WO2021100366A1 - Electronic device, sulfidation inhibitor, and sealant - Google Patents

Electronic device, sulfidation inhibitor, and sealant Download PDF

Info

Publication number
WO2021100366A1
WO2021100366A1 PCT/JP2020/038807 JP2020038807W WO2021100366A1 WO 2021100366 A1 WO2021100366 A1 WO 2021100366A1 JP 2020038807 W JP2020038807 W JP 2020038807W WO 2021100366 A1 WO2021100366 A1 WO 2021100366A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
compound
organic
light emitting
Prior art date
Application number
PCT/JP2020/038807
Other languages
French (fr)
Japanese (ja)
Inventor
大津 信也
浩了 有田
幸宏 牧島
井 宏元
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021558219A priority Critical patent/JPWO2021100366A1/ja
Publication of WO2021100366A1 publication Critical patent/WO2021100366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to electronic devices, anti-sulfurization agents and encapsulants. More specifically, the present invention relates to an electronic device that prevents the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope.
  • a sulfur compound such as hydrogen sulfide or a sulfur allotrope.
  • LED light emitting diodes
  • organic electroluminescence elements also referred to as “organic EL elements”
  • photoelectric conversion elements silver, copper, etc.
  • Metal is used for lead frames and electrodes.
  • silver is used as a plating material for lead frames for light emitting diodes because of its high visible light reflectance.
  • silver is also used as a material for electrical wiring and electrodes because it has high conductivity.
  • a white LED device in which a phosphor that emits yellow fluorescence such as a YAG phosphor is arranged in the vicinity of a blue LED element, and a white LED device that combines LED elements that emit red light, green light, and blue light have been developed.
  • a white LED device is widely applied as an alternative to conventional fluorescent lamps and incandescent lamps, and is required to maintain high light extraction efficiency for a long period of time.
  • one of the factors that reduce the light extraction efficiency of the conventional light emitting device is deterioration of the electrodes and light emitting elements contained in the light emitting device.
  • Deterioration of electrodes and light emitting elements is caused by, for example, hydrogen sulfide gas or moisture contained in the usage environment of the light emitting device.
  • Patent Document 1 a technique using a sulfide-based gas adsorbent, a silver discoloration inhibitor, or the like has been introduced (see, for example, Patent Document 1 and Patent Document 2).
  • the silicone resin has a much higher gas permeability than the epoxy resin, and easily permeates the sulfur-based gas that discolors the silver described above. Since the permeated gas discolors the silver-plated portion inside the seal, the reflectance of the silver-plated portion decreases. As a result, the illuminance is reduced. Therefore, it has been pointed out that the illuminance and durability are lowered as problems of sealing the silver-plated frame with the silicone resin. Further, the electrode and the sealing material also have a problem of adhesion that they are easily peeled off when subjected to a cold impact.
  • the present invention has been made in view of the above problems and situations, and a solution thereof is to provide an electronic device that prevents the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope. Further, it is an object of the present invention to provide an anti-sulfuration agent and a sealing material for that purpose.
  • the present inventor has an interaction with a metal such as silver or copper and an interaction with a material such as silicone used as a sealing material in the process of examining the cause of the above problem.
  • a strong metal complex having a nitrogen-containing ligand is effective in solving the problem, and have come to the present invention.
  • An electronic device characterized by having at least a metal-containing member layer and a layer containing a compound (1) having a structure represented by the following general formula (1).
  • R 1 and R 2 independently represent an acid group, -ORa, -SRb, or -NRcRd.
  • Ra, Rb, Rc, and Rd independently represent a hydrogen atom or a substituent, respectively.
  • R 3 represents a nitrogen-containing ligand.
  • Me represents copper (Cu) or zinc (Zn).
  • metal-containing member layer contains silver (Ag) or copper (Cu).
  • the layer containing the compound (1) contains a resin or a resin precursor, and The electronic device according to any one of items 1 to 4, wherein the content of the compound (1) is in the range of 1 to 50% by mass.
  • R 1 and R 2 independently represent an acid group, -ORa, -SRb, or -NRcRd.
  • Ra, Rb, Rc, and Rd independently represent a hydrogen atom or a substituent, respectively.
  • R 3 represents a nitrogen-containing ligand.
  • Me represents copper (Cu) or zinc (Zn).
  • the compound (1) having the structure represented by the general formula (1) is a metal complex having a nitrogen-containing ligand, and the central metal Me is copper (Cu) or zinc (Zn). It has a strong interaction with metals such as silver and copper, and also has a strong interaction with materials such as silicone used as a sealing material. Therefore, the reaction between the sulfur compound and silver, copper, etc. in the gas containing the sulfur compound such as hydrogen sulfide and the sulfur homozygous substance is prevented, and the formation of metal sulfides such as silver sulfide and copper sulfide is prevented. It is presumed that the problem according to the present invention could be solved.
  • the electronic device of the present invention is characterized by having at least a metal-containing member layer and a layer containing the compound (1) having the structure represented by the general formula (1). This feature is common to or corresponds to each of the following embodiments.
  • the R 1 and R 2 in the general formula (1) represent an acid group.
  • the acid group is a carboxylic acid group or an inorganic acid group.
  • the metal-containing member layer contains silver (Ag) or copper (Cu).
  • the layer containing the compound (1) contains a resin or a resin precursor from the viewpoint of the effect of preventing the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope. Moreover, it is also preferable that the content of the compound (1) is in the range of 1 to 50% by mass. From the same viewpoint, it is preferable that the layer containing the compound (1) contains an organic solvent having a boiling point of 150 ° C. or higher.
  • a light emitting diode As the electronic device of the present invention, a light emitting diode, a photoelectric conversion element or an organic electroluminescence element is preferable from the viewpoint of exhibiting the effect of the present invention.
  • the compound (1) having the structure represented by the general formula (1) can be suitably used as an antioxidant. It can also be suitably used as a sealing material.
  • the present invention its constituent elements, and modes and modes for carrying out the present invention will be described in detail.
  • "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
  • the electronic device of the present invention is characterized by having at least a metal-containing member layer and a layer containing a compound (1) having a structure represented by the following general formula (1).
  • the “electronic device” refers to an element that generates, amplifies, converts, or controls an electric signal by using the kinetic energy, potential energy, etc. of an electron.
  • examples thereof include active elements such as light emitting diode elements, organic electroluminescence elements, photoelectric conversion elements and transistors.
  • passive elements such as resistors and capacitors that perform passive work such as “resisting” and “storing” against the action of others are also included in the electronic device.
  • the “electronic device” includes a light emitting device and a display device on which the “electronic device” in the narrow sense is mounted.
  • the term “electronic device” is mainly used according to the definition in a broad sense, but for convenience of explanation, “electronic device” according to the definition in a narrow sense is also used as appropriate.
  • R 1 and R 2 in the following general formula (1) represent an acid group.
  • the acid group is a carboxylic acid group or an inorganic acid group.
  • the metal-containing member layer contains silver (Ag) or copper (Cu).
  • the “metal-containing member layer” means a layer made of metal-containing members constituting an electronic device.
  • it refers to a metal-containing electrode or a lead frame.
  • the "lead frame” is a thin metal plate used for semiconductor packages such as ICs and LSIs, and refers to a component that serves as a connection terminal when an IC chip is supported and fixed and mounted on a printed wiring board.
  • the effect of the present invention is particularly remarkable in an electronic device having a metal-containing member layer containing silver (Ag) or copper (Cu).
  • R 1 and R 2 independently represent an acid group, -ORa, -SRb, or -NRcRd.
  • Ra, Rb, Rc, and Rd independently represent a hydrogen atom or a substituent, respectively.
  • R 3 represents a nitrogen-containing ligand.
  • Me represents copper (Cu) or zinc (Zn).
  • R 1 and R 2 in the general formula (1) represent an acid group.
  • the acid group is a carboxylic acid group or an inorganic acid group.
  • the “acid group” refers to the remaining atoms or atomic groups obtained by removing one or more hydrogen atoms that can be ionized as hydrogen ions from the molecules of various inorganic or organic acids.
  • R-COOH R-COO- is an acid group (also referred to as "carboxylic acid group”).
  • Examples of the carboxylic acid group include formic acid group, acetic acid group, propionic acid group, butanoic acid group, pentanoic acid group, hexanoic acid group, heptanic acid group, octyl acid group, 2-ethylhexanoic acid group, neodecanoic acid group and lauric acid.
  • Examples thereof include aliphatic monocarboxylic acid groups such as (dodecanoic acid) group, stearic acid (octadecanoic acid), methacrylic acid group and undecylene acid group.
  • aliphatic polycarboxylic acid groups such as a oxalic acid group, a malonic acid group, a succinic acid group, a glutaric acid group, and an adipic acid group can be mentioned.
  • aromatic monocarboxylic acid groups such as benzoic acid group and toluic acid group
  • aromatic polycarboxylic acid groups such as phthalic acid group, isophthalic acid group, terephthalic acid group and nitrophthalic acid group can be mentioned.
  • Examples of the inorganic acid group include a chloric acid group such as a hydrogen chloride group, a chloric acid group, a chlorite group, and a hypochlorous acid group, a hydrobromic acid group, a perbromic acid group, a bromine acid group, and a bromine acid group.
  • a chloric acid group such as a hydrogen chloride group, a chloric acid group, a chlorite group, and a hypochlorous acid group
  • a hydrobromic acid group a perbromic acid group
  • a bromine acid group a bromine acid group
  • bromine acid group such as hypobromic acid group, hydroiodic acid group, perioic acid group, iodic acid group, phophophoric acid group, iodic acid group such as hypoiodium acid group, sulfate group, disulfate group , Sulfuric acid groups such as thiosulfate group, sulfamic acid group, sulfite group, disulfite group, thiosulfite group, nitrogen acid group such as nitrate group, nitrite group, hyponitrite group, nitroxylic acid group, orthophosphoric acid group, Phosphate groups such as phosphite group, hypophosphite group, phosphinic acid group, phosphenic acid group, phosphenic acid group, diphosphate group, triphosphate group, metaphosphate group, orthophosphite group, metaboric acid
  • borate groups such as groups, perboric acid groups, subboric acid groups,
  • acetic acid group 2-ethylhexanoic acid group, neodecanoic acid group, lauric acid (dodecanoic acid) group, stearic acid (octadecanoic acid), methacrylic acid group, undecylene acid group, benzoic acid group, sulfate group , Nitrate group, phenol sulfonic acid group and the like are preferable from the viewpoint of the magnitude of the effect manifestation of the present invention by enhancing the stability of the compound (1) having the structure represented by the general formula (1), that is, the metal complex.
