WO2021100628A1 - Gypsum slurry dehydration system - Google Patents

Gypsum slurry dehydration system Download PDF

Info

Publication number
WO2021100628A1
WO2021100628A1 PCT/JP2020/042424 JP2020042424W WO2021100628A1 WO 2021100628 A1 WO2021100628 A1 WO 2021100628A1 JP 2020042424 W JP2020042424 W JP 2020042424W WO 2021100628 A1 WO2021100628 A1 WO 2021100628A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter cloth
storage tank
filtrate
liquid
cleaning liquid
Prior art date
Application number
PCT/JP2020/042424
Other languages
French (fr)
Japanese (ja)
Inventor
覚 杉田
直行 神山
良三 佐々木
祐一郎 里
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021100628A1 publication Critical patent/WO2021100628A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/04Filters with filtering elements which move during the filtering operation with filtering bands or the like supported on cylinders which are impervious for filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/02Methods and apparatus for dehydrating gypsum

Definitions

  • the present disclosure relates to a gypsum slurry dehydration system for dehydrating gypsum slurry produced as a by-product in a flue gas desulfurization apparatus.
  • the exhaust gas emitted from a combustion engine such as a boiler contains air pollutants such as sulfur oxides (SOx), sulfur oxides are removed from the exhaust gas in the flue gas desulfurization apparatus before being released into the atmosphere. ..
  • SOx sulfur oxides
  • a wet flue gas desulfurization device using a lime gypsum method is widely known.
  • the exhaust gas is brought into contact with a limestone slurry (absorption liquid), and sulfur oxides (for example, sulfurous acid gas) in the exhaust gas are absorbed by the absorption liquid to remove sulfur oxides from the exhaust gas. It is being removed.
  • the sulfur oxide absorbed in the absorption liquid reacts with calcium in the absorption liquid to become calcium sulfite, and the calcium sulfite is oxidized by the air supplied into the absorption liquid to become gypsum.
  • gypsum slurry (absorption liquid containing gypsum) is produced as a by-product.
  • Patent Document 1 discloses that a slurry liquid containing a gypsum slurry extracted from a wet flue gas desulfurization apparatus is solid-liquid separated by a gypsum separator to recover gypsum. Further, in Patent Document 1, the filter cloth is movably supported on the belt stretched between the drums, and the gypsum slurry supplied on the filter cloth is sucked from below the belt to separate the filtrate and the gypsum. A belt-type plaster separator, a cleaning device for cleaning the filter cloth after discharging the plaster slurry with a cleaning liquid, and a liquid storage tank for storing the cleaning liquid after cleaning the filter cloth and the filtrate are disclosed. The liquid stored in the liquid storage tank is sent to the wastewater treatment facility, and after the wastewater is treated in a state where the wastewater treatment facility meets the discharge standard, the liquid is discharged to the outside of the system.
  • Patent Document 1 the cleaning liquid and the filtrate after cleaning the filter cloth were collected in the same liquid storage tank and then sent to the wastewater treatment facility as wastewater. Since the wastewater treatment equipment needs to treat a large amount of wastewater sent from the liquid storage tank, there is a risk that the size of the wastewater treatment equipment will increase and the equipment cost will increase.
  • an object of at least one embodiment of the present disclosure is to reduce the amount of wastewater sent from the gypsum slurry dehydration treatment equipment to the wastewater treatment equipment, and to increase the size of the wastewater treatment equipment and the equipment cost. It is an object of the present invention to provide a gypsum slurry dehydration system capable of suppressing the increase in price.
  • the gypsum slurry dehydration system is A gypsum slurry dehydration system for dehydrating gypsum slurry discharged from a flue gas desulfurization apparatus.
  • a transport device having a transport belt that transports the gypsum slurry in a state of being placed on a filter cloth, and
  • a filter cloth cleaning device having a ejection portion capable of ejecting the filter cloth cleaning liquid onto the filter cloth, and a filter cloth cleaning device.
  • a filtrate storage tank configured to store the filtrate separated from the gypsum slurry by the filter cloth
  • a filtrate discharge line configured to send the filtrate stored in the filtrate storage tank to a wastewater treatment facility that performs a treatment for discharging the filtrate to the outside of the system.
  • the amount of wastewater sent from the gypsum slurry dehydration treatment equipment to the wastewater treatment equipment can be reduced, and the size of the wastewater treatment equipment and the increase in equipment cost can be suppressed.
  • a gypsum slurry drainage system capable of draining is provided.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range where the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • the expression “includes”, “includes”, or “has” one component is not an exclusive expression that excludes the existence of another component.
  • the same reference numerals may be given to the same configurations, and the description thereof may be omitted.
  • FIG. 1 is a schematic configuration diagram schematically showing an overall configuration of an exhaust gas cleaning system including a gypsum slurry dehydration system according to an embodiment of the present disclosure.
  • the gypsum slurry dehydration system 1 according to some embodiments is mounted on the exhaust gas cleaning system 10.
  • the exhaust gas cleaning system 10 is discharged from a wet flue gas desulfurization device 20 for desulfurizing exhaust gas discharged from a combustion facility 11 such as an engine or a boiler, and a flue gas desulfurization device 20.
  • the gypsum slurry desulfurization system 1 for dehydrating the gypsum slurry is provided.
  • the flue gas desulfurization apparatus 20 brings the exhaust gas discharged from the combustion equipment 11 into contact with the absorbing liquid to absorb sulfur oxides (for example, sulfurous acid gas) in the exhaust gas into the absorbing liquid, thereby oxidizing sulfur from the exhaust gas. It is configured to remove objects.
  • a slurry liquid containing an alkaline component such as a limestone slurry in which limestone is dissolved (dispersed) is used as the absorption liquid, and a gypsum slurry (absorption liquid containing gypsum) is a by-product. Will be done.
  • the slurry is not strictly a liquid, it is treated as a liquid in the present specification for convenience.
  • the flue gas desulfurization apparatus 20 includes an absorption tower 20A configured to desulfurize the exhaust gas introduced into the flue gas desulfurization apparatus 20.
  • the absorption tower 20A includes an absorption tower main body 22 configured to internally define an internal space 21 into which the exhaust gas discharged from the combustion equipment 11 is introduced, and an exhaust gas introduction port 23 for introducing the exhaust gas into the internal space 21. And an exhaust gas discharge port 24 for discharging exhaust gas from the internal space 21.
  • Each of the exhaust gas introduction port 23 and the exhaust gas discharge port 24 communicates with the absorption tower main body 22.
  • the internal space 21 is located below the gas-liquid contact portion 21A for bringing the exhaust gas and the absorbed liquid into gas-liquid contact, and is located below the gas-liquid contact portion 21A, and the sulfur oxide (for example, sulfur oxide in the exhaust gas) in the gas-liquid contact portion 21A.
  • the exhaust gas discharged from the combustion equipment 11 is introduced into the internal space 21 through the exhaust gas introduction port 23.
  • the exhaust gas guided to the internal space 21 flows while rising in the internal space 21 and is washed by the absorbing liquid when passing through the gas-liquid contact portion 21A, and sulfur oxides and the like in the exhaust gas are removed.
  • the exhaust gas after cleaning in the gas-liquid contact portion 21A is discharged to the outside of the absorption tower 20A through the exhaust gas discharge port 24 as purified gas which is the purified exhaust gas.
  • the purified gas discharged to the outside of the absorption tower 20A is discharged into the atmosphere from a chimney (not shown) provided on the downstream side of the exhaust gas discharge port 24 in the flow direction of the purified gas (exhaust gas).
  • a chimney not shown
  • the mist eliminator 25 configured to remove water from the purified gas (exhaust gas) is provided downstream of the gas-liquid contact portion 21A in the flow direction of the purified gas (exhaust gas). Good.
  • the absorption tower 20A further includes a spraying device 26 arranged at the gas-liquid contact portion 21A.
  • the spraying device 26 is configured to spray an absorbing liquid (limestone slurry) on the exhaust gas passing through the gas-liquid contact portion 21A.
  • the absorbing liquid sprayed from the spraying device 26 comes into contact with the exhaust gas and absorbs and removes sulfur oxides (for example, sulfurous acid gas) contained in the exhaust gas.
  • the spraying device 26 includes a spray pipe 261 extending along a horizontal direction that intersects the flow direction of exhaust gas, and a plurality of spray nozzles 262 provided in the spray pipe 261. As shown in FIG. 1, the spray nozzle 262 has a spray port 263 that sprays the absorption liquid toward the downstream side in the flow direction of the exhaust gas, that is, toward the upper side in the vertical direction. In some other embodiments, the spray nozzle 262 may have a spray port for spraying the absorbing liquid downward in the vertical direction.
  • the exhaust gas guided to the internal space 21 is sprayed from the spray port 263 of the spray nozzle 262, and the absorbing liquid that has absorbed and removed the sulfur oxide contained in the exhaust gas falls and is stored. ..
  • the absorbing liquid stored in the pool portion 21B may contain sulfites produced by sulfur oxides absorbed from exhaust gas and gypsum (calcium sulfate) produced by oxidation of sulfites.
  • the absorption tower main body 22 has an absorption liquid outlet 221 for extracting the absorption liquid stored in the liquid pool 21B to the outside, and an oxidizing gas (for example, air) in the absorption liquid stored in the liquid pool 21B.
  • the nozzle penetration port 222 through which the nozzle for supplying is penetrated is open.
  • Each of the absorption liquid outlet 221 and the nozzle through port 222 communicates with the liquid pool portion 21B.
  • the absorption tower main body 22 is opened with an absorption liquid supply port 223 for introducing the limestone slurry and an absorption liquid return port 224 for returning the absorption liquid extracted to the outside to the liquid pool portion 21B.
  • Each of the absorption liquid supply port 223 and the absorption liquid return port 224 communicates with the internal space 21 above the liquid pool portion 21B.
  • the absorption tower 20A further includes an oxidation gas supply device 27 configured to supply an oxidation gas (for example, air) to the absorption liquid stored in the liquid pool 21B.
  • the oxidizing gas supply device 27 includes a nozzle 271 penetrating the nozzle through port 222 and a pump 272 that supplies atmospheric air to the nozzle 271.
  • the air in the atmosphere is supplied to the nozzle 271 by the pump 272, and is supplied to the absorption liquid stored in the liquid pool 21B from the opening 273 at the tip of the nozzle.
  • the sulfite in the absorbing liquid stored in the pool portion 21B can be oxidized to form gypsum.
  • the absorption tower 20A sends the absorption liquid supply line 12 configured to supply the absorption liquid to the liquid pool portion 21B of the absorption tower 20A and the absorption liquid extracted from the liquid pool portion 21B to the spray device 26. Further includes a configured absorption liquid circulation line 13 and an absorption liquid extraction line 14 configured to send the absorption liquid extracted from the liquid pool portion 21B to the gypsum slurry dehydration system 1.
  • the absorption tower 20A circulates the absorption liquid through the spray device 26, the liquid pool portion 21B, and the absorption liquid circulation line 13. Since the absorbing liquid stored in the liquid pool portion 21B is repeatedly used for cleaning the exhaust gas in the absorbing tower 20A, gypsum is gradually accumulated.
  • the absorption liquid circulation system (spraying device 26, liquid pool 21B, absorption liquid circulation line 13).
  • the plaster is extracted from.
  • the absorption liquid is appropriately supplied through the absorption liquid supply line 12 so that the pH of the absorption liquid is in the range of 5 to 6.
  • the absorbent liquid supply line 12 is arranged outside the absorption tower 20A and one end of the absorbent liquid storage tank 17 configured to define an internal space 171 for storing the absorbent liquid.
  • the absorption liquid supply pipe 121 whose side is connected and the other end side is connected to the absorption liquid supply port 223 and the absorption liquid supply pipe 121 are provided, and the absorption liquid is sent from one end side to the other end side of the absorption liquid supply pipe 121.
  • Includes a supply pump 122 configured as described above. By driving the supply pump 122, the absorption liquid is extracted from the internal space 171 and supplied to the liquid pool portion 21B of the absorption tower 20A.
  • the absorption liquid circulation line 13 is provided in the absorption liquid circulation pipe 131 in which one end side is connected to the absorption liquid outlet 221 and the other end side is connected to the spray pipe 261 and the absorption liquid circulation pipe 131.
  • the circulation pump 132 configured to send the absorption liquid from one end side to the other end side of the absorption liquid circulation pipe 131 is included.
  • One end of the absorption liquid extraction line 14 is connected to the first branch portion 133 located on the downstream side (spraying device 26 side) in the flow direction of the absorption liquid from the circulation pump 132 of the absorption liquid circulation pipe 131, and the other end side is plaster.
  • the absorption liquid extraction pipe 141 connected to the slurry dehydration system 1 (specifically, the supply device 4 shown in FIG. 2) is included.
  • the absorption liquid circulation line 13 and the absorption liquid extraction line 14 share the circulation pump 132.
  • the absorbing liquid is extracted from the pool portion 21B and supplied to the spray device 26 and the gypsum slurry dehydration system 1.
  • the absorption liquid extraction line 14 may not have a shared portion with the absorption liquid circulation line 13.
  • the absorption liquid extraction line 14 further includes a regulating valve 142 provided on the other end side of the absorption liquid extraction pipe 141.
  • the regulating valve 142 has a movable mechanism for opening and closing the absorption liquid extraction pipe 141, which is a flow path of the absorption liquid, and allows the flow rate of the absorption liquid flowing through the absorption liquid extraction pipe 141 and being supplied to the gypsum slurry dehydration system 1. It is configured to be adjustable.
  • the absorption tower 20A further includes an absorption liquid return line 15 for returning the absorption liquid from the absorption liquid extraction line 14 to the liquid pool portion 21B of the absorption tower 20A.
  • One end of the absorption liquid return line 15 is connected to the second branch portion 143 located on the upstream side (first branch portion 133 side) in the flow direction of the absorption liquid from the adjusting valve 142 of the absorption liquid extraction pipe 141, and the other end.
  • the absorption liquid extraction pipe 141 Even when the amount of the absorption liquid supplied to the gypsum slurry dehydration system 1 is small, a larger amount of the absorption liquid than the required amount to be supplied to the gypsum slurry dehydration system 1 is flowed through the absorption liquid extraction pipe 141 to absorb the excess liquid.
  • the flow velocity of the absorption liquid (plaster slurry) in the absorption liquid extraction pipe 141 is maintained at a predetermined speed or higher, and the solid content in the absorption liquid (for example). , Slurry, etc.) can be prevented from settling in the absorption liquid extraction pipe 141.
  • FIG. 2 is a schematic configuration diagram schematically showing the overall configuration of the gypsum slurry dehydration system according to the embodiment of the present disclosure.
  • the gypsum slurry dehydration system 1 according to some embodiments is configured to dehydrate the gypsum slurry (absorption liquid containing gypsum) sent from the absorption tower 20A via the absorption liquid extraction pipe 141 and separate it into gypsum and a filtrate. Has been done.
  • the gypsum slurry dehydration system 1 has a transport device 3 having a transport belt 32 for transporting the gypsum slurry on the filter cloth 31, and a gypsum slurry on the filter cloth 31 of the transport belt 32.
  • the gypsum cleaning liquid can be ejected toward the gypsum cake. It is provided with a cake cleaning device 44 having a gypsum cleaning liquid ejection portion 45, and a steam ejection device 54 having a steam ejection portion 55 (spouting portion) capable of ejecting drying steam.
  • Each of the supply unit 41, the cake cleaning liquid ejection unit 45, and the steam ejection unit 55 is arranged above the transport belt 32.
  • the cake cleaning liquid ejection part 45 is located on the downstream side (right side in FIG. 2) in the direction along the conveying direction of the transport belt 32 from the supply portion 41, and the steam ejection portion 55 is the transport belt 32 rather than the cake cleaning liquid ejection portion 45. It is located on the downstream side in the direction along the transport direction of.
  • the transport device 3 is connected to two rotatably supported drums 33 (33A, 33B) and one of the above two drums 33 (eg, 33A). It further includes a motor 34 configured to rotationally drive the drum 33 (33A), and a plurality of guide rollers 35.
  • the transport belt 32 is made of an endless band-shaped rubber member (elastic body), and is rotatably hung on two drums 33 arranged apart from each other in the horizontal direction. Since the transport belt 32 is stretched on the two drums 33, the motor 34 rotationally drives one of the drums 33 (33A) to rotate the other drum 33 (33B) and the transport belt. 32 orbits along the transport direction of the transport belt 32.
  • the filter cloth 31 is provided in an endless band shape, is rotatably hung on a plurality of guide rollers 35, and a part of the filter cloth 31 in the length direction is overlapped on the upper surface 321 of the transport belt 32.
  • the portion of the filter cloth overlapped on the upper surface 321 of the transport belt 32 (hereinafter referred to as the supported portion 311) is supported by the transport belt 32 together with the transport belt 32 so as to travel along the transport direction. Therefore, when the drum 33 (33A) is rotationally driven and the transport belt 32 orbits around, the supported portion 311 of the filter cloth 31 together with the support portion 322 that supports the supported portion 311 of the transport belt 32 from below. It travels along the above-mentioned transport direction.
  • the filter cloth 31 comprises a woven fabric formed by weaving a fibrous formed resin material (eg, polyester, polypropylene, etc.). Also, in some other embodiments, the filter cloth 31 includes a non-woven fabric formed by entwining fibrous resin materials (eg, polyester, polypropylene, etc.).
  • the supply device 4 is configured to supply the gypsum slurry sent from the absorption tower 20A via the absorption liquid extraction line 14 from the supply unit 41 onto the filter cloth 31 of the transport belt 32.
  • the supply device 4 is connected to the supply unit 41 (for example, an injection nozzle) and one end side thereof to the other end side of the absorption liquid extraction pipe 141, and the other end side is connected to the supply unit 41. It has a supply pipe 42 and.
  • the gypsum slurry is pumped by the circulation pump 132 described above, passes through the supply pipe 42, flows down from the supply unit 41, and is supplied onto the filter cloth 31 of the transport belt 32.
  • "on the filter cloth 31 of the transport belt 32" means on the upper surface (outer surface) 312 of the supported portion 311 of the filter cloth 31.
  • the gypsum slurry is placed on the filter cloth 31 of the transport belt 32 and dehydrated when it is transported together with the filter cloth 31 by the transport belt 32.
  • the region where the gypsum slurry is dehydrated in the transport device 3 is designated as the dehydration section 36.
  • the transport belt 32 In the dehydration section 36, the transport belt 32 is located above the drum 33, and the supported portion 311 of the filter cloth 31 is supported by the support portion 322 of the transport belt 32.
  • Each of the supply unit 41, the cake cleaning liquid ejection unit 45, and the steam ejection unit 55 described above is arranged in the region of the dehydration unit 36.
  • the filter cloth 31 is breathable, and the transport belt 32 is formed with a plurality of holes for allowing the filtrate to pass through.
  • the gypsum slurry placed on the filter cloth 31 of the transport belt 32 is dehydrated by the filtrate passing through the filter cloth 31 and the transport belt 32 in the dehydration section 36.
  • the transport device 3 further includes a dehydrator device 37 configured to dehydrate the filtrate by sucking the gypsum slurry placed on the filter cloth 31 from below.
  • the dehydration device 37 is provided below the support portion 322 of the transport belt 32, and has a dehydration chamber 371 in which the internal pressure is held at a negative pressure (pressure lower than the atmospheric pressure), a vacuum pump 372, and a dehydration chamber 371.
  • a decompression pipe 373 having one end connected to the vacuum pump 372 and the other end connected to the vacuum pump 372, and a vacuum tank 374 provided in the decompression pipe 373.
  • the dehydration chamber 371 is depressurized to a negative pressure, the water in the gypsum slurry placed on the filter cloth 31 is forcibly sucked from below, and the gypsum slurry is dehydrated.
  • the water (filter liquid) sucked by the vacuum pump 372 and sent from the dehydration chamber 371 to the vacuum tank 374 is a liquid discharge pipe whose one end is connected to the lower end of the vacuum tank 374 and the other end extends downward. It passes through 375 and flows down into a filtrate storage tank 6 configured to store the filtrate.
  • the cake cleaning device 44 has one end connected to the cake cleaning liquid ejection portion 45 (for example, an injection nozzle) and the cake cleaning liquid ejection portion 45, and the other end connected to a cleaning liquid tank (not shown). It has a cake cleaning liquid supply pipe 46 to be formed, and a pump 47 provided in the cake cleaning liquid supply pipe 46. By driving the pump 47, the cleaning liquid is sent from the cleaning liquid tank to the cake cleaning liquid ejection portion 45, and is ejected from the cake cleaning liquid ejection portion 45 toward the gypsum slurry (cake) on the filter cloth located below.
  • the gypsum slurry (cake) is washed with a washing liquid to remove impurities (for example, metal ions such as magnesium (Mg), chlorine (Cl), and sodium (Na)).
  • impurities for example, metal ions such as magnesium (Mg), chlorine (Cl), and sodium (Na)
  • the cake cleaning liquid include industrial water.
  • the cake cleaning liquid used for washing the cake is sucked by the dehydrating device 37, passes through the filter cloth 31 and the transport belt 32, is sent as the filtrate from the dehydration chamber 371 to the vacuum tank 374, and flows through the liquid discharge pipe 375. It flows down to the filtrate storage tank 6.
  • drying steam is sent to the steam ejection portion 55 (for example, an injection nozzle) of the steam ejection device 54 from a steam pipe 56 connected to a boiler (not shown), and is located below the steam ejection portion 55. It is ejected toward the gypsum slurry on the filter cloth 31. In the gypsum slurry on the filter cloth 31, the water contained in the gypsum slurry is removed by heating with the steam for drying.
  • a steam pipe 56 connected to a boiler (not shown)
  • the gypsum obtained by dehydrating the gypsum slurry on the filter cloth 31 in the dehydration section 36 is located downstream of the dehydration section 36 (for example, the steam ejection section 55) in the transport direction of the transport belt 32. , Removed from the top of the filter cloth 31.
  • the region where the gypsum is removed from the filter cloth 31 in the transport device 3 is referred to as the gypsum discharge portion 43.
  • the gypsum slurry dehydration system 1 provides a filter cloth cleaning liquid ejection portion 51 capable of ejecting the filter cloth cleaning liquid to the filter cloth 31 on the downstream side of the gypsum discharge portion 43 in the transport direction of the transport belt 32.
  • the filter cloth cleaning device 5 to be provided is further provided.
  • the filter cloth cleaning device 5 has a filter cloth cleaning liquid ejection portion 51 (for example, an injection nozzle) arranged below the two drums 33, and one end portion of the filter cloth cleaning liquid ejection portion 51. It has a filter cloth cleaning liquid supply pipe 52 which is connected and whose other end is connected to a cleaning liquid tank (not shown), and a pump 53 provided in the filter cloth cleaning liquid supply pipe 52.
  • the cleaning liquid is sent from the cleaning liquid tank to the filter cloth cleaning liquid ejection portion 51, and is ejected from the filter cloth cleaning liquid ejection portion 51 toward the filter cloth 31. Impurities are removed from the filter cloth 31 by cleaning it with a cleaning solution.
  • the filter cloth cleaning liquid include industrial water.
  • the filter cloth cleaning liquid is ejected toward at least one of the outer surface and the inner surface of the filter cloth 31.
  • the gypsum slurry dehydration system 1 is connected to a filter cloth cleaning liquid receiving portion 58 (for example, a tray) provided below the filter cloth cleaning liquid ejecting portion 51 and one end side to the filter cloth cleaning liquid receiving portion 58. Further, a filter cloth cleaning liquid discharge pipe 59 having the other end extending downward is further provided. The filter cloth cleaning liquid ejected from the filter cloth cleaning liquid ejection portion 51 falls onto the filter cloth cleaning liquid receiving portion 58. The filter cloth cleaning liquid that has fallen onto the filter cloth cleaning liquid receiving portion 58 passes through the filter cloth cleaning liquid discharge pipe 59 and flows down into the filter cloth cleaning liquid storage tank 8 configured to store the filter cloth cleaning liquid.
  • a filter cloth cleaning liquid receiving portion 58 for example, a tray
  • a filter cloth cleaning liquid discharge pipe 59 having the other end extending downward is further provided.
  • the filter cloth cleaning liquid ejected from the filter cloth cleaning liquid ejection portion 51 falls onto the filter cloth cleaning liquid receiving portion 58.
  • the gypsum slurry dehydration system 1 is arranged outside the absorption tower 20A, and the filtrate storage tank 6 is configured to define an internal space 61 for storing the filtrate.
  • the filtrate stored in the filter cloth cleaning liquid storage tank 8 and the filtrate storage tank 6 arranged outside the absorption tower 20A and configured to define the internal space 81 for storing the filter cloth cleaning liquid.
  • the liquid stored in the filtrate discharge line 7 and the filter cloth cleaning liquid storage tank 8 configured to send the filtrate to the wastewater treatment facility 16 that performs the treatment for discharging the filtrate to the outside of the system.
  • a water supply line 9 configured to send to the storage tank 17 is further provided.
  • the liquid (filter liquid) stored in the filtrate storage tank 6 is discharged to the outside of the system after being sent to the wastewater treatment facility 16, and contains the liquid (including the filter cloth cleaning liquid) stored in the filter cloth cleaning liquid storage tank 8.
  • the liquid) is sent to the absorption liquid storage tank 17, mixed with the limestone supplied through a supply line (not shown), and sent to the absorption tower 20A as an absorption liquid.
  • the gypsum slurry dehydration system 1 includes the above-mentioned transport device 3 having a transport belt 32 for transporting the gypsum slurry in a state of being placed on the filter cloth 31 and the filter cloth.
  • the above-mentioned filter cloth cleaning device 5 having a filter cloth cleaning liquid ejection portion 51 (spouting portion) capable of ejecting the filter cloth cleaning liquid with respect to 31 and the above-mentioned above-mentioned configured to store the filtrate separated from the gypsum slurry by the filter cloth 31.
  • the filtrate storage tank 6 and the above-mentioned filtrate discharge line 7 configured to send the filtrate stored in the filtrate storage tank 6 to a wastewater treatment facility 16 that performs a treatment for discharging the filtrate to the outside of the system.
  • the filter cloth cleaning liquid storage tank 8 is different from the liquid storage tank 6, and is configured to store at least the filter cloth cleaning liquid ejected from the filter cloth cleaning liquid ejection portion 51 (spouting portion) to the filter cloth 31.
  • a filter cloth cleaning liquid storage tank 8 is provided.
