / CAM system to produce a third molded body.
  • the zirconia sintered body of the present disclosure can be suitably used as a dental product.
  • the zirconia sintered body can have, for example, a crown shape.
  • the dental product in the present disclosure may further include a porcelain material laminated on the zirconia sintered body.
  • the porcelain material can be, for example, ceramics such as a glass material.
  • Dental products include, for example, dental prostheses (eg, ceramic frames, full cantour crowns), orthodontic products (eg, orthodontic brackets), dental implant products (eg, dental implant abutments). ).
  • Dental products can be prepared by sintering the zirconia composition of the present disclosure (including the first molded product) and / or the zirconia calcined product (including the second molded product) having a predetermined shape. it can.
  • the dental product can also be produced by cutting the zirconia sintered body of the present disclosure (including a third molded body).
  • the dental product in the present disclosure has a porcelain material
  • a step of applying a slurry containing the porcelain material on the zirconia sintered body and a zirconia sintered body coated with the porcelain material are fired and sintered. It can be produced by the process of baking porcelain on the body. The temperature and time for baking the porcelain can be set as appropriate.
  • the zirconia composition, the zirconia calcined product, and / or the zirconia sintered body of the present disclosure a dental product with high dimensional accuracy can be obtained, and / or has high shielding property and good color development. Dental products can be produced in a short time.
  • Example 3 [Preparation of zirconia composition] (Examples 1 to 3) First, a mixture was prepared by combining yttria with 100% monoclinic zirconium oxide powder so that the content of yttria with respect to the total mol of zirconia and yttria is as shown in Table 1 (mixing step). .. Next, this mixture was added to water to prepare a slurry, which was wet-ground with a ball mill until the average particle size (primary particles) of the zirconia particles became 0.20 ⁇ m. Next, a binder was added to the pulverized slurry and then dried with a spray dryer to prepare a zirconia composition.
  • NiO nickel (II) oxide
  • SALD-2300 manufactured by Shimadzu Corporation
  • Comparative Examples 1 to 3 As a comparative example, a commercially available partially stabilized zirconia powder was used.
  • the zirconia composition according to Comparative Example 1 was prepared by adding 0.02% by mass of the NiO powder prepared in Examples 1 to 3 to TZ-3YSB-E manufactured by Tosoh Corporation and thoroughly mixing them.
  • the zirconia composition according to Comparative Example 2 was prepared by adding 0.02% by mass of the above-mentioned NiO powder to Zpex manufactured by Tosoh Corporation and mixing them sufficiently, and the zirconia composition according to Comparative Example 3 was prepared. 0.02% by mass of the above-mentioned NiO powder was added to Zpex Smile manufactured by Tosoh Corporation and mixed thoroughly.
  • Example 4 The NiO powder prepared in Examples 1 to 3 after adding the zirconia composition of Comparative Example 1 in addition to the zirconia composition containing the monoclinic zirconium oxide powder and yttria prepared in the same manner as in Example 1. Was added in an amount of 0.02% by mass and sufficiently mixed to obtain a zirconia composition according to Example 4.
  • the zirconia composition has a lower proportion of monoclinic crystals than in Examples 1 to 3.
  • the relevant portion is indicated by “NA”.
  • Comparative Example 4 The zirconia composition according to Comparative Example 4 was prepared in the same manner as in Example 1 except that the zirconia composition before adding the NiO powder was pulverized so that the average particle size of the zirconia particles after pulverization was 0.12 ⁇ m. did.
  • Comparative Example 5 The zirconia composition according to Comparative Example 5 was prepared in the same manner as in Example 1 except that the zirconia composition before adding the NiO powder was pulverized so that the average particle size of the zirconia particles after pulverization was 0.50 ⁇ m. did.
  • a zirconia sintered body was prepared using the zirconia composition of the present disclosure, and the relationship between translucency and color development with respect to the holding time (baking time) at the firing temperature was investigated.
  • the zirconia compositions according to Examples and Comparative Examples were press-molded at a pressure of 300 kg / cm 2 so as to obtain a zirconia sintered body having a thickness of 1.2 mm.
  • the press molded product was further subjected to CIP treatment at 1700 kg / cm 2 to prepare the first molded product described above.
  • the first molded product was fired at 1000 ° C. for 2 hours to prepare a zirconia calcined product.
  • the maximum firing temperature was set to 1550 ° C., the holding time at the maximum firing temperature was 120 minutes, and the obtained zirconia calcined product was fired to prepare a zirconia sintered body.
  • the maximum firing temperature was set to 1550 ° C., and the holding time at the maximum firing temperature was changed to 30 minutes to prepare a zirconia sintered body.
  • the translucency and saturation C * were measured by the method described later. The results are shown in Table 1.
  • color difference meter (dental color measuring device "Crystal Eye CE100-DC / JP” (7band LED lighting, 45 ° incident diffuse reflection type, manufactured by Olympus Co., Ltd.), analysis software “Crystal Eye” (Olympus Co., Ltd.) Ltd.)) was measured using a, L * a * b * color system (JIS Z 8781-4: 2013) in was calculated using the L * values of chromaticity (color space).
  • the L * value measured with the background of the sintered body sample being white is defined as the first L * value, and the same sample measured with the first L * value is measured with the sample background black .
  • a contact liquid having a refractive index of 1.60 was applied to the measurement surface of the sample.
  • the white background means the white part of the hiding rate test paper described in JIS K 5600-4-1: 1999, Part 4, Section 1, and the black background means the black part of the hiding rate test paper.
  • the zirconia composition will be described.
  • the crystal system of zirconia is basically a tetragonal system and / or a cubic system, and at most a monoclinic system. It was about 52%.
  • the XRD peak of yttria was not confirmed. Therefore, it is considered that all yttria is dissolved in zirconia.
  • Example 1 to 3 the crystal system of zirconia was 100% monoclinic.
  • Example 4 since a part of the tetragonal partially stabilized zirconia composed of commercially available zirconia powder was added, about 76% was monoclinic.
  • Examples 1 to 4 and Comparative Examples 4 and 5 yttria XRD peaks were observed.
  • the fy was 6% or less.
  • Examples 2 to 3 in which the yttria content was as high as 5 to 6 mol%, fy was in the range of more than 7% and 10% or less.
  • the zirconia sintered body will be described.
  • the translucency is 11 or less
  • the saturation C * is 3 or more
  • the values of C * (30) / C * (120) are also high, both when firing for 120 minutes and when firing for 30 minutes. Since it showed a high value of 0.97 or more, it was a result that the shielding property and the color development were sufficient even if it was fired for a short time.
  • dental treatment it is possible to shield the discolored abutment tooth color when the abutment tooth is discolored due to a lesion or coloring due to lifestyle, etc., while obtaining good color development by firing for a short time. ..
  • the zirconia compositions, zirconia calcined bodies and zirconia sintered bodies of the present disclosure, and methods for producing them are described in dental products such as dental prostheses, connecting parts for optical fibers such as ferrules and sleeves, and various tools (for example, grinding). It can be used for various purposes such as balls, grinding tools), various parts (for example, screws, bolts and nuts), various sensors, electronic parts, and decorative items (for example, watch bands).
  • dental materials for example, copings, frameworks, crowns, crown bridges, abutments, implants, implant screws, implant fixtures, implant bridges, implant bars, brackets. , Prosthesis bed, inlay, onlay, orthodontic wire, laminated veneer, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Prosthetics (AREA)
  • Dental Preparations (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention provides: a zirconia composition from which a zirconia sintered body having high shielding properties and favorable color development can be produced while shortening the firing time when producing a zirconia sintered body; and a calcined body. The present invention is a zirconia composition which contains a zirconia powder and a stabilizer capable of suppressing the phase transition of the zirconia powder, and which satisfies all of the following (1) to (3): (1) the zirconia powder includes zirconia particles having an average particle diameter of 0.17-0.4 μm (exclusive of 0.17); (2) at least a part of the stabilizer is not solid-soluted in zirconia; and (3) in a case where the composition is fired at 1,300-1,600ºC, the ratio (C*(30)/C*(120)) of the saturation C*(30) of a sintered body when held for 30 minutes at the above temperature to the saturation C*(120) of the sintered body when held for 120 minutes at the above temperature is at least 0.4.

