WO2021100875A1 - 関節リウマチの発症に関与する細菌の検出方法、該細菌の検出用試薬、関節リウマチの素因の有無を判定する方法及び該素因の有無を判定するための剤 - Google Patents

関節リウマチの発症に関与する細菌の検出方法、該細菌の検出用試薬、関節リウマチの素因の有無を判定する方法及び該素因の有無を判定するための剤 Download PDF

Info

Publication number
WO2021100875A1
WO2021100875A1 PCT/JP2020/043510 JP2020043510W WO2021100875A1 WO 2021100875 A1 WO2021100875 A1 WO 2021100875A1 JP 2020043510 W JP2020043510 W JP 2020043510W WO 2021100875 A1 WO2021100875 A1 WO 2021100875A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid sequence
seq
nos
rheumatoid arthritis
Prior art date
Application number
PCT/JP2020/043510
Other languages
English (en)
French (fr)
Inventor
潔 竹田
悠一 前田
小泉 聡司
山下 誠
史 山▲崎▼
林 幹朗
Original Assignee
国立大学法人大阪大学
協和発酵バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 協和発酵バイオ株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2021558481A priority Critical patent/JPWO2021100875A1/ja
Publication of WO2021100875A1 publication Critical patent/WO2021100875A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for detecting a bacterium involved in the onset of rheumatoid arthritis, a reagent for detecting the bacterium, a method for determining the presence or absence of a predisposition to rheumatoid arthritis, and an agent for determining the presence or absence of the predisposition.
  • Rheumatoid arthritis (rheumatoid arthritis, RA) is a chronic systemic autoimmune disease that mainly affects joints and occurs in about 1% of the total population. Rheumatoid arthritis causes damage via cytokines, chemokines, and metalloproteases.
  • rheumatoid arthritis occurs 2-3 times more often in women than in men and can occur at any age, most often between the ages of 35 and 50, but can also occur in childhood or old age ( Non-Patent Document 1).
  • Non-Patent Document 2 discloses that the abundance ratio of Prevotella copper in the intestine increases in the early stage of rheumatoid arthritis.
  • Non-Patent Document 2 discloses that the abundance ratio of Prevotella copper in the intestine increases in the early stage of rheumatoid arthritis, but the relationship with the onset of rheumatoid arthritis is not clear.
  • An object of the present invention is to provide a means for identifying a bacterium associated with the onset of rheumatoid arthritis and using the bacterium to determine the possibility of contracting rheumatoid arthritis more early and easily.
  • the present inventors isolated Prevotella copper from stool samples of rheumatoid arthritis patients and healthy subjects, and Prevotella copper derived from rheumatoid arthritis patients (hereinafter abbreviated as RA-P.copri) is Prevotella copper derived from healthy subjects (hereinafter HC). It has been found that it has arthritis-inducing activity and causes aggravation of arthritis as compared with -P.copri). Furthermore, RA-P. copri and HC-P. As a result of analyzing the genome sequence of copri, RA-P. It was revealed that there is a region specific to the genome of copri. Based on the above findings, the present invention has been completed.
  • the present invention is as follows. 1.
  • a method for detecting a bacterium involved in the development of rheumatoid arthritis which comprises a step of specifically detecting the nucleic acid sequence of any one of (1) to (3) below or a part of the sequence thereof.
  • (1) Nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (2) Nucleic acid sequence having 95% or more homology with the nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (3) The nucleic acid sequences represented by SEQ ID NOs: 1 to 3.
  • the detection method according to 1 above wherein the bacterium involved in the development of rheumatoid arthritis belongs to the genus Prevotella. 3. 3.
  • the step of specifically detecting the nucleic acid sequence of any one of (1) to (3) or a part of the sequence thereof is carried out by a polymerase chain reaction using DNA derived from the feces of the subject as a template.
  • At least two types of primers used in the polymerase chain reaction contain a nucleic acid sequence consisting of at least 15 consecutive bases of the nucleic acid sequence shown in any one of SEQ ID NOs: 1 to 3 or a nucleic acid sequence complementary to the sequence.
  • the detection method according to 4 above which is an oligonucleotide to be used. 6.
  • the detection method according to 5 above, wherein the primer is 1 oligonucleotide selected from the nucleic acid sequences represented by SEQ ID NOs: 4 to 19. 7.
  • a method for determining the presence or absence of a predisposition to rheumatoid arthritis which comprises a step of detecting bacteria involved in the onset of rheumatoid arthritis in the feces of a subject by the detection method according to any one of 1 to 7.
  • a reagent for detecting bacteria involved in the development of rheumatoid arthritis which comprises a primer or probe for specifically detecting the nucleic acid sequence of any one of (1) to (3) below or a part of the sequence thereof.
  • Nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (2) Nucleic acid sequence having 95% or more homology with the nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (3) The nucleic acid sequences represented by SEQ ID NOs: 1 to 3. 10.
  • the primer or the probe is an oligonucleotide containing a nucleic acid sequence consisting of at least 15 consecutive bases of the nucleic acid sequence shown in any one of SEQ ID NOs: 1 to 3 or a nucleic acid sequence complementary to the sequence.
  • the detection reagent according to 9. The detection reagent according to 9. 11.
  • the detection reagent according to 10 above, wherein the primer or the probe is one oligonucleotide selected from the nucleic acid sequences represented by SEQ ID NOs: 4 to 19.
  • An agent for determining the presence or absence of a predisposition to rheumatoid arthritis which comprises a primer or probe for specifically detecting the nucleic acid sequence of any one of (1) to (3) below or a part of the sequence thereof.
  • nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (2) Nucleic acid sequence having 95% or more homology with the nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (3) The nucleic acid sequences represented by SEQ ID NOs: 1 to 3.
  • the primer or the probe is an oligonucleotide containing a nucleic acid sequence consisting of at least 15 consecutive bases of the nucleic acid sequence shown in any one of SEQ ID NOs: 1 to 3 or a nucleic acid sequence complementary to the sequence.
  • the agent according to 12. 14 The agent according to 13 above, wherein the primer or probe is one oligonucleotide selected from the nucleic acid sequences represented by SEQ ID NOs: 4 to 19.
  • the method for detecting bacteria of the present invention and the reagent for detecting the bacteria it is possible to specifically and easily detect the bacteria involved in the onset of rheumatoid arthritis even before the onset of rheumatoid arthritis. Further, according to the method for determining the presence or absence of a predisposition to rheumatoid arthritis and the agent for determining the presence or absence of the predisposition of the present invention, the possibility of suffering from rheumatoid arthritis is determined before the onset of rheumatoid arthritis, and it is appropriate at an appropriate time. It is possible to provide various treatments, which can be a new strategy from the viewpoint of preventive medicine.
  • FIG. 1 shows P.I. It is a figure which shows the result of having evaluated the arthritis-inducing activity by copy.
  • FIG. 2 (A) shows the isolated RA-P. copri and HC-P. It is a figure which shows the result of having analyzed the genome structure of copy.
  • FIG. 2 (B) shows RA-P. Of the primers used in the examples. It is a figure which shows the position in the genome of copri.
  • FIG. 3 is a diagram showing the results of PCR performed using DNA extracted from feces of rheumatoid arthritis patients as a template.
  • FIG. 4 is a diagram showing the results of PCR performed using DNA extracted from feces of a healthy subject as a template.
  • the bacterium in the present invention is an intestinal bacterium having an activity of inducing arthritis.
  • the activity that induces arthritis can be determined by increasing the arthritis score.
  • the method for determining the increase in the arthritis score is not particularly limited, and specific examples thereof include the following methods.
  • the bacterium in the present invention has the following nucleic acid sequence (1) or (2) or a partial sequence thereof.
  • Nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (2) Nucleic acid sequence having 95% or more homology with the nucleic acid sequence represented by SEQ ID NOs: 1 to 3.
  • SEQ ID NOs: 1 to 3 have arthritis-inducing activity, RA-P.
  • the nucleic acid sequence of the region specifically present in the genome of copri is shown. Homology between nucleic acid sequences is calculated using the homology search program BLAST.
  • BLAST homology search program
  • an arthritis model mouse eg, DBA / 1j mouse
  • an antibiotic eg, ampicillin, neomycin, metronidazole and vancomycin
  • the test bacteria are divided into a group to be administered or a healthy subject-derived bacterium to be administered (control group), and each bacterium is orally administered for several consecutive days (for example, 5 days).
  • Feces are collected 3 days after the final administration to confirm that each bacterium has settled in the mice, and an emulsion containing a mixture of type II collagen and an adjuvant is intradermally administered to each group of mice. After 3 weeks, as a booster, an emulsion of a mixture of type II collagen and an adjuvant is re-administered and the arthritis score is evaluated over time. If the arthritis score is statistically significantly higher than that of the control group 5 to 8 weeks after the administration of the second emulsion, it can be determined that the test bacterium has the activity of inducing rheumatoid arthritis.
  • the bacterium in the present invention is Prevotella copri, which is a gram-negative anaerobic bacterium. Whether or not the bacterium isolated from the isolation source is Prevotella copper can be determined, for example, by comparing the nucleotide sequence data of the 16S ribosomal RNA gene with the sequence data of a known species and performing phylogenetic analysis.
  • detection of bacteria includes not only determining the presence or absence of bacterial cells, but also quantifying the abundance thereof.
  • detecting bacteria collect all DNA from the sample.
