WO2021100737A1 - Method for producing cellulase - Google Patents

Method for producing cellulase Download PDF

Info

Publication number
WO2021100737A1
WO2021100737A1 PCT/JP2020/042903 JP2020042903W WO2021100737A1 WO 2021100737 A1 WO2021100737 A1 WO 2021100737A1 JP 2020042903 W JP2020042903 W JP 2020042903W WO 2021100737 A1 WO2021100737 A1 WO 2021100737A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon substrate
culture
carbon
rate
inducible
Prior art date
Application number
PCT/JP2020/042903
Other languages
French (fr)
Japanese (ja)
Inventor
岳史 坂本
宏幸 小西
俊陽 新井
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to BR112022009617A priority Critical patent/BR112022009617A2/en
Publication of WO2021100737A1 publication Critical patent/WO2021100737A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds

Definitions

  • the present invention relates to a method for producing cellulase using a microorganism.
  • Filamentous fungi are attracting attention as degrading bacteria of plant polysaccharides because they produce various types of cellulase and xylanase.
  • Trichoderma has been studied as a microorganism for producing a cellulase-based biomass-degrading enzyme because it can produce cellulase and xylanase at the same time and in a large amount.
  • glucose has conventionally been widely used as a carbon source.
  • inducers may be required for the production of proteins such as enzymes by microorganisms.
  • the expression of the ⁇ -amylase gene of Aspergillus oryzae is induced by starch, maltose, and the like.
  • Patent Document 1 describes the first step for the growth of the bacterium in the presence of the cellulosic growth substrate in the batch phase, and the growth and enzyme of the bacterium in the presence of the inducible cellulosic substrate in the feed phase.
  • a method for producing cellulase using filamentous fungi which comprises a second step for production, and ethanol as a monomeric sugar of an enzyme hydrolyzate of lactose, glucose, xylose, and cellulosic biomass as the carbonaceous growth substrate.
  • the derived carbonaceous substrate is simply an enzymatic hydrolyzate of lactose, cellobiose, sophorose, and cellulosic biomass. It is disclosed that it is selected from the residue obtained after ethanol fermentation of cellulosic sugar and the crude extract of water-soluble pentose derived from the pretreatment of cellulosic biomass.
  • Patent Document 2 describes ethanol as a carbon source for enzyme production and an enzyme hydrolyzate of a cellulosic or ligno-cellulosic material as an induced carbon source in a method for producing cellulose or hemicellulose-degrading enzyme by a fungus such as trichoderma. It is disclosed to use the residue from fermentation (including glucose, xylose, etc.).
  • the carbon addition rate to the fermentation medium is controlled based on the amount of carbon added to the medium and the amount of oxygen consumed or the amount of carbon lost to carbon dioxide in the fed batch or continuous fermentation medium.
  • a method is disclosed, and it is disclosed that the method is used to cause a microorganism to produce a protein such as an enzyme.
  • the expression of trichoderma's major cellulase genes cbh1, cbh2, egl1 and egl2 is induced by cellulose, cellobiose, etc. (Non-Patent Document 1).
  • Patent Document 1 International Publication No. 2013/0269664 (Patent Document 2) Japanese Patent Application Laid-Open No. 2006-217916 (Patent Document 3) International Publication No. 2013/124351 (Non-Patent Document 1) Curr. Genomics, 14: 230-249 (2013)
  • the present invention is a method for producing cellulase. Including culturing filamentous fungi in the presence of inducible and non-inducible carbon substrates, including The ratio R represented by the following formula A is 100 or less during the period when the rate of change in the respiratory activity of the filamentous fungus is 0.1 or more.
  • R supply rate of non-inducible carbon substrate / supply rate method of derived carbon substrate is provided.
  • the present inventors select an inducible carbon substrate such as cellulose to induce cellulase production and a non-inducible carbon substrate such as glucose, and the ratio thereof depends on the state of respiratory activity of the microorganism. It has been found that the cellulase productivity of microorganisms is improved by supplying the culture medium with adjustment.
  • the present invention can improve the yield of cellulase from microorganisms.
  • the present invention provides a method for producing cellulase using a microorganism.
  • the method for producing cellulase according to the present invention comprises culturing a cellulase-producing microorganism in the presence of an inducible carbon substrate and a non-inducible carbon substrate.
  • filamentous fungi examples include bacteria, yeast, filamentous fungi, and the like, of which filamentous fungi are preferable.
  • filamentous fungi for example, the genus Acremonium, the genus Aspergillus, the genus Aureobaside, the genus Bjerkandera, the genus Ceripoliopsis, the genus Chrysosporium, the genus Coprinus, the genus Coriolus, the genus Cryptococcus, the genus Cryptococcus, genus, Neocallimastix spp, Neurospora spp, Paecilomyces spp, Penicillium spp, Phanerochaete spp., Phlebia spp, Piromyces spp, Pleurotus spp, Rhizopus spp, Schizophyllum sp, Talaromyces sp, The
  • Trichoderma risei and its variants include Trichoderma Risei QM9414 strain, PC-3-7 strain, and variants thereof.
  • mutant strain include a mutant strain generated by modification such as gene mutation and gene recombination.
  • the induced carbon substrate used for culturing the microorganism may be any carbon substrate that induces cellulase expression of the microorganism.
  • the derived carbon substrate include at least one selected from the group consisting of saccharides that induce cellulase expression in microorganisms, such as lactose, cellobiose, sophorose, gentiobiose, and cellulose.
  • These derived carbon substrates are essential carbon substrates in the method of the present invention for culturing and producing cellulase, which is generally called an inducing enzyme.
  • the derived carbon substrate is preferably cellulose.
  • Cellulose may be crystalline cellulose, cellulosic biomass, or a pulverized product thereof.
  • the non-inducible carbon substrate used for culturing the microorganism is a carbon substrate that does not induce cellulase expression of the microorganism and generally causes catabolite repression (stop of cellulase production) of the microorganism.
  • the non-inducible carbon substrate include at least one selected from the group consisting of saccharides that do not induce cellulase production of microorganisms, such as glucose, fructose, sucrose, maltose, and maltooligosaccharides. Of these, at least one selected from the group consisting of glucose, maltose, and maltooligosaccharide is preferable from the viewpoint of versatility and assimilation in microbial culture.
  • the derived carbon substrate is preferably added in batches to the culture tank. More preferably, the derived carbon substrate is added to the initial medium.
  • the initial concentration of the derived carbon substrate in the culture tank eg, the concentration of the derived carbon substrate in the initial medium
  • the addition of the non-inducible carbon substrate to the culture tank is preferably continuous addition (for example, fed-batch) from the viewpoint of avoiding catabolite repression of microorganisms. More preferably, the non-inducible carbon substrate is fed into the culture tank. For example, an aqueous solution of the non-inducible carbon substrate may be poured into the culture tank.
  • the concentration of the non-inducible carbon substrate in the aqueous solution to be fed is preferably 2 to 90% by mass / volume, more preferably 5 to 80% by mass / volume. If the concentration of the non-inducible carbon substrate in the aqueous solution to be fed is too low, a large amount of the aqueous solution will be fed into the culture, which imposes a burden on the culture equipment. On the other hand, if the concentration of the non-inducible carbon substrate in the aqueous solution is too high, it becomes difficult to control the flow of the non-inductive carbon group into the culture.
  • the derived carbon substrate and non-inducible carbon substrate used in the culture are preferably sterilized.
  • the carbon substrate When the carbon substrate is added in batch, it may be sterilized after being introduced into the culture tank together with the initial medium or the like, or may be added to the culture tank after being sterilized in advance.
  • the carbon substrate When the carbon substrate is fed, it may be sterilized in advance and then fed into the culture tank.
  • heat sterilization pressure heat sterilization using a high-pressure steam sterilizer (autoclave), sterilization by spraying saturated steam, or the like can be generally adopted.
  • Sterilization conditions include conditions in which the number of spores of Geobacillus stearothermophilus, which is a thermostable bacterium, decreases up to 10 to 12 times (for example, equivalent to 20 minutes at 120 ° C.) or more severe conditions.
  • an initial medium containing the derived carbon substrate is introduced into a culture tank, and then the culture tank is sterilized. After seeding the microorganism in the sterilized culture tank, the microorganism is cultured while pouring an aqueous solution of the non-inducible carbon substrate.
  • the initial medium used for the culture may be a medium usually used for the microorganism to be cultured.
  • the initial medium is a carbon source containing the above-mentioned derived carbon substrate, a nitrogen source, a metal salt such as a magnesium salt or a zinc salt, a sulfate, a phosphate, a pH adjuster, a surfactant, a microorganism such as an antifoaming agent. It can contain various components generally contained in the medium of. The composition of the components in the medium can be appropriately selected.
  • the initial medium may be a synthetic medium, a natural medium, a semi-synthetic medium, or a commercially available medium.
  • the initial medium is preferably a liquid medium.
  • the feeding of the non-inducible carbon substrate into the culture tank can be carried out according to the usual fed-batch culture procedure.
  • an aqueous solution of a non-inducible carbon substrate may be fed into the culture tank while controlling the flow rate using a general feed controller or the like.
  • Fed-batch of the non-inducible carbon substrate into the culture tank may be started at the same time as the start of the culture, or after the rate of change in the respiratory activity of the microorganism described later reaches a certain value (for example, 0.1 or more). May be good. It is convenient to start the feeding of the non-inducible carbon substrate at the same time as the start of the culture.
  • the initial value of the flow acceleration of the non-induced carbon substrate is preferably 0.15 to 0.50 g / L-initial medium / h in terms of carbon concentration, but it can be adjusted depending on the induced carbon substrate concentration and the cell concentration. is there.
  • the rate of change in the respiratory activity of the microorganism during culture is 0.01, following a period in which the rate of change in the respiratory activity of the microorganism is 0.1 or more.
  • the ratio R it is preferable to adjust the ratio R to 100 or less, preferably 50 or less, and more preferably 10 or less.
  • the rate of change in the respiratory activity of the microorganism is 0.001 or more, following the period in which the rate of change in the respiratory activity of the microorganism is 0.01 or more during culturing. It is more preferable to adjust the ratio R to 100 or less, preferably 50 or less, and more preferably 10 or less during the period.
  • the respiratory activity of a microorganism is calculated by dividing the CO 2 excretion rate from the culture derived from the respiration of the cells by the cell concentration of the culture.
  • the respiratory activity of a microorganism can be calculated according to the following formula (1).
  • the CO 2 emission rate can be calculated by obtaining the volume of the culture and the rate of change in the CO 2 emission per hour from the total CO 2 emission [g-CO 2 ] per unit time of the culture.