Description

ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びにそれらの製造方法Zirconia composition, zirconia calcined body and zirconia sintered body, and method for producing them.
 本開示は、ジルコニア(酸化ジルコニウム(IV);ZrO)を主として含有する組成物に関する。また、本開示は、ジルコニアの仮焼体及び焼結体に関する。さらに、本開示は、ジルコニア組成物、仮焼体及び焼結体の製造方法に関する。 The present disclosure relates to compositions primarily containing zirconia (zirconium oxide (IV); ZrO 2). The present disclosure also relates to a calcined body and a sintered body of zirconia. Furthermore, the present disclosure relates to a method for producing a zirconia composition, a calcined body and a sintered body.
 ジルコニアは、複数の結晶系間で相転移が生じる化合物である。そこで、イットリア(酸化イットリウム;Y)等の安定化剤をジルコニアに固溶させて相転移を抑制した部分安定化ジルコニア(PSZ;Partially-Stabilized Zirconia)及び完全安定化ジルコニアが種々の分野において利用されている。例えば、特許文献1には、歯科材料に使用するための部分安定化ジルコニア焼結体が開示されている。 Zirconia is a compound in which a phase transition occurs between a plurality of crystal systems. Therefore, yttria (yttrium oxide; Y 2 O 3) a stabilizing agent phase transition is suppressed by a solid solution in the zirconia partially stabilized zirconia, such as (PSZ; Partially-Stabilized Zirconia) and fully stabilized zirconia various fields It is used in. For example, Patent Document 1 discloses a partially stabilized zirconia sintered body for use in dental materials.
 特許文献1に記載の透光性ジルコニア焼結体は、ジルコニア粉末のプレス成形体を1450℃、昇温速度300℃/hr、及び保持時間2時間の条件で焼結することによって作製される。当該ジルコニア粉末は、2~4mol%のイットリアと、0.1~0.2wt%のアルミナを含有し、BET比表面積が5~15m/gであり、平均粒径が0.3~0.7μmである。 The translucent zirconia sintered body described in Patent Document 1 is produced by sintering a press-molded zirconia powder under the conditions of 1450 ° C., a heating rate of 300 ° C./hr, and a holding time of 2 hours. The zirconia powder contains 2 to 4 mol% yttria and 0.1 to 0.2 wt% alumina, has a BET specific surface area of 5 to 15 m 2 / g, and has an average particle size of 0.3 to 0. It is 7 μm.
特開2009-269812号公報Japanese Unexamined Patent Publication No. 2009-269812
 歯科材料としてジルコニアを用いる用途の一形態として、う蝕罹患部位を切削することで支台となる歯を形成し、該支台歯に適合するように加工したジルコニア歯冠を合着して用いる用途がある。支台歯が病変又は生活習慣による着色等により変色している場合、変色した支台歯の色を遮蔽するために、ジルコニア歯冠にはある程度低い透光性(高い遮蔽性)が求められるが、特許文献1に記載のジルコニアでは遮蔽性が不十分である。 As one form of use of zirconia as a dental material, a tooth serving as an abutment is formed by cutting a caries-affected part, and a zirconia crown processed to fit the abutment tooth is used by coalescing. There is a use. When the abutment tooth is discolored due to a lesion or coloring due to lifestyle, the zirconia crown is required to have a certain degree of low translucency (high shielding property) in order to shield the discolored abutment tooth. , The zirconia described in Patent Document 1 has insufficient shielding property.
 また、ジルコニア粒子(粉末)を焼結させたジルコニア焼結体は通常高強度であるため、ジルコニア焼結体を所望の形状に直接機械加工することは容易ではない。そこで、ジルコニア焼結体の成形は、ジルコニア粉末のプレス成形体(CIP(Cold Isostatic Pressing;冷間静水等方圧プレス)処理を施した成形体も含む)を焼結に至らない温度で焼成(以下「仮焼」という)してブロック化した仮焼体において行われることがある。この場合、ジルコニア仮焼体のブロック体を切削加工等によって所望の形状に成形し、成形した仮焼体を焼結可能温度以上で焼成することによって目的とする形状を有するジルコニア焼結体を作製する。特に歯科材料としては天然歯に近い色となるように、着色剤を含むジルコニア焼結体が作製される。 Further, since the zirconia sintered body obtained by sintering zirconia particles (powder) usually has high strength, it is not easy to directly machine the zirconia sintered body into a desired shape. Therefore, in the molding of the zirconia sintered body, a press-molded body of zirconia powder (including a molded body subjected to CIP (Cold Isostatic Pressing) treatment) is fired at a temperature that does not lead to sintering ( It may be performed in a calcined body that has been blocked by (hereinafter referred to as "temporary firing"). In this case, the block body of the zirconia calcined body is formed into a desired shape by cutting or the like, and the molded calcined body is fired at a temperature higher than the sinterable temperature to prepare a zirconia sintered body having a desired shape. To do. In particular, as a dental material, a zirconia sintered body containing a colorant is produced so as to have a color close to that of natural teeth.
 ジルコニア粉末のプレス成形体は、焼成すると、焼成温度に依存して収縮する。例えば、プレス成形体は、焼成によって仮焼体になると約1%収縮し、焼結体になると約20%収縮する。そこで、仮焼体の成形は、これらの収縮率を考慮して、最終目的物となる焼結体の寸法よりも大きく成形される。例えば、成形した仮焼体の大きさは、粉末のプレス成形体から焼結体になるまでの収縮率から、プレス成形体から仮焼体になるまでの収縮率を控除することによって算出された係数に基づいて決定される。 When the zirconia powder press-molded product is fired, it shrinks depending on the firing temperature. For example, a press-molded body shrinks about 1% when it becomes a calcined body by firing, and shrinks about 20% when it becomes a sintered body. Therefore, in consideration of these shrinkage rates, the calcined body is molded to be larger than the size of the sintered body, which is the final target product. For example, the size of the molded calcined body was calculated by subtracting the shrinkage rate from the press-molded body to the calcined body from the shrinkage rate from the powder press-molded body to the sintered body. Determined based on the coefficient.
 そこで、1つの焼成炉で複数のプレス成形体を焼成して複数の仮焼体(ブロック体)を作製する場合に、複数の製品間で、プレス成形体から仮焼体になるまでの収縮率が、仮焼体作製時に焼成炉内に生じる温度差(温度ムラ)によって影響を受けにくいジルコニア組成物が望まれている。 Therefore, when a plurality of press-molded bodies are fired in one firing furnace to produce a plurality of calcined bodies (block bodies), the shrinkage rate from the press-molded body to the calcined body among the plurality of products. However, there is a demand for a zirconia composition that is not easily affected by the temperature difference (temperature unevenness) that occurs in the firing furnace during the production of the calcined body.
 また、特許文献1に記載のジルコニア焼結体の製造方法においては、最高焼成温度での保持時間が2時間となっている。このような長時間の焼成は、生産効率を低下させると共に、エネルギーコストを増大させる。また、例えば、ジルコニア焼結体で歯科用補綴物を作製する場合には、患者は、診察当日に補綴物で治療を受けることができず、補綴物で治療を受けるためには別の日に再度通院しなければならない。一方で、特許文献1に記載のようなジルコニア粉末においては、最高焼成温度での保持時間を短縮すると、白濁して発色が低下してしまう。 Further, in the method for producing a zirconia sintered body described in Patent Document 1, the holding time at the maximum firing temperature is 2 hours. Such long-term firing lowers production efficiency and increases energy costs. Also, for example, when making a dental prosthesis from a zirconia sintered body, the patient cannot be treated with the prosthesis on the day of the examination and another day to be treated with the prosthesis. I have to go to the hospital again. On the other hand, in the zirconia powder as described in Patent Document 1, if the holding time at the maximum firing temperature is shortened, the zirconia powder becomes cloudy and the color development deteriorates.
 そこで、ジルコニア焼結体を製造する際の焼成時間を短縮しつつ、高い遮蔽性を有し、かつ発色の良好なジルコニア焼結体を作製することができるジルコニア組成物及び仮焼体が求められている。 Therefore, there is a demand for a zirconia composition and a calcined product capable of producing a zirconia sintered body having high shielding properties and good color development while shortening the firing time when producing the zirconia sintered body. ing.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定の結晶系を有し、特定のジルコニア粒子の平均粒径を有し、かつ焼成時に特定の彩度を発現するジルコニア組成物とすることによって、上記課題を解決できることを見出し、この知見に基づいて研究を進め、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors have a specific crystal system, have an average particle size of specific zirconia particles, and develop a specific saturation at the time of firing. We have found that the above problems can be solved by using a zirconia composition, and based on this finding, we proceeded with research and completed the present invention.
 すなわち、本発明は以下を包含する。
[1]ジルコニア粉末と、ジルコニア粉末の相転移を抑制可能な安定化剤と、を含有し、以下の(1)~(3)をすべて満たすジルコニア組成物。
 (1)該ジルコニア粉末が、平均粒径が0.17μm超0.4μm以下であるジルコニア粒子を含む。
 (2)該安定化剤の少なくとも一部はジルコニアに固溶されていない。
 (3)該組成物を1300~1600℃で焼成した場合、前記温度で30分間保持した際の焼結体の彩度C(30)と前記温度で120分間保持した際の焼結体の彩度C(120)の比C(30)/C(120)が0.4以上である。
[2]ジルコニアの結晶系は単斜晶系が55%以上である、[1]に記載のジルコニア組成物。
[3]前記安定化剤がイットリアである、[1]又は[2]に記載のジルコニア組成物。
[4]ジルコニアとイットリアの合計molに対して、イットリアを3~7.5mol%含有する、[3]に記載のジルコニア組成物。
[5]X線回折パターンにおいてイットリアのピークが存在する、[3]又は[4]に記載のジルコニア組成物。
[6]以下の数式(i)に基づいて算出したジルコニアに固溶されていないイットリアの存在率fが1%以上である、[3]~[5]のいずれかに記載のジルコニア組成物。
Figure JPOXMLDOC01-appb-M000002
(ただし、I(111)は、CuKα線によるX線回折パターンにおける2θ=29°付近のイットリアの(111)面のピーク強度を示し、
(111)及びI(11-1)は、前記X線回折パターンにおけるジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示し、
(111)は、前記X線回折パターンにおけるジルコニアの正方晶系の(111)面のピーク強度を示し、
(111)は、前記X線回折パターンにおけるジルコニアの立方晶系の(111)面のピーク強度を示す。)
[7]前記fが15%以下である、[6]に記載のジルコニア組成物。
[8]前記温度で30分間保持した際の焼結体の彩度C(30)が、3以上である、[1]~[7]のいずれかに記載のジルコニア組成物。
[9]最高焼成温度を1300~1600℃とする焼成によって得られる焼結体の透光性が以下の式を満たす、[1]~[8]のいずれかに記載のジルコニア組成物。
 ΔL(W-B)≦11
(式中、ΔL(W-B)は第1のL値から第2のL値を控除した値であり、第1のL値は、厚さ1.2mmの焼結体の背景を白色にして測定したL値であり、第2のL値は、第1のL値を測定した同一の焼結体の背景を黒色にして測定したL値であり、L値は、L表色系(JIS Z 8781-4:2013)における色度(色空間)のL値である。)
[10]前記温度で30分保持した場合の透光性ΔL(30)と、前記温度で120分保持した場合の透光性ΔL(120)との比ΔL(30)/ΔL(120)が0.88以上である、[9]に記載のジルコニア組成物。
[11][1]~[10]のいずれかに記載のジルコニア組成物を用いて作製する、ジルコニア仮焼体の製造方法。
[12][1]~[10]のいずれかに記載のジルコニア組成物からなるプレス成形体を800~1200℃で焼成して作製する、[11]に記載のジルコニア仮焼体の製造方法。
[13][1]~[10]のいずれかに記載の、ジルコニア粉末と、ジルコニア粉末の相転移を抑制可能な安定化剤と、を含有するジルコニア組成物を成形して第1の成形体を作製する第1成形工程と、
 前記第1の成形体をジルコニア粒子が焼結に至らない温度で焼成する仮焼工程と、
を含む、[11]又は[12]に記載のジルコニア仮焼体の製造方法。
[14]前記仮焼工程において、前記第1の成形体を800~1200℃で焼成する、[13]に記載のジルコニア仮焼体の製造方法。
[15]前記第1成形工程前に、前記ジルコニア粉末が、ジルコニア粒子の平均粒径が0.17μm超0.4μm以下を含むように、前記ジルコニア粉末と前記安定化剤との混合物を粉砕してジルコニア組成物を得る粉砕工程をさらに含む、[13]又は[14]に記載のジルコニア仮焼体の製造方法。
[16]前記第1成形工程前に、前記ジルコニア組成物を噴霧乾燥により顆粒形態にする乾燥工程をさらに含む、[13]~[15]のいずれかに記載のジルコニア仮焼体の製造方法。
[17]ジルコニア仮焼体の密度が2.7~4.0g/cmである、[11]~[16]のいずれかに記載のジルコニア仮焼体の製造方法。
[18]ジルコニア仮焼体の、ISO6872:2015に準拠して測定した曲げ強さが15~70MPaである、[11]~[17]のいずれかに記載のジルコニア仮焼体の製造方法。
[19][1]~[10]のいずれかに記載のジルコニア組成物を成形して第1の成形体を作製する第1成形工程と、
 前記第1の成形体を焼結可能温度以上で焼成する焼結工程と、
を含む、ジルコニア焼結体の製造方法。
[20]前記焼結工程前に、前記第1の成形体をジルコニア粒子が焼結に至らない温度で焼成してジルコニア仮焼体を作製する仮焼工程をさらに含み、前記焼結工程において前記第1の成形体として前記ジルコニア仮焼体を焼成する、[19]に記載のジルコニア焼結体の製造方法。
[21]前記焼結工程前に、前記ジルコニア仮焼体を成形して、第2の成形体を作製する第2成形工程をさらに含み、
 前記焼結工程において、前記第2の成形体を焼成する、[20]に記載のジルコニア焼結体の製造方法。
[22]前記焼結工程において、最高焼成温度での保持時間が1時間以下である、[19]~[21]のいずれかに記載のジルコニア焼結体の製造方法。
That is, the present invention includes the following.
[1] A zirconia composition containing a zirconia powder and a stabilizer capable of suppressing the phase transition of the zirconia powder, and satisfying all of the following (1) to (3).
(1) The zirconia powder contains zirconia particles having an average particle size of more than 0.17 μm and 0.4 μm or less.
(2) At least a part of the stabilizer is not dissolved in zirconia.
(3) When the composition was fired at 1300 to 1600 ° C., the saturation C * (30) of the sintered body when held at the temperature for 30 minutes and the sintered body when held at the temperature for 120 minutes. The ratio C * (30) / C * (120) of saturation C * (120) is 0.4 or more.
[2] The zirconia composition according to [1], wherein the zirconia crystal system has a monoclinic crystal system of 55% or more.
[3] The zirconia composition according to [1] or [2], wherein the stabilizer is yttria.
[4] The zirconia composition according to [3], which contains 3 to 7.5 mol% of yttria with respect to the total mol of zirconia and yttria.
[5] The zirconia composition according to [3] or [4], wherein the yttria peak is present in the X-ray diffraction pattern.
Prevalence f y yttria that is not dissolved in the calculated zirconia based on [6] The following equation (i) is not less than 1%, [3] to zirconia composition according to any one of [5] ..
Figure JPOXMLDOC01-appb-M000002
(However, I y (111) indicates the peak intensity of the yttria (111) plane near 2θ = 29 ° in the X-ray diffraction pattern by CuKα rays.
I m (111) and I m (11-1) shows a peak intensity of (111) plane of the monoclinic zirconia in the X-ray diffraction pattern and (11-1) plane,
I t (111) indicates the peak intensity of the (111) plane of tetragonal zirconia in the X-ray diffraction pattern,
I c (111) indicates the peak intensity of cubic (111) plane of the zirconia in the X-ray diffraction pattern. )
[7] The zirconia composition according to [6], wherein the fy is 15% or less.
[8] The zirconia composition according to any one of [1] to [7], wherein the saturation C * (30) of the sintered body when held at the temperature for 30 minutes is 3 or more.
[9] The zirconia composition according to any one of [1] to [8], wherein the translucency of the sintered body obtained by firing at a maximum firing temperature of 1300 to 1600 ° C. satisfies the following formula.
ΔL * (WB) ≤11
(In the formula, ΔL * (WB) is the value obtained by subtracting the second L * value from the first L * value, and the first L * value is the value of the sintered body having a thickness of 1.2 mm. a L * value measured in the white background, the second L * values are L * value background was measured in the black of the same sintered body was measured first L * values, L * values, L * a * b * color system (JIS Z 8781-4: 2013) is a L * value of chromaticity (color space) in).
[10] Ratio ΔL * (30) / ΔL * of translucency ΔL * (30) when held at the temperature for 30 minutes and translucency ΔL * (120) when held at the temperature for 120 minutes. The zirconia composition according to [9], wherein (120) is 0.88 or more.
[11] A method for producing a zirconia calcined body, which is produced by using the zirconia composition according to any one of [1] to [10].
[12] The method for producing a zirconia calcined product according to [11], which comprises firing a press-molded product composed of the zirconia composition according to any one of [1] to [10] at 800 to 1200 ° C.
[13] A first molded product is obtained by molding a zirconia composition containing the zirconia powder according to any one of [1] to [10] and a stabilizer capable of suppressing the phase transition of the zirconia powder. The first molding process to produce
A calcining step of firing the first molded product at a temperature at which the zirconia particles do not sinter.
The method for producing a zirconia calcined product according to [11] or [12], which comprises.
[14] The method for producing a zirconia calcined product according to [13], wherein in the calcining step, the first molded product is fired at 800 to 1200 ° C.
[15] Prior to the first molding step, the mixture of the zirconia powder and the stabilizer is pulverized so that the zirconia powder contains the average particle size of the zirconia particles of more than 0.17 μm and 0.4 μm or less. The method for producing a zirconia calcined product according to [13] or [14], further comprising a pulverization step for obtaining a zirconia composition.
[16] The method for producing a zirconia calcined product according to any one of [13] to [15], further comprising a drying step of spray-drying the zirconia composition into granules before the first molding step.
[17] The method for producing a zirconia calcined body according to any one of [11] to [16], wherein the density of the zirconia calcined body is 2.7 to 4.0 g / cm 3.
[18] The method for producing a zirconia calcined product according to any one of [11] to [17], wherein the bending strength of the zirconia calcined product measured in accordance with ISO6782: 2015 is 15 to 70 MPa.
[19] A first molding step of molding the zirconia composition according to any one of [1] to [10] to prepare a first molded product.
A sintering step of firing the first molded product at a temperature above which it can be sintered, and
A method for producing a zirconia sintered body, including.
[20] Prior to the sintering step, a calcining step of firing the first molded body at a temperature at which zirconia particles do not reach sintering is further included to prepare a zirconia calcined body. The method for producing a zirconia sintered body according to [19], wherein the zirconia calcined body is fired as a first molded body.
[21] Prior to the sintering step, a second molding step of molding the zirconia calcined body to prepare a second molded body is further included.
The method for producing a zirconia sintered body according to [20], wherein the second molded body is fired in the sintering step.
[22] The method for producing a zirconia sintered body according to any one of [19] to [21], wherein the holding time at the maximum firing temperature is 1 hour or less in the sintering step.
 本開示によれば、焼結体の製造時間を短縮しながらも、高い遮蔽性を有し、かつ発色の良好なジルコニア焼結体を作製することができる。これにより、製品の生産効率を高めることができると共に、エネルギーコストを低減させることができる。ジルコニア焼結体を歯科用補綴物に適用する場合には、患者に対する時間的負担を低減できる。また、本開示によれば、遮蔽性に優れるため、変色した支台歯の色を遮蔽でき、病変や生活習慣によって変色した支台歯を有する患者の歯科治療に、ジルコニア焼結体を歯科用補綴物として好適に適用することができる。 According to the present disclosure, it is possible to produce a zirconia sintered body having high shielding properties and good color development while shortening the production time of the sintered body. As a result, the production efficiency of the product can be increased and the energy cost can be reduced. When the zirconia sintered body is applied to a dental prosthesis, the time burden on the patient can be reduced. Further, according to the present disclosure, since it has excellent shielding properties, it is possible to shield the color of the discolored abutment tooth, and the zirconia sintered body is used for dental treatment of a patient having the abutment tooth discolored due to a lesion or lifestyle. It can be suitably applied as a prosthesis.
 本開示のジルコニア組成物は、ジルコニア粉末と、ジルコニア粉末の相転移を抑制可能な安定化剤と、を含有し、以下の(1)~(3)をすべて満たすことが重要である。
 (1)該ジルコニア粉末が、平均粒径が0.17μm超0.4μm以下であるジルコニア粒子を含む。
 (2)該安定化剤の少なくとも一部はジルコニアに固溶されていない。
 (3)該組成物を1300~1600℃で焼成した場合、前記温度で30分間保持した際の焼結体の彩度C*(30)と前記温度で120分間保持した際の焼結体の彩度C*(120)の比C*(30)/C*(120)が0.4以上である。
It is important that the zirconia composition of the present disclosure contains a zirconia powder and a stabilizer capable of suppressing the phase transition of the zirconia powder, and satisfies all of the following (1) to (3).
(1) The zirconia powder contains zirconia particles having an average particle size of more than 0.17 μm and 0.4 μm or less.
(2) At least a part of the stabilizer is not dissolved in zirconia.
(3) When the composition was fired at 1300 to 1600 ° C., the saturation C * (30) of the sintered body when held at the temperature for 30 minutes and the sintered body when held at the temperature for 120 minutes The ratio C * (30) / C * (120) of the saturation C * (120) is 0.4 or more.
 まず、本開示のジルコニア組成物について説明する。本開示におけるジルコニア組成物は、ジルコニア焼結体及び仮焼体の前駆体(中間製品)となり得るものである。 First, the zirconia composition of the present disclosure will be described. The zirconia composition in the present disclosure can be a precursor (intermediate product) of a zirconia sintered body and a calcined product.
 本開示のジルコニア組成物は、ジルコニア粉末と、ジルコニアの相転移を抑制可能な安定化剤と、を含有する。該安定化剤は、部分安定化ジルコニアを形成可能なものであることが好ましい。安定化剤としては、例えば、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、イットリア(酸化イットリウム;Y)、酸化セリウム(CeO)、酸化スカンジウム(Sc)、酸化ランタン(La)、酸化エルビウム(Er)、酸化プラセオジム(Pr11)、酸化サマリウム(Sm)、酸化ユウロピウム(Eu)及び酸化ツリウム(Tm)等の酸化物が挙げられる。ジルコニア組成物、仮焼体及び焼結体中の安定化剤の含有率は、例えば、誘導結合プラズマ(ICP;Inductively Coupled Plasma)発光分光分析、蛍光X線分析等によって測定することができる。 The zirconia composition of the present disclosure contains a zirconia powder and a stabilizer capable of suppressing the phase transition of zirconia. The stabilizer is preferably one capable of forming partially stabilized zirconia. As the stabilizer, for example, calcium oxide (CaO), magnesium oxide (MgO), yttria (yttrium oxide; Y 2 O 3), cerium oxide (CeO 2), scandium oxide (Sc 2 O 3), lanthanum oxide ( La 2 O 3 ), Elbium Oxide (Er 2 O 3 ), Placeodym Oxide (Pr 6 O 11 ), Samalium Oxide (Sm 2 O 3 ), Europium Oxide (Eu 2 O 3 ) and Thurium Oxide (Tm 2 O 3 ) Oxides such as. The content of the stabilizer in the zirconia composition, calcined body and sintered body can be measured by, for example, inductively coupled plasma (ICP) emission spectroscopic analysis, fluorescent X-ray analysis and the like.
 本開示のジルコニア組成物において、短時間焼成した際のジルコニア焼結体の彩度Cの観点から、安定化剤は、ジルコニアの結晶のうち少なくとも一部が単斜晶系であるように存在している、すなわち安定化剤の少なくとも一部はジルコニアに固溶されていないことが重要である。安定化剤の一部がジルコニアに固溶されていないことは、例えば、X線回折(XRD;X-Ray Diffraction)パターンによって確認できる。ジルコニア組成物のXRDパターンにおいて、安定化剤に由来するピークが確認された場合には、ジルコニア組成物中においてジルコニアに固溶されていない安定化剤が存在していることになる。安定化剤の全量が固溶された場合には、基本的に、XRDパターンにおいて安定化剤に由来するピークは確認されない。ただし、安定化剤の結晶状態等の条件によっては、XRDパターンに安定化剤のピークが存在していない場合であっても、安定化剤がジルコニアに固溶されていないこともあり得る。ジルコニアの主たる結晶系が正方晶系及び/又は立方晶系であり、XRDパターンに安定化剤のピークが存在していない場合には、安定化剤の大部分、基本的に全部、はジルコニアに固溶しているものと考えられる。 In the zirconia composition of the present disclosure, from the viewpoint of the saturation C * of the zirconia sintered body when fired for a short time, the stabilizer exists so that at least a part of the zirconia crystals is monoclinic. It is important that at least some of the stabilizers are not dissolved in zirconia. It can be confirmed by, for example, an X-ray diffraction (XRD) pattern that a part of the stabilizer is not dissolved in zirconia. When a peak derived from the stabilizer is confirmed in the XRD pattern of the zirconia composition, it means that the stabilizer that is not dissolved in zirconia is present in the zirconia composition. When the entire amount of the stabilizer is dissolved, basically no peak derived from the stabilizer is confirmed in the XRD pattern. However, depending on the conditions such as the crystal state of the stabilizer, the stabilizer may not be dissolved in zirconia even when the peak of the stabilizer does not exist in the XRD pattern. If the predominant crystal system of zirconia is tetragonal and / or cubic and there are no stabilizer peaks in the XRD pattern, then most, essentially all, of the stabilizer will be zirconia. It is considered that it is solidly dissolved.