  • the type of the sample include feces or intestinal contents of a subject (healthy subject, rheumatoid arthritis patient or individual suspected of having rheumatoid arthritis), isolated / cultured bacteria and the like. It is not limited to these.
  • a method for isolating / purifying DNA from a sample is known in the art, and can be carried out by, for example, extraction with phenol / chloroform, extraction with a commercially available DNA extraction reagent, purification with a commercially available column kit, or the like.
  • the DNA recovered from the sample is dissolved in an appropriate buffer solution such as TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and used for the detection method of the present invention.
  • TE 10 mM Tris-HCl, 1 mM EDTA, pH 8.0
  • the method for detecting a bacterium of the present invention is characterized by comprising a step of specifically detecting the nucleic acid sequence of any one of (1) to (3) below or a part of the sequence thereof.
  • Nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (2) Nucleic acid sequence having 95% or more homology with the nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (3) The nucleic acid sequences represented by SEQ ID NOs: 1 to 3.
  • nucleic acid sequence that hybridizes under stringent conditions examples include a nucleic acid sequence having a certain degree of sequence identity with the nucleic acid sequence used as a probe.
  • a nucleic acid sequence having at least 60% or more homology with the target nucleic acid sequence preferably a nucleic acid sequence having preferably 80% or more homology, still more preferably a nucleic acid sequence having 90% or more homology, most preferably.
  • examples include genes having 95% or more homology. Further, for example, assuming that the number of nucleic acids in the nucleic acid sequence is 100 as one unit, in the nucleic acid sequence of the target gene, 1 to several, preferably 1 to 40, preferably 1 to 35 per unit.
  • nucleic acid deletion means that the nucleic acid in the sequence is missing or missing
  • nucleic acid substitution means that the nucleic acid in the sequence has been replaced by another nucleic acid
  • nucleic acid substitution means that new nucleic acid has been added for insertion.
  • the detection method of the present invention preferably uses a primer or probe capable of specifically detecting the nucleic acid sequence of any one of (1) to (3) above or a part of the sequence thereof.
  • the primer may be any as long as it is designed so that a part of the region of the nucleic acid sequence can be specifically PCR-amplified.
  • the nucleic acid sequence of any one of (1) to (3) above or a part of the sequence thereof has arthritis-inducing activity in the present invention, RA-P.
  • examples thereof include a pair of oligonucleotides which are a combination of oligonucleotides containing a nucleic acid sequence of bases, and the fragment length of the nucleic acid amplified by them is preferably 50 to 1,000 bases, more preferably 100 to 500 bases.
  • preferred primers include combinations of oligonucleotides selected from the nucleic acid sequences represented by SEQ ID NOs: 4 to 19.
  • the temperature setting, reaction time and number of cycles in PCR can be appropriately set according to the amount of template DNA to be used, the type of primer, and the like.
  • the annealing temperature in PCR can be appropriately set based on the GC content of the primer. For example, using the genomic DNA of a bacterium as a template and an oligonucleotide consisting of the nucleic acid sequence represented by SEQ ID NO: 4 and an oligonucleotide consisting of the nucleic acid sequence represented by SEQ ID NO: 5 as primers, 95 ° C. for 30 seconds, 55.
  • the reaction can be carried out under the condition that the temperature is 30 seconds and the temperature is 72 ° C. for 45 seconds for 30 cycles.
  • the probe is contained in the nucleic acid sequence represented by SEQ ID NO: 1 to 3 or a nucleic acid sequence complementary to the nucleic acid sequence, preferably 15 bases or more, more preferably 18 to 500 bases, still more preferably 18 to 200 bases. , Particularly preferably, an oligonucleotide that hybridizes to a contiguous nucleic acid sequence of 18 to 50 bases under stringent conditions.
  • Hybridization should be performed according to a method known per se or a method similar thereto, for example, the method described in Molecular Cloning 2nd Edition (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989). Can be done.
  • stringent conditions for example, after a hybridization reaction at 45 ° C. in 6 ⁇ SSC (sodium chloride / sodium citrate), one or more times at 65 ° C. in 0.2 ⁇ SSC / 0.1% SDS. Cleaning etc. can be mentioned.
  • the length of the probe is preferably 15 bases or more, more preferably 18 to 500 bases, still more preferably 18 to 200 bases, and particularly preferably 18 to 50 bases.
  • the probe preferably includes an oligonucleotide that hybridizes to the nucleic acid sequence represented by any one of SEQ ID NOs: 4 to 19 or its complementary sequence. More preferably, an oligonucleotide containing a continuous subsequence of 15 to 50 bases of the nucleic acid sequence represented by any one of SEQ ID NOs: 4 to 19 or a complementary sequence thereof can be mentioned.
  • preferable probes include oligonucleotides selected from the nucleic acid sequences represented by SEQ ID NOs: 4 to 19.
  • the primer or probe may contain an additional sequence (nucleic acid sequence that is not complementary to the polynucleotide to be detected) as long as it does not interfere with specific detection.
  • the oligonucleotide used as the primer or probe may be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the thymidine residue (T) in the nucleotide sequence is appropriately read as the uridine residue (U).
  • U uridine residue
  • it may be a DNA containing a uridine residue synthesized by changing T at an arbitrary position to U.
  • it may be RNA containing a thymidine residue synthesized by changing U at an arbitrary position to T.
  • point mutations such as deletions, insertions or substitutions, and modified nucleotides may be present in the oligonucleotide as long as the specificity of hybridization is not reduced.
  • Primers or probes can also be suitable labeling agents such as radioisotopes (eg 125 I, 131 I, 3 H, 14 C, 32 P, 33 P, 35 S, etc.), enzymes (eg ⁇ -galactosidase, etc.). , ⁇ -Glucosidase, alkaline phosphatase, peroxidase, malic acid dehydrogenase, etc.), fluorescent substances (eg, fluorescamine, fluoressen isothiocyanate, etc.), luminescent substances (eg, luminol, luminol derivatives, luciferin, lucigenin, etc.) , Biotin or the like.
  • radioisotopes eg 125 I, 131 I, 3 H, 14 C, 32 P, 33 P, 35 S, etc.
  • enzymes eg ⁇ -galactosidase, etc.
  • ⁇ -Glucosidase alkaline phosphatase, peroxidas
  • oligonucleotide used as the primer or probe can be chemically synthesized, for example, using a general-purpose DNA synthesizer. Oligonucleotides may be synthesized using any of the other methods well known in the art.
  • PCR includes PCR using the DNA recovered from the sample as a template using the primers contained in the detection reagent of the present invention.
  • the obtained PCR product is separated by electrophoresis (for example, agarose gel electrophoresis, polyacrylamide gel electrophoresis, etc.).
  • electrophoresis for example, agarose gel electrophoresis, polyacrylamide gel electrophoresis, etc.
  • the gel is stained with a stain solution known per se, such as an ethidium bromide solution, and the PCR product is detected using a transilluminator or the like.
  • the presence / absence and abundance of the bacterium of the present invention in the sample are determined using the presence / absence and amount of the specific PCR product as an index.
  • the PCR used in the detection method of the present invention may be quantitative PCR.
  • Quantitative PCR can be performed by known methods, but two analytical methods are known. The first is to analyze the reaction product amount during the exponential growth period by utilizing the feature that the reaction product increases exponentially up to a certain amount in the PCR reaction and then reaches the plateau, and the initial template amount. Is a method of calculating. The second method is to determine the number of PCR cycles (Ct) in which the amount of reaction product exceeds a certain value (threshold) by monitoring the reaction product in real time. In each analysis method, it is necessary to perform PCR by changing the amount of DNA at a known concentration, analyze the reaction product at each cycle number, and determine a quantitative PCR cycle number range from the kinetics.
  • the abundance of the target gene in an unknown sample is estimated.
  • the abundance of the bacterium of the present invention in the sample can be quantified, and when it is estimated that even one copy of the target gene is contained in the test sample, it can be determined that the bacterium of the present invention is present.
  • the detection method of the present invention includes a step of bringing the probe contained in the detection reagent of the present invention into contact with all the DNA in the sample.
  • the contact condition is that the probe is RA-P. It is appropriately set to hybridize with a nucleic acid sequence specifically present in the genome of copri to form a nucleic acid complex. The complex is then detected as an indicator of the presence of the bacterium of the present invention.
  • a probe When a probe is used, it can be carried out by various known hybridization techniques [for example, fluorescence in situ hybridization method [Fluorescence In situ hybridization (hereinafter abbreviated as FISH)]].
  • FISH Fluorescence In situ hybridization
  • the probe invades the bacterial cytoplasm and is present in the RA-P. It hybridizes to the nucleic acid sequence present in the genome of copri under appropriate hybridization conditions.
  • a fluorescent substance for example, fluorescein isothiocyanate (FITC), TAMRA, Cy3, Cy5, etc.
  • the assay can be monitored by techniques (eg, autoradiography, fluorescence microscopy, flow cytometry, etc.). For example, if the probe is labeled with a radioisotope, the assay is performed by a method such as autoradiography, and if the probe is labeled with a fluorescent substance, the assay is performed with a fluorescence microscope or the like, and the chemiluminescent substance is used. If labeled, analysis using a photosensitive film or digital analysis using a CCD camera can be performed. Thereby, bacteria in the sample can be detected.
  • techniques eg, autoradiography, fluorescence microscopy, flow cytometry, etc.