  • the total CO 2 emission amount [g-CO 2 ] per unit time of the culture can be calculated according to the following formula (2) based on the CO 2 concentration [vol%] of the culture and the culture aeration amount.
  • the CO 2 concentration [vol%] of the culture can be measured by an exhaust gas analyzer for the culture tank.
  • the exhaust gas analyzer a non-dispersed infrared absorption type exhaust gas analyzer (for example, DEX-1562A; Biot Co., Ltd.) or the like can be used, but the exhaust gas analyzer is not limited thereto.
  • the culture aeration rate in the culture can be measured by a flow meter (for example, a flow meter manufactured by Cofflock Co., Ltd.). For example, it is preferable to measure the flow rate while controlling the air flow rate with a flow meter with a valve (for example, manufactured by Koflock Co., Ltd.).
  • the respiratory activity of microorganisms can be calculated hourly according to the above formulas (1) and (2).
  • the rate of change in respiratory activity can be determined from the respiratory activity measured over time. That is, the rate of change in respiratory activity is calculated by dividing the difference in respiratory activity calculated at two consecutive measurement time points by the respiratory activity calculated at an earlier point in time, as shown in the following formula (3).
  • Rate of change in respiratory activity
  • 1)...
  • the supply rate of the induced carbon substrate when added in batch is defined as the change in concentration (disappearance rate) of carbon derived from the induced carbon substrate in the culture per unit time.
  • the rate of carbon loss from the derived carbon substrate can be measured, for example, by the following procedure: (1) First, the solid content is separated from the sampled culture by centrifugation or the like. This substantially removes the non-inducible carbon substrate that dissolves in the medium. The obtained solid content is dried and the mass of the dry solid content is measured. Next, the dry solid content is elementally analyzed to determine the total carbon content in the dry solid content. The amount of carbon derived from the derived carbon substrate is obtained by subtracting the amount of carbon derived from the microorganism from the total amount of carbon.
  • the C / N ratio of the microbial cells in the culture is constant, the C / N ratio of the microbial cells calculated by the measurement of the microbial body sample at the time of culturing the inoculum and the amount of nitrogen in the dry solid content. From, the amount of carbon derived from the microorganism in the dry solid content is calculated. The difference between the total carbon content of the dry solids and the carbon content derived from the microbial body is calculated as the carbon content derived from the derived carbon substrate, and by dividing this by the amount of the culture, the carbon derived from the derived carbon substrate in the culture is calculated. The concentration is required. (2) Next, the difference in carbon concentration derived from the derived carbon substrate calculated at two different time points is obtained.
  • the difference value reflects the change in concentration of carbon from the derived carbon substrate in the culture between the two time points. Therefore, by calculating the concentration change per unit time from the difference value, the supply rate of the induced carbon substrate to the culture [g-carbon derived from the induced carbon substrate / L-culture solution / h] can be determined. ..
  • the feeding rate of the non-inducible carbon substrate to be fed is defined as the amount of carbon derived from the non-inducible carbon substrate to be fed into the culture per unit time. For example, based on the fed-batch set by a feed controller and the concentration of the non-inducible carbon substrate in the aqueous solution to be fed, the supply rate of the non-inducible carbon substrate [g-carbon / L-culture derived from the non-inductive carbon substrate]. Liquid / h] can be determined.
  • the supply rate of the induced carbon substrate when fed is defined as the amount of carbon derived from the induced carbon substrate fed into the culture per unit time.
  • the supply rate of the non-inducible carbon substrate added in batch is defined as the change in concentration (disappearance rate) of carbon derived from the non-inducible carbon substrate in the culture per unit time. The specific procedure for calculating the feed rate of the fed-batch and batch-added carbon substrate is as described above.
  • various conditions for culturing a microorganism can be appropriately set according to a conventional method according to the species of the microorganism, the scale of the culture, and the like, except for the above-mentioned supply rate of the carbon substrate.
  • the culture tank used for culturing conventionally known ones can be appropriately adopted. Specific examples thereof include a flask, an aeration-stirring type culture tank, a bubble tower type culture tank, a fluidized bed type culture tank, and the like, and an aeration-stirring type culture tank is preferable.
  • the culture temperature is preferably 25 to 35 ° C, more preferably 28 ⁇ 2 ° C, for example, when the microorganism is a filamentous fungus.
  • the pH of the culture is preferably maintained at pH 3-7, more preferably pH 3.5-6 when the microorganism is a filamentous fungus, for example.
  • the pH of the culture can be adjusted with a conventional pH adjuster such as ammonia.
  • the pH of the culture in the present invention refers to a value measured at a culture temperature of 28 ° C.
  • the pH of the culture can be measured with an electrode provided in the culture tank.
  • the culture period is preferably 4 to 10 days.
  • cellulase After culturing, recover the desired cellulase from the culture.
  • cellulase can be recovered from the culture supernatant.
  • the cell When cellulase is contained in the cell, the cell can be destroyed to remove the cellulase-containing fraction and recover the cellulase.
  • Cellulase can be recovered by methods usually used in the art, for example, tilting method, membrane separation, centrifugation, electrodialysis method, use of ion exchange resin, distillation, salting out, etc., or a combination thereof. it can.
  • the recovered cellulase may be further isolated or purified.
  • the microorganism used for producing the cellulase in the present invention can be used repeatedly. That is, cellulase can be produced again by collecting the microbial cells separated from the culture supernatant and culturing them in a new medium in the presence of an inducible carbon substrate and a non-inducible carbon substrate.
  • the method for producing cellulase of the present invention may be a batch method in which the culture of microorganisms, the recovery of cellulase accumulated in the culture, and the replacement of the medium are alternately performed, or the medium is intermittent with some microorganisms. It may be a semi-batch method or a continuous method in which culturing of microorganisms and recovery of cellulase are carried out in parallel while being replaced in a target or continuous manner.
  • Culture conditions (bacterial species culture) Cellulase was produced by culturing the Trichoderma Riesei PC-3-7 strain in a cellulose-containing medium. As an inoculum culture, add 50 mL of medium to a 500 mL flask, inoculate spores of the PC-3-7 strain to 1 ⁇ 10 5 cells / mL, and shake at 28 ° C. and 220 rpm (PRECI, PRXYg-98R). It was cultured. The medium composition is as shown in Table 1. The bacterial species culture was carried out for 2 days.
  • the initial medium contained 2% of powdered cellulose (KC Flock W400; Nippon Paper Industries) and other medium components shown in Table 2.
  • 10% (v / v%) of the inoculum culture solution was inoculated into a 1 L-volume Jarfermenter BMZ-P (Biot Co., Ltd.) containing 500 mL of the initial medium and cultured for 1 day to obtain a preculture solution. ..
  • the pH of the culture solution was controlled to be maintained within the above-mentioned predetermined range by using a 10% (w / w%) aqueous solution of ammonia.
  • the initial medium contained 4% of powdered cellulose (KC Hook W400; Nippon Paper Industries) and other medium components shown in Table 2.
  • 1% (v / v%) of the preculture solution was inoculated into a 2 L-volume Jarfermenter BMZ-P (Biot Co., Ltd.) containing 1000 mL of the initial medium and cultured for 7 days.
  • the pH of the culture solution was controlled to be maintained within the above-mentioned predetermined range by using a 10% (w / w%) aqueous solution of ammonia.
  • a 60% (w / w%) aqueous glucose solution was fed by a feed controller DFR (Biot Co., Ltd.).
  • the pouring of the glucose aqueous solution is started at 0.15 to 0.50 g / L-initial medium / h in terms of carbon concentration, and then the ratio of the glucose supply rate to the cellulose supply rate [glucose (non-induced carbon) supply rate]. /
  • the flow rate was controlled so that the [cellulose (induced carbon) supply rate] became the value shown in Table 3 below (Comparative Example 1, Examples 1 to 3).
  • the supernatant was filtered through a 0.45 ⁇ m filter (material: cellulose acetate) and then subjected to the cellulase productivity measurement described later.
  • the solid content was washed twice with 15 mL of ion-exchanged water by centrifugation and lyophilized. The solid content of the dried product was measured, and the dry solid content concentration of the culture solution was calculated.
  • the amount of elements (nitrogen and carbon) in the dry solid content of the culture solution was measured using an elemental analyzer vario EL cube (Elemental).
  • the total nitrogen concentration and total carbon concentration in the culture broth were obtained by dividing the measured nitrogen amount and carbon amount by the culture amount, respectively.
  • the filamentous cell sample at the time of inoculum culture was elementally analyzed, and the C / N ratio of the cell was calculated.
  • the amount of carbon derived from the cells was calculated (Equation (4)).
  • the cellulose-derived carbon concentration was determined according to the formula (5).
  • the cell concentration in the culture solution was calculated by the formula (6), assuming that the amount of carbon in the dried cells was 45% by mass.
  • Carbon concentration derived from cells [gC / L] N concentration in dry solids [gN / L] x 5.7 [Bacterial cell C / N ratio [gC / gN]]...
  • Cellulose-derived carbon concentration [gC / L] Total carbon concentration in dry solids [gC / L] -Carbon-derived carbon concentration in dry solids [gC / L]...
  • Mycelium concentration [g-dry cell / L-culture] carbon concentration derived from mycelium [gC / L] ⁇ 0.45... (6)
  • the glucose supply rate was calculated based on the set value [glucose aqueous solution / h] of the feed controller.
  • the glucose concentration in the aqueous solution is 60 w / w%
  • the glucose supply rate to the culture solution was calculated based on the formula (8).
  • the cellulase productivity of filamentous fungi [g-Protein / L] / gC] was calculated.
  • the relative cellulase productivity of Comparative Example 1, Example 1, Example 2 and Example 3 in 1 to 7 days of culture was determined when the cellulase productivity on the 7th day of culture of Comparative Example 1 was 100%. ..
  • Table 3 shows the changes in the respiratory activity change rate and the carbon substrate supply rate ratio of the cells of Comparative Examples 1 and 1 to 3, and the relative cellulase productivity on the 7th day of culturing.
  • the relative cellulase productivity on days 1 to 7 of culture is shown in Table 4 and FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Provided is a method for inexpensive and highly efficient microbiological protein production. Provided is a method for producing a cellulase, the method comprising culturing a filamentous fungus in the presence of a derived carbon substrate and a non-derived carbon substrate, wherein the ratio R (R= (feeding rate of non-derived carbon substrate)/(feeding rate of derived carbon substrate)) is 100 or less in a period where the rate of change in respiratory activity of the filamentous fungus is 0.1 or more.