  • these acid groups may be used in combination of 2 or more types.
  • R 1 and R 2 independently represent -ORa, -SRb, or -NRcRd as a group other than the above-mentioned acid group.
  • Ra, Rb, Rc and Rd independently represent a hydrogen atom or a substituent.
  • Ra, Rb, Rc and Rd each independently represent a substituent, the following examples of substituents can be mentioned.
  • examples of the substituent that can be used in the present invention include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group and a tridecyl group.
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group and a tridecyl group.
  • Tetradecyl group, pentadecyl group, etc. Tetradecyl group, pentadecyl group, etc.
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group eg, vinyl group, allyl group, etc.
  • alkynyl group eg, ethynyl group, propargyl group, etc.
  • an aromatic hydrocarbon group also referred to as an aromatic carbocyclic group, an aryl group, etc., for example, a phenyl group, a p-chlorophenyl group, a mesityl group, a trill group, a xsilyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, A fluorenyl group, a phenanthryl group, an indenyl group, a pyrenyl group, a biphenylyl group, etc.) can be mentioned.
  • aromatic heterocyclic groups eg, fryl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carborinyl group, diaza Carbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carborinyl group is replaced with a nitrogen atom), phthalazinyl group, etc.), heterocyclic group (for example, pyrrolidyl group, imidazolidyl group, morpholic group, Oxazolydyl group, etc.) can be mentioned.
  • sulfamoyl groups for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, Naftylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (eg acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, (Phenyl group,
  • amide groups for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonyl Amino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (eg aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylamino Carbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group,
  • sulfinyl groups eg, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl Group (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (e
  • halogen atoms for example, fluorine atom, chlorine atom, bromine atom, etc.
  • fluorinated hydrocarbon groups for example, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.
  • cyano group nitro group.
  • silyl group eg, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.
  • phosphate ester group eg, dihexylphosphoryl group, etc.
  • phosphite ester group eg, dihexylphosphoryl group, etc.
  • Diphenylphosphinyl group, etc. Diphenyl
  • Ra of ⁇ ORa an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group and the like are preferable.
  • Rb of -SRb an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group and the like are preferable.
  • Rc and Rd of -NRcRd an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group and the like are preferable.
  • R 3 represents a nitrogen-containing ligand.
  • the nitrogen-containing ligand is not particularly structurally limited, but is preferably a ligand that easily coordinates with copper (Cu) or zinc (Zn).
  • nitrogen-containing ligand preferably used in the present invention, 2-aminoethanol (monoethanolamine), diethanolamine, triethanolamine, triethylenetetramine, tetramethylenediamine, 4- (2-aminoethyl) pyridine , 2,2'-bipyridyl, ethylenediaminetetraacetic acid, 5,5'-bis (triisopropoxysilyl) -2,2'-bipyridine, hexylamine, dodecylamine, 3-aminopropyltriethoxysilane and the like.
  • the compound (1) having the structure represented by the general formula (1) is a metal complex having a nitrogen-containing ligand, and the central metal Me is copper (Cu) or zinc (Zn). It has a strong interaction with metals such as silver and copper, and also has a strong interaction with materials such as silicone used as a sealing material. Therefore, the reaction between the sulfur compound and silver, copper, etc. in the gas containing a sulfur compound such as hydrogen sulfide or a sulfur homogeneous substance is prevented, and the formation of metal sulfides such as silver sulfide and copper sulfide is prevented.
  • the anti-sulfurization agent of the present invention is characterized by containing a compound (1) having a structure represented by the general formula (1).
  • the anti-sulfuration agent is particularly characterized in that it can prevent the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope. It may also be effective in preventing sulfurization of substances other than metals.
  • the anti-sulfuration agent may contain other types of compounds depending on the purpose, as long as the effects of the present invention are not impaired.
  • the content of the compound (1) having the structure represented by the general formula (1) in the anti-sulfuration agent is preferably 60% by mass or more.
  • the method of using the anti-sulfuration agent is not particularly limited, and the compound may be applied to a metal member of an electronic device as a coating liquid in which a compound is dissolved or dispersed in a solvent, or a resin constituting a sealing material described later. It is also preferable to include it in a medium such as.
  • organic solvent examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbon solvents, or Ethers such as aliphatic ethers and alicyclic ethers can be appropriately used.
  • hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbon solvents, or Ethers such as aliphatic ethers and alicyclic ethers can be appropriately used.
  • the concentration of the compound (1) according to the present invention in the coating liquid varies depending on the target thickness and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
  • the prepared coating liquid may be a spray coating method, a spin coating method, a blade coating method, a dip coating method, a casting method, a roll coating method, a bar coating method, a die coating method, or a printing method including an inkjet printing method.
  • a wet forming method such as a patterning method can be mentioned and can be used depending on the material.
  • the inkjet printing method is preferable.
  • the inkjet printing method is not particularly limited, and a known method can be adopted.
  • the "encapsulant” is a metal-containing member, that is, a metal-containing functional member in an electronic device, which is coated with a sulfur compound such as hydrogen sulfide or a sulfur allotrope.
  • a sulfur compound such as hydrogen sulfide or a sulfur allotrope.
  • a film or layered member whose purpose is to prevent and protect metal from sulfurization by the contained gas. It is also preferable that the form also has a function of preventing the influence of water and oxygen gas.
  • the anti-sulfuration agent may be applied to the metal-containing member and coated, and then a sealing material may be further coated to protect the metal-containing member. Further, the anti-sulfuration agent may be contained in the sealing material (see FIGS. 1A and 1B).
  • the material constituting the sealing material is not particularly limited, and various materials can be used, and preferred materials include, for example, a thermoplastic resin, a thermosetting resin, and a photocurable resin. Can be done. Specifically, the following resins can be exemplified.
  • silicone resin epoxy resin, polyethylene, polypropylene, polybutylene and their copolymers, polyolefin resin such as cyclopolyforme, alkyd resin, guanamine resin, phenol resin, tetrafluoroethylene (PTFE), foot Fluoroplastic resins such as ethylene-polypropylene copolymer (FEP), polyacrylonitrile resins, polystyrene resins, polyacetal resins, nylons 6, 11, 12, 46, 66, 610, 612, and copolymers thereof.
  • polyolefin resin such as cyclopolyforme, alkyd resin, guanamine resin, phenol resin, tetrafluoroethylene (PTFE), foot Fluoroplastic resins such as ethylene-polypropylene copolymer (FEP), polyacrylonitrile resins, polystyrene resins, polyacetal resins, nylons 6, 11, 12, 46, 66, 610, 612, and copolymers thereof.
  • Polyamic resin polymethyl acrylate, polymethyl methacrylate, (meth) acrylic acid ester resin such as ethylene-ethyl acrylate copolymers, polyimide resin such as thermoplastic polyimide and polyetherimide, polyether ether ketone resin , Polyethylene oxide resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and their copolymers and other polyester resins, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl ether resin, polyphenylene ether resin.
  • Polyphenylene oxide resin polymethylpentene resin, polyurethane resin, melamine resin, urea resin, polycarbonate resin, furan resin, silicon resin, ionomer resin, polyisocyanate resin, polyterpene resin, And these copolymers and the like.
  • silicone resin epoxy resin, cyclopolyolefin resin, polyacrylonitrile resin, polystyrene resin, polyamide resin, (meth) acrylic acid ester resin, polyether ether ketone resin, polyester resin, polycarbonate resin.
  • Resins and copolymers thereof are preferable, and resins modified to impart specific properties may be used. Further, these resins can be used alone or in a blend of two or more kinds.
  • the encapsulant according to the present invention preferably contains the anti-sulfurization agent.
  • the encapsulant can be formed by preparing a coating liquid containing the anti-sulfuration agent, coating it on an electronic device, sintering it, or irradiating it with ultraviolet rays to form a film while polycondensing it. Alternatively, a separately produced encapsulant can be used.
  • thermosetting type or UV curable type solvent-free monomer As a material for forming a sealing material by coating, a thermosetting type or UV curable type solvent-free monomer is preferable, and a curable type silicone monomer is particularly preferable. After applying the solvent-free monomer, it is made into a solid thin film by thermosetting and / or UV curing to form a sealing material layer.
  • the encapsulant may be mixed with a compound that absorbs water and oxygen.
  • the coating liquid is applied to form the sealing material layer, the same solvent and coating method as in the case of the anti-sulfuration agent can be used.
  • the thickness of the encapsulant layer is preferably in the range of 10 nm to 100 ⁇ m, more preferably in the range of 0.1 to 1 ⁇ m in the dry film, in order to exhibit the anti-sulfuration effect.
  • the encapsulant preferably contains a silicone resin from the viewpoint of exhibiting the anti-sulfurization effect of the metal, and as the silicone resin, polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, or the like can be used. .. Further, a siloxane containing a fluorine atom can also be preferably used.
  • the silicone resin used for the encapsulant layer according to the present invention may be a low molecular weight material or a high molecular weight material. Particularly preferred are oligomers and polymers, and specific examples thereof include polysiloxane derivatives such as polysiloxane-based compounds, polydimethylsiloxane-based compounds, and polydimethylsiloxane-based copolymers. Further, it may be a combination of these compounds.
  • VUV vacuum ultraviolet treatment
  • Examples of means for generating ultraviolet rays in the vacuum ultraviolet treatment include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, UV light lasers, and the like, but the excimer lamps are not particularly limited. It is preferable to use it.
  • the encapsulant of the present invention contains an organic solvent having a boiling point of 150 ° C. or higher from the viewpoint of enhancing the effect of the present invention.