  • the detection method of the present invention includes metagenomic analysis by a next-generation sequencer.
  • the next-generation sequencer is a base sequence analysis (decoding) device that dramatically improves the analysis speed by parallel processing, and is called a fluorescent capillary sequencer (called "first-generation sequencer") that uses the Sanger sequencing method. Make a contrast.
  • metagenomic analysis using a next-generation sequencer it is possible to analyze all bacterial species that make up the intestinal flora and their abundance ratios.
  • the method is not particularly limited as long as it is a method for clarifying the diversity of the intestinal flora and the abundance ratio of specific bacteria constituting the intestinal flora.
  • next-generation sequencers for example, Illumina (for example, HiSeq 2500, HiSeq X Ten, NextSeq 500), Roche (454) (for example, GS FLX + system), Life Technologies (for example, 5500xlSOLID),
  • next-generation sequencers sold by manufacturers such as Proton Sequencer
  • the next-generation sequencer that will be developed and released in the future may be used.
  • Bacterial detection reagent> The detection reagent of the present invention is the RA-P. By detecting the nucleic acid sequence present in the genome of copri, the presence of the bacterium of the present invention in the sample is detected.
  • the detection reagent of the present invention can specifically detect the nucleic acid sequence of any one of the following (1) to (3), ⁇ 1.
  • Bacterial detection method> includes the above-mentioned primers or probes.
  • (1) Nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (2) Nucleic acid sequence having 95% or more homology with the nucleic acid sequence represented by SEQ ID NOs: 1 to 3 (3) The nucleic acid sequences represented by SEQ ID NOs: 1 to 3.
  • the detection reagent of the present invention further contains nucleic acid synthase (for example, DNA polymerase, RNA polymerase, reverse transcriptase, etc.), other enzymes, substrates corresponding to the enzymes (for example, dNTP, rNTP, etc.) as other components. It may be included. It may also contain a label detection substance, a buffer solution, or the like.
  • nucleic acid synthase for example, DNA polymerase, RNA polymerase, reverse transcriptase, etc.
  • other enzymes for example, dNTP, rNTP, etc.
  • substrates corresponding to the enzymes for example, dNTP, rNTP, etc.
  • It may be included. It may also contain a label detection substance, a buffer solution, or the like.
  • the detection reagent of the present invention is used, the presence or absence of bacteria that induce rheumatoid arthritis in the sample can be easily determined in a short time, which is useful for diagnosing the predisposition to rheumatoid arthritis.
  • the bacterium of the present invention having the nucleic acid sequences represented by SEQ ID NOs: 1 to 3 was detected in the feces of a person suffering from rheumatoid arthritis. Considering that the bacterium in the present invention has an arthritis-inducing activity, the presence of the bacterium in the present invention in the intestine of a subject is determined regardless of whether or not the subject has already developed rheumatoid arthritis. , Shows that it has a predisposition to develop rheumatoid arthritis (predisposition to rheumatoid arthritis).
  • Bacterial detection method> By detecting the bacteria involved in the onset of rheumatoid arthritis in the feces of the subject, the presence or absence of a predisposition to rheumatoid arthritis can be determined. That is, the present invention provides a method for determining the presence or absence of a predisposition to rheumatoid arthritis, which comprises detecting the bacteria of the present invention in the feces of a subject.
  • the bacterium in the present invention uses the feces of the subject as a sample, and ⁇ 1. Bacterial detection method> can be detected by the detection method described.
  • Bacterial detection method> can be detected by the detection method described.
  • the bacterium of the present invention is detected in the feces of a subject, it can be determined that the subject has a predisposition to rheumatoid arthritis and the risk of developing rheumatoid arthritis is relatively high.
  • the bacterium in the present invention is not detected, it can be determined that the subject has a relatively low risk of developing rheumatoid arthritis.
  • the present invention provides an agent for determining the presence or absence of a predisposition to rheumatoid arthritis.
  • the agent of the present invention determines the presence or absence of a predisposition to rheumatoid arthritis by detecting the presence of the bacterium in the present invention in the feces of a subject. Therefore, the agent of the present invention is preferably ⁇ 2.
  • Bacterial Detecting Reagents> contains the detection reagents set forth, and more preferably contains a primer set of oligonucleotides selected from the nucleic acid sequences represented by SEQ ID NOs: 4-19.
  • Prevotella copri (hereinafter abbreviated as P. copli) was isolated from the feces of rheumatoid arthritis patients and healthy subjects by the following method. 10 mL of PBS (1.37 mM NaCl, 10 mM Na 2 HPO 4 , 2.7 mM KCl, 1.76 mM KH 2 PO 4 , pH 7) in which 1 g of feces stored at -80 ° C was thawed and anaerobically replaced in an anaerobic chamber. Suspended in 4). The suspension was prepared with 10-fold serial dilutions in PBS (10 4 ⁇ 10 8 dilution).
  • PCR was performed with the following reaction composition.
  • the "one pinch of toothpick" in the following reaction composition means the amount of bacterial cells attached to the toothpick by poking the colony once with the toothpick.
  • Colony cells 1 pinch 10xPCR buffer 5.0 ⁇ L 2 mM dNTP 5.0 ⁇ L rTaq (manufactured by Toyobo Life Science Co., Ltd.) 0.2 ⁇ L Primer g-Prevo-F (100 pM) 0.2 ⁇ L Primer g-Prevo-R (100 pM) 0.2 ⁇ L Deionized water 39.4 ⁇ L
  • the PCR reaction was carried out under the conditions of 35 cycles of 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 90 seconds.
  • the reaction solution was subjected to electrophoresis using a 2% agarose gel, and amplification of the fragments was confirmed.
  • the colonies from which the amplification products were obtained were again applied to Colombian 5% sheep blood agar and cultured anaerobically at 37 ° C. for 2 days. From the appearing colonies, PCR was performed using the universal primers (8F; SEQ ID NOs: 22 and 15R; SEQ ID NO: 23) of the 16S rRNA gene in the same manner as above. It was confirmed by electrophoresis that the PCR product was amplified.
  • the PCR product was purified by a conventional method, and PCR using the purified DNA as a template and sequencing primers (SEQ ID NOs: 24-28) was performed with the following reaction composition.
  • the PCR reaction was carried out under the conditions of performing 25 cycles of 96 ° C. for 10 seconds, 50 ° C. for 5 seconds, and 60 ° C. for 4 minutes. After the reaction solution was precipitated with ethanol, the base sequence was determined by a sequencer. The obtained 16S rRNA sequence was analyzed by BLAST search, and a bacterium that matched the sequence of Prevotella copper was identified as Prevotella copper.
  • the strain identified as Prevotella copper was anaerobically cultured in GAM liquid medium (manufactured by Nissui Pharmaceutical Co., Ltd.) at 37 ° C. for 1 to 2 days.
  • the culture was mixed with an equal volume of sterilized 80% glycerol solution and stored at -80 ° C.
  • mice 6 to 7 week old DBA / 1j male mice (Charles River Japan) were administered with 4 types of antibiotics (ampicillin 500 mg / L, neomycin 500 mg / L, metronidazole 500 mg / L, vancomycin 250 mg / L) for 5 days. Killed intestinal bacteria.
  • RA-P Cultured from 2 days after the end of antibiotic administration.
  • copri and HC-P. copri was orally administered for 5 consecutive days. The administered cells were cultured in a GAM liquid medium for 24 hours in an anaerobic chamber, and then suspended in PBS so that the OD600 value became 1.5.
  • the evaluation method for arthritis in mice is 0 point; normal, 1 point; swelling or redness in 1 joint, 2 points; swelling or redness in 2 or more joints, 3 points; all joints. There was swelling or redness, and the score was 4 points; deformed / ankylosis, with a maximum of 16 points. The results are shown in FIG.
  • RA-P 5-8 weeks after the administration of the second emulsion, RA-P.
  • Mice treated with copri were HC-P. Severe arthritis was observed as compared with the mice treated with copri. From this result, RA-P. It has been shown that copri may act as an exacerbating factor for rheumatoid arthritis.
  • a hybrid assembly method using a Unicycler was carried out to construct a full-length genome.
  • a homology search on the genome sequences of each of the constructed strains using blastn with reference to each other's sequences, regions in which there is duplication between the genomes were obtained.
  • a region in which a defect was found only in the strain was found.
  • the phylogenetic relationship was estimated based on the genetic information by creating the core genome.
  • the same gene was searched for by performing a homology search using blastp on the amino acid sequence of each coding region.
  • genes commonly found among the strains were extracted after limiting the amino acid homology to 95% or more and the length ratio (shorter / longer) of 0.8 or more.
  • the common genes were aligned by maft for each gene, and then the amino acid sequences were bound for each strain in the same order to prepare a core genome sequence.
  • the distance between the core genomes was calculated by Fast Tree and used to estimate the phylogenetic relationship.
  • RA-P The existence of a region specific to the genome of copri was revealed. The results are shown in FIG. 2 (A). RA-P. The sequences of regions 1 to 3 specific to the genome of copri are shown in SEQ ID NOs: 1 to 3, respectively.
  • the PCR reaction was carried out under the conditions of performing 30 cycles of 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 45 seconds.
  • the position of copri in the genome is shown in Table 1.
  • FIG. 2 (B) shows RA-P. Of the primers used in the examples. It is a figure which shows the position in the genome of copri.
  • each reaction solution was subjected to electrophoresis using a 2% agarose gel, and amplification of the fragments was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、関節リウマチの発症に関連する細菌を同定し、当該細菌を利用して、より早期かつ簡便に関節リウマチに罹患する可能性を判定する手段を提供することを目的とする。本発明は、関節リウマチの発症に関与する細菌の検出方法及び該細菌の検出用試薬、並びに関節リウマチの素因の有無の判定方法及び該素因の有無を判定するための剤に関する。