  • the gypsum slurry discharged from the flue gas desulfurization apparatus 20 absorbs impurities (for example, suspended solids such as combustion ash and soot removed from the exhaust gas and pollutants such as molten heavy metals) from the exhaust gas in the flue gas desulfurization apparatus 20. doing. Then, in a dehydration treatment facility (for example, a transport device 3 or the like), impurities are separated from the gypsum together with the filtrate from the gypsum slurry. Further, the cake washing liquid used for washing the cake contains impurities such as metal ions such as magnesium (Mg), chlorine (Cl) and sodium (Na).
  • impurities for example, suspended solids such as combustion ash and soot removed from the exhaust gas and pollutants such as molten heavy metals
  • the cake cleaning solution sent to the filtrate storage tank as the filtrate after being used for cleaning the filtrate or cake separated from the gypsum slurry is compared with the filter cloth cleaning solution ejected to the filter cloth 31.
  • High impurity content Returning the filtrate having a high impurity content to the circulation system of the absorption liquid in the flue gas desulfurization apparatus 20 is not appropriate because the content of impurities in the absorption liquid in the flue gas desulfurization apparatus 20 increases. It is preferable that the filtrate having a high impurity content is discharged to the outside of the system after the wastewater treatment in the wastewater treatment facility 16.
  • the filtrate separated from the gypsum slurry and the cake cleaning solution used for washing the cake can be stored in the filtrate storage tank 6, and the filter cloth cleaning solution ejected to the filter cloth 31 can be filtered. It can be stored in the cloth cleaning liquid storage tank 8. Then, the filtrate stored in the filtrate storage tank 6 can be sent to the wastewater treatment facility 16 via the filtrate discharge line 7, and can be discharged to the outside of the system after the wastewater treatment in the wastewater treatment facility 16. In this way, the filtrate having a high impurity content and the filter cloth cleaning solution having a low impurity content are separately stored, and the wastewater sent to the wastewater treatment facility 16 is the impurities stored in the filtrate storage tank 6.
  • the amount of wastewater sent from the dewatering treatment equipment for the gypsum slurry to the wastewater treatment equipment 16 can be reduced by the amount of the filter cloth cleaning liquid. Further, by reducing the amount of wastewater sent to the wastewater treatment facility 16, it is possible to suppress an increase in the size of the wastewater treatment facility 16 and an increase in equipment cost.
  • the filtrates having a height H1 exceeding a predetermined height are filtered. It is configured to overflow into the cleaning liquid storage tank 8.
  • the filtrate storage tank 6 has a square tubular inner side surface 62 and a bottom surface 63.
  • the internal space 61 is partitioned by an inner side surface 62 and a bottom surface 63.
  • the filter cloth cleaning liquid storage tank 8 has a square tubular inner side surface 82 and a bottom surface 83.
  • the internal space 81 is partitioned by an inner side surface 82 and a bottom surface 83.
  • the bottom surface 83 of the filter cloth cleaning liquid storage tank 8 is configured to be at the same height as the bottom surface 63 of the filtrate storage tank 6.
  • the filtrate storage tank 6 is arranged adjacent to the filter cloth cleaning liquid storage tank 8 with a weir 64 sandwiched between the filtrate cleaning liquid storage tank 8 and the filter cloth cleaning liquid storage tank 8.
  • the weir 64 is erected upward from the bottom surface 63 in the vertical direction, has one side 62A of the inner side surface 62 on one side, and has one side 82A of the inner side surface 82 on the other side. Have in. In this case, among the filtrates stored in the filtrate storage tank 6, the filtrate that exceeds the height of the upper end of the weir 64, which is the predetermined height H1, exceeds the weir 64 and the filter cloth cleaning liquid storage tank 8 Flow into.
  • one end is connected to the predetermined height position of the filtrate storage tank 6, and the other end is the predetermined height of the filter cloth cleaning liquid storage tank 8.
  • An overflow pipe connected to a position lower than the vertical position may be provided.
  • the filtrate storage tank 6 among the filtrates stored in the filtrate storage tank 6, the filtrate that exceeds a predetermined height H1 overflows into the filter cloth cleaning liquid storage tank 8. It is configured. Therefore, a filtrate other than the predetermined amount of filtrate that needs to be sent to the wastewater treatment facility 16 can be sent to the filter cloth cleaning liquid storage tank 8 without going through complicated equipment such as a pump or level control. It is possible to suppress the complexity and cost of equipment.
  • the above-mentioned filtrate discharge line 7 includes a drainage pipe 71 connected to the above-mentioned filtrate storage tank 6 and the above-mentioned wastewater treatment facility 16, and a drainage pump 72 provided in the drainage pipe 71.
  • a flow control valve 73 provided on the downstream side of the drainage pump 72 in the drainage pipe 71 and configured to be able to adjust the flow rate of the filtrate sent from the filtrate storage tank 6 to the wastewater treatment facility 16 is included at least.
  • FIG. 3 is an explanatory diagram for explaining the wastewater treatment equipment according to the embodiment of the present disclosure.
  • the wastewater treatment facility 16 has an internal space 162 configured to store wastewater, and has a first coagulation sedimentation tank 161 in which coagulation sedimentation treatment is performed and wastewater. It has at least a second coagulation sedimentation tank 163 having a configured internal space 164 and performing a coagulation sedimentation treatment.
  • the second coagulation sedimentation tank 163 is provided on the downstream side in the drainage flow direction with respect to the first coagulation sedimentation tank 161.
  • the wastewater treatment facility 16 is configured to add a coagulant to the first coagulant addition line 165 configured to add the coagulant to the first coagulation settling tank 161 and to add the coagulant to the second coagulation settling tank 163.
  • a flocculant addition line 166 By adding a coagulant (for example, an aluminum compound such as aluminum sulfate) to the first coagulation sedimentation tank 161 by the first coagulant addition line 165, aluminum hydroxide flocs are precipitated in the wastewater and removed from the exhaust gas. Suspended solids such as burnt ash and soot and impurities such as pollutants such as molten heavy metals are included in the flocs and precipitated.
  • a coagulant for example, an aluminum compound such as aluminum sulfate
  • a coagulant for example, sodium carbonate
  • a pH adjuster may also be added to the first coagulation sedimentation tank 161 and the second coagulation sedimentation tank 163.
  • the first coagulation sedimentation tank 161 is connected to the downstream side of the flow rate adjusting valve 73 of the drainage pipe 71, and drainage (filter liquid) is sent from the filtrate storage tank 6 via the drainage pipe 71.
  • the first coagulation sedimentation tank 161 is the wastewater that has been condensed in the first coagulation sedimentation tank 161 among the wastewater stored in the first coagulation sedimentation tank 161. It is configured to overflow into the second coagulation sedimentation tank 163.
  • the first coagulation sedimentation tank 161 has a weir 167 provided between the second coagulation sedimentation tank 163 arranged adjacent to the first coagulation sedimentation tank 161 and drainage from the weir 167. Further includes a partition 168 provided on the upstream side in the flow direction. The partition 168 hangs below the upper end of the weir 167, so that the first coagulation sedimentation tank 161 is located on one side where drainage is discharged from the drainage pipe 71 and on the side opposite to the one side with the partition 168 in between. It is divided into the other side and the other side.
  • the wastewater treatment equipment 16 includes an impurity removing mechanism (not shown) configured to remove the settled flocs in the first coagulation sedimentation tank 161 and the second coagulation sedimentation tank 163. Further, in some other embodiments, an overflow pipe may be provided instead of the weir 167 described above.
  • the above-mentioned filtrate discharge line 7 sends an amount of filtrate corresponding to the treatment performance of the wastewater treatment equipment 16 to the wastewater treatment equipment 16.
  • the filtrate discharge line 7 includes a drainage pipe 71 connected to the filtrate storage tank 6 and the wastewater treatment facility 16, a drainage pump 72 provided in the drainage pipe 71, and a drainage pump 72 in the drainage pipe 71. Since the flow rate adjusting valve 73 provided on the downstream side of the above is included, the flow rate of the filtrate sent from the filtrate storage tank 6 to the wastewater treatment facility 16 via the drainage pipe 71 can be adjusted. Therefore, the filtrate discharge line 7 can send an amount of filtrate corresponding to the treatment performance of the wastewater treatment facility 16 to the wastewater treatment facility 16.
  • the gypsum slurry dehydration system 1 described above comprises the above-mentioned absorption liquid storage tank 17 configured to store the absorption liquid that is brought into gas-liquid contact with the exhaust gas in the flue gas desulfurization apparatus 20, and the filter cloth cleaning liquid.
  • a water supply line 9 configured to send the liquid stored in the storage tank 8 to the absorption liquid storage tank 17 is further provided.
  • the filter cloth cleaning liquid Since the amount of impurities adhering to the filter cloth 31 after the gypsum is discharged is small, the filter cloth cleaning liquid has a low impurity content even if it absorbs the impurities adhering to the filter cloth 31.
  • a filtrate having a high impurity content may overflow from the filtrate storage tank 8 into the filter cloth cleaning liquid storage tank 8, but since it is diluted by the filter cloth cleaning liquid, it is stored in the filter cloth cleaning liquid storage tank 8. The liquid has a lower impurity content than the filtrate stored in the filtrate storage tank 6.
  • the liquid stored in the filter cloth cleaning liquid storage tank 8 having a low impurity content is sent to the absorption liquid storage tank 17 via the water supply line 9, and the liquid is discharged to the flue gas desulfurization apparatus 20. It can be returned to the circulation system of the absorption liquid in the above and reused as the absorption liquid.
  • the above-mentioned water supply line 9 has, as shown in FIG. 2, a water supply pipe 91 connected to the above-mentioned filter cloth cleaning liquid storage tank 8 and the above-mentioned absorption liquid storage tank 17, and a water supply pipe. Includes a water pump 92 provided in 91.
  • the water supply pump 92 is configured so that the rotation speed is controlled according to the liquid level height H3 of the liquid stored in the filter cloth cleaning liquid storage tank 8.
  • the above-mentioned gypsum slurry dehydration system 1 is configured to acquire the liquid level height H3 of the liquid stored in the filter cloth cleaning liquid storage tank 8.
  • a control device including a surface height acquisition device 93 and a rotation number indicating unit 941 configured to indicate the rotation number to the water supply pump 92 according to the liquid level height H3 acquired by the liquid level height acquisition device 93. 94 and are further provided.
  • the liquid level height acquisition device 93 examples include an infrared type liquid level sensor.
  • the control device 94 is an electronic control unit for adjusting the rotation speed of the water supply pump 92, and is a CPU (processor) (not shown), a memory such as ROM or RAM, a storage device such as an external storage device, an I / O interface, and communication. It may be configured as a microcomputer including an interface or the like. Then, for example, each functional unit is realized by the CPU operating (for example, data calculation) according to the instruction of the program loaded in the main storage device of the memory.
  • the control device 94 is configured to be able to send and receive signals to and from the water supply pump 92 and the liquid level height acquisition device 93.
  • the water supply pump 92 is electrically controlled by a signal sent from the control device 94, and is configured to be driven or stopped and its rotation speed can be adjusted according to the signal.
  • Examples of such a water pump 92 include a water pump having a built-in inverter motor or the like.
  • the rotation speed indicator 941 instructs the water supply pump 92 to stop when the liquid level height H3 sent from the liquid level height acquisition device 93 does not reach the lower limit threshold value LH. .. Further, in the state where the water supply pump 92 is stopped, the rotation speed indicator 941 is driven by the water supply pump 92 when the liquid level height H3 sent from the liquid level height acquisition device 93 becomes equal to or higher than the lower limit threshold value LH. Instruct to do. Further, when the liquid level height H3 sent from the liquid level height acquisition device 93 is equal to or lower than the upper limit threshold value UH and equal to or higher than the lower limit threshold value LH, the rotation speed indicating unit 941 gives the water supply pump 92 the first rotation speed. Instruct to rotate by.
  • the rotation speed indicator 941 uses a second rotation speed faster than the first rotation speed to the water supply pump 92. Instruct to rotate.
  • the upper limit threshold value UH is set lower than a predetermined height H1 (height of the upper end of the weir 64).
  • the rotation speed indicating unit 941 continuously or stepwise instructs the water supply pump 92 to rotate as the liquid level height H3 sent from the liquid level height acquisition device 93 increases. It may be configured to increase the number.
  • the water supply line 9 includes a water supply pipe 91 connected to the filter cloth cleaning liquid storage tank 8 and the absorption liquid storage tank 17, and a water supply pump 92 provided in the water supply pipe 91.
  • the water supply pump 92 is configured so that the rotation speed is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8.
  • the rotation speed of the water supply pump 92 is controlled so that the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8 does not become excessively high, so that the liquid from the filter cloth cleaning liquid storage tank 8 Can be suppressed from overflowing.
  • FIG. 4 is an explanatory diagram for explaining another example of the gypsum slurry dehydration system according to the embodiment of the present disclosure.
  • the water supply line 9 described above is provided in the water supply pipe 91, the water supply pump 92 provided in the water supply pipe 91, and the water supply pipe 91, as shown in FIG.
  • a flow rate control valve 95 configured to be able to adjust the flow rate of the liquid sent from the cloth cleaning liquid storage tank 8 to the absorption liquid storage tank 17 is included.
  • the flow rate control valve 95 is configured so that its opening degree is controlled according to the liquid level height H3 of the liquid stored in the filter cloth cleaning liquid storage tank 8. In this case, the rotation speed of the water supply pump 92 is kept constant.
  • the above-mentioned gypsum slurry dehydration system 1 has the above-mentioned liquid level height acquisition device 93 and the liquid level height H3 acquired by the liquid level height acquisition device 93.
  • a control device 94A (94) including an opening degree indicating unit 942 configured to instruct the opening degree to the flow rate control valve 95 is provided.
  • the control device 94A is an electronic control unit for adjusting the opening degree of the flow control valve 95, and includes a CPU (processor) (not shown), a memory such as ROM and RAM, a storage device such as an external storage device, and an I / O interface. It may be configured as a microcomputer including a communication interface or the like. Then, for example, each functional unit is realized by the CPU operating (for example, data calculation) according to the instruction of the program loaded in the main storage device of the memory.
  • the control device 94A is configured to be able to send and receive signals to and from the flow rate control valve 95 and the liquid level height acquisition device 93.
  • the flow rate control valve 95 is electrically controlled by a signal sent from the control device 94A, and in response to the signal, the valve body of the flow rate control valve 95 is driven to open and close the flow path inside the flow rate control valve 95.
  • the opening degree of the flow rate control valve 95 can be adjusted to a desired opening degree other than fully closed and fully open. Examples of such a flow rate control valve 95 include a control valve.
  • the flow rate control valve 95 is provided on the downstream side (absorption liquid storage tank 17 side) of the water supply pipe 91 with respect to the water supply pump 92.
  • the opening degree indicating unit 942 is fully closed to the flow control valve 95 when the liquid level height H3 sent from the liquid level height acquisition device 93 does not reach the lower limit threshold value LH. Instruct. Further, when the flow rate control valve 95 is closed and the liquid level height H3 sent from the liquid level height acquisition device 93 becomes equal to or higher than the lower limit threshold value LH, the opening degree indicating unit 942 receives the flow rate control valve 95. Instruct to open. Further, when the liquid level height H3 sent from the liquid level height acquisition device 93 is equal to or lower than the upper limit threshold value UH and equal to or higher than the lower limit threshold value LH, the opening degree indicating unit 942 increases the opening degree of the flow rate control valve 95. Instruct the first opening.
  • the flow rate control valve 95 When the liquid level height H3 sent from the liquid level height acquisition device 93 exceeds the upper limit threshold value UH, the flow rate control valve 95 has an opening degree of the flow rate control valve 95 that is wider than the first opening degree. It is instructed to have an opening degree of 2 (for example, fully open). In some other embodiments, the opening degree indicating unit 942 instructs the flow rate control valve 95 continuously or stepwise as the liquid level height H3 sent from the liquid level height acquisition device 93 increases. The opening degree may be increased to increase the flow rate of the liquid passing through the flow rate control valve 95.
  • the flow rate control valve 95 described above has two positions, fully closed and fully open, but may be configured so as not to be adjusted to an opening other than fully closed and fully open.
  • the opening degree indicating unit 942 instructs the flow control valve 95 to open or fully close as the opening degree.
  • the opening degree indicating unit 942 can increase the flow rate of the liquid passing through the flow rate control valve 95 by increasing the ratio of the period during which the flow rate control valve 95 is fully opened within a certain period. Examples of such a flow rate control valve 95 include a solenoid valve and the like.
  • the water supply line 9 includes the water supply pipe 91, the water supply pump 92 provided in the water supply pipe 91, and the flow rate control valve 95 provided in the water supply pipe 91.
  • the flow rate control valve 95 is configured so that its opening degree is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8.
  • the opening degree of the flow rate control valve 95 is controlled so that the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8 does not become excessively high, so that the filter cloth cleaning liquid storage tank 8 can be used as described above. It is possible to prevent the liquid from overflowing.
  • the present disclosure is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.
  • the gypsum slurry dehydration system (1) is A gypsum slurry dehydration system (1) for dehydrating the gypsum slurry discharged from the flue gas desulfurization apparatus (20).
  • a transport device (3) having a transport belt (32) for transporting the gypsum slurry in a state of being placed on a filter cloth (31).
  • a filter cloth cleaning device (5) having a ejection portion (filter cloth cleaning liquid ejection portion 51) capable of ejecting the filter cloth cleaning liquid onto the filter cloth (31).
  • a filtrate storage tank (6) configured to store the filtrate separated from the gypsum slurry by the filter cloth (31), and A filtrate discharge line (7) configured to send the filtrate stored in the filtrate storage tank (6) to a wastewater treatment facility (16) that performs a treatment for discharging the filtrate to the outside of the system.
  • a filter cloth cleaning liquid storage tank (8) configured to store at least the cleaning liquid is provided.
  • the gypsum slurry discharged from the flue gas desulfurization device absorbs impurities (for example, suspended solids such as combustion ash and soot removed from the exhaust gas and pollutants such as molten heavy metals) from the exhaust gas in the flue gas desulfurization device. There is. Then, in a dehydration treatment facility (for example, a transport device), impurities are separated from the gypsum together with the filtrate from the gypsum slurry. Further, the cake washing liquid used for washing the cake contains impurities such as metal ions such as magnesium (Mg), chlorine (Cl) and sodium (Na).
  • impurities for example, suspended solids such as combustion ash and soot removed from the exhaust gas and pollutants such as molten heavy metals
  • the cake cleaning solution sent to the filtrate storage tank as the filtrate after being used for cleaning the filtrate or cake separated from the gypsum slurry is compared with the filter cloth cleaning solution sprayed onto the filter cloth.
  • High impurity content Returning the filtrate having a high impurity content to the circulation system of the absorption liquid in the flue gas desulfurization apparatus is not appropriate because the content of impurities in the absorption liquid in the flue gas desulfurization apparatus increases. It is preferable that the filtrate having a high impurity content is discharged to the outside of the system after the wastewater treatment in the wastewater treatment facility.
  • the filtrate separated from the gypsum slurry and the cake cleaning solution used for washing the cake can be stored in the filtrate storage tank (6), and the filter cloth ejected to the filter cloth can be stored.
  • the cleaning liquid can be stored in the filter cloth cleaning liquid storage tank (8).
  • the filtrate stored in the filtrate storage tank can be sent to the wastewater treatment facility (16) via the filtrate discharge line (7), and can be discharged to the outside of the system after the wastewater treatment in the wastewater treatment facility.
  • the filtrate with a high impurity content and the filter cloth cleaning solution with a low impurity content are stored separately, and the wastewater sent to the wastewater treatment facility is stored in the filtrate storage tank.
  • the amount of wastewater sent from the dewatering facility for the gypsum slurry to the wastewater treatment facility can be reduced by the amount of the filter cloth cleaning solution.
  • the amount of wastewater sent to the wastewater treatment facility it is possible to suppress an increase in the size of the wastewater treatment facility and an increase in equipment cost.
  • the gypsum slurry dehydration system (1) according to 1) above.
  • the filtrate storage tank (6) among the filtrates stored in the filtrate storage tank (6), the filtrate exceeding a predetermined height overflows into the filter cloth cleaning liquid storage tank (8). It is configured as follows.
  • the filtrate exceeding a predetermined height exceeds the filter cloth cleaning liquid storage tank (8). It is configured to flow. Therefore, a filtrate other than the predetermined amount of filtrate that needs to be sent to the wastewater treatment facility (16) is sent to the filter cloth cleaning liquid storage tank (8) without going through complicated equipment such as a pump or level control. This can reduce the complexity and cost of equipment. Further, for example, even when a filtrate exceeding the amount that can be treated by the wastewater treatment equipment (16) is supplied to the filtrate storage tank (8), the wastewater treatment equipment (16) is supplied from the filtrate storage tank (8).
  • the filter cloth cleaning solution storage tank (8) Since it is stored in the tank (8), it is not necessary to make the wastewater treatment facility (16) a large facility with a margin, and it is possible to suppress the increase in the cost of the wastewater treatment facility (16).
  • the filtrate discharge line (7) is The drainage pipe (71) connected to the filtrate storage tank (6) and the wastewater treatment facility (16), The drainage pump (72) provided in the drainage pipe (71) and It is provided on the downstream side of the drainage pump (72) in the drainage pipe (71), and the flow rate of the filtrate sent from the filtrate storage tank (6) to the wastewater treatment facility (16) can be adjusted. Includes at least the flow control valve (73) provided.
  • the filtrate discharge line is located on the downstream side of the drainage pipe connected to the filtrate storage tank and the wastewater treatment facility, the drainage pump provided in the drainage pipe, and the drainage pump in the drainage pipe. Since the flow control valve provided is included, the flow rate of the filtrate sent from the filtrate storage tank to the wastewater treatment facility via the drainage pipe can be adjusted. Therefore, the filtrate discharge line can send an amount of filtrate corresponding to the treatment performance of the wastewater treatment facility to the wastewater treatment facility.
  • the gypsum slurry dehydration system (1) according to 3) above.
  • an absorption liquid storage tank (17) configured to store an absorption liquid that is in gas-liquid contact with exhaust gas
  • a water supply line (9) configured to send the liquid stored in the filter cloth cleaning liquid storage tank (8) to the absorption liquid storage tank (17) is further provided.
  • the filter cloth cleaning solution Since the amount of impurities adhering to the filter cloth after the gypsum is discharged is small, the filter cloth cleaning solution has a low impurity content even if it absorbs the impurities adhering to the filter cloth.
  • a filter medium having a high impurity content may overflow from the filter medium cleaning liquid storage tank to the filter cloth cleaning liquid storage tank, but since it is diluted by the filter cloth cleaning liquid, the liquid stored in the filter cloth cleaning liquid storage tank is The content of impurities is lower than that of the filtrate stored in the filtrate storage tank.
  • the liquid stored in the filter cloth cleaning liquid storage tank having a low impurity content is sent to the absorption liquid storage tank 17 via the water supply line, whereby the liquid is flue-gas desulfurized. It can be returned to the circulation system of the absorption liquid in the above and reused as the absorption liquid.
  • the water supply line (9) is The water supply pipe (91) connected to the filter cloth cleaning liquid storage tank (8) and the absorption liquid storage tank (17), and Including the water supply pump (92) provided in the water supply pipe (91).
  • the water supply pump (92) is configured so that the rotation speed is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank (8).
  • the water supply line includes a water supply pipe connected to the filter cloth cleaning liquid storage tank and the absorption liquid storage tank, and a water supply pump provided in the water supply pipe.
  • the water supply pump is configured so that the rotation speed is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank. In this case, the rotation speed of the water supply pump is controlled so that the liquid level of the liquid stored in the filter cloth cleaning liquid storage tank does not become excessively high, so that the above liquid overflows from the filter cloth cleaning liquid storage tank. Can be suppressed.
  • the water supply line (9) is The water supply pipe (91) connected to the filter cloth cleaning liquid storage tank (8) and the absorption liquid storage tank (17), and The water supply pump (92) provided in the water supply pipe (91) and A flow rate control valve (95) provided in the water supply pipe (91) and configured to be able to adjust the flow rate of the liquid sent from the filter cloth cleaning liquid storage tank (8) to the absorption liquid storage tank (17).
  • the flow rate control valve (95) is configured so that the opening degree is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank (8).
  • the water supply line includes the water supply pipe, the water supply pump provided in the water supply pipe, and the flow rate control valve provided in the water supply pipe.
  • the flow rate control valve is configured so that its opening degree is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank. In this case, the opening of the flow rate control valve is controlled so that the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank does not become excessively high, so that the liquid overflows from the filter cloth cleaning liquid storage tank. Can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Filtration Of Liquid (AREA)

