WO2021100582A1 - Secondary battery electrode compound layer composition, secondary battery electrode, and secondary battery - Google Patents

Secondary battery electrode compound layer composition, secondary battery electrode, and secondary battery Download PDF

Info

Publication number
WO2021100582A1
WO2021100582A1 PCT/JP2020/042171 JP2020042171W WO2021100582A1 WO 2021100582 A1 WO2021100582 A1 WO 2021100582A1 JP 2020042171 W JP2020042171 W JP 2020042171W WO 2021100582 A1 WO2021100582 A1 WO 2021100582A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
secondary battery
composition
crosslinked polymer
parts
Prior art date
Application number
PCT/JP2020/042171
Other languages
French (fr)
Japanese (ja)
Inventor
綾乃 日笠山
朋子 仲野
直彦 斎藤
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to JP2021558323A priority Critical patent/JPWO2021100582A1/ja
Publication of WO2021100582A1 publication Critical patent/WO2021100582A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composition for a secondary battery electrode mixture layer, a secondary battery electrode, and a secondary battery.
  • a secondary battery various power storage devices such as a nickel hydrogen secondary battery, a lithium ion secondary battery, and an electric double layer capacitor have been put into practical use.
  • the electrodes used in these secondary batteries are produced by applying, drying, or the like on a current collector a composition for forming an electrode mixture layer containing an active material, a binder, and the like.
  • a composition for forming an electrode mixture layer containing an active material, a binder, and the like for example, in a lithium ion secondary battery, an aqueous binder containing styrene-butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as the binder used in the composition for the negative electrode mixture layer.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • a binder used for the positive electrode mixture layer a solution of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) is
  • Patent Document 1 discloses a binder containing a crosslinked polycarboxylic acid salt and a linear polycarboxylic acid, whereby an active material having high durability against internal stress during volume expansion and contraction during charge and discharge. It is disclosed that layers are obtained.
  • the binders disclosed in Patent Documents 1 and 2 can impart good binding properties, but as the performance of the secondary battery is improved, an electrode mixture layer having high cycle characteristics is required. It has become.
  • the secondary battery electrode is generally obtained by applying a composition for an electrode mixture layer containing an active material and a binder (hereinafter, also referred to as “electrode slurry”) to the surface of an electrode current collector and drying it. At this time, from the viewpoint of increasing the drying efficiency of the electrode slurry and improving the productivity of the electrode, it is advantageous to increase the solid content concentration of the composition for the electrode mixture layer, but to ensure good coatability. It becomes difficult.
  • the composition for the electrode mixture layer described in Patent Document 1 enhances the binding property by increasing the spread in water by microcrosslinking the acrylic acid-based polymer used as a binder.
  • even a small amount of addition greatly increases the viscosity. Therefore, it has been difficult to reduce the viscosity of the electrode slurry in a state where the solid content concentration of the composition for the electrode mixture layer is increased.
  • the composition for an electrode mixture layer described in Patent Document 2 is an electrode obtained by using a crosslinked polycarboxylic acid salt and an unneutralized linear polycarboxylic acid in combination as a binder.
  • the cycle characteristics (durability) of the secondary battery provided with the above are improved, the amount of the binder added to the active material is large (Example: 100 parts by mass of the total amount of the active material, the total amount of the binder 22 Mass part). Therefore, in order to reduce the viscosity of the electrode slurry, it is necessary to increase the blending amount of water, and the solid content concentration (Example: 10% by mass) of the composition for the electrode mixture layer is low and the coatability is good. However, the productivity of the electrodes was low.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to secure coatability by reducing the viscosity of the electrode slurry when the solid content concentration of the composition for the electrode mixture layer is higher than before. At the same time, it is an object of the present invention to provide a composition for a secondary battery electrode mixture layer capable of obtaining a secondary battery exhibiting excellent cycle characteristics. In addition, a secondary battery electrode and a secondary battery obtained by using the above composition are also provided.
  • the present inventors have identified the binder when the solid content concentration of the composition for the secondary battery electrode mixture layer containing the binder, the active material and water is high.
  • the electrode slurry is coated by reducing the viscosity.
  • the solid content concentration of the composition is 40% by mass or more, and the solid content concentration is 40% by mass or more.
  • the binder contains a crosslinked polymer having a carboxyl group and a non-crosslinked polymer having a structural unit derived from an ethylenically unsaturated carboxylic acid monomer.
  • the amount of the non-crosslinked polymer used is 7.5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the total amount of the crosslinked polymer, which is a composition for a secondary battery electrode mixture layer.
  • the crosslinked polymer has 50% by mass or more and 100% by mass or less of structural units derived from an ethylenically unsaturated carboxylic acid monomer with respect to all the structural units.
  • Composition for agent layer [3] The composition for a secondary battery electrode mixture layer according to [1] or [2], wherein the degree of neutralization of the crosslinked polymer is 70 mol% or more.
  • the crosslinked polymer was obtained by using a crosslinkable monomer, and the amount of the crosslinked monomer used was 0 with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • a secondary battery electrode provided with a mixture layer formed from the composition for the secondary battery electrode mixture layer according to any one of [1] to [7] on the surface of a current collector.
  • a secondary battery comprising the secondary battery electrode according to [8].
  • composition for the secondary battery electrode mixture layer of the present invention when the solid content concentration of the composition for the electrode mixture layer is higher than before, the coatability is ensured by reducing the viscosity of the electrode slurry. It is possible to obtain a secondary battery that exhibits excellent cycle characteristics.
  • composition for the secondary battery electrode mixture layer of the present invention (hereinafter, also referred to as "this composition") is in a slurry state that can be applied to a current collector.
  • the secondary battery electrode of the present invention can be obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil.
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • This composition contains a binder, an active material and water, and the solid content concentration of the composition is 40% by mass or more.
  • the binder also contains a crosslinked polymer having a carboxyl group and a non-crosslinked polymer having a structural unit derived from an ethylenically unsaturated carboxylic acid monomer.
  • the crosslinked polymer having a carboxyl group contained in the binder (hereinafter, also referred to as “the present crosslinked polymer”) is a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, “component (a1)”). Also referred to as).
  • component (a1) ethylenically unsaturated carboxylic acid monomer
  • the crosslinked polymer has a carboxyl group by having such a structural unit, the adhesiveness to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small. An electrode having excellent high-rate characteristics can be obtained.
  • the above component (a1) can be introduced into a polymer, for example, by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. Alternatively, it can also be obtained by (co) polymerizing a (meth) acrylic acid ester monomer and then hydrolyzing it. Further, after polymerizing (meth) acrylamide, (meth) acrylonitrile or the like, it may be treated with a strong alkali, or it may be a method of reacting an acid anhydride with a polymer having a hydroxyl group.
  • Examples of the ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, and fumaric acid; and (meth) acrylamide alkyl such as (meth) acrylamide hexane acid and (meth) acrylamide dodecanoic acid.
  • Carboxylic acid; ethylenically unsaturated monomers having carboxyl groups such as monohydroxyethyl succinate (meth) acrylate, ⁇ -carboxy-caprolactone mono (meth) acrylate, ⁇ -carboxyethyl (meth) acrylate, or (partial) thereof.
  • Alkaline neutralized products may be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
  • a compound having an acryloyl group as a polymerizable functional group is preferable, and acrylic acid is particularly preferable, in that a polymer having a long primary chain length can be obtained due to a high polymerization rate and the binder has a good binding force. is there.
  • acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
  • the content of the component (a1) in the present crosslinked polymer is not particularly limited, but may be, for example, 10% by mass or more and 100% by mass or less with respect to all the structural units of the present crosslinked polymer.
  • the lower limit is, for example, 20% by mass or more, for example, 30% by mass or more, and for example, 40% by mass or more.
  • the lower limit is 50% by mass or more, the dispersion stability of the present composition becomes good and a higher binding force can be obtained, which is preferable, and it may be 60% by mass or more, or 70% by mass or more. It may be 80% by mass or more.
  • the upper limit is, for example, 99.9% by mass or less, for example, 99.5% by mass or less, for example, 99% by mass or less, for example, 98% by mass or less, and for example, 95% by mass. It is less than or equal to, for example, 90% by mass or less, and for example, 80% by mass or less.
  • the range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 10% by mass or more and 100% by mass or less, and for example, 50% by mass or more and 100% by mass or less, and for example. It can be 50% by mass or more and 99.9% by mass or less, and can be, for example, 50% by mass or more and 99% by mass or less, and can be, for example, 50% by mass or more and 98% by mass or less.
  • the crosslinked polymer may contain, in addition to the component (a1), a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b1)”). it can.
  • component (b1) include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, a nonionic ethylenically unsaturated monomer, and the like.
  • the structural unit from which it is derived can be mentioned.
  • These structural units are an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a monomer containing a nonionic ethylenically unsaturated monomer. Can be introduced by copolymerizing.
  • the ratio of the component (b1) can be 0% by mass or more and 90% by mass or less with respect to all the structural units of the present crosslinked polymer.
  • the ratio of the component (b1) may be 1% by mass or more and 60% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 40% by mass or less. It may be 10% by mass or more and 30% by mass or less. Further, when the component (b1) is contained in an amount of 1% by mass or more with respect to all the structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, so that the effect of improving the lithium ion conductivity can be expected.
  • a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and a nonionic ethylenically unsaturated monomer is preferable.
  • the monomer include (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, an alicyclic structure-containing ethylenically unsaturated monomer, a hydroxyl group-containing ethylenically unsaturated monomer, and the like. ..
  • Examples of the (meth) acrylamide derivative include N-alkyl (meth) acrylamide compounds such as isopropyl (meth) acrylamide and t-butyl (meth) acrylamide; Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl.
  • N-alkoxyalkyl (meth) acrylamide compounds such as (meth) acrylamide; N, N-dialkyl (meth) acrylamide compounds such as dimethyl (meth) acrylamide and diethyl (meth) acrylamide include one of them. It may be used alone or in combination of two or more.
  • nitrile group-containing ethylenically unsaturated monomer examples include (meth) achlorinitrile; (meth) cyanomethyl acrylate, (meth) cyanoethyl acrylate and other (meth) acrylate cyanoalkyl ester compounds; 4-cyanostyrene. , 4-Cyano- ⁇ -methylstyrene and other unsaturated aromatic compounds containing cyano groups; vinylidene cyanide and the like, and one of these may be used alone or in combination of two or more. You may use it.
  • acrylonitrile is preferable because it has a high nitrile group content.
  • Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and (meth).
  • Cyclodecyl acrylate and cyclododecyl (meth) acrylate and other aliphatic substituents may have (meth) cycloalkyl acrylate; isobornyl (meth) acrylate, adamantyl (meth) acrylate, (meth).
  • Cycloalkyl polyalcohol mono (meth) acrylate and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
  • hydroxyl group-containing ethylenically unsaturated monomer examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, and one of these is used alone. It may be used in combination, or two or more kinds may be used in combination.
  • the crosslinked polymer or a salt thereof has excellent binder binding properties, and is an amount of (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, and an alicyclic structure-containing ethylenically unsaturated monomer. It is preferable to include a structural unit derived from a body or the like. Further, when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is introduced as the component (c), a strong interaction with the electrode material can be achieved. , Can exhibit good binding properties to active materials.
  • the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less" is particularly selected.
  • An alicyclic structure-containing ethylenically unsaturated monomer is preferable.
  • the crosslinked polymer or a salt thereof preferably contains a structural unit derived from a hydroxyl group-containing ethylenically unsaturated monomer from the viewpoint of improving the cycle characteristics of the obtained secondary battery, and the structural unit is 0.5. It is preferably contained in an amount of mass% or more and 70% by mass or less, more preferably 2.0% by mass or more and 50% by mass or less, and further preferably 10.0% by mass or more and 50% by mass or less.
  • (meth) acrylic acid ester examples include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • Aromatic (meth) acrylic acid ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, and (meth) phenylethyl acrylate; Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
  • an aromatic (meth) acrylic acid ester compound can be preferably used.
  • compounds having an ether bond such as (meth) acrylic acid alkoxyalkyl ester such as 2-methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate are preferable.
  • 2-Methoxyethyl (meth) acrylate is more preferred.
  • nonionic ethylenically unsaturated monomers a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained due to its high polymerization rate and the binder has a good binding force.
  • a compound having a homopolymer glass transition temperature (Tg) of 0 ° C. or lower is preferable in terms of improving the bending resistance of the obtained electrode.
  • the crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized.
  • the type of salt is not particularly limited, but alkali metal salts such as lithium salt, sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt, calcium salt and barium salt; other metal salts such as aluminum salt; ammonium. Examples thereof include salts and organic amine salts. Among these, alkali metal salts and alkaline earth metal salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
  • the present crosslinked polymer is a crosslinked polymer having a crosslinked structure.
  • the cross-linking method in the present cross-linked polymer is not particularly limited, and examples thereof include the following methods. 1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the present crosslinked polymer has a crosslinked structure, the crosslinked polymer or the binder containing a salt thereof can have an excellent binding force.
  • the method by copolymerizing the crosslinkable monomer is preferable from the viewpoint that the operation is simple and the degree of crosslinking can be easily controlled.
  • crosslinkable monomer examples include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
  • the polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained, and a polyfunctional allyl ether compound having two or more allyl ether groups in the molecule is particularly preferable.
  • polyfunctional (meth) acrylate compound examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
  • Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; Bisamides and the like can be mentioned.
  • polyfunctional alkenyl compound examples include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; diallyl phthalate and the like.
  • Polyfunctional allyl compound; Polyfunctional vinyl compounds such as divinylbenzene and the like can be mentioned.
  • Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
  • the monomer having a crosslinkable functional group examples include hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkylacrylamide and the like. .. These compounds can be used alone or in combination of two or more.
  • the hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group.
  • vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilanen; silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like.
  • Group-containing acrylic acid esters silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like.
  • Cyril group-containing vinyl ethers; silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl and the like can be mentioned.
  • the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.05 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass. It is 4.0 parts by mass or less, more preferably 0.3 parts by mass or more and 3.0 parts by mass or less.
  • the amount of the crosslinkable monomer used is 0.05 parts by mass or more, it is preferable in that the binding property and the stability of the mixture layer slurry are improved.
  • the amount of the crosslinkable monomer used may be 0.02 to 1.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.10 to 1.0 mol%, more preferably 0.10 to 1.0 mol%.
  • the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size, but is well dispersed as water-swelled particles having an appropriate particle size.
  • a binder containing the above is preferable because it can exhibit good binding performance.
  • the particle size (water-swelling particle size) when a crosslinked polymer having a degree of neutralization based on a carboxyl group of 70 to 100 mol% is dispersed in water is a volume-based median diameter. It is preferably in the range of 0.1 ⁇ m or more and 10.0 ⁇ m or less.
  • the more preferable range of the particle size is 0.1 ⁇ m or more and 8.0 ⁇ m or less, the more preferable range is 0.1 ⁇ m or more and 7.0 ⁇ m or less, and the more preferable range is 0.2 ⁇ m or more and 5.0 ⁇ m or less.
  • Yes, and even more preferable ranges are 0.5 ⁇ m or more and 3.0 ⁇ m or less.
  • the composition When the particle size is in the range of 0.1 ⁇ m or more and 10.0 ⁇ m or less, the composition is uniformly present in a suitable size in the present composition, so that the present composition is highly stable and exhibits excellent binding properties. It becomes possible to do. If the particle size exceeds 10.0 ⁇ m, the binding property may be insufficient as described above. In addition, there is a risk that the coatability will be insufficient because it is difficult to obtain a smooth coated surface. On the other hand, when the particle size is less than 0.1 ⁇ m, there is concern from the viewpoint of stable manufacturability.
  • the particle size (dry particle size) of the crosslinked polymer at the time of drying is preferably in the range of 0.03 ⁇ m or more and 3 ⁇ m or less in terms of volume-based median diameter.
  • a more preferable range of the particle size is 0.1 ⁇ m or more and 1 ⁇ m or less, and a more preferable range is 0.3 ⁇ m or more and 0.8 ⁇ m or less.
  • acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition, and the mode of the salt is It is preferable to use as.
  • the degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more.
  • the upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%.
  • the range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less.
  • the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable.
  • the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization.
  • ⁇ Manufacturing method of this crosslinked polymer> Known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used for this crosslinked polymer, but precipitation polymerization and suspension polymerization (reverse phase suspension) can be used in terms of productivity. Polymerization) is preferable. Non-uniform polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and the precipitation polymerization method is more preferable, because better performance can be obtained in terms of binding property and the like.
  • Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer as a raw material but does not substantially dissolve the polymer to be produced.
  • the polymer particles become larger due to aggregation and growth, and a dispersion of polymer particles in which primary particles of several tens of nm to several hundreds nm are secondarily aggregated to several ⁇ m to several tens of ⁇ m can be obtained.
  • Dispersion stabilizers can also be used to control the particle size of the polymer.
  • the secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
  • a solvent selected from water, various organic solvents, etc. can be used as the polymerization solvent in consideration of the type of monomer used. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
  • the polymerization solvent examples include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. , One of these can be used alone or in combination of two or more. Alternatively, it may be used as a mixed solvent of these and water.
  • the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
  • the formation of coarse particles and adhesion to the reactor are small and the polymerization stability is good, and the precipitated polymer fine particles are difficult to secondary agglomerate (or even if secondary agglomeration occurs, they dissolve in the aqueous medium.
  • Methyl ethyl ketone and acetonitrile are preferable because they are easy to use), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and the operation is easy during the step neutralization described later. ..
  • polymerization initiator known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited.
  • the conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
  • heat initiation heat initiation
  • redox initiation with a reducing agent
  • UV initiation UV initiation
  • the preferable amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass and, for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 parts by mass.
  • the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
  • the polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C, although it depends on conditions such as the type and concentration of the monomer used.
  • the polymerization temperature may be constant or may change during the polymerization reaction.
  • the polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 10 hours.
  • Non-crosslinked polymer having a structural unit derived from an ethylenically unsaturated carboxylic acid monomer This composition is derived from an ethylenically unsaturated carboxylic acid monomer as a binder in addition to a crosslinked polymer having a carboxyl group.
  • a non-crosslinked polymer having a structural unit hereinafter, also referred to as “the present non-crosslinked polymer”.
  • the present non-crosslinked polymer has a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a2)”), and the component (a2) and the method for introducing the component (a2) are the present crosslinked. It is the same as the content described in the component (a1) of the polymer.
  • the content of the component (a2) in the non-crosslinked polymer is not particularly limited, but is preferably 50% by mass with respect to the total structural units of the non-crosslinked polymer in terms of solubility in water.
  • the above is 100% by mass or less, more preferably 60% by mass or more and 100% by mass or less, further preferably 70% by mass or more and 100% by mass or less, still more preferably 80% by mass or more and 100% by mass or less. It is as follows.
  • the non-crosslinked polymer contains, in addition to the component (a2), a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b2)”). Can be done.
  • the component (b2) and the method for introducing the component (b2) are the same as those described in the component (b1) of the present crosslinked polymer.
  • the ratio of the component (b2) can be 0% by mass or more and 50% by mass or less with respect to all the structural units of the non-crosslinked polymer.
  • the ratio of the component (b2) may be 1% by mass or more and 40% by mass or less, 2% by mass or more and 30% by mass or less, and 5% by mass or more and 20% by mass or less. May be good.
  • the non-crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized.
  • the type of salt is not particularly limited, but alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium salt and barium salt; other metal salts such as magnesium salt and aluminum salt; ammonium salt and organic. Examples include amine salts. Among these, alkali metal salts and magnesium salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
  • acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition
  • the salt is a salt. It is preferable to use it as an embodiment.
  • the degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more.
  • the upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%.
  • the range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less.
  • the degree of neutralization is 20 mol% or more, it is preferable because the solubility in water can be easily ensured.
  • the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization.
  • the weight average molecular weight (Mw) of the non-crosslinked polymer is not particularly limited, but is preferably 5,000 or more, more preferably 10 in terms of obtaining an electrode mixture layer having excellent binding properties. It is over 000. Mw may be 100,000 or more, 500,000 or more, or 1,000,000 or more. The upper limit of Mw is not particularly limited, but from the viewpoint of manufacturing handling, it may be, for example, 1,000,000 or less, and may be 5,000,000 or less.
  • the binder used in this composition contains the present crosslinked polymer and the present non-crosslinked polymer.
  • the amount of the non-crosslinked polymer used is 7.5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the total amount of the crosslinked polymer.
  • the amount of the non-crosslinked polymer used may be 15 parts by mass or more, 25 parts by mass or more, 35 parts by mass or more, or 45 parts by mass or more.
  • the upper limit may be 190 parts by mass or less, 180 parts by mass or less, 170 parts by mass or less, or 160 parts by mass or less.
  • the range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 15 parts by mass or more and 190 parts by mass or less, for example, 25 parts by mass or more and 180 parts by mass or less, and for example. It may be 35 parts by mass or more and 170 parts by mass or less, and may be, for example, 35 parts by mass or more and 160 parts by mass or less.
  • the viscosity of the electrode slurry is higher than that in the conventional case when the solid content concentration of the composition for the electrode mixture layer is higher than before. It is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring coatability by reducing the amount.
  • the amount of the non-crosslinkable polymer used is 7.5 parts by mass or more, such an effect can be exhibited. Further, if the amount of the non-crosslinkable polymer used exceeds 200 parts by mass, sufficient coatability may not be obtained.
  • ⁇ Method for producing this non-crosslinked polymer As this non-crosslinked polymer, known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used, and may be appropriately selected depending on the molecular weight, composition, and the like.
  • polymerization initiator known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited.
  • the conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
  • a known chain transfer agent may be used if necessary for the purpose of adjusting the molecular weight or the like.
  • composition for a secondary battery electrode mixture layer of the present invention contains a binder, an active material and water.
  • the amount of the binder used in the present composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material.
  • the amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. ..
  • the amount of the binder used is 0.1 parts by mass or more, sufficient binding property can be obtained.
  • the dispersion stability of the active material or the like can be ensured, and a uniform mixture layer can be formed.
  • the amount of the binder used is 20 parts by mass or less, the composition does not have a high viscosity, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
  • a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, layered rock salt type and spinel type lithium-containing metal oxides can be used.
  • ⁇ Li (Ni 1-ab Co a Al b ) ⁇ and the like can be mentioned.
  • a spinel type positive electrode active material lithium manganate and the like can be mentioned.
  • phosphates include olivine-type lithium iron phosphate and the like.
  • the positive electrode active material one of the above may be used alone, or two or more thereof may be combined and used as a mixture or a composite.
  • the dispersion liquid becomes alkaline by exchanging lithium ions on the surface of the active material and hydrogen ions in water. Therefore, there is a risk that aluminum foil (Al) or the like, which is a general current collector material for positive electrodes, will be corroded. In such a case, it is preferable to neutralize the alkali content eluted from the active material by using the present crosslinked polymer which has not been neutralized or partially neutralized as the binder.
  • the amount of the unneutralized or partially neutralized present crosslinked polymer used is such that the amount of unneutralized carboxyl groups of the present crosslinked polymer is equal to or more than the amount of alkali eluted from the active material. It is preferable to use it.
  • the conductive auxiliary agent include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. , Are preferred. Further, as the carbon black, Ketjen black and acetylene black are preferable. As the conductive auxiliary agent, one of the above types may be used alone, or two or more types may be used in combination.
  • the amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density, and for example, 0. It can be 2 to 10 parts by mass.
  • the positive electrode active material a material whose surface is coated with a conductive carbon-based material may be used.
  • examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or a combination of two or more of these can be used.
  • active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as "carbon-based active material") are preferable, and graphite such as natural graphite and artificial graphite, Also, hard carbon is more preferred.
  • graphite spherical graphite is preferably used from the viewpoint of battery performance, and the preferable range of the particle size thereof is, for example, 1 to 20 ⁇ m, and for example, 5 to 15 ⁇ m.
  • a metal or a metal oxide capable of occluding lithium such as silicon or tin can be used as the negative electrode active material.
  • silicon has a higher capacity than graphite, and is an active material made of a silicon-based material such as silicon, a silicon alloy, and a silicon oxide such as silicon monoxide (SiO) (hereinafter, also referred to as "silicon-based active material").
  • silicon-based active material has a high capacity, the volume change due to charging and discharging is large. Therefore, it is preferable to use it in combination with the above carbon-based active material.
  • the amount of the silicon-based active material is large, the electrode material may be disintegrated and the cycle characteristics (durability) may be significantly deteriorated.
  • the amount used is, for example, 60% by mass or less, and for example, 30% by mass or less, based on the carbon-based active material.
  • the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive.
  • a conductive additive is added for the purpose of further reducing resistance, the amount used is, for example, 10 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, and for example, 5 from the viewpoint of energy density. It is less than a part by mass.
  • the amount of the active material used is, for example, in the range of 10 to 75% by mass, and for example, in the range of 30 to 65% by mass, based on the total amount of the composition. If the amount of the active material used is 10% by mass or more, migration of the binder or the like can be suppressed, and the drying cost of the medium is also advantageous. On the other hand, if it is 75% by mass or less, the fluidity and coatability of the present composition can be ensured, and a uniform mixture layer can be formed.
  • This composition uses water as a medium. Further, for the purpose of adjusting the properties and dryness of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, and water-soluble organic substances such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with a solvent.
  • the proportion of water in the mixing medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
  • the content of the medium containing water in the entire composition is, for example, from the viewpoint of the coatability of the slurry, the energy cost required for drying, and the productivity. , 25-60% by mass, and can be, for example, 35-60% by mass.
  • the present composition may further contain other binder components such as styrene-butadiene rubber (SBR) -based latex, carboxymethyl cellulose (CMC), acrylic-based latex, and polyvinylidene fluoride-based latex.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • acrylic-based latex acrylic-based latex
  • polyvinylidene fluoride-based latex polyvinylidene fluoride-based latex.
  • the amount used may be, for example, 0.1 to 5 parts by mass or less, and for example, 0.1 to 2 parts by mass, based on 100 parts by mass of the total amount of the active material. It can be less than or equal to parts, and can be, for example, 0.1 to 1 part by mass or less. If the amount of the other binder component used exceeds 5% by mass, the resistance increases and the high rate characteristics may become insufficient.
  • SBR-based latex and CMC are preferable, and SBR
  • the SBR latex is an aqueous dispersion of a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Show the body.
  • aromatic vinyl monomer include ⁇ -methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used.
  • the structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
  • aliphatic conjugated diene-based monomer in addition to 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene and the like can be mentioned, and one or more of these can be used.
  • the structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
  • styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties.
  • a carboxyl group-containing monomer such as acrylic acid, itanconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylic acid may be used as the copolymerization monomer.
  • the structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
  • the CMC refers to a substitute obtained by substituting a nonionic cellulosic semi-synthetic polymer compound with a carboxymethyl group and a salt thereof.
  • the nonionic cellulose-based semi-synthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystallin cellulose; Examples thereof include hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, hydroxyalkyl cellulose such as nonoxynyl hydroxyethyl cellulose and the like.
  • the composition for the secondary battery electrode mixture layer of the present invention contains the above-mentioned active material, water and a binder as essential constituents, and can be obtained by mixing the respective components using known means.
  • the mixing method of each component is not particularly limited, and a known method can be adopted.
  • powder components such as an active material, a conductive additive and a binder are dry-blended and then mixed with a dispersion medium such as water.
  • the method of dispersion kneading is preferable.
  • the present composition is obtained in a slurry state, it is preferable to finish the composition into a slurry having no poor dispersion or aggregation.
  • a known mixer such as a planetary mixer, a thin film swirl mixer, or a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to do this.
  • a thin film swirl mixer it is preferable to pre-disperse in advance with a stirrer such as a disper.
  • the viscosity of the slurry is not particularly limited as long as the effect of the present invention is exhibited, but the B-type viscosity (25 ° C.) at 20 rpm can be, for example, in the range of 100 to 5,000 mPa ⁇ s, and for example. , 500 to 4,500 mPa ⁇ s, or, for example, the range of 1,000 to 3,000 mPa ⁇ s. When the viscosity of the slurry is within the above range, good coatability can be ensured.
  • the secondary battery electrode of the present invention is provided with a mixture layer formed from the composition for the mixture layer of the secondary battery electrode of the present invention on the surface of a current collector such as copper or aluminum. ..
  • the mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water.
  • the method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. it can.
  • the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
  • the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved.
  • the thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 ⁇ m.
  • Secondary battery A secondary battery can be manufactured by providing the electrode for the secondary battery of the present invention with a separator and an electrolytic solution.
  • the electrolytic solution may be in the form of a liquid or a gel.
  • the separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity.
  • the separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength.
  • polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
  • the electrolytic solution a known one that is generally used depending on the type of active material can be used.
  • specific solvents include cyclic carbonates having a high dielectric constant and high solubility of electrolytes such as propylene carbonate and ethylene carbonate, and low-viscosity chains such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate. Examples thereof include form carbonates, which can be used alone or as a mixed solvent.
  • the electrolytic solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents.
  • an aqueous potassium hydroxide solution can be used as the electrolytic solution.
  • the secondary battery is obtained by forming a positive electrode plate and a negative electrode plate partitioned by a separator into a spiral or laminated structure and storing them in a case or the like.
  • the secondary battery provided with the electrode having the mixture layer formed from the composition for the secondary battery electrode mixture layer disclosed in the present specification is good even if charging and discharging are repeated. Since it exhibits durability (cycle characteristics), it is suitable for in-vehicle secondary batteries and the like.
  • lithium hydroxide monohydrate hereinafter, referred to as "LiOH ⁇ H 2 O"
  • LiOH ⁇ H 2 O lithium hydroxide monohydrate
  • the obtained polymerization reaction solution was centrifuged to settle the polymer particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same weight as the polymerization reaction solution, the washing operation of precipitating the polymer particles by centrifugation to remove the supernatant was repeated twice.
  • the precipitate was recovered and dried under reduced pressure at 80 ° C. for 3 hours to remove volatile components to obtain a powder of the carboxyl group-containing polymer salt R-1. Since the carboxyl group-containing crosslinked polymer salt R-1 has hygroscopicity, it was stored in a container having a water vapor barrier property.
  • AA Acrylic acid
  • HEA 2-Hydroxyethyl acrylate
  • T-20 Trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20")
  • TEA Triethylamine AcN: Acetonitrile
  • -R-6 Non-crosslinked polyacrylic acid Li neutralized salt.
  • the trade name "Julimer AC-10LHP” manufactured by Toagosei Co., Ltd., Mw 1,500,000
  • -R-7 Non-crosslinked polyacrylic acid Li neutralized salt.
  • the trade name "Aron A-6801” manufactured by Toagosei Co., Ltd., Mw100,000
  • -R-8 Non-crosslinked polyacrylic acid Li neutralized salt.
  • the trade name "Aron A-10SL” (manufactured by Toagosei Co., Ltd., Mw 6,000) was used.
  • -R-9 Non-crosslinked polyacrylic acid Li partially neutralized salt.
  • the trade name "Julimer AC-10LHP” (manufactured by Toagosei Co., Ltd., Mw 1,500,000) was used.
  • “Julimer” and “Aron” are registered trademarks of Toagosei Co., Ltd.
  • Example 1 ⁇ Preparation of composition for electrode mixture layer> Prepare a SiOx (0.8 ⁇ x ⁇ 1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and mix graphite and Si-based active material. was used as an active material.
  • Si-based active material a SiOx (0.8 ⁇ x ⁇ 1.2) surface coated with 10% carbon by the CVD method
  • Si-based active material a SiOx (0.8 ⁇ x ⁇ 1.2) surface coated with 10% carbon by the CVD method
  • Si-based active material As the binder, a mixture of the present crosslinked polymer salt R-1, the present non-crosslinked polymer salt R-6, styrene-butadiene rubber (SBR) -based latex, and carboxymethyl cellulose (CMC) was used.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • Graphite: Si-based active material: R-1: R-6: SBR: CMC 90: 10: 1 using water as a diluting solvent so that the solid content concentration of the composition for the electrode mixture layer is 50% by mass. .0: 0.5: 1.0: 1.0 (solid content) with a mass ratio of T.I. K.
  • the mixture was mixed for 2 hours using a hibis mix to prepare a composition for an electrode mixture layer (electrode slurry) in a slurry state.
  • the viscosity of the electrode slurry was 3,140 mPa ⁇ s, which was a sufficiently low value.
  • An electrode was prepared using the obtained electrode slurry and evaluated. The specific procedure and evaluation method are shown below.
  • NMP N-methylpyrrolidone
  • VGCF vapor layer carbon fiber
  • PVDF polyvinylidene fluoride
  • a mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 ⁇ m) and drying it. Then, after rolling so that the thickness of the mixture layer was 88 ⁇ m and the packing density was 3.1 g / cm 3 , the mixture was punched 3 cm square to obtain a positive electrode plate.
  • a lithium ion secondary battery of a laminated cell was produced.
  • the electrolytic solution one in which LiPF 6 was dissolved at a concentration of 1.0 mol / liter in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 was used.
  • ⁇ C C 50 / C 0 ⁇ 100 (%) (Evaluation criteria) ⁇ : Charge / discharge capacity retention rate is 95.0% or more ⁇ : Charge / discharge capacity retention rate is 90.0% or more and less than 95.0% ⁇ : Charge / discharge capacity retention rate is 85.0% or more and less than 90.0% ⁇ : Charge / discharge capacity retention rate is less than 85.0%
  • Examples 2 to 10 and Comparative Examples 1 to 3 An electrode slurry was prepared by performing the same operation as in Example 1 except that the present crosslinked polymer salt and the present non-crosslinked polymer salt were as shown in Table 2, and the slurry viscosity was measured. In addition, the coatability of the electrode slurry and the cycle characteristics of the secondary battery obtained by using the electrode slurry were evaluated. The results are shown in Table 2.
  • the secondary battery provided with the electrodes obtained by using the composition for the secondary battery electrode mixture layer of the present invention exhibits good durability (cycle characteristics), and therefore can be applied to an in-vehicle secondary battery. Be expected. It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries.
  • the composition for a secondary battery electrode mixture layer of the present invention can be particularly preferably used for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a secondary battery electrode compound layer composition that is capable of yielding a secondary battery that exhibits superior cycle properties while ensuring ease of application through reduced electrode slurry viscosity at a higher solids concentration on the part of the electrode compound layer composition than in the prior art. The present invention also provides a secondary battery electrode and a secondary battery obtained by using the composition. The present invention pertains to a secondary battery electrode compound layer composition containing a binder, an active material, and water, the solids concentration of the composition being 40% by mass or higher, wherein: the binder contains a cross-linked polymer comprising a carboxyl group, and a non-cross-linked polymer comprising a structural unit derived from an ethylenically unsaturated carboxylic acid monomer; and the amount used of the non-cross-linked polymer is 7.5 parts by mass to 200 parts by mass, inclusive, per 100 total parts by mass of the cross-linked polymer.