Description

関節リウマチの発症に関与する細菌の検出方法、該細菌の検出用試薬、関節リウマチの素因の有無を判定する方法及び該素因の有無を判定するための剤
 本発明は、関節リウマチの発症に関与する細菌の検出方法、該細菌の検出用試薬、関節リウマチの素因の有無を判定する方法及び該素因の有無を判定するための剤に関する。
 関節リウマチ(リウマチ様関節炎、RA)は、全人口の約1%に発生する、主に関節を侵す慢性の全身性自己免疫疾患である。関節リウマチは、サイトカイン、ケモカイン、およびメタロプロテアーゼを介した損傷を引き起こす。
 関節リウマチの発症は通常潜行性であり、全身症状および関節症状から始まることが多い。関節リウマチの病態の特徴として、末梢関節(例えば、手関節、中手指節関節)に対称性に炎症が生じ、結果として関節構造が進行性に破壊されるものであり、通常は全身症状を伴う。関節リウマチは女性で発生する頻度が男性の2~3倍高く、年齢を問わず発症する可能性があり、35歳から50歳が最も多いが、小児期または高齢期でも発症することがある(非特許文献1)。
 関節リウマチは症状が悪化した場合、患者への身体的および精神的な苦痛が大きくなると同時に治療に使用される薬剤費が高騰することから、適切な時期に適切な治療を施すための仕組みが求められている。
 現在、関節リウマチの診断は腫れ・痛みのある関節数や血液検査におけるリウマチ因子・抗CCP抗体の有無などを点数化して総合的に行われているが、より早期に関節リウマチに罹患する可能性を判定できるバイオマーカーの開発が求められている。
 一方で、非特許文献2には、関節リウマチの初期に腸内のPrevotella copriの存在比率が上昇することが開示されている。
Apostolos Kontzias、MSDマニュアルプロフェッショナル版、06.筋骨格疾患と結合組織、2017年2月(https://www.msdmanuals.com/ja-jp) Manimozhiyan Arumugam et al., NATURE,VOL 473, 2011, p. 174-180
 関節リウマチの診断に用いられる、上記した血液検査で測定できるリウマチ因子や抗CCP抗体は、健常者においても検出されることがある一方で、関節リウマチ罹患者において検出されないなど、その特異性に課題がある。また、非特許文献2には、関節リウマチの初期に腸内のPrevotella copriの存在比率が上昇することが開示されているが、関節リウマチの発症との関連性については明らかでない。
 本発明は、関節リウマチの発症に関連する細菌を同定し、当該細菌を利用して、より早期かつ簡便に関節リウマチに罹患する可能性を判定する手段を提供することを目的とする。
 本発明者らは、関節リウマチ患者及び健常者の便サンプルからPrevotella copriを単離し、関節リウマチ患者由来のPrevotella copri(以下RA-P.copriと略す)は、健常者由来のPrevotella copri(以下HC-P.copriと略す)と比較して、関節炎誘導活性を有し、関節炎を重篤化させる原因となることを見出した。さらに、RA-P.copri及びHC-P.copriのゲノム配列を解析した結果、RA-P.copriのゲノムに特異的な領域が存在することを明らかにした。以上の知見に基づき、本発明を完成させた。
 本発明は、以下の通りである。
1.以下の(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出する工程を含む、関節リウマチの発症に関与する細菌の検出方法。
(1)配列番号1から3で表される核酸配列
(2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
(3)配列番号1から3に記載の核酸配列又は該核酸配列に相補的な核酸配列とストリンジェントな条件下でハイブリダイズする核酸配列
2.前記関節リウマチの発症に関与する細菌がPrevotella属に属する、前記1に記載の検出方法。
3.前記Prevotella属に属する細菌がPrevotella copriである、前記2に記載の検出方法。
4.前記(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出する工程が、被験者の糞便由来のDNAを鋳型とするポリメラーゼ連鎖反応により行われる、前記1~3のいずれか1に記載の検出方法。
5.前記ポリメラーゼ連鎖反応に用いる少なくとも2種のプライマーが、配列番号1から3のいずれか1に示される核酸配列または該配列に相補的な核酸配列のうち、少なくとも連続した15塩基よりなる核酸配列を含有するオリゴヌクレオチドである前記4に記載の検出方法。
6.前記プライマーが、配列番号4から19で表される核酸配列から選ばれる1のオリゴヌクレオチドである、前記5に記載の検出方法。
7.前記核酸配列またはその一部の配列を特異的に検出する工程が、被験者の糞便由来のDNAを対象とする次世代シーケンサーによるメタゲノム解析により行われる、前記1~3のいずれか1に記載の検出方法。
8.前記1~7のいずれか1に記載の検出方法により、被験者の糞便中の前記関節リウマチの発症に関与する細菌を検出する工程を含む、関節リウマチの素因の有無の判定方法。
9.以下の(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出するプライマー又はプローブを含む、関節リウマチの発症に関与する細菌の検出用試薬。
(1)配列番号1から3で表される核酸配列
(2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
(3)配列番号1から3に記載の核酸配列又は該核酸配列に相補的な核酸配列とストリンジェントな条件下でハイブリダイズする核酸配列
10.前記プライマー又は前記プローブが、配列番号1から3のいずれか1に示される核酸配列または該配列に相補的な核酸配列のうち、少なくとも連続した15塩基よりなる核酸配列を含有するオリゴヌクレオチドである、前記9に記載の検出用試薬。
11.前記プライマー又は前記プローブが、配列番号4から19で表される核酸配列から選ばれる1のオリゴヌクレオチドである、前記10に記載の検出用試薬。
12.以下の(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出するプライマー又はプローブを含む、関節リウマチの素因の有無を判定するための剤。
(1)配列番号1から3で表される核酸配列
(2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
(3)配列番号1から3に記載の核酸配列又は該核酸配列に相補的な核酸配列とストリンジェントな条件下でハイブリダイズする核酸配列
13.前記プライマー又は前記プローブが、配列番号1から3のいずれか1に示される核酸配列または該配列に相補的な核酸配列のうち、少なくとも連続した15塩基よりなる核酸配列を含有するオリゴヌクレオチドである、前記12に記載の剤。
14.前記プライマー又は前記プローブが、配列番号4から19で表される核酸配列から選ばれる1のオリゴヌクレオチドである、前記13に記載の剤。
 本発明の細菌の検出方法、該細菌の検出用試薬によれば、関節リウマチの発症前から関節リウマチの発症に関与する細菌の特異的かつ簡便な検出が可能となる。また、本発明の関節リウマチの素因の有無の判定方法及び該素因の有無を判定する剤によれば、関節リウマチの発症前から関節リウマチを罹患する可能性を判定して、適切な時期に適切な治療を施すことが可能となり、予防医学的観点からも新たな戦略となり得る。
図1は、P.copriによる関節炎誘導活性を評価した結果を示す図である。 図2(A)は、単離したRA-P.copriおよびHC-P.copriについて、そのゲノム構造を解析した結果を示す図である。図2(B)は、実施例で用いたプライマーのRA-P.copriのゲノムにおける位置を示す図である。 図3は、関節リウマチ患者の糞便から抽出したDNAを鋳型として実施したPCRの結果を示す図である。 図4は、健常者の糞便から抽出したDNAを鋳型として実施したPCRの結果を示す図である。
 以下、本明細書において使用される用語は特に言及しない限り、当該分野で通常用いられる意味を有する。
<1.細菌の検出方法>
 本発明における細菌は、関節炎を誘導する活性を有する腸内細菌である。関節炎を誘導する活性は、関節炎スコアの増加を以って判定できる。関節炎スコアの増加の判定方法は、特に限定されるものではないが、具体的には例えば以下の方法が挙げられる。
 本発明における細菌は、一態様において、以下の(1)又は(2)の核酸配列またはその一部の配列を有する。
(1)配列番号1から3で表される核酸配列
(2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
 ここで配列番号1から3は、関節炎誘導活性を有する、RA-P.copriのゲノムに特異的に存在する領域の核酸配列を示す。核酸配列間の相同性は、相同性検索プログラムBLASTを使用して計算される。細菌が配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列を有する場合、配列番号1から3で表される核酸配列を有するRA-P.copriと同様に、関節炎を誘導する活性を有する可能性が高いといえる。
 関節炎を誘導する活性を関節炎スコアの増加により判定する方法としては、垣本毅一他、新生化学実験講座12、分子免疫学II、360-372ページ、東京化学同人(1989)に記載の方法が挙げられる。具体的には次の方法が挙げられる。まず、関節炎モデルマウス(例えば、DBA/1jマウス)に抗生剤(例えば、アンピシリン、ネオマイシン、メトロニダゾール及びバンコマイシン)を数日間投与して腸内細菌を死滅させる。後に、被験細菌を投与する群又は健常者由来細菌を投与する群(コントロール群)に分けて、数日間(例えば、5日間)連続で各細菌を経口投与する。最終投与の3日後に糞便を回収し、各細菌がマウスに定着しているのを確認するとともに、II型コラーゲンとアジュバントの混合したエマルジョンを各群のマウスに皮内投与する。3週間後にブースターとして、II型コラーゲンとアジュバントの混合したエマルジョンを再投与して、関節炎スコアを経時的に評価する。2回目のエマルジョンを投与後5~8週後において、関節炎スコアがコントロール群と比較して、統計学上有意に高い場合、被験細菌が関節リウマチを誘導する活性を有すると判定できる。
 本発明における細菌は、グラム陰性の嫌気性細菌であるPrevotella copriである。分離源から単離された細菌がPrevotella copriであるか否かは、例えば、16SリボソームRNA遺伝子の塩基配列データと既知種の配列データとを比較し系統解析を行って決定できる。
 本明細書において、「細菌の検出」とは、細菌の菌体の有無を判定することのみならず、その存在量を定量することをも包含する。
 細菌の検出にあたっては、試料から全DNAを回収する。該試料の種類としては、例えば被験者(健常者、関節リウマチ患者又は関節リウマチに罹患していることが疑われる個体)の糞便又は腸管内容物、単離/培養された細菌などが挙げられるが、これらに限定されるものではない。試料からDNAを単離/精製する方法は当該技術分野において公知であり、例えば、フェノール・クロロホルムによる抽出、市販のDNA抽出試薬を用いる抽出、又は市販のカラムキットによる精製などにより行うことができる。
 試料から回収されたDNAは、適切な緩衝液、例えばTE(10mM Tris-HCl、1mM EDTA、pH8.0)等に溶解され、本発明の検出方法に供される。
 本発明の細菌の検出方法は、以下の(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出する工程を含むことを特徴とする。