  • solvents having a boiling point of 150 ° C. or higher include cyclohexanone, N-methylpyrrolidone, cycloheptanone, anisole, tetraline, cyclohexylbenzene, methylanisole, phenoxytoluene, methylnaphthalene, butyl benzoate, diphenyl ether, N, N-dimethylformamide, and the like. Examples thereof include dimethyl sulfoxide, N, N-dimethylacetamide, ethylene glycol, glycerin and the like.
  • the anti-sulfurization agent of the present invention and the encapsulant containing the same can be applied to various electronic devices, but in the present specification, an LED element, a photoelectric conversion element and an organic electroluminescence element, and light emission using them are used.
  • the device, the solar cell, and the organic EL display device will be described.
  • Light-emitting device using a light-emitting diode (LED) element or the like is electrically connected to a substrate 11 having an electrode 15 and an electrode 15 as shown in FIG.
  • the light emitting element 12 and the sealing material layer 13 that coats the electrode 15 and the light emitting element 12 are included.
  • the light emitting device 100 may include a wavelength conversion layer 14 that covers the light emitting element 12 and the sealing material layer 13.
  • the type of the light emitting element 12 included in the light emitting device 100 according to the present invention is not particularly limited, and may be a semiconductor laser element, a light emitting diode (LED) element, an organic EL element, or the like.
  • the light emitting device according to the present invention will be described by taking the case where the light emitting element is an LED element as an example.
  • the substrate 11 is a member for supporting the LED element 12.
  • An electrode 15 made of metal is formed on the substrate 11, and the electrode 15 has a function of supplying electricity to the LED element 12 from a power source (not shown) arranged outside the substrate 11. Further, the electrode 15 may further have a function of reflecting the light emitted by the LED element 12 toward the light extraction surface side of the light emitting device 100.
  • the shape of the electrode 15 is not particularly limited, and is appropriately selected according to the type and application of the light emitting device 100.
  • the substrate 11 may have a flat plate shape or may have a cavity (recess) as shown in FIG.
  • the shape of the cavity is not particularly limited. For example, it may have a truncated cone shape, a truncated cone shape, a columnar shape, a prismatic shape, or the like.
  • the substrate 11 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin.
  • heat-resistant resins include liquid crystal polymers, polyphenylene sulfides, aromatic nylons, epoxy resins, hard silicone resins, polyphthalic acid amides and the like.
  • the substrate 11 may contain an inorganic filler.
  • the inorganic filler may be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber and the like.
  • the method for producing the substrate 11 having the electrode 15 is not particularly limited, and it is generally obtained by integrally molding a lead frame having a desired shape and a resin.
  • the LED element 12 is an element that is electrically connected to an electrode 15 formed on a substrate 11 and emits light having a specific wavelength.
  • the wavelength of the light emitted by the LED element 12 is not particularly limited.
  • the LED element 12 may be, for example, an element that emits blue light (light of about 420 to 485 nm) or an element that emits ultraviolet light. Further, it may be an element that emits green light, red light, or the like.
  • the configuration of the LED element 12 is not particularly limited.
  • the LED element 12 is an element that emits blue light
  • the LED element 12 includes an n-GaN-based compound semiconductor layer (clad layer), an InGaN-based compound semiconductor layer (light emitting layer), and a p-GaN-based compound semiconductor layer. It may be a laminate of a (clad layer) and a transparent electrode layer.
  • the shape of the LED element 12 is not particularly limited, and may have, for example, a light emitting surface of (200 to 300) ⁇ m ⁇ (200 to 300) ⁇ m.
  • the height of the LED element 12 is usually about 50 to 200 ⁇ m.
  • the LED element 12 may be one in which light is extracted not only from the upper surface but also from the side surface and the bottom surface. In the light emitting device 100 shown in FIG. 2, only one LED element 12 is arranged on the substrate 11, but a plurality of LED elements 12 may be arranged on the substrate 11.
  • connection method between the LED element 12 and the above-mentioned electrode 15 is not particularly limited.
  • the LED element 12 and the electrode 15 may be connected via a metal wire 16 as shown in FIG.
  • the LED element 12 and the electrode 15 may be connected via a protrusion electrode (not shown).
  • a mode in which the LED element 12 and the electrode 15 are connected via a metal wire is called a wire bonding type.
  • a mode in which the LED element 12 and the electrode 15 are connected via a protruding electrode is called a flip chip bonding type.
  • an underfill material (not shown) may be filled in the gap between the LED element 12 and the substrate 11.
  • the underfill material may be a member made of a silicone resin, an epoxy resin, a material similar to the sealing material layer 13 described later, or the like.
  • the encapsulant layer 13 is a layer that covers the LED element 12 and the electrode 15 described above, and the LED element 12 and the electrode 15 are covered with humidity and hydrogen sulfide gas outside the light emitting device. It is a layer that protects from.
  • the formation region of the encapsulant layer 13 is not particularly limited, and the encapsulant layer 13 may be a layer that covers only the LED element 12 and the electrode 15. Further, it may be a layer that covers not only the LED element 12 and the electrode 15 but also the substrate 11 on the side on which the LED element 12 is arranged.
  • the encapsulant layer 13 contains polysiloxane and the compound (1) according to the present invention.
  • the thickness of the encapsulant layer 13 is in the range of 0.1 to 15 ⁇ m, preferably in the range of 0.3 to 4 ⁇ m. When the thickness of the sealing material layer is 15 ⁇ m or less, distortion is unlikely to occur during film formation of the sealing material layer 3, and cracks are unlikely to occur.
  • the thickness of the encapsulant layer 13 is 0.1 ⁇ m or more, the gas barrier property of the encapsulant layer 3 is likely to be sufficiently enhanced, and the LED element 12, the electrode 15, and the like are subject to humidity and sulfurization outside the light emitting device 100. Well protected from the ingredients.
  • the thickness of the encapsulant layer 13 is the maximum thickness of the encapsulant layer 13 arranged on the upper surface (light emitting surface) of the LED element 12. The layer thickness is also measured using a laser holo gauge.
  • the light emitting device may include a wavelength conversion layer 14.
  • the wavelength conversion layer 14 is a layer that converts light of a specific wavelength emitted by the LED element 12 into light of another specific wavelength.
  • the wavelength conversion layer 14 may be a layer in which phosphor particles are dispersed in an epoxy resin, a silicone resin, or the like.
  • the phosphor particles contained in the wavelength conversion layer 14 may be excited by the light emitted from the LED element 12 and emit fluorescence having a wavelength different from the light emitted from the LED element 12.
  • examples of phosphor particles that emit yellow fluorescence include YAG (yttrium aluminum garnet) phosphors.
  • the YAG phosphor receives blue light (wavelength in the range of 420 to 485 nm) emitted from the blue LED element and emits yellow fluorescence (wavelength in the range of 550 to 650 nm).
  • a mixed raw material having a predetermined composition is mixed with an appropriate amount of flux (fluoride such as ammonium fluoride) and pressed, and this is used as a molded product.
  • flux fluoride such as ammonium fluoride
  • B It is obtained by packing the obtained molded product in a crucible and firing it in air in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • the mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, in a stoichiometric ratio. Be done. Further, the mixed raw material having a predetermined composition is obtained by mixing (a) a solution of rare earth elements of Y, Gd, Ce and Sm in an acid in a chemical ratio and oxalic acid to obtain a co-precipitated oxide. (B) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
  • the type of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet-based phosphor that does not contain Ce.
  • the average particle size of the phosphor particles is preferably in the range of 1 to 50 ⁇ m, and more preferably 10 ⁇ m or less.
  • the particle size of the phosphor particles is too large, the gap formed at the interface between the phosphor particles and the resin becomes large. As a result, the strength of the wavelength conversion layer 14 tends to decrease.
  • the average particle size of the phosphor particles refers to the value of D50 measured by a laser diffraction type particle size distribution meter.
  • An example of a laser diffraction type particle size distribution measuring device is a laser diffraction type particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the amount of phosphor particles contained in the wavelength conversion layer 14 is usually in the range of 5 to 15% by mass with respect to the total mass of the wavelength conversion layer 14.
  • the thickness of the wavelength conversion layer 14 is preferably in the range of 25 ⁇ m to 5 mm. If the thickness of the wavelength conversion layer 14 is too thick, the concentration of the phosphor particles becomes excessively low, and the phosphor particles may not be uniformly dispersed.
  • the thickness of the wavelength conversion layer 14 means the maximum thickness of the wavelength conversion layer 14 formed on the light emitting surface of the LED element 12. The thickness of the wavelength conversion layer 14 can be measured with a laser holo gauge.
  • the basic configuration of the LED light emitting device according to the present invention includes a surface mount type (SMT type) LED light emitting device and a packaging method described below. Examples include a CSP type having different chip sizes and a TFT type using a TFT.
  • SMT type surface mount type
  • Examples include a CSP type having different chip sizes and a TFT type using a TFT.
  • a surface mount type (SMT type, Surface Mount Technology) LED light emitting device is a mounting method in which an LED element is placed on a substrate with a metal terminal (lead frame) and the LED element and the electrode are connected by a bonding wire.
  • the CSP type (Chip Size Package) LED light emitting device having a chip size different in the packaging method is a mounting method in which the LED element itself has a metalized anode and cathode and is directly soldered to the circuit board. ..
  • the TFT type LED light emitting device is a method in which a TFT is provided to control the light emission of the LED.
  • FIG. 3 is a schematic cross-sectional view showing an example of an SMT type LED light emitting device containing the compound (1), which is an antioxidant according to the present invention.
  • the LED light emitting device 200 shown in FIG. 3 shows a surface mount type (SMT type) LED light emitting device, and a lead frame 21 as an electrode and an LED element 25 are connected on an insulating substrate 20 constituting the package substrate P. It is connected via the terminal 24, and is connected to the lead frame 21 via a solder 26 and a bonding wire 27 provided on the surface of the LED element 25.
  • SMT type surface mount type
  • the encapsulant layer 28 is provided so as to cover the LED element 25, the bonding wire 27, the lead frame 21, and the like. In the encapsulant layer 28, together with the phosphor particles 29a, the anti-sulfuration agent according to the present invention. It is a structure containing the compound (1) 29b which is.
  • a reflective layer 23 is further formed around the sealing material layer 28.
  • the reflective layer 23 may or may not be present.
