WO2021100465A1 - トレッド用ゴム組成物及びタイヤ - Google Patents

トレッド用ゴム組成物及びタイヤ Download PDF

Info

Publication number
WO2021100465A1
WO2021100465A1 PCT/JP2020/041237 JP2020041237W WO2021100465A1 WO 2021100465 A1 WO2021100465 A1 WO 2021100465A1 JP 2020041237 W JP2020041237 W JP 2020041237W WO 2021100465 A1 WO2021100465 A1 WO 2021100465A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
branched
carbon atoms
mass
silane coupling
Prior art date
Application number
PCT/JP2020/041237
Other languages
English (en)
French (fr)
Inventor
顕哉 渡邊
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to JP2022574866A priority Critical patent/JPWO2021100465A1/ja
Publication of WO2021100465A1 publication Critical patent/WO2021100465A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a rubber composition for tread and a tire.
  • the tread is required to have various performances such as wet grip performance, wear resistance, and low fuel consumption while driving on a wet road surface.
  • a method using a modified polymer has been proposed as a technique for improving the balance between wet grip performance and fuel efficiency.
  • modified polymers generally have high viscosity and poor processability, low molecular weight polymers tend to be used. As a result, there is a problem that the wear resistance is deteriorated.
  • An object of the present invention is to provide a rubber composition for a tread and a tire that solves the above problems and improves the overall performance of fuel efficiency, wet grip performance, and wear resistance.
  • the present invention contains styrene-butadiene rubber, silica, and a mercapto-based silane coupling agent, and the content of the styrene-butadiene rubber in 100% by mass of the rubber component is 50% by mass or more, and the content of the silica in 100 parts by mass of the rubber component.
  • the present invention relates to a rubber composition for tread having an amount of 30 to 120 parts by mass and satisfying the following formulas (1) and (2).
  • the rubber composition preferably satisfies the following formula (1-1).
  • the rubber composition preferably satisfies the following formula (1-2).
  • the styrene-butadiene rubber preferably contains a styrene-butadiene rubber having a styrene content of 5 to 50% by mass and a weight average molecular weight of 100,000 to 1.6 million.
  • the rubber composition preferably contains a butadiene rubber.
  • the mercapto-based silane coupling agent preferably contains a silane coupling agent represented by the following formula (2-1).
  • h OSiR 106 R 107 monovalent group selected from R 108)
  • R 106, R 107 and R 108 may be the same or different, each represents a hydrogen atom or a number of 1 to 18 monovalent carbon It is a hydrocarbon group, h has an average value of 1 to 4
  • R 102 is R 101 , a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 103 is ⁇ [O ( R 109 O) j ] -group
  • R 109 is an alkylene group having 1 to 18 carbon atoms, j is an integer of 1 to 4
  • R 104 is a divalent hydrocarbon group having 1 to 18 carbon atoms
  • R 105 represents a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • the mercapto-based silane coupling agent preferably contains a binding unit A represented by the following formula (2-2) and a binding unit B represented by the following formula (2-3).
  • xb is an integer of 0 or more
  • yb is an integer of 1 or more.
  • R 201 is a hydrogen, halogen, branched or unbranched alkyl having 1 to 30 carbon atoms. A group, a branched or non-branched alkenyl group having 2 to 30 carbon atoms, a branched or non-branched alkynyl group having 2 to 30 carbon atoms, or a hydrogen at the end of the alkyl group substituted with a hydroxyl group or a carboxyl group.
  • R 202 indicates a branched or non-branched alkylene group having 1 to 30 carbon atoms, a branched or non-branched alkenylene group having 2 to 30 carbon atoms, or a branched or non-branched alkynylene group having 2 to 30 carbon atoms.
  • a ring structure may be formed by 201 and R 202.
  • the mercapto-based silane coupling agent preferably contains a silane coupling agent represented by the following formula (2-4).
  • R 6 to R 8 are branched or non-branched alkyl groups having 1 to 12 carbon atoms, branched or non-branched alkoxy groups having 1 to 12 carbon atoms, or —O— (R 111 ⁇ O) z.
  • R 111 is .z pieces by R 111 may .R 112 be different also in each identical representing a divalent hydrocarbon group of branched or unbranched 1 to 30 carbon atoms is, Represents a branched or non-branched alkyl group having 1 to 30 carbon atoms, a branched or non-branched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Represents a group represented by (1 to 30).
  • R 6 to R 8 may be the same or different, respectively.
  • R 9 is a branched or non-branched alkylene group having 1 to 6 carbon atoms. Represents.
  • the rubber composition preferably contains carbon black.
  • the rubber composition is produced by a production method including a step (I) of kneading silica and a mercapto-based silane coupling agent and a step (II) of holding the kneaded product obtained in the step (I) at 130 ° C. or higher. It is preferably obtained.
  • the present invention also relates to a tire having a tread made of the rubber composition.
  • the silica contains styrene-butadiene rubber, silica and a mercapto-based silane coupling agent, the content of the styrene-butadiene rubber in 100% by mass of the rubber component is 50% by mass or more, and the silica is based on 100 parts by mass of the rubber component. Since the rubber composition for tread has a content of 30 to 120 parts by mass and satisfies the above formulas (1) and (2), it is possible to improve the overall performance of fuel efficiency, wet grip performance, and abrasion resistance.
  • the rubber composition for tread of the present invention contains styrene-butadiene rubber, silica and a mercapto-based silane coupling agent in a predetermined composition, and satisfies the above formulas (1) and (2). As a result, the overall performance of fuel efficiency, wet grip performance, and wear resistance is significantly improved.
  • the present invention has a tread rubber composition that satisfies the formulas (1) and (2) in a formulation containing styrene-butadiene rubber, silica, and a mercapto-based silane coupling agent in a predetermined formulation. It solves the problem (purpose) of improving the overall performance of fuel efficiency, wet grip performance, and abrasion resistance. That is, the parameters of the equations (1) and (2) do not define the problem (purpose), and the problem of the present application is to improve the overall performance of fuel efficiency, wet grip performance, and wear resistance. As a solution, it is configured to satisfy the relevant parameters.
  • the rubber composition (rubber composition after vulcanization) satisfies the following formula (1).
  • the value (80) of the formula (1) is preferably 75 or less, more preferably 71 or less, further preferably 70 or less, particularly preferably 67 or less, and most preferably 66 or less from the viewpoint of fuel efficiency and wear resistance. ..
  • the upper limit may be 65 or less, 63 or less, 60 or less, 56 or less, 55 or less, 53 or less, 50 or less, 48 or less, 47 or less, 46 or less, 40 or less.
  • the lower limit is not particularly limited, but from the viewpoint of wet grip performance and wear resistance, 10 or more is preferable, 15 or more is more preferable, and 20 or more is further preferable.
  • the rubber composition preferably satisfies the following formula (1-1) from the viewpoint of overall performance of fuel efficiency, wet grip performance, and wear resistance.
  • the lower limit of E * (0.5%) is more preferably 19 MPa or more, further preferably 20 MPa or more, particularly preferably 21 MPa or more, and most preferably 22 MPa or more. Further, the lower limit may be 24 MPa or more, 25 MPa or more, and 26 MPa or more.
  • the upper limit of E * (0.5%) is more preferably 37 MPa or less, further preferably 36 MPa or less, particularly preferably 35 MPa or less, and most preferably 30 MPa or less. The upper limit may be 29 MPa or less and 28 MPa or less.
  • the rubber composition (rubber composition after vulcanization) preferably satisfies the following formula (1-2) from the viewpoint of overall performance of fuel efficiency, wet grip performance, and wear resistance.
  • the lower limit of E * (5%) is more preferably 13 MPa or more, further preferably 14 MPa or more, particularly preferably 15 MPa or more, and most preferably 16 MPa or more.
  • the lower limit may be 17 MPa or more.
  • the upper limit of E * (5%) is more preferably 23 MPa or less, further preferably 21 MPa or less, particularly preferably 20 MPa or less, and most preferably 19 MPa or less.
  • the upper limit may be 18 MPa or less.
  • the rubber composition (rubber composition after vulcanization) satisfies the following formula (2).
  • the upper limit of tan ⁇ (70 ° C.) is preferably 0.17 or less, more preferably 0.16 or less, further preferably 0.15 or less, particularly preferably 0.14 or less, and 0.13 from the viewpoint of fuel efficiency. The following are the most preferable.
  • the upper limit may be 0.12 or less.
  • the lower limit is not particularly limited, but from the viewpoint of wet grip performance, 0.05 or more is more preferable, and 0.08 or more is further preferable.
  • E * (0.5%), E * (5%), and tan ⁇ (70 ° C.) can be appropriately adjusted by changing the type and blending amount of the rubber, the filler, and the silane coupling agent.
  • E * (0.5%) and E * (5%) styrene-butadiene rubber is used as a rubber component, the blending amount thereof is increased, silica is used as a filler, or the blending amount is increased. It can be increased by reducing the amount of the plasticizer and the amount of the silane coupling agent.
  • modified rubber is used as a rubber component, the blending amount thereof is increased, silica is used as a filler, or the blending amount is decreased.
  • Tan ⁇ 70 ° C.
  • Tan ⁇ 70 ° C.
  • a method for satisfying the formula (1) (a) a method using a predetermined amount of styrene-butadiene rubber as a rubber component, (b) a method using a predetermined amount of silica as a filler, and (c) a mercapto-based method.
  • a method of using a predetermined amount of a silane coupling agent examples thereof include a method of using a predetermined amount of a silane coupling agent, and a method of using them alone or in combination as appropriate.
  • a method for satisfying the formula (2) (a) a method of using a mercapto-based silane coupling agent as a silane coupling agent, (b) a method of using a modified rubber as a rubber component, and (c) a predetermined amount of silica as a filler. Examples thereof include methods used alone or in combination as appropriate.
  • the rubber composition (rubber composition after vulcanization) has an initial strain of 10%, a dynamic strain of 0.5%, a complex elastic modulus E * (0.5%) under the conditions of a temperature of 0 ° C., and an initial strain.
  • Complex elastic modulus E * (5%) under the conditions of 10%, dynamic strain 5%, temperature 0 ° C., initial strain 10%, dynamic strain 1%, loss tangent tan ⁇ (70 ° C.) under the condition of temperature 70 ° C.
  • the rubber composition contains styrene butadiene rubber (SBR).
  • SBR styrene butadiene rubber
  • the content of SBR in 100% by mass of the rubber component is 50% by mass or more, preferably 60% by mass or more, more preferably 65% by mass or more, still more preferably 70% by mass or more, and particularly preferably 80% by mass or more. ..
  • the upper limit is not particularly limited, but from the viewpoint of obtaining good fuel efficiency, 95% by mass or less is preferable, 90% by mass or less is more preferable, and 85% by mass or less is further preferable.
  • the SBR is not particularly limited, and for example, emulsion-polymerized styrene-butadiene rubber (E-SBR), solution-polymerized styrene-butadiene rubber (S-SBR), and the like can be used. These may be used alone or in combination of two or more.
  • E-SBR emulsion-polymerized styrene-butadiene rubber
  • S-SBR solution-polymerized styrene-butadiene rubber
  • the amount of styrene in SBR is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and particularly preferably 21% by mass or more.
  • the amount of styrene is preferably 50% by mass or less, more preferably 47% by mass or less, still more preferably 45% by mass or less. Within the above range, good overall performance of fuel efficiency, wet grip performance, and wear resistance tends to be obtained.
  • styrene content of SBR is calculated by H 1 -NMR measurement.
  • the Mw of SBR is preferably 100,000 or more, more preferably 200,000 or more, and further preferably 240,000 or more.
  • the Mw is preferably 1.6 million or less, more preferably 1.5 million or less, still more preferably 1.4 million or less. Within the above range, good overall performance of fuel efficiency, wet grip performance, and wear resistance tends to be obtained.
  • Mw of SBR is gel permeation chromatography (GPC) (GPC-8000 series manufactured by Tosoh Corporation, detector: differential refractometer, column: TSKGEL SUPERMALTPORE HZ- manufactured by Tosoh Corporation. It can be obtained by standard polystyrene conversion based on the measured value according to M).