Description

二次電池電極合剤層用組成物、二次電池電極及び二次電池Composition for secondary battery electrode mixture layer, secondary battery electrode and secondary battery
 本発明は、二次電池電極合剤層用組成物、二次電池電極及び二次電池に関する。 The present invention relates to a composition for a secondary battery electrode mixture layer, a secondary battery electrode, and a secondary battery.
 二次電池として、ニッケル水素二次電池、リチウムイオン二次電池、電気二重層キャパシタ等の様々な蓄電デバイスが実用化されている。これらの二次電池に使用される電極は、活物質及びバインダー等を含む電極合剤層を形成するための組成物を集電体上に塗布・乾燥等することにより作製される。例えばリチウムイオン二次電池では、負極合剤層用組成物に用いられるバインダーとして、スチレンブタジエン系ゴム(SBR)ラテックス及びカルボキシメチルセルロース(CMC)を含む水系のバインダーが使用されている。一方、正極合剤層に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)のN-メチル-2-ピロリドン(NMP)溶液が広く使用されている。 As a secondary battery, various power storage devices such as a nickel hydrogen secondary battery, a lithium ion secondary battery, and an electric double layer capacitor have been put into practical use. The electrodes used in these secondary batteries are produced by applying, drying, or the like on a current collector a composition for forming an electrode mixture layer containing an active material, a binder, and the like. For example, in a lithium ion secondary battery, an aqueous binder containing styrene-butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as the binder used in the composition for the negative electrode mixture layer. On the other hand, as a binder used for the positive electrode mixture layer, a solution of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) is widely used.
 各種二次電池の用途が拡大するにつれて、エネルギー密度、信頼性及び耐久性向上への要求が強まる傾向にある。例えば、リチウムイオン二次電池の電気容量を高める目的で、負極用活物質としてシリコン系の活物質を用いる仕様が増えてきている。しかしながら、シリコン系活物質は充放電時の体積変化が大きいことが知られており、繰り返し使用するにつれて電極合剤層の剥離又は脱落等が生じ、その結果、電池の容量が低下し、サイクル特性(耐久性)が悪化するという問題があった。このような不具合を抑制するためには、一般的にはバインダーによって活物質間を強固に結着させること(結着性)が有効であり、耐久性を改善する目的で、バインダーの結着性向上に関する検討が行われている。 As the applications of various secondary batteries have expanded, the demand for improved energy density, reliability and durability tends to increase. For example, for the purpose of increasing the electric capacity of a lithium ion secondary battery, specifications for using a silicon-based active material as a negative electrode active material are increasing. However, it is known that the volume of a silicon-based active material changes significantly during charging and discharging, and the electrode mixture layer peels off or falls off as it is used repeatedly, resulting in a decrease in battery capacity and cycle characteristics. There was a problem that (durability) deteriorated. In order to suppress such a defect, it is generally effective to firmly bond the active materials with a binder (bonding property), and for the purpose of improving durability, the binding property of the binder is effective. Consideration is being made on improvement.
 そのような中、シリコン系活物質を用いた負極合剤層に用いるバインダーとしてアクリル酸系重合体が有効であることが最近報告されている。例えば、特許文献1では、特定の架橋剤によりポリアクリル酸を架橋したポリマーを結着剤として用いることにより、シリコンを含む活物質を用いた場合であっても、電極構造が破壊されることなく提供できることが開示されている。特許文献2は、架橋処理がなされたポリカルボン酸塩と、直鎖のポリカルボン酸とを含むバインダーが開示され、これにより充放電時の体積膨張収縮時の内部応力に対する耐久性の高い活物質層が得られることが開示されている。 Under such circumstances, it has recently been reported that an acrylic acid-based polymer is effective as a binder used in a negative electrode mixture layer using a silicon-based active material. For example, in Patent Document 1, by using a polymer obtained by cross-linking polyacrylic acid with a specific cross-linking agent as a binder, the electrode structure is not destroyed even when an active material containing silicon is used. It is disclosed that it can be provided. Patent Document 2 discloses a binder containing a crosslinked polycarboxylic acid salt and a linear polycarboxylic acid, whereby an active material having high durability against internal stress during volume expansion and contraction during charge and discharge. It is disclosed that layers are obtained.
国際公開第2014/065407号International Publication No. 2014/060407 国際公開第2016/051811号International Publication No. 2016/0518111
 特許文献1及び2に開示されるバインダーは、いずれも良好な結着性を付与し得るものであるが、二次電池の性能向上に伴い、サイクル特性の高い電極合剤層が求められるようになっている。
 また、一般に、二次電池電極は、活物質及びバインダーを含む電極合剤層用組成物(以下、「電極スラリー」ともいう。)を電極集電体表面に塗布乾燥することにより得られる。この際、電極スラリーの乾燥効率を高め、電極の生産性を向上する観点から、電極合剤層用組成物の固形分濃度を高くすることが有利であるが、良好な塗工性を確保することが難しくなる。
 そのような中、特許文献1に記載の電極合剤層用組成物は、バインダーとして用いるアクリル酸系重合体の微架橋化によって、水中での拡がりを大きくする事で結着性を高めているが、少量の添加でも粘度が大きく上昇する。このため、電極合剤層用組成物の固形分濃度を高めた状態で、電極スラリーの粘度を低下させることが困難であった。
 また、特許文献2に記載の電極合剤層用組成物は、バインダーとして架橋ポリカルボン酸塩と未中和直鎖ポリカルボン酸を併用することにより、当該組成物を使用して得られた電極を備えた二次電池のサイクル特性(耐久性)の向上を実現しているが、活物質に対するバインダーの添加量が多い(実施例:活物質の総量100質量部に対して、バインダーの総量22質量部)。このため、電極スラリーの粘度を低下させるために、水の配合量を増大させる必要があり、電極合剤層用組成物の固形分濃度(実施例:10質量%)が低く塗工性は良いものの、電極の生産性は低いものであった。
The binders disclosed in Patent Documents 1 and 2 can impart good binding properties, but as the performance of the secondary battery is improved, an electrode mixture layer having high cycle characteristics is required. It has become.
Further, the secondary battery electrode is generally obtained by applying a composition for an electrode mixture layer containing an active material and a binder (hereinafter, also referred to as “electrode slurry”) to the surface of an electrode current collector and drying it. At this time, from the viewpoint of increasing the drying efficiency of the electrode slurry and improving the productivity of the electrode, it is advantageous to increase the solid content concentration of the composition for the electrode mixture layer, but to ensure good coatability. It becomes difficult.
Under such circumstances, the composition for the electrode mixture layer described in Patent Document 1 enhances the binding property by increasing the spread in water by microcrosslinking the acrylic acid-based polymer used as a binder. However, even a small amount of addition greatly increases the viscosity. Therefore, it has been difficult to reduce the viscosity of the electrode slurry in a state where the solid content concentration of the composition for the electrode mixture layer is increased.
Further, the composition for an electrode mixture layer described in Patent Document 2 is an electrode obtained by using a crosslinked polycarboxylic acid salt and an unneutralized linear polycarboxylic acid in combination as a binder. Although the cycle characteristics (durability) of the secondary battery provided with the above are improved, the amount of the binder added to the active material is large (Example: 100 parts by mass of the total amount of the active material, the total amount of the binder 22 Mass part). Therefore, in order to reduce the viscosity of the electrode slurry, it is necessary to increase the blending amount of water, and the solid content concentration (Example: 10% by mass) of the composition for the electrode mixture layer is low and the coatability is good. However, the productivity of the electrodes was low.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる、二次電池電極合剤層用組成物を提供することである。また、併せて、上記組成物を用いて得られる二次電池電極及び二次電池を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to secure coatability by reducing the viscosity of the electrode slurry when the solid content concentration of the composition for the electrode mixture layer is higher than before. At the same time, it is an object of the present invention to provide a composition for a secondary battery electrode mixture layer capable of obtaining a secondary battery exhibiting excellent cycle characteristics. In addition, a secondary battery electrode and a secondary battery obtained by using the above composition are also provided.
 本発明者らは、上記課題を解決するために鋭意検討した結果、バインダー、活物質及び水を含む二次電池電極合剤層用組成物の固形分濃度が高い場合において、当該バインダーが特定の架橋重合体及び特定の非架橋重合体を含み、当該非架橋重合体の使用量を、当該架橋重合体の総量100質量部に対し特定の範囲内とすることによって、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる事を見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors have identified the binder when the solid content concentration of the composition for the secondary battery electrode mixture layer containing the binder, the active material and water is high. By containing a crosslinked polymer and a specific non-crosslinked polymer and setting the amount of the non-crosslinked polymer used within a specific range with respect to 100 parts by mass of the total amount of the crosslinked polymer, the electrode slurry is coated by reducing the viscosity. We have found that it is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring workability, and completed the present invention.
 本発明は以下の通りである。
〔1〕バインダー、活物質及び水を含む二次電池電極合剤層用組成物であって、
 前記組成物の固形分濃度が40質量%以上であり、
 前記バインダーは、カルボキシル基を有する架橋重合体、及び、エチレン性不飽和カルボン酸単量体に由来する構造単位を有する非架橋重合体を含み、
 前記非架橋重合体の使用量は、前記架橋重合体の総量100質量部に対し、7.5質量部以上200質量部以下である、二次電池電極合剤層用組成物。
〔2〕前記架橋重合体は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下有し、
 前記非架橋重合体は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下有する、〔1〕に記載の二次電池電極合剤層用組成物。
〔3〕前記架橋重合体の中和度が70モル%以上である、〔1〕又は〔2〕に記載の二次電池電極合剤層用組成物。
〔4〕前記架橋重合体は、架橋性単量体を用いて得られたものであり、当該架橋性単量体の使用量は、非架橋性単量体の総量100質量部に対し、0.05質量部以上5.0質量部以下である、〔1〕~〔3〕のいずれか一に記載の二次電池電極合剤層用組成物。
〔5〕前記非架橋重合体の中和度が70モル%以上である、〔1〕~〔4〕のいずれか一に記載の二次電池電極合剤層用組成物。
〔6〕前記非架橋重合体の重量平均分子量が5,000以上である、〔1〕~〔5〕のいずれか一に記載の二次電池電極合剤層用組成物。
〔7〕前記バインダーは、さらに、スチレンブタジエンゴム(SBR)系ラテックス及び/又はカルボキシメチルセルロース(CMC)を含む、〔1〕~〔6〕のいずれか一に記載の二次電極合剤層用組成物。
〔8〕集電体表面に、〔1〕~〔7〕のいずれか一に記載の二次電池電極合剤層用組成物から形成される合剤層を備えた二次電池電極。
〔9〕〔8〕に記載の二次電池電極を備える、二次電池。
The present invention is as follows.
[1] A composition for a secondary battery electrode mixture layer containing a binder, an active material, and water.
The solid content concentration of the composition is 40% by mass or more, and the solid content concentration is 40% by mass or more.
The binder contains a crosslinked polymer having a carboxyl group and a non-crosslinked polymer having a structural unit derived from an ethylenically unsaturated carboxylic acid monomer.
The amount of the non-crosslinked polymer used is 7.5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the total amount of the crosslinked polymer, which is a composition for a secondary battery electrode mixture layer.
[2] The crosslinked polymer has 50% by mass or more and 100% by mass or less of structural units derived from an ethylenically unsaturated carboxylic acid monomer with respect to all the structural units.
The secondary battery electrode combination according to [1], wherein the non-crosslinked polymer has 50% by mass or more and 100% by mass or less of structural units derived from an ethylenically unsaturated carboxylic acid monomer with respect to all the structural units. Composition for agent layer.
[3] The composition for a secondary battery electrode mixture layer according to [1] or [2], wherein the degree of neutralization of the crosslinked polymer is 70 mol% or more.
[4] The crosslinked polymer was obtained by using a crosslinkable monomer, and the amount of the crosslinked monomer used was 0 with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer. The composition for a secondary battery electrode mixture layer according to any one of [1] to [3], which is 0.05 parts by mass or more and 5.0 parts by mass or less.
[5] The composition for a secondary battery electrode mixture layer according to any one of [1] to [4], wherein the degree of neutralization of the non-crosslinked polymer is 70 mol% or more.
[6] The composition for a secondary battery electrode mixture layer according to any one of [1] to [5], wherein the non-crosslinked polymer has a weight average molecular weight of 5,000 or more.
[7] The composition for a secondary electrode mixture layer according to any one of [1] to [6], wherein the binder further contains a styrene-butadiene rubber (SBR) -based latex and / or carboxymethyl cellulose (CMC). Stuff.
[8] A secondary battery electrode provided with a mixture layer formed from the composition for the secondary battery electrode mixture layer according to any one of [1] to [7] on the surface of a current collector.
[9] A secondary battery comprising the secondary battery electrode according to [8].
 本発明の二次電池電極合剤層用組成物によれば、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる。 According to the composition for the secondary battery electrode mixture layer of the present invention, when the solid content concentration of the composition for the electrode mixture layer is higher than before, the coatability is ensured by reducing the viscosity of the electrode slurry. It is possible to obtain a secondary battery that exhibits excellent cycle characteristics.
 本発明の二次電池電極合剤層用組成物(以下、「本組成物」ともいう。)は、集電体への塗工が可能なスラリー状態である。銅箔又はアルミニウム箔等の集電体表面に上記組成物から形成される合剤層を形成することにより、本発明の二次電池電極が得られる。 The composition for the secondary battery electrode mixture layer of the present invention (hereinafter, also referred to as "this composition") is in a slurry state that can be applied to a current collector. The secondary battery electrode of the present invention can be obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as a copper foil or an aluminum foil.
 以下に、本組成物について当該組成物を構成する要素と共に説明する。さらに本組成物を用いて得られる二次電池電極についても詳細に説明する。
 尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。
Hereinafter, the present composition will be described together with the elements constituting the composition. Further, the secondary battery electrode obtained by using this composition will be described in detail.
In the present specification, "(meth) acrylic" means acrylic and / or methacrylic, and "(meth) acrylate" means acrylate and / or methacrylate. Further, the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
 本組成物は、バインダー、活物質及び水を含み、当該組成物の固形分濃度が40質量%以上である。また、上記バインダーは、カルボキシル基を有する架橋重合体、及び、エチレン性不飽和カルボン酸単量体に由来する構造単位を有する非架橋重合体を含む。 This composition contains a binder, an active material and water, and the solid content concentration of the composition is 40% by mass or more. The binder also contains a crosslinked polymer having a carboxyl group and a non-crosslinked polymer having a structural unit derived from an ethylenically unsaturated carboxylic acid monomer.
1.カルボキシル基を有する架橋重合体
<エチレン性不飽和カルボン酸単量体に由来する構造単位>
 上記バインダーに含まれるカルボキシル基を有する架橋重合体(以下、「本架橋重合体」ともいう。)は、エチレン性不飽和カルボン酸単量体に由来する構造単位(以下、「(a1)成分」ともいう。)を有していてもよい。本架橋重合体が、係る構造単位を有することによりカルボキシル基を有する場合、集電体への接着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、水膨潤性が付与されるため、電極合剤層用組成物中における活物質等の分散安定性を高めることができる。
 上記(a1)成分は、例えば、エチレン性不飽和カルボン酸単量体を含む単量体を重合することにより重合体に導入することができる。その他にも、(メタ)アクリル酸エステル単量体を(共)重合した後、加水分解することによっても得られる。また、(メタ)アクリルアミド及び(メタ)アクリロニトリル等を重合した後、強アルカリで処理してもよいし、水酸基を有する重合体に酸無水物を反応させる方法であってもよい。
1. 1. Crosslinked polymer with carboxyl group <Structural unit derived from ethylenically unsaturated carboxylic acid monomer>
The crosslinked polymer having a carboxyl group contained in the binder (hereinafter, also referred to as “the present crosslinked polymer”) is a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, “component (a1)”). Also referred to as). When the crosslinked polymer has a carboxyl group by having such a structural unit, the adhesiveness to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small. An electrode having excellent high-rate characteristics can be obtained. Further, since water swelling property is imparted, the dispersion stability of the active material or the like in the composition for the electrode mixture layer can be enhanced.
The above component (a1) can be introduced into a polymer, for example, by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. Alternatively, it can also be obtained by (co) polymerizing a (meth) acrylic acid ester monomer and then hydrolyzing it. Further, after polymerizing (meth) acrylamide, (meth) acrylonitrile or the like, it may be treated with a strong alkali, or it may be a method of reacting an acid anhydride with a polymer having a hydroxyl group.
 エチレン性不飽和カルボン酸単量体としては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸;(メタ)アクリルアミドヘキサン酸及び(メタ)アクリルアミドドデカン酸等の(メタ)アクリルアミドアルキルカルボン酸;コハク酸モノヒドロキシエチル(メタ)アクリレート、ω-カルボキシ-カプロラクトンモノ(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート等のカルボキシル基を有するエチレン性不飽和単量体またはそれらの(部分)アルカリ中和物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましく、特に好ましくはアクリル酸である。エチレン性不飽和カルボン酸単量体としてアクリル酸を用いた場合、カルボキシル基含有量の高い重合体を得ることができる。 Examples of the ethylenically unsaturated carboxylic acid monomer include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, and fumaric acid; and (meth) acrylamide alkyl such as (meth) acrylamide hexane acid and (meth) acrylamide dodecanoic acid. Carboxylic acid; ethylenically unsaturated monomers having carboxyl groups such as monohydroxyethyl succinate (meth) acrylate, ω-carboxy-caprolactone mono (meth) acrylate, β-carboxyethyl (meth) acrylate, or (partial) thereof. ) Alkaline neutralized products may be mentioned, and one of these may be used alone, or two or more thereof may be used in combination. Among the above, a compound having an acryloyl group as a polymerizable functional group is preferable, and acrylic acid is particularly preferable, in that a polymer having a long primary chain length can be obtained due to a high polymerization rate and the binder has a good binding force. is there. When acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