Abstract

A gypsum slurry dehydration system for dehydrating gypsum slurry discharged from a flue gas desulfurization apparatus comprises: a conveying device having a conveying belt for conveying the gypsum slurry on a filter cloth; a filter cloth cleaning device that has an ejection part capable of ejecting a filter cloth cleaning liquid onto the filter cloth; a filtrate storage tank configured to store a filtrate separated from the gypsum slurry by the filter cloth; a filtrate discharge line configured to send the filtrate stored in the filtrate storage tank to a wastewater treatment facility that performs treatment to discharge the filtrate to the outside of the system; and a filter cloth cleaning liquid storage tank that is different from the filtrate storage tank and is configured to store at least the filter cloth cleaning liquid ejected from the ejection part onto the filter cloth.

Description

石膏スラリー脱水システムGypsum slurry dehydration system
 本開示は、排煙脱硫装置で副生される石膏スラリーを脱水するための石膏スラリー脱水システムに関する。 The present disclosure relates to a gypsum slurry dehydration system for dehydrating gypsum slurry produced as a by-product in a flue gas desulfurization apparatus.
 例えばボイラなどの燃焼機関から排出される排ガスには、硫黄酸化物(SOx)などの大気汚染物質が含まれるので、大気放出前に、排煙脱硫装置において排ガス中から硫黄酸化物が除去される。 For example, since the exhaust gas emitted from a combustion engine such as a boiler contains air pollutants such as sulfur oxides (SOx), sulfur oxides are removed from the exhaust gas in the flue gas desulfurization apparatus before being released into the atmosphere. ..
 排煙脱硫装置としては、石灰石膏法を用いる湿式の排煙脱硫装置が広く知られている。湿式の排煙脱硫装置では、排ガスと石灰石スラリー(吸収液)とを接触させて、排ガス中の硫黄酸化物(例えば、亜硫酸ガス)を吸収液に吸収させることで、排ガス中から硫黄酸化物を除去している。吸収液に吸収された硫黄酸化物は、吸収液中のカルシウムと反応して亜硫酸カルシウムとなり、該亜硫酸カルシウムが吸収液中に供給される空気により酸化し、石膏となる。湿式の排煙脱硫装置では、石膏スラリー(石膏を含む吸収液)が副生される。 As a flue gas desulfurization device, a wet flue gas desulfurization device using a lime gypsum method is widely known. In a wet flue gas desulfurization device, the exhaust gas is brought into contact with a limestone slurry (absorption liquid), and sulfur oxides (for example, sulfurous acid gas) in the exhaust gas are absorbed by the absorption liquid to remove sulfur oxides from the exhaust gas. It is being removed. The sulfur oxide absorbed in the absorption liquid reacts with calcium in the absorption liquid to become calcium sulfite, and the calcium sulfite is oxidized by the air supplied into the absorption liquid to become gypsum. In a wet flue gas desulfurization apparatus, gypsum slurry (absorption liquid containing gypsum) is produced as a by-product.
 特許文献1には、湿式の排煙脱硫装置から抜き出した石膏スラリーを含むスラリー液が石膏分離機において固液分離させて石膏を回収することが開示されている。また、特許文献1には、ドラム間に張設したベルト上にろ布が走行自在に支持され、ろ布上に供給される石膏スラリーをベルトの下方から吸引してろ液と石膏とを分離するベルト式の石膏分離機、石膏スラリーを排出後のろ布を洗浄液により洗浄する洗浄装置、および上記ろ布を洗浄後の洗浄液と上記ろ液を貯留する液体貯留槽が開示されている。液体貯留槽に貯留された液体は、排水処理設備に送られ、排水処理設備において放流基準を満たす状態に排水処理された後に系外に放流される。 Patent Document 1 discloses that a slurry liquid containing a gypsum slurry extracted from a wet flue gas desulfurization apparatus is solid-liquid separated by a gypsum separator to recover gypsum. Further, in Patent Document 1, the filter cloth is movably supported on the belt stretched between the drums, and the gypsum slurry supplied on the filter cloth is sucked from below the belt to separate the filtrate and the gypsum. A belt-type plaster separator, a cleaning device for cleaning the filter cloth after discharging the plaster slurry with a cleaning liquid, and a liquid storage tank for storing the cleaning liquid after cleaning the filter cloth and the filtrate are disclosed. The liquid stored in the liquid storage tank is sent to the wastewater treatment facility, and after the wastewater is treated in a state where the wastewater treatment facility meets the discharge standard, the liquid is discharged to the outside of the system.
特開平8-12389号公報Japanese Unexamined Patent Publication No. 8-12389
 特許文献1に示されるように、ろ布を洗浄後の洗浄液およびろ液は、同一の液体貯留槽に回収された後に、排水として排水処理設備に送られていた。上記排水処理設備は、液体貯留槽から送られる大量の排水を処理する必要があるため、その大型化や設備費用の高額化を招く虞がある。 As shown in Patent Document 1, the cleaning liquid and the filtrate after cleaning the filter cloth were collected in the same liquid storage tank and then sent to the wastewater treatment facility as wastewater. Since the wastewater treatment equipment needs to treat a large amount of wastewater sent from the liquid storage tank, there is a risk that the size of the wastewater treatment equipment will increase and the equipment cost will increase.
 上述した事情に鑑みて、本開示の少なくとも一実施形態の目的は、石膏スラリーの脱水処理設備から排水処理設備に送られる排水の量を少なくすることができ、排水処理設備の大型化や設備費用の高額化を抑制することができる石膏スラリー脱水システムを提供することにある。 In view of the above circumstances, an object of at least one embodiment of the present disclosure is to reduce the amount of wastewater sent from the gypsum slurry dehydration treatment equipment to the wastewater treatment equipment, and to increase the size of the wastewater treatment equipment and the equipment cost. It is an object of the present invention to provide a gypsum slurry dehydration system capable of suppressing the increase in price.
 本開示にかかる石膏スラリー脱水システムは、
 排煙脱硫装置から排出される石膏スラリーを脱水するための石膏スラリー脱水システムであって、
 前記石膏スラリーをろ布上に載せた状態で搬送する搬送ベルトを有する搬送装置と、
 前記ろ布に対してろ布洗浄液を噴出可能な噴出部を有するろ布洗浄装置と、
 前記ろ布により前記石膏スラリーから分離されたろ液を貯留するように構成されたろ液貯留槽と、
 前記ろ液貯留槽に貯留された前記ろ液を、前記ろ液を系外に排出するための処理を行う排水処理設備に送るように構成されたろ液排出ラインと、
 前記ろ液貯留槽とは異なるろ布洗浄液貯留槽であって、前記噴出部から前記ろ布に対して噴出された前記ろ布洗浄液を少なくとも貯留するように構成されたろ布洗浄液貯留槽と、を備える。
The gypsum slurry dehydration system according to the present disclosure is
A gypsum slurry dehydration system for dehydrating gypsum slurry discharged from a flue gas desulfurization apparatus.
A transport device having a transport belt that transports the gypsum slurry in a state of being placed on a filter cloth, and
A filter cloth cleaning device having a ejection portion capable of ejecting the filter cloth cleaning liquid onto the filter cloth, and a filter cloth cleaning device.
A filtrate storage tank configured to store the filtrate separated from the gypsum slurry by the filter cloth, and
A filtrate discharge line configured to send the filtrate stored in the filtrate storage tank to a wastewater treatment facility that performs a treatment for discharging the filtrate to the outside of the system.
A filter cloth cleaning liquid storage tank different from the filtrate storage tank, which is configured to store at least the filter cloth cleaning liquid ejected from the ejection portion onto the filter cloth. Be prepared.
 本開示の少なくとも一実施形態によれば、石膏スラリーの脱水処理設備から排水処理設備に送られる排水の量を少なくすることができ、排水処理設備の大型化や設備費用の高額化を抑制することができる石膏スラリー脱水システムが提供される。 According to at least one embodiment of the present disclosure, the amount of wastewater sent from the gypsum slurry dehydration treatment equipment to the wastewater treatment equipment can be reduced, and the size of the wastewater treatment equipment and the increase in equipment cost can be suppressed. A gypsum slurry drainage system capable of draining is provided.
本開示の一実施形態にかかる石膏スラリー脱水システムを備える排ガス洗浄システムの全体構成を概略的に示す概略構成図である。It is a schematic block diagram which shows schematic the whole structure of the exhaust gas cleaning system including the gypsum slurry dehydration system which concerns on one Embodiment of this disclosure. 本開示の一実施形態にかかる石膏スラリー脱水システムの全体構成を概略的に示す概略構成図である。It is a schematic block diagram which shows schematic the whole structure of the gypsum slurry dehydration system which concerns on one Embodiment of this disclosure. 本開示の一実施形態における排水処理設備を説明するための説明図である。It is explanatory drawing for demonstrating the wastewater treatment equipment in one Embodiment of this disclosure. 本開示の一実施形態にかかる石膏スラリー脱水システムの他の一例を説明するための説明図である。It is explanatory drawing for demonstrating another example of the gypsum slurry dehydration system which concerns on one Embodiment of this disclosure.
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
Hereinafter, some embodiments of the present disclosure will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present disclosure, but are merely explanatory examples. Absent.
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range where the same effect can be obtained. The shape including the part and the like shall also be represented.
On the other hand, the expression "includes", "includes", or "has" one component is not an exclusive expression that excludes the existence of another component.
The same reference numerals may be given to the same configurations, and the description thereof may be omitted.
(排ガス洗浄システム)
 図1は、本開示の一実施形態にかかる石膏スラリー脱水システムを備える排ガス洗浄システムの全体構成を概略的に示す概略構成図である。
 図1に示されるように、幾つかの実施形態にかかる石膏スラリー脱水システム1は、排ガス洗浄システム10に搭載される。排ガス洗浄システム10は、図1に示されるように、例えばエンジンやボイラなどの燃焼設備11から排出される排ガスを脱硫するための湿式の排煙脱硫装置20と、排煙脱硫装置20から排出される石膏スラリーを脱水するための上記石膏スラリー脱水システム1と、を備える。
(Exhaust gas cleaning system)
FIG. 1 is a schematic configuration diagram schematically showing an overall configuration of an exhaust gas cleaning system including a gypsum slurry dehydration system according to an embodiment of the present disclosure.
As shown in FIG. 1, the gypsum slurry dehydration system 1 according to some embodiments is mounted on the exhaust gas cleaning system 10. As shown in FIG. 1, the exhaust gas cleaning system 10 is discharged from a wet flue gas desulfurization device 20 for desulfurizing exhaust gas discharged from a combustion facility 11 such as an engine or a boiler, and a flue gas desulfurization device 20. The gypsum slurry desulfurization system 1 for dehydrating the gypsum slurry is provided.
 排煙脱硫装置20は、燃焼設備11から排出される排ガスと吸収液とを接触させて、排ガス中の硫黄酸化物(例えば、亜硫酸ガス)を吸収液に吸収させることで、排ガス中から硫黄酸化物を除去するように構成されている。石灰石膏法を用いる排煙脱硫装置20では、例えば、石灰石を溶解(分散)させた石灰石スラリーなどのアルカリ成分を含むスラリー液を上記吸収液とし、石膏スラリー(石膏を含む吸収液)が副生される。なお、スラリーは、厳密には液体ではないが、本明細書では便宜的に液体として扱うものとする。 The flue gas desulfurization apparatus 20 brings the exhaust gas discharged from the combustion equipment 11 into contact with the absorbing liquid to absorb sulfur oxides (for example, sulfurous acid gas) in the exhaust gas into the absorbing liquid, thereby oxidizing sulfur from the exhaust gas. It is configured to remove objects. In the flue gas desulfurization apparatus 20 using the limestone method, for example, a slurry liquid containing an alkaline component such as a limestone slurry in which limestone is dissolved (dispersed) is used as the absorption liquid, and a gypsum slurry (absorption liquid containing gypsum) is a by-product. Will be done. Although the slurry is not strictly a liquid, it is treated as a liquid in the present specification for convenience.
 排煙脱硫装置20は、その内部に導入される排ガスを脱硫するように構成された吸収塔20Aを含む。吸収塔20Aは、燃焼設備11から排出された排ガスが導入される内部空間21を内部に画定するように構成された吸収塔本体22と、内部空間21に排ガスを導入するための排ガス導入口23と、内部空間21から排ガスを排出するための排ガス排出口24と、を含む。排ガス導入口23および排ガス排出口24の夫々は、吸収塔本体22と連通している。 The flue gas desulfurization apparatus 20 includes an absorption tower 20A configured to desulfurize the exhaust gas introduced into the flue gas desulfurization apparatus 20. The absorption tower 20A includes an absorption tower main body 22 configured to internally define an internal space 21 into which the exhaust gas discharged from the combustion equipment 11 is introduced, and an exhaust gas introduction port 23 for introducing the exhaust gas into the internal space 21. And an exhaust gas discharge port 24 for discharging exhaust gas from the internal space 21. Each of the exhaust gas introduction port 23 and the exhaust gas discharge port 24 communicates with the absorption tower main body 22.
 内部空間21は、排ガスと吸収液を気液接触させるための気液接触部21Aと、気液接触部21Aよりも下方に位置するとともに、気液接触部21Aにおいて排ガス中の硫黄酸化物(例えば、亜硫酸ガス)を吸収した吸収液が貯留される液だまり部21Bと、を含む。 The internal space 21 is located below the gas-liquid contact portion 21A for bringing the exhaust gas and the absorbed liquid into gas-liquid contact, and is located below the gas-liquid contact portion 21A, and the sulfur oxide (for example, sulfur oxide in the exhaust gas) in the gas-liquid contact portion 21A. , A liquid pool portion 21B in which an absorption liquid that has absorbed (sulfurous acid gas) is stored.
 燃焼設備11から排出された排ガスは、排ガス導入口23を介して内部空間21に導入される。内部空間21に導かれた排ガスは、内部空間21を上昇しながら流れて気液接触部21Aを通過する際に吸収液により洗浄され、排ガス中の硫黄酸化物などが除去される。気液接触部21Aにおいて洗浄後の排ガスは、浄化済みの排ガスである浄化ガスとして、排ガス排出口24を介して吸収塔20Aの外部に排出される。吸収塔20Aの外部に排出された浄化ガスは、排ガス排出口24よりも浄化ガス(排ガス)の流れ方向の下流側に設けられた不図示の煙突から大気中に放出される。図1に示されるように、浄化ガス(排ガス)から水分を除去するように構成されるミストエリミネータ25を、気液接触部21Aよりも浄化ガス(排ガス)の流れ方向の下流側に設けてもよい。 The exhaust gas discharged from the combustion equipment 11 is introduced into the internal space 21 through the exhaust gas introduction port 23. The exhaust gas guided to the internal space 21 flows while rising in the internal space 21 and is washed by the absorbing liquid when passing through the gas-liquid contact portion 21A, and sulfur oxides and the like in the exhaust gas are removed. The exhaust gas after cleaning in the gas-liquid contact portion 21A is discharged to the outside of the absorption tower 20A through the exhaust gas discharge port 24 as purified gas which is the purified exhaust gas. The purified gas discharged to the outside of the absorption tower 20A is discharged into the atmosphere from a chimney (not shown) provided on the downstream side of the exhaust gas discharge port 24 in the flow direction of the purified gas (exhaust gas). As shown in FIG. 1, even if the mist eliminator 25 configured to remove water from the purified gas (exhaust gas) is provided downstream of the gas-liquid contact portion 21A in the flow direction of the purified gas (exhaust gas). Good.
 図示される実施形態では、吸収塔20Aは、気液接触部21Aに配置される噴霧装置26をさらに含む。噴霧装置26は、気液接触部21Aを通過する排ガスに対して吸収液(石灰石スラリー)を噴霧するように構成されている。噴霧装置26から噴霧された吸収液は、排ガスに接触して排ガス中に含まれる硫黄酸化物(例えば、亜硫酸ガス)を吸収除去する。 In the illustrated embodiment, the absorption tower 20A further includes a spraying device 26 arranged at the gas-liquid contact portion 21A. The spraying device 26 is configured to spray an absorbing liquid (limestone slurry) on the exhaust gas passing through the gas-liquid contact portion 21A. The absorbing liquid sprayed from the spraying device 26 comes into contact with the exhaust gas and absorbs and removes sulfur oxides (for example, sulfurous acid gas) contained in the exhaust gas.
 噴霧装置26は、排ガスの流れ方向に交差する方向である水平方向に沿って延在する噴霧管261と、噴霧管261に設けられた複数の噴霧ノズル262と、を含む。噴霧ノズル262は、図1に示されるように、排ガスの流れ方向における下流側に向かって、すなわち、鉛直方向における上方に向かって、吸収液を噴霧する噴霧口263を有する。なお、他の幾つかの実施形態では、噴霧ノズル262は、鉛直方向における下方に向かって、吸収液を噴霧する噴霧口を有していてもよい。 The spraying device 26 includes a spray pipe 261 extending along a horizontal direction that intersects the flow direction of exhaust gas, and a plurality of spray nozzles 262 provided in the spray pipe 261. As shown in FIG. 1, the spray nozzle 262 has a spray port 263 that sprays the absorption liquid toward the downstream side in the flow direction of the exhaust gas, that is, toward the upper side in the vertical direction. In some other embodiments, the spray nozzle 262 may have a spray port for spraying the absorbing liquid downward in the vertical direction.
 液だまり部21Bには、内部空間21に導かれた排ガスに対して噴霧ノズル262の噴霧口263から噴霧され、排ガス中に含まれる硫黄酸化物を吸収除去した吸収液が落下して貯留される。液だまり部21Bに貯留される吸収液には、排ガスから吸収した硫黄酸化物により生じた亜硫酸塩や、亜硫酸塩が酸化することで生成される石膏(硫酸カルシウム)が含まれることがある。 In the liquid pool portion 21B, the exhaust gas guided to the internal space 21 is sprayed from the spray port 263 of the spray nozzle 262, and the absorbing liquid that has absorbed and removed the sulfur oxide contained in the exhaust gas falls and is stored. .. The absorbing liquid stored in the pool portion 21B may contain sulfites produced by sulfur oxides absorbed from exhaust gas and gypsum (calcium sulfate) produced by oxidation of sulfites.
 吸収塔本体22には、液だまり部21Bに貯留される吸収液を外部に抜き出すための吸収液抜出口221、および液だまり部21Bに貯留される吸収液に酸化用気体(例えば、空気)を供給するためのノズルを貫通させるノズル貫通口222が開口している。吸収液抜出口221およびノズル貫通口222の夫々は、液だまり部21Bに連通している。また、吸収塔本体22には、石灰石スラリーを導入するための吸収液供給口223、および外部に抜き出した吸収液を液だまり部21Bに返送するための吸収液返送口224が開口している。吸収液供給口223および吸収液返送口224の夫々は、液だまり部21Bよりも上方における内部空間21に連通している。 The absorption tower main body 22 has an absorption liquid outlet 221 for extracting the absorption liquid stored in the liquid pool 21B to the outside, and an oxidizing gas (for example, air) in the absorption liquid stored in the liquid pool 21B. The nozzle penetration port 222 through which the nozzle for supplying is penetrated is open. Each of the absorption liquid outlet 221 and the nozzle through port 222 communicates with the liquid pool portion 21B. Further, the absorption tower main body 22 is opened with an absorption liquid supply port 223 for introducing the limestone slurry and an absorption liquid return port 224 for returning the absorption liquid extracted to the outside to the liquid pool portion 21B. Each of the absorption liquid supply port 223 and the absorption liquid return port 224 communicates with the internal space 21 above the liquid pool portion 21B.
 吸収塔20Aは、液だまり部21Bに貯留される吸収液に酸化用気体(例えば、空気)を供給するように構成された酸化用気体供給装置27をさらに含む。図示される実施形態では、酸化用気体供給装置27は、ノズル貫通口222を貫通するノズル271と、ノズル271に大気中の空気を供給するポンプ272と、を含む。大気中の空気(酸化用空気)は、ポンプ272によりノズル271に供給され、ノズル先端部の開口273から液だまり部21Bに貯留される吸収液に供給される。これにより、液だまり部21Bに貯留される吸収液中の亜硫酸塩を酸化させ、石膏を生じさせることができる。 The absorption tower 20A further includes an oxidation gas supply device 27 configured to supply an oxidation gas (for example, air) to the absorption liquid stored in the liquid pool 21B. In the illustrated embodiment, the oxidizing gas supply device 27 includes a nozzle 271 penetrating the nozzle through port 222 and a pump 272 that supplies atmospheric air to the nozzle 271. The air in the atmosphere (oxidation air) is supplied to the nozzle 271 by the pump 272, and is supplied to the absorption liquid stored in the liquid pool 21B from the opening 273 at the tip of the nozzle. As a result, the sulfite in the absorbing liquid stored in the pool portion 21B can be oxidized to form gypsum.
 吸収塔20Aは、吸収塔20Aの液だまり部21Bに吸収液を供給するように構成された吸収液供給ライン12と、液だまり部21Bから抜き出された吸収液を噴霧装置26に送るように構成された吸収液循環ライン13と、液だまり部21Bから抜き出された吸収液を石膏スラリー脱水システム1に送るように構成された吸収液抜き出しライン14と、をさらに含む。吸収塔20Aは、噴霧装置26、液だまり部21Bおよび吸収液循環ライン13に吸収液を循環させている。液だまり部21Bに貯留される吸収液は、吸収塔20Aにおける排ガスの洗浄に繰り返し使用されるため、徐々に石膏が蓄積される。石膏スラリー(石膏を含む吸収液)を吸収液抜き出しライン14を介して、石膏スラリー脱水システム1に送ることで、吸収液の循環系統(噴霧装置26、液だまり部21B、吸収液循環ライン13)から石膏を抜き出している。また、吸収液による排ガス中の硫黄酸化物の吸収除去(pHが高い方が効率が良好)と、吸収液中の亜硫酸塩の酸化(pHが低い方が効率が良好)とを両立させるべく、吸収液のpHが5~6の範囲となるように、適宜、吸収液供給ライン12を通じた吸収液の供給が行われる。 The absorption tower 20A sends the absorption liquid supply line 12 configured to supply the absorption liquid to the liquid pool portion 21B of the absorption tower 20A and the absorption liquid extracted from the liquid pool portion 21B to the spray device 26. Further includes a configured absorption liquid circulation line 13 and an absorption liquid extraction line 14 configured to send the absorption liquid extracted from the liquid pool portion 21B to the gypsum slurry dehydration system 1. The absorption tower 20A circulates the absorption liquid through the spray device 26, the liquid pool portion 21B, and the absorption liquid circulation line 13. Since the absorbing liquid stored in the liquid pool portion 21B is repeatedly used for cleaning the exhaust gas in the absorbing tower 20A, gypsum is gradually accumulated. By sending the gypsum slurry (absorption liquid containing gypsum) to the gypsum slurry dehydration system 1 via the absorption liquid extraction line 14, the absorption liquid circulation system (spraying device 26, liquid pool 21B, absorption liquid circulation line 13). The plaster is extracted from. In addition, in order to achieve both absorption and removal of sulfur oxides in the exhaust gas by the absorption liquid (higher pH is better efficiency) and oxidation of sulfites in the absorption liquid (lower pH is better efficiency). The absorption liquid is appropriately supplied through the absorption liquid supply line 12 so that the pH of the absorption liquid is in the range of 5 to 6.
 図示される実施形態では、吸収液供給ライン12は、吸収塔20Aの外部に配置されるとともに、吸収液を貯留するための内部空間171を画定するように構成された吸収液貯留槽17に一端側が接続され、他端側が吸収液供給口223に接続される吸収液供給配管121と、吸収液供給配管121に設けられるとともに、吸収液供給配管121の一端側から他端側に吸収液を送るように構成された供給ポンプ122と、を含む。供給ポンプ122を駆動させることで、吸収液が内部空間171から抜き出されて、吸収塔20Aの液だまり部21Bに供給される。 In the illustrated embodiment, the absorbent liquid supply line 12 is arranged outside the absorption tower 20A and one end of the absorbent liquid storage tank 17 configured to define an internal space 171 for storing the absorbent liquid. The absorption liquid supply pipe 121 whose side is connected and the other end side is connected to the absorption liquid supply port 223 and the absorption liquid supply pipe 121 are provided, and the absorption liquid is sent from one end side to the other end side of the absorption liquid supply pipe 121. Includes a supply pump 122, configured as described above. By driving the supply pump 122, the absorption liquid is extracted from the internal space 171 and supplied to the liquid pool portion 21B of the absorption tower 20A.
 図示される実施形態では、吸収液循環ライン13は、吸収液抜出口221に一端側が接続され、他端側が噴霧管261に接続される吸収液循環配管131と、吸収液循環配管131に設けられるとともに、吸収液循環配管131の一端側から他端側に吸収液を送るように構成された循環ポンプ132と、を含む。吸収液抜き出しライン14は、吸収液循環配管131の循環ポンプ132よりも吸収液の流れ方向の下流側(噴霧装置26側)に位置する第1分岐部133に一端側が接続され、他端側が石膏スラリー脱水システム1(具体的には図2に示される供給装置4)に接続される吸収液抜き出し配管141を含む。この場合には、吸収液循環ライン13および吸収液抜き出しライン14が循環ポンプ132を共用している。循環ポンプ132を駆動させることで、吸収液が液だまり部21Bから抜き出されて、噴霧装置26や石膏スラリー脱水システム1に供給される。なお、他の幾つかの実施形態では、吸収液抜き出しライン14が吸収液循環ライン13との間に共有部を有しない構成にしてもよい。 In the illustrated embodiment, the absorption liquid circulation line 13 is provided in the absorption liquid circulation pipe 131 in which one end side is connected to the absorption liquid outlet 221 and the other end side is connected to the spray pipe 261 and the absorption liquid circulation pipe 131. In addition, the circulation pump 132 configured to send the absorption liquid from one end side to the other end side of the absorption liquid circulation pipe 131 is included. One end of the absorption liquid extraction line 14 is connected to the first branch portion 133 located on the downstream side (spraying device 26 side) in the flow direction of the absorption liquid from the circulation pump 132 of the absorption liquid circulation pipe 131, and the other end side is plaster. The absorption liquid extraction pipe 141 connected to the slurry dehydration system 1 (specifically, the supply device 4 shown in FIG. 2) is included. In this case, the absorption liquid circulation line 13 and the absorption liquid extraction line 14 share the circulation pump 132. By driving the circulation pump 132, the absorbing liquid is extracted from the pool portion 21B and supplied to the spray device 26 and the gypsum slurry dehydration system 1. In some other embodiments, the absorption liquid extraction line 14 may not have a shared portion with the absorption liquid circulation line 13.
 図示される実施形態では、吸収液抜き出しライン14は、吸収液抜き出し配管141の他端側に設けられる調整弁142をさらに含む。調整弁142は、吸収液の流路である吸収液抜き出し配管141を開閉するための可動機構を有し、吸収液抜き出し配管141を流れて石膏スラリー脱水システム1に供給される吸収液の流量を調整可能に構成されている。 In the illustrated embodiment, the absorption liquid extraction line 14 further includes a regulating valve 142 provided on the other end side of the absorption liquid extraction pipe 141. The regulating valve 142 has a movable mechanism for opening and closing the absorption liquid extraction pipe 141, which is a flow path of the absorption liquid, and allows the flow rate of the absorption liquid flowing through the absorption liquid extraction pipe 141 and being supplied to the gypsum slurry dehydration system 1. It is configured to be adjustable.