  • the SBR may be a non-modified SBR or a modified SBR. These may be used alone or in combination of two or more.
  • the modified SBR may be an SBR having a functional group that interacts with a filler such as silica.
  • a terminal-modified SBR in which at least one end of the SBR is modified with a compound having a functional group (modifying agent).
  • Terminal modified SBR having a functional group at the end main chain modified SBR having a functional group on the main chain, and main chain terminal modified SBR having a functional group on the main chain and the terminal (for example, having a functional group on the main chain)
  • at least one end is modified (coupling) with a main chain terminal modified SBR) or a polyfunctional compound having two or more epoxy groups in the molecule, and a hydroxyl group or an epoxy group is introduced.
  • terminally modified SBR may be used alone or in combination of two or more.
  • Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group and a disulfide.
  • Examples thereof include a group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an ammonium group, an imide group, a hydrazo group, an azo group, a diazo group, a carboxyl group, a nitrile group, a pyridyl group, an alkoxy group, a hydroxyl group, an oxy group and an epoxy group. ..
  • these functional groups may have a substituent.
  • an amino group preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group preferably an alkoxy group having 1 to 6 carbon atoms
  • an alkoxysilyl group preferably an alkoxy group having 1 to 6 carbon atoms.
  • An alkoxysilyl group having 1 to 6 carbon atoms is preferable.
  • SBR for example, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Corporation, Asahi Kasei Co., Ltd., Zeon Corporation, etc. can be used.
  • Rubber components that can be used other than SBR include isoprene-based rubber, butadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), and styrene-isoprene-butadiene copolymer rubber (SIBR). Such as diene rubber. These may be used alone or in combination of two or more. Of these, BR and isoprene-based rubber are preferable, and BR is more preferable.
  • the BR is not particularly limited, and for example, BR having a high cis content, BR containing syndiotactic polybutadiene crystals, and the like can be used. These may be used alone or in combination of two or more.
  • the BR may be a non-modified BR or a modified BR. These may be used alone or in combination of two or more. Examples of the modified BR include modified BR into which a functional group similar to that of the above-mentioned modified SBR has been introduced.
  • BR for example, products such as Ube Industries, Ltd., JSR Corporation, Asahi Kasei Corporation, and Nippon Zeon Corporation can be used.
  • the content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more.
  • the content is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and particularly preferably 20% by mass or less.
  • Examples of the isoprene-based rubber include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like.
  • NR natural rubber
  • IR isoprene rubber
  • modified NR for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used.
  • the IR is not particularly limited, and for example, an IR 2200 or the like that is common in the tire industry can be used.
  • Modified NR includes deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc.
  • modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • Examples of the modified IR include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber, and the like. These may be used alone or in combination of two or more.
  • the content thereof may be appropriately selected, and for example, 5 to 50% by mass can be selected from 100% by mass of the rubber component.
  • silica examples include dry silica (anhydrous silica) and wet silica (hydrous silica). Of these, wet silica is preferable because it has a large number of silanol groups. These may be used alone or in combination of two or more.
  • the content of silica is 30 parts by mass or more, preferably 40 parts by mass or more, more preferably 50 parts by mass or more, still more preferably 60 parts by mass or more, and particularly preferably 75 parts by mass or more with respect to 100 parts by mass of the rubber component. Is. By setting it above the lower limit, good wear resistance and wet grip performance tend to be obtained.
  • the upper limit of the content is 120 parts by mass or less, preferably 110 parts by mass or less, more preferably 105 parts by mass or less, and further preferably 100 parts by mass or less. By setting it below the upper limit, good fuel efficiency tends to be obtained.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 80 m 2 / g or more, more preferably 120 m 2 / g or more, still more preferably 150 m 2 / g or more, and particularly preferably 170 m 2 / g or more. By setting it above the lower limit, good wear resistance and wet grip performance tend to be obtained.
  • the N 2 SA of silica is preferably 250 m 2 / g or less, more preferably 220 m 2 / g or less, and further preferably 200 m 2 / g or less. By setting it below the upper limit, good dispersibility and low fuel consumption tend to be obtained.
  • the N 2 SA of silica is a value measured by the BET method according to ASTM D3037-93.
  • silica for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
  • the rubber composition uses a mercapto-based silane coupling agent as the silane coupling agent. This makes it possible to perform appropriate processing, improve the dispersibility of silica, and improve the reaction rate between silica and the silane coupling agent, and achieve excellent fuel efficiency without impairing wet grip performance and wear resistance. Can be granted.
  • the content of the mercapto-based silane coupling agent is preferably 2 parts by mass or more, more preferably 4 parts by mass or more, further preferably 6 parts by mass or more, and particularly preferably 8 parts by mass or more with respect to 100 parts by mass of silica.
  • the content is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less. If it is less than the upper limit, the effect corresponding to the blending amount tends to be obtained.
  • Examples of the mercapto-based silane coupling agent include a silane coupling agent having a mercapto group, a silane coupling agent in which a mercapto group is protected, and the like. These may be used alone or in combination of two or more.
  • Suitable mercapto-based silane coupling agents include (i) a silane coupling agent represented by the following formula (2-1), (ii) a binding unit A represented by the following formula (2-2), and the following formula (2). Examples thereof include a silane coupling agent containing the binding unit B shown in -3).
  • h OSiR 106 R 107 monovalent group selected from R 108)
  • R 106, R 107 and R 108 may be the same or different, each represents a hydrogen atom or a number of 1 to 18 monovalent carbon It is a hydrocarbon group, h has an average value of 1 to 4
  • R 102 is R 101 , a hydrogen atom or a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 103 is ⁇ [O ( R 109 O) j ] -group
  • R 109 is an alkylene group having 1 to 18 carbon atoms, j is an integer of 1 to 4
  • R 104 is a divalent hydrocarbon group having 1 to 18 carbon atoms
  • R 105 represents a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 201 is a hydrogen, halogen, branched or unbranched alkyl having 1 to 30 carbon atoms. A group, a branched or non-branched alkenyl group having 2 to 30 carbon atoms, a branched or non-branched alkynyl group having 2 to 30 carbon atoms, or a hydrogen at the end of the alkyl group substituted with a hydroxyl group or a carboxyl group.
  • R 202 indicates a branched or non-branched alkylene group having 1 to 30 carbon atoms, a branched or non-branched alkenylene group having 2 to 30 carbon atoms, or a branched or non-branched alkynylene group having 2 to 30 carbon atoms.
  • a ring structure may be formed by 201 and R 202.
  • R 102 , R 105 , R 106 , R 107 and R 108 in the above formula (2-1) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl group.
  • R 109 in the above formula (2-1) examples include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, a hexylene group and the like as the linear alkylene group, and a branched alkylene group. Examples thereof include an isopropylene group, an isobutylene group, a 2-methylpropylene group and the like.
  • silane coupling agent represented by the above formula (2-1) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, and 3-decanoylthiopropyltriethoxysilane.
  • 3-Lauroylthiopropyltriethoxysilane 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3 -Hexanoylthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane, 2-hexanoylthioethyltrimethoxysilane, 2- Examples thereof include octanoylthioethyltrimethoxysilane, 2-decanoylthioethyltrimethoxysilane, and 2-lauroyl
  • the silane coupling agent containing the binding unit A represented by the formula (2-2) and the binding unit B represented by the formula (2-3) is a polysulfide silane such as bis- (3-triethoxysilylpropyl) tetrasulfide.
  • a polysulfide silane such as bis- (3-triethoxysilylpropyl) tetrasulfide.
  • the increase in viscosity during processing is suppressed. It is considered that this is because the sulfide portion of the bond unit A is a CSC bond and is thermally stable as compared with tetrasulfide or disulfide, so that the increase in Mooney viscosity is small.
  • binding units A has a mercaptosilane structure, since the -C 7 H 15 portion of the coupling unit A covers the -SH group of the coupling unit B, less likely to react with polymers, hard scorching occurs It is thought that this is the reason.
  • the content of the binding unit A is preferably 30 mol% or more, more preferably 50 mol% or more, preferably 99 mol% or less, and more preferably 90 mol% or less. ..
  • the content of the binding unit B is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, and preferably 70 mol% or less from the viewpoint of reactivity with silica. , More preferably 65 mol% or less, still more preferably 55 mol% or less.
  • the total content of the binding units A and B is preferably 95 mol% or more, more preferably 98 mol% or more, and particularly preferably 100 mol%.
  • the content of the binding units A and B is an amount including the case where the binding units A and B are located at the ends of the silane coupling agent.
  • the form in which the binding units A and B are located at the ends of the silane coupling agent is not particularly limited, and a unit corresponding to the formulas (2-2) and (2-3) showing the binding units A and B is formed. I just need to be there.
  • halogen of R 201 examples include chlorine, bromine, and fluorine.
  • the branched or non-branched alkyl groups of R 201 having 1 to 30 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, sec-butyl group and tert-. Examples thereof include a butyl group, a pentyl group, a hexyl group, a heptyl group, a 2-ethylhexyl group, an octyl group, a nonyl group and a decyl group.
  • the alkyl group preferably has 1 to 12 carbon atoms.
  • Examples of the branched or non-branched alkenyl group of R 201 having 2 to 30 carbon atoms include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 1-pentenyl group and a 2-pentenyl group. Examples include a group, a 1-hexenyl group, a 2-hexenyl group, a 1-octenyl group and the like.
  • the alkenyl group preferably has 2 to 12 carbon atoms.
  • Examples of the branched or non-branched alkynyl group of R201 include an ethynyl group, a propynyl group, a butynyl group, a pentynyl group, a hexynyl group, a heptinyl group, an octynyl group, a nonynyl group, a decynyl group and an undecynyl group. Dodecynyl group and the like can be mentioned.
  • the alkynyl group preferably has 2 to 12 carbon atoms.
  • Examples of the branched or non-branched alkylene group having 1 to 30 carbon atoms of R202 include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group and an undecylene group. Examples thereof include a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group and an octadecylene group.
  • the alkylene group preferably has 1 to 12 carbon atoms.
  • Examples of the branched or non-branched alkenylene group of R202 having 2 to 30 carbon atoms include a vinylene group, a 1-propenylene group, a 2-propenylene group, a 1-butenylene group, a 2-butenylene group, a 1-pentenylene group and a 2-pentenylene group. Examples thereof include a group, a 1-hexenylene group, a 2-hexenylene group, and a 1-octenylene group.
  • the number of carbon atoms of the alkenylene group is preferably 2 to 12.
  • the alkynylene group preferably has 2 to 12 carbon atoms.
  • the number of repetitions (xb) of the binding unit A and the number of repetitions of the binding unit B is preferably in the range of 3 to 300. Within this range, the mercaptosilane of the binding unit B is covered with -C 7 H 15 of the binding unit A, so that shortening of the scorch time can be suppressed and good reactivity with silica and rubber components can be obtained. Can be secured.
  • Examples of the silane coupling agent containing the binding unit A represented by the formula (2-2) and the binding unit B represented by the formula (2-3) include NXT-Z30, NXT-Z45, and NXT manufactured by Momentive. -Z60 or the like can be used. These may be used alone or in combination of two or more.
  • a silane coupling agent represented by the following formula (2-4) can also be preferably used.