Description

セルラーゼの製造方法Method for producing cellulase
 本発明は、微生物を用いたセルラーゼの製造方法に関する。 The present invention relates to a method for producing cellulase using a microorganism.
 糸状菌は、多種のセルラーゼ及びキシラナーゼを生産することから、植物性多糖の分解菌として注目されている。なかでも、トリコデルマ(Trichoderma)は、セルラーゼとキシラナーゼを同時に、かつ大量に生産することが可能であることから、セルラーゼ系バイオマス分解酵素の製造のための微生物として研究されている。 Filamentous fungi are attracting attention as degrading bacteria of plant polysaccharides because they produce various types of cellulase and xylanase. Among them, Trichoderma has been studied as a microorganism for producing a cellulase-based biomass-degrading enzyme because it can produce cellulase and xylanase at the same time and in a large amount.
 微生物の培養においては、従来、炭素源としてグルコースが汎用されている。また、微生物による酵素などタンパク質の生産には、炭素源に加えて、誘導物質が必要なことがある。例えば、アスペルギルス・オリゼのαアミラーゼ遺伝子の発現は、デンプンやマルトースなどに誘導される。 In the culture of microorganisms, glucose has conventionally been widely used as a carbon source. In addition to carbon sources, inducers may be required for the production of proteins such as enzymes by microorganisms. For example, the expression of the α-amylase gene of Aspergillus oryzae is induced by starch, maltose, and the like.
 特許文献1には、バッチ相における、炭素質生育基質の存在下での菌の生育のための第1の工程と、流加相における、誘導炭素質基質の存在下での菌の生育及び酵素生産のための第2の工程を含む、糸状菌を用いたセルラーゼの生産方法、ならびに、該炭素質生育基質がラクトース、グルコース、キシロース、セルロース系バイオマスの酵素加水分解物の単量体糖のエタノール発酵後に得られる残渣、及びセルロース系バイオマスの前処理に由来する水溶性ペントースの粗抽出物から選択され、該誘導炭素質基質が、ラクトース、セロビオース、ソホロース、セルロース系バイオマスの酵素加水分解物の単量体糖のエタノール発酵後に得られる残渣、及びセルロース系バイオマスの前処理に由来する水溶性ペントースの粗抽出物から選択されることが開示されている。特許文献2には、トリコデルマ等の菌類によってセルロース又はヘミセルロース分解性酵素を生産する方法において、酵素生産のための炭素源及び誘導炭素源としてセルロース性又はリグノ-セルロース性材料の酵素加水分解物のエタノール発酵からの残渣(グルコース、キシロース等を含む)を用いることが開示されている。特許文献3には、流加バッチ又は連続発酵培地において、培地に添加した炭素量と、消費した酸素量又は二酸化炭素へと消失した炭素量とに基づいて、発酵培地に対する炭素添加速度を制御する方法が開示され、また該方法を用いて微生物に酵素などのタンパク質を生産させることが開示されている。トリコデルマの主要なセルラーゼ遺伝子cbh1、cbh2、egl1及びegl2の発現は、セルロース、セロビオースなどにより誘導される(非特許文献1)。 Patent Document 1 describes the first step for the growth of the bacterium in the presence of the cellulosic growth substrate in the batch phase, and the growth and enzyme of the bacterium in the presence of the inducible cellulosic substrate in the feed phase. A method for producing cellulase using filamentous fungi, which comprises a second step for production, and ethanol as a monomeric sugar of an enzyme hydrolyzate of lactose, glucose, xylose, and cellulosic biomass as the carbonaceous growth substrate. It is selected from the residue obtained after fermentation and the crude extract of water-soluble pentose derived from the pretreatment of cellulosic biomass, and the derived carbonaceous substrate is simply an enzymatic hydrolyzate of lactose, cellobiose, sophorose, and cellulosic biomass. It is disclosed that it is selected from the residue obtained after ethanol fermentation of cellulosic sugar and the crude extract of water-soluble pentose derived from the pretreatment of cellulosic biomass. Patent Document 2 describes ethanol as a carbon source for enzyme production and an enzyme hydrolyzate of a cellulosic or ligno-cellulosic material as an induced carbon source in a method for producing cellulose or hemicellulose-degrading enzyme by a fungus such as trichoderma. It is disclosed to use the residue from fermentation (including glucose, xylose, etc.). In Patent Document 3, the carbon addition rate to the fermentation medium is controlled based on the amount of carbon added to the medium and the amount of oxygen consumed or the amount of carbon lost to carbon dioxide in the fed batch or continuous fermentation medium. A method is disclosed, and it is disclosed that the method is used to cause a microorganism to produce a protein such as an enzyme. The expression of trichoderma's major cellulase genes cbh1, cbh2, egl1 and egl2 is induced by cellulose, cellobiose, etc. (Non-Patent Document 1).
(特許文献1)国際公開公報第2013/026964号
(特許文献2)特開2006-217916号公報
(特許文献3)国際公開公報第2013/124351号
(非特許文献1)Curr. Genomics, 14:230-249 (2013)
(Patent Document 1) International Publication No. 2013/0269664 (Patent Document 2) Japanese Patent Application Laid-Open No. 2006-217916 (Patent Document 3) International Publication No. 2013/124351 (Non-Patent Document 1) Curr. Genomics, 14: 230-249 (2013)
 本発明は、セルラーゼの製造方法であって、
 誘導炭素基質及び非誘導炭素基質の存在下で糸状菌を培養することを含み、
 該糸状菌の呼吸活性の変化率が0.1以上である期間において、下記式Aで表される比Rが100以下である、
  式A:R=非誘導炭素基質の供給速度/誘導炭素基質の供給速度
方法を提供する。
The present invention is a method for producing cellulase.
Including culturing filamentous fungi in the presence of inducible and non-inducible carbon substrates, including
The ratio R represented by the following formula A is 100 or less during the period when the rate of change in the respiratory activity of the filamentous fungus is 0.1 or more.
Formula A: R = supply rate of non-inducible carbon substrate / supply rate method of derived carbon substrate is provided.
培養1~7日での比較例1、実施例1、実施例2及び実施例3の相対セルラーゼ生産性。培養7日目の比較例1のセルラーゼ生産性を100%とする。Relative cellulase productivity of Comparative Example 1, Example 1, Example 2 and Example 3 in 1 to 7 days of culture. Let the cellulase productivity of Comparative Example 1 on the 7th day of culturing be 100%.
発明の詳細な説明Detailed description of the invention
 微生物により安価かつ効率よく酵素等のタンパク質を製造するための培養技術の開発が求められている。グルコース存在下では、カタボライト抑制と呼ばれる制御機構により、微生物による物質生産性の低下又は飽和が起こる。例えばトリコデルマ等の糸状菌でも、カタボライト抑制が報告されており、その機構解析が進められている。グルコースを繰り返し又は継続的に培養物に流加する流加培養により、カタボライト抑制が抑止され、微生物のタンパク質生産性が向上する可能性がある。しかし、グルコース流加培養によるタンパク質生産では、カタボライト抑制を防ぐため、培養物中のグルコース濃度の精密な制御が求められる。 Development of culture technology for inexpensively and efficiently producing proteins such as enzymes by microorganisms is required. In the presence of glucose, a control mechanism called catabolite repression causes a decrease or saturation of substance productivity by microorganisms. For example, catabolite repression has been reported in filamentous fungi such as Trichoderma, and its mechanism is being analyzed. Fed-batch culture in which glucose is repeatedly or continuously added to the culture may suppress catabolite repression and improve the protein productivity of microorganisms. However, in protein production by glucose-batch culture, precise control of glucose concentration in the culture is required in order to prevent catabolite repression.
 本発明者らは、微生物を用いたセルラーゼ製造において、セルロース等のセルラーゼ生産を誘導する誘導炭素基質とグルコース等の非誘導炭素基質とを、それらの比率を微生物の呼吸活性の状態に依存して調整しながら培養培地に供給することによって、微生物のセルラーゼ生産性が向上することを見出した。 In the production of cellulase using microorganisms, the present inventors select an inducible carbon substrate such as cellulose to induce cellulase production and a non-inducible carbon substrate such as glucose, and the ratio thereof depends on the state of respiratory activity of the microorganism. It has been found that the cellulase productivity of microorganisms is improved by supplying the culture medium with adjustment.
 本発明は、微生物からのセルラーゼの収率を向上させることができる。 The present invention can improve the yield of cellulase from microorganisms.
 本発明は、微生物を用いたセルラーゼの製造方法を提供する。本発明によるセルラーゼの製造方法は、誘導炭素基質及び非誘導炭素基質の存在下でセルラーゼ生産性微生物を培養することを含む。 The present invention provides a method for producing cellulase using a microorganism. The method for producing cellulase according to the present invention comprises culturing a cellulase-producing microorganism in the presence of an inducible carbon substrate and a non-inducible carbon substrate.
 本発明の方法で培養されるセルラーゼ生産性微生物の例としては、細菌、酵母、糸状菌などが挙げられ、このうち糸状菌が好ましい。糸状菌としては、例えば、Acremonium属、Aspergillus属、Aureobasidium属、Bjerkandera属、Ceriporiopsis属、Chrysosporium属、Coprinus属、Coriolus属、Cryptococcus属、Filibasidium属、Fusarium属、Humicola属、Magnaporthe属、Mucor属、Myceliophthora属、Neocallimastix属、Neurospora属、Paecilomyces属、Penicillium属、Phanerochaete属、Phlebia属、Piromyces属、Pleurotus属、Rhizopus属、Schizophyllum属、Talaromyces属、Thermoascus属、Thielavia属、Tolypocladium属、Trametes属、及びTrichoderma属の糸状菌が挙げられ、このうち、アクレモニウム属(Acremonium)、アスペルギルス属(Aspergillus)、クリソスポリウム属(Chrysosporium)、フサリウム属(Fusarium)、フミコーラ属(Humicola)、ミセリオフトラ属(Myceliophthora)、ニューロスポラ属(Neurospora)、ペニシリウム属(Penicillium)、ピロマイセス属(Piromyces)、タラロマイセス属(Talaromyces)、サーモアスカス属(Thermoascus)、チエラビア属(Thielavia)、及びトリコデルマ属(Trichoderma)が好ましい。セルラーゼの生産性、及び得られたセルラーゼのバイオマス糖化性能の観点からは、トリコデルマ属がより好ましく、トリコデルマ・リーセイ(Trichoderma reesei)及びその変異株がさらに好ましい。トリコデルマ・リーセイ及びその変異株の例としては、トリコデルマ・リーセイQM9414株、PC-3-7株、及びそれらの変異株が挙げられる。該変異株としては、遺伝子の突然変異、遺伝子組換え等の改変により生じた変異株が挙げられる。 Examples of cellulase-producing microorganisms cultivated by the method of the present invention include bacteria, yeast, filamentous fungi, and the like, of which filamentous fungi are preferable. As filamentous fungi, for example, the genus Acremonium, the genus Aspergillus, the genus Aureobaside, the genus Bjerkandera, the genus Ceripoliopsis, the genus Chrysosporium, the genus Coprinus, the genus Coriolus, the genus Cryptococcus, the genus Cryptococcus, genus, Neocallimastix spp, Neurospora spp, Paecilomyces spp, Penicillium spp, Phanerochaete spp., Phlebia spp, Piromyces spp, Pleurotus spp, Rhizopus spp, Schizophyllum sp, Talaromyces sp, Thermoascus sp., Thielavia genus Tolypocladium sp, Trametes sp, and the genus Trichoderma Filamentous fungi, of which the genus Acremonium, the genus Aspergillus, the genus Chrysosporium, the genus Fusarium, the genus Humicola, the genus Mycelioph The genus Neurospora, the genus Penicillium, the genus Piromyces, the genus Talaromyces, the genus Thermoascus, the genus Thielavia, and the genus Trichoderma. From the viewpoint of cellulase productivity and the biomass saccharification performance of the obtained cellulase, the genus Trichoderma is more preferable, and Trichoderma reesei and its mutants are even more preferable. Examples of Trichoderma Risei and its variants include Trichoderma Risei QM9414 strain, PC-3-7 strain, and variants thereof. Examples of the mutant strain include a mutant strain generated by modification such as gene mutation and gene recombination.