 本開示のジルコニア組成物から作製したジルコニア焼結体の強度及び遮蔽性の観点から、安定化剤がイットリアであることが好ましい。イットリアの含有率は、ジルコニアとイットリアの合計molに対して、3mol%以上であることが好ましく、所定の平均粒径を有するジルコニア粉末と組み合わせた際に、変色した支台歯の色を十分に遮蔽でき、より遮蔽性に優れる点から、3.3mol%以上であることがより好ましく、3.5mol%以上であることがさらに好ましい。イットリアの含有率が3mol%以上であることがジルコニア焼結体の相変態を抑制することができる。また、イットリアの含有率は、ジルコニアとイットリアの合計molに対して、7.5mol%以下であることが好ましく、7mol%以下であることがより好ましく、6.5mol%以下であることがさらに好ましく、6mol%以下であることが特に好ましい。イットリアの含有率が7.5mol%以下である場合ジルコニア焼結体の強度の低下を抑制することができる。 From the viewpoint of the strength and shielding property of the zirconia sintered body prepared from the zirconia composition of the present disclosure, it is preferable that the stabilizer is yttria. The yttria content is preferably 3 mol% or more with respect to the total mol of zirconia and yttria, and when combined with zirconia powder having a predetermined average particle size, the discolored abutment tooth color is sufficiently obtained. From the viewpoint of being able to shield and having more excellent shielding property, it is more preferably 3.3 mol% or more, and further preferably 3.5 mol% or more. When the yttria content is 3 mol% or more, the phase transformation of the zirconia sintered body can be suppressed. The yttria content is preferably 7.5 mol% or less, more preferably 7 mol% or less, still more preferably 6.5 mol% or less, based on the total mol of zirconia and yttria. , 6 mol% or less is particularly preferable. When the yttria content is 7.5 mol% or less, the decrease in strength of the zirconia sintered body can be suppressed.
 本開示のジルコニア組成物におけるジルコニアに固溶されていないイットリア(以下において「未固溶イットリア」という)の存在率fは、以下の数式(i)に基づいて算出することができる。未固溶イットリアの存在率fは、0%より大きいと好ましく、1%以上であることがより好ましく、2%以上であることがさらに好ましく、3%以上であることがよりさらに好ましい。未固溶イットリアの存在率fの好ましい上限は、ジルコニア組成物におけるイットリアの含有率に依存する。イットリアの含有率がジルコニアとイットリアの合計molに対して7.5mol%以下であるとき、短時間焼成の観点から、fは15%以下とすることができる。例えば、イットリアの含有率が3.5mol%以上4.5mol%以下であるとき、fは7%以下とすることができる。イットリアの含有率が4.5mol%超6mol%以下であるとき、fは10%以下とすることができる。イットリアの含有率が6mol%超7.5mol%以下であるとき、fは11%以下とすることができる。 Prevalence f y yttria that is not solid solution in the zirconia in the zirconia compositions of the present disclosure (referred to as "undissolved yttria" hereinafter) can be calculated based on the following equation (i). Prevalence f y undissolved yttria, preferably greater than 0%, more preferably 1% or more, more preferably 2% or more, and still further preferably 3% or more. The preferable upper limit of the existence ratio f y undissolved yttria is dependent on the content of yttria in zirconia composition. When the content of yttria is less than 7.5 mol% relative to the total mol of zirconia and yttria, from the viewpoint of short firing, f y can be 15% or less. For example, when the content of yttria is not more than 3.5 mol% or more 4.5 mol%, f y may be 7% or less. When the yttria content is more than 4.5 mol% and 6 mol% or less, fy can be 10% or less. When the content of yttria is not more than 6 mol% ultra 7.5 mol%, f y may be a 11% or less.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記数式(i)において、I(111)は、CuKα線によるXRDパターンにおける2θ=29°付近のイットリアの(111)面のピーク強度を示す。I(111)及びI(11-1)は、ジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示す。I(111)は、ジルコニアの正方晶系の(111)面のピーク強度を示す。I(111)は、ジルコニアの立方晶系の(111)面のピーク強度を示す。 In the above mathematical formula (i), I y (111) indicates the peak intensity of the yttria (111) plane near 2θ = 29 ° in the XRD pattern by CuKα rays. I m (111) and I m (11-1) shows a peak intensity of zirconia monoclinic (111) plane and (11-1) plane. I t (111) indicates the peak intensity of the (111) plane of tetragonal zirconia. I c (111) indicates the peak intensity of the (111) plane of the cubic system of zirconia.
 上記数式(i)は、I(111)の代わりに他のピークを代入することによって、イットリア以外の安定化剤について未固溶での存在率の算出にも適用することができる。 The above formula (i) can also be applied to the calculation of the abundance of stabilizers other than yttria in unsolid solution by substituting another peak instead of I y (111).
 本開示のジルコニア組成物におけるジルコニアの主たる結晶系は単斜晶系であることが好ましい。本開示において、「主たる結晶系が単斜晶系である」とは、ジルコニア中のすべての結晶系(単斜晶系、正方晶系及び立方晶系)の総量に対して、CuKα線によるXRDピークに基づいて以下の数式(ii)で算出される、ジルコニア中の単斜晶系の割合fが55%以上の割合を占めるものを指す。なお、数式(ii)における各記号の意味は数式(i)と同じである。本発明のジルコニア組成物において、ジルコニア中の単斜晶系の割合fは55%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましく、80%以上であることがよりさらに好ましく、90%以上であることが特に好ましく、95%以上であることが最も好ましい。ジルコニア組成物における主たる結晶系は、変速温度の高温化及び焼成時間の短縮化に寄与している可能性がある。 The main crystal system of zirconia in the zirconia composition of the present disclosure is preferably a monoclinic system. In the present disclosure, "the main crystal system is a monoclinic system" means XRD by CuKα ray with respect to the total amount of all crystal systems (monoclinic system, square system and cubic system) in zirconia. is calculated by the following equation (ii) based on the peak, the ratio f m of monoclinic zirconia refers to those accounts for 55% or more. The meaning of each symbol in the mathematical formula (ii) is the same as that in the mathematical formula (i). In zirconia compositions of the present invention, it is preferred that the ratio f m of monoclinic zirconia is at least 55%, more preferably 60% or more, more preferably 70% or more, 80 % Or more is even more preferable, 90% or more is particularly preferable, and 95% or more is most preferable. The main crystal system in the zirconia composition may contribute to raising the shifting temperature and shortening the firing time.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 本開示のジルコニア組成物は、ジルコニア粉末を含有する。本開示において、粉末は顆粒の集合体であってもよい。顆粒は、一次粒子及び/又は一次粒子が凝集した二次粒子が凝集したものである。 The zirconia composition of the present disclosure contains zirconia powder. In the present disclosure, the powder may be an aggregate of granules. Granules are aggregates of primary particles and / or secondary particles in which primary particles are aggregated.
 本開示における「一次粒子」とは、最小単位の球状体の粒子のことをいう。例えば、一次粒子は、電子顕微鏡(例えば、走査電子顕微鏡)において、粒子同士結合しておらず、分離可能な状態に見える球状体のことをいう。本開示にいう「二次粒子」とは、電子顕微鏡において一次粒子のように見える粒子が凝集した状態の粒子のことをいう。二次粒子には、一次粒子が解砕可能に付着した凝集体、及び一次粒子同士が分離不可能に融着して1つの粒子となって見える凝集体も含まれる。二次粒子は、電子顕微鏡画像において、多くの場合、球状体になっておらず、いびつな形状を有している。 The "primary particle" in the present disclosure means a spherical particle having the smallest unit. For example, primary particles refer to spheres that appear to be in a separable state without being bonded to each other in an electron microscope (for example, a scanning electron microscope). The "secondary particles" referred to in the present disclosure refer to particles in a state in which particles that look like primary particles in an electron microscope are aggregated. The secondary particles also include agglomerates in which the primary particles are crushably attached, and agglomerates in which the primary particles are inseparably fused to form a single particle. In the electron microscope image, the secondary particles are often not spherical and have a distorted shape.
 顆粒を構成する粒子は、一次粒子が主体であることが好ましい。例えば、電子顕微鏡画像の目視確認において、一次粒子の数は、二次粒子の数よりも多いと好ましい。例えば、電子顕微鏡画像の目視確認において、一次粒子(二次粒子を構成する一次粒子を含む)のうち、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは80%以上の一次粒子が、二次粒子を構成しない粒子である。二次粒子は通常不規則的な形状になるため、二次粒子が多くなると、後述の顆粒の円形度が低くなってしまう。 It is preferable that the particles constituting the granules are mainly primary particles. For example, in the visual confirmation of an electron microscope image, the number of primary particles is preferably larger than the number of secondary particles. For example, in the visual confirmation of the electron microscope image, among the primary particles (including the primary particles constituting the secondary particles), preferably 50% or more, more preferably 70% or more, still more preferably 80% or more of the primary particles. , It is a particle that does not constitute a secondary particle. Since the secondary particles usually have an irregular shape, the larger the number of secondary particles, the lower the circularity of the granules described later.
 本開示におけるジルコニア粒子の平均粒径は、レーザー回折/散乱式粒度分布測定方法により測定したとき、0.17μmを超えることが重要であり、0.18μm以上であることが好ましく、0.19μm以上であることがより好ましい。ジルコニア粉末が平均粒径0.17μmを超えるジルコニア粒子を含むことで遮蔽性に優れる。また、ジルコニア粉末が平均粒径0.17μm以下のジルコニア粒子のみである場合、遮蔽性が不十分となる。また、当該平均粒径は、0.40μm以下であることが重要であり、0.35μm以下であることが好ましく、0.30μm以下であることがより好ましい。0.40μmを超えると、強度が不足する可能性がある。本開示における「ジルコニア粒子の平均粒径」とは、一次粒子と二次粒子とを区別することなく測定される粒径である。ある好適な実施形態では、「ジルコニア粒子の平均粒径」は、一次粒子を意味する。他の好適な実施形態では、「ジルコニア粒子の平均粒径」は、二次粒子を意味する。また、ジルコニア粉末が顆粒である場合には、顆粒を構成する粒子の平均粒径を指す。レーザー回折散乱法は、例えば、レーザー回折式粒度分布測定装置(株式会社島津製作所製「SALD-2300」等)により、エタノール、又は0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて体積基準で測定することができる。 The average particle size of the zirconia particles in the present disclosure is important to exceed 0.17 μm, preferably 0.18 μm or more, preferably 0.19 μm or more when measured by the laser diffraction / scattering type particle size distribution measuring method. Is more preferable. Since the zirconia powder contains zirconia particles having an average particle size of more than 0.17 μm, the shielding property is excellent. Further, when the zirconia powder contains only zirconia particles having an average particle size of 0.17 μm or less, the shielding property becomes insufficient. Further, it is important that the average particle size is 0.40 μm or less, preferably 0.35 μm or less, and more preferably 0.30 μm or less. If it exceeds 0.40 μm, the strength may be insufficient. The "average particle size of zirconia particles" in the present disclosure is a particle size measured without distinguishing between primary particles and secondary particles. In one preferred embodiment, "average particle size of zirconia particles" means primary particles. In another preferred embodiment, "average particle size of zirconia particles" means secondary particles. When the zirconia powder is granules, it refers to the average particle size of the particles constituting the granules. The laser diffraction / scattering method uses, for example, a laser diffraction type particle size distribution measuring device (“SALD-2300” manufactured by Shimadzu Corporation, etc.) and ethanol or a 0.2% sodium hexametaphosphate aqueous solution as a dispersion medium on a volume basis. Can be measured.
 本開示におけるジルコニア粉末のBET比表面積は、JIS Z 8830(2013)に準拠して測定したとき、7.0m/g以上であることが好ましく、7.5m/g以上であることがより好ましく、8m/g以上であることがさらに好ましい。7.0m/g未満である場合、焼結が困難であったり、焼結できたとしても焼結体が白濁したりしてしまう。また、当該BET比表面積は、30m/g以下であることが好ましく、25m/g以下であることがより好ましく、20m/g以下であることがさらに好ましい。30m/gを超えると、後述の変速温度が高くなって、焼成炉内の温度ムラの影響を受けやすくなってしまう。また、焼結のための焼成時間を短縮すると焼結体の発色が悪化してしまう。ここでいうBET比表面積とは、一次粒子と二次粒子とを区別することなく測定される比表面積である。 The BET specific surface area of the zirconia powder in the present disclosure is preferably 7.0 m 2 / g or more, and more preferably 7.5 m 2 / g or more when measured in accordance with JIS Z 8830 (2013). It is preferably 8 m 2 / g or more, and more preferably 8 m 2 / g or more. If it is less than 7.0 m 2 / g, it is difficult to sinter, or even if it can be sintered, the sintered body becomes cloudy. The BET specific surface area is preferably 30 m 2 / g or less, more preferably 25 m 2 / g or less, and even more preferably 20 m 2 / g or less. If it exceeds 30 m 2 / g, the speed change temperature described later becomes high, and it becomes easily affected by the temperature unevenness in the firing furnace. Further, if the firing time for sintering is shortened, the color development of the sintered body deteriorates. The BET specific surface area referred to here is a specific surface area measured without distinguishing between primary particles and secondary particles.
 本開示のジルコニア組成物におけるジルコニア粉末のうち、50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上のジルコニア粉末が顆粒形態を採ることができる。 Of the zirconia powders in the zirconia composition of the present disclosure, 50% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more of the zirconia powder can take the granular form.
 ジルコニア粒子の平均粒径が一次粒子である実施形態において、本開示のジルコニア組成物における顆粒(二次粒子)の平均粒径は10μm以上であることが好ましく、12μm以上であることがより好ましく、14μm以上であることがさらに好ましい。顆粒の平均粒径が10μm未満である場合、顆粒を金型に入れたときに空気を巻き込み、成形時に脱気が不十分となり、均一で緻密な成形体を作製できないおそれがある。また、成形時に隙間から顆粒が噴出し、所定の必要量を満たさない成形体を作製するおそれがある。顆粒の平均粒径は、200μm以下であることが好ましく、190μm以下であることがより好ましく、180μm以下であることがさらに好ましく、150μm以下であることがよりさらに好ましく、100μm以下であることが特に好ましい。顆粒の平均粒径が200μmを超えると、顆粒の内部に空洞が形成されやすくなってしまう。また、顆粒を金型へ入れたときに間隙が生じやすくなってしまう。これらの現象により、成形時に脱気が不十分となり、緻密な成形体を作製できないおそれがある。また、成形時に収縮が大きくなり、所望の大きさを有する成形体を作製できないおそれがある。本開示において、顆粒の平均粒径は、顆粒が破壊されないような方法で測定すると好ましい。顆粒の平均粒径は、例えば、乾式篩分け法、湿式ふるい分け法で測定できる。乾式篩分け法は、JIS Z 8815:1994に記載されたふるい分け試験方法に従って測定可能であり、手動ふるい分け、機械ふるい分けを用いることができ、機械ふるい分けが好ましい。篩分け法に用いるふるいとしては、JIS Z 8801-1:2019 試験用ふるいに記載されたふるいを使用することができる。篩分け法に用いる測定装置としては、例えば、ロータップ式ふるい振とう機又は音波振動式ふるい分け測定器で測定できる。ロータップ式ふるい振とう機としては、例えば、株式会社セイシン企業製の「RPS-105M」等が挙げられる。音波振動式ふるい分け測定器としては、例えば、株式会社セイシン企業製の「ロボットシフター RPS-01」、「ロボットシフター RPS-02」等が挙げられる。 In the embodiment in which the average particle size of the zirconia particles is the primary particles, the average particle size of the granules (secondary particles) in the zirconia composition of the present disclosure is preferably 10 μm or more, more preferably 12 μm or more. It is more preferably 14 μm or more. If the average particle size of the granules is less than 10 μm, air may be entrained when the granules are placed in a mold, deaeration may be insufficient during molding, and a uniform and dense molded product may not be produced. In addition, granules may be ejected from the gap during molding to produce a molded product that does not meet a predetermined required amount. The average particle size of the granules is preferably 200 μm or less, more preferably 190 μm or less, further preferably 180 μm or less, further preferably 150 μm or less, and particularly preferably 100 μm or less. preferable. If the average particle size of the granules exceeds 200 μm, cavities are likely to be formed inside the granules. In addition, gaps are likely to occur when the granules are placed in the mold. Due to these phenomena, deaeration may be insufficient during molding, and a dense molded product may not be produced. In addition, shrinkage becomes large during molding, and there is a possibility that a molded body having a desired size cannot be manufactured. In the present disclosure, the average particle size of the granules is preferably measured by a method that does not destroy the granules. The average particle size of the granules can be measured by, for example, a dry sieving method or a wet sieving method. The dry sieving method can be measured according to the sieving test method described in JIS Z 8815: 1994, and manual sieving and mechanical sieving can be used, and mechanical sieving is preferable. As the sieve used in the sieving method, the sieve described in JIS Z 8801-1: 2019 test sieve can be used. As the measuring device used in the sieving method, for example, a low-tap type sieving shaker or a sonic vibration type sieving measuring device can be used for measurement. Examples of the low-tap type sieve shaker include "RPS-105M" manufactured by Seishin Enterprise Co., Ltd. Examples of the sonic vibration type sieving measuring instrument include "Robot Shifter RPS-01" and "Robot Shifter RPS-02" manufactured by Seishin Enterprise Co., Ltd.
 本開示のジルコニア組成物における顆粒の球形度は高いと好ましい。顆粒の球形度を高めることによって、組成の異なるジルコニア粉末を積層したときに、層間の界面における混合を引き起こすことができる。また、ジルコニア粉末を型に充填して成形体を作製する場合に、平均粒径が同じであることがしても球形度が高いほうが充填密度を高めることができる。ジルコニア粉末又はジルコニア顆粒を特定の型(金型等)に充填し、圧力で特定形状にした成形体の密度である充填密度を高めることによって、焼結体の強度を高めることができる。また、型が角部を有する場合であっても、角部への顆粒の充填性を高めることができる。顆粒の球形度は、例えば、投影像に基づく円形度、安息角、軽装かさ密度、重装かさ密度等で表すことができる。 It is preferable that the zirconia composition of the present disclosure has a high degree of sphericity of the granules. By increasing the sphericity of the granules, it is possible to cause mixing at the interface between the layers when zirconia powders with different compositions are laminated. Further, when zirconia powder is filled in a mold to prepare a molded product, even if the average particle size is the same, the higher the sphericity, the higher the packing density. The strength of the sintered body can be increased by filling a specific mold (mold or the like) with zirconia powder or zirconia granules and increasing the packing density, which is the density of the molded product formed into a specific shape by pressure. Further, even when the mold has corners, the filling property of the granules in the corners can be improved. The sphericity of the granules can be represented by, for example, the circularity based on the projected image, the angle of repose, the light bulk density, the heavy bulk density, and the like.
 本開示のジルコニア組成物における顆粒の投影像に基づく平均円形度は、0.81以上であることが好ましく、0.85以上であることがより好ましく、0.90以上であることがさらに好ましく、0.95以上であることがよりさらに好ましい。円形度は、投影像における顆粒の周囲長に対する顆粒の面積と等しい円の周囲長の比として算出することができる。すなわち、円形度は以下の式から算出することができる。平均円形度は、1万個以上の顆粒の円形度の平均値とすると好ましい。
 円形度=(顆粒の面積と等しい円の周囲長(円周))/顆粒の周囲長
The average circularity based on the projected image of the granules in the zirconia composition of the present disclosure is preferably 0.81 or more, more preferably 0.85 or more, still more preferably 0.90 or more. It is even more preferably 0.95 or more. The circularity can be calculated as the ratio of the perimeter of a circle equal to the area of the granules to the perimeter of the granules in the projected image. That is, the circularity can be calculated from the following formula. The average circularity is preferably the average value of the circularity of 10,000 or more granules.
Circularity = (circumferential length of a circle equal to the area of the granule (circumference)) / perimeter of the granule
 本開示のジルコニア組成物の安息角は、35°以下であることが好ましく、32°以下であることがより好ましく、28°以下であることがさらに好ましく、26°以下であることがよりさらに好ましく、24°以下であることが特に好ましい。安息角は、JIS R 9301-2-2:1999に準拠して測定することができる。 The angle of repose of the zirconia composition of the present disclosure is preferably 35 ° or less, more preferably 32 ° or less, further preferably 28 ° or less, still more preferably 26 ° or less. , 24 ° or less is particularly preferable. The angle of repose can be measured in accordance with JIS R 9301-2-2: 1999.
 本開示のジルコニア組成物の軽装かさ密度は、1.0g/cm以上であることが好ましく、1.1g/cm以上であることがより好ましく、1.2g/cm以上であることがさらに好ましく、1.3g/cm以上であることが特に好ましい。軽装かさ密度は、JIS R9301-2-3:1999に準拠して測定することができる。 The light bulk density of the zirconia composition of the present disclosure is preferably 1.0 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, and 1.2 g / cm 3 or more. It is more preferably 1.3 g / cm 3 or more, and particularly preferably 1.3 g / cm 3. Light bulk density can be measured in accordance with JIS R9301-2-3: 1999.
 本開示のジルコニア組成物の重装かさ密度は、1.3g/cm以上であることが好ましく、1.4g/cm以上であることがより好ましく、1.5g/cm以上であることがさらに好ましい。重装かさ密度は、JIS R 9301-2-3:1999に準拠して測定することができる。 The heavy bulk density of the zirconia composition of the present disclosure is preferably 1.3 g / cm 3 or more, more preferably 1.4 g / cm 3 or more, and 1.5 g / cm 3 or more. Is even more preferable. The heavy bulk density can be measured according to JIS R 9301-2-3: 1999.
 本開示のジルコニア組成物は、ジルコニア粉末及び前記安定化剤以外の添加物を含有してもよい。添加物としては、例えば、着色剤(顔料、複合顔料及び蛍光剤を含む)、バインダ、分散剤、消泡剤、アルミナ(Al)、酸化チタン(TiO)、シリカ(SiO)等が挙げられる。添加物は、1種を単独で使用してもよく、2種以上を併用してもよい。目的の彩度Cを考慮して、これらの添加物の含有量を適宜設定できる。 The zirconia composition of the present disclosure may contain additives other than the zirconia powder and the stabilizer. Additives include, for example, colorants (including pigments, composite pigments and fluorescent agents), binders, dispersants, defoamers, alumina (Al 2 O 3 ), titanium oxide (TIO 2 ), silica (SiO 2 ). And so on. As the additive, one kind may be used alone, or two or more kinds may be used in combination. The content of these additives can be appropriately set in consideration of the desired saturation C *.
 着色剤としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Sb、Bi、Ce、Pr、Sm、Eu、Gd、Tb及びErの群から選択される少なくとも1つの元素の酸化物(具体的には、NiO、Cr等)が挙げられる。複合顔料としては、例えば、(Zr,V)O、Fe(Fe,Cr)、(Ni,Co,Fe)(Fe,Cr)・ZrSiO、(Co,Zn)Al等の複合酸化物が挙げられる。蛍光剤としては、例えば、YSiO:Ce、YSiO:Tb、(Y,Gd,Eu)BO、Y:Eu、YAG:Ce、ZnGa:Zn、BaMgAl1017:Eu等が挙げられる。 The colorant is selected from the group of, for example, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Sb, Bi, Ce, Pr, Sm, Eu, Gd, Tb and Er. Examples thereof include oxides of at least one element (specifically, NiO, Cr 2 O 3, etc.). Examples of the composite pigment include (Zr, V) O 2 , Fe (Fe, Cr) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4 · ZrSiO 4 , (Co, Zn) Al. composite oxides such as 2 O 4. Examples of the fluorescent agent include Y 2 SiO 5 : Ce, Y 2 SiO 5 : Tb, (Y, Gd, Eu) BO 3 , Y 2 O 3 : Eu, YAG: Ce, ZnGa 2 O 4 : Zn, BaMgAl. 10 O 17 : Eu and the like can be mentioned.
 バインダとしては、例えば、有機バインダが挙げられる。例えば、アクリル系バインダ、パラフィン系バインダ、脂肪酸系バインダ、ポリビニルアルコール系バインダ等が挙げられる。 Examples of the binder include an organic binder. For example, acrylic binders, paraffin binders, fatty acid binders, polyvinyl alcohol binders and the like can be mentioned.
 本開示のジルコニア組成物は、乾燥した状態であってもよいし、液体を含む状態又は液体に含まれる状態であってもよい。例えば、ジルコニア組成物は、パウダー状、ペースト状、スラリー状等の形態を採ることができる。また、ジルコニア組成物は、所定の形状を有する成形体(以下「第1の成形体」という)であってもよい。 The zirconia composition of the present disclosure may be in a dry state, may be in a state containing a liquid, or may be in a state of being contained in a liquid. For example, the zirconia composition can be in the form of powder, paste, slurry or the like. Further, the zirconia composition may be a molded product having a predetermined shape (hereinafter referred to as "first molded product").