  • R 6 to R 8 are branched or non-branched alkyl groups having 1 to 12 carbon atoms, branched or non-branched alkoxy groups having 1 to 12 carbon atoms, or —O— (R 111 ⁇ O) z.
  • R 111 is .z pieces by R 111 may .R 112 be different also in each identical representing a divalent hydrocarbon group of branched or unbranched 1 to 30 carbon atoms is, Represents a branched or non-branched alkyl group having 1 to 30 carbon atoms, a branched or non-branched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Represents a group represented by (1 to 30).
  • R 6 to R 8 may be the same or different, respectively.
  • R 9 is a branched or non-branched alkylene group having 1 to 6 carbon atoms. Represents.
  • R 6 to R 8 are branched or non-branched alkyl groups having 1 to 12 carbon atoms, branched or non-branched alkoxy groups having 1 to 12 carbon atoms, or -O- (R 111- O) z- R 112 .
  • R 6 ⁇ R 8 is preferably at least one of -O- group represented by (R 111 -O) z -R 112 , 2 one but with -O- (R 111 -O) z -R 112 It is more preferable that the group is represented and one is a branched or non-branched alkoxy group having 1 to 12 carbon atoms.
  • Examples of the branched or non-branched alkyl group having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms) of R 6 to R 8 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. Examples thereof include a group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, a 2-ethylhexyl group, an octyl group and a nonyl group.
  • Examples of the branched or non-branched alkoxy group having 1 to 12 carbon atoms (preferably 1 to 5 carbon atoms) of R 6 to R 8 include a methoxy group, an etoshiki group, an n-propoxy group, an isopropoxy group, and n-. Examples thereof include a butoxy group, an iso-butoxy group, a sec-butoshiki group, a tert-butoshiki group, a pentyloxy group, a hexyloxy group, a heptyloxy group, a 2-ethylhexyloxy group, an octyloxy group and a nonyloxy group.
  • R 111 has 1 to 30 branched or non-branched carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 carbon atom).
  • the hydrocarbon group include a branched or non-branched alkylene group having 1 to 30 carbon atoms, a branched or non-branched alkenylene group having 2 to 30 carbon atoms, and a branched or non-branched alkynylene group having 2 to 30 carbon atoms.
  • Examples of the branched or non-branched alkylene group of R 111 having 1 to 30 carbon atoms (preferably 1 to 15 carbon atoms, more preferably 1 to 3 carbon atoms) include a methylene group, an ethylene group, a propylene group and a butylene group. , Pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group and the like.
  • Examples of the branched or non-branched alkenylene group of R 111 having 2 to 30 carbon atoms include a vinylene group, a 1-propenylene group, and a 2-propenylene group. Examples thereof include a group, a 1-butenylene group, a 2-butenylene group, a 1-pentenylene group, a 2-pentenylene group, a 1-hexenylene group, a 2-hexenylene group, a 1-octenylene group and the like.
  • the branched or alkynylene group unbranched C 2-30 (preferably 2 to 15 carbon atoms, more preferably having a carbon number of 2 to 3) of the R 111 for example, ethynylene group, propynylene group, butynylene group, pentynylene group , Hexinylene group, heptinylene group, octinilen group, noninylene group, decinylene group, undecinylene group, dodecinylene group and the like.
  • Examples of the arylene group having 6 to 30 carbon atoms (preferably 6 to 15 carbon atoms) of R 111 include a phenylene group, a trilene group, a xylylene group, and a naphthylene group.
  • z represents an integer of 1 to 30 (preferably 2 to 20, more preferably 3 to 7, and even more preferably 5 to 6).
  • R 112 contains a branched or non-branched alkyl group having 1 to 30 carbon atoms, a branched or non-branched alkenyl group having 2 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. Represent. Of these, branched or non-branched alkyl groups having 1 to 30 carbon atoms are preferable.
  • Examples of the branched or non-branched alkyl group of R 112 having 1 to 30 carbon atoms (preferably 3 to 25 carbon atoms, more preferably 10 to 15 carbon atoms) include a methyl group, an ethyl group and an n-propyl group. Isopropyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, octyl group, nonyl group, decyl group, undecyl group. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group and the like.
  • Examples of the branched or non-branched alkenyl group of R 112 having 2 to 30 carbon atoms (preferably 3 to 25 carbon atoms, more preferably 10 to 15 carbon atoms) include a vinyl group, a 1-propenyl group and a 2-propenyl group.
  • Examples of the aryl group having 6 to 30 carbon atoms (preferably 10 to 20 carbon atoms) of R 112 include a phenyl group, a tolyl group, a xsilyl group, a naphthyl group and a biphenyl group.
  • Examples of the aralkyl group having 7 to 30 carbon atoms (preferably 10 to 20 carbon atoms) of R 112 include a benzyl group and a phenethyl group.
  • Specific examples of the group represented by -O- (R 111- O) z- R 112 include -O- (C 2 H 4- O) 5- C 11 H 23 and -O- (C 2).
  • Examples of the branched or non-branched alkylene group having 1 to 6 carbon atoms (preferably 1 to 5 carbon atoms) of R 9 include the same group as the branched or non-branched alkylene group having 1 to 30 carbon atoms of R 111. Can be given.
  • Examples of the compound represented by the above formula (2-4) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, and the like. Examples thereof include a compound represented by the following formula (Si363 manufactured by EVONIK-DEGUSSA), and a compound represented by the following formula can be preferably used. These may be used alone or in combination of two or more.
  • the rubber composition may further contain a silane coupling agent other than the mercapto-based silane coupling agent.
  • a silane coupling agent other than the mercapto-based silane coupling agent.
  • the mixing ratio (content of mercapto-based silane coupling agent / content of other silane coupling agent (mass ratio)) is low fuel consumption. From the viewpoint of overall performance of property, wet grip performance, and abrasion resistance, it is preferably 5/95 to 50/50, more preferably 5/95 to 35/65, and even more preferably 5/95 to 25/75.
  • the content of the silane coupling agent (total content of the mercapto-based silane coupling agent and other silane coupling agents) is preferably 2 parts by mass or more, more preferably 4 parts by mass or more, based on 100 parts by mass of silica. , 6 parts by mass or more is more preferable, and 8 parts by mass or more is particularly preferable. When it is above the lower limit, good overall performance of fuel efficiency, wet grip performance, and wear resistance tends to be obtained.
  • the content is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less. If it is less than the upper limit, the effect corresponding to the blending amount tends to be obtained.
  • silane coupling agents are not particularly limited, and are, for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, and bis (4-triethoxysilylbutyl) tetra.
  • polymer type alkoxy oligomer type and polyfunctional group type silane coupling agents are preferable from the viewpoint of overall performance of fuel efficiency, wet grip performance and wear resistance.
  • a methoxy / ethoxy group-containing oligomer-type silane coupling agent having an epoxy group KR-517 manufactured by Shin-Etsu Silicone Co., Ltd., etc.
  • a methoxy group-containing oligomer-type silane coupling agent having an epoxy group KR-517 manufactured by Shin-Etsu Silicone Co., Ltd.
  • methoxy ethoxy group-containing oligomer-type silane coupling agent having a mercapto group X-41-1805, etc.
  • Ring agent (X-12-981S manufactured by Shinetsu Silicone Co., Ltd.), ethoxy group-containing polyfunctional silane coupling agent having an epoxy group (X-12-984S manufactured by Shinetsu Silicone Co., Ltd.), methoxy group containing mercapto group Polyfunctional group type silane coupling agent (X-12-1154 manufactured by Shinetsu Silicone Co., Ltd.), methoxy group-containing polyfunctional group type silane coupling agent having an isocyanate group (X-12-1252 manufactured by Shinetsu Silicone Co., Ltd., etc.), etc. Can be mentioned.
  • the rubber composition preferably contains carbon black from the viewpoint of wear resistance, wet grip performance and the like.
  • carbon black include GPF, FEF, HAF, ISAF, SAF and the like, but are not particularly limited.
  • Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. are used as commercial products. it can.
  • the content of carbon black is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component. By setting it above the lower limit, there is a tendency that the effect of improving wear resistance, wet grip performance, etc. can be obtained.
  • the content of the carbon black is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less. By setting it below the upper limit, good fuel efficiency and the like tend to be obtained.
  • Nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably not less than 65 m 2 / g, more preferably at least 90m 2 / g, more preferably not less than 105m 2 / g, more 110m 2 / g is particularly preferred, and , 250 m 2 / g or less, more preferably 150 m 2 / g or less, still more preferably 130 m 2 / g or less. Within the above range, good fuel efficiency, wet grip performance, and wear resistance tend to be obtained.
  • the nitrogen adsorption specific surface area of carbon black is determined in accordance with JIS K 6217-2: 2001.
  • the dibutyl phthalate oil absorption (DBP) oil absorption of carbon black is preferably 50 ml / 100 g or more, more preferably 90 ml / 100 g or more, further preferably 105 ml / 100 g or more, particularly preferably 110 ml / 100 g or more, and 250 ml / 100 g or more.
  • the following is preferable, 150 ml / 100 g or less is more preferable, and 135 ml / 100 g or less is further preferable. Within the above range, good fuel efficiency, wet grip performance, and wear resistance tend to be obtained.
  • the amount of DBP oil absorbed by carbon black is measured in accordance with JIS K6217-4: 2001.
  • the rubber composition preferably contains a liquid plasticizer from the viewpoint of various tire physical characteristics.
  • the liquid plasticizer is not particularly limited as long as it is a plasticizer in a liquid state at room temperature (25 ° C.), and examples thereof include oils, liquid diene polymers, and liquid resins. Of these, oil is preferable from the viewpoint of workability and the like. These may be used alone or in combination of two or more.
  • the content (total amount) of the liquid plasticizer is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, still more preferably 7 parts by mass or more, and particularly preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component. Most preferably, it is 15 parts by mass or more. By setting it above the lower limit, good workability tends to be obtained.
  • the content is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 25 parts by mass or less. By setting it below the upper limit, good wear resistance tends to be obtained.
  • the content of the liquid plasticizer also includes the amount of oil (extended oil) contained in the rubber (oil-extended rubber).
  • the oils include paraffin-based process oils, aroma-based process oils, naphthen-based process oils and other process oils, low PCA (polycyclic aromatic) process oils such as TDAE and MES, vegetable oils and fats, and oils. Conventionally known oils such as these mixtures can be used.
  • Vegetable oils and fats include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice oil, beni flower oil, sesame oil, Examples thereof include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. Of these, process oil is preferable.
  • Oil products include, for example, Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Oil Co., Ltd., Showa Shell Sekiyu Co., Ltd., and Fuji Kosan Co., Ltd. Products such as Co., Ltd. can be used.
  • Liquid diene polymer has a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) (Mw) is preferably from 1.0 ⁇ 10 3 ⁇ 2.0 ⁇ 10 5, 3. It is more preferably 0 ⁇ 10 3 to 1.5 ⁇ 10 4.
  • Mw of the liquid diene polymer is a polystyrene-equivalent value measured by gel permeation chromatography (GPC).
  • liquid diene polymer examples include a liquid styrene-butadiene copolymer (liquid SBR), a liquid butadiene polymer (liquid BR), a liquid isoprene polymer (liquid IR), and a liquid styrene isoprene copolymer (liquid SIR). Be done.
  • liquid SBR liquid styrene-butadiene copolymer
  • liquid BR liquid butadiene polymer
  • liquid IR liquid isoprene polymer
  • liquid SIR liquid styrene isoprene copolymer
  • the liquid resin is not particularly limited, and examples thereof include a liquid aromatic vinyl polymer, a kumaron inden resin, an inden resin, a terpene resin, a rosin resin, and hydrogenated additives thereof.
  • liquid aromatic vinyl polymer examples include a resin obtained by polymerizing ⁇ -methylstyrene and / or styrene. Specific examples thereof include liquid resins such as a homopolymer of styrene, a homopolymer of ⁇ -methylstyrene, and a copolymer of ⁇ -methylstyrene and styrene.
  • the liquid kumaron indene resin is a resin containing kumaron and indene as main monomer components constituting the skeleton (main chain) of the resin.