 当該微生物の培養に用いられる誘導炭素基質は、該微生物のセルラーゼ発現を誘導する炭素基質であればよい。該誘導炭素基質の例としては、微生物のセルラーゼ発現を誘導する糖類、例えばラクトース、セロビオース、ソホロース、ゲンチオビオース、及びセルロースからなる群より選択される少なくとも1種が挙げられる。これらの誘導炭素基質は、一般に誘導酵素といわれているセルラーゼを培養生産するために、本発明の方法において必須の炭素基質である。セルラーゼ誘導性及びコストの観点から、好ましくは、該誘導炭素基質はセルロースである。セルロースは、結晶性セルロース、セルロース系バイオマス、又はそれらの粉砕物であってもよい。 The induced carbon substrate used for culturing the microorganism may be any carbon substrate that induces cellulase expression of the microorganism. Examples of the derived carbon substrate include at least one selected from the group consisting of saccharides that induce cellulase expression in microorganisms, such as lactose, cellobiose, sophorose, gentiobiose, and cellulose. These derived carbon substrates are essential carbon substrates in the method of the present invention for culturing and producing cellulase, which is generally called an inducing enzyme. From the viewpoint of cellulase inducibility and cost, the derived carbon substrate is preferably cellulose. Cellulose may be crystalline cellulose, cellulosic biomass, or a pulverized product thereof.
 当該微生物の培養に用いられる非誘導炭素基質は、該微生物のセルラーゼ発現を誘導せず、かつ一般に該微生物のカタボライト抑制(セルラーゼ生産の停止)をもたらす炭素基質である。該非誘導炭素基質の例としては、微生物のセルラーゼ生産を誘導しない糖類、例えばグルコース、フルクトース、スクロース、マルトース、及びマルトオリゴ糖からなる群より選択される少なくとも1種が挙げられる。このうち、微生物培養における汎用性及び資化性の観点からは、グルコース、マルトース、及びマルトオリゴ糖からなる群より選択される少なくとも1種が好ましい。 The non-inducible carbon substrate used for culturing the microorganism is a carbon substrate that does not induce cellulase expression of the microorganism and generally causes catabolite repression (stop of cellulase production) of the microorganism. Examples of the non-inducible carbon substrate include at least one selected from the group consisting of saccharides that do not induce cellulase production of microorganisms, such as glucose, fructose, sucrose, maltose, and maltooligosaccharides. Of these, at least one selected from the group consisting of glucose, maltose, and maltooligosaccharide is preferable from the viewpoint of versatility and assimilation in microbial culture.
 該誘導炭素基質は、好ましくは培養槽にバッチ添加される。より好ましくは、該誘導炭素基質は初期培地に添加される。培養槽における誘導炭素基質の初期濃度(例えば初期培地における誘導炭素基質の濃度)は、好ましくは1~15質量/容量%である。一方、培養槽への非誘導炭素基質の添加は、微生物のカタボライト抑制を避ける観点からは連続添加(例えば流加)であることが好ましい。より好ましくは、該非誘導炭素基質は培養槽に流加される。例えば、該非誘導炭素基質の水溶液を培養槽に流加すればよい。流加される水溶液中における該非誘導炭素基質の濃度は、好ましくは2~90質量/容量%、より好ましくは5~80質量/容量%である。流加される水溶液中の非誘導炭素基質の濃度が低すぎると、培養物へ大量の水溶液を流加することになるため培養設備に負担がかかる。一方、該水溶液中の非誘導炭素基質の濃度が高すぎると、培養物への非誘導炭素基の流加量の制御が困難になる。 The derived carbon substrate is preferably added in batches to the culture tank. More preferably, the derived carbon substrate is added to the initial medium. The initial concentration of the derived carbon substrate in the culture tank (eg, the concentration of the derived carbon substrate in the initial medium) is preferably 1 to 15% by weight / volume. On the other hand, the addition of the non-inducible carbon substrate to the culture tank is preferably continuous addition (for example, fed-batch) from the viewpoint of avoiding catabolite repression of microorganisms. More preferably, the non-inducible carbon substrate is fed into the culture tank. For example, an aqueous solution of the non-inducible carbon substrate may be poured into the culture tank. The concentration of the non-inducible carbon substrate in the aqueous solution to be fed is preferably 2 to 90% by mass / volume, more preferably 5 to 80% by mass / volume. If the concentration of the non-inducible carbon substrate in the aqueous solution to be fed is too low, a large amount of the aqueous solution will be fed into the culture, which imposes a burden on the culture equipment. On the other hand, if the concentration of the non-inducible carbon substrate in the aqueous solution is too high, it becomes difficult to control the flow of the non-inductive carbon group into the culture.
 該培養に用いられる誘導炭素基質及び非誘導炭素基質は、滅菌されていることが好ましい。該炭素基質をバッチ添加する場合、初期培地等とともに培養槽に導入された後で滅菌されてもよく、又は予め滅菌された後で培養槽に添加されてもよい。該炭素基質を流加する場合、予め滅菌した後で培養槽に流加すればよい。該炭素基質の滅菌には、一般的には加熱滅菌、高圧蒸気滅菌器(オートクレーブ)による加圧加熱滅菌、飽和水蒸気の吹付けによる滅菌など、が採用され得る。滅菌条件としては、耐熱性菌であるGeobacillus stearothermophilusの芽胞数が10-12倍まで減少する条件(例えば、120℃で20分と同等)もしくはより過酷な条件が挙げられる。 The derived carbon substrate and non-inducible carbon substrate used in the culture are preferably sterilized. When the carbon substrate is added in batch, it may be sterilized after being introduced into the culture tank together with the initial medium or the like, or may be added to the culture tank after being sterilized in advance. When the carbon substrate is fed, it may be sterilized in advance and then fed into the culture tank. For sterilization of the carbon substrate, heat sterilization, pressure heat sterilization using a high-pressure steam sterilizer (autoclave), sterilization by spraying saturated steam, or the like can be generally adopted. Sterilization conditions include conditions in which the number of spores of Geobacillus stearothermophilus, which is a thermostable bacterium, decreases up to 10 to 12 times (for example, equivalent to 20 minutes at 120 ° C.) or more severe conditions.
 本発明の方法の一例では、培養槽に、該誘導炭素基質を含有する初期培地を導入し、次いで該培養槽を滅菌する。該滅菌された培養槽に微生物を播種した後、該非誘導炭素基質の水溶液を流加しながら該微生物を培養する。 In an example of the method of the present invention, an initial medium containing the derived carbon substrate is introduced into a culture tank, and then the culture tank is sterilized. After seeding the microorganism in the sterilized culture tank, the microorganism is cultured while pouring an aqueous solution of the non-inducible carbon substrate.
 該培養に使用される初期培地は、培養される微生物に通常使用される培地であればよい。例えば、該初期培地は、上記誘導炭素基質を含む炭素源、窒素源、マグネシウム塩、亜鉛塩等の金属塩、硫酸塩、リン酸塩、pH調整剤、界面活性剤、消泡剤などの微生物の培地に一般的に含まれる各種成分を含有することができる。培地中の成分組成は適宜選択可能である。該初期培地は、合成培地、天然培地、半合成培地のいずれであってもよく、又は市販の培地であってもよい。該初期培地は、好ましくは液体培地である。 The initial medium used for the culture may be a medium usually used for the microorganism to be cultured. For example, the initial medium is a carbon source containing the above-mentioned derived carbon substrate, a nitrogen source, a metal salt such as a magnesium salt or a zinc salt, a sulfate, a phosphate, a pH adjuster, a surfactant, a microorganism such as an antifoaming agent. It can contain various components generally contained in the medium of. The composition of the components in the medium can be appropriately selected. The initial medium may be a synthetic medium, a natural medium, a semi-synthetic medium, or a commercially available medium. The initial medium is preferably a liquid medium.
 培養槽への非誘導炭素基質の流加は、通常の流加培養の手順に従って実施され得る。例えば、一般的なフィードコントローラなどを用いて流加量を制御しながら、非誘導炭素基質の水溶液を培養槽に流加すればよい。培養槽への非誘導炭素基質の流加は、培養開始とともに開始してもよく、又は後述する微生物の呼吸活性の変化率が一定値(例えば0.1以上)に達したのちに開始してもよい。培養開始とともに非誘導炭素基質の流加を開始すると簡便である。非誘導炭素基質の流加速度の初期値は、炭素濃度換算で、0.15~0.50g/L-初期培地/hが好ましいが、誘導炭素基質濃度や菌体濃度に依存して調整可能である。 The feeding of the non-inducible carbon substrate into the culture tank can be carried out according to the usual fed-batch culture procedure. For example, an aqueous solution of a non-inducible carbon substrate may be fed into the culture tank while controlling the flow rate using a general feed controller or the like. Fed-batch of the non-inducible carbon substrate into the culture tank may be started at the same time as the start of the culture, or after the rate of change in the respiratory activity of the microorganism described later reaches a certain value (for example, 0.1 or more). May be good. It is convenient to start the feeding of the non-inducible carbon substrate at the same time as the start of the culture. The initial value of the flow acceleration of the non-induced carbon substrate is preferably 0.15 to 0.50 g / L-initial medium / h in terms of carbon concentration, but it can be adjusted depending on the induced carbon substrate concentration and the cell concentration. is there.