 吸収塔20Aは、吸収液抜き出しライン14から吸収塔20Aの液だまり部21Bに吸収液を戻すための吸収液返送ライン15をさらに含む。吸収液返送ライン15は、吸収液抜き出し配管141の調整弁142よりも吸収液の流れ方向の上流側(第1分岐部133側)に位置する第2分岐部143に一端側が接続され、他端側が吸収液返送口224に接続される吸収液返送配管151を含む。吸収液抜き出し配管141を流れる吸収液の少なくとも一部は、循環ポンプ132により圧送されて、吸収液返送配管151を介して、吸収塔20Aに戻される。吸収液の石膏スラリー脱水システム1への供給量が少ない場合であっても、吸収液抜き出し配管141に石膏スラリー脱水システム1への必要供給量よりも多い量の吸収液を流し、余剰分の吸収液を、吸収液返送配管151を経由させて吸収塔20Aに戻すことで、吸収液抜き出し配管141における吸収液(石膏スラリー)の流速を所定速度以上に保持し、吸収液中の固形分(例えば、石膏など)が吸収液抜き出し配管141内で沈降することを抑制することができる。 The absorption tower 20A further includes an absorption liquid return line 15 for returning the absorption liquid from the absorption liquid extraction line 14 to the liquid pool portion 21B of the absorption tower 20A. One end of the absorption liquid return line 15 is connected to the second branch portion 143 located on the upstream side (first branch portion 133 side) in the flow direction of the absorption liquid from the adjusting valve 142 of the absorption liquid extraction pipe 141, and the other end. Includes an absorbent liquid return pipe 151 whose side is connected to the absorbent liquid return port 224. At least a part of the absorption liquid flowing through the absorption liquid extraction pipe 141 is pumped by the circulation pump 132 and returned to the absorption tower 20A via the absorption liquid return pipe 151. Even when the amount of the absorption liquid supplied to the gypsum slurry dehydration system 1 is small, a larger amount of the absorption liquid than the required amount to be supplied to the gypsum slurry dehydration system 1 is flowed through the absorption liquid extraction pipe 141 to absorb the excess liquid. By returning the liquid to the absorption tower 20A via the absorption liquid return pipe 151, the flow velocity of the absorption liquid (plaster slurry) in the absorption liquid extraction pipe 141 is maintained at a predetermined speed or higher, and the solid content in the absorption liquid (for example). , Slurry, etc.) can be prevented from settling in the absorption liquid extraction pipe 141.
(石膏スラリー脱水システム)
 図2は、本開示の一実施形態にかかる石膏スラリー脱水システムの全体構成を概略的に示す概略構成図である。
 幾つかの実施形態にかかる石膏スラリー脱水システム1は、吸収液抜き出し配管141を介して吸収塔20Aから送られる石膏スラリー(石膏を含む吸収液)を脱水し、石膏とろ液に分離するように構成されている。
(Gypsum slurry dehydration system)
FIG. 2 is a schematic configuration diagram schematically showing the overall configuration of the gypsum slurry dehydration system according to the embodiment of the present disclosure.
The gypsum slurry dehydration system 1 according to some embodiments is configured to dehydrate the gypsum slurry (absorption liquid containing gypsum) sent from the absorption tower 20A via the absorption liquid extraction pipe 141 and separate it into gypsum and a filtrate. Has been done.
 石膏スラリー脱水システム1は、図2に示されるように、石膏スラリーをろ布31上に載せた状態で搬送する搬送ベルト32を有する搬送装置3と、石膏スラリーを搬送ベルト32のろ布31上に供給可能な供給部41を有する供給装置4と、石膏スラリーが脱水されつつ搬送される過程でろ布31上に形成される石膏ケーキを洗浄するために、石膏ケーキに向けてケーキ洗浄液を噴出可能なケーキ洗浄液噴出部45を有するケーキ洗浄装置44と、乾燥用蒸気を噴出可能な蒸気噴出部55(噴出部)を有する蒸気噴出装置54と、を備える。供給部41、ケーキ洗浄液噴出部45および蒸気噴出部55の夫々は、搬送ベルト32に対して上方に配置されている。ケーキ洗浄液噴出部45は、供給部41よりも搬送ベルト32の搬送方向に沿う方向の下流側(図2中右側)に位置し、蒸気噴出部55は、ケーキ洗浄液噴出部45よりも搬送ベルト32の搬送方向に沿う方向の下流側に位置している。 As shown in FIG. 2, the gypsum slurry dehydration system 1 has a transport device 3 having a transport belt 32 for transporting the gypsum slurry on the filter cloth 31, and a gypsum slurry on the filter cloth 31 of the transport belt 32. In order to clean the gypsum cake formed on the filter cloth 31 in the process of transporting the gypsum slurry while being dehydrated, the gypsum cleaning liquid can be ejected toward the gypsum cake. It is provided with a cake cleaning device 44 having a gypsum cleaning liquid ejection portion 45, and a steam ejection device 54 having a steam ejection portion 55 (spouting portion) capable of ejecting drying steam. Each of the supply unit 41, the cake cleaning liquid ejection unit 45, and the steam ejection unit 55 is arranged above the transport belt 32. The cake cleaning liquid ejection part 45 is located on the downstream side (right side in FIG. 2) in the direction along the conveying direction of the transport belt 32 from the supply portion 41, and the steam ejection portion 55 is the transport belt 32 rather than the cake cleaning liquid ejection portion 45. It is located on the downstream side in the direction along the transport direction of.
 図示される実施形態では、搬送装置3は、回転自在に支持される二つのドラム33(33A、33B)と、上記二つのうちの何れか一方のドラム33(例えば、33A)に接続され、該ドラム33(33A)を回転駆動させるように構成されたモータ34と、複数のガイドローラ35と、をさらに有する。搬送ベルト32は、無端帯状のゴム製の部材(弾性体)からなり、水平方向に沿って互いに離れて配置される二つのドラム33に走行自在に掛け回されている。搬送ベルト32は、二つのドラム33に張設されているため、モータ34により上記一方のドラム33(33A)が回転駆動されることにより、他方のドラム33(33B)が回転するとともに、搬送ベルト32が搬送ベルト32の搬送方向に沿って周回移動する。 In the illustrated embodiment, the transport device 3 is connected to two rotatably supported drums 33 (33A, 33B) and one of the above two drums 33 (eg, 33A). It further includes a motor 34 configured to rotationally drive the drum 33 (33A), and a plurality of guide rollers 35. The transport belt 32 is made of an endless band-shaped rubber member (elastic body), and is rotatably hung on two drums 33 arranged apart from each other in the horizontal direction. Since the transport belt 32 is stretched on the two drums 33, the motor 34 rotationally drives one of the drums 33 (33A) to rotate the other drum 33 (33B) and the transport belt. 32 orbits along the transport direction of the transport belt 32.
 ろ布31は、無端帯状に設けられ、複数のガイドローラ35に走行自在に掛け回されるとともに、その長さ方向の一部が搬送ベルト32の上面321上に重ねられている。ろ布の搬送ベルト32の上面321上に重ねられた部分(以下、被支持部311とする)は、搬送ベルト32により搬送ベルト32とともに上記搬送方向に沿って走行自在に支持されている。このため、ドラム33(33A)が回転駆動して搬送ベルト32が周回移動すると、ろ布31の被支持部311が、搬送ベルト32の被支持部311を下側から支持する支持部322と一緒に上記搬送方向に沿って走行する。或る実施形態では、ろ布31は、繊維状に形成された樹脂材料(例えばポリエステルやポリプロピレンなど)を編み込むことにより形成される織布を含む。また、他の或る実施形態では、ろ布31は、繊維状に形成された樹脂材料(例えばポリエステルやポリプロピレンなど)を絡み合わせることにより形成される不織布を含む。 The filter cloth 31 is provided in an endless band shape, is rotatably hung on a plurality of guide rollers 35, and a part of the filter cloth 31 in the length direction is overlapped on the upper surface 321 of the transport belt 32. The portion of the filter cloth overlapped on the upper surface 321 of the transport belt 32 (hereinafter referred to as the supported portion 311) is supported by the transport belt 32 together with the transport belt 32 so as to travel along the transport direction. Therefore, when the drum 33 (33A) is rotationally driven and the transport belt 32 orbits around, the supported portion 311 of the filter cloth 31 together with the support portion 322 that supports the supported portion 311 of the transport belt 32 from below. It travels along the above-mentioned transport direction. In certain embodiments, the filter cloth 31 comprises a woven fabric formed by weaving a fibrous formed resin material (eg, polyester, polypropylene, etc.). Also, in some other embodiments, the filter cloth 31 includes a non-woven fabric formed by entwining fibrous resin materials (eg, polyester, polypropylene, etc.).
 供給装置4は、吸収液抜き出しライン14を介して吸収塔20Aから送られた石膏スラリーを、その供給部41から搬送ベルト32のろ布31上に供給するように構成されている。図示される実施形態では、供給装置4は、上記供給部41(例えば、噴射ノズル)と、吸収液抜き出し配管141の他端側にその一端側が接続され、その他端側が供給部41に接続される供給配管42と、を有する。この場合には、石膏スラリーは、上述した循環ポンプ132により圧送されて、供給配管42を通過して、供給部41から流下することで、搬送ベルト32のろ布31上に供給される。なお、「搬送ベルト32のろ布31上」とは、厳密には、ろ布31の被支持部311の上面(外面)312上を意味している。 The supply device 4 is configured to supply the gypsum slurry sent from the absorption tower 20A via the absorption liquid extraction line 14 from the supply unit 41 onto the filter cloth 31 of the transport belt 32. In the illustrated embodiment, the supply device 4 is connected to the supply unit 41 (for example, an injection nozzle) and one end side thereof to the other end side of the absorption liquid extraction pipe 141, and the other end side is connected to the supply unit 41. It has a supply pipe 42 and. In this case, the gypsum slurry is pumped by the circulation pump 132 described above, passes through the supply pipe 42, flows down from the supply unit 41, and is supplied onto the filter cloth 31 of the transport belt 32. Strictly speaking, "on the filter cloth 31 of the transport belt 32" means on the upper surface (outer surface) 312 of the supported portion 311 of the filter cloth 31.
 石膏スラリーは、搬送ベルト32のろ布31上に載せられ、搬送ベルト32によりろ布31とともに搬送される際に脱水処理される。搬送装置3における石膏スラリーが脱水される領域を脱水部36とする。脱水部36では、搬送ベルト32がドラム33よりも上方に位置しており、ろ布31の被支持部311が搬送ベルト32の支持部322に支持されている。上述した供給部41、ケーキ洗浄液噴出部45および蒸気噴出部55の夫々は、脱水部36の領域内に配置されている。 The gypsum slurry is placed on the filter cloth 31 of the transport belt 32 and dehydrated when it is transported together with the filter cloth 31 by the transport belt 32. The region where the gypsum slurry is dehydrated in the transport device 3 is designated as the dehydration section 36. In the dehydration section 36, the transport belt 32 is located above the drum 33, and the supported portion 311 of the filter cloth 31 is supported by the support portion 322 of the transport belt 32. Each of the supply unit 41, the cake cleaning liquid ejection unit 45, and the steam ejection unit 55 described above is arranged in the region of the dehydration unit 36.
 ろ布31は通気性を有し、また、搬送ベルト32には、ろ液を通過させるための複数の孔が形成されている。搬送ベルト32のろ布31上に載せられた石膏スラリーは、上記脱水部36において、ろ布31や搬送ベルト32をろ液が通過することで、脱水される。 The filter cloth 31 is breathable, and the transport belt 32 is formed with a plurality of holes for allowing the filtrate to pass through. The gypsum slurry placed on the filter cloth 31 of the transport belt 32 is dehydrated by the filtrate passing through the filter cloth 31 and the transport belt 32 in the dehydration section 36.
 図示される実施形態では、搬送装置3は、ろ布31上に載せられた石膏スラリーを下方から吸引してろ液を脱水するように構成された脱水装置37をさらに有する。脱水装置37は、搬送ベルト32の支持部322の下方に設けられて、内部の圧力が負圧(大気圧よりも低い圧力)に保持される脱水室371と、真空ポンプ372と、脱水室371に一端部が接続され、他端部が真空ポンプ372に接続される減圧配管373と、減圧配管373に設けられる真空タンク374と、を含む。真空ポンプ372を駆動することで、脱水室371が減圧されて負圧となり、ろ布31上に載せられた石膏スラリー中の水分は、下方から強制的に吸引され、石膏スラリーは脱水される。 In the illustrated embodiment, the transport device 3 further includes a dehydrator device 37 configured to dehydrate the filtrate by sucking the gypsum slurry placed on the filter cloth 31 from below. The dehydration device 37 is provided below the support portion 322 of the transport belt 32, and has a dehydration chamber 371 in which the internal pressure is held at a negative pressure (pressure lower than the atmospheric pressure), a vacuum pump 372, and a dehydration chamber 371. Includes a decompression pipe 373 having one end connected to the vacuum pump 372 and the other end connected to the vacuum pump 372, and a vacuum tank 374 provided in the decompression pipe 373. By driving the vacuum pump 372, the dehydration chamber 371 is depressurized to a negative pressure, the water in the gypsum slurry placed on the filter cloth 31 is forcibly sucked from below, and the gypsum slurry is dehydrated.
 真空ポンプ372により吸引されて脱水室371から真空タンク374に送られた水分(ろ液)は、真空タンク374の下端部に一端側が接続されて他端側が下方に向かって延在する液体排出配管375内を通り、ろ液を貯留するように構成されたろ液貯留槽6に流下する。 The water (filter liquid) sucked by the vacuum pump 372 and sent from the dehydration chamber 371 to the vacuum tank 374 is a liquid discharge pipe whose one end is connected to the lower end of the vacuum tank 374 and the other end extends downward. It passes through 375 and flows down into a filtrate storage tank 6 configured to store the filtrate.
 ろ布31上に載せられて搬送される石膏スラリーは、搬送ベルト32に搬送されるにつれて脱水が進んでケーキとなる。図示される実施形態では、ケーキ洗浄装置44は、上記ケーキ洗浄液噴出部45(例えば、噴射ノズル)と、ケーキ洗浄液噴出部45に一端部が接続され、他端部が不図示の洗浄液タンクに接続されるケーキ洗浄液供給配管46と、ケーキ洗浄液供給配管46に設けられるポンプ47と、を有する。ポンプ47を駆動することで、洗浄液が洗浄液タンクからケーキ洗浄液噴出部45に送られ、ケーキ洗浄液噴出部45から下方に位置するろ布上の石膏スラリー(ケーキ)に向かって噴出される。石膏スラリー(ケーキ)は、洗浄液により洗浄されることで、不純物(例えば、マグネシウム(Mg)、塩素(Cl)、ナトリウム(Na)といった金属イオンなど)が除去される。ケーキ洗浄液としては、例えば、工業用水などが挙げられる。ケーキの洗浄に供されたケーキ洗浄液は、脱水装置37により吸引され、ろ布31や搬送ベルト32を通過し、ろ液として、脱水室371から真空タンク374に送られ、液体排出配管375内を通り、ろ液貯留槽6に流下する。 The gypsum slurry that is placed on the filter cloth 31 and transported is dehydrated as it is transported to the transport belt 32 and becomes a cake. In the illustrated embodiment, the cake cleaning device 44 has one end connected to the cake cleaning liquid ejection portion 45 (for example, an injection nozzle) and the cake cleaning liquid ejection portion 45, and the other end connected to a cleaning liquid tank (not shown). It has a cake cleaning liquid supply pipe 46 to be formed, and a pump 47 provided in the cake cleaning liquid supply pipe 46. By driving the pump 47, the cleaning liquid is sent from the cleaning liquid tank to the cake cleaning liquid ejection portion 45, and is ejected from the cake cleaning liquid ejection portion 45 toward the gypsum slurry (cake) on the filter cloth located below. The gypsum slurry (cake) is washed with a washing liquid to remove impurities (for example, metal ions such as magnesium (Mg), chlorine (Cl), and sodium (Na)). Examples of the cake cleaning liquid include industrial water. The cake cleaning liquid used for washing the cake is sucked by the dehydrating device 37, passes through the filter cloth 31 and the transport belt 32, is sent as the filtrate from the dehydration chamber 371 to the vacuum tank 374, and flows through the liquid discharge pipe 375. It flows down to the filtrate storage tank 6.
 図示される実施形態では、蒸気噴出装置54の蒸気噴出部55(例えば、噴射ノズル)に、不図示のボイラに繋がる蒸気配管56から乾燥用蒸気が送られ、蒸気噴出部55から下方に位置するろ布31上の石膏スラリーに向かって噴出される。ろ布31上の石膏スラリーは、乾燥用蒸気により、石膏スラリーに含まれる水分が加熱除去される。 In the illustrated embodiment, drying steam is sent to the steam ejection portion 55 (for example, an injection nozzle) of the steam ejection device 54 from a steam pipe 56 connected to a boiler (not shown), and is located below the steam ejection portion 55. It is ejected toward the gypsum slurry on the filter cloth 31. In the gypsum slurry on the filter cloth 31, the water contained in the gypsum slurry is removed by heating with the steam for drying.
 図示される実施形態では、ろ布31上の石膏スラリーを脱水部36において脱水して得られる石膏は、搬送ベルト32の搬送方向における脱水部36(例えば、蒸気噴出部55)よりも下流側において、ろ布31上から取り除かれる。搬送装置3における石膏がろ布31上から取り除かれる領域を石膏排出部43とする。 In the illustrated embodiment, the gypsum obtained by dehydrating the gypsum slurry on the filter cloth 31 in the dehydration section 36 is located downstream of the dehydration section 36 (for example, the steam ejection section 55) in the transport direction of the transport belt 32. , Removed from the top of the filter cloth 31. The region where the gypsum is removed from the filter cloth 31 in the transport device 3 is referred to as the gypsum discharge portion 43.
 石膏スラリー脱水システム1は、図2に示されるように、搬送ベルト32の搬送方向における石膏排出部43よりも下流側において、ろ布31に対してろ布洗浄液を噴出可能なろ布洗浄液噴出部51を有するろ布洗浄装置5をさらに備える。図示される実施形態では、ろ布洗浄装置5は、二つのドラム33よりも下方に配置された上記ろ布洗浄液噴出部51(例えば、噴射ノズル)と、ろ布洗浄液噴出部51に一端部が接続され、他端部が不図示の洗浄液タンクに接続されるろ布洗浄液供給配管52と、ろ布洗浄液供給配管52に設けられるポンプ53と、を有する。ポンプ53を駆動することで、洗浄液が洗浄液タンクからろ布洗浄液噴出部51に送られ、ろ布洗浄液噴出部51からろ布31に向かって噴出される。ろ布31は、洗浄液により洗浄されることで、不純物が除去される。ろ布洗浄液としては、例えば、工業用水などが挙げられる。なお、ろ布洗浄液は、ろ布31の外面又は内面の少なくとも一方に向かって噴出される。 As shown in FIG. 2, the gypsum slurry dehydration system 1 provides a filter cloth cleaning liquid ejection portion 51 capable of ejecting the filter cloth cleaning liquid to the filter cloth 31 on the downstream side of the gypsum discharge portion 43 in the transport direction of the transport belt 32. The filter cloth cleaning device 5 to be provided is further provided. In the illustrated embodiment, the filter cloth cleaning device 5 has a filter cloth cleaning liquid ejection portion 51 (for example, an injection nozzle) arranged below the two drums 33, and one end portion of the filter cloth cleaning liquid ejection portion 51. It has a filter cloth cleaning liquid supply pipe 52 which is connected and whose other end is connected to a cleaning liquid tank (not shown), and a pump 53 provided in the filter cloth cleaning liquid supply pipe 52. By driving the pump 53, the cleaning liquid is sent from the cleaning liquid tank to the filter cloth cleaning liquid ejection portion 51, and is ejected from the filter cloth cleaning liquid ejection portion 51 toward the filter cloth 31. Impurities are removed from the filter cloth 31 by cleaning it with a cleaning solution. Examples of the filter cloth cleaning liquid include industrial water. The filter cloth cleaning liquid is ejected toward at least one of the outer surface and the inner surface of the filter cloth 31.
 石膏スラリー脱水システム1は、例えば図2に示されるように、ろ布洗浄液噴出部51の下方に設けられるろ布洗浄液受け部58(例えば、トレイ)と、ろ布洗浄液受け部58に一端側が接続されて他端側が下方に向かって延在するろ布洗浄液排出配管59と、をさらに備える。ろ布洗浄液噴出部51から噴出されたろ布洗浄液は、ろ布洗浄液受け部58上に落下する。ろ布洗浄液受け部58上に落下したろ布洗浄液は、ろ布洗浄液排出配管59内を通り、ろ布洗浄液を貯留するように構成されたろ布洗浄液貯留槽8に流下する。 As shown in FIG. 2, for example, the gypsum slurry dehydration system 1 is connected to a filter cloth cleaning liquid receiving portion 58 (for example, a tray) provided below the filter cloth cleaning liquid ejecting portion 51 and one end side to the filter cloth cleaning liquid receiving portion 58. Further, a filter cloth cleaning liquid discharge pipe 59 having the other end extending downward is further provided. The filter cloth cleaning liquid ejected from the filter cloth cleaning liquid ejection portion 51 falls onto the filter cloth cleaning liquid receiving portion 58. The filter cloth cleaning liquid that has fallen onto the filter cloth cleaning liquid receiving portion 58 passes through the filter cloth cleaning liquid discharge pipe 59 and flows down into the filter cloth cleaning liquid storage tank 8 configured to store the filter cloth cleaning liquid.
 図示される実施形態では、石膏スラリー脱水システム1は、吸収塔20Aの外部に配置されるとともに、ろ液を貯留するための内部空間61を画定するように構成された上記ろ液貯留槽6と、吸収塔20Aの外部に配置されるとともに、ろ布洗浄液を貯留するための内部空間81を画定するように構成された上記ろ布洗浄液貯留槽8と、ろ液貯留槽6に貯留されたろ液を、上記ろ液を系外に排出するための処理を行う排水処理設備16に送るように構成されたろ液排出ライン7と、ろ布洗浄液貯留槽8に貯留された液体を、上述した吸収液貯留槽17に送るように構成された送水ライン9と、をさらに備える。つまり、ろ液貯留槽6に貯留される液体(ろ液)は、排水処理設備16に送られた後に系外に排出され、ろ布洗浄液貯留槽8に貯留された液体(ろ布洗浄液を含む液体)は、吸収液貯留槽17に送られ、不図示の供給ラインを介して供給された石灰石と混合され、吸収液として吸収塔20Aに送られる。 In the illustrated embodiment, the gypsum slurry dehydration system 1 is arranged outside the absorption tower 20A, and the filtrate storage tank 6 is configured to define an internal space 61 for storing the filtrate. , The filtrate stored in the filter cloth cleaning liquid storage tank 8 and the filtrate storage tank 6 arranged outside the absorption tower 20A and configured to define the internal space 81 for storing the filter cloth cleaning liquid. The liquid stored in the filtrate discharge line 7 and the filter cloth cleaning liquid storage tank 8 configured to send the filtrate to the wastewater treatment facility 16 that performs the treatment for discharging the filtrate to the outside of the system. A water supply line 9 configured to send to the storage tank 17 is further provided. That is, the liquid (filter liquid) stored in the filtrate storage tank 6 is discharged to the outside of the system after being sent to the wastewater treatment facility 16, and contains the liquid (including the filter cloth cleaning liquid) stored in the filter cloth cleaning liquid storage tank 8. The liquid) is sent to the absorption liquid storage tank 17, mixed with the limestone supplied through a supply line (not shown), and sent to the absorption tower 20A as an absorption liquid.
 幾つかの実施形態にかかる石膏スラリー脱水システム1は、図2に示されるように、石膏スラリーをろ布31上に載せた状態で搬送する搬送ベルト32を有する上述した搬送装置3と、ろ布31に対してろ布洗浄液を噴出可能なろ布洗浄液噴出部51(噴出部)を有する上述したろ布洗浄装置5と、ろ布31により石膏スラリーから分離されたろ液を貯留するように構成された上述したろ液貯留槽6と、ろ液貯留槽6に貯留されたろ液を系外に排出するための処理を行う排水処理設備16に送るように構成された上述したろ液排出ライン7と、ろ液貯留槽6とは異なるろ布洗浄液貯留槽8であって、ろ布洗浄液噴出部51(噴出部)からろ布31に対して噴出されたろ布洗浄液を少なくとも貯留するように構成された上述したろ布洗浄液貯留槽8と、を備える。 As shown in FIG. 2, the gypsum slurry dehydration system 1 according to some embodiments includes the above-mentioned transport device 3 having a transport belt 32 for transporting the gypsum slurry in a state of being placed on the filter cloth 31 and the filter cloth. The above-mentioned filter cloth cleaning device 5 having a filter cloth cleaning liquid ejection portion 51 (spouting portion) capable of ejecting the filter cloth cleaning liquid with respect to 31 and the above-mentioned above-mentioned configured to store the filtrate separated from the gypsum slurry by the filter cloth 31. The filtrate storage tank 6 and the above-mentioned filtrate discharge line 7 configured to send the filtrate stored in the filtrate storage tank 6 to a wastewater treatment facility 16 that performs a treatment for discharging the filtrate to the outside of the system. The filter cloth cleaning liquid storage tank 8 is different from the liquid storage tank 6, and is configured to store at least the filter cloth cleaning liquid ejected from the filter cloth cleaning liquid ejection portion 51 (spouting portion) to the filter cloth 31. A filter cloth cleaning liquid storage tank 8 is provided.
 排煙脱硫装置20から排出される石膏スラリーは、排煙脱硫装置20において排ガスから不純物(例えば、排ガスから除去した燃焼灰やスートなどの懸濁物質や、溶解重金属などの汚濁物質など)を吸収している。そして、脱水処理設備(例えば、搬送装置3など)において石膏スラリーから不純物がろ液とともに石膏から分離される。また、ケーキの洗浄に供されたケーキ洗浄液には、マグネシウム(Mg)、塩素(Cl)、ナトリウム(Na)といった金属イオンなどの不純物が含まれる。このため、石膏スラリーから分離されたろ液やケーキの洗浄に供された後、ろ液として、ろ液貯留槽に送られたケーキ洗浄液は、ろ布31に対して噴出されたろ布洗浄液に比べて、不純物の含有率が高い。不純物の含有率の高いろ液を、排煙脱硫装置20における吸収液の循環系統に戻すと、排煙脱硫装置20における吸収液中の不純物の含有率が増加するため適切ではない。不純物の含有率の高いろ液は、排水処理設備16において排水処理後に系外に排出することが好ましい。 The gypsum slurry discharged from the flue gas desulfurization apparatus 20 absorbs impurities (for example, suspended solids such as combustion ash and soot removed from the exhaust gas and pollutants such as molten heavy metals) from the exhaust gas in the flue gas desulfurization apparatus 20. doing. Then, in a dehydration treatment facility (for example, a transport device 3 or the like), impurities are separated from the gypsum together with the filtrate from the gypsum slurry. Further, the cake washing liquid used for washing the cake contains impurities such as metal ions such as magnesium (Mg), chlorine (Cl) and sodium (Na). Therefore, the cake cleaning solution sent to the filtrate storage tank as the filtrate after being used for cleaning the filtrate or cake separated from the gypsum slurry is compared with the filter cloth cleaning solution ejected to the filter cloth 31. , High impurity content. Returning the filtrate having a high impurity content to the circulation system of the absorption liquid in the flue gas desulfurization apparatus 20 is not appropriate because the content of impurities in the absorption liquid in the flue gas desulfurization apparatus 20 increases. It is preferable that the filtrate having a high impurity content is discharged to the outside of the system after the wastewater treatment in the wastewater treatment facility 16.
 上記の構成によれば、石膏スラリーから分離されたろ液とケーキの洗浄に供されたケーキ洗浄液をろ液貯留槽6に貯留することができ、ろ布31に対して噴出されたろ布洗浄液をろ布洗浄液貯留槽8に貯留することができる。そして、ろ液貯留槽6に貯留されたろ液を、ろ液排出ライン7を介して排水処理設備16に送り、排水処理設備16において排水処理後に系外に排出することができる。このように、不純物の含有率が高いろ液と不純物の含有率が低いろ布洗浄液とを分けて貯留し、排水処理設備16に送られる排水を、ろ液貯留槽6に貯留された不純物の含有率が高いろ液に限定することで、石膏スラリーの脱水処理設備から排水処理設備16に送られる排水の量を、ろ布洗浄液の分だけ少なくすることができる。また、排水処理設備16に送られる排水の量を少なくすることで、排水処理設備16の大型化や設備費用の高額化を抑制することができる。 According to the above configuration, the filtrate separated from the gypsum slurry and the cake cleaning solution used for washing the cake can be stored in the filtrate storage tank 6, and the filter cloth cleaning solution ejected to the filter cloth 31 can be filtered. It can be stored in the cloth cleaning liquid storage tank 8. Then, the filtrate stored in the filtrate storage tank 6 can be sent to the wastewater treatment facility 16 via the filtrate discharge line 7, and can be discharged to the outside of the system after the wastewater treatment in the wastewater treatment facility 16. In this way, the filtrate having a high impurity content and the filter cloth cleaning solution having a low impurity content are separately stored, and the wastewater sent to the wastewater treatment facility 16 is the impurities stored in the filtrate storage tank 6. By limiting to the filtrate having a high content rate, the amount of wastewater sent from the dewatering treatment equipment for the gypsum slurry to the wastewater treatment equipment 16 can be reduced by the amount of the filter cloth cleaning liquid. Further, by reducing the amount of wastewater sent to the wastewater treatment facility 16, it is possible to suppress an increase in the size of the wastewater treatment facility 16 and an increase in equipment cost.