  • the reflective layer 23 is preferably Ag having a high reflectance, and a metal such as Al, Ni, or Ti can be used in addition to Ag.
  • the anti-sulfuration agent-containing particles 29b existing in a dispersed state in the sealing material layer 28 containing the phosphor 29a invade from the outside of the LED light emitting device 200.
  • corrosion of metal components such as silver constituting the constituent material of the LED element and the reflective layer can be prevented extremely efficiently.
  • the method for manufacturing a light emitting device described above may be a method having the following three steps. (1) Step of preparing a substrate on which the LED element is mounted (2) Step of applying a sealing composition so as to cover the LED element and electrodes (3) Step of curing the sealing composition
  • the method for manufacturing the light emitting device may include (4) a step of forming a wavelength conversion layer containing phosphor particles on the encapsulant layer, if necessary.
  • LED element preparation step In the LED element preparation step, a substrate to which the LED element and the electrode are connected is prepared. For example, it may be a step of preparing a substrate having the above-mentioned electrodes, fixing the LED element to the substrate, and connecting the electrode of the substrate with the cathode electrode and the anode electrode of the LED element.
  • the method of connecting the LED element and the electrode and the method of fixing the LED element to the substrate are not particularly limited, and may be the same method as the conventionally known method.
  • the sealing composition coating step may be a step of applying the above-mentioned anti-sulfuration agent-containing coating liquid so as to cover the electrodes and the LED element.
  • the coating liquid contains a metal sulfurization inhibitor, a polysiloxane precursor, a mercapto group-containing silane coupling agent, and a solvent.
  • the coating method of the sealing composition is not particularly limited, and may be a known coating method such as blade coating, spin coating coating, dispenser coating, and spray coating.
  • Encapsulant coating film curing step may be a step of heating the coating film.
  • the solvent of the sealing material coating film is removed, and the polysiloxane precursor is dehydrated and condensed to form polysiloxane, and the sealing material coating film is cured.
  • the temperature at which the sealing coating film is cured is preferably 100 ° C. or higher, more preferably 150 to 300 ° C. If the heating temperature is less than 100 ° C., the polysiloxane precursor may not be sufficiently dehydrated and condensed, and the strength of the encapsulant layer may not be sufficiently increased. Further, water or the like generated when the polysiloxane precursor is dehydrated and condensed may not be sufficiently removed, and the light resistance of the encapsulant layer may be lowered.
  • Wavelength conversion layer forming step a composition for a wavelength conversion layer containing phosphor particles and a resin or a precursor thereof is applied onto the above-mentioned encapsulant layer and cured. It can be a process.
  • the composition for the wavelength conversion layer contains a solvent, if necessary.
  • the solvent contained in the composition for the wavelength conversion layer is not particularly limited as long as it can dissolve or disperse the above-mentioned resin or its precursor.
  • the solvent may be hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether and tetrahydrofuran, esters such as propylene glycol monomethyl ether acetate and ethyl acetate.
  • hydrocarbons such as toluene and xylene
  • ketones such as acetone and methyl ethyl ketone
  • ethers such as diethyl ether and tetrahydrofuran
  • esters such as propylene glycol monomethyl ether acetate and ethyl acetate.
  • composition for the wavelength conversion layer can be mixed by, for example, a stirring mill, a blade kneading stirring device, a thin film swirl type disperser, or the like. By adjusting the stirring conditions, the precipitation of the phosphor particles in the composition for the wavelength conversion layer is suppressed.
  • the coating method of the composition for the wavelength conversion layer is appropriately selected, and may be, for example, dispenser coating. Further, after the composition for the wavelength conversion layer is applied, it is cured.
  • the curing method and curing conditions of the composition for the wavelength conversion layer are appropriately selected depending on the type of resin. As an example of the curing method, heat curing can be mentioned.
  • FIG. 4 is a cross-sectional view showing an example of a solar cell having a single configuration (a configuration in which a bulk heterojunction layer is one layer) composed of a bulk heterojunction type organic photoelectric conversion element.
  • the bulk heterojunction type organic photoelectric conversion element 300 has a transparent electrode (anode 32), a hole transport layer 33, a photoelectric conversion portion 34 of the bulk heterojunction layer, and an electron transport layer (or an electron transport layer) on one surface of the substrate 31. (Also referred to as a buffer layer) 35 and a counter electrode (cathode 36) are sequentially laminated.
  • the substrate 31 is a member that holds the transparent electrodes 32, the photoelectric conversion unit 34, and the counter electrode 36 that are sequentially laminated. In the present embodiment, since the light to be photoelectrically converted is incident from the substrate 31 side, the substrate 31 can transmit the photoelectrically converted light, that is, with respect to the wavelength of the light to be photoelectrically converted. It is preferably a transparent member.
  • the substrate 31 for example, a glass substrate or a resin substrate is used.
  • the substrate 31 is not essential, and for example, the bulk heterojunction type organic photoelectric conversion element 300 may be configured by forming the transparent electrodes 32 and the counter electrode 36 on both surfaces of the photoelectric conversion unit 34.
  • the photoelectric conversion unit 34 is a layer that converts light energy into electrical energy, and is configured to have a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material functions relatively as an electron donor (donor)
  • the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor refer to "an electron donor that, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state).
  • electron acceptors which donate or accept electrons by photoreaction, rather than simply donating or accepting electrons like electrodes.
  • the light incident from the transparent electrode 32 via the substrate 31 is absorbed by an electron acceptor or an electron donor in the bulk heterojunction layer of the photoelectric conversion unit 34, and electrons move from the electron donor to the electron acceptor. Then, a hole-electron pair (charge separation state) is formed.
  • the generated charge is caused by an internal electric field, for example, when the work functions of the transparent electrode 32 and the counter electrode 36 are different, the potential difference between the transparent electrode 32 and the counter electrode 36 causes electrons to pass between electron acceptors, and holes to pass between electron donors.
  • the photocurrent is detected by being carried to different electrodes.
  • the transport direction of electrons and holes can be controlled by applying an electric potential between the transparent electrode 32 and the counter electrode 36.
  • it may have other layers such as a hole block layer, an electron block layer, an electron injection layer, a hole injection layer, or a smoothing layer.
  • tandem type configuration a configuration having a plurality of bulk heterojunction layers in which such photoelectric conversion elements are laminated may be used.
  • Examples of the material that can be used for the layer as described above include the n-type semiconductor material and the p-type semiconductor material described in paragraphs 0045 to 0113 of Japanese Patent Application Laid-Open No. 2015-149843.
  • Method of forming bulk heterojunction layer examples include a thin film deposition method, a coating method (including a casting method and a spin coating method), and the like. Of these, the coating method is preferable in order to increase the area of the interface where the holes and electrons are charged-separated and to produce an element having high photoelectric conversion efficiency. The coating method is also excellent in production speed.
  • the n-type semiconductor material and the p-type semiconductor material constituting the bulk heterojunction layer can be used as the organic material for the electronic device of the present invention. That is, the bulk heterojunction layer is preferably formed by coating a solution containing the n-type semiconductor material and the p-type semiconductor material, an organic solvent, and cellulose nanofibers, and the n-type semiconductor material and the p-type semiconductor material.
  • the concentration of dissolved carbon dioxide with respect to the organic solvent under atmospheric pressure conditions of 50 ° C. or lower is preferably 1 ppm to the saturation concentration with respect to the organic solvent.
  • a method of bubbling carbon dioxide gas into a solution containing an n-type semiconductor material, a p-type semiconductor material, an organic solvent, and cellulose nanofibers, or an organic method examples thereof include a supercritical chromatography method using a supercritical fluid containing a solvent and carbon dioxide.
  • the bulk heterojunction layer can have an appropriate phase-separated structure. As a result, the carrier mobility of the bulk heterojunction layer is improved, and high efficiency can be obtained.
  • the photoelectric conversion unit (bulk heterojunction layer) 34 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, but a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be composed of.
  • the positive charge and the negative charge generated in the bulk heterojunction layer are taken out from the transparent electrode and the counter electrode, respectively, via the p-type organic semiconductor material and the n-type organic semiconductor material, respectively, and function as a battery. To do.
  • Each electrode is required to have characteristics suitable for a carrier passing through the electrode.
  • the counter electrode is preferably an electrode that extracts electrons.
  • it when it is used as a cathode, it may be a single layer of a conductive material, but in addition to a material having conductivity, a resin that retains these may be used in combination.
  • the counter electrode material is required to have sufficient conductivity, a work function close to the extent that it does not form a Schottky barrier when bonded to the n-type semiconductor material, and does not deteriorate. That is, it is preferable that the metal has a work function 0 to 0.3 eV larger than that of the LUMO of the n-type semiconductor material used for the bulk heterojunction layer, and it is preferable that the work function is 4.0 to 5.1 eV.
  • the work function is smaller (deeper) than that of the transparent electrode (anode) that extracts holes, and a metal having a work function larger (shallow) than the n-type semiconductor material may cause interlayer resistance.
  • the metal has a work function of 4.2 to 4.8 eV. Therefore, aluminum, gold, silver, copper, indium, or oxide-based materials such as zinc oxide, ITO, and titanium oxide are also preferable. More preferably, it is aluminum, silver, copper, and even more preferably silver.
  • the work function of these metals can also be measured using ultraviolet photoelectron spectroscopy (UPS).
  • an alloy may be used, and for example, a magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like are preferable.
  • the counter electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably in the range of 50 to 200 nm.
  • a conductive material suitable for the counter electrode such as aluminum and aluminum alloy
  • silver and silver compound is thinly prepared with a film thickness in the range of 1 to 20 nm, and then conductive.
  • a film of a light-transmitting material By providing a film of a light-transmitting material, a light-transmitting counter electrode can be obtained.
  • the transparent electrode is preferably an electrode that extracts holes.
  • the transparent electrode when used as an anode, it is preferably an electrode that transmits light in the range of 380 to 800 nm.
  • transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , ZnO, metal thin films such as gold, silver and platinum, metal nanowires, carbon nanotubes and the like can be used.
  • polypyrrole polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaften, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacetylene, polyphenylacetylene, polydiaacetylene and polynaphthalene.