 本発明の方法において、微生物培養中における該誘導炭素基質と該非誘導炭素基質の培養培地に対する供給量は、培養する微生物の呼吸活性の状態に依存して調整される。より詳細には、培養中の微生物の呼吸活性の変化率が0.1以上である期間において、該誘導炭素基質の供給速度に対する該非誘導炭素基質の供給速度の比R〔R=非誘導炭素基質の供給速度/誘導炭素基質の供給速度〕は、100以下、好ましくは50以下、より好ましくは10以下に調整される。他方、誘導炭素基質の消費を節減する観点からは、該誘導炭素基質の供給速度に対する該非誘導炭素基質の供給速度の比は、1以上であることが好ましい。 In the method of the present invention, the amount of the derived carbon substrate and the non-inducible carbon substrate supplied to the culture medium during culturing of the microorganism is adjusted depending on the state of respiratory activity of the culturing microorganism. More specifically, the ratio of the supply rate of the non-inducible carbon substrate to the supply rate of the inductive carbon substrate during the period when the rate of change in the respiratory activity of the microorganism in culture is 0.1 or more R [R = non-inducible carbon substrate Supply rate / induction carbon substrate supply rate] is adjusted to 100 or less, preferably 50 or less, and more preferably 10 or less. On the other hand, from the viewpoint of reducing the consumption of the derived carbon substrate, the ratio of the supply rate of the non-induced carbon substrate to the supply rate of the derived carbon substrate is preferably 1 or more.
 微生物の代謝制御の観点からは、本発明の方法においては、培養中の該微生物の呼吸活性の変化率が0.1以上である期間に続く、該微生物の呼吸活性の変化率が0.01以上である期間において、上記比Rを100以下、好ましくは50以下、より好ましくは10以下に調整することが好ましい。 From the viewpoint of controlling the metabolism of a microorganism, in the method of the present invention, the rate of change in the respiratory activity of the microorganism during culture is 0.01, following a period in which the rate of change in the respiratory activity of the microorganism is 0.1 or more. During the above period, it is preferable to adjust the ratio R to 100 or less, preferably 50 or less, and more preferably 10 or less.
 微生物の代謝制御の観点からは、本発明の方法においては、培養中該微生物の呼吸活性の変化率が0.01以上である期間に続く、該微生物の呼吸活性の変化率が0.001以上である期間において、上記比Rを100以下、好ましくは50以下、より好ましくは10以下に調整することがさらに好ましい。 From the viewpoint of controlling the metabolism of a microorganism, in the method of the present invention, the rate of change in the respiratory activity of the microorganism is 0.001 or more, following the period in which the rate of change in the respiratory activity of the microorganism is 0.01 or more during culturing. It is more preferable to adjust the ratio R to 100 or less, preferably 50 or less, and more preferably 10 or less during the period.
 本明細書において、微生物の呼吸活性は、菌体の呼吸に由来する培養物からのCO2排出速度を、該培養物の菌体濃度で除することで算出される。例えば、微生物の呼吸活性は、下記式(1)に従って算出され得る。またCO2排出速度は、該培養物の単位時間当たりCO2総排出量[g-CO2]から、培養物の容量及び時間当たりのCO2排出量の変化率を求めることによって算出され得る。例えば、培養物の単位時間当たりCO2総排出量[g-CO2]は、培養物のCO2濃度[vol%]と培養通気量に基づいて、下記式(2)に従って算出され得る。
 呼吸活性[g-CO2/g-dry cell/h]
=(CO2排出速度[g-CO2/L-培養物/h])÷(菌体濃度[g-dry cell/L-培養物])
…(1)
ここで、
 g-CO=(CO2濃度[vol%]÷100 × 培養通気量[L/min]×60[min])
    ÷([モル体積] × 44[CO2モル質量])           …(2)
 ここで、CO2濃度[vol%]:培養物中CO2濃度(vol%)
 g-dry cell:CO2濃度[vol%]計測時の培養物に含まれる菌体の乾燥質量(g)
 L-培養物:CO2濃度[vol%]計測時の培養物量(L)
In the present specification, the respiratory activity of a microorganism is calculated by dividing the CO 2 excretion rate from the culture derived from the respiration of the cells by the cell concentration of the culture. For example, the respiratory activity of a microorganism can be calculated according to the following formula (1). The CO 2 emission rate can be calculated by obtaining the volume of the culture and the rate of change in the CO 2 emission per hour from the total CO 2 emission [g-CO 2 ] per unit time of the culture. For example, the total CO 2 emission amount [g-CO 2 ] per unit time of the culture can be calculated according to the following formula (2) based on the CO 2 concentration [vol%] of the culture and the culture aeration amount.
Respiratory activity [g-CO 2 / g-dry cell / h]
= (CO 2 emission rate [g-CO 2 / L-culture / h]) ÷ (cell concentration [g-dry cell / L-culture])
… (1)
here,
g-CO 2 = (CO 2 concentration [vol%] ÷ 100 × culture aeration rate [L / min] × 60 [min])
÷ ([molar volume] × 44 [CO 2 molar mass])… (2)
Here, CO 2 concentration [vol%]: CO 2 concentration in the culture (vol%)
g-dry cell: CO 2 concentration [vol%] Dry mass (g) of cells contained in the culture at the time of measurement
L-Culture: CO 2 concentration [vol%] Culture volume (L) at the time of measurement
 培養物のCO2濃度[vol%]は、培養槽用の排ガス分析装置により測定することができる。該排気ガス分析装置としては、非分散赤外線吸収方式の排気ガス分析装置(例えばDEX-1562A;株式会社バイオット)などを用いることができるが、これに限定されない。培養物における培養通気量は、流量計(例えば、コフロック株式会社製フローメータ)により測定することができる。例えばバルブ付フローメータ(例えば、コフロック株式会社製)により、通気量を制御しつつ流量を測定することが好ましい。 The CO 2 concentration [vol%] of the culture can be measured by an exhaust gas analyzer for the culture tank. As the exhaust gas analyzer, a non-dispersed infrared absorption type exhaust gas analyzer (for example, DEX-1562A; Biot Co., Ltd.) or the like can be used, but the exhaust gas analyzer is not limited thereto. The culture aeration rate in the culture can be measured by a flow meter (for example, a flow meter manufactured by Cofflock Co., Ltd.). For example, it is preferable to measure the flow rate while controlling the air flow rate with a flow meter with a valve (for example, manufactured by Koflock Co., Ltd.).
 本発明の方法において、微生物の呼吸活性は、上記式(1)及び(2)に従って毎時算出され得る。経時的に測定される呼吸活性から、該呼吸活性の変化率を求めることができる。すなわち、呼吸活性の変化率は、下記式(3)のとおり、連続する2つの測定時点で算出された呼吸活性の差分を、より早い時点で算出した呼吸活性で除すことにより算出される。
 呼吸活性の変化率={|時間t2における呼吸活性 - 時間t1における呼吸活性|
         ÷(時間t1における呼吸活性)} (t2>t1, |t1-t2| = 1) …(3)
In the method of the present invention, the respiratory activity of microorganisms can be calculated hourly according to the above formulas (1) and (2). The rate of change in respiratory activity can be determined from the respiratory activity measured over time. That is, the rate of change in respiratory activity is calculated by dividing the difference in respiratory activity calculated at two consecutive measurement time points by the respiratory activity calculated at an earlier point in time, as shown in the following formula (3).
Rate of change in respiratory activity = {| Respiratory activity at time t 2- Respiratory activity at time t 1 |
÷ ( Respiratory activity at time t 1 )} (t 2 > t 1 , | t 1 -t 2 | = 1)… (3)
 本発明において、バッチ添加される場合の誘導炭素基質の供給速度は、培養物中の誘導炭素基質由来の炭素の単位時間当たりの濃度変化(消失速度)として定義される。誘導炭素基質由来の炭素の消失速度は、例えば、以下の手順にて測定することができる:
(1)まず、サンプリングした培養物から遠心分離等で固形分を分取する。これにより培地に溶解する非誘導炭素基質は実質的に除去される。得られた固形分を乾燥させ、乾燥固形分の質量を測定する。次いで、該乾燥固形分を元素分析し、乾燥固形分中の全炭素量を求める。全炭素量から、微生物体由来の炭素量を差し引くことで、誘導炭素基質由来の炭素量を求める。すなわち、培養中の微生物体のC/N比は一定であると仮定して、種菌培養時の微生物体サンプルの測定により算出した菌体のC/N比と、該乾燥固形分中の窒素量から、該乾燥固形分中の微生物体由来の炭素量を算出する。乾燥固形分の全炭素量と微生物体由来の炭素量との差分が、誘導炭素基質由来の炭素量として算出され、これを培養物量で除することで、培養物中の誘導炭素基質由来の炭素濃度が求められる。
(2)次いで異なる2つの時点で算出された誘導炭素基質由来の炭素濃度の差分を求める。該差分値は、培養物中の誘導炭素基質由来の炭素濃度の該2つの時点間での濃度変化を反映する。よって、該差分値から単位時間当たりの濃度変化を算出することで、培養物に対する誘導炭素基質の供給速度[g-誘導炭素基質由来の炭素/L-培養液/h]を決定することができる。
In the present invention, the supply rate of the induced carbon substrate when added in batch is defined as the change in concentration (disappearance rate) of carbon derived from the induced carbon substrate in the culture per unit time. The rate of carbon loss from the derived carbon substrate can be measured, for example, by the following procedure:
(1) First, the solid content is separated from the sampled culture by centrifugation or the like. This substantially removes the non-inducible carbon substrate that dissolves in the medium. The obtained solid content is dried and the mass of the dry solid content is measured. Next, the dry solid content is elementally analyzed to determine the total carbon content in the dry solid content. The amount of carbon derived from the derived carbon substrate is obtained by subtracting the amount of carbon derived from the microorganism from the total amount of carbon. That is, assuming that the C / N ratio of the microbial cells in the culture is constant, the C / N ratio of the microbial cells calculated by the measurement of the microbial body sample at the time of culturing the inoculum and the amount of nitrogen in the dry solid content. From, the amount of carbon derived from the microorganism in the dry solid content is calculated. The difference between the total carbon content of the dry solids and the carbon content derived from the microbial body is calculated as the carbon content derived from the derived carbon substrate, and by dividing this by the amount of the culture, the carbon derived from the derived carbon substrate in the culture is calculated. The concentration is required.