(1)配列番号1から3で表される核酸配列
(2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
(3)配列番号1から3に記載の核酸配列又は該核酸配列に相補的な核酸配列とストリンジェントな条件下でハイブリダイズする核酸配列
 ストリンジェントな条件下でハイブリダイズする核酸配列としては、プローブとして使用する核酸配列と一定以上の配列同一性を有する核酸配列が挙げられる。例えば、対象となる核酸配列と少なくとも60%以上の相同性を有する核酸配列、好ましくは80%以上の相同性を有する核酸配列、さらに好ましくは90%以上の相同性を有する核酸配列、最も好ましくは95%以上の相同性を有する遺伝子が挙げられる。また、例えば、核酸配列における核酸数100個を一単位とすれば、対象となる遺伝子の核酸配列において、該一単位あたり、1から数個、好ましくは1~40個、好ましくは1~35個、好ましくは1~30個、好ましくは1~25個、好ましくは1~20個、より好ましくは1~15個、さらに好ましくは1、2、3、4、5、6、7、8、9又は10個、なおさらに好ましくは1、2、3、4又は5個の核酸の欠失、置換、付加などを有する核酸配列が挙げられる。
 「核酸の欠失」とは配列中の核酸に欠落又は消失があることを意味し、「核酸の置換」は配列中の核酸が別の核酸に置き換えられていることを意味し、「核酸の付加」とは新たな核酸が挿入するように付け加えられていることを意味する。
 本発明の検出方法は、一態様において、上記(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出し得るプライマー又はプローブを用いることが好ましい。
 前記プライマーは、上記核酸配列の一部の領域を特異的にPCR増幅し得るように設計されたものであればいかなるものであってもよい。上記(1)~(3)のいずれか1の核酸配列またはその一部の配列は、本発明において関節炎誘導活性を有する、RA-P.copriのゲノムに存在する核酸配列である。
 ここで「特異的に」とは、プライマーが、上記(1)~(3)のいずれか1の核酸配列の一部の領域をPCR増幅するが、上記(1)~(3)のいずれか1の核酸配列またはその一部の配列を含まない核酸配列をPCR増幅しないことを意味する。
 前記プライマーとしては、例えば、配列番号1から3のいずれか1で表される核酸配列または該配列に相補的な核酸配列から選ばれる連続する、好ましくは15~50塩基、より好ましくは18~30塩基の核酸配列を含むオリゴヌクレオチドの組み合わせであり、それらによって増幅される核酸の断片長が好ましくは50~1,000塩基、より好ましくは100~500塩基である、一対のオリゴヌクレオチドが挙げられる。 
 好ましいプライマーの具体例として、配列番号4から19で表される核酸配列から選ばれるオリゴヌクレオチドの組み合わせを挙げることができる。
 PCRにおける温度設定、反応時間及びサイクル数は、使用するテンプレートDNAの量、プライマーの種類等に応じて適宜設定できる。PCRにおけるアニーリングの温度は、プライマーのGC含量に基づき適宜設定できる。例えば、細菌のゲノムDNAを鋳型として、配列番号4で表される核酸配列からなるオリゴヌクレオチド及び配列番号5で表される核酸配列からなるオリゴヌクレオチドをプライマーとして使用して、95℃30秒、55℃30秒、72℃45秒を30サイクル行う条件で反応を行うことができる。
 前記プローブは、配列番号1から3で表される核酸配列または該核酸配列に相補的な核酸配列に含まれる、好ましくは15塩基以上、より好ましくは18~500塩基、さらに好ましくは18~200塩基、特に好ましくは18~50塩基の連続した核酸配列にストリンジェントな条件下でハイブリダイズするオリゴヌクレオチドである。
 ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング(Molecular Cloning)第2版(J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989)に記載の方法などに従って行なうことができる。ストリンジェントな条件としては、例えば、6×SSC(sodium chloride/sodium citrate)中45℃でのハイブリダイゼーション反応の後、0.2×SSC/0.1%SDS中65℃での一回以上の洗浄などが挙げられる。当業者は、ハイブリダイゼーション溶液の塩濃度、ハイブリダイゼーション反応の温度、プローブ濃度、プローブの長さ、ミスマッチの数、ハイブリダイゼーション反応の時間、洗浄液の塩濃度、洗浄の温度等を適宜変更することにより、所望のストリンジェンシーに容易に調節できる。
 プローブの長さは、好ましくは15塩基以上、より好ましくは18~500塩基、さらに好ましくは18~200塩基、特に好ましくは18~50塩基である。
 特異性の観点から、プローブとしては、好ましくは配列番号4から19のいずれか1で表される核酸配列又はその相補配列にハイブリダイズするオリゴヌクレオチドが挙げられる。より好ましくは、配列番号4から19のいずれか1で表される核酸配列又はその相補配列の連続する15~50塩基の部分配列を含むオリゴヌクレオチドが挙げられる。
 好ましいプローブの具体例として、配列番号4から19で表される核酸配列から選ばれるオリゴヌクレオチドが挙げられる。
 プライマー又はプローブは、特異的検出に支障を生じない範囲で付加的配列(検出対象のポリヌクレオチドと相補的でない核酸配列)を含んでいてもよい。
 前記プライマー又はプローブとして使用されるオリゴヌクレオチドは、デオキシリボ核酸(DNA)でもリボ核酸(RNA)でもよい。リボ核酸の場合、ヌクレオチド配列におけるチミジン残基(T)は、適宜ウリジン残基(U)と読み替えられる。また任意の位置のTをUに変えて合成したウリジン残基を含むDNAであってもよい。同様に任意の位置のUをTに変えて合成したチミジン残基を含むRNAであってもよい。また、ハイブリダイゼーションの特異性を低下させない限り、オリゴヌクレオチド中に欠失、挿入又は置換などの点突然変異や、修飾ヌクレオチドが存在してもよい。
 また、プライマー又はプローブは、適当な標識剤、例えば、放射性同位元素(例えば、125I、131I、H、14C、32P、33P、35S等)、酵素(例えば、β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素等)、蛍光物質(例えば、フルオレスカミン、フルオレッセンイソチオシアネート等)、発光物質(例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニン等)、ビオチンなどで標識されていてもよい。
 前記プライマー又はプローブとして使用されるオリゴヌクレオチドは、例えば汎用のDNA合成装置を用いて化学的に合成できる。オリゴヌクレオチドは、当該技術分野においてよく知られる他の方法のいずれかを用いて合成してもよい。
 上記本発明の検出用試薬に含まれるプライマーを用いて、試料から回収されたDNAを鋳型としてPCRを行なうことを含む。得られたPCR産物は、電気泳動(例えば、アガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動等)により分離される。電気泳動後、ゲルがエチジウムブロマイド溶液等の自体公知の染色液により染色され、トランスイルミネーター等を用いてPCR産物が検出される。そして、特異的PCR産物の有無や量を指標として、試料中の本発明の細菌の存在の有無や存在量が判定される。
 本発明の検出方法において用いられるPCRは、定量的PCRであってもよい。定量的PCRは、公知の方法により行なうことができるが、2つの解析方法が知られている。1つ目は、PCR反応で反応生成物がある程度の量までは指数関数的に増加し、その後プラトーに達するという特徴を利用し、指数関数的増加期に反応生成物量を解析し、初期鋳型量を算出する方法である。2つ目は、反応生成物をリアルタイムでモニタリングすることにより、反応生成物量がある一定の値(threshold)を超えるPCRサイクル数(Ct)を決定する方法である。いずれの解析方法も、既知濃度のDNA量を変化させPCRを行ない、各サイクル数における反応生成物を解析し、そのカイネティクスから定量性のあるPCRサイクル数範囲を決定することが必要である。その結果をふまえて、未知の試料中の目的遺伝子の存在量を概算する。それにより試料中の本発明の細菌の存在量を定量でき、目的遺伝子が被験試料中に1コピーでも含まれると概算された場合、本発明の細菌が存在すると判定できる。
 本発明の検出方法は、一態様において、上記本発明の検出用試薬に含まれるプローブを、試料中の全DNAに接触させる工程を含む。接触の条件は、プローブがRA-P.copriのゲノムに特異的に存在する核酸配列とハイブリダイズして核酸複合体を形成するよう適宜設定される。そして当該複合体は、本発明の細菌の存在を指示するものとして検出される。
 プローブを利用する場合、種々の公知のハイブリダイゼーション技術〔例えば、蛍光in situハイブリダイゼーション法[Fluorescence In Situ Hybridization(以下FISHと略す)]など〕により実施できる。FISH法においては、プローブは細菌の細胞質内に侵入し、そこに存在するRA-P.copriのゲノムに存在する核酸配列に適切なハイブリダイゼーション条件下でハイブリダイズする。この際に、プローブを放射性同位元素、蛍光物質[例えば、フルオレセインイソチオシアネート(FITC)、TAMRA、Cy3、Cy5など]、化学発光物質などで標識することで、特異的なハイブリダイゼーションの現象を適当な手法(例えば、オートラジオグラフィー、蛍光顕微鏡、フローサイトメトリーなど)によってモニタリングできる。例えば、プローブが放射性同位元素で標識されている場合にはオートラジオグラフィー等の方法によってアッセイを実施し、蛍光物質で標識されている場合には蛍光顕微鏡等でアッセイを実施し、化学発光物質で標識されている場合には感光フィルムを用いた解析やCCDカメラを用いたデジタル解析を実施できる。それにより試料中の細菌の検出を行うことができる。
 本発明の検出方法は、一態様において、次世代シーケンサーによるメタゲノム解析を含む。次世代シーケンサーとは、並列処理によって解析スピードを飛躍的に向上させた塩基配列解析(解読)装置であり、サンガー・シーケンシング法を利用した蛍光キャピラリーシーケンサー(「第1世代シーケンサー」と呼ばれる)と対照をなす。次世代シーケンサーによるメタゲノム解析を用いることで、腸内細菌叢を構成する全ての細菌種とその存在比率の解析が可能である。腸内細菌叢の多様性や腸内細菌叢を構成する特定の細菌の存在比率が明らかになる方法であれば、特に限定されない。
 市販の次世代シーケンサーとして、例えば、Illumina社(例えば、HiSeq 2500、HiSeq X Ten、NextSeq 500)、Roche(454)社(例えばGS FLX+ システム)、Life Technologies社(例えば5500xl SOLiD)、Ion Torrent社(例えばProton Sequencer)等のメーカーから販売されている各種次世代シーケンサーが挙げられる。既存の超並列型次世代シーケンサーに限らず、今後開発・発売される次世代シーケンサーを利用することにしてもよい。
<2.細菌の検出用試薬>
 本発明の検出用試薬は、本発明におけるRA-P.copriのゲノムに存在する核酸配列を検出することにより、試料中の本発明の細菌の存在を検出するものである。本発明の検出用試薬は、以下の(1)~(3)のいずれか1の核酸配列を特異的に検出し得る、<1.細菌の検出方法>において上記したプライマー又はプローブを含む。