  • the monomer component that may be contained in the skeleton in addition to kumaron and indene include liquid resins such as styrene, ⁇ -methylstyrene, methylindene, and vinyltoluene.
  • the liquid indene resin is a liquid resin containing indene as a main monomer component constituting the skeleton (main chain) of the resin.
  • the liquid terpene resin is a liquid terpene represented by a resin obtained by polymerizing a terpene compound such as ⁇ -pinene, ⁇ -pinene, kanfel, or dipetene, or a terpene phenol which is a resin obtained by using a terpene compound and a phenol-based compound as raw materials. It is a terpene resin (terpene phenol resin, aromatic-modified terpene resin, etc.).
  • liquid rosin resin examples include natural rosin, polymerized rosin, modified rosin, ester compounds thereof, and liquid rosin-based resins typified by these hydrogen additives.
  • the rubber composition may contain a resin (solid resin: a resin in a solid state at room temperature (25 ° C.)).
  • Examples of the resin (solid resin) include aromatic vinyl polymers, kumaron inden resins, inden resins, rosin resins, terpene resins, and acrylic resins.
  • Commercial products include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Tosoh Co., Ltd., Rutgers Chemicals Co., Ltd., BASF, Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., Japan Co., Ltd. Products such as catalysts, JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd., Tosoh Synthetic Co., Ltd. can be used. These may be used alone or in combination of two or more. Of these, aromatic vinyl polymers, kumaron inden resins, terpene resins, and rosin resins are preferable, and kumaron inden resins are more preferable.
  • the content of the resin (solid resin) is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 15 parts by mass or less. Within the above range, good wear resistance and the like tend to be obtained.
  • the softening point of the resin is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher.
  • the softening point is preferably 200 ° C. or lower, more preferably 160 ° C. or lower. Within the above range, good wear resistance and the like tend to be obtained.
  • the softening point of the resin is the temperature at which the ball drops when the softening point defined in JIS K 6220-1: 2001 is measured by a ring-ball type softening point measuring device.
  • the rubber composition may include wax.
  • the wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax and microcrystalline wax; natural wax such as plant wax and animal wax; and synthetic wax such as a polymer such as ethylene and propylene. These may be used alone or in combination of two or more. Of these, petroleum-based wax is preferable, and paraffin wax is more preferable.
  • wax for example, products such as Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., Seiko Kagaku Co., Ltd. can be used.
  • the content thereof is preferably 0.3 parts by mass or more, more preferably 0.5 parts by mass or more, and preferably 20 parts by mass or less, based on 100 parts by mass of the rubber component. More preferably, it is 10 parts by mass or less.
  • the rubber composition may contain an anti-aging agent.
  • the anti-aging agent include naphthylamine-based anti-aging agents such as phenyl- ⁇ -naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine; N. -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-Phenylenediamine-based anti-aging agents P-Phenylenediamine-based anti-aging agents; quinoline-based anti-aging agents such as polymers of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic anti-aging agents such as styrenated phenol; tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Preventive agents and the like can be mentioned.
  • the content thereof is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less with respect to 100 parts by mass of the rubber component. More preferably, it is 5 parts by mass or less.
  • the rubber composition may contain stearic acid.
  • stearic acid conventionally known ones can be used, and for example, products such as NOF Corporation, NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
  • the content thereof is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 5 parts by mass or less.
  • the rubber composition may contain zinc oxide.
  • Conventionally known zinc oxide can be used.
  • products of Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
  • the content thereof is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and preferably 10 parts by mass or less, based on 100 parts by mass of the rubber component. It is preferably 5 parts by mass or less.
  • the rubber composition preferably contains sulfur.
  • sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products of Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd. and the like can be used.
  • the content thereof is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and preferably 10.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • it is more preferably 5.0 parts by mass or less, still more preferably 3.0 parts by mass or less.
  • the rubber composition preferably contains a vulcanization accelerator.
  • the sulfide accelerator include thiazole-based sulfide-based sulfide accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiadylsulfenamide; tetramethylthiuram disulfide (TMTD).
  • TMTD tetramethylthiuram disulfide
  • TzTD Tetrabenzyl thiuram disulfide
  • TOT-N tetrakis (2-ethylhexyl) thiuram disulfide
  • other thiuram-based sulfide accelerators N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolyl sulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide, etc.
  • Sulfenamide-based sulfide accelerator Sulfenamide-based sulfide accelerator; guanidine-based sulfide accelerators such as diphenylguanidine, dioltotrilguanidine, orthotrilbiguanidine can be mentioned. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable.
  • the content thereof is preferably 1.0 part by mass or more, more preferably 2.0 parts by mass or more, and preferably 10. It is 0 parts by mass or less, more preferably 7.0 parts by mass or less.
  • compounding agents organic cross-linking agents, etc.
  • the content of these compounding agents is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition can be produced, for example, by kneading each of the above components using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing.
  • a rubber kneading device such as an open roll or a Banbury mixer
  • the kneading temperature is usually 70 to 180 ° C., preferably 80 to 170 ° C.
  • the kneading temperature is usually 120 ° C. or lower, preferably 85 to 110 ° C.
  • the composition obtained by kneading the vulcanizing agent and the vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 140 to 190 ° C, preferably 150 to 185 ° C.
  • a step (I) of kneading a rubber component containing SBR, silica and a mercapto-based silane coupling agent, and a step (I) of holding the kneaded product obtained in the step (I) at a high temperature As a method for producing the rubber composition, a step (I) of kneading a rubber component containing SBR, silica and a mercapto-based silane coupling agent, and a step (I) of holding the kneaded product obtained in the step (I) at a high temperature.
  • a production method including the step (II) is preferable.
  • the kneading temperature in step (I) is preferably 70 to 130 ° C., more preferably 80 to 125 ° C., and even more preferably 80 to 120 ° C. By setting it above the lower limit, good wear resistance and the like tend to be obtained. By setting it below the upper limit, the dispersibility of silica tends to be improved during kneading.
  • the kneading time of step (I) is preferably 30 seconds to 10 minutes, more preferably 2 to 8 minutes, and even more preferably 3 to 7 minutes. By setting it above the lower limit, good wear resistance and the like tend to be obtained. By setting it below the upper limit, the dispersibility of silica tends to be improved during kneading.
  • the kneaded product obtained in the step (I) is held (standing) at a high temperature.
  • the holding method is not particularly limited as long as it can control the temperature, but for example, an incubator such as an oven can be preferably used. Further, the high temperature may be maintained in the kneader used in the step (I).
  • the holding temperature of the step (II) is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, further preferably 140 ° C. or higher, particularly preferably 145 ° C. or higher, and most preferably 150 ° C. or higher.
  • the holding temperature is preferably 185 ° C. or lower, more preferably 170 ° C. or lower, and even more preferably 160 ° C. or lower.
  • the holding time of the step (II) is preferably 30 seconds or longer, more preferably 70 seconds or longer, still more preferably 100 seconds or longer, and particularly preferably 150 seconds or longer. By setting it above the lower limit, the reaction between the silane coupling agent and silica tends to be promoted.
  • the upper limit of the holding time is not particularly limited, but the performance is not improved even if it exceeds 300 seconds, and therefore it is preferably 300 seconds or less.
  • step (II) After performing step (II), sulfur, a vulcanization accelerator, etc. are further added and kneaded by a known method, and then vulcanized to obtain the rubber composition (rubber composition after vulcanization). Can be obtained.
  • the vulcanization temperature may be set as appropriate, and the above-mentioned vulcanization temperature or the like can be adopted.
  • the tire of the present invention is produced by a usual method using the above rubber composition. That is, the unvulcanized tire is produced by extruding the rubber composition according to the shape of the tread at the unvulcanized stage and molding the unvulcanized tire together with other tire members by a normal method on a tire molding machine. Form. A tire is obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.
  • Examples of the tire include a pneumatic tire and an airless (solid) tire, and among them, a pneumatic tire is preferable.
  • Tires can be used for passenger car tires, large passenger car tires, large SUV tires, heavy load tires such as trucks and buses, light truck tires, motorcycle tires, racing tires (high performance tires), etc. .. It can also be used for all-season tires, summer tires, studless tires (winter tires), etc.
  • SBR NS616 manufactured by Nippon Zeon Corporation (non-oil-extended SBR, styrene content 21% by mass, vinyl content 66 mol%, Tg-23 ° C, Mw 240,000)
  • BR BR150B manufactured by Ube Industries, Ltd. (cis content: 97% by mass)
  • Carbon Black Dia Black I (N220, N 2 SA114m 2 / g, DBP 114ml / 100g) manufactured by Mitsubishi Chemical Corporation.
  • Silica Ultrasil VN3 (N 2 SA175m 2 / g) manufactured by Evonik Degussa
  • Mercapto-based silane coupling agent 1 NXT-Z45 manufactured by Momentive (copolymer of binding unit A and binding unit B (binding unit A: 55 mol%, binding unit B: 45 mol%))
  • Mercapto-based silane coupling agent 2 NXT (3-octanoylthiopropyltriethoxysilane) manufactured by Momentive.
  • Mercapto-based silane coupling agent 3 Si363 manufactured by Evonik Degussa Co., Ltd.
  • Oil VIVATEC 400/500 (TDAE oil) manufactured by H & R Stearic acid: Zinc oxide made by Nichiyu Co., Ltd .: Zinc oxide type 2 made by Mitsui Metal Mining Co., Ltd.
  • Anti-aging agent Antigen 6C (anti-aging agent, N- (1,3) manufactured by Sumitomo Chemical Co., Ltd. -Dimethylbutyl) -N'-Phenyl-p-phenylenediamine)
  • Wax Ozo Ace 0355 manufactured by Nippon Seiro Co., Ltd.
  • Sulfur Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd.
  • Noxeller NS N-tert-butyl-2-benzothiazyl sulfenamide (TBBS)
  • TBBS N-tert-butyl-2-benzothiazyl sulfenamide
  • DPG Noxeller D (N, N'-diphenylguanidine (DPG)) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • step (III) of each table are added to the kneaded product taken out from the kneader, and the mixture is kneaded for 5 minutes under the condition of 80 ° C. using an open roll, and is not added.
  • a sulfur rubber composition was obtained.
  • the obtained unvulcanized rubber composition was press-vulcanized at 170 ° C. for 20 minutes with a mold having a thickness of 0.5 mm to obtain a vulcanized rubber composition.
  • tan ⁇ was measured using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.) under the conditions of a frequency of 10 Hz, a strain of 0.1%, and a temperature of 0 ° C.
  • the exponential notation was expressed with tan ⁇ of the reference comparative example as 100. The larger the index value, the better the wet grip performance.
  • ⁇ Abrasion resistance> The amount of wear of the vulcanized rubber composition was measured using a lambourn type wear tester under the conditions of room temperature, a load load of 1.0 kgf, and a slip ratio of 30%. The reciprocal of the amount of wear was exponentially displayed with the reference comparison example as 100. The larger the value, the better the wear resistance.
  • examples containing SBR, silica and a mercapto-based silane coupling agent in a predetermined formulation and satisfying the above formulas (1) and (2) have overall performance of fuel efficiency, wet grip performance and abrasion resistance. (Represented by the average of three indexes of fuel efficiency, wet grip performance, and abrasion resistance) was remarkably excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