(2) Next, the difference in carbon concentration derived from the derived carbon substrate calculated at two different time points is obtained. The difference value reflects the change in concentration of carbon from the derived carbon substrate in the culture between the two time points. Therefore, by calculating the concentration change per unit time from the difference value, the supply rate of the induced carbon substrate to the culture [g-carbon derived from the induced carbon substrate / L-culture solution / h] can be determined. ..
 本発明において、流加される非誘導炭素基質の供給速度は、単位時間当たりに培養物に流加される非誘導炭素基質由来の炭素の量として定義される。例えばフィードコントローラなどで設定された流加量と、流加される水溶液中の非誘導炭素基質濃度に基づいて、非誘導炭素基質の供給速度[g-非誘導炭素基質由来の炭素/L-培養液/h]を決定することができる。 In the present invention, the feeding rate of the non-inducible carbon substrate to be fed is defined as the amount of carbon derived from the non-inducible carbon substrate to be fed into the culture per unit time. For example, based on the fed-batch set by a feed controller and the concentration of the non-inducible carbon substrate in the aqueous solution to be fed, the supply rate of the non-inducible carbon substrate [g-carbon / L-culture derived from the non-inductive carbon substrate]. Liquid / h] can be determined.
 あるいは本発明において、流加される場合の誘導炭素基質の供給速度は、単位時間当たりに培養物に流加される誘導炭素基質由来の炭素の量として定義される。また、本発明において、バッチ添加される非誘導炭素基質の供給速度は、培養物中の非誘導炭素基質由来の炭素の単位時間当たりの濃度変化(消失速度)として定義される。該流加及びバッチ添加される炭素基質の供給速度の具体的な算出手順は、上述したとおりである。 Alternatively, in the present invention, the supply rate of the induced carbon substrate when fed is defined as the amount of carbon derived from the induced carbon substrate fed into the culture per unit time. Further, in the present invention, the supply rate of the non-inducible carbon substrate added in batch is defined as the change in concentration (disappearance rate) of carbon derived from the non-inducible carbon substrate in the culture per unit time. The specific procedure for calculating the feed rate of the fed-batch and batch-added carbon substrate is as described above.
 本発明の方法において、微生物の培養のための諸条件は、上述した炭素基質の供給速度以外は、該微生物の種や、培養のスケールなどに合わせて、常法に従って適宜設定することができる。例えば、培養に用いる培養槽は、従来公知のものを適宜採用することができる。具体的には、フラスコ、通気撹拌型培養槽、気泡塔型培養槽、及び流動床型培養槽等が挙げられ、好ましくは、通気撹拌型培養槽である。培養温度は、例えば微生物が糸状菌の場合、好ましくは25~35℃、より好ましくは28±2℃である。培養物のpHは、例えば微生物が糸状菌の場合、好ましくはpH3~7、より好ましくはpH3.5~6に維持される。培養物のpH調整は、アンモニア等の通常のpH調整剤によって行われ得る。本発明における培養物のpHは、培養温度28℃において測定された値をいう。培養物のpHは、培養槽に備え付けた電極で測定することができる。培養期間は、4~10日間が好ましい。 In the method of the present invention, various conditions for culturing a microorganism can be appropriately set according to a conventional method according to the species of the microorganism, the scale of the culture, and the like, except for the above-mentioned supply rate of the carbon substrate. For example, as the culture tank used for culturing, conventionally known ones can be appropriately adopted. Specific examples thereof include a flask, an aeration-stirring type culture tank, a bubble tower type culture tank, a fluidized bed type culture tank, and the like, and an aeration-stirring type culture tank is preferable. The culture temperature is preferably 25 to 35 ° C, more preferably 28 ± 2 ° C, for example, when the microorganism is a filamentous fungus. The pH of the culture is preferably maintained at pH 3-7, more preferably pH 3.5-6 when the microorganism is a filamentous fungus, for example. The pH of the culture can be adjusted with a conventional pH adjuster such as ammonia. The pH of the culture in the present invention refers to a value measured at a culture temperature of 28 ° C. The pH of the culture can be measured with an electrode provided in the culture tank. The culture period is preferably 4 to 10 days.
 培養後、培養物から目的のセルラーゼを回収する。糸状菌セルラーゼ等の分泌型セルラーゼの場合、培養上清からセルラーゼを回収することができる。セルラーゼが細胞中に含まれている場合、細胞を破壊してセルラーゼを含む画分を取り出し、セルラーゼを回収することができる。セルラーゼの回収は、当該分野で通常使用される方法、例えば、傾斜法、膜分離、遠心分離、電気透析法、イオン交換樹脂の利用、蒸留、塩析等、又はこれらの組み合わせにより、行うことができる。回収したセルラーゼを、さらに単離又は精製してもよい。 After culturing, recover the desired cellulase from the culture. In the case of secretory cellulase such as filamentous fungal cellulase, cellulase can be recovered from the culture supernatant. When cellulase is contained in the cell, the cell can be destroyed to remove the cellulase-containing fraction and recover the cellulase. Cellulase can be recovered by methods usually used in the art, for example, tilting method, membrane separation, centrifugation, electrodialysis method, use of ion exchange resin, distillation, salting out, etc., or a combination thereof. it can. The recovered cellulase may be further isolated or purified.
 目的のセルラーゼが培養上清中に分泌される分泌型セルラーゼの場合、本発明でセルラーゼの製造に使用された微生物は、繰り返し使用することができる。すなわち、培養上清と分離した微生物細胞を回収し、これを新たな培地で誘導炭素基質と非誘導炭素基質の存在下で培養することで、再びセルラーゼを製造することができる。 In the case of a secretory cellulase in which the target cellulase is secreted into the culture supernatant, the microorganism used for producing the cellulase in the present invention can be used repeatedly. That is, cellulase can be produced again by collecting the microbial cells separated from the culture supernatant and culturing them in a new medium in the presence of an inducible carbon substrate and a non-inducible carbon substrate.
 本発明のセルラーゼの製造方法は、微生物の培養と、培養物に蓄積したセルラーゼの回収及び培地の入れ替えとを交互に行う回分式方法であってもよく、又は、一部の微生物と培地を断続的もしくは連続的に入れ替えながら微生物の培養とセルラーゼの回収とを並行して行う半回分式もしくは連続的な方法であってもよい。 The method for producing cellulase of the present invention may be a batch method in which the culture of microorganisms, the recovery of cellulase accumulated in the culture, and the replacement of the medium are alternately performed, or the medium is intermittent with some microorganisms. It may be a semi-batch method or a continuous method in which culturing of microorganisms and recovery of cellulase are carried out in parallel while being replaced in a target or continuous manner.
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.
(1)培養条件
(菌種培養)
 トリコデルマ・リーセイPC-3-7株をセルロース含有培地で培養することで、セルラーゼを生産した。種菌培養として500mLフラスコに培地50mLを加え、1×105個/mLとなるようPC-3-7株の胞子を植菌し、28℃、220rpm(PRECI社、PRXYg-98R)にて振とう培養した。培地組成は表1のとおりである。菌種培養は、2日間行った。
(1) Culture conditions (bacterial species culture)
Cellulase was produced by culturing the Trichoderma Riesei PC-3-7 strain in a cellulose-containing medium. As an inoculum culture, add 50 mL of medium to a 500 mL flask, inoculate spores of the PC-3-7 strain to 1 × 10 5 cells / mL, and shake at 28 ° C. and 220 rpm (PRECI, PRXYg-98R). It was cultured. The medium composition is as shown in Table 1. The bacterial species culture was carried out for 2 days.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
(前培養)
 初期培地は、粉末セルロース(KCフロックW400;日本製紙)2%、及び表2に示すその他の培地成分を含有した。該初期培地500mLを含む1L容ジャーファーメンターBMZ-P((株)バイオット)に、前記種菌培養液を10%(v/v%)植菌して1日間培養して前培養液を得た。ジャーファーメンターの設定は以下のとおりとした:温度28℃、通気量0.5vvm、pH:4.5±0.1、撹拌数はDO=3.0ppmを保つよう変動。10%(w/w%)のアンモニア水溶液により、培養液のpHが上記所定の範囲に維持されるように制御した。
(Preculture)
The initial medium contained 2% of powdered cellulose (KC Flock W400; Nippon Paper Industries) and other medium components shown in Table 2. 10% (v / v%) of the inoculum culture solution was inoculated into a 1 L-volume Jarfermenter BMZ-P (Biot Co., Ltd.) containing 500 mL of the initial medium and cultured for 1 day to obtain a preculture solution. .. The settings of the jar fermenter were as follows: temperature 28 ° C., air volume 0.5 vvm, pH: 4.5 ± 0.1, stirring number fluctuated to maintain DO = 3.0 ppm. The pH of the culture solution was controlled to be maintained within the above-mentioned predetermined range by using a 10% (w / w%) aqueous solution of ammonia.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
(本培養)
 初期培地は、粉末セルロース(KCフックW400;日本製紙)4%、及び表2に示すその他の培地成分を含有した。該初期培地1000mLを含む2L容ジャーファーメンターBMZ-P((株)バイオット)に、前記前培養液を1%(v/v%)植菌して7日間培養した。ジャーファーメンターの設定は以下のとおりとした:温度30℃、通気量1.0vvm、pH:4.5±0.1、撹拌数は可変で、DO=2.0ppmを保つよう設定した。10%(w/w%)のアンモニア水溶液により、培養液のpHが上記所定の範囲に維持されるように制御した。培養中、下記(2)~(3)の手順に従って、糸状菌の呼吸活性の変化率とセルロース供給速度を毎時測定した。フィードコントローラDFR((株)バイオット)により、60%(w/w%)グルコース水溶液量を流加した。グルコース水溶液の流加は、炭素濃度換算で0.15~0.50g/L-初期培地/hで開始し、その後、セルロース供給速度に対するグルコース供給速度の比[グルコース(非誘導炭素)供給速度]/[セルロース(誘導炭素)供給速度]が下記表3の値になるように流加量を制御した(比較例1、実施例1~3)。
(Main culture)
The initial medium contained 4% of powdered cellulose (KC Hook W400; Nippon Paper Industries) and other medium components shown in Table 2. 1% (v / v%) of the preculture solution was inoculated into a 2 L-volume Jarfermenter BMZ-P (Biot Co., Ltd.) containing 1000 mL of the initial medium and cultured for 7 days. The settings of the jar fermenter were as follows: the temperature was 30 ° C., the air volume was 1.0 vvm, the pH was 4.5 ± 0.1, the stirring rate was variable, and DO = 2.0 ppm was set to be maintained. The pH of the culture solution was controlled to be maintained within the above-mentioned predetermined range by using a 10% (w / w%) aqueous solution of ammonia. During culturing, the rate of change in respiratory activity of filamentous fungi and the rate of cellulose supply were measured every hour according to the procedures (2) to (3) below. A 60% (w / w%) aqueous glucose solution was fed by a feed controller DFR (Biot Co., Ltd.). The pouring of the glucose aqueous solution is started at 0.15 to 0.50 g / L-initial medium / h in terms of carbon concentration, and then the ratio of the glucose supply rate to the cellulose supply rate [glucose (non-induced carbon) supply rate]. / The flow rate was controlled so that the [cellulose (induced carbon) supply rate] became the value shown in Table 3 below (Comparative Example 1, Examples 1 to 3).