 第1の成形体の密度は、2.75g/cm以上であることが好ましく、2.80g/cm以上であることがより好ましく、2.85g/cm以上であることがさらに好ましく、2.90g/cm以上であることがよりさらに好ましく、3.00g/cm以上であることが特に好ましい。該密度は、例えば、(第1の成形体の質量)/(第1の成形体の体積)として算出することができる。 Density of the first molded body is preferably at 2.75 g / cm 3 or more, more preferably 2.80 g / cm 3 or more, still more preferably 2.85 g / cm 3 or more, more preferably more that it is 2.90 g / cm 3 or more, particularly preferably 3.00 g / cm 3 or more. The density can be calculated as, for example, (mass of the first molded product) / (volume of the first molded product).
 本開示において、ジルコニア焼結体の発色の程度は彩度Cによって表すことができ、本発明のジルコニア組成物は、1300~1600℃で焼成した場合、彩度Cが3以上であることが好ましく、5以上であることがより好ましく、7以上であることがさらに好ましい。本発明における彩度Cとは、L表色系(JIS Z 8781-4:2013)における色度(色空間)のC値であり、厚さ1.2mmのジルコニア焼結体の試料の背景を黒色にして測定したa値とb値から、数式(iii)を用いて算出することができる。なお、1300~1600℃の範囲内において、少なくとも1つの温度で焼成した場合の彩度Cが上記範囲を満たすことが好ましい。
  C={(a+(b(1/2) (iii)
In the present disclosure, the degree of color development of the zirconia sintered body can be represented by the saturation C * , and the zirconia composition of the present invention has a saturation C * of 3 or more when fired at 1300 to 1600 ° C. Is preferable, 5 or more is more preferable, and 7 or more is further preferable. The saturation C * in the present invention is the C * value of the chromaticity (color space) in the L * a * b * color system (JIS Z 8781-4: 2013), and is a zirconia firing having a thickness of 1.2 mm. It can be calculated by using the formula (iii) from the a * value and b * value measured with the background of the boiled sample black. It is preferable that the saturation C * when firing at at least one temperature in the range of 1300 to 1600 ° C. satisfies the above range.
C * = {(a * ) 2 + (b * ) 2 } (1/2) (iii)
 該試料の作製方法については、まず、ジルコニア焼結体の厚さが1.2mmとなるように、ジルコニア組成物(例えば、顆粒)をプレス成形、続くCIP成形にて、例えば直径19mmの円板状の成形体を作製することができる。次に、該成形体を所定の焼成条件で焼成して、試料となる厚さ1.2mmのジルコニア焼結体を作製することができる。a値及びb値の測定については、試料の表面に接触液を塗布した後、色差計(例えば、歯科用測色装置「クリスタルアイ CE100-DC/JP」(オリンパス株式会社製)、解析ソフト「クリスタルアイ」(オリンパス株式会社製))を用いて、黒色背景のa値及びb値を測定することができる。黒色背景とは、JIS K 5600-4-1:1999第4部第1節に記載の隠ぺい率試験紙の黒部を意味する。接触液としては、例えば、測定波長589nm(ナトリウムD線)で測定した屈折率nDが1.60のものを使用することができる。 Regarding the method for preparing the sample, first, the zirconia composition (for example, granules) is press-molded so that the thickness of the zirconia sintered body is 1.2 mm, followed by CIP molding, for example, a disk having a diameter of 19 mm. A shaped molded product can be produced. Next, the molded product can be fired under predetermined firing conditions to prepare a sample zirconia sintered body having a thickness of 1.2 mm. For the measurement of a * value and b * value, after applying the contact liquid to the surface of the sample, analyze with a color difference meter (for example, dental color measuring device "Crystal Eye CE100-DC / JP" (manufactured by Olympus Corporation)). The a * value and b * value of a black background can be measured using the soft "Crystal Eye" (manufactured by Olympus Corporation). The black background means the black part of the concealment rate test paper described in JIS K 5600-4-1: 1999, Part 4, Section 1. As the contact liquid, for example, one having a refractive index nD measured at a measurement wavelength of 589 nm (sodium D line) and having a refractive index of 1.60 can be used.
 本発明のジルコニア組成物は、短時間の焼成であっても良好な発色を示し、所望の彩度Cを示すジルコニア焼結体を得ることができる。短時間での焼成の可否を判断する指標として、各保持時間x,yにおけるCの比=C(x)/C(y)(x≦y 単位:分)を算出することができる。本発明のジルコニア組成物は、最高焼成温度1300~1600℃で焼成した場合、前記温度で30分間保持した際の焼結体の彩度C(30)と前記温度で120分間保持した際の焼結体の彩度C(120)の比C(30)/C(120)が0.4以上であることが重要であり、0.6以上であることが好ましく、0.8以上であることがより好ましく、0.9以上であることがさらに好ましく、0.93以上であることが特に好ましい。C(30)/C(120)が0.4未満である場合、短時間焼成時の発色が悪く、所望の彩度Cを得られない。なお、1300~1600℃の範囲内において、少なくとも1つの特定の温度で焼成した場合の彩度の比C(30)/C(120)が上記範囲を満たすことが重要である。 The zirconia composition of the present invention shows good color development even when fired for a short time, and a zirconia sintered body showing a desired saturation C * can be obtained. As an index for determining whether or not firing is possible in a short time, the ratio of C * at each holding time x and y = C * (x) / C * (y) (x≤y unit: minutes) can be calculated. .. When the zirconia composition of the present invention is fired at a maximum firing temperature of 1300 to 1600 ° C., the saturation C * (30) of the sintered body when held at the above temperature for 30 minutes and the saturation C * (30) when held at the above temperature for 120 minutes It is important that the ratio C * (30) / C * (120) of the saturation C * (120) of the sintered body is 0.4 or more, preferably 0.6 or more, and 0.8 The above is more preferable, 0.9 or more is further preferable, and 0.93 or more is particularly preferable. When C * (30) / C * (120) is less than 0.4, the color development during short-time firing is poor, and the desired saturation C * cannot be obtained. In the range of 1300 to 1600 ° C., it is important that the saturation ratio C * (30) / C * (120) when firing at at least one specific temperature satisfies the above range.
 なお、本開示の彩度Cを測定する際、上述したようなジルコニア組成物を1300~1600℃の範囲内の温度で焼成して直接的に焼結状態とした試料を用いる代わりに、仮焼状態を経由した試料、例えば、まず800~1200℃の範囲内の温度で焼成してジルコニア仮焼体とした後、1300~1600℃の範囲内の温度で焼成したジルコニア焼結体の試料を用いてもよい。 When measuring the saturation C * of the present disclosure, instead of using a sample in which the zirconia composition as described above is calcined at a temperature in the range of 1300 to 1600 ° C. and directly sintered. A sample that has passed through the baked state, for example, a sample of a zirconia sintered body that is first fired at a temperature in the range of 800 to 1200 ° C. to obtain a zirconia calcined product and then fired at a temperature in the range of 1300 to 1600 ° C. You may use it.
 本発明のジルコニア組成物の利点の一つについて、以下に説明する。一般に、ジルコニアのプレス成形体から焼結体までの収縮速度は、焼成温度に対して一定ではなく、ある温度までは収縮速度は低いが、当該ある温度で収縮速度が高くなる。この収縮速度が変化する温度を本開示では「変速温度」と表記する。本開示のジルコニア組成物によれば、変速温度を1050℃以上、好ましくは1100℃以上とすることができる。 One of the advantages of the zirconia composition of the present invention will be described below. In general, the shrinkage rate from the press-molded zirconia to the sintered body is not constant with respect to the firing temperature, and the shrinkage rate is low up to a certain temperature, but the shrinkage rate is high at the certain temperature. The temperature at which the contraction speed changes is referred to as "shift temperature" in the present disclosure. According to the zirconia composition of the present disclosure, the shifting temperature can be set to 1050 ° C. or higher, preferably 1100 ° C. or higher.
 1つのロットとして、1つの焼成炉で複数のプレス成形体を同時に焼成して、複数の仮焼体(ブロック体)を作製する場合、複数のプレス成形体間において、仮焼体までの収縮率のばらつきが小さいと好ましい。収縮率のばらつきが大きいと、その仮焼体を成形加工する際に、当該ロットに対して、同じ係数を適用して成形加工体の寸法を決定すると、目的とする寸法を有しないジルコニア焼結体が得られてしまう。この点は、歯科用補綴物等の高度の寸法精度が要求される製品の場合に特に問題となる。従って、1つのロットにおいて収縮率が許容範囲から外れたブロック体は製品として使用することができず、歩留まりが低下してしまう。 When a plurality of press-molded bodies are simultaneously fired in one firing furnace as one lot to produce a plurality of calcined bodies (block bodies), the shrinkage rate to the calcined body is achieved between the plurality of press-molded bodies. It is preferable that the variation of is small. If the shrinkage rate varies widely, when the calcined product is molded, the same coefficient is applied to the lot to determine the dimensions of the molded product, and zirconia sintering does not have the desired dimensions. The body is obtained. This point is particularly problematic in the case of products such as dental prostheses that require a high degree of dimensional accuracy. Therefore, a block body whose shrinkage rate is out of the permissible range in one lot cannot be used as a product, and the yield is lowered.
 本開示のジルコニア組成物によれば、ジルコニア仮焼体のブロック体を製造するための焼成温度(例えば、約1000℃)に対して、1つのロットにおける収縮率のばらつきを小さくすることができる。通常、ジルコニア仮焼体を作製するための最高焼成温度(以下「仮焼温度」という)は、変速温度と近い。通常、仮焼温度において焼成炉内には20~50℃くらいの温度差(温度ムラ)が生じる。このため、変速温度が仮焼温度付近であることが、組成物のロットは、この温度ムラの影響を強く受けることになる。すなわち、1つのロットにおいて、温度に低い箇所にあったジルコニア仮焼体と温度の高い箇所にあったジルコニア仮焼体とでは収縮率が大きく異なってしまうことになる。収縮率が許容範囲から外れたジルコニア仮焼体は製品とすることができないため、歩留まりが低下してしまう。一方、本開示のジルコニア組成物によれば、変速温度を高くし、変速温度と仮焼温度との差を小さくすることができる。このため、1つのロットにおいて、温度の低い箇所にあったジルコニア仮焼体と温度の高い箇所にあったジルコニア仮焼体との収縮率の差を小さくすることができる。これにより、収縮率が許容範囲から外れるジルコニア仮焼体を少なくして、歩留まりを高めることができる。また、一度に焼成可能な製品数を増やすことができ、生産効率を高めることができる。 According to the zirconia composition of the present disclosure, the variation in the shrinkage rate in one lot can be reduced with respect to the firing temperature (for example, about 1000 ° C.) for producing the block body of the zirconia calcined body. Usually, the maximum firing temperature for producing a zirconia calcined body (hereinafter referred to as "temporary calcining temperature") is close to the shifting temperature. Normally, at the calcining temperature, a temperature difference (temperature unevenness) of about 20 to 50 ° C. occurs in the firing furnace. Therefore, when the shifting temperature is near the calcining temperature, the lot of the composition is strongly affected by this temperature unevenness. That is, in one lot, the shrinkage rate is significantly different between the zirconia calcined body in the place where the temperature is low and the zirconia calcined product in the place where the temperature is high. Since the zirconia calcined product whose shrinkage rate is out of the allowable range cannot be produced as a product, the yield is lowered. On the other hand, according to the zirconia composition of the present disclosure, the shifting temperature can be raised and the difference between the shifting temperature and the calcining temperature can be reduced. Therefore, in one lot, the difference in shrinkage between the zirconia calcined body in the low temperature portion and the zirconia calcined product in the high temperature portion can be reduced. As a result, it is possible to reduce the amount of zirconia calcined material whose shrinkage rate is out of the permissible range and increase the yield. In addition, the number of products that can be fired at one time can be increased, and the production efficiency can be improved.
 具体的には、ジルコニア組成物のプレス成形体を800℃以上1000℃以下で焼成して仮焼体を作製した場合、プレス成形体から仮焼体への収縮率は、プレス成形体の一方向の寸法に対して1%以下であることが好ましい。また、ジルコニア組成物のプレス成形体を1000℃より高く1200℃以下で焼成してジルコニア仮焼体を作製した場合、プレス成形体から仮焼体への収縮率は、プレス成形体の一方向の寸法に対して5%以下であることが好ましい。ただし、ここでいうプレス成形体は、例えば、ジルコニア粉末を所定の圧力(例えば、300kg/cm)でプレス成形した成形体に対して、さらにCIP処理(例えば、1700kg/cm)を施したものである。 Specifically, when a press-molded body of a zirconia composition is fired at 800 ° C. or higher and 1000 ° C. or lower to prepare a calcined body, the shrinkage rate from the press-molded body to the calcined body is unidirectional. It is preferably 1% or less with respect to the dimension of. Further, when the press-molded body of the zirconia composition is fired at 1200 ° C. or lower higher than 1000 ° C. to prepare a zirconia calcined body, the shrinkage rate from the press-molded body to the calcined body is unidirectional. It is preferably 5% or less with respect to the size. However, in the press-molded article referred to here, for example, a molded article obtained by press-molding zirconia powder at a predetermined pressure (for example, 300 kg / cm 2 ) is further subjected to CIP treatment (for example, 1700 kg / cm 2 ). It is a thing.
 さらに、本開示のジルコニア組成物及びそれから製造されたジルコニア仮焼体によれば、1つのロット内のどのブロック体であっても高い寸法精度で最終製品(ジルコニア焼結体)を作製することができる。本開示のジルコニア組成物及びジルコニア仮焼体は、特に高度の寸法精度が要求される製品(例えば歯科用製品)の作製に有用である。 Furthermore, according to the zirconia composition of the present disclosure and the zirconia calcined product produced from the zirconia composition, it is possible to produce a final product (zirconia sintered body) with high dimensional accuracy regardless of any block body in one lot. it can. The zirconia composition and the zirconia calcined product of the present disclosure are particularly useful for producing products (for example, dental products) that require a high degree of dimensional accuracy.
 本開示のジルコニア組成物及びジルコニア仮焼体はさらなる利点を有する。本開示のジルコニア組成物及びジルコニア仮焼体によれば、作製されるジルコニア焼結体の強度を低下させることなく、ジルコニア焼結体を作製するための焼成時間を短縮することができる。特に、ジルコニア焼結体を作製するための最高焼成温度における保持時間を短縮することができる(短時間焼成)。これにより、生産効率を高めると共に、製造コストを低減させることができる。短時間焼成を行う場合、焼成炉内にジルコニア組成物又はジルコニア仮焼体を保持する係留時間は、前記最高焼成温度において60分以下が好ましい。また、本開示のジルコニア組成物及びジルコニア仮焼体を歯科用製品に適用する場合に、治療に使用する歯科用製品の寸法を決定してから、当該歯科用製品で治療可能とするまでの時間を短縮することができ、患者の時間的負担を軽減することができる。 The zirconia composition and the zirconia calcined product of the present disclosure have further advantages. According to the zirconia composition and the zirconia calcined product of the present disclosure, the firing time for producing the zirconia sintered body can be shortened without lowering the strength of the produced zirconia sintered body. In particular, the holding time at the maximum firing temperature for producing the zirconia sintered body can be shortened (short-time firing). As a result, the production efficiency can be increased and the manufacturing cost can be reduced. When firing for a short time, the mooring time for holding the zirconia composition or the zirconia calcined body in the firing furnace is preferably 60 minutes or less at the maximum firing temperature. In addition, when the zirconia composition and zirconia calcined body of the present disclosure are applied to a dental product, the time from determining the dimensions of the dental product to be used for treatment until the dental product can be treated. Can be shortened, and the time burden on the patient can be reduced.
 次に、本開示のジルコニア組成物の製造方法の一例について説明する。 Next, an example of the method for producing the zirconia composition of the present disclosure will be described.
 まず、ジルコニア粉末と安定化剤とを所定の割合で混合して混合物を作製する(混合工程)。例えば、安定化剤がイットリアである場合、混合比率は、前述したジルコニア組成物におけるイットリアの含有率と同様とすることができる。混合は乾式で行ってもよいし、湿式で行ってもよい。該混合物を上述のジルコニア粒子の平均粒径となるまで、さらに必要に応じてジルコニア粉末のBET比表面積となるまで粉砕することで本開示のジルコニア組成物を製造することができる(第1の粉砕工程)。なお、混合工程と第1の粉砕工程とは同一の工程で行うことができる。粉砕は、例えば、水等の溶媒に混合物を分散させた後、ボールミルを用いて行うことができる。ジルコニア組成物の製造方法は、後述の仮焼工程以降の工程を行わない場合には、変速温度の高温化及び/又は短時間焼成のため、ジルコニア粉末が平均粒径0.17μm超0.4μm以下のジルコニア粒子を含むように、該混合物を粉砕する工程を含む。該平均粒径は、上述したようにレーザー回折/散乱式粒度分布測定方法によって測定することができる。混合工程及び/又は第1の粉砕工程後、ジルコニア組成物をスプレードライヤ等による噴霧乾燥で乾燥させて、ジルコニア組成物を上述のような顆粒形態に成形することもできる(第1の乾燥工程)。これにより、本発明に係るジルコニア組成物を製造することができる。 First, the zirconia powder and the stabilizer are mixed at a predetermined ratio to prepare a mixture (mixing step). For example, when the stabilizer is yttria, the mixing ratio can be the same as the yttria content in the zirconia composition described above. The mixing may be carried out dry or wet. The zirconia composition of the present disclosure can be produced by pulverizing the mixture until it reaches the average particle size of the above-mentioned zirconia particles and, if necessary, the BET specific surface area of the zirconia powder (first pulverization). Process). The mixing step and the first crushing step can be performed in the same step. The pulverization can be carried out using a ball mill after dispersing the mixture in a solvent such as water. In the method for producing the zirconia composition, when the steps after the calcination step described later are not performed, the zirconia powder has an average particle size of more than 0.17 μm and 0.4 μm due to the increase in the shifting temperature and / or the short-time firing. It comprises the step of grinding the mixture so as to include the following zirconia particles. The average particle size can be measured by the laser diffraction / scattering type particle size distribution measuring method as described above. After the mixing step and / or the first pulverization step, the zirconia composition may be dried by spray drying with a spray dryer or the like to form the zirconia composition into the granule form as described above (first drying step). .. Thereby, the zirconia composition according to the present invention can be produced.
 以下の工程は、ジルコニア組成物の利用目的に応じて、任意に実施することができる。例えば、上述の工程のいずれかの工程の後、混合物及び/又はジルコニア組成物をジルコニア粒子が焼結に至らない温度で焼成(即ち仮焼)することができる(焼成(仮焼)工程)。焼成条件は、焼成後冷却したときのジルコニアの主たる結晶系が、上述のように正方晶系及び立方晶系とならないような条件であることが好ましい。また、焼成条件は、少なくとも一部の安定化剤がジルコニアに固溶しないような条件であることが好ましい。例えば、焼成温度は700℃以上であることが好ましく、800℃以上であることがより好ましい。また、焼成温度は、1200℃以下であることが好ましく、1100℃以下であることがより好ましく、1000℃以下であることがさらに好ましく、980℃以下であることがよりさらに好ましく、950℃以下であることが特に好ましい。焼成は大気下で行うことができる。仮焼工程を行うことにより、安定化剤の一部をジルコニアに固溶させたり、後の焼結工程において安定化剤を固溶させやすくしたり、ジルコニア焼結体の性状を改善したりすることができると考えられる。 The following steps can be arbitrarily carried out according to the purpose of use of the zirconia composition. For example, after any of the steps described above, the mixture and / or the zirconia composition can be fired (ie, calcined) at a temperature at which the zirconia particles do not sinter (firing (temporary firing) step). The firing conditions are preferably such that the main crystal system of zirconia when cooled after firing does not become a tetragonal system or a cubic system as described above. Further, the firing conditions are preferably such that at least a part of the stabilizer does not dissolve in zirconia. For example, the firing temperature is preferably 700 ° C. or higher, more preferably 800 ° C. or higher. The firing temperature is preferably 1200 ° C. or lower, more preferably 1100 ° C. or lower, further preferably 1000 ° C. or lower, further preferably 980 ° C. or lower, and 950 ° C. or lower. It is particularly preferable to have. Firing can be performed in the atmosphere. By performing the calcining step, a part of the stabilizer is dissolved in zirconia, the stabilizer can be easily dissolved in the subsequent sintering step, and the properties of the zirconia sintered body are improved. It is thought that it can be done.
 上述の工程のいずれかの工程の後、ジルコニア組成物を水等の溶媒に分散させてスラリーを作製して、バインダ、着色剤等の添加物をジルコニア組成物に添加することができる(添加工程)。添加工程の後、ジルコニア組成物を上述のジルコニア粒子の平均粒径となるまで、さらに必要に応じて上述のジルコニア粉末のBET比表面積となるまで粉砕することができる(第2の粉砕工程)。なお、添加工程と第2の粉砕工程とは同一の工程で行うことができる。第2の粉砕工程は、第1の粉砕工程と同様にして行うことができる。添加工程及び/又は第2の粉砕工程後、スプレードライヤ等でジルコニア組成物を噴霧乾燥で乾燥させて、ジルコニア組成物を上述のような顆粒形態に成形することもできる(第2の乾燥工程)。 After any of the steps described above, the zirconia composition can be dispersed in a solvent such as water to prepare a slurry, and additives such as a binder and a colorant can be added to the zirconia composition (addition step). ). After the addition step, the zirconia composition can be pulverized to the average particle size of the zirconia particles described above, and if necessary, to the BET specific surface area of the zirconia powder described above (second pulverization step). The addition step and the second pulverization step can be performed in the same step. The second crushing step can be performed in the same manner as the first crushing step. After the addition step and / or the second pulverization step, the zirconia composition may be dried by spray drying with a spray dryer or the like to form the zirconia composition into the granule form as described above (second drying step). ..
 上述したように、ジルコニア組成物を成形して第1の成形体とすることもできる(第1成形工程)。成形方法は特定の方法に限定されず、目的に応じて適宜好適な方法を選択することができる。例えば、ジルコニア組成物は、プレス成形、射出成形、光造形法等の成形方法によって成形し、第1の成形体とすることができる。また、多段階的な成形を行ってもよい。例えば、ジルコニア組成物をプレス成形した後に、さらにCIP処理を施したものでもよい。 As described above, the zirconia composition can also be molded into a first molded product (first molding step). The molding method is not limited to a specific method, and a suitable method can be appropriately selected depending on the intended purpose. For example, the zirconia composition can be molded by a molding method such as press molding, injection molding, or stereolithography to obtain a first molded body. Moreover, you may perform multi-step molding. For example, the zirconia composition may be press-molded and then further subjected to CIP treatment.
 所望の彩度Cを得るために、上述したバインダ、着色剤などの添加物は、各工程において適宜添加することができる。 In order to obtain the desired saturation C * , the above-mentioned additives such as binder and colorant can be appropriately added in each step.
 前記製造方法によれば、本発明のジルコニア組成物を作製することができる。好適なジルコニア組成物の製造方法としては、上述の変速温度が高く、及び/又は焼結のための焼成時間を短縮できるジルコニア組成物を作製することができる製造方法が挙げられる。焼成時間の短縮は、前記した未固溶イットリアの存在率fの調整又は選択、ジルコニア粉末の平均粒径の選択等によって調整できる。 According to the production method, the zirconia composition of the present invention can be produced. Suitable methods for producing a zirconia composition include the above-mentioned production method capable of producing a zirconia composition capable of producing a zirconia composition having a high shifting temperature and / or a shortening of firing time for sintering. Shortening the baking time, the adjustment or selection of prevalence f y undissolved yttria described above, it can be adjusted by selection of the average particle diameter of the zirconia powder.
 本開示のジルコニア組成物を用いて、ジルコニア仮焼体を好適に作製することができる。また、本開示のジルコニア組成物、又はジルコニア組成物から作製されたジルコニア仮焼体を用いて、ジルコニア焼結体を好適に作製することができる。以下、具体的に説明する。 Using the zirconia composition of the present disclosure, a zirconia calcined body can be suitably produced. Further, a zirconia sintered body can be suitably prepared by using the zirconia composition of the present disclosure or a zirconia calcined product prepared from the zirconia composition. Hereinafter, a specific description will be given.