(1)配列番号1から3で表される核酸配列
(2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
(3)配列番号1から3に記載の核酸配列又は該核酸配列に相補的な核酸配列とストリンジェントな条件下でハイブリダイズする核酸配列
 本発明の検出用試薬は、更に他の成分として核酸合成酵素(例えば、DNAポリメラーゼ、RNAポリメラーゼ、逆転写酵素など)、その他の酵素、酵素に応じた基質(例えば、dNTP、rNTPなど)などを含んでもよい。また標識検出物質や緩衝液なども含んでもよい。
 本発明の検出用試薬を使用すれば、試料中の関節リウマチを誘導する細菌の有無を短時間で容易に判定できるため、関節リウマチの素因の診断に有用である。
<3.関節リウマチの素因の有無の判定方法>
 後述の実施例において示されるように、関節リウマチ罹患者の糞便中から配列番号1から3で表される核酸配列を有する、本発明における細菌が検出された。本発明における細菌が関節炎を誘導する活性を有することを考慮すれば、被験者の腸内に本発明における細菌が存在することは、当該被験者が、既に関節リウマチを発症しているか否かにかかわらず、関節リウマチを発症しやすい素質(関節リウマチの素因)を有していることを示す。
 従って、<1.細菌の検出方法>に記載の検出方法により、被験者の糞便中の関節リウマチの発症に関与する細菌を検出することにより、関節リウマチの素因の有無を判定できる。即ち、本発明は、被験者の糞便中の本発明における細菌を検出することを含む、関節リウマチの素因の有無の判定方法を提供する。
 本発明における細菌は、被験者の糞便を試料として、<1.細菌の検出方法>に記載の検出方法により検出できる。被験者の糞便中に本発明における細菌が検出された場合、該被験者が関節リウマチの素因を有し、関節リウマチを発症するリスクが相対的に高いと判定できる。逆に本発明における細菌が検出されなかった場合、該被験者が関節リウマチを発症するリスクが相対的に低いと判定できる。
<4.関節リウマチの素因の有無を判定するための剤>
 本発明は、関節リウマチの素因の有無を判定するための剤を提供する。本発明の剤は、被験者の糞便中の本発明における細菌の存在を検出することにより、関節リウマチの素因の有無を判定するものである。従って本発明の剤は、好ましくは<2.細菌の検出用試薬>に記載の検出用試薬を含み、より好ましくは配列番号4から19で表される核酸配列から選ばれるオリゴヌクレオチドのプライマーセットを含む。本発明の剤を用いることにより、上述の方法により容易に関節リウマチの素因の有無を判定できる。
 以下に実施例を示すが、本発明は下記実施例に限定されるものではない。
1.Prevotella copriの単離
 関節リウマチ患者及び健常者の糞便からPrevotella copri(以下、P.copriと略す)の単離は以下の方法で行った。-80℃に保存された糞便1gを解凍し、嫌気チャンバー内にて嫌気置換した10mLのPBS(1.37mM NaCl,10mM NaHPO,2.7mM KCl,1.76mM KHPO,pH7.4)に懸濁した。この懸濁液をPBSにて10倍段階希釈液を調製した(10~10希釈)。各希釈液50μLをコロンビア5%ヒツジ血液寒天培地(日本ベクトン・ディッキンソン社製)に塗布し、37℃で2日間、嫌気的に培養した。出現したコロニーをつまようじでつつき、それぞれのコロニーの菌体を鋳型として、Prevotellaプライマー(g-Prevo-F;配列番号20およびg-Prevo-R;配列番号21)を用いてPCRを行った。
 PCRは以下の反応組成で行った。下記反応組成における「ようじ1つまみ」とは、コロニーをつまようじで1回つつき、つまようじに付着した菌体の量をいう。
  コロニーの菌体                 ようじ1つまみ
  10xPCRバッファー             5.0μL
  2mM dNTP                5.0μL
  rTaq(東洋紡ライフサイエンス社製)     0.2μL
  プライマーg-Prevo-F(100pM)   0.2μL
  プライマーg-Prevo-R(100pM)   0.2μL
  脱イオン水                   39.4μL
 PCR反応は、95℃30秒、55℃30秒、72℃90秒を35サイクル行う条件で行った。2%アガロースゲルを用いた電気泳動に反応液を供して、断片の増幅を確認した。
 増幅産物が得られたコロニーを再びコロンビア5%ヒツジ血液寒天培地に塗布し、37℃で2日間、嫌気的に培養した。出現したコロニーから、上記と同様に16S rRNA遺伝子のユニバーサルプライマー(8F;配列番号22および15R;配列番号23)を用いたPCRを行った。電気泳動にてPCR産物が増幅されていることを確認した。PCR産物を常法により精製し、精製DNAを鋳型として、シーケンス用プライマー(配列番号24~28)を用いたPCRを以下の反応組成で行った。
  精製DNA                 4.5μL
  5xシーケンスバッファー          2.0μL
  BigDye v3.1
  (ThermoFisher社製)      1.0μL
  シーケンス用プライマー(10μM)     1.0μL
  脱イオン水                 1.5μL
 PCR反応は、96℃10秒、50℃5秒、60℃4分を25サイクル行う条件で行った。反応液をエタノール沈殿後、シーケンサーにて塩基配列を決定した。得られた16S rRNA配列をBLAST検索により解析し、Prevotella copriの配列と一致した菌をPrevotella copriと同定した。
 Prevotella copriと同定された株については、GAM液体培地(日水製薬社製)を用いて37℃で1~2日間、嫌気的に培養した。培養液を等量の滅菌した80%グリセロール溶液と混合して、それを-80℃で保存した。
2.P.copriによる関節炎誘導活性の評価
 1.において単離した関節炎患者由来のP.copri(以下RA-P.copriと略す)と健常者由来のP.copri(以下HC-P.copriと略す)を嫌気下で培養し関節炎モデルマウスに投与し感受性を評価する実験を行った。
 6~7週齢のDBA/1j雄マウス(日本チャールズリバー社)に4種類の抗生剤(アンピシリン500mg/L、ネオマイシン500mg/L、メトロニダゾール500mg/L、バンコマイシン250mg/L)を5日間飲水投与し腸内細菌を死滅させた。抗生物質投与が終了した2日後から培養したRA-P.copriとHC-P.copriを5日間連続で経口投与した。投与した菌体は、嫌気チャンバー内でGAM液体培地にて24時間培養した後、OD600値が1.5になるようにPBSに懸濁した。
 最終投与日の3日後に糞便を回収してDNAを抽出し、P.copri特異的プライマーを用いてqPCR法にて糞便中に含まれるP.copriの菌量を定量し、各P.copriがマウスに定着していることを確認した。菌体投与が終了した2日後にウシII型コラーゲン(コラーゲン技術研修会 K41 TypeII)とアジュバント[Freund’s complete adjuvant (BD社;DF0638-60-7)]を1:1に混合したエマルジョン(最終コラーゲン濃度1mg/mL)を作成し、DBA/1jマウスに100μLずつ皮内投与した。3週間後にブースターとして、同様の方法で作成したエマルジョンを100μLずつ再投与した。
 その後、1週間おきにマウスの関節炎のスコアを経時的に評価した。マウスの関節炎の評価法は、前肢・後肢の各関節で、0点;正常、1点;1関節で腫脹もしくは発赤あり、2点;2関節以上で腫脹もしくは発赤あり、3点;全関節で腫脹もしくは発赤あり、4点;変形・強直、としてスコアリングし、最大16点とした。結果を図1に示す。
 図1に示すように、2回目のエマルジョンを投与後5-8週後において、RA-P.copriを投与したマウスはHC-P.copriを投与したマウスと比較して、重篤な関節炎を認めた。この結果から、RA-P.copriは関節リウマチの増悪因子として作用する可能性が示された。
3.単離菌株のゲノム解析
 1.において単離したRA-P.copriおよびHC-P.copriについて、DNeasy PowerSoil Kit(QIAGEN社製)を用いてDNAを抽出した。各菌株の全ゲノムシークエンスはMinION(Oxford Nanopore社製)によるロングリードシークエンスとMiSeq(Illumina社製)によるショートリードシークエンスを行った。
 得られたロングリードとショートリードを用いてUnicyclerによるハイブリッドアセンブリ法を実施し、完全長ゲノムを構築した。構築された各菌株のゲノム配列に対して、blastnを用いて互いの配列をリファレンスとした相同性検索を行うことで、ゲノム間で互いに重複の有無が存在する領域を取得した。Circosを用いてblastn検索で得られた領域を可視化することで当該菌株でのみ欠損が見られる領域を発見した。
 また、遺伝情報に基づく系統関係の推定は、コアゲノムを作成することで行った。まず、ゲノム配列からRASTを用いた遺伝子アノテーションを行った後、各コーディング領域のアミノ酸配列に対してblastpによる相同性検索を行うことで同一遺伝子の探索を行った。その際、シングルコピーであり、アミノ酸相同性95%以上かつ長さの比(短い方/長い方)が0.8以上のものに限定した上で、株間に共通に見られる遺伝子を抽出した。共通遺伝子はそれぞれ遺伝子ごとにmafftでアラインメントされた後、アミノ酸配列を株ごとに同じ順に結合してコアゲノム配列を作成した。コアゲノム同士の距離をFastTreeにより計算することで系統関係の推定に用いた。
 その結果、領域1から領域3を含むRA-P.copriのゲノムに特異的な領域の存在が明らかになった。結果を図2(A)に示す。RA-P.copriのゲノムに特異的な領域1から3の配列をそれぞれ配列番号1から3に示す。
4.PCRによる検出
 健常者および関節リウマチ患者の糞便1gを10mLのPBSによく懸濁させた後、懸濁液200μLからMaedaら(Arthritis Rheumatol,2016;68:2646-2661)に記載の方法によりDNAを抽出した。
 PCRは以下の反応組成で行った。
  糞便抽出DNA(50ng/μL)       1.0μL
  2xHSGoTaq(Promega社製)   7.5μL
  プライマーFw(10μM)          1.0μL
  プライマーRv(10μM)          1.0μL
  Nuclease-Free Water    4.5μL
 PCR反応は、95℃30秒、55℃30秒、72℃45秒を30サイクル行う条件で行った。各PCR反応において用いたAからHのプライマーの組み合わせ、増幅長及びRA-P.copriのゲノムにおける位置を表1に示す。図2(B)は、実施例で用いたプライマーのRA-P.copriのゲノムにおける位置を示す図である。反応後、2%アガロースゲルを用いた電気泳動に各反応液を供して、断片の増幅を確認した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、関節リウマチ患者由来の糞便より抽出したDNAを用いた場合にのみ、目的とする大きさのDNA断片の増幅が確認された。以上より、PCRによってRA-P.copriのゲノムに特異的な領域が増幅されたことがわかった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は、2019年11月20日付けで出願された日本特許出願(特願2019-209926)に基づいており、その全体が引用により援用される。