(2)呼吸活性の測定
 培養中、排ガス分析装置(DEX-1562A;株式会社バイオット)、及びバルブ付フローメータ(MODEL RK1200;コフロック株式会社)により、培養液中のCO濃度(v/w%)と培養通気量(L/min)を毎時計測した。同時に培養液を5mL採取し、遠心分離(日立工機社製、himac CF7D2、ローター型式:RT3S3、ローター設置アダプタ:50mL 4×4本、チューブ寸法:直径36.5mm、長さ120mm、3,000rpm、15min)により上清と固形分を分離した。上清は0.45μmのフィルター(材質:セルロースアセテート)により濾過後、後述のセルラーゼ生産性測定に供した。固形分は15mLのイオン交換水にて2回遠心分離にて洗浄し、凍結乾燥した。乾燥物の固形分量を計量し、培養液の乾燥固形分濃度を算出した。
(2) Measurement of respiratory activity During culture, CO 2 concentration (v / w%) in the culture solution was used by an exhaust gas analyzer (DEX-1562A; Biot Co., Ltd.) and a flow meter with a valve (MODEL RK1200; Cofflock Co., Ltd.). ) And the culture aeration rate (L / min) were measured every hour. At the same time, 5 mL of the culture solution was collected and centrifuged (Hitachi Koki Co., Ltd., himac CF7D2, rotor model: RT3S3, rotor installation adapter: 50 mL 4 x 4, tube dimensions: diameter 36.5 mm, length 120 mm, 3,000 rpm. , 15 min) to separate the supernatant and the solid content. The supernatant was filtered through a 0.45 μm filter (material: cellulose acetate) and then subjected to the cellulase productivity measurement described later. The solid content was washed twice with 15 mL of ion-exchanged water by centrifugation and lyophilized. The solid content of the dried product was measured, and the dry solid content concentration of the culture solution was calculated.
 培養液の乾燥固形分中の元素(窒素及び炭素)量を、元素分析装置vario EL cube(エレメンタール社)を用いて測定した。測定した窒素量及び炭素量を培養物量で除することで、それぞれ培養液中の全窒素濃度及び全炭素濃度を得た。同様に、種菌培養時の糸状菌体サンプルを元素分析し、菌体のC/N比を算出した。該算出したC/N比(C:45%、N:7.9%、C/N比=5.7)に該乾燥固形分中の窒素濃度を掛け算することで、該乾燥固形分中の菌体由来の炭素量を算出した(式(4))。次いで、式(5)に従ってセルロース由来炭素濃度を求めた。さらに、乾燥菌体中の炭素量を45質量%として、式(6)により培養液中の菌体濃度(乾燥質量換算)を算出した。
 菌体由来の炭素濃度[g-C/L]
= 乾燥固形分中のN濃度[g-N/L] × 5.7[菌体C/N比[g-C/g-N]] …(4)
 セルロース由来炭素濃度[g-C/L]
= 乾燥固形分中全炭素濃度[g-C/L]-乾燥固形分中の菌体由来炭素濃度[g-C/L] …(5)
 菌体濃度[g-dry cell/L-培養物]=菌体由来の炭素濃度[g-C/L] ÷ 0.45    …(6)
The amount of elements (nitrogen and carbon) in the dry solid content of the culture solution was measured using an elemental analyzer vario EL cube (Elemental). The total nitrogen concentration and total carbon concentration in the culture broth were obtained by dividing the measured nitrogen amount and carbon amount by the culture amount, respectively. Similarly, the filamentous cell sample at the time of inoculum culture was elementally analyzed, and the C / N ratio of the cell was calculated. By multiplying the calculated C / N ratio (C: 45%, N: 7.9%, C / N ratio = 5.7) by the nitrogen concentration in the dry solid content, the dry solid content The amount of carbon derived from the cells was calculated (Equation (4)). Next, the cellulose-derived carbon concentration was determined according to the formula (5). Further, the cell concentration in the culture solution (converted to dry mass) was calculated by the formula (6), assuming that the amount of carbon in the dried cells was 45% by mass.
Carbon concentration derived from cells [gC / L]
= N concentration in dry solids [gN / L] x 5.7 [Bacterial cell C / N ratio [gC / gN]]… (4)
Cellulose-derived carbon concentration [gC / L]
= Total carbon concentration in dry solids [gC / L] -Carbon-derived carbon concentration in dry solids [gC / L]… (5)
Mycelium concentration [g-dry cell / L-culture] = carbon concentration derived from mycelium [gC / L] ÷ 0.45… (6)
 下記式(1)’~(3)’に基づいて、糸状菌の呼吸活性の変化率を算出した。
 呼吸活性[g-CO2/g-dry cell/h]
=(CO2排出速度[g-CO2/L-培養物/h])÷(菌体濃度[g-dry cell/L-培養物]
…(1)’
ここで、
  g-CO=(CO2濃度[vol%]÷100 × 培養通気量[L/min]×60[min])
     ÷(Vm × 44[CO2モル質量]) …(2)’
  ここで、CO2濃度[vol%]:培養物中CO2濃度(vol%)
      Vm:理想気体のモル体積=22.4
      L-培養物:培養物量(L)
 呼吸活性の変化率={|時間t2における呼吸活性 - 時間t1における呼吸活性|
        ÷(時間t1における呼吸活性)} (t2>t1, |t1-t2| = 1) …(3)’
The rate of change in respiratory activity of filamentous fungi was calculated based on the following formulas (1)'to (3)'.
Respiratory activity [g-CO 2 / g-dry cell / h]
= (CO 2 emission rate [g-CO 2 / L-culture / h]) ÷ (cell concentration [g-dry cell / L-culture]
… (1)'
here,
g-CO 2 = (CO 2 concentration [vol%] ÷ 100 × culture aeration rate [L / min] × 60 [min])
÷ (Vm × 44 [CO 2 molar mass])… (2)'
Here, CO 2 concentration [vol%]: CO 2 concentration in the culture (vol%)
Vm: Molar volume of ideal gas = 22.4
L-Culture: Culture volume (L)
Rate of change in respiratory activity = {| Respiratory activity at time t 2- Respiratory activity at time t 1 |
÷ ( Respiratory activity at time t 1 )} (t 2 > t 1 , | t 1 -t 2 | = 1)… (3)'
(3)炭素基質供給速度の測定
 続いて、式(5)で求めたセルロース由来の炭素濃度を用いて、式(7)に基づいて培養液に対するセルロース供給速度を算出した。
 セルロース供給速度[g-誘導炭素基質由来の炭素/L-培養液/h]
= 時間t2におけるセルロース由来の炭素濃度 - 時間t1におけるセルロース由来の炭素濃度 (t2>t1, |t1-t2| = 1)   …(7)
(3) Measurement of Carbon Substrate Supply Rate Subsequently, the cellulose supply rate with respect to the culture solution was calculated based on the formula (7) using the carbon concentration derived from cellulose obtained by the formula (5).
Cellulose supply rate [carbon derived from g-derived carbon substrate / L-culture solution / h]
= Cellulose-derived carbon concentration at time t 2 − Cellulose-derived carbon concentration at time t 1 (t 2 > t 1 , | t 1 -t 2 | = 1)… (7)
 グルコース供給速度は、フィードコントローラの設定値[グルコース水溶液/h]を基に算出した。水溶液中グルコース濃度を60w/w%、グルコース中の炭素の質量割合を0.4(72/180、ここでグルコースのモル質量180g/mol、グルコース中の炭素のモル質量12×6=72g/mol)として、式(8)に基づいて培養液に対するグルコースの供給速度を算出した。
 グルコース供給速度[g-非誘導炭素基質由来の炭素/L-培養物/h]
=フィードコントローラの設定値[g-グルコース水溶液/h]×水溶液中グルコース濃度(%)×グルコース中の炭素の質量割合÷培養物量[L]
=フィードコントローラの設定値[g/h]×0.6×0.4÷培養物量[L]   …(8)
The glucose supply rate was calculated based on the set value [glucose aqueous solution / h] of the feed controller. The glucose concentration in the aqueous solution is 60 w / w%, the mass ratio of carbon in glucose is 0.4 (72/180, where the molar mass of glucose is 180 g / mol, and the molar mass of carbon in glucose is 12 × 6 = 72 g / mol. ), The glucose supply rate to the culture solution was calculated based on the formula (8).
Glucose supply rate [g-carbon derived from non-inducible carbon substrate / L-culture / h]
= Feed controller setting value [g-glucose aqueous solution / h] × glucose concentration in aqueous solution (%) × mass ratio of carbon in glucose ÷ culture amount [L]
= Feed controller setting value [g / h] × 0.6 × 0.4 ÷ Culture amount [L]… (8)
(4)セルラーゼ生産性測定
 (2)で取得した培養上清中のタンパク質濃度をBradford法にて定量し、セルラーゼ濃度とした。定量では、0.125~0.75mg/mLのウシγグロブリン(BGG)を標準物質とし、Quick start protein assay(standard assay)(Bio-Rad社製)により、マイクロプレートリーダー(Molecular Devices社製、VersaMax)にて595nmの吸光度を測定し、タンパク質濃度を計算した。得られた上清のタンパク質濃度[g-Protein/L]を、該上清のサンプリング時点までに供給された炭素濃度[g-C/L]で除することで糸状菌のセルラーゼ生産性[g-Protein/g-C]を算出した。比較例1の培養7日目のセルラーゼ生産性を100%としたときの、培養1~7日での比較例1、実施例1、実施例2及び実施例3の相対セルラーゼ生産性を求めた。比較例1及び実施例1~3の菌体の呼吸活性変化率及び炭素基質の供給速度比の変化、ならびに培養7日目の相対セルラーゼ生産性を表3に示す。また培養1~7日目の相対セルラーゼ生産性を表4及び図1に示す。
(4) Measurement of cellulase productivity The protein concentration in the culture supernatant obtained in (2) was quantified by the Bradford method and used as the cellulase concentration. For quantification, 0.125 to 0.75 mg / mL bovine gamma globulin (BGG) was used as a standard substance, and a microplate reader (Molecular Devices) was used by Quick start protein assay (Bio-Rad). The absorbance at 595 nm was measured with VersaMax), and the protein concentration was calculated. By dividing the protein concentration [g-Protein / L] of the obtained supernatant by the carbon concentration [gC / L] supplied up to the time of sampling the supernatant, the cellulase productivity of filamentous fungi [g-Protein / L] / gC] was calculated. The relative cellulase productivity of Comparative Example 1, Example 1, Example 2 and Example 3 in 1 to 7 days of culture was determined when the cellulase productivity on the 7th day of culture of Comparative Example 1 was 100%. .. Table 3 shows the changes in the respiratory activity change rate and the carbon substrate supply rate ratio of the cells of Comparative Examples 1 and 1 to 3, and the relative cellulase productivity on the 7th day of culturing. The relative cellulase productivity on days 1 to 7 of culture is shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
  