 本架橋重合体における(a1)成分の含有量は、特に限定するものではないが、例えば、本架橋重合体の全構造単位に対して10質量%以上、100質量%以下含むことができる。かかる範囲で(a1)成分を含有することで、集電体に対する優れた接着性を容易に確保することができる。下限は、例えば20質量%以上であり、また例えば30質量%以上であり、また例えば40質量%以上である。下限が50質量%以上の場合、本組成物の分散安定性が良好となり、より高い結着力が得られるため好ましく、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、上限は、例えば、99.9質量%以下であり、また例えば99.5質量%以下であり、また例えば99質量%以下であり、また例えば98質量%以下であり、また例えば95質量%以下であり、また例えば90質量%以下であり、また例えば80質量%以下である。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、10質量%以上、100質量%以下であり、また例えば50質量%以上、100質量%以下であり、また例えば50質量%以上、99.9質量%以下であり、また例えば50質量%以上、99質量%以下であり、また例えば50質量%以上、98質量%以下などとすることができる。 The content of the component (a1) in the present crosslinked polymer is not particularly limited, but may be, for example, 10% by mass or more and 100% by mass or less with respect to all the structural units of the present crosslinked polymer. By containing the component (a1) in such a range, excellent adhesiveness to the current collector can be easily ensured. The lower limit is, for example, 20% by mass or more, for example, 30% by mass or more, and for example, 40% by mass or more. When the lower limit is 50% by mass or more, the dispersion stability of the present composition becomes good and a higher binding force can be obtained, which is preferable, and it may be 60% by mass or more, or 70% by mass or more. It may be 80% by mass or more. Further, the upper limit is, for example, 99.9% by mass or less, for example, 99.5% by mass or less, for example, 99% by mass or less, for example, 98% by mass or less, and for example, 95% by mass. It is less than or equal to, for example, 90% by mass or less, and for example, 80% by mass or less. The range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 10% by mass or more and 100% by mass or less, and for example, 50% by mass or more and 100% by mass or less, and for example. It can be 50% by mass or more and 99.9% by mass or less, and can be, for example, 50% by mass or more and 99% by mass or less, and can be, for example, 50% by mass or more and 98% by mass or less.
<その他の構造単位>
 本架橋重合体は、(a1)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(b1)成分」ともいう。)を含むことができる。(b1)成分としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、または非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、または非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。
<Other structural units>
The crosslinked polymer may contain, in addition to the component (a1), a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b1)”). it can. Examples of the component (b1) include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, a nonionic ethylenically unsaturated monomer, and the like. The structural unit from which it is derived can be mentioned. These structural units are an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a monomer containing a nonionic ethylenically unsaturated monomer. Can be introduced by copolymerizing.
 (b1)成分の割合は、本架橋重合体の全構造単位に対し、0質量%以上、90質量%以下とすることができる。(b1)成分の割合は、1質量%以上、60質量%以下であってもよく、2質量%以上、50質量%以下であってもよく、5質量%以上、40質量%以下であってもよく、10質量%以上、30質量%以下であってもよい。また、本架橋重合体の全構造単位に対して(b1)成分を1質量%以上含む場合、電解液への親和性が向上するため、リチウムイオン伝導性が向上する効果も期待できる。 The ratio of the component (b1) can be 0% by mass or more and 90% by mass or less with respect to all the structural units of the present crosslinked polymer. The ratio of the component (b1) may be 1% by mass or more and 60% by mass or less, 2% by mass or more and 50% by mass or less, and 5% by mass or more and 40% by mass or less. It may be 10% by mass or more and 30% by mass or less. Further, when the component (b1) is contained in an amount of 1% by mass or more with respect to all the structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, so that the effect of improving the lithium ion conductivity can be expected.
 (b1)成分としては、前記した中でも、耐屈曲性が良好な電極が得られる観点から非イオン性のエチレン性不飽和単量体に由来する構造単位が好ましく、非イオン性のエチレン性不飽和単量体としては、(メタ)アクリルアミド及びその誘導体、ニトリル基含有エチレン性不飽和単量体、脂環構造含有エチレン性不飽和単量体、水酸基含有エチレン性不飽和単量体等が挙げられる。 As the component (b1), among the above-mentioned components, a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and a nonionic ethylenically unsaturated monomer is preferable. Examples of the monomer include (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, an alicyclic structure-containing ethylenically unsaturated monomer, a hydroxyl group-containing ethylenically unsaturated monomer, and the like. ..
 (メタ)アクリルアミド誘導体としては、例えば、イソプロピル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド化合物;N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド等のN-アルコキシアルキル(メタ)アクリルアミド化合物;ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド化合物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the (meth) acrylamide derivative include N-alkyl (meth) acrylamide compounds such as isopropyl (meth) acrylamide and t-butyl (meth) acrylamide; Nn-butoxymethyl (meth) acrylamide and N-isobutoxymethyl. N-alkoxyalkyl (meth) acrylamide compounds such as (meth) acrylamide; N, N-dialkyl (meth) acrylamide compounds such as dimethyl (meth) acrylamide and diethyl (meth) acrylamide include one of them. It may be used alone or in combination of two or more.
 ニトリル基含有エチレン性不飽和単量体としては、例えば、(メタ)アクロリニトリル;(メタ)アクリル酸シアノメチル、(メタ)アクリル酸シアノエチル等の(メタ)アクリル酸シアノアルキルエステル化合物;4-シアノスチレン、4-シアノ-α-メチルスチレン等のシアノ基含有不飽和芳香族化合物;シアン化ビニリデン等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、ニトリル基含有量が多い点でアクリロニトリルが好ましい。 Examples of the nitrile group-containing ethylenically unsaturated monomer include (meth) achlorinitrile; (meth) cyanomethyl acrylate, (meth) cyanoethyl acrylate and other (meth) acrylate cyanoalkyl ester compounds; 4-cyanostyrene. , 4-Cyano-α-methylstyrene and other unsaturated aromatic compounds containing cyano groups; vinylidene cyanide and the like, and one of these may be used alone or in combination of two or more. You may use it. Among the above, acrylonitrile is preferable because it has a high nitrile group content.
 脂環構造含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸シクロデシル及び(メタ)アクリル酸シクロドデシル等の脂肪族置換基を有していてもよい(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、並びに、シクロヘキサンジメタノールモノ(メタ)アクリレート及びシクロデカンジメタノールモノ(メタ)アクリレート等のシクロアルキルポリアルコールモノ(メタ)アクリレート等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, and (meth). ) Cyclodecyl acrylate and cyclododecyl (meth) acrylate and other aliphatic substituents may have (meth) cycloalkyl acrylate; isobornyl (meth) acrylate, adamantyl (meth) acrylate, (meth). ) Dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and cyclohexanedimethanol mono (meth) acrylate and cyclodecanedimethanol mono (meth) acrylate, etc. Cycloalkyl polyalcohol mono (meth) acrylate and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
 水酸基含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル及び(メタ)アクリル酸ヒドロキシブチル等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the hydroxyl group-containing ethylenically unsaturated monomer include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate, and one of these is used alone. It may be used in combination, or two or more kinds may be used in combination.
 本架橋重合体又はその塩は、バインダーの結着性が優れる点で、(メタ)アクリルアミド及びその誘導体、並びに、ニトリル基含有エチレン性不飽和単量体、脂環構造含有エチレン性不飽和単量体等に由来する構造単位を含むことが好ましい。また、(c)成分として、水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体に由来する構造単位を導入した場合、電極材料と強い相互作用を奏することができ、活物質に対して良好な結着性を発揮することができる。これにより、堅固で一体性の良好な電極合剤層を得ることができるため、前記した「水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体」としては、特に脂環構造含有エチレン性不飽和単量体が好ましい。 The crosslinked polymer or a salt thereof has excellent binder binding properties, and is an amount of (meth) acrylamide and its derivatives, a nitrile group-containing ethylenically unsaturated monomer, and an alicyclic structure-containing ethylenically unsaturated monomer. It is preferable to include a structural unit derived from a body or the like. Further, when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less is introduced as the component (c), a strong interaction with the electrode material can be achieved. , Can exhibit good binding properties to active materials. As a result, a solid and well-integrated electrode mixture layer can be obtained. Therefore, the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g / 100 ml or less" is particularly selected. An alicyclic structure-containing ethylenically unsaturated monomer is preferable.
 本架橋重合体又はその塩は、得られる二次電池のサイクル特性が向上する点で、水酸基含有エチレン性不飽和単量体に由来する構造単位を含むことが好ましく、当該構造単位を0.5質量%以上、70質量%以下含むことが好ましく、2.0質量%以上、50質量%以下含むことがより好ましく、10.0質量%以上、50質量%以下含むことがさらに好ましい。 The crosslinked polymer or a salt thereof preferably contains a structural unit derived from a hydroxyl group-containing ethylenically unsaturated monomer from the viewpoint of improving the cycle characteristics of the obtained secondary battery, and the structural unit is 0.5. It is preferably contained in an amount of mass% or more and 70% by mass or less, more preferably 2.0% by mass or more and 50% by mass or less, and further preferably 10.0% by mass or more and 50% by mass or less.
 また、その他の非イオン性のエチレン性不飽和単量体としては、例えば(メタ)アクリル酸エステルを用いてもよい。(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;
(メタ)アクリル酸フェニル、(メタ)アクリル酸フェニルメチル、(メタ)アクリル酸フェニルエチル等の芳香族(メタ)アクリル酸エステル化合物;
(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル化合物等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Further, as the other nonionic ethylenically unsaturated monomer, for example, (meth) acrylic acid ester may be used. Examples of the (meth) acrylic acid ester include (meth) methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Meta) Acrylic acid alkyl ester compound;
Aromatic (meth) acrylic acid ester compounds such as (meth) phenyl acrylate, (meth) phenylmethyl acrylate, and (meth) phenylethyl acrylate;
Examples thereof include (meth) acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth) acrylic acid and 2-ethoxyethyl (meth) acrylic acid, and one of these may be used alone. Two or more types may be used in combination.
 活物質との密着性及びサイクル特性の観点からは、芳香族(メタ)アクリル酸エステル化合物を好ましく用いることができる。リチウムイオン伝導性及びハイレート特性がより向上する観点から、(メタ)アクリル酸2-メトキシエチル及び(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキルエステル等、エーテル結合を有する化合物が好ましく、(メタ)アクリル酸2-メトキシエチルがより好ましい。 From the viewpoint of adhesion to the active material and cycle characteristics, an aromatic (meth) acrylic acid ester compound can be preferably used. From the viewpoint of further improving lithium ion conductivity and high-rate characteristics, compounds having an ether bond such as (meth) acrylic acid alkoxyalkyl ester such as 2-methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate are preferable. , 2-Methoxyethyl (meth) acrylate is more preferred.
 非イオン性のエチレン性不飽和単量体の中でも、重合速度が速いために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点でアクリロイル基を有する化合物が好ましい。また、非イオン性のエチレン性不飽和単量体としては、得られる電極の耐屈曲性が良好となる点でホモポリマーのガラス転移温度(Tg)が0℃以下の化合物が好ましい。 Among the nonionic ethylenically unsaturated monomers, a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained due to its high polymerization rate and the binder has a good binding force. Further, as the nonionic ethylenically unsaturated monomer, a compound having a homopolymer glass transition temperature (Tg) of 0 ° C. or lower is preferable in terms of improving the bending resistance of the obtained electrode.
 本架橋重合体は、当該重合体中に含まれるカルボキシル基の一部又は全部が中和された塩の形態であってもよい。塩の種類としては特に限定しないが、リチウム塩、ナトリウム塩及びカリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩及びバリウム塩等のアルカリ土類金属塩;アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びアルカリ土類金属塩が好ましく、アルカリ金属塩がより好ましい。 The crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized. The type of salt is not particularly limited, but alkali metal salts such as lithium salt, sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt, calcium salt and barium salt; other metal salts such as aluminum salt; ammonium. Examples thereof include salts and organic amine salts. Among these, alkali metal salts and alkaline earth metal salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
 本架橋重合体は、架橋構造を有する架橋重合体である。本架橋重合体における架橋方法は特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
 本架橋重合体が架橋構造を有することにより、当該架橋重合体又はその塩を含むバインダーは、優れた結着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。
The present crosslinked polymer is a crosslinked polymer having a crosslinked structure. The cross-linking method in the present cross-linked polymer is not particularly limited, and examples thereof include the following methods.
1) Copolymerization of crosslinkable monomers 2) Utilizing chain transfer to polymer chains during radical polymerization 3) After synthesizing a polymer having a reactive functional group, post-crosslinking is performed by adding a crosslinking agent as necessary. Since the present crosslinked polymer has a crosslinked structure, the crosslinked polymer or the binder containing a salt thereof can have an excellent binding force. Among the above, the method by copolymerizing the crosslinkable monomer is preferable from the viewpoint that the operation is simple and the degree of crosslinking can be easily controlled.
<架橋性単量体>
 架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。
<Crosslinkable monomer>
Examples of the crosslinkable monomer include a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, a monomer having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group, and the like. Can be mentioned.
 上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすい点で多官能アルケニル化合物が好ましく、分子内に2個以上のアリルエーテル基を有する多官能アリルエーテル化合物が特に好ましい。 The polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth) acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth) acrylate compound, a polyfunctional alkenyl compound, ( Meta) Examples thereof include compounds having both an acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable because a uniform crosslinked structure can be easily obtained, and a polyfunctional allyl ether compound having two or more allyl ether groups in the molecule is particularly preferable.
 多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類等を挙げることができる。 Examples of the polyfunctional (meth) acrylate compound include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. Di (meth) acrylates of dihydric alcohols such as meta) acrylate; trimethylol propantri (meth) acrylate, tri (meth) acrylate of trimethyl propanethylene oxide modified product, glycerin tri (meth) acrylate, pentaerythritol tri (meth) Tri (meth) acrylates of trivalent or higher polyhydric alcohols such as meta) acrylates and pentaerythritol tetra (meth) acrylates, poly (meth) acrylates such as tetra (meth) acrylates; Bisamides and the like can be mentioned.
 多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。 Examples of the polyfunctional alkenyl compound include polyfunctional allyl ether compounds such as trimethylolpropanediallyl ether, trimethylolpropanetriallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; diallyl phthalate and the like. Polyfunctional allyl compound; Polyfunctional vinyl compounds such as divinylbenzene and the like can be mentioned.
 (メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。 Compounds having both (meth) acryloyl group and alkenyl group include allyl (meth) acrylate, isopropenyl (meth) acrylate, butenyl (meth) acrylate, pentenyl (meth) acrylate, and (meth) acrylate. 2- (2-Vinyloxyethoxy) ethyl and the like can be mentioned.
 上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メチロール(メタ)アクリルアミド、N-メトキシアルキルアクリルアミド等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。 Specific examples of the monomer having a crosslinkable functional group include hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth) acrylamide, N-methoxyalkylacrylamide and the like. .. These compounds can be used alone or in combination of two or more.
 加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。 The hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group. For example, vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilanen; silyl such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl acrylate and the like. Group-containing acrylic acid esters; silyl group-containing methacrylate esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether and the like. Cyril group-containing vinyl ethers; silyl group-containing vinyl esters such as trimethoxysilyl undecanoate vinyl and the like can be mentioned.
 本架橋重合体が架橋性単量体により架橋されたものである場合、当該架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100質量部に対して好ましくは0.05質量部以上5.0質量部以下であり、より好ましくは0.1質量部以上5.0質量部以下であり、さらに好ましくは0.2質量部以上4.0質量部以下であり、一層好ましくは0.3質量部以上3.0質量部以下である。架橋性単量体の使用量が0.05質量部以上であれば結着性及び合剤層スラリーの安定性がより良好となる点で好ましい。5.0質量部以下であれば、重合体の安定性が高くなる傾向がある。
 同様に、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量に対して0.02~1.7モル%であることが好ましく、0.10~1.0モル%であることがより好ましい。
When the present crosslinked polymer is crosslinked with a crosslinkable monomer, the amount of the crosslinkable monomer used is the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.05 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 5.0 parts by mass or less, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass. It is 4.0 parts by mass or less, more preferably 0.3 parts by mass or more and 3.0 parts by mass or less. When the amount of the crosslinkable monomer used is 0.05 parts by mass or more, it is preferable in that the binding property and the stability of the mixture layer slurry are improved. If it is 5.0 parts by mass or less, the stability of the polymer tends to be high.
Similarly, the amount of the crosslinkable monomer used may be 0.02 to 1.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is preferably 0.10 to 1.0 mol%, more preferably 0.10 to 1.0 mol%.
<本架橋重合体の粒子径>
 本組成物において、本架橋重合体は大粒径の塊(二次凝集体)として存在することなく、適度な粒子径を有する水膨潤粒子として良好に分散していることが、当該架橋重合体を含むバインダーが良好な結着性能を発揮し得るため好ましい。
<Particle size of this crosslinked polymer>
In the present composition, the crosslinked polymer does not exist as a mass (secondary agglomerate) having a large particle size, but is well dispersed as water-swelled particles having an appropriate particle size. A binder containing the above is preferable because it can exhibit good binding performance.