 幾つかの実施形態では、上述したろ液貯留槽6は、図2に示されるように、ろ液貯留槽6に貯留されるろ液の内、所定の高さH1を上回ったろ液がろ布洗浄液貯留槽8に越流するように構成される。 In some embodiments, in the filtrate storage tank 6 described above, as shown in FIG. 2, among the filtrates stored in the filtrate storage tank 6, the filtrates having a height H1 exceeding a predetermined height are filtered. It is configured to overflow into the cleaning liquid storage tank 8.
 図示される実施形態では、図2に示されるように、ろ液貯留槽6は、角筒状の内側面62と底面63とを有する。内部空間61は、内側面62と底面63により区画される。ろ布洗浄液貯留槽8は、角筒状の内側面82と底面83とを有する。内部空間81は、内側面82と底面83により区画される。図2に示される実施形態では、ろ布洗浄液貯留槽8の底面83は、ろ液貯留槽6の底面63と同じ高さ位置になるように構成されている。ろ液貯留槽6は、ろ布洗浄液貯留槽8との間に堰64を挟んでろ布洗浄液貯留槽8に隣接して配置されている。堰64は、底面63から鉛直方向に沿って上方に向かって立設するとともに、上記内側面62のうちの一面62Aを一方側に有し、且つ上記内側面82のうちの一面82Aを他方側に有する。この場合には、ろ液貯留槽6に貯留されるろ液の内、上記所定の高さH1である堰64の上端の高さを上回ったろ液が、堰64を越えてろ布洗浄液貯留槽8に流れ込む。他の幾つかの実施形態では、上記堰64の代わりに、ろ液貯留槽6の上記所定の高さ位置に一端側が接続され、且つ、他端側がろ布洗浄液貯留槽8の上記所定の高さ位置よりの低い位置に接続されるオーバーフロー管を設けてもよい。 In the illustrated embodiment, as shown in FIG. 2, the filtrate storage tank 6 has a square tubular inner side surface 62 and a bottom surface 63. The internal space 61 is partitioned by an inner side surface 62 and a bottom surface 63. The filter cloth cleaning liquid storage tank 8 has a square tubular inner side surface 82 and a bottom surface 83. The internal space 81 is partitioned by an inner side surface 82 and a bottom surface 83. In the embodiment shown in FIG. 2, the bottom surface 83 of the filter cloth cleaning liquid storage tank 8 is configured to be at the same height as the bottom surface 63 of the filtrate storage tank 6. The filtrate storage tank 6 is arranged adjacent to the filter cloth cleaning liquid storage tank 8 with a weir 64 sandwiched between the filtrate cleaning liquid storage tank 8 and the filter cloth cleaning liquid storage tank 8. The weir 64 is erected upward from the bottom surface 63 in the vertical direction, has one side 62A of the inner side surface 62 on one side, and has one side 82A of the inner side surface 82 on the other side. Have in. In this case, among the filtrates stored in the filtrate storage tank 6, the filtrate that exceeds the height of the upper end of the weir 64, which is the predetermined height H1, exceeds the weir 64 and the filter cloth cleaning liquid storage tank 8 Flow into. In some other embodiments, instead of the weir 64, one end is connected to the predetermined height position of the filtrate storage tank 6, and the other end is the predetermined height of the filter cloth cleaning liquid storage tank 8. An overflow pipe connected to a position lower than the vertical position may be provided.
 上記の構成によれば、ろ液貯留槽6は、ろ液貯留槽6に貯留されるろ液の内、所定の高さH1を上回ったろ液がろ布洗浄液貯留槽8に越流するように構成されている。このため、排水処理設備16に送る必要が有る所定量のろ液以外のろ液を、ポンプやレベル制御などの複雑な設備を介すること無くろ布洗浄液貯留槽8に送液することができ、設備の複雑化や高額化を抑制することができる。
 また、例えば、ろ液貯留槽6に、排水処理設備16で処理可能な量を超えるろ液が供給されたときでも、ろ液貯留槽6から、排水処理設備16に、処理可能な量だけのろ液を送れば、残りの、処理可能な量を超えた分のろ液は、自然に、ろ布洗浄液貯留槽8に越流して、ろ布洗浄液貯留槽8に貯留されるため、排水処理設備16を、余裕をみて、大きな設備とする必要はなく、排水処理設備16の高額化を抑制することができる。
According to the above configuration, in the filtrate storage tank 6, among the filtrates stored in the filtrate storage tank 6, the filtrate that exceeds a predetermined height H1 overflows into the filter cloth cleaning liquid storage tank 8. It is configured. Therefore, a filtrate other than the predetermined amount of filtrate that needs to be sent to the wastewater treatment facility 16 can be sent to the filter cloth cleaning liquid storage tank 8 without going through complicated equipment such as a pump or level control. It is possible to suppress the complexity and cost of equipment.
Further, for example, even when a filtrate exceeding the amount that can be treated by the wastewater treatment facility 16 is supplied to the filtrate storage tank 6, only the amount that can be treated from the filtrate storage tank 6 to the wastewater treatment facility 16 When the filtrate is sent, the remaining filtrate that exceeds the treatable amount naturally overflows into the filter cloth cleaning liquid storage tank 8 and is stored in the filter cloth cleaning liquid storage tank 8, so that the wastewater is treated. It is not necessary to make the equipment 16 a large equipment with a margin, and it is possible to suppress the increase in the cost of the wastewater treatment equipment 16.
 幾つかの実施形態では、上述したろ液排出ライン7は、上述したろ液貯留槽6と上述した排水処理設備16に接続される排水配管71と、排水配管71に設けられた排水ポンプ72と、排水配管71における排水ポンプ72の下流側に設けられるとともに、ろ液貯留槽6から排水処理設備16に送られるろ液の流量を調整可能に構成された流量調整弁73と、を少なくとも含む。 In some embodiments, the above-mentioned filtrate discharge line 7 includes a drainage pipe 71 connected to the above-mentioned filtrate storage tank 6 and the above-mentioned wastewater treatment facility 16, and a drainage pump 72 provided in the drainage pipe 71. A flow control valve 73 provided on the downstream side of the drainage pump 72 in the drainage pipe 71 and configured to be able to adjust the flow rate of the filtrate sent from the filtrate storage tank 6 to the wastewater treatment facility 16 is included at least.
 図3は、本開示の一実施形態における排水処理設備を説明するための説明図である。
 排水処理設備16は、図3に示されるように、排水を貯留するように構成された内部空間162を有するとともに、凝集沈殿処理が行われる第1凝集沈殿槽161と、排水を貯留するように構成された内部空間164を有するとともに、凝集沈殿処理が行われる第2凝集沈殿槽163と、を少なくとも含む。第2凝集沈殿槽163は、第1凝集沈殿槽161よりも排水の流れ方向の下流側に設けられる。
FIG. 3 is an explanatory diagram for explaining the wastewater treatment equipment according to the embodiment of the present disclosure.
As shown in FIG. 3, the wastewater treatment facility 16 has an internal space 162 configured to store wastewater, and has a first coagulation sedimentation tank 161 in which coagulation sedimentation treatment is performed and wastewater. It has at least a second coagulation sedimentation tank 163 having a configured internal space 164 and performing a coagulation sedimentation treatment. The second coagulation sedimentation tank 163 is provided on the downstream side in the drainage flow direction with respect to the first coagulation sedimentation tank 161.
 排水処理設備16は、第1凝集沈殿槽161に凝集剤を添加するように構成された第1凝集剤添加ライン165と、第2凝集沈殿槽163に凝集剤を添加するように構成された第2凝集剤添加ライン166と、をさらに含む。第1凝集剤添加ライン165により、第1凝集沈殿槽161に凝集剤(例えば、硫酸アルミニウムなどのアルミニウム化合物)が添加されることで、排水中に水酸化アルミニウムのフロックが析出し、排ガスから除去した燃焼灰やスートなどの懸濁物質や、溶解重金属などの汚濁物質などの不純物が上記フロックに包含されて沈殿する。第2凝集剤添加ライン166により、第2凝集沈殿槽163に凝集剤(例えば、炭酸ソーダ)が添加されることで、排水中に炭酸カルシウムのフロックが析出し、懸濁物質などが上記フロックに包含されて沈殿する。なお、第1凝集沈殿槽161や第2凝集沈殿槽163にはpH調整剤も添加してもよい。 The wastewater treatment facility 16 is configured to add a coagulant to the first coagulant addition line 165 configured to add the coagulant to the first coagulation settling tank 161 and to add the coagulant to the second coagulation settling tank 163. 2 Further includes a flocculant addition line 166. By adding a coagulant (for example, an aluminum compound such as aluminum sulfate) to the first coagulation sedimentation tank 161 by the first coagulant addition line 165, aluminum hydroxide flocs are precipitated in the wastewater and removed from the exhaust gas. Suspended solids such as burnt ash and soot and impurities such as pollutants such as molten heavy metals are included in the flocs and precipitated. By adding a coagulant (for example, sodium carbonate) to the second coagulation sedimentation tank 163 by the second coagulant addition line 166, calcium carbonate flocs are precipitated in the wastewater, and suspended solids and the like are transferred to the flocs. Contained and settled. A pH adjuster may also be added to the first coagulation sedimentation tank 161 and the second coagulation sedimentation tank 163.
 第1凝集沈殿槽161は、排水配管71の流量調整弁73よりも下流側に接続されており、排水配管71を介してろ液貯留槽6から排水(ろ液)が送られる。第1凝集沈殿槽161は、第1凝集沈殿槽161に貯留される排水の内、第1凝集沈殿槽161における凝縮処理が行われた排水であって、所定の高さH2を上回った排水が第2凝集沈殿槽163に越流するように構成されている。 The first coagulation sedimentation tank 161 is connected to the downstream side of the flow rate adjusting valve 73 of the drainage pipe 71, and drainage (filter liquid) is sent from the filtrate storage tank 6 via the drainage pipe 71. The first coagulation sedimentation tank 161 is the wastewater that has been condensed in the first coagulation sedimentation tank 161 among the wastewater stored in the first coagulation sedimentation tank 161. It is configured to overflow into the second coagulation sedimentation tank 163.
 図示される実施形態では、第1凝集沈殿槽161は、第1凝集沈殿槽161に隣接して配置される第2凝集沈殿槽163との間に設けられる堰167と、堰167よりも排水の流れ方向の上流側に設けられる仕切り168と、をさらに含む。仕切り168は、堰167の上端よりも下方に垂れ下がることで、第1凝集沈殿槽161を、排水配管71から排水が投入される一方側と、仕切り168を挟んで上記一方側とは反対側の他方側と、に区分する。第1凝集沈殿槽161の上記他方側には、主に第1凝集沈殿槽161における凝集沈殿処理が行われた排水が貯留される。この場合には、第1凝集沈殿槽161の上記他方側に貯留される液体のうち、上記所定の高さH2である堰167の上端の高さを上回った排水が、堰167を越えて第2凝集沈殿槽163に流れ込む。なお、排水処理設備16は、第1凝集沈殿槽161や第2凝集沈殿槽163において、沈殿したフロックを除去するように構成された不図示の不純物除去機構を備える。また、他の幾つかの実施形態では、上述した堰167の代わりにオーバーフロー管を設けてもよい。 In the illustrated embodiment, the first coagulation sedimentation tank 161 has a weir 167 provided between the second coagulation sedimentation tank 163 arranged adjacent to the first coagulation sedimentation tank 161 and drainage from the weir 167. Further includes a partition 168 provided on the upstream side in the flow direction. The partition 168 hangs below the upper end of the weir 167, so that the first coagulation sedimentation tank 161 is located on one side where drainage is discharged from the drainage pipe 71 and on the side opposite to the one side with the partition 168 in between. It is divided into the other side and the other side. On the other side of the first coagulation sedimentation tank 161, wastewater that has been subjected to the coagulation sedimentation treatment in the first coagulation sedimentation tank 161 is mainly stored. In this case, of the liquid stored on the other side of the first coagulation sedimentation tank 161, the drainage exceeding the height of the upper end of the weir 167, which is the predetermined height H2, exceeds the weir 167 and is the second. 2 Flows into the coagulation sedimentation tank 163. The wastewater treatment equipment 16 includes an impurity removing mechanism (not shown) configured to remove the settled flocs in the first coagulation sedimentation tank 161 and the second coagulation sedimentation tank 163. Further, in some other embodiments, an overflow pipe may be provided instead of the weir 167 described above.
 排水処理設備16は、第1凝集沈殿槽161や第2凝集沈殿槽163などの各槽に送られる排水の量が多いと、各槽において不純物を十分に除去する前に排水が下流側に送られるので、排水処理が不十分となる虞がある。このため、上述したろ液排出ライン7は、排水処理設備16の処理性能に応じた量のろ液を排水処理設備16に送ることが好ましい。 In the wastewater treatment facility 16, if the amount of wastewater sent to each tank such as the first coagulation sedimentation tank 161 and the second coagulation sedimentation tank 163 is large, the wastewater is sent to the downstream side before the impurities are sufficiently removed in each tank. Therefore, there is a risk that the wastewater treatment will be insufficient. Therefore, it is preferable that the above-mentioned filtrate discharge line 7 sends an amount of filtrate corresponding to the treatment performance of the wastewater treatment equipment 16 to the wastewater treatment equipment 16.
 上記の構成によれば、ろ液排出ライン7は、ろ液貯留槽6と排水処理設備16に接続される排水配管71、排水配管71に設けられる排水ポンプ72、および排水配管71における排水ポンプ72の下流側に設けられる流量調整弁73を含むので、排水配管71を介してろ液貯留槽6から排水処理設備16に送られるろ液の流量を調整することができる。このため、ろ液排出ライン7は、排水処理設備16の処理性能に応じた量のろ液を排水処理設備16に送ることができる。 According to the above configuration, the filtrate discharge line 7 includes a drainage pipe 71 connected to the filtrate storage tank 6 and the wastewater treatment facility 16, a drainage pump 72 provided in the drainage pipe 71, and a drainage pump 72 in the drainage pipe 71. Since the flow rate adjusting valve 73 provided on the downstream side of the above is included, the flow rate of the filtrate sent from the filtrate storage tank 6 to the wastewater treatment facility 16 via the drainage pipe 71 can be adjusted. Therefore, the filtrate discharge line 7 can send an amount of filtrate corresponding to the treatment performance of the wastewater treatment facility 16 to the wastewater treatment facility 16.
 幾つかの実施形態では、上述した石膏スラリー脱水システム1は、排煙脱硫装置20において排ガスに気液接触させる吸収液を貯留するように構成された上述した吸収液貯留槽17と、ろ布洗浄液貯留槽8に貯留される液体を吸収液貯留槽17に送るように構成された送水ライン9と、をさらに備える。 In some embodiments, the gypsum slurry dehydration system 1 described above comprises the above-mentioned absorption liquid storage tank 17 configured to store the absorption liquid that is brought into gas-liquid contact with the exhaust gas in the flue gas desulfurization apparatus 20, and the filter cloth cleaning liquid. A water supply line 9 configured to send the liquid stored in the storage tank 8 to the absorption liquid storage tank 17 is further provided.
 石膏排出後のろ布31に付着している不純物は少量であるため、ろ布洗浄液は、ろ布31に付着している不純物を吸収しても不純物の含有率が低い。ろ布洗浄液貯留槽8には、ろ液貯留槽6から不純物の含有率が高いろ液が越流することがあるが、ろ布洗浄液により薄められるため、ろ布洗浄液貯留槽8に貯留される液体は、ろ液貯留槽6に貯留されるろ液に比べて、不純物の含有率が低い。上記の構成によれば、不純物の含有率の低いろ布洗浄液貯留槽8に貯留される液体を、送水ライン9を介して吸収液貯留槽17に送ることで、上記液体を排煙脱硫装置20における吸収液の循環系統に戻して吸収液として再利用することができる。 Since the amount of impurities adhering to the filter cloth 31 after the gypsum is discharged is small, the filter cloth cleaning liquid has a low impurity content even if it absorbs the impurities adhering to the filter cloth 31. A filtrate having a high impurity content may overflow from the filtrate storage tank 8 into the filter cloth cleaning liquid storage tank 8, but since it is diluted by the filter cloth cleaning liquid, it is stored in the filter cloth cleaning liquid storage tank 8. The liquid has a lower impurity content than the filtrate stored in the filtrate storage tank 6. According to the above configuration, the liquid stored in the filter cloth cleaning liquid storage tank 8 having a low impurity content is sent to the absorption liquid storage tank 17 via the water supply line 9, and the liquid is discharged to the flue gas desulfurization apparatus 20. It can be returned to the circulation system of the absorption liquid in the above and reused as the absorption liquid.
 幾つかの実施形態では、上述した上記送水ライン9は、図2に示されるように、上述したろ布洗浄液貯留槽8と上述した吸収液貯留槽17に接続される送水配管91と、送水配管91に設けられた送水ポンプ92と、を含む。送水ポンプ92は、ろ布洗浄液貯留槽8に貯留された液体の液面高さH3に応じて回転数が制御されるように構成される。 In some embodiments, the above-mentioned water supply line 9 has, as shown in FIG. 2, a water supply pipe 91 connected to the above-mentioned filter cloth cleaning liquid storage tank 8 and the above-mentioned absorption liquid storage tank 17, and a water supply pipe. Includes a water pump 92 provided in 91. The water supply pump 92 is configured so that the rotation speed is controlled according to the liquid level height H3 of the liquid stored in the filter cloth cleaning liquid storage tank 8.
 図示される実施形態では、図2に示されるように、上述した石膏スラリー脱水システム1は、ろ布洗浄液貯留槽8に貯留された液体の液面高さH3を取得するように構成された液面高さ取得装置93と、液面高さ取得装置93が取得した液面高さH3に応じて、送水ポンプ92に回転数を指示するように構成された回転数指示部941を含む制御装置94と、をさらに備える。 In the illustrated embodiment, as shown in FIG. 2, the above-mentioned gypsum slurry dehydration system 1 is configured to acquire the liquid level height H3 of the liquid stored in the filter cloth cleaning liquid storage tank 8. A control device including a surface height acquisition device 93 and a rotation number indicating unit 941 configured to indicate the rotation number to the water supply pump 92 according to the liquid level height H3 acquired by the liquid level height acquisition device 93. 94 and are further provided.
 液面高さ取得装置93としては、例えば赤外線式の液面センサなどが挙げられる。制御装置94は、送水ポンプ92の回転数を調整するための電子制御ユニットであり、図示しないCPU(プロセッサ)や、ROMやRAMといったメモリ、外部記憶装置などの記憶装置、I/Oインターフェース、通信インターフェースなどからなるマイクロコンピュータとして構成されていてもよい。そして、例えば上記メモリの主記憶装置にロードされたプログラムの命令に従ってCPUが動作(例えばデータの演算など)することで、各機能部を実現する。制御装置94は、送水ポンプ92や液面高さ取得装置93に対して信号の送受信が可能に構成されている。送水ポンプ92は、制御装置94から送られる信号により電気的に制御され、該信号に応じて、駆動や停止するとともに、その回転数を調整可能に構成されている。このような送水ポンプ92としては、例えばインバータモータなどを内蔵する送水ポンプが挙げられる。 Examples of the liquid level height acquisition device 93 include an infrared type liquid level sensor. The control device 94 is an electronic control unit for adjusting the rotation speed of the water supply pump 92, and is a CPU (processor) (not shown), a memory such as ROM or RAM, a storage device such as an external storage device, an I / O interface, and communication. It may be configured as a microcomputer including an interface or the like. Then, for example, each functional unit is realized by the CPU operating (for example, data calculation) according to the instruction of the program loaded in the main storage device of the memory. The control device 94 is configured to be able to send and receive signals to and from the water supply pump 92 and the liquid level height acquisition device 93. The water supply pump 92 is electrically controlled by a signal sent from the control device 94, and is configured to be driven or stopped and its rotation speed can be adjusted according to the signal. Examples of such a water pump 92 include a water pump having a built-in inverter motor or the like.
 図示される実施形態では、回転数指示部941は、液面高さ取得装置93から送られる液面高さH3が下限閾値LHに満たない場合には、送水ポンプ92に停止するように指示する。また、送水ポンプ92が停止した状態において、回転数指示部941は、液面高さ取得装置93から送られる液面高さH3が下限閾値LH以上になった場合には、送水ポンプ92に駆動するように指示する。また、回転数指示部941は、液面高さ取得装置93から送られる液面高さH3が上限閾値UH以下、且つ下限閾値LH以上である場合には、送水ポンプ92に第1の回転数により回転するように指示する。回転数指示部941は、液面高さ取得装置93から送られる液面高さH3が上限閾値UHを超える場合には、送水ポンプ92に第1の回転数よりも速い第2の回転数により回転するように指示する。上限閾値UHは、所定の高さH1(堰64の上端の高さ)よりも低く設定される。
 なお、他の幾つかの実施形態では、回転数指示部941は、液面高さ取得装置93から送られる液面高さH3が上がるにつれて、連続的又は段階的に送水ポンプ92に指示する回転数を増加させるように構成されていてもよい。
In the illustrated embodiment, the rotation speed indicator 941 instructs the water supply pump 92 to stop when the liquid level height H3 sent from the liquid level height acquisition device 93 does not reach the lower limit threshold value LH. .. Further, in the state where the water supply pump 92 is stopped, the rotation speed indicator 941 is driven by the water supply pump 92 when the liquid level height H3 sent from the liquid level height acquisition device 93 becomes equal to or higher than the lower limit threshold value LH. Instruct to do. Further, when the liquid level height H3 sent from the liquid level height acquisition device 93 is equal to or lower than the upper limit threshold value UH and equal to or higher than the lower limit threshold value LH, the rotation speed indicating unit 941 gives the water supply pump 92 the first rotation speed. Instruct to rotate by. When the liquid level height H3 sent from the liquid level height acquisition device 93 exceeds the upper limit threshold UH, the rotation speed indicator 941 uses a second rotation speed faster than the first rotation speed to the water supply pump 92. Instruct to rotate. The upper limit threshold value UH is set lower than a predetermined height H1 (height of the upper end of the weir 64).
In some other embodiments, the rotation speed indicating unit 941 continuously or stepwise instructs the water supply pump 92 to rotate as the liquid level height H3 sent from the liquid level height acquisition device 93 increases. It may be configured to increase the number.
 ろ布洗浄液貯留槽8には、ろ布洗浄液だけでなく、ろ液貯留槽6から越流したろ液が送られるため、ろ布洗浄液貯留槽8に貯留された液体の液面高さが急激に大きく上昇して、ろ布洗浄液貯留槽8から上記液体が溢れ出す虞がある。上記の構成によれば、送水ライン9は、ろ布洗浄液貯留槽8と吸収液貯留槽17に接続される送水配管91、および送水配管91に設けられた送水ポンプ92を含む。そして、上記送水ポンプ92は、ろ布洗浄液貯留槽8に貯留された液体の液面高さに応じて回転数が制御されるように構成される。この場合には、ろ布洗浄液貯留槽8に貯留された液体の液面高さが過度に高くならないように送水ポンプ92の回転数が制御されることで、ろ布洗浄液貯留槽8から上記液体が溢れることを抑制することができる。 Since not only the filter cloth cleaning liquid but also the filtrate overflowed from the filtrate storage tank 6 is sent to the filter cloth cleaning liquid storage tank 8, the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8 suddenly rises. There is a risk that the liquid will rise significantly and the liquid will overflow from the filter cloth cleaning liquid storage tank 8. According to the above configuration, the water supply line 9 includes a water supply pipe 91 connected to the filter cloth cleaning liquid storage tank 8 and the absorption liquid storage tank 17, and a water supply pump 92 provided in the water supply pipe 91. The water supply pump 92 is configured so that the rotation speed is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8. In this case, the rotation speed of the water supply pump 92 is controlled so that the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8 does not become excessively high, so that the liquid from the filter cloth cleaning liquid storage tank 8 Can be suppressed from overflowing.
 図4は、本開示の一実施形態にかかる石膏スラリー脱水システムの他の一例を説明するための説明図である。
 幾つかの実施形態では、上述した送水ライン9は、図4に示されるように、上述した送水配管91と、送水配管91に設けられた送水ポンプ92と、送水配管91に設けられるとともに、ろ布洗浄液貯留槽8から吸収液貯留槽17に送られる液体の流量を調整可能に構成された流量制御弁95と、を含む。流量制御弁95は、ろ布洗浄液貯留槽8に貯留された液体の液面高さH3に応じてその開度が制御されるように構成される。なお、この場合、送水ポンプ92の回転数は一定に維持される。
FIG. 4 is an explanatory diagram for explaining another example of the gypsum slurry dehydration system according to the embodiment of the present disclosure.
In some embodiments, the water supply line 9 described above is provided in the water supply pipe 91, the water supply pump 92 provided in the water supply pipe 91, and the water supply pipe 91, as shown in FIG. A flow rate control valve 95 configured to be able to adjust the flow rate of the liquid sent from the cloth cleaning liquid storage tank 8 to the absorption liquid storage tank 17 is included. The flow rate control valve 95 is configured so that its opening degree is controlled according to the liquid level height H3 of the liquid stored in the filter cloth cleaning liquid storage tank 8. In this case, the rotation speed of the water supply pump 92 is kept constant.
 図示される実施形態では、図4に示されるように、上述した石膏スラリー脱水システム1は、上述した液面高さ取得装置93と、液面高さ取得装置93が取得した液面高さH3に応じて、流量制御弁95に開度を指示するように構成された開度指示部942を含む制御装置94A(94)と、を備える。 In the illustrated embodiment, as shown in FIG. 4, the above-mentioned gypsum slurry dehydration system 1 has the above-mentioned liquid level height acquisition device 93 and the liquid level height H3 acquired by the liquid level height acquisition device 93. A control device 94A (94) including an opening degree indicating unit 942 configured to instruct the opening degree to the flow rate control valve 95 is provided.
 制御装置94Aは、流量制御弁95の開度を調整するための電子制御ユニットであり、図示しないCPU(プロセッサ)や、ROMやRAMといったメモリ、外部記憶装置などの記憶装置、I/Oインターフェース、通信インターフェースなどからなるマイクロコンピュータとして構成されていてもよい。そして、例えば上記メモリの主記憶装置にロードされたプログラムの命令に従ってCPUが動作(例えばデータの演算など)することで、各機能部を実現する。制御装置94Aは、流量制御弁95や液面高さ取得装置93に対して信号の送受信が可能に構成されている。流量制御弁95は、制御装置94Aから送られる信号により電気的に制御され、該信号に応じて、流量制御弁95の弁体を駆動させて流量制御弁95の内部の流路を開閉させるとともに、流量制御弁95の開度を、全閉および全開以外の所望の開度に調整可能に構成されている。このような流量制御弁95としては、例えば制御弁が挙げられる。なお、図示される実施形態では、流量制御弁95は、送水ポンプ92よりも送水配管91の下流側(吸収液貯留槽17側)に設けられている。 The control device 94A is an electronic control unit for adjusting the opening degree of the flow control valve 95, and includes a CPU (processor) (not shown), a memory such as ROM and RAM, a storage device such as an external storage device, and an I / O interface. It may be configured as a microcomputer including a communication interface or the like. Then, for example, each functional unit is realized by the CPU operating (for example, data calculation) according to the instruction of the program loaded in the main storage device of the memory. The control device 94A is configured to be able to send and receive signals to and from the flow rate control valve 95 and the liquid level height acquisition device 93. The flow rate control valve 95 is electrically controlled by a signal sent from the control device 94A, and in response to the signal, the valve body of the flow rate control valve 95 is driven to open and close the flow path inside the flow rate control valve 95. The opening degree of the flow rate control valve 95 can be adjusted to a desired opening degree other than fully closed and fully open. Examples of such a flow rate control valve 95 include a control valve. In the illustrated embodiment, the flow rate control valve 95 is provided on the downstream side (absorption liquid storage tank 17 side) of the water supply pipe 91 with respect to the water supply pump 92.