  • Conductive polymers and the like can also be used. Further, a plurality of these conductive compounds can be combined to form a transparent electrode.
  • the material of the intermediate electrode required in the case of the tandem configuration is preferably a layer using a compound having both transparency and conductivity, and a material (ITO, AZO, FTO) as used in the transparent electrode.
  • Transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, PEDOT: PSS, conductive polymer materials such as polyaniline, etc.
  • PEDOT PSS
  • conductive polymer materials such as polyaniline, etc.
  • the organic photoelectric conversion element can take out the electric charge generated in the bulk heterojunction layer more efficiently, it has a hole transport layer / electron block layer between the bulk heterojunction layer and the transparent electrode. Is preferable.
  • PEDOT such as Heraeus Clevious, polyaniline and its doping material, and the cyanide compound described in WO2006 / 019270 can be used.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the transparent electrode side.
  • the electronic block function is provided.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • a triarylamine compound described in JP-A-5-271166 or the like, or a metal oxide such as molybdenum oxide, nickel oxide, or tungsten oxide can be used. It is also possible to use a layer made of a single p-type semiconductor material used for the bulk heterojunction layer.
  • the means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but a solution coating method is preferable. It is preferable to form a coating film on the lower layer before forming the bulk heterojunction layer because it has the effect of leveling the coating surface and reduces the influence of leaks and the like.
  • the organic photoelectric conversion element can take out the electric charge generated in the bulk heterojunction layer more efficiently. Therefore, it is preferable to have these layers.
  • the electron transport layer octaazaporphyrin and a perfluoro compound of a p-type semiconductor (perfluoropentacene, perfluorophthalocyanine, etc.) can be used, but similarly, the p-type semiconductor material used for the bulk heterojunction layer can be used.
  • the electron transport layer having a HOMO level deeper than the HOMO level is provided with a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the opposite electrode side.
  • Such an electron transport layer is also called a hole block layer, and it is preferable to use an electron transport layer having such a function.
  • the electron transport layer constituent material examples include phenanthrene compounds such as vasocuproin, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide, and titanium oxide.
  • phenanthrene compounds such as vasocuproin
  • n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide
  • titanium oxide titanium oxide
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and layers made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
  • alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • an alkali metal compound which is further doped with an organic semiconductor molecule and also has a function of improving electrical bonding with the metal electrode (cathode).
  • an alkali metal compound layer it may be a buffer layer in particular.
  • intermediate layers For the purpose of improving the energy conversion efficiency and the life of the device, various intermediate layers may be provided in the device.
  • the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, a wavelength conversion layer, and the like.
  • the substrate When the light to be photoelectrically converted is incident from the substrate side, the substrate is preferably a member capable of transmitting the photoelectrically converted light, that is, a member transparent to the wavelength of the light to be photoelectrically converted. ..
  • a glass substrate or a resin substrate is preferably used, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
  • the transparent resin film that can be preferably used as a transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness, and the like thereof can be appropriately selected from known ones.
  • polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, and polyolefin resins such as cyclic olefin resins.
  • vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysalphon (PSF) resin film, polyether salphon (PES) resin film, polycarbonate (PC) resin film, Examples thereof include polyamide resin films, polyimide resin films, acrylic resin films, and triacetyl cellulose (TAC) resin films, but any resin film having a transmittance of 80% or more in the visible wavelength range (380 to 800 nm). Is particularly preferable.
  • PEEK polyether ether ketone
  • PSF polysalphon
  • PES polyether salphon
  • PC polycarbonate
  • TAC triacetyl cellulose
  • biaxially stretched polyethylene terephthalate film biaxially stretched polyethylene naphthalate film, polyether sulfone film, and polycarbonate film are preferable from the viewpoint of transparency, heat resistance, ease of handling, strength, and cost, and biaxially stretched. More preferably, it is a polyethylene terephthalate film or a biaxially stretched polyethylene naphthalate film.
  • the transparent substrate used in the present invention can be surface-treated or provided with an easy-adhesion layer in order to ensure the wettability and adhesiveness of the coating liquid.
  • Conventionally known techniques can be used for the surface treatment and the easy-adhesion layer.
  • examples of the surface treatment include surface activation treatments such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy-adhesion layer include polyester, polyamide, polyurethane, vinyl-based copolymer, butadiene-based copolymer, acrylic-based copolymer, vinylidene-based copolymer, and epoxy-based copolymer.
  • a barrier coat layer may be preliminarily formed on the transparent substrate for the purpose of suppressing the permeation of oxygen and water vapor.
  • the organic photoelectric conversion element may have various optical functional layers for the purpose of receiving sunlight more efficiently.
  • the optical functional layer for example, an antireflection film, a condensing layer such as a microlens array, a light diffusion layer capable of scattering the light reflected by the counter electrode and making it incident on the bulk heterojunction layer again may be provided. ..
  • the antireflection layer various known antireflection layers can be provided.
  • the refractive index of the easy-adhesion layer adjacent to the film is 1.57 to 1.
  • the range of 1.63 is more preferable because the interfacial reflection between the film substrate and the easy-adhesion layer can be reduced and the transmittance can be improved.
  • the method of adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol to the binder resin and applying the mixture.
  • the easy-adhesion layer may be a single layer, but may be composed of two or more layers in order to improve the adhesiveness.
  • the light receiving amount from a specific direction can be increased by processing the support substrate so as to provide a structure on the microlens array on the sunlight receiving side, or by combining with a so-called condensing sheet. On the contrary, the dependence of sunlight on the incident angle can be reduced.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably in the range of 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction occurs and it is colored, and if it is too large, the thickness becomes thick, which is not preferable.
  • the light scattering layer examples include various anti-glare layers and a layer in which nanoparticles / nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer.
  • the method or process for patterning the electrode, the power generation layer, the hole transport layer, the electron transport layer, or the like is not particularly limited, and a known method can be appropriately applied.
  • the electrode can be mask-deposited at the time of vacuum deposition, or patterned by a known method such as etching or lift-off. Further, the pattern may be formed by transferring the pattern formed on another substrate.
  • Matching method spin coating method of organic polymer material with high gas barrier property (polyvinyl alcohol, etc.), inorganic thin film (silicon oxide, aluminum oxide, etc.) or organic film (parylene, etc.) with high gas barrier property under vacuum
  • examples thereof include a method of depositing and a method of laminating these in a composite manner.
  • FIG. 5 is a schematic cross-sectional view showing an example of the configuration of an organic EL element.
  • the cathode 45, the organic functional layer group 46, and the transparent electrode (anode 47) are laminated on the substrate 41 to form the organic EL element 40.
  • the sulfurization prevention layer 49 is formed so as to cover the organic EL element 40. Further, the sulfurization prevention layer 49 is covered with a sealing material layer 48.
  • the form may include the anti-sulfuration agent in the sealing material layer.
  • the substrate that can be used for the organic EL element (hereinafter, also referred to as a substrate, a support substrate, a substrate, a support, etc.) is not particularly limited, and a glass substrate, a plastic substrate, or the like can be used, and the substrate is transparent. It may be present or opaque. When light is taken out from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent plastic substrate.
  • the thickness of the water vapor permeability at 1 ⁇ m or more 1g / (m 2 ⁇ 24h ⁇ atm ) (25 ° C.) or less is preferable.
  • the glass substrate include non-alkali glass, low-alkali glass, and soda lime glass.
  • Non-alkali glass is preferable from the viewpoint of less adsorption of water, but any of these may be used as long as it is sufficiently dried.
  • Plastic substrates have been attracting attention in recent years because of their high flexibility, light weight, and resistance to cracking, and their ability to further reduce the thickness of organic EL elements.
  • the resin film used as the base material of the plastic substrate is not particularly limited, and is, for example, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose triacetate (TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • organic-inorganic hybrid resin examples include those obtained by combining an organic resin with an inorganic polymer (for example, silica, alumina, titania, zirconia, etc.) obtained by a sol-gel reaction.
  • an inorganic polymer for example, silica, alumina, titania, zirconia, etc.
  • norbornene (or cycloolefin-based) resins such as Arton (manufactured by JSR Corporation) or Appel (manufactured by Mitsui Chemicals, Inc.) are particularly preferable.
  • the plastic substrate normally produced has relatively high moisture permeability, and may contain moisture inside the substrate. Therefore, when such a plastic substrate is used, a barrier film (also referred to as “gas barrier film” or “water vapor sealing film”) that suppresses the intrusion of water vapor, oxygen, etc. is provided on the resin film to provide a gas barrier.
  • a film is preferable.
  • the material constituting the barrier film is not particularly limited, and an inorganic substance, an organic film, or a hybrid of both of them is used.
  • a film may be formed, and the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g / (.
  • the measured oxygen permeability by the method based on JIS K 7126-1987 is, 1 ⁇ 10 -3 mL / ( m 2 ⁇ 24h ⁇ atm) or less
  • the water vapor permeability is preferably 1 ⁇ 10 -5 g / (m 2 ⁇ 24h) or less of the high barrier film.
  • the material constituting the barrier film is not particularly limited as long as it is a material having a function of suppressing infiltration of a material that causes deterioration of the element such as moisture and oxygen, and is, for example, a metal oxide, a metal oxynitride, a metal nitride, or the like. Inorganic substances, organic substances, or hybrid materials of both can be used.
  • metal oxide, metal oxynitride or metal nitride examples include metal oxides such as silicon oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide (ITO) and aluminum oxide, and metal nitrides such as silicon nitride. Examples thereof include metal oxynitrides such as silicon oxynitrides and titanium oxynitrides.
  • the stacking order of the inorganic layer and the organic layer is not particularly limited, but it is preferable to stack the inorganic layer and the organic layer alternately a plurality of times.
  • the method for providing the barrier film on the resin film is not particularly limited, and any method may be used.
  • Plasma polymerization method, atmospheric pressure plasma polymerization method, CVD method (for example, plasma CVD method, laser CVD method, thermal CVD method, etc.), coating method, sol-gel method and the like can be used.
  • the method by plasma CVD treatment at atmospheric pressure or near atmospheric pressure is preferable from the viewpoint that a dense film can be formed.