 本架橋重合体は、当該架橋重合体が有するカルボキシル基に基づく中和度が70~100モル%であるものを水中に分散させた際の粒子径(水膨潤粒子径)が、体積基準メジアン径で0.1μm以上、10.0μm以下の範囲にあることが好ましい。上記粒子径のより好ましい範囲は0.1μm以上、8.0μm以下であり、さらに好ましい範囲は0.1μm以上、7.0μm以下であり、一層好ましい範囲は0.2μm以上、5.0μm以下であり、より一層好ましい範囲は0.5μm以上、3.0μm以下である。粒子径が0.1μm以上、10.0μm以下の範囲であれば、本組成物中において好適な大きさで均一に存在するため、本組成物の安定性が高く、優れた結着性を発揮することが可能となる。粒子径が10.0μm以下を超えると、上記の通り結着性が不十分となる虞がある。また、平滑性な塗面が得られにくい点で、塗工性が不十分となる虞がある。一方、粒子径が0.1μm未満の場合には、安定製造性の観点において懸念される。 In this crosslinked polymer, the particle size (water-swelling particle size) when a crosslinked polymer having a degree of neutralization based on a carboxyl group of 70 to 100 mol% is dispersed in water is a volume-based median diameter. It is preferably in the range of 0.1 μm or more and 10.0 μm or less. The more preferable range of the particle size is 0.1 μm or more and 8.0 μm or less, the more preferable range is 0.1 μm or more and 7.0 μm or less, and the more preferable range is 0.2 μm or more and 5.0 μm or less. Yes, and even more preferable ranges are 0.5 μm or more and 3.0 μm or less. When the particle size is in the range of 0.1 μm or more and 10.0 μm or less, the composition is uniformly present in a suitable size in the present composition, so that the present composition is highly stable and exhibits excellent binding properties. It becomes possible to do. If the particle size exceeds 10.0 μm, the binding property may be insufficient as described above. In addition, there is a risk that the coatability will be insufficient because it is difficult to obtain a smooth coated surface. On the other hand, when the particle size is less than 0.1 μm, there is concern from the viewpoint of stable manufacturability.
 また、本架橋重合体の乾燥時における粒子径(乾燥粒子径)は、体積基準メジアン径で0.03μm以上、3μm以下の範囲にあることが好ましい。上記粒子径のより好ましい範囲は0.1μm以上、1μm以下であり、さらに好ましい範囲は0.3μm以上、0.8μm以下である。 Further, the particle size (dry particle size) of the crosslinked polymer at the time of drying is preferably in the range of 0.03 μm or more and 3 μm or less in terms of volume-based median diameter. A more preferable range of the particle size is 0.1 μm or more and 1 μm or less, and a more preferable range is 0.3 μm or more and 0.8 μm or less.
 本架橋重合体は、本組成物中において、中和度が20モル%以上となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。上記中和度は、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、一層好ましくは75モル%以上であり、より一層好ましくは80モル%以上であり、特に好ましくは85モル%以上である。中和度の上限値は100モル%であり、98モル%であってもよく95モル%であってもよい。中和度の範囲は、上記下限値及び上限値を適宜組合せることができ、例えば、50モル%以上100モル%以下であってもよく、75モル%以上100モル%以下であってもよく、80モル%以上100モル%以下であってもよい。中和度が20モル%以上の場合、水膨潤性が良好となり分散安定化効果が得やすいという点で好ましい。本明細書では、上記中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体又はその塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。 In the present crosslinked polymer, acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition, and the mode of the salt is It is preferable to use as. The degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more. The upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%. The range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less. When the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable. In the present specification, the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization. The degree of neutralization was determined by measuring the IR of the crosslinked polymer or a salt thereof after drying the crosslinked polymer or a salt thereof at 80 ° C. for 3 hours under reduced pressure, and measuring the peak derived from the C = O group of the carboxylic acid and the C = of the carboxylate. It can be confirmed from the intensity ratio of the peak derived from the O group.
<本架橋重合体の製造方法>
 本架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であるが、生産性の点で沈殿重合及び懸濁重合(逆相懸濁重合)が好ましい。結着性等に関してより良好な性能が得られる点で、沈殿重合、懸濁重合、乳化重合等の不均一系の重合法が好ましく、中でも沈殿重合法がより好ましい。
 沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。
 尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。
<Manufacturing method of this crosslinked polymer>
Known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used for this crosslinked polymer, but precipitation polymerization and suspension polymerization (reverse phase suspension) can be used in terms of productivity. Polymerization) is preferable. Non-uniform polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and the precipitation polymerization method is more preferable, because better performance can be obtained in terms of binding property and the like.
Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer as a raw material but does not substantially dissolve the polymer to be produced. As the polymerization progresses, the polymer particles become larger due to aggregation and growth, and a dispersion of polymer particles in which primary particles of several tens of nm to several hundreds nm are secondarily aggregated to several μm to several tens of μm can be obtained. Dispersion stabilizers can also be used to control the particle size of the polymer.
The secondary aggregation can also be suppressed by selecting a dispersion stabilizer, a polymerization solvent, or the like. In general, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
 沈殿重合の場合、重合溶媒は、使用する単量体の種類等を考慮して水及び各種有機溶剤等から選択される溶媒を使用することができる。より一次鎖長の長い重合体を得るためには、連鎖移動定数の小さい溶媒を使用することが好ましい。 In the case of precipitation polymerization, a solvent selected from water, various organic solvents, etc. can be used as the polymerization solvent in consideration of the type of monomer used. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
 具体的な重合溶媒としては、メタノール、t-ブチルアルコール、アセトン、メチルエチルケトン、アセトニトリル及びテトラヒドロフラン等の水溶性溶剤の他、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。又は、これらと水との混合溶媒として用いてもよい。本発明において水溶性溶剤とは、20℃における水への溶解度が10g/100mlより大きいものを指す。
 上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した重合体微粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、メチルエチルケトン及びアセトニトリルが好ましい。
Specific examples of the polymerization solvent include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. , One of these can be used alone or in combination of two or more. Alternatively, it may be used as a mixed solvent of these and water. In the present invention, the water-soluble solvent refers to a solvent having a solubility in water at 20 ° C. of more than 10 g / 100 ml.
Of the above, the formation of coarse particles and adhesion to the reactor are small and the polymerization stability is good, and the precipitated polymer fine particles are difficult to secondary agglomerate (or even if secondary agglomeration occurs, they dissolve in the aqueous medium. Methyl ethyl ketone and acetonitrile are preferable because they are easy to use), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and the operation is easy during the step neutralization described later. ..
 重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。一次鎖長の長い架橋重合体を得るためには、製造時間が許容される範囲内で、ラジカル発生量がより少なくなるように条件を設定することが好ましい。 As the polymerization initiator, known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited. The conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate. In order to obtain a crosslinked polymer having a long primary chain length, it is preferable to set the conditions so that the amount of radicals generated is smaller within the allowable range of the production time.
 重合開始剤の好ましい使用量は、用いる単量体成分の総量を100質量部としたときに、例えば、0.001~2質量部であり、また例えば、0.005~1質量部であり、また例えば、0.01~0.1質量部である。重合開始剤の使用量が0.001質量部以上であれば重合反応を安定的に行うことができ、2質量部以下であれば一次鎖長の長い重合体を得やすい。 The preferable amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass and, for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 parts by mass. When the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
 重合温度は、使用する単量体の種類及び濃度等の条件にもよるが、0~100℃が好ましく、20~80℃がより好ましい。重合温度は一定であってもよいし、重合反応の期間において変化するものであってもよい。また、重合時間は1分間~20時間が好ましく、1時間~10時間がより好ましい。 The polymerization temperature is preferably 0 to 100 ° C, more preferably 20 to 80 ° C, although it depends on conditions such as the type and concentration of the monomer used. The polymerization temperature may be constant or may change during the polymerization reaction. The polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 10 hours.
2.エチレン性不飽和カルボン酸単量体に由来する構造単位を有する非架橋重合体
 本組成物は、バインダーとして、カルボキシル基を有する架橋重合体に加えて、エチレン性不飽和カルボン酸単量体に由来する構造単位を有する非架橋重合体(以下、「本非架橋重合体」ともいう。)を含む。本非架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する構造単位(以下、「(a2)成分」ともいう。)を有し、(a2)成分及びその導入方法は、本架橋重合体の(a1)成分において記載した内容と同様である。
2. Non-crosslinked polymer having a structural unit derived from an ethylenically unsaturated carboxylic acid monomer This composition is derived from an ethylenically unsaturated carboxylic acid monomer as a binder in addition to a crosslinked polymer having a carboxyl group. Includes a non-crosslinked polymer having a structural unit (hereinafter, also referred to as “the present non-crosslinked polymer”). The present non-crosslinked polymer has a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a2)”), and the component (a2) and the method for introducing the component (a2) are the present crosslinked. It is the same as the content described in the component (a1) of the polymer.
 本非架橋重合体における(a2)成分の含有量は、特に限定するものではないが、水への溶解性の点で、本非架橋重合体の全構造単位に対して、好ましくは50質量%以上、100質量%以下であり、より好ましくは60質量%以上、100質量%以下であり、さらに好ましくは70質量%以上、100質量%以下であり、一層好ましくは80質量%以上、100質量%以下である。 The content of the component (a2) in the non-crosslinked polymer is not particularly limited, but is preferably 50% by mass with respect to the total structural units of the non-crosslinked polymer in terms of solubility in water. The above is 100% by mass or less, more preferably 60% by mass or more and 100% by mass or less, further preferably 70% by mass or more and 100% by mass or less, still more preferably 80% by mass or more and 100% by mass or less. It is as follows.
<その他の構造単位>
 本非架橋重合体は、(a2)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(b2)成分」ともいう。)を含むことができる。(b2)成分及びその導入方法は、本架橋重合体の(b1)成分において記載した内容と同様である。
 (b2)成分の割合は、本非架橋重合体の全構造単位に対し、0質量%以上、50質量%以下とすることができる。(b2)成分の割合は、1質量%以上、40質量%以下であってもよく、2質量%以上、30質量%以下であってもよく、5質量%以上、20質量%以下であってもよい。
<Other structural units>
The non-crosslinked polymer contains, in addition to the component (a2), a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (hereinafter, also referred to as “component (b2)”). Can be done. The component (b2) and the method for introducing the component (b2) are the same as those described in the component (b1) of the present crosslinked polymer.
The ratio of the component (b2) can be 0% by mass or more and 50% by mass or less with respect to all the structural units of the non-crosslinked polymer. The ratio of the component (b2) may be 1% by mass or more and 40% by mass or less, 2% by mass or more and 30% by mass or less, and 5% by mass or more and 20% by mass or less. May be good.
 本非架橋重合体は、当該重合体中に含まれるカルボキシル基の一部又は全部が中和された塩の形態であってもよい。塩の種類としては特に限定しないが、リチウム、ナトリウム、カリウム等のアルカリ金属塩;カルシウム塩及びバリウム塩等のアルカリ土類金属塩;マグネシウム塩、アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びマグネシウム塩が好ましく、アルカリ金属塩がより好ましい。 The non-crosslinked polymer may be in the form of a salt in which some or all of the carboxyl groups contained in the polymer are neutralized. The type of salt is not particularly limited, but alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium salt and barium salt; other metal salts such as magnesium salt and aluminum salt; ammonium salt and organic. Examples include amine salts. Among these, alkali metal salts and magnesium salts are preferable, and alkali metal salts are more preferable, from the viewpoint that adverse effects on battery characteristics are unlikely to occur.
 本非架橋重合体は、本組成物中において、中和度が20モル%以上となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。上記中和度は、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、一層好ましくは75モル%以上であり、より一層好ましくは80モル%以上であり、特に好ましくは85モル%以上である。中和度の上限値は100モル%であり、98モル%であってもよく95モル%であってもよい。中和度の範囲は、上記下限値及び上限値を適宜組合せることができ、例えば、50モル%以上100モル%以下であってもよく、75モル%以上100モル%以下であってもよく、80モル%以上100モル%以下であってもよい。中和度が20モル%以上の場合、水への溶解性が確保しやすい点で好ましい。本明細書では、上記中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体又はその塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。 In the present non-crosslinked polymer, acid groups such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer are neutralized so that the degree of neutralization is 20 mol% or more in the present composition, and the salt is a salt. It is preferable to use it as an embodiment. The degree of neutralization is more preferably 50 mol% or more, further preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more, and particularly preferably. It is 85 mol% or more. The upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%. The range of the degree of neutralization may be appropriately combined with the above lower limit value and upper limit value, and may be, for example, 50 mol% or more and 100 mol% or less, or 75 mol% or more and 100 mol% or less. , 80 mol% or more and 100 mol% or less. When the degree of neutralization is 20 mol% or more, it is preferable because the solubility in water can be easily ensured. In the present specification, the degree of neutralization can be calculated by calculation from the charged values of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization. The degree of neutralization was determined by measuring the IR of the crosslinked polymer or a salt thereof after drying the crosslinked polymer or a salt thereof at 80 ° C. for 3 hours under reduced pressure, and measuring the peak derived from the C = O group of the carboxylic acid and the C = of the carboxylate. It can be confirmed from the intensity ratio of the peak derived from the O group.
 本非架橋重合体の重量平均分子量(Mw)は、特に限定するものではないが、結着性に優れる電極合剤層が得られる点で、好ましくは5,000以上であり、より好ましくは10,000以上である。Mwは、100,000以上であってもよく、500,000以上であってもよく、1,000,000以上であってもよい。Mwの上限値も特に限定するものではないが、製造上の扱いの観点から、例えば10,000,000以下であり、5,000,000以下であってもよい。 The weight average molecular weight (Mw) of the non-crosslinked polymer is not particularly limited, but is preferably 5,000 or more, more preferably 10 in terms of obtaining an electrode mixture layer having excellent binding properties. It is over 000. Mw may be 100,000 or more, 500,000 or more, or 1,000,000 or more. The upper limit of Mw is not particularly limited, but from the viewpoint of manufacturing handling, it may be, for example, 1,000,000 or less, and may be 5,000,000 or less.
 本組成物に用いられるバインダーは、本架橋重合体及び本非架橋重合体を含むものである。本非架橋重合体の使用量は、前記架橋重合体の総量100質量部に対し、7.5質量部以上200質量部以下である。非架橋重合体の使用量は、15質量部以上であってもよく、25質量部以上であってもよく、35質量部以上であってもよく、45質量部以上であってもよい。上限は、190質量部以下であってもよく、180質量部以下であってもよく、170質量部以下であってもよく、160質量部以下であってもよい。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、15質量部以上、190質量部以下であり、例えば、25質量部以上、180質量部以下であり、また例えば35質量部以上、170質量部以下であり、また例えば35質量部以上、160質量部以下などとすることができる。 The binder used in this composition contains the present crosslinked polymer and the present non-crosslinked polymer. The amount of the non-crosslinked polymer used is 7.5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the total amount of the crosslinked polymer. The amount of the non-crosslinked polymer used may be 15 parts by mass or more, 25 parts by mass or more, 35 parts by mass or more, or 45 parts by mass or more. The upper limit may be 190 parts by mass or less, 180 parts by mass or less, 170 parts by mass or less, or 160 parts by mass or less. The range may be a range in which such a lower limit and an upper limit are appropriately combined, and is, for example, 15 parts by mass or more and 190 parts by mass or less, for example, 25 parts by mass or more and 180 parts by mass or less, and for example. It may be 35 parts by mass or more and 170 parts by mass or less, and may be, for example, 35 parts by mass or more and 160 parts by mass or less.
 このように、本架橋重合体に対し、特定量の本非架橋重合体を併せて使用することにより、従来よりも電極合剤層用組成物の固形分濃度が高い場合において、電極スラリーの粘度低減により塗工性を確保しつつ、優れたサイクル特性を発揮する二次電池を得ることができる。本非架橋性重合体の使用量が7.5質量部以上であれば、係る効果を発現することができる。また、本非架橋性重合体の使用量が200質量部を超えた場合は、十分な塗工性が得られないことがある。 As described above, by using the present non-crosslinked polymer in combination with the present crosslinked polymer, the viscosity of the electrode slurry is higher than that in the conventional case when the solid content concentration of the composition for the electrode mixture layer is higher than before. It is possible to obtain a secondary battery that exhibits excellent cycle characteristics while ensuring coatability by reducing the amount. When the amount of the non-crosslinkable polymer used is 7.5 parts by mass or more, such an effect can be exhibited. Further, if the amount of the non-crosslinkable polymer used exceeds 200 parts by mass, sufficient coatability may not be obtained.
<本非架橋重合体の製造方法>
 本非架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であり、分子量又は組成等により適宜選定すればよい。
<Method for producing this non-crosslinked polymer>
As this non-crosslinked polymer, known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization can be used, and may be appropriately selected depending on the molecular weight, composition, and the like.
 重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。
 また、分子量の調整等を目的として、必要に応じて公知の連鎖移動剤を使用してもよい。
As the polymerization initiator, known polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, but the polymerization initiator is not particularly limited. The conditions of use can be adjusted by known methods such as heat initiation, redox initiation with a reducing agent, and UV initiation so that the amount of radicals generated is appropriate.
Further, a known chain transfer agent may be used if necessary for the purpose of adjusting the molecular weight or the like.
3.二次電池電極合剤層用組成物
 本発明の二次電池電極合剤層用組成物は、バインダー、活物質及び水を含む。
 本組成物における上記バインダーの使用量は、活物質の全量100質量部に対して、例えば、0.1質量部以上20質量部以下である。上記使用量は、また例えば、0.2質量部以上10質量部以下であり、また例えば0.3質量部以上8質量部以下であり、また例えば0.4質量部以上5質量部以下である。バインダーの使用量が0.1質量部以上であれば、十分な結着性を得ることができる。また、活物質等の分散安定性を確保することができ、均一な合剤層を形成することができる。バインダーの使用量が20質量部以下であれば、本組成物が高粘度となることはなく、集電体への塗工性を確保することができる。その結果、均一で平滑な表面を有する合剤層を形成することができる。
3. 3. Composition for secondary battery electrode mixture layer The composition for a secondary battery electrode mixture layer of the present invention contains a binder, an active material and water.