本発明は、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能を改善するトレッド用ゴム組成物及びタイヤを提供する。 本発明は、スチレンブタジエンゴム、シリカ及びメルカプト系シランカップリング剤を含み、ゴム成分100質量%中の前記スチレンブタジエンゴムの含有量が50質量%以上、前記ゴム成分100質量部に対する前記シリカの含有量が30~120質量部であり、下記式(1)及び(2)を満たすトレッド用ゴム組成物に関する。(式(1)のE*(0.5%)は、初期歪み10%、動歪み0.5%、温度0℃の条件下での複素弾性率、E*(5%)は、初期歪み10%、動歪み5%、温度0℃の条件下での複素弾性率を表す。) tan δ(70°C)≦0.18 (2)(式(2)のtanδ(70℃)は、初期歪み10%、動歪み1%、温度70℃の条件下での損失正接を表す。)

Description

トレッド用ゴム組成物及びタイヤ
本発明は、トレッド用ゴム組成物及びタイヤに関する。
トレッドには、安全性、環境面の観点から、湿潤路面走行中のウェットグリップ性能、耐摩耗性、低燃費性等の各種性能が要求される。例えば、ウェットグリップ性能、低燃費性のバランスを向上する技術として、変性ポリマーを用いる方法が提案されているが、一般に変性ポリマーは高粘度で加工性が悪いため、低分子量ポリマーが使用される傾向があり、結果、耐摩耗性が悪化するという問題がある。
既存のシランカップリング剤による改善も提案されているが、低燃費性、ウェットグリップ性能、耐摩耗性のバランスの観点で未だ改善の余地がある(特許文献1等参照)。
特開2019-34992号公報
本発明は、前記課題を解決し、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能を改善するトレッド用ゴム組成物及びタイヤを提供することを目的とする。
本発明は、スチレンブタジエンゴム、シリカ及びメルカプト系シランカップリング剤を含み、ゴム成分100質量%中の前記スチレンブタジエンゴムの含有量が50質量%以上、前記ゴム成分100質量部に対する前記シリカの含有量が30~120質量部であり、下記式(1)及び(2)を満たすトレッド用ゴム組成物に関する。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
前記ゴム組成物は、下記式(1-1)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000011
前記ゴム組成物は、下記式(1-2)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000012
前記スチレンブタジエンゴムは、スチレン量が5~50質量%、重量平均分子量が10万~160万のスチレンブタジエンゴムを含むことが好ましい。
前記ゴム組成物は、ブタジエンゴムを含むことが好ましい。
前記メルカプト系シランカップリング剤は、下記式(2-1)で表されるシランカップリング剤を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(2-1)中、R101は-Cl、-Br、-OR106、-O(O=)CR106、-ON=CR106107、-NR106107及び-(OSiR106107(OSiR106107108)から選択される一価の基(R106、R107及びR108は同一でも異なっていても良く、各々水素原子又は炭素数1~18の一価の炭化水素基であり、hは平均値が1~4である。)であり、R102はR101、水素原子又は炭素数1~18の一価の炭化水素基、R103は-[O(R109O)]-基(R109は炭素数1~18のアルキレン基、jは1~4の整数である。)、R104は炭素数1~18の二価の炭化水素基、R105は炭素数1~18の一価の炭化水素基を示し、xa、ya及びzaは、xa+ya+2za=3、0≦xa≦3、0≦ya≦2、0≦za≦1の関係を満たす数である。)
前記メルカプト系シランカップリング剤は、下記式(2-2)で示される結合単位Aと下記式(2-3)で示される結合単位Bとを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式(2-2)及び(2-3)中、xbは0以上の整数、ybは1以上の整数である。R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を示す。R201とR202とで環構造を形成してもよい。)
前記メルカプト系シランカップリング剤は、下記式(2-4)で表されるシランカップリング剤を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中、R~Rは、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(z個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。zは1~30の整数を表す。)で表される基を表す。R~Rはそれぞれ同一でも異なっていてもよい。Rは、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。)
前記ゴム組成物は、カーボンブラックを含むことが好ましい。
前記ゴム組成物は、シリカ及びメルカプト系シランカップリング剤を混練する工程(I)と、該工程(I)で得られた混練物を130℃以上で保持する工程(II)とを含む製法により得られるものであることが好ましい。
本発明はまた、前記ゴム組成物からなるトレッドを有するタイヤに関する。
本発明によれば、スチレンブタジエンゴム、シリカ及びメルカプト系シランカップリング剤を含み、ゴム成分100質量%中の前記スチレンブタジエンゴムの含有量が50質量%以上、前記ゴム成分100質量部に対する前記シリカの含有量が30~120質量部であり、前記式(1)及び(2)を満たすトレッド用ゴム組成物であるので、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能を改善できる。
〔トレッド用ゴム組成物〕
本発明のトレッド用ゴム組成物は、スチレンブタジエンゴム、シリカ及びメルカプト系シランカップリング剤を所定配合で含み、かつ前記式(1)及び(2)を満たす。これにより、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が顕著に改善される。
前記作用効果が得られるメカニズムは必ずしも明らかではないが、以下のように推察される。
スチレンブタジエンゴムを含むシリカ配合において、シランカップリング剤としてメルカプト系シランカップリング剤を用いると同時に、式(1)、(2)を満たすように調整した場合、先ず、メルカプト系シランカップリング剤により良好な加工が施されて、シリカの分散性や、シリカとシランカップリング剤の反応率が向上し、ウェットグリップ性能や耐摩耗性能を損なうことなく、優れた低燃費性が付与される。更に、式(2)を満たすことにより、良好な低燃費性が得られる。従って、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が顕著に改善されるものと推察される。
このように、本発明は、スチレンブタジエンゴム、シリカ及びメルカプト系シランカップリング剤を所定配合で含む配合において、式(1)、(2)を満たすトレッド用ゴム組成物の構成にすることにより、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能の改善という課題(目的)を解決するものである。すなわち、式(1)、(2)のパラメーターは課題(目的)を規定したものではなく、本願の課題は、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能の改善であり、そのための解決手段として当該パラメーターを満たす構成にしたものである。
前記ゴム組成物(加硫後のゴム組成物)は、下記式(1)を満たす。
Figure JPOXMLDOC01-appb-M000017
式(1)の値(80)は、低燃費性能、耐摩耗性の観点から、75以下が好ましく、71以下がより好ましく、70以下が更に好ましく、67以下が特に好ましく、66以下が最も好ましい。また上限は、65以下、63以下、60以下、56以下、55以下、53以下、50以下、48以下、47以下、46以下、40以下でもよい。下限は特に限定されないが、ウェットグリップ性能、耐摩耗性の観点から、10以上が好ましく、15以上がより好ましく、20以上が更に好ましい。
前記ゴム組成物(加硫後のゴム組成物)は、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能の観点から、下記式(1-1)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000018
E*(0.5%)の下限は、19MPa以上がより好ましく、20MPa以上が更に好ましく、21MPa以上が特に好ましく、22MPa以上が最も好ましい。また、下限は、24MPa以上、25MPa以上、26MPa以上でもよい。E*(0.5%)の上限は、37MPa以下がより好ましく、36MPa以下が更に好ましく、35MPa以下が特に好ましく、30MPa以下が最も好ましい。また、上限は、29MPa以下、28MPa以下でもよい。
前記ゴム組成物(加硫後のゴム組成物)は、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能の観点から、下記式(1-2)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000019
E*(5%)の下限は、13MPa以上がより好ましく、14MPa以上が更に好ましく、15MPa以上が特に好ましく、16MPa以上が最も好ましい。また、下限は、17MPa以上でもよい。E*(5%)の上限は、23MPa以下がより好ましく、21MPa以下が更に好ましく、20MPa以下が特に好ましく、19MPa以下が最も好ましい。また、上限は、18MPa以下でもよい。
前記ゴム組成物(加硫後のゴム組成物)は、下記式(2)を満たす。
Figure JPOXMLDOC01-appb-M000020
tanδ(70℃)の上限は、低燃費性の観点から、0.17以下が好ましく、0.16以下がより好ましく、0.15以下が更に好ましく、0.14以下が特に好ましく、0.13以下が最も好ましい。また、上限は、0.12以下でもよい。下限は特に限定されないが、ウェットグリップ性能の観点から0.05以上がより好ましく、0.08以上が更に好ましい。
ここで、E*(0.5%)、E*(5%)、tanδ(70℃)は、ゴム、フィラー、シランカップリング剤の種類や配合量を変更することで、適宜調整できる。
例えば、E*(0.5%)及びE*(5%)は、ゴム成分としてスチレンブタジエンゴムを用いたり、その配合量を増量すること、フィラーとしてシリカを用いたり、その配合量を増量すること、可塑剤の量を減量すること、シランカップリング剤の量を減量することにより、増加させることができる。
(E*(0.5%)-E*(5%))は、ゴム成分として変性ゴムを用いたり、その配合量を増量すること、フィラーとしてシリカを用いたり、その配合量を減量すること、シランカップリング剤としてメルカプト系シランカップリング剤を用いることや増量することにより、低減させることができる。
tanδ(70℃)は、ゴム成分として変性ゴムを用いること、フィラーとしてシリカを用いること、シランカップリングとしてメルカプト系シランカップリング剤を用いること、その量を増量することにより、減少させることができる。
具体的には、式(1)を満足させる手法として、(a)ゴム成分として所定量のスチレンブタジエンゴムを用いる方法、(b)フィラーとして所定量のシリカを用いる方法、(c)メルカプト系のシランカップリング剤を所定量用いる方法、等を単独又は適宜組み合わせる手法が挙げられる。
式(2)を満足させる手法として、(a)シランカップリング剤としてメルカプト系シランカップリング剤を用いる方法、(b)ゴム成分として変性ゴムを用いる方法、(c)フィラーとして所定量のシリカを用いる方法、等を単独又は適宜組み合わせる手法が挙げられる。
なお、前記ゴム組成物(加硫後のゴム組成物)の初期歪み10%、動歪み0.5%、温度0℃の条件下での複素弾性率E*(0.5%)、初期歪み10%、動歪み5%、温度0℃の条件下での複素弾性率E*(5%)、初期歪み10%、動歪み1%、温度70℃条件下での損失正接tanδ(70℃)は、それぞれ後述の実施例に記載の方法で測定できる。
(ゴム成分)
上記ゴム組成物は、スチレンブタジエンゴム(SBR)を含む。
ゴム成分100質量%中のSBRの含有量は、50質量%以上、好ましくは60質量%以上、より好ましくは65質量%以上、更に好ましくは70質量%以上、特に好ましくは80質量%以上である。下限以上にすることで、良好な耐摩耗性、ウェットグリップ性能が得られる傾向がある。上限は特に限定されないが、良好な低燃費性が得られる観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましい。
SBRとしては、特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
SBRのスチレン量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、特に好ましくは21質量%以上である。また、該スチレン量は、好ましくは50質量%以下、より好ましくは47質量%以下、更に好ましくは45質量%以下である。上記範囲内であると、良好な低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が得られる傾向がある。
なお、本明細書において、SBRのスチレン量は、H-NMR測定により算出される。
SBRのMwは、好ましくは10万以上、より好ましくは20万以上、更に好ましくは24万以上である。また、該Mwは、好ましくは160万以下、より好ましくは150万以下、更に好ましくは140万以下である。上記範囲内であると、良好な低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が得られる傾向がある。
なお、本明細書において、SBRのMwは、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
SBRとしては、非変性SBRでもよいし、変性SBRでもよい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に官能基を有する末端変性SBR)や、主鎖に官能基を有する主鎖変性SBRや、主鎖及び末端に官能基を有する主鎖末端変性SBR(例えば、主鎖に官能基を有し、少なくとも一方の末端を変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。
SBR以外に使用可能なゴム成分としては、イソプレン系ゴム、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、スチレン-イソプレン-ブタジエン共重合ゴム(SIBR)等のジエン系ゴムが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、BR、イソプレン系ゴムが好ましく、BRがより好ましい。
BRは特に限定されず、例えば、高シス含量のBR、シンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
BRは、非変性BRでもよいし、変性BRでもよい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
変性BRとしては、上述の変性SBRと同様の官能基が導入された変性BRが挙げられる。
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。また、該含有量は、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、特に好ましくは20質量%以下である。上記範囲内にすることで、良好な低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が得られる傾向がある。
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
イソプレン系ゴムを配合する場合、その含有量は適宜選択すればよく、例えば、ゴム成分100質量%中、5~50質量%を選択できる。
(シリカ)
シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。これらは、単独で用いてもよく、2種以上を併用してもよい。
シリカの含有量は、ゴム成分100質量部に対して、30質量部以上、好ましくは40質量部以上、より好ましくは50質量部以上、更に好ましくは60質量部以上、特に好ましくは75質量部以上である。下限以上にすることで、良好な耐摩耗性、ウェットグリップ性能が得られる傾向がある。該含有量の上限は、120質量部以下、好ましくは110質量部以下、より好ましくは105質量部以下、更に好ましくは100質量部以下である。上限以下にすることで、良好な低燃費性が得られる傾向がある。
シリカの窒素吸着比表面積(NSA)は、好ましくは80m/g以上、より好ましくは120m/g以上、更に好ましくは150m/g以上、特に好ましくは170m/g以上である。下限以上にすることで、良好な耐摩耗性、ウェットグリップ性能が得られる傾向がある。また、シリカのNSAは、好ましくは250m/g以下、より好ましくは220m/g以下、更に好ましくは200m/g以下である。上限以下にすることで、良好な分散性、低燃費性が得られる傾向がある。
なお、シリカのNSAは、ASTM D3037-93に準じてBET法で測定される値である。
シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
(メルカプト系シランカップリング剤)
前記ゴム組成物は、シランカップリング剤としてメルカプト系シランカップリング剤を使用する。これにより、好適な加工を施すこと、シリカの分散性、シリカとシランカップリング剤の反応率を向上することが可能となり、ウェットグリップ性能や耐摩耗性能を損なわずに、優れた低燃費性を付与できる。