 まず、本開示のジルコニア仮焼体について説明する。本開示における仮焼体は、ジルコニア焼結体の前駆体(中間製品)となり得るものである。本開示において、ジルコニア仮焼体としては、例えば、ジルコニア粒子(粉末)が完全には焼結していない状態でブロック化したものであってもよい。本開示のジルコニア仮焼体の密度は2.7g/cm以上であることが好ましい。また、該密度は4.0g/cm以下であることが好ましく、3.8g/cm以下であることがより好ましく、3.6g/cm以下であることがさらに好ましい。ジルコニア仮焼体の密度が該範囲内にあると成形加工を容易に行うことができる。密度は、例えば、(仮焼体の質量)/(仮焼体の体積)として算出することができる。ジルコニア仮焼体の密度は、ジルコニア顆粒を特定の型(金型等)に充填し、圧力で特定の形状にした成形体を、バインダが除去できる温度で熱してバインダを除去した後、イットリアが程よく固溶し、かつ程よくネッキング(固着)が形成する温度で熱して得られる仮焼体の密度を意味する。前記バインダを除去する際の温度は、バインダが除去できる温度であれば特に限定されず、150~500℃であってもよい。イットリアが程よく固溶し、かつ程よくネッキング(固着)が形成する温度は、特に限定されないが、800~1050℃であってもよい。 First, the zirconia calcined body of the present disclosure will be described. The calcined product in the present disclosure can be a precursor (intermediate product) of a zirconia sintered body. In the present disclosure, the zirconia calcined product may be, for example, a zirconia particle (powder) blocked in a state where it is not completely sintered. The density of the zirconia calcined product of the present disclosure is preferably 2.7 g / cm 3 or more. Moreover, it said seal degree is preferably not more than 4.0 g / cm 3, more preferably 3.8 g / cm 3 or less, further preferably 3.6 g / cm 3 or less. When the density of the zirconia calcined body is within the range, the molding process can be easily performed. The density can be calculated as, for example, (mass of calcined body) / (volume of calcined body). The density of the zirconia calcined body is determined by filling the zirconia granules in a specific mold (mold, etc.) and heating the molded product, which has been shaped into a specific shape by pressure, at a temperature at which the binder can be removed to remove the binder, and then yttria. It means the density of the calcined body obtained by heating at a temperature at which it melts moderately and necking (fixation) is formed moderately. The temperature at which the binder can be removed is not particularly limited as long as the binder can remove the binder, and may be 150 to 500 ° C. The temperature at which yttria dissolves moderately and necking (fixation) forms moderately is not particularly limited, but may be 800 to 1050 ° C.
 本開示のジルコニア仮焼体における安定化剤の含有率の好ましい範囲は、上述したジルコニア組成物における含有率と同様である。焼結後の強度及び透光性の観点から、該安定化剤はイットリアであることが好ましい。 The preferable range of the content of the stabilizer in the zirconia calcined product of the present disclosure is the same as the content of the zirconia composition described above. From the viewpoint of strength and translucency after sintering, the stabilizer is preferably yttria.
 本開示のジルコニア仮焼体において、安定化剤は、ジルコニアの結晶のうち少なくとも一部が単斜晶系であるように存在している、すなわち安定化剤の少なくとも一部はジルコニアに固溶されていないことが好ましい。ジルコニア仮焼体における安定化剤の未固溶での存在率は、ジルコニア仮焼体作製時の焼成温度にも依存するが、通常、ジルコニア仮焼体作製前のジルコニア組成物における存在率以下であることが考えられる。ジルコニア仮焼体における未固溶イットリアの存在率fは、上記数式(i)に基づいて算出することができる。ジルコニア仮焼体における未固溶イットリアの存在率fの好ましい範囲は、上述のジルコニア組成物のfと同様である。 In the zirconia calcined product of the present disclosure, the stabilizer is present so that at least a part of the zirconia crystals is monoclinic, that is, at least a part of the stabilizer is dissolved in zirconia. It is preferable not to. The abundance of the stabilizer in the zirconia calcined body in an unsolid solution depends on the firing temperature at the time of preparing the zirconia calcined body, but is usually less than or equal to the abundance in the zirconia composition before the preparation of the zirconia calcined body. It is possible that there is. Prevalence f y undissolved yttria in zirconia calcined body can be calculated based on the equation (i). A preferred range of prevalence f y undissolved yttria in zirconia calcined body is the same as f y of the above-described zirconia composition.
 本開示のジルコニア仮焼体におけるジルコニアの結晶系は、ジルコニア仮焼体作製時の焼成温度にも依存するが、通常、ジルコニア仮焼体作製前のジルコニア組成物における単斜晶系の割合以下であることが考えられる。ジルコニア仮焼体における単斜晶系の割合fは、単斜晶系、正方晶系及び立方晶系の総量に対して60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましく、90%以上であることがよりさらに好ましく、95%以上であることが特に好ましい。 The crystal system of zirconia in the zirconia calcined body of the present disclosure depends on the firing temperature at the time of preparing the zirconia calcined body, but is usually less than or equal to the ratio of the monoclinic system in the zirconia composition before the preparation of the zirconia calcined body. It is possible that there is. Ratio f m of monoclinic in zirconia calcined body is monoclinic system, is preferably tetragonal and 60% or more with respect to the total amount of cubic, more preferably 70% or more , 80% or more, more preferably 90% or more, and particularly preferably 95% or more.
 本開示のジルコニア仮焼体の、ISO6872:2015に準拠して測定した曲げ強さは、機械的加工を可能にする強度を確保するために、15MPa以上であることが好ましい。また、該曲げ強さは、機械的加工を容易にするために、70MPa以下であることが好ましく、60MPa以下であることがより好ましい。 The bending strength of the zirconia calcined product of the present disclosure measured in accordance with ISO6782: 2015 is preferably 15 MPa or more in order to secure the strength that enables mechanical processing. Further, the bending strength is preferably 70 MPa or less, and more preferably 60 MPa or less in order to facilitate mechanical processing.
 本開示のジルコニア仮焼体は、ジルコニア組成物について上述したような添加物を同様に含有することができる。 The zirconia calcined product of the present disclosure can similarly contain the additives as described above for the zirconia composition.
 本開示のジルコニア仮焼体は、所定の形状を有する成形体(以下「第2の成形体」という)であってもよい。例えば、ジルコニア仮焼体は、ディスク(円板)形状、直方体形状、歯科用製品形状(例えば歯冠形状)を有することができる。仮焼したジルコニアディスクをCAD/CAM(Computer-Aided Design/Computer-Aided Manufacturing)システムで加工した歯科用製品(例えば歯冠形状の補綴物)も仮焼体に含まれる。 The zirconia calcined body of the present disclosure may be a molded body having a predetermined shape (hereinafter referred to as "second molded body"). For example, the zirconia calcined body can have a disc shape, a rectangular parallelepiped shape, and a dental product shape (for example, a crown shape). Dental products (for example, crown-shaped prostheses) obtained by processing a calcined zirconia disc with a CAD / CAM (Computer-Aided Design / Computer-Aided Manufacturing) system are also included in the calcined body.
 本開示のジルコニア仮焼体は、上述したようにジルコニア組成物からの収縮率の変動が小さくなるように作製されている。これにより、本開示のジルコニア仮焼体によれば、仮焼体から焼結体への収縮率を同等にすることができ、寸法精度の高いジルコニア焼結体を製造することができる。 The zirconia calcined product of the present disclosure is produced so that the fluctuation of the shrinkage rate from the zirconia composition becomes small as described above. As a result, according to the zirconia calcined body of the present disclosure, the shrinkage rate from the calcined body to the sintered body can be made equal, and a zirconia sintered body having high dimensional accuracy can be produced.
 本開示のジルコニア仮焼体によれば、上述のように、短時間の焼成でも透光性の高いジルコニア焼結体を作製することができる。すなわち、本開示のジルコニア仮焼体は、上述の短時間焼成に関する利点を有する。 According to the zirconia calcined product of the present disclosure, as described above, a zirconia sintered body having high translucency can be produced even by firing for a short time. That is, the zirconia calcined product of the present disclosure has the above-mentioned advantages regarding short-time firing.
 次に、本開示のジルコニア仮焼体の製造方法の一例について説明する。 Next, an example of the method for producing the zirconia calcined body of the present disclosure will be described.
 本開示のジルコニア仮焼体は、上記第1成形工程で作製したプレス成形体(第1の成形体)を、ジルコニア粒子が焼結に至らない温度で焼成(即ち仮焼)して作製することができる(仮焼工程)。すなわち、本開示のジルコニア仮焼体の製造方法としては、第1の成形体を、ジルコニア粒子が焼結に至らない温度で焼成する仮焼工程を含む製造方法が挙げられる。前記製造方法は、ジルコニア組成物を成形して第1の成形体を作製する第1成形工程を含んでいてもよい。第1成形工程は前記ジルコニア組成物で上述したとおりである。焼成温度は、ブロック化を確実にするため、例えば、800℃以上であることが好ましく、900℃以上であることがより好ましく、950℃以上であることがさらに好ましい。また、焼成温度は、寸法精度を高めるため、例えば、1200℃以下であることが好ましく、1150℃以下であることがより好ましく、1100℃以下であることがさらに好ましい。特に、仮焼工程において、本開示のジルコニア組成物からなるプレス成形体(第1の成形体)を800~1200℃で焼成して、ジルコニア仮焼体を作製することが好ましい。 The zirconia calcined product of the present disclosure is produced by firing (that is, calcining) the press-molded product (first molded product) produced in the first molding step at a temperature at which the zirconia particles do not reach sintering. Can be done (temporary firing process). That is, as a method for producing the zirconia calcined product of the present disclosure, a production method including a calcining step of firing the first molded product at a temperature at which the zirconia particles do not reach sintering can be mentioned. The manufacturing method may include a first molding step of molding a zirconia composition to prepare a first molded product. The first molding step is as described above for the zirconia composition. The firing temperature is preferably, for example, 800 ° C. or higher, more preferably 900 ° C. or higher, and even more preferably 950 ° C. or higher in order to ensure blocking. Further, the firing temperature is preferably, for example, 1200 ° C. or lower, more preferably 1150 ° C. or lower, and further preferably 1100 ° C. or lower in order to improve the dimensional accuracy. In particular, in the calcining step, it is preferable to fire a press-molded product (first molded product) made of the zirconia composition of the present disclosure at 800 to 1200 ° C. to prepare a zirconia calcined product.
 本開示のジルコニア仮焼体の製造方法としては、前記第1成形工程前に、前記ジルコニア粉末が、ジルコニア粒子の平均粒径が0.17μm超0.4μm以下を含むように、前記ジルコニア粉末と前記安定化剤との混合物を粉砕してジルコニア組成物を得る粉砕工程をさらに含んでいてもよい。当該粉砕工程は、前記第1の粉砕工程と同様である。さらに、本開示のジルコニア仮焼体の製造方法としては、前記第1の粉砕工程に加えて、又は第1の粉砕工程に代えて、第2の粉砕工程をさらに含んでいてもよい。第2の粉砕工程は、前記したとおりである。 In the method for producing the zirconia calcined product of the present disclosure, before the first molding step, the zirconia powder is mixed with the zirconia powder so that the average particle size of the zirconia particles is more than 0.17 μm and 0.4 μm or less. A pulverization step of pulverizing the mixture with the stabilizer to obtain a zirconia composition may be further included. The crushing step is the same as the first crushing step. Further, the method for producing the zirconia calcined product of the present disclosure may further include a second pulverization step in addition to the first pulverization step or in place of the first pulverization step. The second pulverization step is as described above.
 また、本開示のジルコニア仮焼体の製造方法としては、前記第1成形工程前に、前記ジルコニア組成物を噴霧乾燥により顆粒形態にする乾燥工程をさらに含んでいてもよい。当該乾燥工程は、前記第1の乾燥工程と同様である。さらに、本開示のジルコニア仮焼体の製造方法としては、前記第1の乾燥工程に加えて、又は第1の乾燥工程に代えて、第2の乾燥工程をさらに含んでいてもよい。第2の乾燥工程は、前記したとおりである。 Further, the method for producing the zirconia calcined product of the present disclosure may further include a drying step of atomizing the zirconia composition into granules before the first molding step. The drying step is the same as the first drying step. Further, the method for producing the zirconia calcined product of the present disclosure may further include a second drying step in addition to or in place of the first drying step. The second drying step is as described above.
 本開示のジルコニア仮焼体は、後述する焼結工程前に成形して第2の成形体を作製することができる(第2の成形工程)。該成形方法は特定の方法に限定されず、目的に応じて適宜好適な方法を選択することができる。例えば、ジルコニア仮焼体でもあるジルコニアディスクをCAD/CAMシステムで歯科用製品(例えば歯冠形状の補綴物)の形状に切削加工して第2の成形体を作製することができる。 The zirconia calcined body of the present disclosure can be molded before the sintering step described later to produce a second molded body (second molding step). The molding method is not limited to a specific method, and a suitable method can be appropriately selected depending on the intended purpose. For example, a second molded body can be produced by cutting a zirconia disc, which is also a zirconia calcined body, into the shape of a dental product (for example, a crown-shaped prosthesis) with a CAD / CAM system.
 前記製造方法によれば、本開示のジルコニア仮焼体を作製することができる。好適なジルコニア仮焼体の製造方法としては、収縮率の変動が小さいジルコニア仮焼体を作製することができ、及び/又は短時間焼成可能なジルコニア仮焼体を作製することができる製造方法が挙げられる。収縮率の変動は、前記した変速温度の調整、ジルコニアの主たる結晶系等を合わせて選択することによって抑制できる。短時間焼成は、前記した未固溶イットリアの存在率fの調整又は選択、ジルコニア粉末の平均粒径の選択等によって調整できる。 According to the production method, the zirconia calcined product of the present disclosure can be produced. A suitable method for producing a zirconia calcined product is a method capable of producing a zirconia calcined product having a small fluctuation in shrinkage rate and / or producing a zirconia calcined product that can be fired for a short time. Can be mentioned. Fluctuations in the shrinkage rate can be suppressed by adjusting the shifting temperature, selecting the main crystal system of zirconia, and the like. Short firing, the adjustment or selection of prevalence f y undissolved yttria described above, it can be adjusted by selection of the average particle diameter of the zirconia powder.
 続けて、本開示のジルコニア焼結体について説明する。本開示における焼結体とは、例えば、ジルコニア粒子(粉末)が焼結状態に至ったものということができる。本開示のジルコニア焼結体の相対密度は99.5%以上であることが好ましい。該相対密度は、理論密度に対する、アルキメデス法で測定した実測密度の割合として算出することができる。相対密度は、ジルコニア粒子又は顆粒を特定型に充填し、圧力で特定形状にした成形体において、前記成形体を高温で焼成した焼結体の密度d1を、理論的に(内部に空隙を含まない)ジルコニア密度d2で割った値を意味する。 Next, the zirconia sintered body of the present disclosure will be described. The sintered body in the present disclosure can be said to be, for example, a zirconia particle (powder) that has reached a sintered state. The relative density of the zirconia sintered body of the present disclosure is preferably 99.5% or more. The relative density can be calculated as the ratio of the measured density measured by the Archimedes method to the theoretical density. The relative density is the density d1 of a sintered body obtained by firing the molded product at a high temperature in a molded product obtained by filling a specific mold with zirconia particles or granules and forming a specific shape by pressure, theoretically (including voids inside). No) It means the value divided by the zirconia density d2.
 本開示のジルコニア焼結体には、成形したジルコニア粒子を常圧下ないし非加圧下において焼結させた焼結体のみならず、HIP(Hot Isostatic Pressing;熱間静水等方圧プレス)処理等の高温加圧処理によって緻密化させた焼結体も含まれる。 The zirconia sintered body of the present disclosure includes not only a sintered body obtained by sintering molded zirconia particles under normal pressure or non-pressurization, but also HIP (Hot Isostatic Pressing) treatment or the like. It also includes sintered bodies that have been densified by high-temperature pressurization.
 本開示のジルコニア焼結体における安定化剤の含有率の好ましい範囲は、上述したジルコニア組成物及び/又はジルコニア仮焼体における含有率と同様である。また、本開示のジルコニア焼結体におけるジルコニアの結晶系について、単斜晶系の割合fは、単斜晶系、正方晶系及び立方晶系の総量に対して10%以下であることが好ましく、5%以下であることがより好ましく、実質的には含有されていない(0%)ことがさらに好ましい。 The preferable range of the content of the stabilizer in the zirconia sintered body of the present disclosure is the same as the content in the zirconia composition and / or the zirconia calcined body described above. Also, the crystal system of the zirconia in the zirconia sintered body of the present disclosure, the ratio f m of monoclinic system, monoclinic system, it is 10% or less of the total amount of the tetragonal and cubic It is preferably 5% or less, and more preferably not substantially contained (0%).
 本開示のジルコニア焼結体における安定化剤の固溶の割合については、含有されている安定化剤の95%以上がジルコニアに固溶されていることが好ましく、実質的には全安定化剤が固溶されていることがより好ましい。該安定化剤がイットリアである場合、未固溶イットリアの存在率fは、5%以下であることが好ましく、1%以下であることがより好ましく、実質的にはすべて固溶されている(0%)とさらに好ましい。 Regarding the solid solution ratio of the stabilizer in the zirconia sintered body of the present disclosure, it is preferable that 95% or more of the contained stabilizer is solid-solved in zirconia, and substantially all the stabilizers are dissolved. Is more preferably dissolved. If the stabilizing agent is yttria, prevalence f y undissolved yttria is preferably 5% or less, more preferably 1% or less, and is a solid solution substantially all the (0%) is more preferable.
 本開示のジルコニア焼結体の透光性(ΔL(W-B))は、変色した支台歯の色を遮蔽する観点から11以下であることが好ましく、9以下であることがより好ましく、7以下であることがさらに好ましい。ここでいう透光性(ΔL(W-B))とは、L表色系(JIS Z 8781-4:2013)における色度(色空間)のL値について、厚さ1.2mmの試料(焼結体)の背景を白色にして測定したL値を第1のL値とし、第1のL値を測定した同一の試料について、試料の背景を黒色にして測定したL値を第2のL値とし、第1のL値から第2のL値を控除した値である。試料の作製方法については、まず、焼結体の厚さが1.2mmとなるように、ジルコニア組成物(例えば、顆粒)をプレス成形し、続くCIP成形にて、例えば直径19mmの円板状の成形体を作製することができる。次に、該成形体を所定の焼成条件で焼成して、試料となる厚さ1.2mmの焼結体を作製することができる。L値の測定については、試料の表面に接触液を塗布した後、色差計(例えば、歯科用測色装置「クリスタルアイ CE100-DC/JP」(オリンパス株式会社製)、解析ソフト「クリスタルアイ」(オリンパス株式会社製))を用いて、黒色背景及び白色背景のL値を測定することができる。白色背景とは、JIS K 5600-4-1:1999第4部第1節に記載の隠ぺい率試験紙の白部を意味し、黒色背景とは、前記隠ぺい率試験紙の黒部を意味する。接触液としては、例えば、測定波長589nm(ナトリウムD線)で測定した屈折率nDが1.60のものを使用することができる。 The translucency (ΔL * (WB)) of the zirconia sintered body of the present disclosure is preferably 11 or less, more preferably 9 or less, from the viewpoint of shielding the color of the discolored abutment tooth. , 7 or less is more preferable. The term translucent and ([Delta] L * (W-B)) is, L * a * b * color system (JIS Z 8781-4: 2013) for L * values of chromaticity (color space) in thickness The background of the 1.2 mm sample (sintered body) is white, the L * value measured is the first L * value, and for the same sample for which the first L * value is measured, the background of the sample is black. The L * value measured in the above is used as the second L * value, and the value obtained by subtracting the second L * value from the first L * value. Regarding the method for preparing a sample, first, a zirconia composition (for example, granules) is press-molded so that the thickness of the sintered body is 1.2 mm, and then CIP molding is carried out to form a disk having a diameter of, for example, 19 mm. Can be produced. Next, the molded product can be fired under predetermined firing conditions to prepare a sintered body having a thickness of 1.2 mm as a sample. For the measurement of L * value, after applying the contact liquid to the surface of the sample, a color difference meter (for example, dental color measuring device "Crystal Eye CE100-DC / JP" (manufactured by Olympus Corporation), analysis software "Crystal Eye" (Manufactured by Olympus Corporation)) can be used to measure the L * value of a black background and a white background. The white background means the white part of the hiding rate test paper described in JIS K 5600-4-1: 1999, Part 4, Section 1, and the black background means the black part of the hiding rate test paper. As the contact liquid, for example, one having a refractive index nD measured at a measurement wavelength of 589 nm (sodium D line) and having a refractive index of 1.60 can be used.
 本開示のジルコニア焼結体の透光性について、最高焼成温度を1300~1600℃の範囲内とする温度で30分保持して焼成した焼結体の透光性(前記白色背景での測定値と黒色背景での測定値の差、以下、「ΔL(30)」ともいう。)と、前記ΔL(30)の最高焼成温度と同一温度で120分保持して焼成した焼結体の透光性(前記白色背景での測定値と黒色背景での測定値の差、以下、「ΔL(120)」ともいう。)との比ΔL(30)/ΔL(120)が0.88以上であることが好ましく、高い遮蔽性を有しながらも良好な発色を有し、病変や生活習慣によって変色した支台歯を有する患者の歯科治療において、歯科用補綴物として好適に使用できる点から、0.90以上がより好ましく、0.95以上がさらに好ましい。 Regarding the translucency of the zirconia sintered body of the present disclosure, the translucency of the sintered body fired by holding the maximum firing temperature in the range of 1300 to 1600 ° C. for 30 minutes (measured value on the white background). And the difference between the measured values on a black background, hereinafter also referred to as “ΔL * (30)”), and the sintered body that was fired by holding it at the same temperature as the maximum firing temperature of ΔL * (30) for 120 minutes. The ratio ΔL * (30) / ΔL * (120) to the translucency (difference between the measured value on the white background and the measured value on the black background, hereinafter also referred to as “ΔL * (120)”) is 0. It is preferably .88 or more, and is suitably used as a dental prosthesis in the dental treatment of patients who have good color development while having high shielding properties and have abutment teeth that are discolored due to lesions and lifestyle. From the point of view, 0.90 or more is more preferable, and 0.95 or more is further preferable.
 本開示のジルコニア焼結体は、ジルコニア組成物について上述したような添加物を同様に含有することができる。 The zirconia sintered body of the present disclosure can similarly contain the additives as described above for the zirconia composition.
 本開示のジルコニア焼結体は、所定の形状を有する成形体(以下「第3の成形体」という)であってもよい。例えば、焼結体は、ディスク(円板)形状、直方体形状、歯科用製品形状(例えば歯冠形状)を有することができる。 The zirconia sintered body of the present disclosure may be a molded body having a predetermined shape (hereinafter referred to as "third molded body"). For example, the sintered body can have a disc shape, a rectangular parallelepiped shape, and a dental product shape (for example, a crown shape).
 本開示のジルコニア焼結体は、良好な発色を達成する観点から、彩度Cが3以上であることが好ましく、5以上であることがより好ましく、7以上であることがさらに好ましい。なお、彩度Cの定義、及びその測定方法については、ジルコニア組成物について上述した通りであるが、ジルコニア焼結体の彩度Cを評価する際の焼成温度及び焼成時間については特に限定されない。 From the viewpoint of achieving good color development, the zirconia sintered body of the present disclosure preferably has a saturation C * of 3 or more, more preferably 5 or more, and even more preferably 7 or more. The definition of saturation C * and the method for measuring the saturation C * are as described above for the zirconia composition, but the firing temperature and firing time for evaluating the saturation C * of the zirconia sintered body are particularly limited. Not done.
 次に、本開示のジルコニア焼結体の製造方法の一例について説明する。 Next, an example of the method for producing the zirconia sintered body of the present disclosure will be described.