The amount of the binder used in the present composition is, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the active material. The amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example, 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. .. When the amount of the binder used is 0.1 parts by mass or more, sufficient binding property can be obtained. Further, the dispersion stability of the active material or the like can be ensured, and a uniform mixture layer can be formed. When the amount of the binder used is 20 parts by mass or less, the composition does not have a high viscosity, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
 上記活物質の内、正極活物質としては遷移金属酸化物のリチウム塩を用いることができ、例えば、層状岩塩型及びスピネル型のリチウム含有金属酸化物を使用することができる。層状岩塩型の正極活物質の具体的な化合物としては、コバルト酸リチウム、ニッケル酸リチウム、並びに、三元系と呼ばれるNCM{Li(Ni,Co,Mn)、x+y+z=1}及びNCA{Li(Ni1-a-bCoAlb)}等が挙げられる。また、スピネル型の正極活物質としてはマンガン酸リチウム等が挙げられる。酸化物以外にもリン酸塩、ケイ酸塩及び硫黄等が使用され、リン酸塩としては、オリビン型のリン酸鉄リチウム等が挙げられる。正極活物質としては、上記のうちの1種を単独で使用してもよく、2種以上を組み合わせて混合物又は複合物として使用してもよい。 Among the above active materials, a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, layered rock salt type and spinel type lithium-containing metal oxides can be used. Specific compounds of the layered rock salt type positive electrode active material include lithium cobalt oxide, lithium nickel oxide, and NCM {Li (Ni x , Co y , Mn z ), x + y + z = 1} and NCA, which are called ternary systems. {Li (Ni 1-ab Co a Al b )} and the like can be mentioned. Moreover, as a spinel type positive electrode active material, lithium manganate and the like can be mentioned. In addition to oxides, phosphates, silicates, sulfur and the like are used, and examples of phosphates include olivine-type lithium iron phosphate and the like. As the positive electrode active material, one of the above may be used alone, or two or more thereof may be combined and used as a mixture or a composite.
 尚、層状岩塩型のリチウム含有金属酸化物を含む正極活物質を水に分散させた場合、活物質表面のリチウムイオンと水中の水素イオンとが交換されることにより、分散液がアルカリ性を示す。このため、一般的な正極用集電体材料であるアルミ箔(Al)等が腐食される虞がある。このような場合には、バインダーとして未中和又は部分中和された本架橋重合体を用いることにより、活物質から溶出するアルカリ分を中和することが好ましい。また、未中和又は部分中和された本架橋重合体の使用量は、本架橋重合体の中和されていないカルボキシル基量が活物質から溶出するアルカリ量に対して当量以上となるように用いることが好ましい。 When a positive electrode active material containing a layered rock salt type lithium-containing metal oxide is dispersed in water, the dispersion liquid becomes alkaline by exchanging lithium ions on the surface of the active material and hydrogen ions in water. Therefore, there is a risk that aluminum foil (Al) or the like, which is a general current collector material for positive electrodes, will be corroded. In such a case, it is preferable to neutralize the alkali content eluted from the active material by using the present crosslinked polymer which has not been neutralized or partially neutralized as the binder. Further, the amount of the unneutralized or partially neutralized present crosslinked polymer used is such that the amount of unneutralized carboxyl groups of the present crosslinked polymer is equal to or more than the amount of alkali eluted from the active material. It is preferable to use it.
 正極活物質はいずれも電気伝導性が低いため、導電助剤を添加して使用されるのが一般的である。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンファイバー、黒鉛微粉、炭素繊維等の炭素系材料が挙げられ、これらの内、優れた導電性を得やすい点からカーボンブラック、カーボンナノチューブ及びカーボンファイバー、が好ましい。また、カーボンブラックとしては、ケッチェンブラック及びアセチレンブラックが好ましい。導電助剤は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。導電助剤の使用量は、導電性とエネルギー密度を両立するという観点から、活物質の全量100質量部に対して、例えば、0.2~20質量部とすることができ、また例えば、0.2~10質量部とすることができる。また、正極活物質は導電性を有する炭素系材料で表面コーティングしたものを使用してもよい。 Since all positive electrode active materials have low electrical conductivity, they are generally used with a conductive additive added. Examples of the conductive auxiliary agent include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among these, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. , Are preferred. Further, as the carbon black, Ketjen black and acetylene black are preferable. As the conductive auxiliary agent, one of the above types may be used alone, or two or more types may be used in combination. The amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density, and for example, 0. It can be 2 to 10 parts by mass. Further, as the positive electrode active material, a material whose surface is coated with a conductive carbon-based material may be used.
 一方、負極活物質としては、例えば炭素系材料、リチウム金属、リチウム合金及び金属酸化物等が挙げられ、これらの内の1種又は2種以上を組み合わせて用いることができる。これらの内でも、天然黒鉛、人造黒鉛、ハードカーボン及びソフトカーボン等の炭素系材料からなる活物質(以下、「炭素系活物質」ともいう。)が好ましく、天然黒鉛及び人造黒鉛等の黒鉛、並びにハードカーボンがより好ましい。また、黒鉛の場合、電池性能の面から球形化黒鉛が好適に用いられ、その粒子サイズの好ましい範囲は、例えば、1~20μmであり、また例えば、5~15μmである。また、エネルギー密度を高くするために、ケイ素やスズなどのリチウムを吸蔵できる金属又は金属酸化物等を負極活物質として使用することもできる。その中でも、ケイ素は黒鉛に比べて高容量であり、ケイ素、ケイ素合金及び一酸化ケイ素(SiO)等のケイ素酸化物のようなケイ素系材料からなる活物質(以下、「ケイ素系活物質」ともいう。)を用いることができる。しかし、上記ケイ素系活物質は高容量である反面充放電に伴う体積変化が大きい。このため、上記炭素系活物質と併用するのが好ましい。この場合、ケイ素系活物質の配合量が多いと電極材料の崩壊を招き、サイクル特性(耐久性)が大きく低下する場合がある。このような観点から、ケイ素系活物質を併用する場合、その使用量は炭素系活物質に対して、例えば、60質量%以下であり、また例えば、30質量%以下である。 On the other hand, examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or a combination of two or more of these can be used. Among these, active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as "carbon-based active material") are preferable, and graphite such as natural graphite and artificial graphite, Also, hard carbon is more preferred. Further, in the case of graphite, spherical graphite is preferably used from the viewpoint of battery performance, and the preferable range of the particle size thereof is, for example, 1 to 20 μm, and for example, 5 to 15 μm. Further, in order to increase the energy density, a metal or a metal oxide capable of occluding lithium such as silicon or tin can be used as the negative electrode active material. Among them, silicon has a higher capacity than graphite, and is an active material made of a silicon-based material such as silicon, a silicon alloy, and a silicon oxide such as silicon monoxide (SiO) (hereinafter, also referred to as "silicon-based active material"). ) Can be used. However, while the silicon-based active material has a high capacity, the volume change due to charging and discharging is large. Therefore, it is preferable to use it in combination with the above carbon-based active material. In this case, if the amount of the silicon-based active material is large, the electrode material may be disintegrated and the cycle characteristics (durability) may be significantly deteriorated. From such a viewpoint, when a silicon-based active material is used in combination, the amount used is, for example, 60% by mass or less, and for example, 30% by mass or less, based on the carbon-based active material.
 炭素系活物質は、それ自身が良好な電気伝導性を有するため、必ずしも導電助剤を添加する必要はない。抵抗をより低減する等の目的で導電助剤を添加する場合、エネルギー密度の観点からその使用量は活物質の全量100質量部に対して、例えば、10質量部以下であり、また例えば、5質量部以下である。 Since the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive additive. When a conductive additive is added for the purpose of further reducing resistance, the amount used is, for example, 10 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, and for example, 5 from the viewpoint of energy density. It is less than a part by mass.
 本組成物がスラリー状態の場合、活物質の使用量は、本組成物全量に対して、例えば、10~75質量%の範囲であり、また例えば、30~65質量%の範囲である。活物質の使用量が10質量%以上であればバインダー等のマイグレーションが抑えられるとともに、媒体の乾燥コストの面でも有利となる。一方、75質量%以下であれば、本組成物の流動性及び塗工性を確保することができ、均一な合剤層を形成することができる。 When the composition is in a slurry state, the amount of the active material used is, for example, in the range of 10 to 75% by mass, and for example, in the range of 30 to 65% by mass, based on the total amount of the composition. If the amount of the active material used is 10% by mass or more, migration of the binder or the like can be suppressed, and the drying cost of the medium is also advantageous. On the other hand, if it is 75% by mass or less, the fluidity and coatability of the present composition can be ensured, and a uniform mixture layer can be formed.
 本組成物は、媒体として水を使用する。また、本組成物の性状及び乾燥性等を調整する目的で、メタノール及びエタノール等の低級アルコール類、エチレンカーボネート等のカーボネート類、アセトン等のケトン類、テトラヒドロフラン、N-メチルピロリドン等の水溶性有機溶剤との混合溶媒としてもよい。混合媒体中の水の割合は、例えば、50質量%以上であり、また例えば、70質量%以上である。 This composition uses water as a medium. Further, for the purpose of adjusting the properties and dryness of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, and water-soluble organic substances such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with a solvent. The proportion of water in the mixing medium is, for example, 50% by mass or more, and for example, 70% by mass or more.
 本組成物を塗工可能なスラリー状態とする場合、本組成物全体に占める水を含む媒体の含有量は、スラリーの塗工性、および乾燥に必要なエネルギーコスト、生産性の観点から、例えば、25~60質量%の範囲とすることができ、また例えば、35~60質量%とすることができる。 When the composition is in a coatable slurry state, the content of the medium containing water in the entire composition is, for example, from the viewpoint of the coatability of the slurry, the energy cost required for drying, and the productivity. , 25-60% by mass, and can be, for example, 35-60% by mass.
 本組成物は、さらに、スチレンブタジエンゴム(SBR)系ラテックス、カルボキシメチルセルロース(CMC)、アクリル系ラテックス及びポリフッ化ビニリデン系ラテックス等の他のバインダー成分を併用してもよい。他のバインダー成分を併用する場合、その使用量は、活物質の全量100質量部に対して、例えば、0.1~5質量部以下とすることができ、また例えば、0.1~2質量部以下とすることができ、また例えば、0.1~1質量部以下とすることができる。他のバインダー成分の使用量が5質量%を超えると抵抗が増大し、ハイレート特性が不十分なものとなる場合がある。上記の中でも、結着性及び耐屈曲性のバランスに優れる点で、SBR系ラテックス、CMCが好ましく、SBR系ラテックス及びCMCを併用する事がより好ましい。 The present composition may further contain other binder components such as styrene-butadiene rubber (SBR) -based latex, carboxymethyl cellulose (CMC), acrylic-based latex, and polyvinylidene fluoride-based latex. When other binder components are used in combination, the amount used may be, for example, 0.1 to 5 parts by mass or less, and for example, 0.1 to 2 parts by mass, based on 100 parts by mass of the total amount of the active material. It can be less than or equal to parts, and can be, for example, 0.1 to 1 part by mass or less. If the amount of the other binder component used exceeds 5% by mass, the resistance increases and the high rate characteristics may become insufficient. Among the above, SBR-based latex and CMC are preferable, and SBR-based latex and CMC are more preferable in combination because they are excellent in the balance between binding property and bending resistance.
 上記SBR系ラテックスとは、スチレン等の芳香族ビニル単量体に由来する構造単位及び1,3-ブタジエン等の脂肪族共役ジエン系単量体に由来する構造単位を有する共重合体の水系分散体を示す。上記芳香族ビニル単量体としては、スチレンの他にα-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記芳香族ビニル単量体に由来する構造単位は、主に結着性の観点から、例えば、20~70質量%の範囲とすることができ、また例えば、30~60質量%の範囲とすることができる。
 上記脂肪族共役ジエン系単量体としては、1,3-ブタジエンの他に2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記脂肪族共役ジエン系単量体に由来する構造単位は、バインダーの結着性及び得られる電極の柔軟性が良好なものとなる点で、例えば、30~70質量%の範囲とすることができ、また例えば、40~60質量%の範囲とすることができる。
 スチレン/ブタジエン系ラテックスは、上記の単量体以外にも、結着性等の性能をさらに向上させるために、その他の単量体として(メタ)アクリロニトリル等のニトリル基含有単量体、(メタ)アクリル酸、イタンコン酸、マレイン酸等のカルボキシル基含有単量体、(メタ)アクリル酸メチル等のエステル基含有単量体を共重合単量体として用いてもよい。
 上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。
The SBR latex is an aqueous dispersion of a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Show the body. Examples of the aromatic vinyl monomer include α-methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used. The structural unit derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, and for example, 30 to 60, mainly from the viewpoint of binding property. It can be in the range of% by mass.
As the above-mentioned aliphatic conjugated diene-based monomer, in addition to 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene and the like can be mentioned, and one or more of these can be used. The structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. It can be in the range of 40 to 60% by mass, for example.
In addition to the above-mentioned monomers, styrene / butadiene-based monomers include nitrile group-containing monomers such as (meth) acrylonitrile and (meth) as other monomers in order to further improve performance such as binding properties. ) A carboxyl group-containing monomer such as acrylic acid, itanconic acid, and maleic acid, and an ester group-containing monomer such as methyl (meth) acrylic acid may be used as the copolymerization monomer.
The structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, or can be, for example, in the range of 0 to 20% by mass.
 上記CMCとは、ノニオン性セルロース系半合成高分子化合物をカルボキシメチル基により置換した置換体及びその塩を示す。上記ノニオン性セルロース系半合成高分子化合物としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース;
ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロースなどが挙げられる。
The CMC refers to a substitute obtained by substituting a nonionic cellulosic semi-synthetic polymer compound with a carboxymethyl group and a salt thereof. Examples of the nonionic cellulose-based semi-synthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystallin cellulose;
Examples thereof include hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, hydroxyalkyl cellulose such as nonoxynyl hydroxyethyl cellulose and the like.
 本発明の二次電池電極合剤層用組成物は、上記の活物質、水及びバインダーを必須の構成成分とするものであり、公知の手段を用いて各成分を混合することにより得られる。各成分の混合方法は特段制限されるものではなく、公知の方法を採用することができるが、活物質、導電助剤及びバインダー等の粉末成分をドライブレンドした後、水等の分散媒と混合し、分散混練する方法が好ましい。本組成物をスラリー状態で得る場合、分散不良や凝集のないスラリーに仕上げることが好ましい。混合手段としては、プラネタリーミキサー、薄膜旋回式ミキサー及び自公転式ミキサー等の公知のミキサーを使用することができるが、短時間で良好な分散状態が得られる点で薄膜旋回式ミキサーを使用して行うことが好ましい。また、薄膜旋回式ミキサーを用いる場合は、予めディスパー等の攪拌機で予備分散を行うことが好ましい。また、上記スラリーの粘度は、本発明の効果を奏する限り特に制限されないが、20rpmにおけるB型粘度(25℃)として、例えば、100~5,000mPa・sの範囲とすることができ、また例えば、500~4,500mPa・s、また例えば、1,000~3,000mPa・sの範囲とすることができる。スラリーの粘度が上記の範囲内であれば、良好な塗工性を確保することができる。 The composition for the secondary battery electrode mixture layer of the present invention contains the above-mentioned active material, water and a binder as essential constituents, and can be obtained by mixing the respective components using known means. The mixing method of each component is not particularly limited, and a known method can be adopted. However, powder components such as an active material, a conductive additive and a binder are dry-blended and then mixed with a dispersion medium such as water. However, the method of dispersion kneading is preferable. When the present composition is obtained in a slurry state, it is preferable to finish the composition into a slurry having no poor dispersion or aggregation. As the mixing means, a known mixer such as a planetary mixer, a thin film swirl mixer, or a self-revolving mixer can be used, but a thin film swirl mixer is used because a good dispersion state can be obtained in a short time. It is preferable to do this. When using a thin film swirl mixer, it is preferable to pre-disperse in advance with a stirrer such as a disper. The viscosity of the slurry is not particularly limited as long as the effect of the present invention is exhibited, but the B-type viscosity (25 ° C.) at 20 rpm can be, for example, in the range of 100 to 5,000 mPa · s, and for example. , 500 to 4,500 mPa · s, or, for example, the range of 1,000 to 3,000 mPa · s. When the viscosity of the slurry is within the above range, good coatability can be ensured.
4.二次電池電極
 本発明の二次電池電極は、銅又はアルミニウム等の集電体表面に本発明の二次電池電極合剤層用組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。本組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
 通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。
4. Secondary battery electrode The secondary battery electrode of the present invention is provided with a mixture layer formed from the composition for the mixture layer of the secondary battery electrode of the present invention on the surface of a current collector such as copper or aluminum. .. The mixture layer is formed by applying the present composition to the surface of the current collector and then drying and removing a medium such as water. The method for applying the present composition is not particularly limited, and known methods such as a doctor blade method, a dip method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method can be adopted. it can. Further, the drying can be performed by a known method such as blowing warm air, reducing the pressure, (far) infrared rays, and irradiating microwaves.
Usually, the mixture layer obtained after drying is subjected to a compression treatment by a mold press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact with each other, and the strength of the mixture layer and the adhesion to the current collector can be improved. The thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 μm.
5.二次電池
 本発明の二次電池用電極にセパレータ及び電解液を備えることにより、二次電池を作製することができる。電解液は液状であってもよく、ゲル状であってもよい。
 セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。
5. Secondary battery A secondary battery can be manufactured by providing the electrode for the secondary battery of the present invention with a separator and an electrolytic solution. The electrolytic solution may be in the form of a liquid or a gel.
The separator is arranged between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between the two electrodes and holding an electrolytic solution to ensure ionic conductivity. The separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength. As a specific material, polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene and the like can be used.
 電解液は、活物質の種類に応じて一般的に使用される公知のものを用いることができる。リチウムイオン二次電池では、具体的な溶媒として、プロピレンカーボネート及びエチレンカーボネート等の高誘電率で電解質の溶解能力の高い環状カーボネート、並びに、エチルメチルカーボネート、ジメチルカーボネート及びジエチルカーボネート等の粘性の低い鎖状カーボネート等が挙げられ、これらを単独で又は混合溶媒として使用することができる。電解液は、これらの溶媒にLiPF、LiSbF、LiBF、LiClO、LiAlO等のリチウム塩を溶解して使用される。ニッケル水素二次電池では、電解液として水酸化カリウム水溶液を使用することができる。二次電池は、セパレータで仕切られた正極板及び負極板を渦巻き状又は積層構造にしてケース等に収納することにより得られる。 As the electrolytic solution, a known one that is generally used depending on the type of active material can be used. In the lithium ion secondary battery, specific solvents include cyclic carbonates having a high dielectric constant and high solubility of electrolytes such as propylene carbonate and ethylene carbonate, and low-viscosity chains such as ethylmethyl carbonate, dimethyl carbonate and diethyl carbonate. Examples thereof include form carbonates, which can be used alone or as a mixed solvent. The electrolytic solution is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents. In the nickel-metal hydride secondary battery, an aqueous potassium hydroxide solution can be used as the electrolytic solution. The secondary battery is obtained by forming a positive electrode plate and a negative electrode plate partitioned by a separator into a spiral or laminated structure and storing them in a case or the like.