  • the opaque substrate examples include a metal plate such as aluminum and stainless steel, a film or opaque resin substrate, and a ceramic substrate.
  • anode As the anode of the organic EL element, a metal having a large work function (4 eV or more), an electrically conductive compound of a metal, or a mixture thereof as an electrode material is preferably used.
  • the "electrically conductive compound of a metal” means a compound having electric conductivity among compounds of a metal and another substance, and specifically, for example, an oxide of a metal, a halide, or the like. A compound having electrical conductivity.
  • an electrode material examples include metals such as Au and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2, and ZnO.
  • the anode can be produced by forming a thin film made of these electrode substances on the substrate by a known method such as thin film deposition or sputtering.
  • a pattern having a desired shape may be formed on this thin film by a photolithography method, and if pattern accuracy is not required so much (about 100 ⁇ m or more), the desired shape may be formed during vapor deposition or sputtering of the electrode material.
  • the pattern may be formed through a mask.
  • the sheet resistance as an anode is several hundred ⁇ / sq. The following is preferable.
  • the film thickness of the anode depends on the constituent material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably in the range of 10 to 200 nm.
  • the organic functional layer (also referred to as "organic EL layer” or “organic compound layer”) includes at least a light emitting layer, but in a broad sense, the light emitting layer is when an electric current is passed through an electrode composed of a cathode and an anode. Specifically, it refers to a layer containing an organic compound that emits light when an electric current is passed through an electrode composed of a cathode and an anode.
  • the organic EL device used in the present invention may have a hole injection layer, an electron injection layer, a hole transport layer and an electron transport layer in addition to the light emitting layer, if necessary, and these layers are cathodes. It has a structure sandwiched between an electron and an anode.
  • anode / light emitting layer / cathode ii) anode / hole injection layer / light emitting layer / cathode (iii) anode / light emitting layer / electron injection layer / cathode (iv) anode / hole injection layer / light emitting layer / electron Injection layer / cathode (v) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (vi) anode / hole transport layer / light emitting layer / electron transport layer / cathode, etc.
  • a cathode buffer layer for example, lithium fluoride
  • an anode buffer layer for example, copper phthalocyanine
  • the light emitting layer is a layer in which electrons and holes injected from the electrode or the electron transport layer and the hole transport layer are recombined to emit light, and the light emitting portion is a light emitting layer even in the light emitting layer. It may be an interface with an adjacent layer.
  • the light emitting layer may be a layer having a single composition, or may have a laminated structure composed of a plurality of layers having the same or different compositions.
  • the light emitting layer itself may be provided with functions such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer. That is, (1) an injection function capable of injecting holes through the anode or hole injection layer and electrons being injected from the cathode or electron injection layer when an electric field is applied to the light emitting layer, (2) injection. At least one of the transport function of moving electric charges (electrons and holes) by the force of an electric field, and (3) the light emitting function of providing a field of recombination of electrons and holes inside the light emitting layer and connecting this to light emission. Functions may be added.
  • the light emitting layer may have a difference in the ease of injecting holes and the ease of injecting electrons, and may have different transport functions represented by the mobility of holes and electrons. , Which has a function of transferring at least one of the charges is preferable.
  • the type of light emitting material used for this light emitting layer is not particularly limited, and conventionally known light emitting materials for organic EL devices can be used.
  • a light emitting material is mainly an organic compound, and depending on a desired color tone, for example, Macromol. Symp. Examples include the compounds described in Vol. 125, pp. 17-26.
  • the light emitting material may be a polymer material such as p-polyphenylene vinylene or polyfluorene, and further, a polymer material in which the light emitting material is introduced into a side chain or a polymer material in which the light emitting material is used as a main chain of a polymer is used. You may use it.
  • the light emitting material may have a hole injection function and an electron injection function in addition to the light emission performance, most of the hole injection materials and electron injection materials described later can also be used as the light emitting material. Can be used.
  • the main component when the layer is composed of two or more kinds of organic compounds, the main component is called a host, the other components are called dopants, and when the host and the dopant are used together in the light emitting layer, the main component.
  • the mixing ratio of the dopant of the light emitting layer (hereinafter, also referred to as the light emitting dopant) with respect to the host compound is preferably in the range of 0.1 to 30% by mass in terms of mass.
  • the dopant used for the light emitting layer is roughly divided into two types: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
  • fluorescent dopants are coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, and perylene dyes.
  • At least one light emitting layer contains a phosphorescent compound.
  • the phosphorescent compound is a compound in which light emission from the excited triplet is observed, and the phosphorescence quantum yield is 0.001 or more at 25 ° C.
  • the phosphorus photon yield is preferably 0.01 or more, more preferably 0.1 or more.
  • the phosphorus photon yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopy II of the 4th edition Experimental Chemistry Course 7.
  • the phosphorescent quantum yield in a solution can be measured using various solvents, but the phosphorescent compound used in the present invention may achieve the above phosphorescent quantum yield in any of any solvents.
  • the phosphorescent dopant is a phosphorescent compound, and as a typical example thereof, it is preferably a complex compound containing a metal of Group 8 to 10 in the periodic table of elements, and more preferably an iridium compound or an osmium compound.
  • dopants are compounds described in the following documents or patent gazettes. J. Am. Chem. Soc. Vol. 123, pp. 4304 to 4312, International Publication No. 2000/70655, No. 2001/93642, No. 2002/02714, No. 2002/15645, No. 2002/44189, No. 2002/081488, Japanese Patent Application Laid-Open No. 2002-280178 No. 2001-181616, 2002-280179, 2001-181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178. Publication, Publication No. 2002-302671, Publication No. 2001-345183, Publication No. 2002-324679, Publication No. 2002-332291, Publication No. 2002-50484, Publication No.
  • Only one type of light emitting dopant may be used, or a plurality of types may be used, and by simultaneously extracting light emitted from these dopants, a light emitting element having a plurality of maximum light emitting wavelengths can be configured. Further, for example, both a phosphorescent dopant and a fluorescent dopant may be added.
  • the light emitting dopants contained in each layer may be the same or different, or may be of a single type or a plurality of types. ..
  • a polymer material in which the light emitting dopant is introduced into a polymer chain or the light emitting dopant is used as a main chain of a polymer may be used.
  • Examples of the host compound include those having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, and an oligoarylene compound, and electron transport described later. Materials and hole transporting materials are also examples of suitable examples.
  • the fluorescence maximum wavelength of the host compound is preferably 415 nm or less, and when a phosphorescent dopant is used, the phosphorescence of the host compound is 0-. It is more preferable that the 0 band is 450 nm or less.
  • the light emitting host a compound having hole transporting ability and electron transporting ability, preventing the wavelength of light emission from being lengthened, and having a high Tg (glass transition temperature) is preferable.
  • the compounds described in the following documents are suitable.
  • the luminescent dopant may be dispersed throughout the layer containing the host compound, or may be partially dispersed. A compound having yet another function may be added to the light emitting layer.
  • a light emitting layer is formed by thinning the above materials by a known method such as a vapor deposition method, a spin coating method, a casting method, an LB method (Langmuir Brodget method), an inkjet printing method, or a printing method.
  • the formed light emitting layer is particularly preferably a molecular deposition film.
  • the molecular deposition film is a thin film deposited and formed from the vapor phase state of the compound, and a film solidified and formed from the molten state or the liquid phase state of the compound.
  • this molecular deposition film and the thin film (molecular cumulative film) formed by the LB method can be distinguished by the difference in the aggregated structure and the higher-order structure and the functional difference caused by the difference.
  • the phosphorescent dopant and the host compound which are the above-mentioned light emitting materials, as the organic material for the electronic device of the present invention. That is, the light emitting layer is printed with a solution (composition for manufacturing an electronic device) containing the phosphorescent dopant and the host compound, an organic solvent, and cellulose nanofibers by a spin coating method, a casting method, an inkjet method, a spray method, or a printing method. It is preferable to form by coating by a method, a slot type coater method, or the like because a light emitting layer made of a molecular deposition film can be formed. Above all, the inkjet printing method is preferable from the viewpoint that a homogeneous film can be easily obtained and pinholes are less likely to be formed.
  • the dissolved carbon dioxide concentration in the organic solvent under atmospheric pressure conditions of 50 ° C. or lower is saturated from 1 ppm to the organic solvent.
  • the concentration is preferably set.
  • a method of bubbling carbon dioxide gas into a solution containing a phosphorescent dopant and a host compound and an organic solvent, or a supercritical fluid containing an organic solvent and carbon dioxide is used. Examples thereof include the supercritical chromatography method used.
  • the hole injection material used for the hole injection layer has either hole injection or electron barrier property. Further, the hole transport material used for the hole transport layer has an electron barrier property and also has a function of transporting holes to the light emitting layer. Therefore, in the present invention, the hole transport layer is included in the hole injection layer.
  • the hole injection material and the hole transport material may be either an organic substance or an inorganic substance.
  • arylamine derivatives and porphyrin compounds are preferred.
  • aromatic tertiary amine compounds and styrylamine compounds are preferable, and aromatic tertiary amine compounds are more preferable.
  • Typical examples of the above aromatic tertiary amine compound and styrylamine compound are N, N, N', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'.
  • the hole transport material of the hole transport layer preferably has a fluorescence maximum wavelength of 415 nm or less. That is, the hole transporting material is preferably a compound having a hole transporting ability, preventing the wavelength of light emission from being lengthened, and having a high Tg.
  • the hole injection material and the hole transport material are known, for example, vacuum deposition method, spin coating method, casting method, LB method, inkjet method, printing method, printing method and the like. It can be formed by thinning the film according to the method.
  • the hole injection material and the hole transport material as the organic material for the electronic device of the present invention.
  • the hole injection material, the hole transport material, the organic solvent, and the solution containing the cellulose nanofibers are subjected to a spin coating method, a casting method, an inkjet method, a spray method, a printing method, and the like. It is preferably formed by coating such as a slot type coater method.
  • the inkjet printing method is preferable from the viewpoint that a homogeneous film can be easily obtained and pinholes are less likely to be formed.
  • the thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually within the range of 5 nm to 5 ⁇ m.