Figure JPOXMLDOC01-appb-T000004
  

Claims (17)

  1.  セルラーゼの製造方法であって、
     誘導炭素基質及び非誘導炭素基質の存在下で糸状菌を培養することを含み、
     該糸状菌の呼吸活性の変化率が0.1以上である期間において、下記式Aで表される比Rが100以下である、
      式A:R=非誘導炭素基質の供給速度/誘導炭素基質の供給速度
    方法。
    It is a method for producing cellulase.
    Including culturing filamentous fungi in the presence of inducible and non-inducible carbon substrates, including
    The ratio R represented by the following formula A is 100 or less during the period when the rate of change in the respiratory activity of the filamentous fungus is 0.1 or more.
    Formula A: R = supply rate of non-inducible carbon substrate / supply rate method of inductive carbon substrate.
  2.  前記比Rが50以下である、請求項1記載の方法。 The method according to claim 1, wherein the ratio R is 50 or less.
  3.  前記比Rが10以下である、請求項1記載の方法。 The method according to claim 1, wherein the ratio R is 10 or less.
  4.  前記比Rが1以上である、請求項1記載の方法。 The method according to claim 1, wherein the ratio R is 1 or more.
  5.  前記糸状菌の呼吸活性の変化率が0.1以上である期間に続く、該糸状菌の呼吸活性の変化率が0.01以上である期間において、前記比Rが100以下である、請求項1~4のいずれか1項記載の方法。 The claim that the ratio R is 100 or less in a period in which the rate of change in the respiratory activity of the filamentous fungus is 0.1 or more, followed by a period in which the rate of change in the respiratory activity of the filamentous fungus is 0.01 or more. The method according to any one of 1 to 4.
  6.  前記誘導炭素基質が、ラクトース、セロビオース、ソホロース、ゲンチオビオース及びセルロースからなる群より選択される少なくとも1種である、請求項1~5のいずれか1項記載の方法。 The method according to any one of claims 1 to 5, wherein the derived carbon substrate is at least one selected from the group consisting of lactose, cellobiose, sophorose, gentiobiose and cellulose.
  7.  前記非誘導炭素基質が、グルコース、フルクトース、スクロース、マルトース及びマルトオリゴ糖からなる群より選択される少なくとも1種である、請求項1~6のいずれか1項記載の方法。 The method according to any one of claims 1 to 6, wherein the non-inducible carbon substrate is at least one selected from the group consisting of glucose, fructose, sucrose, maltose and maltooligosaccharide.
  8.  前記誘導炭素基質は培養槽にバッチ添加される、請求項1~7のいずれか1項記載の方法。 The method according to any one of claims 1 to 7, wherein the derived carbon substrate is batch-added to the culture tank.
  9.  前記誘導炭素基質の供給速度が、培養物中の該誘導炭素基質由来の炭素の単位時間当たりの消失速度である、請求項8記載の方法。 The method according to claim 8, wherein the supply rate of the derived carbon substrate is the rate of disappearance of carbon derived from the derived carbon substrate in the culture per unit time.
  10.  前記培養槽における前記誘導炭素基質の初期濃度が1~15質量/容量%である、請求項8又は9記載の方法。 The method according to claim 8 or 9, wherein the initial concentration of the derived carbon substrate in the culture tank is 1 to 15% by mass / volume%.
  11.  前記非誘導炭素基質は培養槽に流加される、請求項1~10のいずれか1項記載の方法。 The method according to any one of claims 1 to 10, wherein the non-inducible carbon substrate is fed into a culture tank.
  12.  前記非誘導炭素基質の供給速度が、単位時間当たりに培養物に流加される該非誘導炭素基質由来の炭素の量である、請求項11項記載の方法。 The method according to claim 11, wherein the supply rate of the non-inducible carbon substrate is the amount of carbon derived from the non-inducible carbon substrate to be fed into the culture per unit time.
  13.  前記非誘導炭素基質の水溶液が前記培養槽に流加され、該水溶液中における該非誘導炭素基質の濃度が2~90質量/容量%である、請求項11又は12項記載の方法。 The method according to claim 11 or 12, wherein an aqueous solution of the non-inducible carbon substrate is poured into the culture tank, and the concentration of the non-inducible carbon substrate in the aqueous solution is 2 to 90 mass / volume%.
  14.  前記非誘導炭素基質の流加の初期速度が、炭素濃度換算で、0.15~0.50g/L-初期培地/hである、請求項1~13のいずれか1項記載の方法。 The method according to any one of claims 1 to 13, wherein the initial rate of fed-batch of the non-inducible carbon substrate is 0.15 to 0.50 g / L-initial medium / h in terms of carbon concentration.
  15.  前記糸状菌が、トリコデルマ属である、請求項1~14のいずれか1項記載の方法。 The method according to any one of claims 1 to 14, wherein the filamentous fungus belongs to the genus Trichoderma.
  16.  前記糸状菌がトリコデルマ・リーゼイ又はその変異株である、請求項15記載の方法。 The method according to claim 15, wherein the filamentous fungus is Trichoderma reesei or a mutant strain thereof.
  17.  前記糸状菌の呼吸活性の変化率が0.1以上である期間において、前記比Rが100以下になるように調整することを含む、請求項1~16のいずれか1項記載の方法。  The method according to any one of claims 1 to 16, comprising adjusting the ratio R to be 100 or less during a period in which the rate of change in respiratory activity of the filamentous fungus is 0.1 or more.
PCT/JP2020/042903 2019-11-18 2020-11-18 Method for producing cellulase WO2021100737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112022009617A BR112022009617A2 (en) 2019-11-18 2020-11-18 METHOD TO PRODUCE CELLULASE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019207894A JP7446089B2 (en) 2019-11-18 2019-11-18 Method for producing cellulase
JP2019-207894 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021100737A1 true WO2021100737A1 (en) 2021-05-27

Family

ID=75961576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042903 WO2021100737A1 (en) 2019-11-18 2020-11-18 Method for producing cellulase

Country Status (3)

Country Link
JP (1) JP7446089B2 (en)
BR (1) BR112022009617A2 (en)
WO (1) WO2021100737A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127088A (en) * 1980-03-10 1981-10-05 Hitachi Zosen Corp Production of cellulase
JP2010536390A (en) * 2007-08-30 2010-12-02 アイオジェン エナジー コーポレイション Method for producing cellulase
JP2014521359A (en) * 2011-08-19 2014-08-28 イエフペ エネルジ ヌヴェル Cellulase production method using filamentous fungus suitable for fermenter having low oxygen transfer capacity coefficient KLa

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127088A (en) * 1980-03-10 1981-10-05 Hitachi Zosen Corp Production of cellulase
JP2010536390A (en) * 2007-08-30 2010-12-02 アイオジェン エナジー コーポレイション Method for producing cellulase
JP2014521359A (en) * 2011-08-19 2014-08-28 イエフペ エネルジ ヌヴェル Cellulase production method using filamentous fungus suitable for fermenter having low oxygen transfer capacity coefficient KLa

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LO, C. M. ET AL.: "Roles of extracellular lactose hydrolysis in cellulase production by Trichoderma reesei Rut C30 using lactose as inducing substrate", PROCESS BIOCHEMISTRY, vol. 45, 2010, pages 1494 - 1503, XP027170818 *
SZABO, I. J. ET AL.: "Optimized cellulase production by phanerochaete chrysosporium: control of catabolite repression by fed-batch cultivation", JOURNAL OF BIOTECHNOLOGY, vol. 48, 1996, pages 221 - 230, XP004037019, DOI: 10.1016/0168-1656(96)01512-X *

Also Published As

Publication number Publication date
JP2021078392A (en) 2021-05-27
JP7446089B2 (en) 2024-03-08
BR112022009617A2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
Adinarayana et al. Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum
JP6327653B2 (en) Coryneform bacterium transformant and method for producing 4-hydroxybenzoic acid or a salt thereof using the same
CN110392737B (en) Method for producing psicose by using psicose-producing epimerase microorganism
US20130330794A1 (en) Method for producing 2,3-butanediol by fermentation
JP2013236641A (en) Pyranosone dehydratase from phanerochaete chrysosporium
WO2021100737A1 (en) Method for producing cellulase
EP1861505A1 (en) Process for microbial production of a valuable compound
KR100507248B1 (en) Method of Culturing Microorganism
Hockertz et al. Impairment of DNA formation is an early event in Aspergillus niger under manganese starvation
CN106754829B (en) Method for producing chitosanase by using bacillus HS17 fermentation and application thereof
EP2670839B1 (en) Use of browned glucose for the fermentative production of thaxtomin.
KR101746398B1 (en) Streptomyces atrovirens WJ2, a new microbe having great activity degrading xylan
IL95692A (en) Natural 5-decanolide and 5-dodecanolide and process for the production thereof
Nguyen et al. Citric acid production by Aspergillus niger using media containing low concentrations of glucose or corn starch
EP1918374B1 (en) Novel diglycosidase and gene encoding the same
Häggström et al. Regulation of a mixed culture of Streptococcus lactis and Saccharomycopsis fibuliger
WO2020008988A1 (en) Method for producing protein
Fadel et al. Studies on activation of amylolytic enzymes production by gamma irradiated Aspergillus niger using some surfactants and natural oils under solid state fermentation
CN110066740B (en) Method for activating eucommia ulmoides endophytic fungi silent gene through metabolic regulation
JP2005312393A (en) Method for producing bacteriocin, bacteriocin-containing substance and method for producing sake (rice wine)
JP4629442B2 (en) Process for producing β-L-homofuconojirimycin by microorganism
Zhang et al. Improvement of fructanohydrolase production in Aspergillus niger SL-09 by sucrose ester
CN118086258A (en) Glucosidase mutant and application thereof
FK et al. Use of a Fungus of Trichoderma Genus for Brewery Mash Treatment
CN112961852A (en) Promoter and application thereof in aspergillus aculeatus gene self-cloning expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889211

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022009617

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022009617

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220517

122 Ep: pct application non-entry in european phase

Ref document number: 20889211

Country of ref document: EP

Kind code of ref document: A1