 以上説明したように、本明細書に開示される二次電池電極合剤層用組成物より形成される合剤層を備えた電極を具備した二次電池は、充放電を繰り返しても良好な耐久性(サイクル特性)を示すため、車載用二次電池等に好適である。 As described above, the secondary battery provided with the electrode having the mixture layer formed from the composition for the secondary battery electrode mixture layer disclosed in the present specification is good even if charging and discharging are repeated. Since it exhibits durability (cycle characteristics), it is suitable for in-vehicle secondary batteries and the like.
 以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。 Hereinafter, the present invention will be specifically described based on Examples. The present invention is not limited to these examples. In the following, "parts" and "%" mean parts by mass and% by mass unless otherwise specified.
(本架橋重合体の2質量%濃度水溶液の粘度測定)
 以下の各製造例において得られたカルボキシル基を有する架橋重合体を脱イオン水に溶解して2質量%濃度の水溶液を調製した。上記水溶液を液温25℃±1℃に調整した後、12rpmにおけるB型粘度計により2質量%濃度水溶液の粘度を測定した。
(Measurement of viscosity of 2% by mass aqueous solution of this crosslinked polymer)
The crosslinked polymer having a carboxyl group obtained in each of the following production examples was dissolved in deionized water to prepare an aqueous solution having a concentration of 2% by mass. After adjusting the liquid temperature to 25 ° C. ± 1 ° C., the viscosity of the 2% by mass aqueous solution was measured with a B-type viscometer at 12 rpm.
(電極スラリーの粘度測定)
 以下の各実施例及び比較例において得られた電極スラリーについて、25℃±1℃に調整した後、20rpmにおけるB型粘度計によりスラリー粘度を測定した。
(Measurement of viscosity of electrode slurry)
The electrode slurries obtained in each of the following Examples and Comparative Examples were adjusted to 25 ° C. ± 1 ° C., and then the slurry viscosity was measured with a B-type viscometer at 20 rpm.
≪本架橋重合体塩の製造≫
(製造例1:カルボキシル基含有架橋重合体塩R-1の製造)
 重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
 反応器内にアセトニトリル567部、イオン交換水2.20部、アクリル酸(以下、「AA」という)100.0部、トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)0.90部及び上記AAに対して1.0モル%に相当するトリエチルアミンを仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。外温(水バス温度)を調整して内温を55℃に維持しながら重合反応を継続し、重合開始点から24時間経過した時点で反応液の冷却を開始し、内温が25℃まで低下した後、水酸化リチウム・一水和物(以下、「LiOH・HO」という)の粉末52.4部を添加した。添加後室温下12時間撹拌を継続して、カルボキシル基含有架橋重合体塩R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。
≪Manufacturing of this crosslinked polymer salt≫
(Production Example 1: Production of Carboxylic Acid Group-Containing Crosslinked Polymer Salt R-1)
A reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used for the polymerization.
567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 100.0 parts of acrylic acid (hereinafter referred to as "AA"), trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20") in the reactor. Triethylamine corresponding to 0.90 parts and 1.0 mol% with respect to the above AA was charged. After sufficiently replacing the inside of the reactor with nitrogen, the inside temperature was raised to 55 ° C. by heating. After confirming that the internal temperature was stable at 55 ° C., 2,2'-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-65") 0 as a polymerization initiator. When .040 parts were added, white turbidity was observed in the reaction solution, and this point was set as the polymerization initiation point. The polymerization reaction is continued while adjusting the external temperature (water bath temperature) to maintain the internal temperature at 55 ° C., and when 24 hours have passed from the polymerization initiation point, the reaction solution is cooled and the internal temperature reaches 25 ° C. after reduction, lithium hydroxide monohydrate (hereinafter, referred to as "LiOH · H 2 O") were added 52.4 parts of powder. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction solution in which particles of the carboxyl group-containing crosslinked polymer salt R-1 (Li salt, neutralization degree 90 mol%) were dispersed in the medium.
 得られた重合反応液を遠心分離して重合体粒子を沈降させた後、上澄みを除去した。その後、重合反応液と同重量のアセトニトリルに沈降物を再分散させた後、遠心分離により重合体粒子を沈降させて上澄みを除去する洗浄操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、カルボキシル基含有重合体塩R-1の粉末を得た。カルボキシル基含有架橋重合体塩R-1は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、カルボキシル基含有重合体塩R-1の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、仕込みからの計算値に等しく90モル%であった。 The obtained polymerization reaction solution was centrifuged to settle the polymer particles, and then the supernatant was removed. Then, after redispersing the precipitate in acetonitrile having the same weight as the polymerization reaction solution, the washing operation of precipitating the polymer particles by centrifugation to remove the supernatant was repeated twice. The precipitate was recovered and dried under reduced pressure at 80 ° C. for 3 hours to remove volatile components to obtain a powder of the carboxyl group-containing polymer salt R-1. Since the carboxyl group-containing crosslinked polymer salt R-1 has hygroscopicity, it was stored in a container having a water vapor barrier property. The powder of the carboxyl group-containing polymer salt R-1 was measured by IR, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C = O group of the carboxylic acid and the peak derived from the C = O of the carboxylic acid Li. , 90 mol% equal to the calculated value from the preparation.
(製造例2~5:カルボキシル基含有架橋重合体塩R-2~R-5の製造)
 単量体、架橋性単量体、イオン交換水及び中和剤の仕込み量を表1に記載の通りとした以外は製造例1と同様の操作を行い、カルボキシル基含有架橋重合体塩R-2~R-5を含む重合反応液を得た。
 次いで、各重合反応液について製造例1と同様の操作を行い、粉末状のカルボキシル基含有架橋重合体塩R-2~R-5を得た。各カルボキシル基含有架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。
(Production Examples 2 to 5: Production of carboxyl group-containing crosslinked polymer salts R-2 to R-5)
The same operation as in Production Example 1 was carried out except that the amounts of the monomer, the crosslinkable monomer, the ion-exchanged water and the neutralizing agent were as shown in Table 1, and the carboxyl group-containing crosslinked polymer salt R- A polymerization reaction solution containing 2 to R-5 was obtained.
Next, the same operations as in Production Example 1 were carried out for each polymerization reaction solution to obtain powdery carboxyl group-containing crosslinked polymer salts R-2 to R-5. Each carboxyl group-containing crosslinked polymer salt was sealed and stored in a container having a water vapor barrier property.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において用いた化合物の詳細を以下に示す。
 AA:アクリル酸
 HEA:アクリル酸2-ヒドロキシエチル
 T-20:トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)
 TEA:トリエチルアミン
 AcN:アセトニトリル
Details of the compounds used in Table 1 are shown below.
AA: Acrylic acid HEA: 2-Hydroxyethyl acrylate T-20: Trimethylolpropane diallyl ether (manufactured by Daiso, trade name "Neoallyl T-20")
TEA: Triethylamine AcN: Acetonitrile
≪本非架橋重合体塩の製造≫
(製造例6~9:本非架橋重合体塩R-6~R-9の製造)
 実施例及び比較例において用いた、本非架橋重合体R-6~R-9の詳細を以下に示す。
 R-6~R-8は、以下の未中和の非架橋ポリアクリル酸に、それぞれ、水酸化リチウム・一水和物(以下、「LiOH・HO」という)の粉末を100モル%中和するように添加して、添加後室温下12時間撹拌を継続し、調製した。また、R-9は、LiOH・HOを75モル%中和するように添加した以外は、R-6~R-8と同様の操作を行い調製した。
・R-6:非架橋ポリアクリル酸Li中和塩。未中和の非架橋ポリアクリル酸として、商品名「ジュリマーAC-10LHP」(東亞合成社製、Mw1,500,000)を用いた。
・R-7:非架橋ポリアクリル酸Li中和塩。未中和の非架橋ポリアクリル酸として、商品名「アロンA-6801」(東亞合成社製、Mw100,000)を用いた。
・R-8:非架橋ポリアクリル酸Li中和塩。未中和の非架橋ポリアクリル酸として、商品名「アロンA-10SL」(東亞合成社製、Mw6,000)を用いた。
・R-9:非架橋ポリアクリル酸Li部分中和塩。未中和の非架橋ポリアクリル酸として、商品名「ジュリマーAC-10LHP」(東亞合成社製、Mw1,500,000)を用いた。
 なお、「ジュリマー」及び「アロン」は、東亞合成株式会社の登録商標である。
<< Production of this non-crosslinked polymer salt >>
(Production Examples 6 to 9: Production of the present non-crosslinked polymer salts R-6 to R-9)
Details of the non-crosslinked polymers R-6 to R-9 used in Examples and Comparative Examples are shown below.
R-6 ~ R-8 is in the non-crosslinked polyacrylic acid following unneutralized, respectively, lithium hydroxide monohydrate (hereinafter, referred to as "LiOH · H 2 O") powder 100 mol% The mixture was added so as to be neutralized, and after the addition, stirring was continued for 12 hours at room temperature to prepare the mixture. Also, R-9, except that the addition of LiOH · H 2 O to neutralize 75 mol% was prepared in the same manner as the R-6 ~ R-8.
-R-6: Non-crosslinked polyacrylic acid Li neutralized salt. As the unneutralized non-crosslinked polyacrylic acid, the trade name "Julimer AC-10LHP" (manufactured by Toagosei Co., Ltd., Mw 1,500,000) was used.
-R-7: Non-crosslinked polyacrylic acid Li neutralized salt. As the unneutralized non-crosslinked polyacrylic acid, the trade name "Aron A-6801" (manufactured by Toagosei Co., Ltd., Mw100,000) was used.
-R-8: Non-crosslinked polyacrylic acid Li neutralized salt. As the unneutralized non-crosslinked polyacrylic acid, the trade name "Aron A-10SL" (manufactured by Toagosei Co., Ltd., Mw 6,000) was used.
-R-9: Non-crosslinked polyacrylic acid Li partially neutralized salt. As the unneutralized non-crosslinked polyacrylic acid, the trade name "Julimer AC-10LHP" (manufactured by Toagosei Co., Ltd., Mw 1,500,000) was used.
"Julimer" and "Aron" are registered trademarks of Toagosei Co., Ltd.
実施例1
<電極合剤層用組成物の調製>
 SiOx(0.8<x<1.2)の表面にCVD法で炭素を10%コートしたものを準備し(以下、「Si系活物質」という。)、黒鉛とSi系活物質とを混合したものを活物質として用いた。また、バインダーとしては、本架橋重合体塩R-1、本非架橋重合体塩R-6、スチレンブタジエンゴム(SBR)系ラテックス及びカルボキシメチルセルロース(CMC)の混合物を用いた。
 電極合剤層用組成物の固形分濃度が50質量%となるように、水を希釈溶媒として、黒鉛:Si系活物質:R-1:R-6:SBR:CMC=90:10:1.0:0.5:1.0:1.0(固形分)の質量比でプライミクス社製T.K.ハイビスミックスを用いて2時間混合し、スラリー状態の電極合剤層用組成物(電極スラリー)を調製した。電極スラリーの粘度は3,140mPa・sであり、十分低い値であった。
 得られた電極スラリーを用いて電極を作製し、その評価を行った。具体的な手順及び評価方法等について以下に示す。
Example 1
<Preparation of composition for electrode mixture layer>
Prepare a SiOx (0.8 <x <1.2) surface coated with 10% carbon by the CVD method (hereinafter referred to as "Si-based active material"), and mix graphite and Si-based active material. Was used as an active material. As the binder, a mixture of the present crosslinked polymer salt R-1, the present non-crosslinked polymer salt R-6, styrene-butadiene rubber (SBR) -based latex, and carboxymethyl cellulose (CMC) was used.
Graphite: Si-based active material: R-1: R-6: SBR: CMC = 90: 10: 1 using water as a diluting solvent so that the solid content concentration of the composition for the electrode mixture layer is 50% by mass. .0: 0.5: 1.0: 1.0 (solid content) with a mass ratio of T.I. K. The mixture was mixed for 2 hours using a hibis mix to prepare a composition for an electrode mixture layer (electrode slurry) in a slurry state. The viscosity of the electrode slurry was 3,140 mPa · s, which was a sufficiently low value.
An electrode was prepared using the obtained electrode slurry and evaluated. The specific procedure and evaluation method are shown below.
<負極極板の作製>
 上記電極スラリーを銅箔(厚み:20μm)の両面に塗布し、乾燥することにより合剤層を形成した。その後、合剤層の厚みが27μm、充填密度が1.3g/cmになるよう圧延した後、3cm正方に打ち抜いて負極極板を得た。
<Manufacturing of negative electrode plate>
The electrode slurry was applied to both sides of a copper foil (thickness: 20 μm) and dried to form a mixture layer. Then, after rolling so that the thickness of the mixture layer was 27 μm and the packing density was 1.3 g / cm 3 , the negative electrode electrode plate was obtained by punching 3 cm square.
(塗工性)
 上記負極極板の作製における電極スラリーの塗工性は、以下の基準に基づき評価され、「○」と評価された。
(評価基準)
 ○:表面に筋ムラ、ブツ等の外観異常が全く認められない。
 △:表面に筋ムラ、ブツ等の外観異常がわずかに認められる。
 ×:表面に筋ムラ、ブツ等の外観異常が顕著に認められる。
(Paintability)
The coatability of the electrode slurry in the production of the negative electrode electrode plate was evaluated based on the following criteria, and was evaluated as “◯”.
(Evaluation criteria)
◯: No abnormal appearance such as streaks or bumps is observed on the surface.
Δ: Slight abnormalities in appearance such as streaks and bumps are observed on the surface.
X: Appearance abnormalities such as streaks and bumps are noticeably observed on the surface.
<正極極板の作製>
 N-メチルピロリドン(NMP)溶媒中、正極活物質としてリン酸鉄リチウム(LFP)を100部、導電剤としてカーボンナノチューブを0.2部、ケッチェンブラックを2部、気層法炭素繊維(VGCF)0.6部を混合して添加し、電極組成物用バインダーとしてポリフッ化ビニリデン(PVDF)を混合し、正極用組成物を調製した。アルミニウム集電体(厚み:15μm)に前記正極用組成物を塗布乾燥することにより合剤層を形成した。その後、合剤層の厚みが88μm、充填密度が3.1g/cmになるように圧延した後、3cm正方に打ち抜いて正極極板を得た。
<Manufacturing of positive electrode plate>
In N-methylpyrrolidone (NMP) solvent, 100 parts of lithium iron phosphate (LFP) as the positive electrode active material, 0.2 parts of carbon nanotubes as the conductive agent, 2 parts of Ketjen black, and vapor layer carbon fiber (VGCF). ) 0.6 part was mixed and added, and polyvinylidene fluoride (PVDF) was mixed as a binder for the electrode composition to prepare a composition for a positive electrode. A mixture layer was formed by applying the positive electrode composition to an aluminum current collector (thickness: 15 μm) and drying it. Then, after rolling so that the thickness of the mixture layer was 88 μm and the packing density was 3.1 g / cm 3 , the mixture was punched 3 cm square to obtain a positive electrode plate.
<二次電池の作製>
 上記正極極板、上記負極極板及びセパレータを用いて、ラミネート型セルのリチウムイオン二次電池を作製した。電解液としてはエチレンカーボネート(EC)、エチルメチルカーボネート(DEC)を体積比で25:75とした混合溶媒に、LiPFを1.0mol/リットルの濃度で溶解させたものを用いた。
<Making secondary batteries>
Using the positive electrode plate, the negative electrode plate, and the separator, a lithium ion secondary battery of a laminated cell was produced. As the electrolytic solution, one in which LiPF 6 was dissolved at a concentration of 1.0 mol / liter in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (DEC) at a volume ratio of 25:75 was used.
(サイクル特性の評価)
 上記で作製したラミネート型セルのリチウムイオン二次電池を、CC放電にて2.7から3.4Vの条件下、0.2Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、25℃の環境下で充放電を繰り返し、50サイクル後の容量C50を測定した。以下の式で算出されるサイクル特性(ΔC)は93.0%であり、以下の基準に基づくサイクル特性は「〇」と評価された。なお、ΔCの値が高いほどサイクル特性に優れることを示す。
 ΔC=C50/C×100(%)
(評価基準)
 ◎:充放電容量保持率が95.0%以上
 〇:充放電容量保持率が90.0%以上95.0%未満
 △:充放電容量保持率が85.0%以上90.0%未満
 ×:充放電容量保持率が85.0%未満
(Evaluation of cycle characteristics)
The lithium-ion secondary battery of the laminated cell produced above is charged / discharged at a charge / discharge rate of 0.2 C under the conditions of 2.7 to 3.4 V by CC discharge, and the initial capacity is C 0. Was measured. Furthermore, repeated charging and discharging under 25 ° C. environment was measured capacitance C 50 after 50 cycles. The cycle characteristic (ΔC) calculated by the following formula was 93.0%, and the cycle characteristic based on the following criteria was evaluated as “◯”. The higher the value of ΔC, the better the cycle characteristics.
ΔC = C 50 / C 0 × 100 (%)
(Evaluation criteria)
⊚: Charge / discharge capacity retention rate is 95.0% or more 〇: Charge / discharge capacity retention rate is 90.0% or more and less than 95.0% Δ: Charge / discharge capacity retention rate is 85.0% or more and less than 90.0% × : Charge / discharge capacity retention rate is less than 85.0%
実施例2~10、及び比較例1~3
 本架橋重合体塩及び本非架橋重合体塩を表2に記載の通りとした以外は、実施例1と同様の操作を行うことにより電極スラリーを調製し、そのスラリー粘度を測定した。また、当該電極スラリーの塗工性、それを用いて得られた二次電池のサイクル特性を評価した。結果を表2に示す。
Examples 2 to 10 and Comparative Examples 1 to 3
An electrode slurry was prepared by performing the same operation as in Example 1 except that the present crosslinked polymer salt and the present non-crosslinked polymer salt were as shown in Table 2, and the slurry viscosity was measured. In addition, the coatability of the electrode slurry and the cycle characteristics of the secondary battery obtained by using the electrode slurry were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪評価結果≫
 実施例1~10の結果から明らかなように、本発明の二次電池電極合剤層用組成物(電極スラリー)は、いずれも塗工性が良好であるとともに、当該組成物を使用して得られた電極を備えた二次電池のサイクル特性にも優れるものであった。
 これらに対して、エチレン性不飽和カルボン酸単量体に由来する構造単位を有する非架橋重合体を含まない場合(比較例1)や当該非架橋重合体の使用量が、前記架橋重合体の総量100質量部に対し7.5質量部未満の場合(比較例2)には、サイクル特性が著しく劣り、当該非架橋重合体の使用量が、前記架橋重合体の総量100質量部に対し200質量部超の場合(比較例3)には、塗工性が著しく劣った。
≪Evaluation result≫
As is clear from the results of Examples 1 to 10, all of the compositions for the secondary battery electrode mixture layer (electrode slurry) of the present invention have good coatability and use the composition. The cycle characteristics of the secondary battery equipped with the obtained electrodes were also excellent.
On the other hand, when the non-crosslinked polymer having a structural unit derived from the ethylenically unsaturated carboxylic acid monomer is not contained (Comparative Example 1), the amount of the non-crosslinked polymer used is the amount of the crosslinked polymer. When the total amount is less than 7.5 parts by mass with respect to 100 parts by mass (Comparative Example 2), the cycle characteristics are significantly inferior, and the amount of the non-crosslinked polymer used is 200 with respect to 100 parts by mass of the total amount of the crosslinked polymer. In the case of more than parts by mass (Comparative Example 3), the coatability was significantly inferior.
 本発明の二次電池電極合剤層用組成物を使用して得られた電極を備えた二次電池は、良好な耐久性(サイクル特性)を示すため、車載用二次電池への適用が期待される。また、シリコンを含む活物質の使用にも有用であり、電池の高容量化への寄与が期待される。
 本発明の二次電池電極合剤層用組成物は、特に非水電解質二次電池電極に好適に用いることができ、中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。
The secondary battery provided with the electrodes obtained by using the composition for the secondary battery electrode mixture layer of the present invention exhibits good durability (cycle characteristics), and therefore can be applied to an in-vehicle secondary battery. Be expected. It is also useful for the use of active materials containing silicon, and is expected to contribute to increasing the capacity of batteries.
The composition for a secondary battery electrode mixture layer of the present invention can be particularly preferably used for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.