 本開示のジルコニア焼結体は、本開示のジルコニア組成物(第1の成形体を含む)及び/又はジルコニア仮焼体(第2の成形体を含む)を、ジルコニア粒子が焼結に至る温度(焼結可能温度)以上で焼成して作製することができる(焼結工程)。ある実施形態としては、前記第1の成形体を焼結可能温度以上で焼成する焼結工程を含むジルコニア焼結体の製造方法が挙げられる。前記製造方法は、ジルコニア組成物を成形して第1の成形体を作製する第1成形工程を含んでいてもよい。第1成形工程は前記ジルコニア組成物で上述したとおりである。焼結可能温度は、例えば、1400℃以上であることが好ましく、1450℃以上であることがより好ましい。また、焼結可能温度は、例えば、1650℃以下であることが好ましく、1600℃以下であることがより好ましい。焼結工程における最高焼成温度は、1400℃以上であることが好ましく、1450℃以上であることがより好ましい。焼結可能温度の含まれる最高焼成温度は、1650℃以下であることが好ましく、1600℃以下であることがより好ましい。昇温速度及び降温速度は300℃/分以下であることが好ましい。前記焼結工程前に、前記第1の成形体をジルコニア粒子が焼結に至らない温度で焼成してジルコニア仮焼体を作製する仮焼工程をさらに含んでいてもよい。仮焼工程は前記ジルコニア仮焼体の製造方法で上述したとおりである。また、ジルコニア焼結体の製造方法としては、前記焼結工程前に、前記ジルコニア仮焼体を成形して、第2の成形体を作製する第2成形工程をさらに含んでいてもよい。第2成形工程を含む場合、前記焼結工程において、前記ジルコニア仮焼体として前記第2の成形体を焼成するジルコニア焼結体の製造方法が挙げられる。 The zirconia sintered body of the present disclosure refers to the temperature at which the zirconia particles of the zirconia composition (including the first molded body) and / or the zirconia calcined body (including the second molded body) of the present disclosure are sintered. It can be produced by firing at (sinterable temperature) or higher (sintering step). One embodiment includes a method for producing a zirconia sintered body, which comprises a sintering step of firing the first molded body at a temperature above which it can be sintered. The manufacturing method may include a first molding step of molding a zirconia composition to prepare a first molded product. The first molding step is as described above for the zirconia composition. The sinterable temperature is, for example, preferably 1400 ° C. or higher, more preferably 1450 ° C. or higher. The sinterable temperature is, for example, preferably 1650 ° C. or lower, and more preferably 1600 ° C. or lower. The maximum firing temperature in the sintering step is preferably 1400 ° C. or higher, more preferably 1450 ° C. or higher. The maximum firing temperature including the sinterable temperature is preferably 1650 ° C. or lower, and more preferably 1600 ° C. or lower. The rate of temperature rise and temperature decrease is preferably 300 ° C./min or less. Prior to the sintering step, a calcining step of firing the first molded product at a temperature at which the zirconia particles do not reach sintering may be further included to prepare a zirconia calcined product. The calcination step is as described above in the method for producing the zirconia calcination body. Further, the method for producing the zirconia sintered body may further include a second molding step of molding the zirconia calcined body to produce a second molded body before the sintering step. When the second molding step is included, a method for producing a zirconia sintered body in which the second molded body is fired as the zirconia calcined body in the sintering step can be mentioned.
 焼結工程において、焼結可能温度(特に、最高焼成温度)における保持時間は、120分未満であることが好ましく、焼成時間を短縮しつつ、高い遮蔽性を有し、かつ発色が良好な歯科用製品を作製することができる点から、90分以下であることがより好ましく、75分以下であることがさらに好ましく、60分以下であることがよりさらに好ましく、45分以下であることが特に好ましく、30分以下であることが最も好ましい。当該保持時間は1分以上であることが好ましく、5分以上であることがより好ましく、10分以上であることがよりさらに好ましい。本開示のジルコニア焼結体の製造方法によれば、このような焼成時間であっても、作製されるジルコニア焼結体の透光性の低下を抑制することができる。また、焼成時間を短縮することにより、生産効率を高めると共に、エネルギーコストを低減させることができる。 In the sintering step, the holding time at the sinterable temperature (particularly, the maximum firing temperature) is preferably less than 120 minutes, and the dentistry has high shielding properties and good color development while shortening the firing time. From the viewpoint that a product for use can be produced, it is more preferably 90 minutes or less, further preferably 75 minutes or less, further preferably 60 minutes or less, and particularly preferably 45 minutes or less. It is preferably 30 minutes or less, and most preferably 30 minutes or less. The holding time is preferably 1 minute or longer, more preferably 5 minutes or longer, and even more preferably 10 minutes or longer. According to the method for producing a zirconia sintered body of the present disclosure, it is possible to suppress a decrease in the translucency of the produced zirconia sintered body even with such a firing time. Further, by shortening the firing time, it is possible to increase the production efficiency and reduce the energy cost.
 本開示のジルコニア焼結体は、成形して第3の成形体を作製することができる(第3の成形工程)。該成形方法は特定の方法に限定されず、目的に応じて適宜好適な方法を選択することができる。例えば、ジルコニア焼結体でもあるジルコニアブロックをCAD/CAMシステムで歯科用製品(例えば歯冠形状の補綴物)の形状に切削加工して第3の成形体を作製することができる。 The zirconia sintered body of the present disclosure can be molded to produce a third molded body (third molding step). The molding method is not limited to a specific method, and a suitable method can be appropriately selected depending on the intended purpose. For example, a zirconia block, which is also a zirconia sintered body, can be cut into the shape of a dental product (for example, a crown-shaped prosthesis) by a CAD / CAM system to produce a third molded body.
 本開示のジルコニア焼結体は、歯科用製品として好適に用いることができる。該ジルコニア焼結体は、例えば、歯冠形状を有することができる。本開示における歯科用製品としては、ジルコニア焼結体上に積層された陶材をさらに含むことができる。陶材は、例えばガラス材料等のセラミックスとすることができる。歯科用製品としては、例えば、歯科用補綴物(例えば、セラミックフレーム、フルカントゥアークラウン)、歯列矯正用製品(例えば、歯列矯正用ブラケット)、歯科インプラント用製品(例えば、歯科インプラント用アバットメント)が挙げられる。 The zirconia sintered body of the present disclosure can be suitably used as a dental product. The zirconia sintered body can have, for example, a crown shape. The dental product in the present disclosure may further include a porcelain material laminated on the zirconia sintered body. The porcelain material can be, for example, ceramics such as a glass material. Dental products include, for example, dental prostheses (eg, ceramic frames, full cantour crowns), orthodontic products (eg, orthodontic brackets), dental implant products (eg, dental implant abutments). ).
 次に、本開示における歯科用製品の製造方法について説明する。歯科用製品は、所定の形状を有する本開示のジルコニア組成物(第1の成形体を含む)及び/又はジルコニア仮焼体(第2の成形体を含む)を焼結させて作製することができる。また、歯科用製品は、本開示のジルコニア焼結体を切削加工して作製することもできる(第3の成形体を含む)。 Next, the manufacturing method of the dental product in the present disclosure will be described. Dental products can be prepared by sintering the zirconia composition of the present disclosure (including the first molded product) and / or the zirconia calcined product (including the second molded product) having a predetermined shape. it can. The dental product can also be produced by cutting the zirconia sintered body of the present disclosure (including a third molded body).
 本開示における歯科用製品が陶材を有する場合、例えば、ジルコニア焼結体の上に、陶材を含有するスラリーを塗布する工程、及び陶材を塗布したジルコニア焼結体を焼成して焼結体上に陶材を焼き付ける工程によって作製することができる。陶材を焼き付ける温度や時間は、適宜設定することができる。 When the dental product in the present disclosure has a porcelain material, for example, a step of applying a slurry containing the porcelain material on the zirconia sintered body and a zirconia sintered body coated with the porcelain material are fired and sintered. It can be produced by the process of baking porcelain on the body. The temperature and time for baking the porcelain can be set as appropriate.
 本開示のジルコニア組成物、ジルコニア仮焼体、及び/又はジルコニア焼結体によれば、寸法精度の高い歯科用製品を得ることができ、及び/又は高い遮蔽性を有し、かつ発色が良好な歯科用製品を短時間で作製することができる。 According to the zirconia composition, the zirconia calcined product, and / or the zirconia sintered body of the present disclosure, a dental product with high dimensional accuracy can be obtained, and / or has high shielding property and good color development. Dental products can be produced in a short time.
 以下に、本開示の実施例を説明するが、以下の実施例に何ら限定されるものではない。 The examples of the present disclosure will be described below, but the present invention is not limited to the following examples.
[ジルコニア組成物の作製]
(実施例1~3)
 まず、ジルコニアとイットリアの合計molに対するイットリアの含有率が表1に記載の通りとなるように、100%が単斜晶系の酸化ジルコニウム粉末とイットリアとを合わせて混合物を作製した(混合工程)。次に、この混合物を水に添加してスラリーを作製し、ジルコニア粒子の平均粒径(一次粒子)が0.20μmとなるまでボールミルで湿式粉砕した。次に、粉砕後のスラリーにバインダを添加した後、スプレードライヤで乾燥させて、ジルコニア組成物を作製した。次いで、酸化ニッケル(II)(NiO)を上述の方法と同様にして平均粒径0.20μmとなるまでボールミルで湿式粉砕し、スプレードライヤで乾燥させてNiO粉末を作製した。上述のジルコニア組成物に0.02質量%の割合でNiO粉末を加え、十分に混合したものを実施例1~3に係るジルコニア組成物とした。なお、前記平均粒径は、レーザー回折式粒度分布測定装置(SALD-2300:株式会社島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて体積基準で測定することができる。
[Preparation of zirconia composition]
(Examples 1 to 3)
First, a mixture was prepared by combining yttria with 100% monoclinic zirconium oxide powder so that the content of yttria with respect to the total mol of zirconia and yttria is as shown in Table 1 (mixing step). .. Next, this mixture was added to water to prepare a slurry, which was wet-ground with a ball mill until the average particle size (primary particles) of the zirconia particles became 0.20 μm. Next, a binder was added to the pulverized slurry and then dried with a spray dryer to prepare a zirconia composition. Next, nickel (II) oxide (NiO) was wet-ground with a ball mill until the average particle size became 0.20 μm in the same manner as described above, and dried with a spray dryer to prepare NiO powder. NiO powder was added to the above-mentioned zirconia composition at a ratio of 0.02% by mass, and the mixture was sufficiently mixed to obtain the zirconia composition according to Examples 1 to 3. The average particle size can be measured by a laser diffraction type particle size distribution measuring device (SALD-2300: manufactured by Shimadzu Corporation) on a volume basis using a 0.2% sodium hexametaphosphate aqueous solution as a dispersion medium. ..
(比較例1~3)
 比較例として、市販の部分安定化ジルコニア粉末を用いた。比較例1に係るジルコニア組成物は、東ソー株式会社製TZ-3YSB-Eに、実施例1~3で作製したNiO粉末を0.02質量%加え、十分に混合したものである。同様にして、比較例2に係るジルコニア組成物は、東ソー株式会社製Zpexに上述のNiO粉末を0.02質量%加え、十分に混合したものであり、比較例3に係るジルコニア組成物は、東ソー株式会社製Zpex Smileに上述のNiO粉末を0.02質量%加え、十分に混合したものである。
(Comparative Examples 1 to 3)
As a comparative example, a commercially available partially stabilized zirconia powder was used. The zirconia composition according to Comparative Example 1 was prepared by adding 0.02% by mass of the NiO powder prepared in Examples 1 to 3 to TZ-3YSB-E manufactured by Tosoh Corporation and thoroughly mixing them. Similarly, the zirconia composition according to Comparative Example 2 was prepared by adding 0.02% by mass of the above-mentioned NiO powder to Zpex manufactured by Tosoh Corporation and mixing them sufficiently, and the zirconia composition according to Comparative Example 3 was prepared. 0.02% by mass of the above-mentioned NiO powder was added to Zpex Smile manufactured by Tosoh Corporation and mixed thoroughly.
(実施例4)
 実施例1と同様にして作製した単斜晶系の酸化ジルコニウム粉末及びイットリアを含むジルコニア組成物に加えて、比較例1のジルコニア組成物を添加した後、実施例1~3で作製したNiO粉末を0.02質量%加え、十分に混合したものを実施例4に係るジルコニア組成物とした。該ジルコニア組成物は、単斜晶系の割合が実施例1~3よりも低下するものである。表1では、比較例1に係るジルコニア組成物に含まれるジルコニア粒子の平均粒径は測定不可能であったため、当該部分については「NA」と示す。
(Example 4)
The NiO powder prepared in Examples 1 to 3 after adding the zirconia composition of Comparative Example 1 in addition to the zirconia composition containing the monoclinic zirconium oxide powder and yttria prepared in the same manner as in Example 1. Was added in an amount of 0.02% by mass and sufficiently mixed to obtain a zirconia composition according to Example 4. The zirconia composition has a lower proportion of monoclinic crystals than in Examples 1 to 3. In Table 1, since the average particle size of the zirconia particles contained in the zirconia composition according to Comparative Example 1 could not be measured, the relevant portion is indicated by “NA”.
(比較例4)
 NiO粉末を加える前のジルコニア組成物について、粉砕後のジルコニア粒子の平均粒径が0.12μmとなるように粉砕した以外は実施例1と同様にして、比較例4に係るジルコニア組成物を作製した。
(Comparative Example 4)
The zirconia composition according to Comparative Example 4 was prepared in the same manner as in Example 1 except that the zirconia composition before adding the NiO powder was pulverized so that the average particle size of the zirconia particles after pulverization was 0.12 μm. did.
(比較例5)
 NiO粉末を加える前のジルコニア組成物について、粉砕後のジルコニア粒子の平均粒径が0.50μmとなるように粉砕した以外は実施例1と同様にして、比較例5に係るジルコニア組成物を作製した。
(Comparative Example 5)
The zirconia composition according to Comparative Example 5 was prepared in the same manner as in Example 1 except that the zirconia composition before adding the NiO powder was pulverized so that the average particle size of the zirconia particles after pulverization was 0.50 μm. did.
[未固溶イットリアの存在率及びジルコニアの結晶系の割合の確認]
 実施例及び比較例に係るジルコニア組成物についてXRD測定を行い、未固溶イットリアの存在率を示すfを、上記数式(i)を基に算出した。また、ジルコニアにおける単斜晶系の割合を示すfを、上記数式(ii)を基に算出した。結果を表1に示す。
[Confirmation of the abundance of undissolved yttria and the proportion of zirconia crystals]
Performed XRD measurement for zirconia compositions according to Examples and Comparative Examples, the f y indicating the existence ratio of undissolved yttria, was calculated based on the equation (i). Further, the f m that indicates the percentage of monoclinic in zirconia was calculated based on the equation (ii). The results are shown in Table 1.
[焼成時間に対する透光性及び発色の測定]
 本開示のジルコニア組成物を用いてジルコニア焼結体を作製し、焼成温度における保持時間(焼成時間)に対する透光性及び発色の関係を調べた。まず、厚さ1.2mmのジルコニア焼結体が得られるように、実施例及び比較例に係るジルコニア組成物を300kg/cmの圧力でプレス成形した。次に、プレス成形体に対して1700kg/cmでさらにCIP処理を施して、上述にいう第1の成形体を作製した。第1の成形体を1000℃で2時間焼成してジルコニア仮焼体を作製した。最高焼成温度を1550℃に設定して、該最高焼成温度での保持時間を120分間として、得られたジルコニア仮焼体を焼成することでジルコニア焼結体を作製した。次に、同じ方法で作製したジルコニア仮焼体について、最高焼成温度を1550℃に設定して、該最高焼成温度での保持時間を30分間に変更してジルコニア焼結体を作製した。得られたジルコニア焼結体を試料として、後述の方法により透光性及び彩度Cを測定した。結果を表1に示す。
[Measurement of translucency and color development with respect to firing time]
A zirconia sintered body was prepared using the zirconia composition of the present disclosure, and the relationship between translucency and color development with respect to the holding time (baking time) at the firing temperature was investigated. First, the zirconia compositions according to Examples and Comparative Examples were press-molded at a pressure of 300 kg / cm 2 so as to obtain a zirconia sintered body having a thickness of 1.2 mm. Next, the press molded product was further subjected to CIP treatment at 1700 kg / cm 2 to prepare the first molded product described above. The first molded product was fired at 1000 ° C. for 2 hours to prepare a zirconia calcined product. The maximum firing temperature was set to 1550 ° C., the holding time at the maximum firing temperature was 120 minutes, and the obtained zirconia calcined product was fired to prepare a zirconia sintered body. Next, with respect to the zirconia calcined body produced by the same method, the maximum firing temperature was set to 1550 ° C., and the holding time at the maximum firing temperature was changed to 30 minutes to prepare a zirconia sintered body. Using the obtained zirconia sintered body as a sample, the translucency and saturation C * were measured by the method described later. The results are shown in Table 1.
 透光性は、色差計(歯科用測色装置「クリスタルアイ CE100-DC/JP」(7bandLED照明,45°入射の拡散反射式、オリンパス株式会社製)、解析ソフト「クリスタルアイ」(オリンパス株式会社製))を用いて測定した、L表色系(JIS Z 8781-4:2013)における色度(色空間)のL値を用いて算出した。焼結体の試料の背景を白色にして測定したL値を第1のL値とし、第1のL値を測定した同一の試料について、試料の背景を黒色にして測定したL値を第2のL値とし、第1のL値から第2のL値を控除した値ΔL(W-B)を、透光性を示す数値とした(n=1)。試料の測定面には、屈折率nDが1.60の接触液を塗布した。白色背景とは、JIS K 5600-4-1:1999第4部第1節に記載の隠ぺい率試験紙の白部を意味し、黒色背景とは、前記隠ぺい率試験紙の黒部を意味する。 For translucency, color difference meter (dental color measuring device "Crystal Eye CE100-DC / JP" (7band LED lighting, 45 ° incident diffuse reflection type, manufactured by Olympus Co., Ltd.), analysis software "Crystal Eye" (Olympus Co., Ltd.) Ltd.)) was measured using a, L * a * b * color system (JIS Z 8781-4: 2013) in was calculated using the L * values of chromaticity (color space). The L * value measured with the background of the sintered body sample being white is defined as the first L * value, and the same sample measured with the first L * value is measured with the sample background black . The value was defined as the second L * value, and the value ΔL * (WB) obtained by subtracting the second L * value from the first L * value was defined as a numerical value indicating translucency (n = 1). A contact liquid having a refractive index of 1.60 was applied to the measurement surface of the sample. The white background means the white part of the hiding rate test paper described in JIS K 5600-4-1: 1999, Part 4, Section 1, and the black background means the black part of the hiding rate test paper.
 彩度Cは、色差計(歯科用測色装置「クリスタルアイ CE100-DC/JP」(7bandLED照明,45°入射の拡散反射式、オリンパス株式会社製)、解析ソフト「クリスタルアイ」(オリンパス株式会社製))を用いて測定した、黒色背景のa値及びb値を用いて、上記数式(iii)より、各試料について算出した(n=1)。試料の測定面には、屈折率nDが1.60の接触液を塗布した。 Saturation C * is a color difference meter (dental color measuring device "Crystal Eye CE100-DC / JP" (7band LED lighting, 45 ° incident diffuse reflection type, manufactured by Olympus Corporation), analysis software "Crystal Eye" (Olympus Corporation) Using the a * value and b * value on a black background measured using (manufactured by the company)), each sample was calculated from the above mathematical formula (iii) (n = 1). A contact liquid having a refractive index of 1.60 was applied to the measurement surface of the sample.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 まず、ジルコニア組成物に関して説明する。比較例1~3に係る、市販品のジルコニア粉末からなるジルコニア組成物においては、ジルコニアの結晶系は基本的には正方晶系及び/又は立方晶系であり、単斜晶系は多くても約52%であった。また、比較例1~3に係るジルコニア組成物においては、イットリアのXRDピークは確認されなかった。従って、イットリアはすべてジルコニアに固溶されていると考えられる。 First, the zirconia composition will be described. In the zirconia composition composed of commercially available zirconia powder according to Comparative Examples 1 to 3, the crystal system of zirconia is basically a tetragonal system and / or a cubic system, and at most a monoclinic system. It was about 52%. Further, in the zirconia compositions according to Comparative Examples 1 to 3, the XRD peak of yttria was not confirmed. Therefore, it is considered that all yttria is dissolved in zirconia.
 一方、実施例1~3においては、ジルコニアの結晶系は100%が単斜晶系であった。実施例4においては、市販品のジルコニア粉末からなる正方晶系の部分安定化ジルコニアを一部添加したため、約76%が単斜晶系であった。また、実施例1~4及び比較例4、5においては、いずれもイットリアのXRDピークが観測された。イットリア含有率の低い実施例1、4及び比較例4、5では、fは6%以下であった。また、イットリア含有率が5~6mol%と高い実施例2~3においては、fは7%超10%以下の範囲内であった。 On the other hand, in Examples 1 to 3, the crystal system of zirconia was 100% monoclinic. In Example 4, since a part of the tetragonal partially stabilized zirconia composed of commercially available zirconia powder was added, about 76% was monoclinic. Further, in Examples 1 to 4 and Comparative Examples 4 and 5, yttria XRD peaks were observed. In Examples 1 and 4 and Comparative Examples 4 and 5 having a low yttria content, the fy was 6% or less. Further, in Examples 2 to 3 in which the yttria content was as high as 5 to 6 mol%, fy was in the range of more than 7% and 10% or less.
 次に、ジルコニア焼結体に関して説明する。実施例1~4では120分間焼成時も30分間焼成時も透光性が11以下で、彩度Cが3以上であり、また、C(30)/C(120)の値も0.97以上の高い数値を示したため、短時間焼成であっても遮蔽性も発色も十分という結果であった。これによって、歯科治療において、短時間焼成で良好な発色が得られながら、支台歯が病変又は生活習慣による着色等により変色している場合に変色した支台歯の色を遮蔽することができる。 Next, the zirconia sintered body will be described. In Examples 1 to 4, the translucency is 11 or less, the saturation C * is 3 or more, and the values of C * (30) / C * (120) are also high, both when firing for 120 minutes and when firing for 30 minutes. Since it showed a high value of 0.97 or more, it was a result that the shielding property and the color development were sufficient even if it was fired for a short time. As a result, in dental treatment, it is possible to shield the discolored abutment tooth color when the abutment tooth is discolored due to a lesion or coloring due to lifestyle, etc., while obtaining good color development by firing for a short time. ..
 一方、比較例1~3は120分間焼成時も30分間焼成時も透光性が11以下であったものの、彩度Cは30分焼成時に3未満であり、C(30)/C(120)の値も0.40以下の低い数値を示したことから、短時間焼成で所望の色を発現しなかった。 On the other hand, in Comparative Examples 1 to 3, the translucency was 11 or less at the time of firing for 120 minutes and at the time of firing for 30 minutes, but the saturation C * was less than 3 at the time of firing at 30 minutes, and C * (30) / C. * Since the value of (120) also showed a low value of 0.40 or less, the desired color was not developed by firing for a short time.
 比較例4は透光性が高すぎ、遮蔽性が不十分であった。また、C(30)/C(120)の値も実施例1~3に比べるとやや低い値であり、短時間焼成での発色についても劣る結果であった。 In Comparative Example 4, the translucency was too high and the shielding property was insufficient. In addition, the values of C * (30) / C * (120) were also slightly lower than those of Examples 1 to 3, and the result was that the color development in short-time firing was also inferior.
 比較例5は120分間焼成時も30分間焼成時も緻密なジルコニア焼結体を作製できなかった。 In Comparative Example 5, a dense zirconia sintered body could not be produced during either 120-minute firing or 30-minute firing.
 本開示のジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体並びにこれらの製造方法は、歯科用補綴物等の歯科用製品、フェルールやスリーブ等の光ファイバ用接続部品、各種工具(例えば、粉砕ボール、研削具)、各種部品(例えば、ネジ、ボルト・ナット)、各種センサ、エレクトロニクス用部品、装飾品(例えば、時計のバンド)等の種々の用途に利用することができる。組成物、仮焼体及び焼結体を歯科用材料に使用する場合、例えば、コーピング、フレームワーク、クラウン、クラウンブリッジ、アバットメント、インプラント、インプラントスクリュー、インプラントフィクスチャー、インプラントブリッジ、インプラントバー、ブラケット、義歯床、インレー、アンレー、矯正用ワイヤー、ラミネートベニア等に使用することができる。 The zirconia compositions, zirconia calcined bodies and zirconia sintered bodies of the present disclosure, and methods for producing them are described in dental products such as dental prostheses, connecting parts for optical fibers such as ferrules and sleeves, and various tools (for example, grinding). It can be used for various purposes such as balls, grinding tools), various parts (for example, screws, bolts and nuts), various sensors, electronic parts, and decorative items (for example, watch bands). When the compositions, calcined and sintered bodies are used in dental materials, for example, copings, frameworks, crowns, crown bridges, abutments, implants, implant screws, implant fixtures, implant bridges, implant bars, brackets. , Prosthesis bed, inlay, onlay, orthodontic wire, laminated veneer, etc.