  • the hole injection layer and the hole transport layer may have a one-layer structure composed of one or more of the above materials, respectively, and may have a laminated structure composed of a plurality of layers having the same composition or a different composition. May be good. When both the hole injection layer and the hole transport layer are provided, different materials are usually used among the above materials, but the same material may be used.
  • the electron injection layer may have a function of transferring electrons injected from the cathode to the light emitting layer, and as the material thereof, any conventionally known compound can be selected and used.
  • Examples of materials used for this electron-injected layer include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, and naphthalene perylene, and carbodiimides. , Freolenilidene methane derivative, anthraquinodimethane and antron derivative, oxadiazole derivative and the like.
  • JP-A-59-194393 a series of electron transporting compounds described in JP-A-59-194393 are disclosed as materials for forming a light emitting layer in the publication, but as a result of examination by the present inventors, electron injection It was found that it could be used as a material.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is replaced with a sulfur atom, and a quinoxalin derivative having a quinoxalin ring known as an electron-withdrawing group can also be used as an electron injection material.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum ( abbreviated as Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-).
  • the central metal of these metal complexes is In.
  • Mg, Cu, Ca, Sn, Ga or Pb replaced with a metal complex can also be used as the electron injection material.
  • metal-free or metal phthalocyanine or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like can also be preferably used as an electron injection material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron injection material.
  • the preferred compound used in the electron transport layer preferably has a maximum fluorescence wavelength of 415 nm or less. That is, the compound used for the electron transport layer is preferably a compound having an electron transport ability, preventing a long wavelength of light emission, and having a high Tg.
  • the electron injection layer can be formed by thinning the electron injection material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an inkjet method, a printing method, or a printing method. it can.
  • the electron-injected material as the organic material for the electronic device of the present invention.
  • the solution containing the electron injection material, the organic solvent, and the cellulose nanofibers is subjected to a spin coating method, a casting method, an inkjet method, a spray method, a printing method, a slot type coater method, or the like. It is preferably formed by coating.
  • the inkjet method is preferable from the viewpoint that a homogeneous film can be easily obtained and pinholes are less likely to be formed.
  • the thickness of the electron injection layer is not particularly limited, but is usually selected within the range of 5 nm to 5 ⁇ m.
  • the electron-injected layer may have a one-layer structure composed of one or more of these electron-injected materials, or may have a laminated structure composed of a plurality of layers having the same composition or a different composition.
  • the electron transport layer is included in the electron injection layer.
  • the electron transport layer is also referred to as a hole blocking layer (hole block layer).
  • hole blocking layer hole block layer
  • phosphorescent light emitting device it is preferable to adopt a configuration having an electron transport layer (hole blocking layer) as described in (v) and (vi).
  • a buffer layer may be present between the anode and the light emitting layer or the hole injection layer, and between the cathode and the light emitting layer or the electron injection layer.
  • the buffer layer is a layer provided between the electrode and the organic layer in order to reduce the driving voltage and improve the luminous efficiency.
  • Organic EL element and its industrialization frontline June 30, 1998, published by NTS).
  • Volume 2 Chapter 2,“ Electrode Materials ”(pages 123 to 166)
  • anode buffer layer The details of the anode buffer layer are also described in JP-A-9-45479, 9-2660062, 8-288609, etc., and specific examples thereof include a phthalocyanine buffer layer typified by copper phthalocyanine and vanadium oxide. Examples thereof include an oxide buffer layer represented by the above, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer The details of the cathode buffer layer are described in JP-A-6-325871, No. 9-17574, No. 10-74586, etc., and specifically, a metal buffer layer typified by strontium, aluminum, or the like. Examples thereof include an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and an oxide buffer layer typified by aluminum oxide.
  • the buffer layer is preferably a very thin film, and the thickness is preferably in the range of 0.1 to 100 nm, although it depends on the material. Further, in addition to the above basic constituent layers, layers having other functions may be appropriately laminated, if necessary.
  • cathode As described above, as the cathode of the organic EL element, a metal having a small work function (less than 4 eV) (hereinafter referred to as an electron-injectable metal), an alloy, an electrically conductive compound of the metal, or a mixture thereof is generally used as an electrode material. Things are used.
  • Electrode materials include sodium, magnesium, lithium, aluminum, indium, rare earth metals, sodium-potassium alloys, magnesium / copper mixtures, magnesium / silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum. / Aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture and the like.
  • the cathode preferably contains a Group 13 metal element. That is, in the present invention, as will be described later, the surface of the cathode is oxidized with oxygen gas in a plasma state to form an oxide film on the surface of the cathode, thereby preventing further oxidation of the cathode and improving the durability of the cathode. Can be made to.
  • the electrode material of the cathode is preferably a metal having preferable electron injection properties required for the cathode and capable of forming a dense oxide film.
  • the electrode material of the cathode containing the Group 13 metal element include aluminum, indium, magnesium / aluminum mixture, magnesium / indium mixture, and aluminum / aluminum oxide (Al 2 O 3 ) mixture.
  • Examples include a lithium / aluminum mixture.
  • the mixing ratio of each component of the mixture can be a conventionally known ratio as the cathode of the organic EL element, but the mixing ratio is not particularly limited to this.
  • the cathode can be produced by forming a thin film on the organic compound layer (organic EL layer) by forming the electrode material on the organic compound layer (organic EL layer) by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ / sq.
  • the following is preferable, and the film thickness is usually selected in the range of 10 nm to 1 ⁇ m, preferably in the range of 50 to 200 nm. It is preferable to make either the anode or the cathode of the organic EL element transparent or translucent in order to transmit the emitted light because the luminous efficiency is improved.
  • a thin film made of a desired electrode substance for example, an anode substance
  • a suitable substrate by a method such as thin film deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • a spin coating method As a method for thinning these organic thin films, as described above, there are a spin coating method, a casting method, an inkjet printing method, a spray method, a vapor deposition method, a printing method, a slot coating method, etc., and a homogeneous film can be obtained.
  • the inkjet printing method is preferable because it is easy to generate and pinholes are not easily formed, and in the present invention, the composition for producing an electronic device of the present invention can be used.
  • a different film forming method may be applied to each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is within the range of 50 to 450 ° C and the degree of vacuum is within the range of 10-6 to 10-2 Pa. It is desirable to appropriately select the vapor deposition rate within the range of 0.01 to 50 nm / sec, the substrate temperature within the range of -50 to 300 ° C., and the thickness within the range of 0.1 nm to 5 ⁇ m.
  • a thin film made of a material for a cathode is formed on the thin film so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a cathode is provided by a method such as vapor deposition or sputtering.
  • a desired organic EL element can be obtained.
  • the organic EL element is preferably manufactured from the hole injection layer to the cathode by one vacuuming, but it may be taken out in the middle and a different film forming method may be applied. At that time, consideration must be given to performing the work in a dry inert gas atmosphere.
  • the method for sealing the organic EL element is not particularly limited, but for example, after sealing the outer peripheral portion of the organic EL element with a sealing adhesive, a sealing member is arranged so as to cover the light emitting region of the organic EL element. There is a way to do it.
  • sealing adhesive examples include acrylic acid-based oligomers, photocurable and thermosetting adhesives having a reactive vinyl group of methacrylic acid-based oligomers, and moisture-curable adhesives such as 2-cyanoacrylic acid ester. Can be mentioned.
  • heat and chemical curing type two-component mixture
  • hot melt type polyamide, polyester and polyolefin can be mentioned.
  • a cation-curable type ultraviolet-curable epoxy resin adhesive can be mentioned.
  • a polymer film and a metal film can be preferably used from the viewpoint that the organic EL element can be thinned.
  • a polymer film it is preferable to impart the above-mentioned gas barrier property.
  • the sealing structure includes a structure in which the space between the organic EL element and the sealing member is hollow, and a filling and sealing structure in which a sealing material such as an adhesive is filled between the organic EL element and the sealing member. Can be mentioned.
  • an inert gas such as nitrogen or argon, fluorine hydrocarbon, silicone oil, etc. It is also possible to inject a non-active liquid. Further, the gap between the sealing member and the display region of the organic EL element can be evacuated, an inert gas can be sealed in the gap, or a desiccant can be arranged.
  • Organic EL display device The organic EL display device using the organic EL element (hereinafter, also simply referred to as “display device”) is provided with a shadow mask only when the light emitting layer is formed, and if the other layers are shared, patterning such as a shadow mask is unnecessary. Yes, a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like.
  • the method is not limited, but a vapor deposition method, an inkjet printing method, or a printing method is preferable.
  • a vapor deposition method an inkjet printing method, or a printing method is preferable.
  • the display device can be used as a display device, a display, and various light emitting light sources.
  • Full-color display is possible by using three types of organic EL elements that emit blue, red, and green in the display device and display.
  • Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing a still image or a moving image, and the drive method when used as a display device for reproducing a moving image may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include household lighting, interior lighting, backlights for clocks and liquid crystals, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. It can be mentioned, but it is not limited to this.
  • organic EL element according to the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of using the organic EL element having such a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not limited. Further, it may be used for the above-mentioned applications by oscillating a laser.
  • the organic EL element according to the present invention may be used as a kind of lamp such as an illumination or an exposure light source, a projection device of a type for projecting an image, or a display of a type for directly visually recognizing a still image or a moving image. It may be used as a device (display).
  • the drive system may be either a simple matrix (passive matrix) system or an active matrix system.
  • a full-color display device can be manufactured by using two or more kinds of organic EL elements of the present invention having different emission colors.
  • Example 1 Manufacturing of LED element (1-1)
  • One blue LED element (rectangular parallelepiped; 200 ⁇ m ⁇ 300 ⁇ m ⁇ 100 ⁇ m) was flip-chip mounted in the center of the accommodating portion of the circular package (opening diameter 3 mm, bottom diameter 2 mm, wall surface angle 60 °).
  • a silver electrode 15 having a thickness of 100 nm was formed.
  • a solution prepared by dissolving Example Compound 13 (1.0 g) in 100 ml of ethanol was spray-coated so as to cover the LED element and the electrode, and heated and cured at 150 ° C. for 10 minutes.