メルカプト系シランカップリング剤の含有量は、シリカ100質量部に対して、2質量部以上が好ましく、4質量部以上がより好ましく、6質量部以上が更に好ましく、8質量部以上が特に好ましい。下限以上であると、良好な低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が得られる傾向がある。また、上記含有量は、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が更に好ましい。上限以下であると、配合量に見合った効果が得られる傾向がある。
メルカプト系シランカップリング剤としては、メルカプト基を有するシランカップリング剤、メルカプト基が保護化されているシランカップリング剤等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
好適なメルカプト系シランカップリング剤として、(i)下記式(2-1)で表されるシランカップリング剤、(ii)下記式(2-2)で示される結合単位Aと下記式(2-3)で示される結合単位Bとを含むシランカップリング剤等が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(式(2-1)中、R101は-Cl、-Br、-OR106、-O(O=)CR106、-ON=CR106107、-NR106107及び-(OSiR106107(OSiR106107108)から選択される一価の基(R106、R107及びR108は同一でも異なっていても良く、各々水素原子又は炭素数1~18の一価の炭化水素基であり、hは平均値が1~4である。)であり、R102はR101、水素原子又は炭素数1~18の一価の炭化水素基、R103は-[O(R109O)]-基(R109は炭素数1~18のアルキレン基、jは1~4の整数である。)、R104は炭素数1~18の二価の炭化水素基、R105は炭素数1~18の一価の炭化水素基を示し、xa、ya及びzaは、xa+ya+2za=3、0≦xa≦3、0≦ya≦2、0≦za≦1の関係を満たす数である。)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(式(2-2)及び(2-3)中、xbは0以上の整数、ybは1以上の整数である。R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を示す。R201とR202とで環構造を形成してもよい。)
上記式(2-1)におけるR102、R105、R106、R107及びR108の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、シクロペンチル基、シクロヘキシル基、ビニル基、プロぺニル基、アリル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基、フェニル基、トリル基、キシリル基、ナフチル基、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
上記式(2-1)におけるR109の例として、直鎖状アルキレン基としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、ヘキシレン基等が挙げられ、分枝状アルキレン基としては、イソプロピレン基、イソブチレン基、2-メチルプロピレン基等が挙げられる。
上記式(2-1)で表されるシランカップリング剤の具体例としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシラン等を挙げることができる。なかでも、3-オクタノイルチオプロピルトリエトキシシラン(Momentive社製のNXT)が特に好ましい。上記シランカップリング剤は、単独で用いても、2種以上を併用してもよい。
式(2-2)で示される結合単位Aと式(2-3)で示される結合単位Bとを含むシランカップリング剤は、ビス-(3-トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィドシランに比べ、加工中の粘度上昇が抑制される。これは結合単位Aのスルフィド部分がC-S-C結合であるため、テトラスルフィドやジスルフィドに比べ熱的に安定であることから、ムーニー粘度の上昇が少ないためと考えられる。
また、3-メルカプトプロピルトリメトキシシランなどのメルカプトシランに比べ、スコーチ時間の短縮が抑制される。これは、結合単位Aはメルカプトシランの構造を持っているが、結合単位Aの-C15部分が結合単位Bの-SH基を覆うため、ポリマーと反応しにくく、スコーチが発生しにくいためと考えられる。
上記構造のシランカップリング剤において、結合単位Aの含有量は、好ましくは30モル%以上、より好ましくは50モル%以上であり、好ましくは99モル%以下、より好ましくは90モル%以下である。また、結合単位Bの含有量は、シリカとの反応性の観点から、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上であり、好ましくは70モル%以下、より好ましくは65モル%以下、更に好ましくは55モル%以下である。また、結合単位A及びBの合計含有量は、好ましくは95モル%以上、より好ましくは98モル%以上、特に好ましくは100モル%である。
なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(2-2)、(2-3)と対応するユニットを形成していればよい。
201のハロゲンとしては、塩素、臭素、フッ素などがあげられる。
201の分岐若しくは非分岐の炭素数1~30のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基などがあげられる。該アルキル基の炭素数は、好ましくは1~12である。
201の分岐若しくは非分岐の炭素数2~30のアルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基などがあげられる。該アルケニル基の炭素数は、好ましくは2~12である。
201の分岐若しくは非分岐の炭素数2~30のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、へプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基などがあげられる。該アルキニル基の炭素数は、好ましくは2~12である。
202の分岐若しくは非分岐の炭素数1~30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。該アルキレン基の炭素数は、好ましくは1~12である。
202の分岐若しくは非分岐の炭素数2~30のアルケニレン基としては、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、1-オクテニレン基などがあげられる。該アルケニレン基の炭素数は、好ましくは2~12である。
202の分岐若しくは非分岐の炭素数2~30のアルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。該アルキニレン基の炭素数は、好ましくは2~12である。
式(2-2)で示される結合単位Aと式(2-3)で示される結合単位Bとを含むシランカップリング剤において、結合単位Aの繰り返し数(xb)と結合単位Bの繰り返し数(yb)の合計の繰り返し数(xb+yb)は、3~300の範囲が好ましい。この範囲内であると、結合単位Bのメルカプトシランを、結合単位Aの-C15が覆うため、スコーチタイムが短くなることを抑制できるとともに、シリカやゴム成分との良好な反応性を確保することができる。
式(2-2)で示される結合単位Aと式(2-3)で示される結合単位Bとを含むシランカップリング剤としては、例えば、Momentive社製のNXT-Z30、NXT-Z45、NXT-Z60などを使用することができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
メルカプト系シランカップリング剤として、(iii)下記式(2-4)で表されるシランカップリング剤も好適に使用できる。
Figure JPOXMLDOC01-appb-C000024
(式中、R~Rは、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(z個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。zは1~30の整数を表す。)で表される基を表す。R~Rはそれぞれ同一でも異なっていてもよい。Rは、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。)
~Rは、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112で表される基を表す。R~Rは、少なくとも1つが-O-(R111-O)-R112で表される基であることが好ましく、2つが-O-(R111-O)-R112で表される基であり、かつ、1つが分岐若しくは非分岐の炭素数1~12のアルコキシ基であることがより好ましい。
~Rの分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基などがあげられる。
~Rの分岐若しくは非分岐の炭素数1~12(好ましくは炭素数1~5)のアルコキシ基としては、例えば、メトキシ基、エトシキ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトシキ基、tert-ブトシキ基、ペンチルオキシ基、へキシルオキシ基、へプチルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基などがあげられる。
~Rの-O-(R111-O)-R112において、R111は、分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)の2価の炭化水素基を表す。
該炭化水素基としては、例えば、分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、分岐若しくは非分岐の炭素数2~30のアルキニレン基、炭素数6~30のアリーレン基などがあげられる。中でも、分岐若しくは非分岐の炭素数1~30のアルキレン基が好ましい。
111の分岐若しくは非分岐の炭素数1~30(好ましくは炭素数1~15、より好ましくは炭素数1~3)のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数2~15、より好ましくは炭素数2~3)のアルケニレン基としては、例えば、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、1-オクテニレン基などがあげられる。
111の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数2~15、より好ましくは炭素数2~3)のアルキニレン基としては、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基などがあげられる。
111の炭素数6~30(好ましくは炭素数6~15)のアリーレン基としては、例えば、フェニレン基、トリレン基、キシリレン基、ナフチレン基などがあげられる。
zは1~30(好ましくは2~20、より好ましくは3~7、さらに好ましくは5~6)の整数を表す。
112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表す。中でも、分岐若しくは非分岐の炭素数1~30のアルキル基が好ましい。
112の分岐若しくは非分岐の炭素数1~30(好ましくは炭素数3~25、より好ましくは炭素数10~15)のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などがあげられる。
112の分岐若しくは非分岐の炭素数2~30(好ましくは炭素数3~25、より好ましくは炭素数10~15)のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、オクタデセニル基などがあげられる。
112の炭素数6~30(好ましくは炭素数10~20)のアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基などがあげられる。
112の炭素数7~30(好ましくは炭素数10~20)のアラルキル基としては、ベンジル基、フェネチル基などがあげられる。
-O-(R111-O)-R112で表される基の具体例としては、例えば、-O-(C-O)-C1123、-O-(C-O)-C1225、-O-(C-O)-C1327、-O-(C-O)-C1429、-O-(C-O)-C1531、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327、-O-(C-O)-C1327などがあげられる。中でも、-O-(C-O)-C1123、-O-(C-O)-C1327、-O-(C-O)-C1531、-O-(C-O)-C1327が好ましい。
の分岐若しくは非分岐の炭素数1~6(好ましくは炭素数1~5)のアルキレン基としては、例えば、R111の分岐若しくは非分岐の炭素数1~30のアルキレン基と同様の基をあげることができる。
上記式(2-4)で表される化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランや、下記式で表される化合物(EVONIK-DEGUSSA社製のSi363)などがあげられ、下記式で表される化合物を好適に使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000025
なお、メルカプト系シランカップリング剤の市販品としては、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
(他のシランカップリング剤)
前記ゴム組成物は、メルカプト系シランカップリング剤以外の他のシランカップリング剤を更に含んでもよい。他のシランカップリング剤を適宜併用することで、良好な加工性を付与しつつ、メルカプト系シランカップリング剤の使用による効果が好適に得られる。
メルカプト系シランカップリング剤及び他のシランカップリング剤を併用する場合、その混合比(メルカプト系シランカップリング剤の含有量/他のシランカップリング剤の含有量(質量比))は、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能の観点から、好ましくは5/95~50/50、より好ましくは5/95~35/65、更に好ましくは5/95~25/75である。
シランカップリング剤の含有量(メルカプト系シランカップリング剤及び他のシランカップリング剤の合計含有量)は、シリカ100質量部に対して、2質量部以上が好ましく、4質量部以上がより好ましく、6質量部以上が更に好ましく、8質量部以上が特に好ましい。下限以上であると、良好な低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が得られる傾向がある。また、上記含有量は、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が更に好ましい。上限以下であると、配合量に見合った効果が得られる傾向がある。
他のシランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系シランカップリング剤;ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系シランカップリング剤;3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系シランカップリング剤;γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのグリシドキシ系シランカップリング剤;3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系シランカップリング剤;3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系シランカップリング剤;ポリマー型のアルコキシオリゴマータイプや多官能基タイプシランカップリング剤;等が挙げられる。
他のシランカップリング剤のなかでも、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能の観点から、ポリマー型のアルコキシオリゴマータイプや多官能基タイプシランカップリング剤が好ましい。具体的には、エポキシ基を有するメトキシ・エトキシ基含有オリゴマー型シランカップリング剤(信越シリコーン社製KR-517等)、エポキシ基を有するメトキシ基含有オリゴマー型シランカップリング剤(信越シリコーン社製KR-516等)、メルカプト基を有するメトキシ・エトキシ基含有オリゴマー型シランカップリング剤(信越シリコーン社製X-41-1805等)、メルカプト基を有するメトキシ基含有オリゴマー型シランカップリング剤(信越シリコーン社製X-41-1810等)、アミノ基を有するエトキシ基含有多官能基型シランカップリング剤(信越シリコーン社製X-12-972F等)、エポキシ基を有するエトキシ基含有多官能基型シランカップリング剤(信越シリコーン社製X-12-981S等)、エポキシ基を有するエトキシ基含有多官能基型シランカップリング剤(信越シリコーン社製X-12-984S等)、メルカプト基を有するメトキシ基含有多官能基型シランカップリング剤(信越シリコーン社製X-12-1154等)、イソシアネート基を有するメトキシ基含有多官能基型シランカップリング剤(信越シリコーン社製X-12-1252等)、などが挙げられる。
(カーボンブラック)
前記ゴム組成物は、耐摩耗性、ウェットグリップ性能等の観点から、カーボンブラックを含むことが好ましい。カーボンブラックとしては、GPF、FEF、HAF、ISAF、SAF等が挙げられるが、特に限定されない。市販品としては、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱ケミカル(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上である。下限以上にすることで、耐摩耗性、ウェットグリップ性能等の向上効果が得られる傾向がある。また、該カーボンブラックの含有量は、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは20質量部以下である。上限以下にすることで、良好な低燃費性等が得られる傾向がある。