 図示される実施形態では、開度指示部942は、液面高さ取得装置93から送られる液面高さH3が下限閾値LHに満たない場合には、流量制御弁95に全閉となるように指示する。また、流量制御弁95が閉じた状態において、開度指示部942は、液面高さ取得装置93から送られる液面高さH3が下限閾値LH以上になった場合には、流量制御弁95に開くように指示する。また、開度指示部942は、液面高さ取得装置93から送られる液面高さH3が上限閾値UH以下、且つ下限閾値LH以上である場合には、流量制御弁95にその開度が第1の開度となるように指示する。流量制御弁95は、液面高さ取得装置93から送られる液面高さH3が上限閾値UHを超える場合には、流量制御弁95にその開度が第1の開度よりも開いた第2の開度(例えば、全開)となるように指示する。なお、他の幾つかの実施形態では、開度指示部942は、液面高さ取得装置93から送られる液面高さH3が上がるにつれて、連続的又は段階的に流量制御弁95に指示する開度を大きくして、流量制御弁95を通過する液体の流量を増加させるように構成されていてもよい。 In the illustrated embodiment, the opening degree indicating unit 942 is fully closed to the flow control valve 95 when the liquid level height H3 sent from the liquid level height acquisition device 93 does not reach the lower limit threshold value LH. Instruct. Further, when the flow rate control valve 95 is closed and the liquid level height H3 sent from the liquid level height acquisition device 93 becomes equal to or higher than the lower limit threshold value LH, the opening degree indicating unit 942 receives the flow rate control valve 95. Instruct to open. Further, when the liquid level height H3 sent from the liquid level height acquisition device 93 is equal to or lower than the upper limit threshold value UH and equal to or higher than the lower limit threshold value LH, the opening degree indicating unit 942 increases the opening degree of the flow rate control valve 95. Instruct the first opening. When the liquid level height H3 sent from the liquid level height acquisition device 93 exceeds the upper limit threshold value UH, the flow rate control valve 95 has an opening degree of the flow rate control valve 95 that is wider than the first opening degree. It is instructed to have an opening degree of 2 (for example, fully open). In some other embodiments, the opening degree indicating unit 942 instructs the flow rate control valve 95 continuously or stepwise as the liquid level height H3 sent from the liquid level height acquisition device 93 increases. The opening degree may be increased to increase the flow rate of the liquid passing through the flow rate control valve 95.
 また、他の幾つかの実施形態では、上述した流量制御弁95は、全閉および全開の二位置になるが、全閉および全開以外の開度に調整できないように構成されていてもよい。開度指示部942は、流量制御弁95に開度として全開又は全閉の何れかを指示する。この場合には、開度指示部942は、一定期間内における流量制御弁95を全開とする期間の割合を増やすことで、流量制御弁95を通過する液体の流量を増加させることができる。このような流量制御弁95としては、例えば電磁弁などが挙げられる。 Further, in some other embodiments, the flow rate control valve 95 described above has two positions, fully closed and fully open, but may be configured so as not to be adjusted to an opening other than fully closed and fully open. The opening degree indicating unit 942 instructs the flow control valve 95 to open or fully close as the opening degree. In this case, the opening degree indicating unit 942 can increase the flow rate of the liquid passing through the flow rate control valve 95 by increasing the ratio of the period during which the flow rate control valve 95 is fully opened within a certain period. Examples of such a flow rate control valve 95 include a solenoid valve and the like.
 上述したように、ろ布洗浄液貯留槽8には、ろ布洗浄液だけでなく、ろ液貯留槽6から越流したろ液が送られるため、ろ布洗浄液貯留槽8に貯留された液体の液面高さが急激に大きく上昇して、ろ布洗浄液貯留槽8から上記液体が溢れ出す虞がある。上記の構成によれば、送水ライン9は、上記送水配管91、送水配管91に設けられた送水ポンプ92および送水配管91に設けられた流量制御弁95を含む。そして、上記流量制御弁95は、ろ布洗浄液貯留槽8に貯留された液体の液面高さに応じてその開度が制御されるように構成される。この場合には、ろ布洗浄液貯留槽8に貯留された液体の液面高さが過度に高くならないように流量制御弁95の開度が制御されることで、ろ布洗浄液貯留槽8から上記液体が溢れることを抑制することができる。 As described above, not only the filter cloth cleaning liquid but also the filtrate overflowed from the filtrate storage tank 6 is sent to the filter cloth cleaning liquid storage tank 8, so that the liquid level of the liquid stored in the filter cloth cleaning liquid storage tank 8 is reached. There is a risk that the height will rise sharply and the liquid will overflow from the filter cloth cleaning liquid storage tank 8. According to the above configuration, the water supply line 9 includes the water supply pipe 91, the water supply pump 92 provided in the water supply pipe 91, and the flow rate control valve 95 provided in the water supply pipe 91. The flow rate control valve 95 is configured so that its opening degree is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8. In this case, the opening degree of the flow rate control valve 95 is controlled so that the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank 8 does not become excessively high, so that the filter cloth cleaning liquid storage tank 8 can be used as described above. It is possible to prevent the liquid from overflowing.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。 The contents described in some of the above-described embodiments are grasped as follows, for example.
1)本開示の少なくとも一実施形態にかかる石膏スラリー脱水システム(1)は、
 排煙脱硫装置(20)から排出される石膏スラリーを脱水するための石膏スラリー脱水システム(1)であって、
 上記石膏スラリーをろ布(31)上に載せた状態で搬送する搬送ベルト(32)を有する搬送装置(3)と、
 上記ろ布(31)に対してろ布洗浄液を噴出可能な噴出部(ろ布洗浄液噴出部51)を有するろ布洗浄装置(5)と、
 上記ろ布(31)により上記石膏スラリーから分離されたろ液を貯留するように構成されたろ液貯留槽(6)と、
 上記ろ液貯留槽(6)に貯留された上記ろ液を、上記ろ液を系外に排出するための処理を行う排水処理設備(16)に送るように構成されたろ液排出ライン(7)と、
 上記ろ液貯留槽(6)とは異なるろ布洗浄液貯留槽(8)であって、上記噴出部(ろ布洗浄液噴出部51)から上記ろ布(31)に対して噴出された上記ろ布洗浄液を少なくとも貯留するように構成されたろ布洗浄液貯留槽(8)と、を備える。
1) The gypsum slurry dehydration system (1) according to at least one embodiment of the present disclosure is
A gypsum slurry dehydration system (1) for dehydrating the gypsum slurry discharged from the flue gas desulfurization apparatus (20).
A transport device (3) having a transport belt (32) for transporting the gypsum slurry in a state of being placed on a filter cloth (31).
A filter cloth cleaning device (5) having a ejection portion (filter cloth cleaning liquid ejection portion 51) capable of ejecting the filter cloth cleaning liquid onto the filter cloth (31).
A filtrate storage tank (6) configured to store the filtrate separated from the gypsum slurry by the filter cloth (31), and
A filtrate discharge line (7) configured to send the filtrate stored in the filtrate storage tank (6) to a wastewater treatment facility (16) that performs a treatment for discharging the filtrate to the outside of the system. When,
The filter cloth cleaning liquid storage tank (8) different from the filtrate storage tank (6), and the filter cloth ejected from the ejection portion (filter cloth cleaning liquid ejection portion 51) to the filter cloth (31). A filter cloth cleaning liquid storage tank (8) configured to store at least the cleaning liquid is provided.
 排煙脱硫装置から排出される石膏スラリーは、排煙脱硫装置において排ガスから不純物(例えば、排ガスから除去した燃焼灰やスートなどの懸濁物質や、溶解重金属などの汚濁物質など)を吸収している。そして、脱水処理設備(例えば、搬送装置など)において石膏スラリーから不純物がろ液とともに石膏から分離される。また、ケーキの洗浄に供されたケーキ洗浄液には、マグネシウム(Mg)、塩素(Cl)、ナトリウム(Na)といった金属イオンなどの不純物が含まれる。このため、石膏スラリーから分離されたろ液やケーキの洗浄に供された後、ろ液として、ろ液貯留槽に送られたケーキ洗浄液は、ろ布に対して噴出されたろ布洗浄液に比べて、不純物の含有率が高い。不純物の含有率の高いろ液を、排煙脱硫装置における吸収液の循環系統に戻すと、排煙脱硫装置における吸収液中の不純物の含有率が増加するため適切ではない。不純物の含有率の高いろ液は、排水処理設備において排水処理後に系外に排出することが好ましい。 The gypsum slurry discharged from the flue gas desulfurization device absorbs impurities (for example, suspended solids such as combustion ash and soot removed from the exhaust gas and pollutants such as molten heavy metals) from the exhaust gas in the flue gas desulfurization device. There is. Then, in a dehydration treatment facility (for example, a transport device), impurities are separated from the gypsum together with the filtrate from the gypsum slurry. Further, the cake washing liquid used for washing the cake contains impurities such as metal ions such as magnesium (Mg), chlorine (Cl) and sodium (Na). Therefore, the cake cleaning solution sent to the filtrate storage tank as the filtrate after being used for cleaning the filtrate or cake separated from the gypsum slurry is compared with the filter cloth cleaning solution sprayed onto the filter cloth. High impurity content. Returning the filtrate having a high impurity content to the circulation system of the absorption liquid in the flue gas desulfurization apparatus is not appropriate because the content of impurities in the absorption liquid in the flue gas desulfurization apparatus increases. It is preferable that the filtrate having a high impurity content is discharged to the outside of the system after the wastewater treatment in the wastewater treatment facility.
 上記1)の構成によれば、石膏スラリーから分離されたろ液とケーキの洗浄に供されたケーキ洗浄液をろ液貯留槽(6)に貯留することができ、ろ布に対して噴出されたろ布洗浄液をろ布洗浄液貯留槽(8)に貯留することができる。そして、ろ液貯留槽に貯留されたろ液を、ろ液排出ライン(7)を介して排水処理設備(16)に送り、排水処理設備において排水処理後に系外に排出することができる。このように、不純物の含有率が高いろ液と不純物の含有率が低いろ布洗浄液とを分けて貯留し、排水処理設備に送られる排水を、ろ液貯留槽に貯留された不純物の含有率が高いろ液に限定することで、石膏スラリーの脱水処理設備から排水処理設備に送られる排水の量を、ろ布洗浄液の分だけ少なくすることができる。また、排水処理設備に送られる排水の量を少なくすることで、排水処理設備の大型化や設備費用の高額化を抑制することができる。 According to the configuration of 1) above, the filtrate separated from the gypsum slurry and the cake cleaning solution used for washing the cake can be stored in the filtrate storage tank (6), and the filter cloth ejected to the filter cloth can be stored. The cleaning liquid can be stored in the filter cloth cleaning liquid storage tank (8). Then, the filtrate stored in the filtrate storage tank can be sent to the wastewater treatment facility (16) via the filtrate discharge line (7), and can be discharged to the outside of the system after the wastewater treatment in the wastewater treatment facility. In this way, the filtrate with a high impurity content and the filter cloth cleaning solution with a low impurity content are stored separately, and the wastewater sent to the wastewater treatment facility is stored in the filtrate storage tank. By limiting the filtrate to a high filtrate, the amount of wastewater sent from the dewatering facility for the gypsum slurry to the wastewater treatment facility can be reduced by the amount of the filter cloth cleaning solution. In addition, by reducing the amount of wastewater sent to the wastewater treatment facility, it is possible to suppress an increase in the size of the wastewater treatment facility and an increase in equipment cost.
2)幾つかの実施形態では、上記1)に記載の石膏スラリー脱水システム(1)であって、
 上記ろ液貯留槽(6)は、上記ろ液貯留槽(6)に貯留される上記ろ液の内、所定の高さを上回ったろ液が上記ろ布洗浄液貯留槽(8)に越流するように構成される。
2) In some embodiments, the gypsum slurry dehydration system (1) according to 1) above.
In the filtrate storage tank (6), among the filtrates stored in the filtrate storage tank (6), the filtrate exceeding a predetermined height overflows into the filter cloth cleaning liquid storage tank (8). It is configured as follows.
 上記2)の構成によれば、ろ液貯留槽(6)は、ろ液貯留槽に貯留されるろ液の内、所定の高さを上回ったろ液がろ布洗浄液貯留槽(8)に越流するように構成されている。このため、排水処理設備(16)に送る必要が有る所定量のろ液以外のろ液を、ポンプやレベル制御などの複雑な設備を介すること無くろ布洗浄液貯留槽(8)に送液することができ、設備の複雑化や高額化を抑制することができる。
 また、例えば、ろ液貯留槽(8)に、排水処理設備(16)で処理可能な量を超えるろ液が供給されたときでも、ろ液貯留槽(8)から、排水処理設備(16)に、処理可能な量だけのろ液を送れば、残りの、処理可能な量を超えた分のろ液は、自然に、ろ布洗浄液貯留槽(8)に越流して、ろ布洗浄液貯留槽(8)に貯留されるため、排水処理設備(16)を、余裕をみて、大きな設備とする必要はなく、排水処理設備(16)の高額化を抑制することができる。
According to the configuration of 2) above, in the filtrate storage tank (6), among the filtrates stored in the filtrate storage tank, the filtrate exceeding a predetermined height exceeds the filter cloth cleaning liquid storage tank (8). It is configured to flow. Therefore, a filtrate other than the predetermined amount of filtrate that needs to be sent to the wastewater treatment facility (16) is sent to the filter cloth cleaning liquid storage tank (8) without going through complicated equipment such as a pump or level control. This can reduce the complexity and cost of equipment.
Further, for example, even when a filtrate exceeding the amount that can be treated by the wastewater treatment equipment (16) is supplied to the filtrate storage tank (8), the wastewater treatment equipment (16) is supplied from the filtrate storage tank (8). If only the amount of the filtrate that can be processed is sent to the filter, the remaining amount of the filtrate that exceeds the amount that can be processed naturally overflows into the filter cloth cleaning solution storage tank (8) and is stored in the filter cloth cleaning solution. Since it is stored in the tank (8), it is not necessary to make the wastewater treatment facility (16) a large facility with a margin, and it is possible to suppress the increase in the cost of the wastewater treatment facility (16).
3)幾つかの実施形態では、上記2)に記載の石膏スラリー脱水システム(1)であって、
 上記ろ液排出ライン(7)は、
 上記ろ液貯留槽(6)と上記排水処理設備(16)に接続される排水配管(71)と、
 上記排水配管(71)に設けられた排水ポンプ(72)と、
 上記排水配管(71)における上記排水ポンプ(72)の下流側に設けられるとともに、上記ろ液貯留槽(6)から上記排水処理設備(16)に送られる上記ろ液の流量を調整可能に構成された流量調整弁(73)と、を少なくとも含む。
3) In some embodiments, the gypsum slurry dehydration system (1) according to 2) above.
The filtrate discharge line (7) is
The drainage pipe (71) connected to the filtrate storage tank (6) and the wastewater treatment facility (16),
The drainage pump (72) provided in the drainage pipe (71) and
It is provided on the downstream side of the drainage pump (72) in the drainage pipe (71), and the flow rate of the filtrate sent from the filtrate storage tank (6) to the wastewater treatment facility (16) can be adjusted. Includes at least the flow control valve (73) provided.
 上記3)の構成によれば、ろ液排出ラインは、ろ液貯留槽と排水処理設備に接続される排水配管、上記排水配管に設けられる排水ポンプ、および上記排水配管における排水ポンプの下流側に設けられる流量調整弁を含むので、排水配管を介してろ液貯留槽から排水処理設備に送られるろ液の流量を調整することができる。このため、ろ液排出ラインは、排水処理設備の処理性能に応じた量のろ液を排水処理設備に送ることができる。 According to the configuration of 3) above, the filtrate discharge line is located on the downstream side of the drainage pipe connected to the filtrate storage tank and the wastewater treatment facility, the drainage pump provided in the drainage pipe, and the drainage pump in the drainage pipe. Since the flow control valve provided is included, the flow rate of the filtrate sent from the filtrate storage tank to the wastewater treatment facility via the drainage pipe can be adjusted. Therefore, the filtrate discharge line can send an amount of filtrate corresponding to the treatment performance of the wastewater treatment facility to the wastewater treatment facility.
4)幾つかの実施形態では、上記3)に記載の石膏スラリー脱水システム(1)であって、
 上記排煙脱硫装置(20)において排ガスに気液接触させる吸収液を貯留するように構成された吸収液貯留槽(17)と、
 上記ろ布洗浄液貯留槽(8)に貯留される液体を上記吸収液貯留槽(17)に送るように構成された送水ライン(9)と、をさらに備える。
4) In some embodiments, the gypsum slurry dehydration system (1) according to 3) above.
In the flue gas desulfurization apparatus (20), an absorption liquid storage tank (17) configured to store an absorption liquid that is in gas-liquid contact with exhaust gas, and
A water supply line (9) configured to send the liquid stored in the filter cloth cleaning liquid storage tank (8) to the absorption liquid storage tank (17) is further provided.
 石膏排出後のろ布に付着している不純物は少量であるため、ろ布洗浄液は、ろ布に付着している不純物を吸収しても不純物の含有率が低い。ろ布洗浄液貯留槽には、ろ液貯留槽から不純物の含有率が高いろ液が越流することがあるが、ろ布洗浄液により薄められるため、ろ布洗浄液貯留槽に貯留される液体は、ろ液貯留槽に貯留されるろ液に比べて、不純物の含有率が低い。上記4)の構成によれば、不純物の含有率の低い上記ろ布洗浄液貯留槽に貯留される液体を、送水ラインを介して吸収液貯留槽17に送ることで、上記液体を排煙脱硫装置における吸収液の循環系統に戻して吸収液として再利用することができる。 Since the amount of impurities adhering to the filter cloth after the gypsum is discharged is small, the filter cloth cleaning solution has a low impurity content even if it absorbs the impurities adhering to the filter cloth. A filter medium having a high impurity content may overflow from the filter medium cleaning liquid storage tank to the filter cloth cleaning liquid storage tank, but since it is diluted by the filter cloth cleaning liquid, the liquid stored in the filter cloth cleaning liquid storage tank is The content of impurities is lower than that of the filtrate stored in the filtrate storage tank. According to the configuration of 4) above, the liquid stored in the filter cloth cleaning liquid storage tank having a low impurity content is sent to the absorption liquid storage tank 17 via the water supply line, whereby the liquid is flue-gas desulfurized. It can be returned to the circulation system of the absorption liquid in the above and reused as the absorption liquid.
5)幾つかの実施形態では、上記4)に記載の石膏スラリー脱水システム(1)であって、
 上記送水ライン(9)は、
 上記ろ布洗浄液貯留槽(8)と上記吸収液貯留槽(17)に接続される送水配管(91)と、
 上記送水配管(91)に設けられた送水ポンプ(92)と、を含み、
 上記送水ポンプ(92)は、上記ろ布洗浄液貯留槽(8)に貯留された液体の液面高さに応じて回転数が制御されるように構成される。
5) In some embodiments, the gypsum slurry dehydration system (1) according to 4) above.
The water supply line (9) is
The water supply pipe (91) connected to the filter cloth cleaning liquid storage tank (8) and the absorption liquid storage tank (17), and
Including the water supply pump (92) provided in the water supply pipe (91).
The water supply pump (92) is configured so that the rotation speed is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank (8).
 ろ布洗浄液貯留槽には、ろ布洗浄液だけでなく、ろ液貯留槽(6)から越流したろ液が送られるため、ろ布洗浄液貯留槽に貯留された液体の液面高さが急激に大きく上昇して、ろ布洗浄液貯留槽から上記液体が溢れ出す虞がある。上記5)の構成によれば、送水ラインは、ろ布洗浄液貯留槽と吸収液貯留槽に接続される送水配管、および上記送水配管に設けられた送水ポンプを含む。そして、上記送水ポンプは、ろ布洗浄液貯留槽に貯留された液体の液面高さに応じて回転数が制御されるように構成される。この場合には、ろ布洗浄液貯留槽に貯留された液体の液面高さが過度に高くならないように送水ポンプの回転数が制御されることで、ろ布洗浄液貯留槽から上記液体が溢れることを抑制することができる。 Since not only the filter cloth cleaning liquid but also the filtrate overflowed from the filtrate storage tank (6) is sent to the filter cloth cleaning liquid storage tank, the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank suddenly rises. There is a risk that the liquid will rise significantly and the above liquid will overflow from the filter cloth cleaning liquid storage tank. According to the configuration of 5) above, the water supply line includes a water supply pipe connected to the filter cloth cleaning liquid storage tank and the absorption liquid storage tank, and a water supply pump provided in the water supply pipe. The water supply pump is configured so that the rotation speed is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank. In this case, the rotation speed of the water supply pump is controlled so that the liquid level of the liquid stored in the filter cloth cleaning liquid storage tank does not become excessively high, so that the above liquid overflows from the filter cloth cleaning liquid storage tank. Can be suppressed.
6)幾つかの実施形態では、上記4)に記載の石膏スラリー脱水システム(1)であって、
 上記送水ライン(9)は、
 上記ろ布洗浄液貯留槽(8)と上記吸収液貯留槽(17)に接続される送水配管(91)と、
 上記送水配管(91)に設けられた送水ポンプ(92)と、
 上記送水配管(91)に設けられるとともに、上記ろ布洗浄液貯留槽(8)から上記吸収液貯留槽(17)に送られる液体の流量を調整可能に構成された流量制御弁(95)と、を含み、
 上記流量制御弁(95)は、上記ろ布洗浄液貯留槽(8)に貯留された液体の液面高さに応じて開度が制御されるように構成される。
6) In some embodiments, the gypsum slurry dehydration system (1) according to 4) above.
The water supply line (9) is
The water supply pipe (91) connected to the filter cloth cleaning liquid storage tank (8) and the absorption liquid storage tank (17), and
The water supply pump (92) provided in the water supply pipe (91) and
A flow rate control valve (95) provided in the water supply pipe (91) and configured to be able to adjust the flow rate of the liquid sent from the filter cloth cleaning liquid storage tank (8) to the absorption liquid storage tank (17). Including
The flow rate control valve (95) is configured so that the opening degree is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank (8).
 上述したように、ろ布洗浄液貯留槽には、ろ布洗浄液だけでなく、ろ液貯留槽(6)から越流したろ液が送られるため、ろ布洗浄液貯留槽に貯留された液体の液面高さが急激に大きく上昇して、ろ布洗浄液貯留槽から上記液体が溢れ出す虞がある。上記6)の構成によれば、送水ラインは、上記送水配管、送水配管に設けられた送水ポンプおよび送水配管に設けられた流量制御弁を含む。そして、上記流量制御弁は、ろ布洗浄液貯留槽に貯留された液体の液面高さに応じてその開度が制御されるように構成される。この場合には、ろ布洗浄液貯留槽に貯留された液体の液面高さが過度に高くならないように流量制御弁の開度が制御されることで、ろ布洗浄液貯留槽から上記液体が溢れることを抑制することができる。 As described above, not only the filter cloth cleaning liquid but also the filtrate overflowed from the filtrate storage tank (6) is sent to the filter cloth cleaning liquid storage tank, so that the liquid level of the liquid stored in the filter cloth cleaning liquid storage tank is liquid. There is a risk that the height will rise sharply and the above liquid will overflow from the filter cloth cleaning liquid storage tank. According to the configuration of 6) above, the water supply line includes the water supply pipe, the water supply pump provided in the water supply pipe, and the flow rate control valve provided in the water supply pipe. The flow rate control valve is configured so that its opening degree is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank. In this case, the opening of the flow rate control valve is controlled so that the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank does not become excessively high, so that the liquid overflows from the filter cloth cleaning liquid storage tank. Can be suppressed.
1      石膏スラリー脱水システム
3      搬送装置
31     ろ布
311    被支持部
312    上面
32     搬送ベルト
321    上面
322    支持部
33,33A,33B ドラム
34     モータ
35     ガイドローラ
36     脱水部
37     脱水装置
371    脱水室
372    真空ポンプ
373    減圧配管
374    真空タンク
375    液体排出配管
4      供給装置
41     供給部
42     供給配管
43     石膏排出部
44     ケーキ洗浄装置
45     ケーキ洗浄液噴出部
46     ケーキ洗浄液供給配管
47     ポンプ
5      ろ布洗浄装置
51     ろ布洗浄液噴出部
52     ろ布洗浄液供給配管
53     ポンプ
54     蒸気噴出装置
55     蒸気噴出部
56     蒸気配管
58     ろ布洗浄液受け部
59     ろ布洗浄液排出配管
6      ろ液貯留槽
61     内部空間
62     内側面
63     底面
64     堰
7      ろ液排出ライン
71     排水配管
72     排水ポンプ
73     流量調整弁
8      ろ布洗浄液貯留槽
81     内部空間
82     内側面
83     底面
9      送水ライン
91     送水配管
92     送水ポンプ
93     液面高さ取得装置
94,94A 制御装置
941    回転数指示部
942    開度指示部
95     流量制御弁
10     排ガス洗浄システム
11     燃焼設備
12     吸収液供給ライン
121    吸収液供給配管
122    供給ポンプ
13     吸収液循環ライン
131    吸収液循環配管
132    循環ポンプ
133    第1分岐部
14     吸収液抜き出しライン
141    配管
142    調整弁
143    第2分岐部
15     吸収液返送ライン
151    吸収液返送配管
16     排ガス処理設備
161    第1凝集沈殿槽
162    内部空間
163    第2凝集沈殿槽
164    内部空間
165    第1凝集剤添加ライン
166    第2凝集剤添加ライン
167    堰
168    仕切り
17     吸収液貯留槽
171    内部空間
20     排煙脱硫装置
20A    吸収塔
21     内部空間
21A    気液接触部
21B    液だまり部
22     吸収塔本体
221    吸収液抜出口
222    ノズル貫通口
223    吸収液供給口
224    吸収液返送口
23     排ガス導入口
24     排ガス排出口
25     ミストエリミネータ
26     噴霧装置
261    噴霧管
262    噴霧ノズル
263    噴霧口
27     酸化用気体供給装置
271    ノズル
272    ポンプ
273    開口
LH     下限閾値
UH     上限閾値
1 Gypsum slurry dehydration system 3 Transport device 31 Filter cloth 311 Supported part 312 Top surface 32 Transport belt 321 Top surface 322 Support part 33, 33A, 33B Drum 34 Motor 35 Guide roller 36 Dehydration part 37 Dehydration device 371 Dehydration chamber 372 Vacuum pump 373 Decompression Pipe 374 Vacuum tank 375 Liquid discharge pipe 4 Supply device 41 Supply part 42 Supply pipe 43 Gypsum discharge part 44 Cake cleaning device 45 Cake cleaning liquid ejection part 46 Cake cleaning liquid supply pipe 47 Pump 5 Filter cloth cleaning device 51 Filter cloth cleaning liquid ejection part 52 Cloth cleaning liquid supply pipe 53 Pump 54 Steam ejection device 55 Steam ejection part 56 Steam pipe 58 Filter cloth cleaning liquid receiving part 59 Filter cloth cleaning liquid discharge pipe 6 Filter liquid storage tank 61 Internal space 62 Inner side surface 63 Bottom surface 64 Dam 7 Filter liquid discharge line 71 Drainage pipe 72 Drainage pump 73 Flow control valve 8 Filter cloth cleaning liquid storage tank 81 Internal space 82 Inner side surface 83 Bottom surface 9 Water supply line 91 Water supply pipe 92 Water supply pump 93 Liquid level height acquisition device 94, 94A Control device 941 Rotation speed indicator 942 Opening indicator 95 Flow control valve 10 Exhaust gas cleaning system 11 Combustion equipment 12 Absorbent liquid supply line 121 Absorbent liquid supply pipe 122 Supply pump 13 Absorbent liquid circulation line 131 Absorbent liquid circulation pipe 132 Circulation pump 133 First branch 14 Absorption liquid extraction Line 141 Pipe 142 Adjusting valve 143 Second branch 15 Absorbent liquid return line 151 Absorbent liquid return pipe 16 Exhaust gas treatment equipment 161 First coagulation settling tank 162 Internal space 163 Second coagulation settling tank 164 Internal space 165 First coagulant addition line 166 Second coagulant addition line 167 Dam 168 Partition 17 Absorbent liquid storage tank 171 Internal space 20 Smoke exhaust desulfurization device 20A Absorption tower 21 Internal space 21A Gas-liquid contact part 21B Liquid pool part 22 Absorption tower body 221 Absorption liquid outlet 222 Nozzle penetration port 223 Absorption liquid supply port 224 Absorption liquid return port 23 Exhaust gas introduction port 24 Exhaust gas discharge port 25 Mist eliminator 26 Sprayer 261 Spray tube 262 Spray nozzle 263 Spray port 27 Oxidation gas supply device 271 Nozzle 272 Pump 273 Opening LH Lower limit threshold UH Upper limit threshold