Claims (9)

  1.  バインダー、活物質及び水を含む二次電池電極合剤層用組成物であって、
     前記組成物の固形分濃度が40質量%以上であり、
     前記バインダーは、カルボキシル基を有する架橋重合体、及び、エチレン性不飽和カルボン酸単量体に由来する構造単位を有する非架橋重合体を含み、
     前記非架橋重合体の使用量は、前記架橋重合体の総量100質量部に対し、7.5質量部以上200質量部以下である、二次電池電極合剤層用組成物。
    A composition for a secondary battery electrode mixture layer containing a binder, an active material, and water.
    The solid content concentration of the composition is 40% by mass or more, and the solid content concentration is 40% by mass or more.
    The binder contains a crosslinked polymer having a carboxyl group and a non-crosslinked polymer having a structural unit derived from an ethylenically unsaturated carboxylic acid monomer.
    The amount of the non-crosslinked polymer used is 7.5 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the total amount of the crosslinked polymer, which is a composition for a secondary battery electrode mixture layer.
  2.  前記架橋重合体は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下有し、
     前記非架橋重合体は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下有する、請求項1に記載の二次電池電極合剤層用組成物。
    The crosslinked polymer has 50% by mass or more and 100% by mass or less of structural units derived from an ethylenically unsaturated carboxylic acid monomer with respect to all the structural units.
    The secondary battery electrode combination according to claim 1, wherein the non-crosslinked polymer has 50% by mass or more and 100% by mass or less of structural units derived from an ethylenically unsaturated carboxylic acid monomer with respect to all the structural units. Composition for agent layer.
  3.  前記架橋重合体の中和度が70モル%以上である、請求項1又は2に記載の二次電池電極合剤層用組成物。 The composition for a secondary battery electrode mixture layer according to claim 1 or 2, wherein the degree of neutralization of the crosslinked polymer is 70 mol% or more.
  4.  前記架橋重合体は、架橋性単量体を用いて得られたものであり、当該架橋性単量体の使用量は、非架橋性単量体の総量100質量部に対し、0.05質量部以上5.0質量部以下である、請求項1~3のいずれか1項に記載の二次電池電極合剤層用組成物。 The crosslinked polymer was obtained by using a crosslinkable monomer, and the amount of the crosslinked monomer used was 0.05 mass by mass with respect to 100 parts by mass of the total amount of the non-crosslinkable monomer. The composition for a secondary battery electrode mixture layer according to any one of claims 1 to 3, which is not more than parts and not more than 5.0 parts by mass.
  5.  前記非架橋重合体の中和度が70モル%以上である、請求項1~4のいずれか1項に記載の二次電池電極合剤層用組成物。 The composition for a secondary battery electrode mixture layer according to any one of claims 1 to 4, wherein the degree of neutralization of the non-crosslinked polymer is 70 mol% or more.
  6.  前記非架橋重合体の重量平均分子量が5,000以上である、請求項1~5のいずれか1項に記載の二次電池電極合剤層用組成物。 The composition for a secondary battery electrode mixture layer according to any one of claims 1 to 5, wherein the non-crosslinked polymer has a weight average molecular weight of 5,000 or more.
  7.  前記バインダーは、さらに、スチレンブタジエンゴム(SBR)系ラテックス及び/又はカルボキシメチルセルロース(CMC)を含む、請求項1~6のいずれか1項に記載の二次電極合剤層用組成物。 The composition for a secondary electrode mixture layer according to any one of claims 1 to 6, wherein the binder further contains a styrene-butadiene rubber (SBR) -based latex and / or carboxymethyl cellulose (CMC).
  8.  集電体表面に、請求項1~7のいずれか1項に記載の二次電池電極合剤層用組成物から形成される合剤層を備えた二次電池電極。 A secondary battery electrode provided with a mixture layer formed from the composition for the secondary battery electrode mixture layer according to any one of claims 1 to 7 on the surface of the current collector.
  9.  請求項8に記載の二次電池電極を備える、二次電池。 A secondary battery comprising the secondary battery electrode according to claim 8.
PCT/JP2020/042171 2019-11-20 2020-11-12 Secondary battery electrode compound layer composition, secondary battery electrode, and secondary battery WO2021100582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558323A JPWO2021100582A1 (en) 2019-11-20 2020-11-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-209501 2019-11-20
JP2019209501 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021100582A1 true WO2021100582A1 (en) 2021-05-27