カーボンブラックの窒素吸着比表面積(NSA)は、65m/g以上が好ましく、90m/g以上がより好ましく、105m/g以上が更に好ましく、110m/g以上が特に好ましく、また、250m/g以下が好ましく、150m/g以下がより好ましく、130m/g以下が更に好ましい。上記範囲内にすることで、良好な低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が得られる傾向がある。
なお、カーボンブラックの窒素吸着比表面積は、JIS K 6217-2:2001に準拠して求められる。
カーボンブラックのジブチルフタレート吸油量(DBP)吸油量は、50ml/100g以上が好ましく、90ml/100g以上がより好ましく、105ml/100g以上が更に好ましく、110ml/100g以上が特に好ましく、また、250ml/100g以下が好ましく、150ml/100g以下がより好ましく、135ml/100g以下が更に好ましい。上記範囲内にすることで、良好な低燃費性、ウェットグリップ性能、耐摩耗性の総合性能が得られる傾向がある。
なお、カーボンブラックのDBP吸油量は、JIS K6217-4:2001に準拠して測定される。
(液体可塑剤)
前記ゴム組成物は、各種タイヤ物性の観点から、液体可塑剤を含むことが好ましい。
液体可塑剤は、常温(25℃)で液体状態の可塑剤であれば特に限定されず、オイル、液状ジエン系重合体、液状樹脂等が挙げられる。なかでも、加工性等の観点からオイルが好ましい。これらは、単独で用いてもよく、2種以上を併用してもよい。
液体可塑剤の含有量(総量)は、ゴム成分100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上、更に好ましくは7質量部以上、特に好ましくは10質量部以上、最も好ましくは15質量部以上である。下限以上にすることで、良好な加工性が得られる傾向がある。また、該含有量は、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは25質量部以下である。上限以下にすることで、良好な耐摩耗性が得られる傾向がある。なお、液体可塑剤の含有量には、ゴム(油展ゴム)に含まれるオイル(伸展油)の量も含まれる。
オイルとしては、前記伸展油の他、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどのプロセスオイル、TDAE、MES等の低PCA(多環式芳香族)プロセスオイル、植物油脂、及びこれらの混合物等、従来公知のオイルを使用できる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。なかでも、プロセスオイルが好ましい。オイルの市販品としては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。
液状ジエン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が、1.0×10~2.0×10であることが好ましく、3.0×10~1.5×10であることがより好ましい。
なお、本明細書において、液状ジエン系重合体のMwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算値である。
液状ジエン系重合体としては、液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)などが挙げられる。
液状樹脂としては、特に制限されないが、例えば、液状の芳香族ビニル重合体、クマロンインデン樹脂、インデン樹脂、テルペン樹脂、ロジン樹脂、これらの水素添加物などが挙げられる。
液状芳香族ビニル重合体としては、α-メチルスチレン及び/又はスチレンを重合して得られる樹脂等が挙げられる。具体的には、スチレンの単独重合体、α-メチルスチレンの単独重合体、α-メチルスチレンとスチレンとの共重合体などの液状樹脂が例示される。
液状クマロンインデン樹脂は、樹脂の骨格(主鎖)を構成する主なモノマー成分として、クマロン及びインデンを含む樹脂である。ここで、クマロン、インデン以外に骨格に含まれていてもよいモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどの液状樹脂が挙げられる。
液状インデン樹脂は、樹脂の骨格(主鎖)を構成する主なモノマー成分として、インデンを含む液状樹脂である。
液状テルペン樹脂は、αピネン、βピネン、カンフェル、ジペテンなどのテルペン化合物を重合して得られる樹脂や、テルペン化合物とフェノール系化合物とを原料として得られる樹脂であるテルペンフェノールに代表される液状テルペン系樹脂(テルペンフェノール樹脂、芳香族変性テルペン樹脂等)である。
液状ロジン樹脂は、天然ロジン、重合ロジン、変性ロジン、これらのエステル化合物、これらの水素添加物に代表される液状ロジン系樹脂が挙げられる。
液状ジエン系重合体、液状樹脂の市販品としては、例えば、CRAY VALLEY社、(株)クラレ等の製品を使用できる。
(レジン)
前記ゴム組成物は、レジン(固体レジン:常温(25℃)で固体状態のレジン)を含んでもよい。
レジン(固体レジン)としては、例えば、芳香族ビニル重合体、クマロンインデン樹脂、インデン樹脂、ロジン樹脂、テルペン系樹脂、アクリル系樹脂などが挙げられる。市販品としては、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)、東亞合成(株)等の製品を使用できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、芳香族ビニル重合体、クマロンインデン樹脂、テルペン系樹脂、ロジン樹脂が好ましく、クマロンインデン樹脂がより好ましい。
レジン(固体レジン)の含有量は、ゴム成分100質量部に対して、3質量部以上が好ましく、5質量部以上がより好ましい。該含有量は、30質量部以下が好ましく、20質量部以下がより好ましく、15質量部以下が更に好ましい。上記範囲内にすることで、良好な耐摩耗性等が得られる傾向がある。
レジン(固体レジン)の軟化点は、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。また、上記軟化点は、200℃以下が好ましく、160℃以下がより好ましい。上記範囲内にすることで、良好な耐摩耗性等が得られる傾向がある。
なお、樹脂の軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
(他の成分)
ゴム組成物は、ワックスを含んでもよい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、石油系ワックスが好ましく、パラフィンワックスがより好ましい。
ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。
ワックスを含有する場合、その含有量は、ゴム成分100質量部に対して、好ましくは0.3質量部以上、より好ましくは0.5質量部以上であり、また、好ましくは20質量部以下、より好ましくは10質量部以下である。
ゴム組成物は、老化防止剤を含んでもよい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。市販品としては、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましい。
老化防止剤を含有する場合、その含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。
ゴム組成物は、ステアリン酸を含有してもよい。
ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
ステアリン酸を含有する場合、その含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。
ゴム組成物は、酸化亜鉛を含有してもよい。
酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
酸化亜鉛を含有する場合、その含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、また、好ましくは10質量部以下、より好ましくは5質量部以下である。
ゴム組成物は、硫黄を含有することが好ましい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
硫黄を含有する場合、その含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、また、好ましくは10.0質量部以下、より好ましくは5.0質量部以下、更に好ましくは3.0質量部以下である。
ゴム組成物は、加硫促進剤を含有することが好ましい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N′-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましい。
加硫促進剤を含有する場合、その含有量は、ゴム成分100質量部に対して、好ましくは1.0質量部以上、より好ましくは2.0質量部以上であり、また、好ましくは10.0質量部以下、より好ましくは7.0質量部以下である。
ゴム組成物には、前記成分の他、タイヤ工業において一般的に用いられている他の配合剤(有機架橋剤等)を更に配合してもよい。これらの配合剤の含有量は、ゴム成分100質量部に対して、0.1~200質量部が好ましい。
ゴム組成物は、例えば、前記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常70~180℃、好ましくは80~170℃である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常120℃以下、好ましくは85~110℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫等の加硫処理が施される。加硫温度としては、通常140~190℃、好ましくは150~185℃である。
なかでも、前記ゴム組成物の製造方法として、SBRを含むゴム成分、シリカ及びメルカプト系シランカップリング剤を混練する工程(I)と、該工程(I)で得られた混練物を高温で保持する工程(II)とを含む製法が好ましい。
工程(I)の混練は、温度を制御しながら各成分を混練りできる公知の方法を採用できる。工程(I)の混練温度は、好ましくは70~130℃、より好ましくは80~125℃、更に好ましくは80~120℃である。下限以上にすることで、良好な耐摩耗性等が得られる傾向がある。上限以下にすることで、混練時にシリカの分散性が向上する傾向がある。
工程(I)の混練時間は、好ましくは30秒間~10分間、より好ましくは2~8分間、更に好ましくは3~7分間である。下限以上にすることで、良好な耐摩耗性等が得られる傾向がある。上限以下にすることで、混練時にシリカの分散性が向上する傾向がある。
工程(II)では、工程(I)で得られた混練物を、高温で保持(静置)する。保持の方法としては、温度を制御できる方法であれば特に限定されないが、例えば、オーブンなどの恒温器を好適に用いることができる。また、工程(I)で使用する混練機内で高温保持を行ってもよい。
工程(II)の保持温度は、好ましくは130℃以上、より好ましくは135℃以上、更に好ましくは140℃以上、特に好ましくは145℃以上、最も好ましくは150℃以上である。下限以上にすることで、シランカップリング剤とシリカとの反応を促進し、シリカの分散性を向上させることで、低燃費性を向上できる傾向がある。上記保持温度は、好ましくは185℃以下、より好ましくは170℃以下、更に好ましくは160℃以下である。上限以下にすることで、シリカとシランカップリング剤との反応が進み過ぎて、ゴム組成物がゲル化し、タイヤ成型が困難になることを防止できる傾向がある。
工程(II)の保持時間は、好ましくは30秒以上、より好ましくは70秒以上、更に好ましくは100秒以上、特に好ましくは150秒以上である。下限以上にすることで、シランカップリング剤とシリカとの反応を促進できる傾向がある。上記保持時間の上限は特に限定されないが、300秒を超えても性能の改善は得られないため、300秒以下であることが好ましい。
工程(II)を行った後、公知の方法により、硫黄や加硫促進剤などを更に添加して混練りし、その後加硫することにより、前記ゴム組成物(加硫後のゴム組成物)を得ることができる。加硫温度は、適宜設定すればよく、前述の加硫温度等を採用できる。
〔タイヤ〕
本発明のタイヤは、上記ゴム組成物を用いて通常の方法で製造される。
すなわち、上記ゴム組成物を、未加硫の段階でトレッドの形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。
前記タイヤとしては、空気入りタイヤ、エアレス(ソリッド)タイヤなどが挙げられるが、なかでも、空気入りタイヤが好ましい。タイヤは、乗用車用タイヤ、大型乗用車用タイヤ、大型SUV用タイヤ、トラック、バスなどの重荷重用タイヤ、ライトトラック用タイヤ、二輪自動車用タイヤ、レース用タイヤ(高性能タイヤ)などに使用可能である。また、オールシーズンタイヤ、サマータイヤ、スタッドレスタイヤ(冬用タイヤ)等に使用できる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
SBR:日本ゼオン(株)製のNS616(非油展SBR、スチレン量21質量%、ビニル含量66mol%、Tg-23℃、Mw24万)
BR:宇部興産(株)製のBR150B(シス含量:97質量%)
カーボンブラック:三菱ケミカル(株)製のダイアブラックI(N220、NSA114m/g、DBP114ml/100g)
シリカ:エボニックデグッサ社製のウルトラシルVN3(NSA175m/g)
メルカプト系シランカップリング剤1:Momentive社製のNXT-Z45(結合単位Aと結合単位Bとの共重合体(結合単位A:55モル%、結合単位B:45モル%))
メルカプト系シランカップリング剤2:Momentive社製のNXT(3-オクタノイルチオプロピルトリエトキシシラン)
メルカプト系シランカップリング剤3:エボニックデグッサ社製のSi363(下記式で表されるシランカップリング剤(上記式(2-4)のR=-O-(C-O)-C1327、R=C-O-、R=-O-(C-O)-C1327、R=-C-))
Figure JPOXMLDOC01-appb-C000026
スルフィド系シランカップリング剤:デグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
オイル:H&R社製のVIVATEC400/500(TDAEオイル)
ステアリン酸:日油(株)製の椿
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
老化防止剤:住友化学(株)製のアンチゲン6C(老化防止剤、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
ワックス:日本精鑞(株)製のオゾエース0355
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製のノクセラーNS(N-tert-ブチル-2-ベンゾチアジルスルフェンアミド(TBBS))
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(N,N’-ジフェニルグアニジン(DPG))
<実施例及び比較例>
バンバリーミキサーを用いて、各表の工程(I)に示す硫黄及び加硫促進剤以外の材料を設定温度90℃、最終到達温度約120℃の条件下で5分間混練し、混練物を得た。次いで、工程(I)で得られた混練物を、工程(I)で使用する混練機内で各表の保持温度で高温保持して、所定の時間放置した(工程(II))。その後、混練機から取り出した混練物に対して、各表の工程(III)に示す硫黄及び加硫促進剤を加え、オープンロールを用いて、80℃の条件下で5分混練し、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
上記加硫ゴム組成物(加硫後のゴム組成物)を用いて、以下の評価を行った。結果を各表に示した。なお、表1、2、3の基準比較例は、それぞれ比較例1-1、2-1、3-1である。
<粘弾性試験>
(1)複素弾性率の測定
加硫ゴム組成物(幅4mm、長さ2mm、厚み2mmの試験片)について、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、初期歪み10%、動歪み0.5%、温度0℃の条件下での複素弾性率(E*(0.5%))、初期歪み10%、動歪み5%、温度0℃の条件下での複素弾性率(E*(5%))をそれぞれ測定した。
(2)損失正接の測定
加硫ゴム組成物(幅4mm、長さ2mm、厚み2mmの試験片)について、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、初期歪み10%、動歪み1%、温度70℃条件下での損失正接(tanδ(70℃))を測定した。
<低燃費性>
前記粘弾性試験で得られたtanδ(70℃)の値について、基準比較例のtanδ(70℃)を100とし、下記計算式により指数表示した。指数が大きいほど、転がり抵抗が小さく、低燃費性が優れることを示す。
(転がり抵抗指数)=(基準比較例のtanδ(70℃))/(各配合のtanδ(70℃))×100
<ウェットグリップ性能>
加硫ゴム組成物について、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、周波数10Hz、歪0.1%、温度0℃の条件でtanδを測定した。基準比較例のtanδを100として指数表示した。指数値が大きいほど、ウェットグリップ性能が優れることを示す。
<耐摩耗性>
加硫ゴム組成物について、ランボーン型摩耗試験機を用いて、室温、負荷荷重1.0kgf、スリップ率30%の条件で摩耗量を測定した。摩耗量の逆数について、基準比較例を100として指数表示をした。数値が大きいほど、耐摩耗性が優れることを示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
各表から、SBR、シリカ及びメルカプト系シランカップリング剤を所定配合で含み、かつ前記式(1)及び(2)を満たす実施例は、低燃費性、ウェットグリップ性能、耐摩耗性の総合性能(低燃費性、ウェットグリップ性能、耐摩耗性の3つの指数の平均で表す)が顕著に優れていた。