Claims (22)

  1.  ジルコニア粉末と、ジルコニア粉末の相転移を抑制可能な安定化剤と、を含有し、以下の(1)~(3)をすべて満たすジルコニア組成物。
     (1)該ジルコニア粉末が、平均粒径が0.17μm超0.4μm以下であるジルコニア粒子を含む。
     (2)該安定化剤の少なくとも一部はジルコニアに固溶されていない。
     (3)該組成物を1300~1600℃で焼成した場合、前記温度で30分間保持した際の焼結体の彩度C(30)と前記温度で120分間保持した際の焼結体の彩度C(120)の比C(30)/C(120)が0.4以上である。
    A zirconia composition containing a zirconia powder and a stabilizer capable of suppressing the phase transition of the zirconia powder, and satisfying all of the following (1) to (3).
    (1) The zirconia powder contains zirconia particles having an average particle size of more than 0.17 μm and 0.4 μm or less.
    (2) At least a part of the stabilizer is not dissolved in zirconia.
    (3) When the composition was fired at 1300 to 1600 ° C., the saturation C * (30) of the sintered body when held at the temperature for 30 minutes and the sintered body when held at the temperature for 120 minutes. The ratio C * (30) / C * (120) of saturation C * (120) is 0.4 or more.
  2.  ジルコニアの結晶系は単斜晶系が55%以上である、請求項1に記載のジルコニア組成物。 The zirconia composition according to claim 1, wherein the zirconia crystal system has a monoclinic crystal system of 55% or more.
  3.  前記安定化剤がイットリアである、請求項1又は2に記載のジルコニア組成物。 The zirconia composition according to claim 1 or 2, wherein the stabilizer is yttria.
  4.  ジルコニアとイットリアの合計molに対して、イットリアを3~7.5mol%含有する、請求項3に記載のジルコニア組成物。 The zirconia composition according to claim 3, which contains 3 to 7.5 mol% of yttria with respect to the total mol of zirconia and yttria.
  5.  X線回折パターンにおいてイットリアのピークが存在する、請求項3又は4に記載のジルコニア組成物。 The zirconia composition according to claim 3 or 4, wherein the yttria peak is present in the X-ray diffraction pattern.
  6.  以下の数式(i)に基づいて算出したジルコニアに固溶されていないイットリアの存在率fが1%以上である、請求項3~5のいずれか一項に記載のジルコニア組成物。
    Figure JPOXMLDOC01-appb-M000001
    (ただし、I(111)は、CuKα線によるX線回折パターンにおける2θ=29°付近のイットリアの(111)面のピーク強度を示し、
    (111)及びI(11-1)は、前記X線回折パターンにおけるジルコニアの単斜晶系の(111)面及び(11-1)面のピーク強度を示し、
    (111)は、前記X線回折パターンにおけるジルコニアの正方晶系の(111)面のピーク強度を示し、
    (111)は、前記X線回折パターンにおけるジルコニアの立方晶系の(111)面のピーク強度を示す。)
    Prevalence f y of the following formula (i) yttria which is not dissolved in the calculated zirconia based on is not less than 1%, the zirconia composition according to any one of claims 3-5.
    Figure JPOXMLDOC01-appb-M000001
    (However, I y (111) indicates the peak intensity of the yttria (111) plane near 2θ = 29 ° in the X-ray diffraction pattern by CuKα rays.
    I m (111) and I m (11-1) shows a peak intensity of (111) plane of the monoclinic zirconia in the X-ray diffraction pattern and (11-1) plane,
    I t (111) indicates the peak intensity of the (111) plane of tetragonal zirconia in the X-ray diffraction pattern,
    I c (111) indicates the peak intensity of cubic (111) plane of the zirconia in the X-ray diffraction pattern. )
  7.  前記fが15%以下である、請求項6に記載のジルコニア組成物。 The zirconia composition according to claim 6, wherein the fy is 15% or less.
  8.  前記温度で30分間保持した際の焼結体の彩度C(30)が、3以上である、請求項1~7のいずれか一項に記載のジルコニア組成物。 The zirconia composition according to any one of claims 1 to 7, wherein the saturation C * (30) of the sintered body when held at the temperature for 30 minutes is 3 or more.
  9.  最高焼成温度を1300~1600℃とする焼成によって得られる焼結体の透光性が以下の式を満たす、請求項1~8のいずれか一項に記載のジルコニア組成物。
     ΔL(W-B)≦11
    (式中、ΔL(W-B)は第1のL値から第2のL値を控除した値であり、第1のL値は、厚さ1.2mmの焼結体の背景を白色にして測定したL値であり、第2のL値は、第1のL値を測定した同一の焼結体の背景を黒色にして測定したL値であり、L値は、L表色系(JIS Z 8781-4:2013)における色度(色空間)のL値である。)
    The zirconia composition according to any one of claims 1 to 8, wherein the translucency of the sintered body obtained by firing at a maximum firing temperature of 1300 to 1600 ° C. satisfies the following formula.
    ΔL * (WB) ≤11
    (In the formula, ΔL * (WB) is the value obtained by subtracting the second L * value from the first L * value, and the first L * value is the value of the sintered body having a thickness of 1.2 mm. a L * value measured in the white background, the second L * values are L * value background was measured in the black of the same sintered body was measured first L * values, L * values, L * a * b * color system (JIS Z 8781-4: 2013) is a L * value of chromaticity (color space) in).
  10.  前記温度で30分保持した場合の透光性ΔL(30)と、前記温度で120分保持した場合の透光性ΔL(120)との比ΔL(30)/ΔL(120)が0.88以上である、請求項9に記載のジルコニア組成物。 Ratio ΔL * (30) / ΔL * (120) of translucency ΔL * (30) when held at the temperature for 30 minutes and translucency ΔL * (120) when held at the temperature for 120 minutes The zirconia composition according to claim 9, wherein the amount is 0.88 or more.
  11.  請求項1~10のいずれか一項に記載のジルコニア組成物を用いて作製する、ジルコニア仮焼体の製造方法。 A method for producing a zirconia calcined body, which is produced by using the zirconia composition according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか一項に記載のジルコニア組成物からなるプレス成形体を800~1200℃で焼成して作製する、請求項11に記載のジルコニア仮焼体の製造方法。 The method for producing a zirconia calcined product according to claim 11, wherein the press-molded product made of the zirconia composition according to any one of claims 1 to 10 is fired at 800 to 1200 ° C. to produce the zirconia calcined product.
  13.  請求項1~10のいずれか一項に記載の、ジルコニア粉末と、ジルコニア粉末の相転移を抑制可能な安定化剤と、を含有するジルコニア組成物を成形して第1の成形体を作製する第1成形工程と、
     前記第1の成形体をジルコニア粒子が焼結に至らない温度で焼成する仮焼工程と、
    を含む、請求項11又は12に記載のジルコニア仮焼体の製造方法。
    A zirconia composition containing the zirconia powder according to any one of claims 1 to 10 and a stabilizer capable of suppressing the phase transition of the zirconia powder is molded to prepare a first molded product. The first molding process and
    A calcining step of firing the first molded product at a temperature at which the zirconia particles do not sinter.
    The method for producing a zirconia calcined product according to claim 11 or 12, which comprises.
  14.  前記仮焼工程において、前記第1の成形体を800~1200℃で焼成する、請求項13に記載のジルコニア仮焼体の製造方法。 The method for producing a zirconia calcined product according to claim 13, wherein in the calcining step, the first molded product is fired at 800 to 1200 ° C.
  15.  前記第1成形工程前に、前記ジルコニア粉末が、ジルコニア粒子の平均粒径が0.17μm超0.4μm以下を含むように、前記ジルコニア粉末と前記安定化剤との混合物を粉砕してジルコニア組成物を得る粉砕工程をさらに含む、請求項13又は14に記載のジルコニア仮焼体の製造方法。 Prior to the first molding step, the mixture of the zirconia powder and the stabilizer is pulverized so that the zirconia powder contains the average particle size of the zirconia particles of more than 0.17 μm and 0.4 μm or less to form a zirconia composition. The method for producing a zirconia calcined product according to claim 13 or 14, further comprising a pulverization step for obtaining a product.
  16.  前記第1成形工程前に、前記ジルコニア組成物を噴霧乾燥により顆粒形態にする乾燥工程をさらに含む、請求項13~15のいずれか一項に記載のジルコニア仮焼体の製造方法。 The method for producing a zirconia calcined product according to any one of claims 13 to 15, further comprising a drying step of atomizing the zirconia composition into granules before the first molding step.
  17.  ジルコニア仮焼体の密度が2.7~4.0g/cmである、請求項11~16のいずれか一項に記載のジルコニア仮焼体の製造方法。 The method for producing a zirconia calcined product according to any one of claims 11 to 16, wherein the density of the zirconia calcined product is 2.7 to 4.0 g / cm 3.
  18.  ジルコニア仮焼体の、ISO6872:2015に準拠して測定した曲げ強さが15~70MPaである、請求項11~17のいずれか一項に記載のジルコニア仮焼体の製造方法。 The method for producing a zirconia calcined product according to any one of claims 11 to 17, wherein the bending strength of the zirconia calcined product measured in accordance with ISO6782: 2015 is 15 to 70 MPa.
  19.  請求項1~10のいずれか一項に記載のジルコニア組成物を成形して第1の成形体を作製する第1成形工程と、
     前記第1の成形体を焼結可能温度以上で焼成する焼結工程と、
    を含む、ジルコニア焼結体の製造方法。
    A first molding step of molding the zirconia composition according to any one of claims 1 to 10 to prepare a first molded product.
    A sintering step of firing the first molded product at a temperature above which it can be sintered, and a sintering step.
    A method for producing a zirconia sintered body, including.
  20.  前記焼結工程前に、前記第1の成形体をジルコニア粒子が焼結に至らない温度で焼成してジルコニア仮焼体を作製する仮焼工程をさらに含み、前記焼結工程において前記第1の成形体として前記ジルコニア仮焼体を焼成する、請求項19に記載のジルコニア焼結体の製造方法。 Prior to the sintering step, a calcining step of calcining the first molded body at a temperature at which zirconia particles do not reach sintering is further included to prepare a zirconia calcined body. The method for producing a zirconia sintered body according to claim 19, wherein the zirconia calcined body is fired as a molded body.
  21.  前記焼結工程前に、前記ジルコニア仮焼体を成形して、第2の成形体を作製する第2成形工程をさらに含み、
     前記焼結工程において、前記第2の成形体を焼成する、請求項20に記載のジルコニア焼結体の製造方法。
    Prior to the sintering step, a second molding step of molding the zirconia calcined body to prepare a second molded body is further included.
    The method for producing a zirconia sintered body according to claim 20, wherein in the sintering step, the second molded body is fired.
  22.  前記焼結工程において、最高焼成温度での保持時間が1時間以下である、請求項19~21のいずれか一項に記載のジルコニア焼結体の製造方法。 The method for producing a zirconia sintered body according to any one of claims 19 to 21, wherein the holding time at the maximum firing temperature is 1 hour or less in the sintering step.
PCT/JP2020/043513 2019-11-22 2020-11-20 Zirconia composition, zirconia calcined body, and zirconia sintered body, and production method therefor WO2021100876A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080080453.3A CN114650967A (en) 2019-11-22 2020-11-20 Zirconia composition, zirconia calcined body, zirconia sintered body, and methods for producing these
JP2021512288A JP6920573B1 (en) 2019-11-22 2020-11-20 Zirconia composition, zirconia calcined body and zirconia sintered body, and method for producing them.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-211221 2019-11-22
JP2019211221 2019-11-22