Family

ID=75981215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042171 WO2021100582A1 (en) 2019-11-20 2020-11-12 Secondary battery electrode compound layer composition, secondary battery electrode, and secondary battery

Country Status (2)

Country Link
JP (1) JPWO2021100582A1 (en)
WO (1) WO2021100582A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073589A1 (en) * 2015-10-30 2017-05-04 東亞合成株式会社 Binder for nonaqueous electrolyte secondary cell electrode, method for producing binder, and use thereof
WO2018180232A1 (en) * 2017-03-28 2018-10-04 東亞合成株式会社 Binder for non-aqueous electrolyte secondary cell electrode
WO2019044452A1 (en) * 2017-08-29 2019-03-07 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2019157000A (en) * 2018-03-14 2019-09-19 テクノUmg株式会社 Aqueous binder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073589A1 (en) * 2015-10-30 2017-05-04 東亞合成株式会社 Binder for nonaqueous electrolyte secondary cell electrode, method for producing binder, and use thereof
WO2018180232A1 (en) * 2017-03-28 2018-10-04 東亞合成株式会社 Binder for non-aqueous electrolyte secondary cell electrode
WO2019044452A1 (en) * 2017-08-29 2019-03-07 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2019157000A (en) * 2018-03-14 2019-09-19 テクノUmg株式会社 Aqueous binder

Also Published As

Publication number Publication date
JPWO2021100582A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6465323B2 (en) Nonaqueous electrolyte secondary battery electrode binder and use thereof
JP6729603B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, method for producing the same, and use thereof
JP6665857B2 (en) Composition for non-aqueous electrolyte secondary battery electrode mixture layer, method for producing the same, and use thereof
JP6388145B2 (en) Nonaqueous electrolyte secondary battery electrode mixture layer composition, method for producing the same, and use thereof
JP6638747B2 (en) Binder for secondary battery electrode and its use
JP6981466B2 (en) Method for producing crosslinked polymer or salt thereof
JP6792054B2 (en) Binder for non-aqueous electrolyte secondary battery electrodes
JP6944610B2 (en) Binder for non-aqueous electrolyte secondary battery electrodes
JPWO2020137523A1 (en) Binder for secondary battery electrode and its use
WO2021111933A1 (en) Aqueous binder for secondary battery electrodes, composition for secondary battery electrode mixture layers, secondary battery electrode, and secondary battery
WO2020110847A1 (en) Binder for secondary battery electrode, composition for secondary battery electrode mixture layer, and secondary battery electrode
JP7234934B2 (en) Binder for secondary battery electrode and its use
JP6988888B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, its manufacturing method, and its application
JP7160222B2 (en) Method for producing binder for non-aqueous electrolyte secondary battery electrode
JP6897759B2 (en) Method for producing crosslinked polymer or salt thereof
WO2021100582A1 (en) Secondary battery electrode compound layer composition, secondary battery electrode, and secondary battery
JP7480703B2 (en) Composition for secondary battery electrode mixture layer and secondary battery electrode
JP7327404B2 (en) Binder for secondary battery electrode mixture layer, composition for secondary battery electrode mixture layer, and secondary battery electrode
JP7211418B2 (en) Binder for secondary battery electrode and its use
JP7322882B2 (en) Binder for secondary battery electrode and its use
WO2023008296A1 (en) Production method for slurry composition for secondary battery electrode, and production method for secondary battery electrode and secondary battery
WO2024034442A1 (en) Binder for electrode of secondary battery that comprises secondary battery negative electrode containing silicon-based active material, and use of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890630

Country of ref document: EP

Kind code of ref document: A1