Claims (14)

  1.  以下の(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出する工程を含む、関節リウマチの発症に関与する細菌の検出方法。
    (1)配列番号1から3で表される核酸配列
    (2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
    (3)配列番号1から3に記載の核酸配列又は該核酸配列に相補的な核酸配列とストリンジェントな条件下でハイブリダイズする核酸配列
  2.  前記関節リウマチの発症に関与する細菌がPrevotella属に属する、請求項1に記載の検出方法。
  3.  前記Prevotella属に属する細菌がPrevotella copriである、請求項2に記載の検出方法。
  4.  前記(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出する工程が、被験者の糞便由来のDNAを鋳型とするポリメラーゼ連鎖反応により行われる、請求項1~3のいずれか1項に記載の検出方法。
  5.  前記ポリメラーゼ連鎖反応に用いる少なくとも2種のプライマーが、配列番号1から3のいずれか1に示される核酸配列または該配列に相補的な核酸配列のうち、少なくとも連続した15塩基よりなる核酸配列を含有するオリゴヌクレオチドである請求項4に記載の検出方法。
  6.  前記プライマーが、配列番号4から19で表される核酸配列から選ばれる1のオリゴヌクレオチドである、請求項5に記載の検出方法。
  7.  前記核酸配列またはその一部の配列を特異的に検出する工程が、被験者の糞便由来のDNAを対象とする次世代シーケンサーによるメタゲノム解析により行われる、請求項1~3のいずれか1項に記載の検出方法。
  8.  請求項1~7のいずれか1項に記載の検出方法により、被験者の糞便中の前記関節リウマチの発症に関与する細菌を検出する工程を含む、関節リウマチの素因の有無の判定方法。
  9.  以下の(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出するプライマー又はプローブを含む、関節リウマチの発症に関与する細菌の検出用試薬。
    (1)配列番号1から3で表される核酸配列
    (2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
    (3)配列番号1から3に記載の核酸配列又は該核酸配列に相補的な核酸配列とストリンジェントな条件下でハイブリダイズする核酸配列
  10.  前記プライマー又は前記プローブが、配列番号1から3のいずれか1に示される核酸配列または該配列に相補的な核酸配列のうち、少なくとも連続した15塩基よりなる核酸配列を含有するオリゴヌクレオチドである、請求項9に記載の検出用試薬。
  11.  前記プライマー又は前記プローブが、配列番号4から19で表される核酸配列から選ばれる1のオリゴヌクレオチドである、請求項10に記載の検出用試薬。
  12.  以下の(1)~(3)のいずれか1の核酸配列またはその一部の配列を特異的に検出するプライマー又はプローブを含む、関節リウマチの素因の有無を判定するための剤。
    (1)配列番号1から3で表される核酸配列
    (2)配列番号1から3で表される核酸配列と95%以上の相同性を有する核酸配列
    (3)配列番号1から3に記載の核酸配列又は該核酸配列に相補的な核酸配列とストリンジェントな条件下でハイブリダイズする核酸配列
  13.  前記プライマー又は前記プローブが、配列番号1から3のいずれか1に示される核酸配列または該配列に相補的な核酸配列のうち、少なくとも連続した15塩基よりなる核酸配列を含有するオリゴヌクレオチドである、請求項12に記載の剤。
  14.  前記プライマー又は前記プローブが、配列番号4から19で表される核酸配列から選ばれる1のオリゴヌクレオチドである、請求項13に記載の剤。
PCT/JP2020/043510 2019-11-20 2020-11-20 関節リウマチの発症に関与する細菌の検出方法、該細菌の検出用試薬、関節リウマチの素因の有無を判定する方法及び該素因の有無を判定するための剤 WO2021100875A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558481A JPWO2021100875A1 (ja) 2019-11-20 2020-11-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019209926 2019-11-20
JP2019-209926 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021100875A1 true WO2021100875A1 (ja) 2021-05-27