Claims (6)

  1.  排煙脱硫装置から排出される石膏スラリーを脱水するための石膏スラリー脱水システムであって、
     前記石膏スラリーをろ布上に載せた状態で搬送する搬送ベルトを有する搬送装置と、
     前記ろ布に対してろ布洗浄液を噴出可能な噴出部を有するろ布洗浄装置と、
     前記ろ布により前記石膏スラリーから分離されたろ液を貯留するように構成されたろ液貯留槽と、
     前記ろ液貯留槽に貯留された前記ろ液を、前記ろ液を系外に排出するための処理を行う排水処理設備に送るように構成されたろ液排出ラインと、
     前記ろ液貯留槽とは異なるろ布洗浄液貯留槽であって、前記噴出部から前記ろ布に対して噴出された前記ろ布洗浄液を少なくとも貯留するように構成されたろ布洗浄液貯留槽と、
    を備える石膏スラリー脱水システム。
    A gypsum slurry dehydration system for dehydrating gypsum slurry discharged from a flue gas desulfurization apparatus.
    A transport device having a transport belt that transports the gypsum slurry in a state of being placed on a filter cloth, and
    A filter cloth cleaning device having a ejection portion capable of ejecting the filter cloth cleaning liquid onto the filter cloth, and a filter cloth cleaning device.
    A filtrate storage tank configured to store the filtrate separated from the gypsum slurry by the filter cloth, and
    A filtrate discharge line configured to send the filtrate stored in the filtrate storage tank to a wastewater treatment facility that performs a treatment for discharging the filtrate to the outside of the system.
    A filter cloth cleaning liquid storage tank different from the filtrate storage tank, which is configured to store at least the filter cloth cleaning liquid ejected from the ejection portion onto the filter cloth, and a filter cloth cleaning liquid storage tank.
    Gypsum slurry dehydration system.
  2.  前記ろ液貯留槽は、前記ろ液貯留槽に貯留される前記ろ液の内、所定の高さを上回ったろ液が前記ろ布洗浄液貯留槽に越流するように構成される
    請求項1に記載の石膏スラリー脱水システム。
    According to claim 1, the filtrate storage tank is configured such that among the filtrates stored in the filtrate storage tank, a filtrate exceeding a predetermined height overflows into the filter cloth cleaning liquid storage tank. The gypsum slurry dehydration system described.
  3.  前記ろ液排出ラインは、
     前記ろ液貯留槽と前記排水処理設備に接続される排水配管と、
     前記排水配管に設けられた排水ポンプと、
     前記排水配管における前記排水ポンプの下流側に設けられるとともに、前記ろ液貯留槽から前記排水処理設備に送られる前記ろ液の流量を調整可能に構成された流量調整弁と、を少なくとも含む
    請求項2に記載の石膏スラリー脱水システム。
    The filtrate discharge line
    The drainage pipe connected to the filtrate storage tank and the wastewater treatment facility,
    The drainage pump provided in the drainage pipe and
    A claim that includes at least a flow rate adjusting valve provided on the downstream side of the drainage pump in the drainage pipe and configured to be able to adjust the flow rate of the filtrate sent from the filtrate storage tank to the wastewater treatment facility. 2. The gypsum slurry dehydration system according to 2.
  4.  前記排煙脱硫装置において排ガスに気液接触させる吸収液を貯留するように構成された吸収液貯留槽と、
     前記ろ布洗浄液貯留槽に貯留される液体を前記吸収液貯留槽に送るように構成された送水ラインと、をさらに備える
    請求項3に記載の石膏スラリー脱水システム。
    An absorption liquid storage tank configured to store an absorption liquid that is in gas-liquid contact with exhaust gas in the flue gas desulfurization apparatus.
    The gypsum slurry dehydration system according to claim 3, further comprising a water supply line configured to send the liquid stored in the filter cloth cleaning liquid storage tank to the absorption liquid storage tank.
  5.  前記送水ラインは、
     前記ろ布洗浄液貯留槽と前記吸収液貯留槽に接続される送水配管と、
     前記送水配管に設けられた送水ポンプと、を含み、
     前記送水ポンプは、前記ろ布洗浄液貯留槽に貯留された液体の液面高さに応じて回転数が制御されるように構成される
    請求項4に記載の石膏スラリー脱水システム。
    The water supply line
    The water supply pipe connected to the filter cloth cleaning liquid storage tank and the absorption liquid storage tank,
    Including a water supply pump provided in the water supply pipe,
    The gypsum slurry dehydration system according to claim 4, wherein the water supply pump is configured such that the rotation speed is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank.
  6.  前記送水ラインは、
     前記ろ布洗浄液貯留槽と前記吸収液貯留槽に接続される送水配管と、
     前記送水配管に設けられた送水ポンプと、
     前記送水配管に設けられるとともに、前記ろ布洗浄液貯留槽から前記吸収液貯留槽に送られる液体の流量を調整可能に構成された流量制御弁と、を含み、
     前記流量制御弁は、前記ろ布洗浄液貯留槽に貯留された液体の液面高さに応じて開度が制御されるように構成される
    請求項4に記載の石膏スラリー脱水システム。
    The water supply line
    The water supply pipe connected to the filter cloth cleaning liquid storage tank and the absorption liquid storage tank,
    The water supply pump provided in the water supply pipe and
    A flow rate control valve provided in the water supply pipe and configured to be able to adjust the flow rate of the liquid sent from the filter cloth cleaning liquid storage tank to the absorption liquid storage tank is included.
    The gypsum slurry dehydration system according to claim 4, wherein the flow rate control valve is configured such that the opening degree is controlled according to the liquid level height of the liquid stored in the filter cloth cleaning liquid storage tank.
PCT/JP2020/042424 2019-11-18 2020-11-13 Gypsum slurry dehydration system WO2021100628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019207642A JP7351726B2 (en) 2019-11-18 2019-11-18 Gypsum slurry dewatering system
JP2019-207642 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021100628A1 true WO2021100628A1 (en) 2021-05-27