Publications (1)

Publication Number Publication Date
WO2021100876A1 true WO2021100876A1 (en) 2021-05-27

Family

ID=75981644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043513 WO2021100876A1 (en) 2019-11-22 2020-11-20 Zirconia composition, zirconia calcined body, and zirconia sintered body, and production method therefor

Country Status (3)

Country Link
JP (1) JP6920573B1 (en)
CN (1) CN114650967A (en)
WO (1) WO2021100876A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127561A1 (en) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 Oxide ceramic partially sintered body for dental use which has favorable polishing properties, and method for producing same
WO2023127559A1 (en) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 Dental ceramic oxide pre-sintered body having excellent machinability and production method for same
WO2024127659A1 (en) * 2022-12-16 2024-06-20 クラレノリタケデンタル株式会社 Oxide ceramic partially sintered body for dental use which has favorable polishing properties, and method for producing same
WO2024127652A1 (en) * 2022-12-16 2024-06-20 クラレノリタケデンタル株式会社 Dental ceramic oxide calcined body having excellent machinability, and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088793A (en) * 2014-10-31 2016-05-23 クラレノリタケデンタル株式会社 Zirconia sintered body and dental product
WO2016114265A1 (en) * 2015-01-15 2016-07-21 東ソー株式会社 Translucent zirconia sintered body, method for manufacturing same, and use thereof
WO2018056330A1 (en) * 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 Zirconia composition, calcined object and sintered compact, and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230129196A (en) * 2013-12-24 2023-09-06 토소가부시키가이샤 Translucent zirconia sintered body and zirconia powder, and use therefor
US10196313B2 (en) * 2016-03-30 2019-02-05 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia fine powder and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088793A (en) * 2014-10-31 2016-05-23 クラレノリタケデンタル株式会社 Zirconia sintered body and dental product
WO2016114265A1 (en) * 2015-01-15 2016-07-21 東ソー株式会社 Translucent zirconia sintered body, method for manufacturing same, and use thereof
WO2018056330A1 (en) * 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 Zirconia composition, calcined object and sintered compact, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127561A1 (en) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 Oxide ceramic partially sintered body for dental use which has favorable polishing properties, and method for producing same
WO2023127559A1 (en) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 Dental ceramic oxide pre-sintered body having excellent machinability and production method for same
WO2024127659A1 (en) * 2022-12-16 2024-06-20 クラレノリタケデンタル株式会社 Oxide ceramic partially sintered body for dental use which has favorable polishing properties, and method for producing same
WO2024127652A1 (en) * 2022-12-16 2024-06-20 クラレノリタケデンタル株式会社 Dental ceramic oxide calcined body having excellent machinability, and method for producing same

Also Published As

Publication number Publication date
CN114650967A (en) 2022-06-21
JP6920573B1 (en) 2021-08-18
JPWO2021100876A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US11873254B2 (en) Zirconia composition, pre-sintered body and sintered body, and method of producing the same
US11890359B2 (en) Zirconia composition, partially sintered material and sintered material and methods for production thereof, and laminate
JP6920573B1 (en) Zirconia composition, zirconia calcined body and zirconia sintered body, and method for producing them.
JP7213829B2 (en) Zirconia calcined body suitable for dental use
KR102591180B1 (en) Zirconia calcined body preferred for dental use
WO2022004862A1 (en) Zirconia calcined body suitable for dental use
JP7138558B2 (en) Mixture containing hydrated zirconia particles suitable for dental use and yttrium component and method of making same
WO2023127793A1 (en) Zirconia sintered body and method for producing same
KR20240110088A (en) Zirconia sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512288

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891342

Country of ref document: EP

Kind code of ref document: A1