Claims (11)

  1. スチレンブタジエンゴム、シリカ及びメルカプト系シランカップリング剤を含み、
    ゴム成分100質量%中の前記スチレンブタジエンゴムの含有量が50質量%以上、
    前記ゴム成分100質量部に対する前記シリカの含有量が30~120質量部であり、
    下記式(1)及び(2)を満たすトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
  2. 下記式(1-1)を満たす請求項1記載のトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-M000003
  3. 下記式(1-2)を満たす請求項1又は2記載のトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-M000004
  4. 前記スチレンブタジエンゴムは、スチレン量が5~50質量%、重量平均分子量が10万~160万のスチレンブタジエンゴムを含む請求項1~3のいずれかに記載のトレッド用ゴム組成物。
  5. ブタジエンゴムを含む請求項1~4のいずれかに記載のトレッド用ゴム組成物。
  6. 前記メルカプト系シランカップリング剤は、下記式(2-1)で表されるシランカップリング剤を含む請求項1~5のいずれかに記載のトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(2-1)中、R101は-Cl、-Br、-OR106、-O(O=)CR106、-ON=CR106107、-NR106107及び-(OSiR106107(OSiR106107108)から選択される一価の基(R106、R107及びR108は同一でも異なっていても良く、各々水素原子又は炭素数1~18の一価の炭化水素基であり、hは平均値が1~4である。)であり、R102はR101、水素原子又は炭素数1~18の一価の炭化水素基、R103は-[O(R109O)]-基(R109は炭素数1~18のアルキレン基、jは1~4の整数である。)、R104は炭素数1~18の二価の炭化水素基、R105は炭素数1~18の一価の炭化水素基を示し、xa、ya及びzaは、xa+ya+2za=3、0≦xa≦3、0≦ya≦2、0≦za≦1の関係を満たす数である。)
  7. 前記メルカプト系シランカップリング剤は、下記式(2-2)で示される結合単位Aと下記式(2-3)で示される結合単位Bとを含むシランカップリング剤を含む請求項1~6のいずれかに記載のトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (式(2-2)及び(2-3)中、xbは0以上の整数、ybは1以上の整数である。R201は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。R202は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を示す。R201とR202とで環構造を形成してもよい。)
  8. 前記メルカプト系シランカップリング剤は、下記式(2-4)で表されるシランカップリング剤を含む請求項1~7のいずれかに記載のトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000008
    (式中、R~Rは、分岐若しくは非分岐の炭素数1~12のアルキル基、分岐若しくは非分岐の炭素数1~12のアルコキシ基、又は-O-(R111-O)-R112(z個のR111は、分岐若しくは非分岐の炭素数1~30の2価の炭化水素基を表す。z個のR111はそれぞれ同一でも異なっていてもよい。R112は、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、炭素数6~30のアリール基、又は炭素数7~30のアラルキル基を表す。zは1~30の整数を表す。)で表される基を表す。R~Rはそれぞれ同一でも異なっていてもよい。Rは、分岐若しくは非分岐の炭素数1~6のアルキレン基を表す。)
  9. カーボンブラックを含む請求項1~8のいずれかに記載のトレッド用ゴム組成物。
  10. シリカ及びメルカプト系シランカップリング剤を混練する工程(I)と、該工程(I)で得られた混練物を130℃以上で保持する工程(II)とを含む製法により得られる請求項1~9のいずれかに記載のトレッド用ゴム組成物。
  11. 請求項1~10のいずれかに記載のゴム組成物からなるトレッドを有するタイヤ。
PCT/JP2020/041237 2019-11-21 2020-11-04 トレッド用ゴム組成物及びタイヤ WO2021100465A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022574866A JPWO2021100465A1 (ja) 2019-11-21 2020-11-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019210840 2019-11-21
JP2019-210840 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021100465A1 true WO2021100465A1 (ja) 2021-05-27

Family

ID=75980675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041237 WO2021100465A1 (ja) 2019-11-21 2020-11-04 トレッド用ゴム組成物及びタイヤ

Country Status (2)

Country Link
JP (1) JPWO2021100465A1 (ja)
WO (1) WO2021100465A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248117A (ja) * 1999-02-24 2000-09-12 Goodyear Tire & Rubber Co:The 錫有機酸塩化合物を含有する、シリカを充填したジエンに基づくゴム
JP2013014731A (ja) * 2011-07-06 2013-01-24 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
JP2013075977A (ja) * 2011-09-30 2013-04-25 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物及びこれを用いる空気入りタイヤ
JP2018076469A (ja) * 2016-11-11 2018-05-17 住友ゴム工業株式会社 ゴム組成物、ゴム組成物の製造方法およびタイヤ
JP2019034992A (ja) * 2017-08-10 2019-03-07 住友ゴム工業株式会社 空気入りタイヤ
JP2019182906A (ja) * 2018-04-02 2019-10-24 住友ゴム工業株式会社 タイヤ用ゴム組成物および空気入りタイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248117A (ja) * 1999-02-24 2000-09-12 Goodyear Tire & Rubber Co:The 錫有機酸塩化合物を含有する、シリカを充填したジエンに基づくゴム
JP2013014731A (ja) * 2011-07-06 2013-01-24 Sumitomo Rubber Ind Ltd ゴム組成物及び空気入りタイヤ
JP2013075977A (ja) * 2011-09-30 2013-04-25 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物及びこれを用いる空気入りタイヤ
JP2018076469A (ja) * 2016-11-11 2018-05-17 住友ゴム工業株式会社 ゴム組成物、ゴム組成物の製造方法およびタイヤ
JP2019034992A (ja) * 2017-08-10 2019-03-07 住友ゴム工業株式会社 空気入りタイヤ
JP2019182906A (ja) * 2018-04-02 2019-10-24 住友ゴム工業株式会社 タイヤ用ゴム組成物および空気入りタイヤ

Also Published As

Publication number Publication date
JPWO2021100465A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US11174375B2 (en) Tread rubber composition and pneumatic tire
JP6939231B2 (ja) 空気入りタイヤ
WO2020039778A1 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP7020152B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2019182906A (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP2021143235A (ja) タイヤトレッド用ゴム組成物、タイヤトレッドおよび乗用車用タイヤ
JP2019182907A (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP2019182910A (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP7236943B2 (ja) タイヤ
JP7020153B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2020132860A (ja) ゴム組成物及びタイヤ
EP3705310A1 (en) Rubber composition for tire, and tire
JP6448973B2 (ja) 冬用空気入りタイヤ
JP7070016B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5829541B2 (ja) タイヤ用ゴム組成物
JP7435603B2 (ja) 空気入りタイヤ
EP3778751B1 (en) Rubber composition for tire, and pneumatic tire
JP2021167401A (ja) タイヤ用ゴム組成物及びタイヤ
JP7020151B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
WO2021100465A1 (ja) トレッド用ゴム組成物及びタイヤ
JP7151134B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP7400206B2 (ja) ゴム組成物及びタイヤ
JP7494447B2 (ja) ゴム組成物、トレッド、タイヤおよび製造方法
JP7407500B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7110607B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558273

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022574866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890547

Country of ref document: EP

Kind code of ref document: A1