Family

ID=75966083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042424 WO2021100628A1 (en) 2019-11-18 2020-11-13 Gypsum slurry dehydration system

Country Status (3)

Country Link
JP (1) JP7351726B2 (en)
TW (1) TW202126370A (en)
WO (1) WO2021100628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933431A (en) * 2022-04-21 2022-08-23 临沂宏源热力有限公司 High-efficient separation control system of gypsum moisture

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128054A (en) * 1996-10-29 1998-05-19 Chiyoda Corp Flue gas desulfurizer
JP2000061256A (en) * 1998-08-18 2000-02-29 Ishikawajima Harima Heavy Ind Co Ltd Gypsum separator filtrate vessel for wet stack gas desulfurizing equipment
JP2002233730A (en) * 2001-02-06 2002-08-20 Mitsubishi Heavy Ind Ltd Method and apparatus for treating wastewater
JP2005152745A (en) * 2003-11-25 2005-06-16 Babcock Hitachi Kk Wet flue gas desulfurization method and wet flue gas desulfurizer
JP2008073670A (en) * 2006-09-25 2008-04-03 Tomoe Engineering Co Ltd Belt-type concentrator
JP2010069447A (en) * 2008-09-22 2010-04-02 Kubota Corp Belt type concentrator and belt cleaning method of belt type concentrator
JP2010137187A (en) * 2008-12-15 2010-06-24 Tsukishima Kikai Co Ltd Belt-type concentrator and method for operating the same
US20110024363A1 (en) * 2009-07-29 2011-02-03 Shanghai Clyde Bergemann Machinery Co., Ltd. Vacuum dehydrating system and dehydrating method for gypsum slurry
WO2014084054A1 (en) * 2012-11-28 2014-06-05 三菱重工業株式会社 Exhaust gas processing apparatus and exhaust gas processing method
WO2016163318A1 (en) * 2015-04-09 2016-10-13 三菱日立パワーシステムズ株式会社 Method and device for wet flue-gas desulfurization

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128054A (en) * 1996-10-29 1998-05-19 Chiyoda Corp Flue gas desulfurizer
JP2000061256A (en) * 1998-08-18 2000-02-29 Ishikawajima Harima Heavy Ind Co Ltd Gypsum separator filtrate vessel for wet stack gas desulfurizing equipment
JP2002233730A (en) * 2001-02-06 2002-08-20 Mitsubishi Heavy Ind Ltd Method and apparatus for treating wastewater
JP2005152745A (en) * 2003-11-25 2005-06-16 Babcock Hitachi Kk Wet flue gas desulfurization method and wet flue gas desulfurizer
JP2008073670A (en) * 2006-09-25 2008-04-03 Tomoe Engineering Co Ltd Belt-type concentrator
JP2010069447A (en) * 2008-09-22 2010-04-02 Kubota Corp Belt type concentrator and belt cleaning method of belt type concentrator
JP2010137187A (en) * 2008-12-15 2010-06-24 Tsukishima Kikai Co Ltd Belt-type concentrator and method for operating the same
US20110024363A1 (en) * 2009-07-29 2011-02-03 Shanghai Clyde Bergemann Machinery Co., Ltd. Vacuum dehydrating system and dehydrating method for gypsum slurry
WO2014084054A1 (en) * 2012-11-28 2014-06-05 三菱重工業株式会社 Exhaust gas processing apparatus and exhaust gas processing method
WO2016163318A1 (en) * 2015-04-09 2016-10-13 三菱日立パワーシステムズ株式会社 Method and device for wet flue-gas desulfurization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933431A (en) * 2022-04-21 2022-08-23 临沂宏源热力有限公司 High-efficient separation control system of gypsum moisture
CN114933431B (en) * 2022-04-21 2024-03-19 临沂宏源热力有限公司 Gypsum moisture high-efficient separation control system

Also Published As

Publication number Publication date
TW202126370A (en) 2021-07-16
JP7351726B2 (en) 2023-09-27
JP2021079319A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
DK174385B1 (en) Process for desulfurizing flue gas
KR100286574B1 (en) Flue gas treatment method
CZ323295A3 (en) Wet-type desulfurizing device of chimney gases and method of using a solid desulfurizing agent
KR0145213B1 (en) Wet process flue gas desulphurization apparatus
WO2021100628A1 (en) Gypsum slurry dehydration system
JPH10128055A (en) Flue gas desulfurizer and gypsum slurry treatment
JP5222242B2 (en) Incinerator exhaust gas removal method
JP4524914B2 (en) Wet flue gas desulfurization equipment
PL110229B1 (en) Method of disposing wastes from exhaust gases desulphurizing system
JP7196575B2 (en) Method for detoxifying exhaust gas containing sulfur dioxide
WO2019182147A1 (en) Flue gas desulfurization device
JP2021130093A (en) Filter cloth cleaning method and gypsum dewatering system
WO2021090847A1 (en) Gypsum slurry dehydration system
JP3735977B2 (en) Flue gas desulfurization equipment
JP2003305332A (en) Control method and apparatus for desulfurized waste water from wet type flue-gas desulfurization equipment
JPH11262628A (en) Flue gas desulfurization apparatus
KR0179219B1 (en) Flue gas treating system
JP4670160B2 (en) Wet flue gas desulfurization equipment
JP7370281B2 (en) Filter cloth clogging prevention method and flue gas desulfurization system
JPS597493B2 (en) Exhaust gas desulfurization equipment
JP2021142501A (en) Washing method of filter cloth, and gypsum dewatering system
JP3659805B2 (en) Slurry concentration control method for wet flue gas desulfurization equipment
JP3774960B2 (en) Flue gas desulfurization apparatus and method for treating gypsum slurry
WO2021193974A1 (en) Absorption liquid treatment system for smoke exhaust desulfurization device
JP2002172313A (en) Wet flue-gas desulfurization apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890963

Country of ref document: EP

Kind code of ref document: A1