Family

ID=75980145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043510 WO2021100875A1 (ja) 2019-11-20 2020-11-20 関節リウマチの発症に関与する細菌の検出方法、該細菌の検出用試薬、関節リウマチの素因の有無を判定する方法及び該素因の有無を判定するための剤

Country Status (2)

Country Link
JP (1) JPWO2021100875A1 (ja)
WO (1) WO2021100875A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013056222A1 (en) * 2011-10-14 2013-04-18 New York University Causative agents and diagnostic methods relating to rheumatoid arthritis
US20160186261A1 (en) * 2013-11-04 2016-06-30 Jose U. Scher Prevotella copri and enhanced susceptibility to arthritis
WO2016119191A1 (en) * 2015-01-30 2016-08-04 Bgi Shenzhen Biomarkers for colorectal cancer related diseases
WO2017214180A1 (en) * 2016-06-07 2017-12-14 The General Hospital Corporation Identification of a t cell epitope of prevotella copri that induces t cell responses in patients with rheumatoid arthritis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013056222A1 (en) * 2011-10-14 2013-04-18 New York University Causative agents and diagnostic methods relating to rheumatoid arthritis
US20160186261A1 (en) * 2013-11-04 2016-06-30 Jose U. Scher Prevotella copri and enhanced susceptibility to arthritis
WO2016119191A1 (en) * 2015-01-30 2016-08-04 Bgi Shenzhen Biomarkers for colorectal cancer related diseases
WO2017214180A1 (en) * 2016-06-07 2017-12-14 The General Hospital Corporation Identification of a t cell epitope of prevotella copri that induces t cell responses in patients with rheumatoid arthritis

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
KISHIKAWA, T. ET AL.: "Metagenome-wide associationstudy of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population", ANN. RHEUM. DIS., vol. 79, no. 1, 7 November 2019 (2019-11-07), pages 103 - 111, XP055797612 *
LORENZO, D. ET AL.: "Oral-Gut Microbiota and Arthritis: Is There an Evidence - Based Axis?", J. CLIN. MED., vol. 8, no. 10, 22 October 2019 (2019-10-22), pages 1753, XP055825741 *
MAEDA, Y. ET AL.: "Altered composition of gut microbiota in rheumatoid arthritis patients", JPN. J. CLIN. IMMUNOL., vol. 39, no. 1, 2016, pages 59 - 63, XP055825744 *
MAEDA, Y. ET AL.: "Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine", ARTHRITIS RHEUMATOL., vol. 68, no. 11, 2016, pages 2646 - 2661, XP055337706, DOI: 10.1002/art.39783 *
MAEDA, YUICHI ET AL.: "Intestinal microbiota in health and disease", EXPERIMENTAL MEDICINE, vol. 37, no. 7, 1 May 2019 (2019-05-01), pages 103 - 107 *
MANICHANH, C. ET AL.: "A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library", NUCLEIC ACIDS RES., vol. 36, no. 16, 2008, pages 5180 - 5188, XP055049105, DOI: 10.1093/nar/gkn496 *
METWALY, A. ET AL.: "Strain-Level Diversity in the Gut: The P. copri Case", CELL HOST MICROBE, vol. 25, no. 3, 13 March 2019 (2019-03-13), pages 349 - 350, XP085630062 *
NII, TAKURO ET AL.: "The Immune Response to Prevotella Bacteria in Autoimmune Diseases", JAPANESE JOURNAL OF ALLERGOLOGY., vol. 67, no. 1, 2018, pages 24 - 27 *
PIANTA, A. ET AL.: "Evidence of the Immune Relevance of Prevotella copri, a Gut Microbe, in Patients With Rheumatoid Arthritis", ARTHRITIS RHEUMATOL., vol. 69, no. 5, 2017, pages 964 - 975, XP055658377, DOI: 10.1002/art.40003 *
SCHER, J. U. ET AL.: "Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis", ELIFE, vol. 2, 2013, pages 1 - 20, XP055475267, DOI: 10.7554/eLife.01202 *
TAKEDA, KIYOSHI ET AL.: "Intestinal Flora and Rheumatism", JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY, vol. 40, no. 4, 2017, pages 256 *

Also Published As

Publication number Publication date
JPWO2021100875A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
Yow et al. Characterisation of microbial communities within aggressive prostate cancer tissues
US7625704B2 (en) Methods and compositions for identifying bacteria associated with bacteria vaginosis
CN113227468A (zh) 感染性疾病的检测和预测
KR20140033309A (ko) 위장 암을 진단하기 위해 위장의 샘플에서의 푸소박테리움의 검출
JP2016073282A (ja) 感染性疾患の病原体およびそれらの薬剤感受性を診断する方法
CA2963013C (en) Biomarkers for rheumatoid arthritis and usage thereof
JP2014508525A (ja) ヒトゲノムに対応するポリヌクレオチドの初期セットから患者の宿主応答の重症度をインビトロ決定するためのポリヌクレオチドのサブセットを同定するための方法
US20210404002A1 (en) Quantitative Algorithm for Endometriosis
Ulrich et al. Using real-time PCR to specifically detect Burkholderia mallei
EP3250710B1 (en) Host dna as a biomarker of crohn's disease
US20110287965A1 (en) Methods and compositions to detect clostridium difficile
US20060003350A1 (en) Methods and compositions to detect bacteria using multiplex PCR
CN107208149B (zh) 结直肠癌相关疾病的生物标志物
WO2021100875A1 (ja) 関節リウマチの発症に関与する細菌の検出方法、該細菌の検出用試薬、関節リウマチの素因の有無を判定する方法及び該素因の有無を判定するための剤
KR102622107B1 (ko) 장내 미생물을 이용한 간질환 위험도 예측 또는 진단용 조성물, 그를 이용한 진단키트, 정보제공방법 및 간질환 예방 또는 치료제 스크리닝 방법
US11898210B2 (en) Tools for assessing FimH blockers therapeutic efficiency
US11884984B2 (en) Kits and methods for assessing a condition or a risk of developing a condition, and related methods of treatment
CN108064273B (zh) 结直肠癌相关疾病的生物标志物
KR101886520B1 (ko) 잠복기 요네병 진단방법
EP2723891B1 (en) Diagnostic methods for detecting clostridium difficile
KR102622108B1 (ko) 장내 미생물을 이용한 신질환 위험도 예측 또는 진단용 조성물, 그를 이용한 진단키트, 정보제공방법 및 신질환 예방 또는 치료제 스크리닝 방법
JP4664516B2 (ja) マイコプラズマ・ジェニタリウムの検出方法
EP3895716A1 (en) Fmt performance prediction test to guide and optimize therapeutic management of gvhd patients
JP2023136535A (ja) 多剤耐性細菌検出方法及びプライマーキット
WO2023227897A1 (en) Identification of a bacterium of the genus bacillus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890179

Country of ref document: EP

Kind code of ref document: A1