  • a silicone resin (OE6630, manufactured by Toray Dau) in which 10% by mass of the phosphor particles prepared by the following method is dispersed is applied in a circular package by a dispenser, and fired at 150 ° C. for 1 hour to convert the wavelength. A layer was formed. The thickness of the wavelength conversion layer was 2.5 mm.
  • Y 2 O 3 7.41 g, Gd 2 O 3 4.01 g, CeO 2 0.63 g, and Al 2 O 3 7.77 g were thoroughly mixed.
  • An appropriate amount of ammonium fluoride was mixed with the mixture as a flux, and the mixture was filled in an aluminum crucible.
  • the filler was calcined in a reducing atmosphere in which hydrogen-containing nitrogen gas was circulated in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a calcined product ((Y 0.72 Gd 0.24 ) 3Al 5 O 12). : Ce 0.04 ) was obtained.
  • the obtained fired product was pulverized, washed, separated, and dried to obtain yellow fluorescent particles having an average particle size of about 10 ⁇ m.
  • the emission wavelength of the excitation light having a wavelength of 465 nm was measured, it had a peak wavelength of approximately 570 nm.
  • Each LED element (light emitting device) was produced in the same manner as the LED element (1-1) except that the compound and the solvent were changed as shown in Table III.
  • There is no peeling of the encapsulant layer by microscopic observation, it lights up when the light emitting device is energized, and the decrease in total luminous value due to minute peeling that is difficult to confirm with a microscope is less than 1%. There is no peeling of the stop material layer, and it lights up when the light emitting device is energized, but the decrease in total luminous value due to minute peeling, which is difficult to confirm with a microscope, is 1% or more and 3% or less. There is peeling, but it lights up when the light emitting device is energized. ⁇ : There is peeling of the encapsulant layer when the light emitting device is energized, and it does not light up when the light emitting device is energized.
  • the LED element of the present invention is superior in adhesion and brightness to the comparative example. It was observed that the color of the surface of the silver electrode of the comparative example after the gas exposure test was darker than the color of the surface of the silver electrode of the LED element of the present invention.
  • LED element (2-1) Manufacturing of LED element (2-1)
  • An LED element (2-1) which is an LED light emitting element, was produced according to the following method. Each constituent material used for manufacturing LED1 is shown below.
  • -Package substrate Opening diameter 3 mm, bottom diameter 2 mm, wall surface angle 60 °
  • Commercial product-Fluorescent material 1 Nemoto & Co., Ltd. YAG 405C205; Particle size distribution D50: 20.5 ⁇ m -Resin layer forming resin 1: Silicone resin: OE6630 manufactured by Toray Dow Corning Co., Ltd.
  • ⁇ Lead frame Silver-plated finish; 5050 type manufactured by Alphact Co., Ltd.
  • ⁇ Bonding wire SEC type manufactured by Tanaka Kikinzoku made of silver alloy ⁇ LED element: InGaN-based LED element that emits blue light with an emission wavelength of about 460 nm as the light source By using a YAG phosphor as the phosphor, white light was obtained by mixing blue light and yellow light.
  • ⁇ Mounting of LED element> After forming a contact hole for the LED element, a rectangular parallelepiped LED element having a dicer length of 200 um ⁇ width of 200 um ⁇ height of 200 um was prepared. After cleaning the package substrate by plasma cleaning to remove organic contaminants, the LED element was mounted on the package substrate, and the lead frame and the LED terminal were connected and mounted by a bonding wire.
  • a composition for forming a resin layer was prepared, poured into the above package substrate to which the LED element was connected using a dispenser (MPP-1 manufactured by Musashino Engineering Co., Ltd.), and heat-treated at 110 ° C. for 30 minutes. Then, the resin was heat-treated at 150 ° C. for 15 minutes to dry the resin to produce an LED element (2-1) (see FIG. 3).
  • the LED element (light emitting device) of the present invention is excellent in each evaluation performance. It was observed that the colors of the surfaces of the lead frame and the bonding wire after the gas exposure test were darker in the comparative example than in the present invention.
  • Example 3 ⁇ Manufacturing of organic photoelectric conversion element (3-1)>
  • the glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas and UV ozone cleaned, and fixed to the substrate holder of the vacuum vapor deposition apparatus. After reducing the degree of vacuum in the vacuum vapor deposition apparatus to 1 ⁇ 10 -4 Pa, 100 nm of silver was deposited as an anode, and copper phthalocyanine (CuPC) and anthra [9,1,2-c, d, e] were deposited on the anode.
  • CuPC copper phthalocyanine
  • PTCBI 1,5,6-c', d', e'] [Bis [benzoimidazolo [2,1-a] isoquinoline]] -10,21-dione (PTCBI)
  • the encapsulant containing the example compound 15 and the encapsulant containing the compound of Comparative 1 as a comparative example are bonded to each other on the cathode via an adhesive, and the organic photoelectric conversion element (3-1) is bonded. ) was prepared.
  • organic photoelectric conversion elements (3-2) and (3-3) were produced in the same manner as the organic photoelectric conversion element (3-1) except that the type of the anti-sulfuration agent was changed as follows.
  • the evaluation criteria are as follows. ⁇ : Brightness of 90% or more compared to before the sulfurization test ⁇ : Brightness of 75% or more before the sulfurization test ⁇ : Brightness of less than 75% compared to before the sulfurization test
  • Example 4 Manufacturing of organic EL element (4-1)
  • a glass substrate having a 100 nm film of ITO (Indium Tin Oxide) as an anode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas and UV ozone washed, and fixed to a substrate holder of a vacuum vapor deposition apparatus.
  • ITO Indium Tin Oxide
  • HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was vapor-deposited at 10 nm to provide a hole injection transport layer.
  • ⁇ -NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • MCP (1,3-bis (N-carbazolyl) benzene) as the host material and Bis [2- (4,6-difluoropheneyl) pyridinato-C2, N] (picolinato) iridium (III) (FIrpic) as the luminescent compound.
  • FIrpic iridium
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • thermosetting liquid adhesive epoxy resin
  • the gas barrier film provided with the sealing resin layer was superposed on the organic EL element.
  • the sealing resin layer forming surface of the sealing material film was continuously overlapped with the sealing surface side of the organic EL element so that the ends of the anode and the ejection portion of the cathode were exposed to the outside.
  • the sample to which the encapsulant film was attached was placed in a decompression device, pressed under a depressurized condition of 0.1 MPa at 90 ° C., and held for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive. The heating was performed using a hot plate in the glove box.
  • the sealing step is based on JIS B 9920 under atmospheric pressure and a nitrogen atmosphere with a moisture content of 1 ppm or less, the measured cleanliness is class 100, the dew point temperature is -80 ° C or less, and the oxygen concentration is 0.8 ppm or less. I went at atmospheric pressure.
  • the organic EL element 1 sealed with the compound 15-containing encapsulant was produced.
  • a cross-sectional view of the organic EL element (4-1) is shown in FIG.
  • Organic EL devices (4-2) and (4-3) were produced in the same manner as the organic EL device (4-1) except that the type of the anti-sulfuration agent was changed as follows.
  • Organic EL device (4-2); Comparative compound 1 (2-ethylhexanezinc (manufactured by Nippon Kayaku Co., Ltd.)) Organic EL element (4-3); Kesmon NS-20C (manufactured by Toagosei Co., Ltd.)
  • the encapsulant of the present invention has higher encapsulation performance than the encapsulant of the comparative example, so that the performance deterioration of the organic EL element is small. It was observed that the color of the surface of the silver electrode of the comparative example after the gas exposure test was darker than the color of the surface of the silver electrode of the organic EL device of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Details Of Resistors (AREA)

Abstract

The present invention addresses the problem of providing an electronic device in which the sulfidation of metal by gas containing sulfur compounds, such as hydrogen sulfide, or sulfur allotropes is inhibited. The present invention also addresses the problem of providing a sulfidation inhibitor and a sealant for this purpose. The electronic device of the present invention is characterized by comprising at least a metal-containing member layer and a layer containing a compound (1) having a structure represented by general formula (1) below. (In the formula, R1 and R2 each independently represent an acid group, -ORa, -SRb, or -NRcRd. Ra, Rb, Rc, and Rd each independently represent a hydrogen atom or a substituent. R3 represents a nitrogen-containing ligand. Me represents copper (Cu) or zinc (Zn).)

Description

電子デバイス、硫化防止剤及び封止材Electronic devices, anti-sulfurization agents and encapsulants
 本発明は、電子デバイス、硫化防止剤及び封止材に関する。より詳しくは、硫化水素などの硫黄化合物や硫黄同素体を含むガスによる金属の硫化を防止した電子デバイスなどに関する。 The present invention relates to electronic devices, anti-sulfurization agents and encapsulants. More specifically, the present invention relates to an electronic device that prevents the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope.
 発光ダイオード(light emitting diode:以下、「LED」と略記する。)素子、有機エレクトロルミネッセンス素子(「有機EL素子」ともいう。EL:electroluminescence)及び光電変換素子などの電子デバイスでは、銀や銅などの金属がリードフレームや電極などに用いられている。
 例えば銀は可視光線の反射率が高いことから、発光ダイオード用リードフレームのメッキ素材として使用されている。また、銀は高い導電性を有することから電気配線や電極用素材としても使用されている。
In electronic devices such as light emitting diodes (hereinafter abbreviated as "LED") elements, organic electroluminescence elements (also referred to as "organic EL elements") and photoelectric conversion elements, silver, copper, etc. Metal is used for lead frames and electrodes.
For example, silver is used as a plating material for lead frames for light emitting diodes because of its high visible light reflectance. In addition, silver is also used as a material for electrical wiring and electrodes because it has high conductivity.
 しかしながら、硫化水素などの硫黄化合物や硫黄同素体を含むガスの存在下では、金、白金以外の多くの金属は硫黄元素と反応して硫化物が形成されること、特に、銀や銅とは接触により室温でも反応して黒色の硫化銀や硫化銅を生成し、これらが電子デバイスの機能の劣化の原因となっていることが知られている。 However, in the presence of sulfur compounds such as hydrogen sulfide and gases containing sulfur homogenes, many metals other than gold and platinum react with sulfur elements to form sulfides, especially in contact with silver and copper. It is known that it reacts even at room temperature to produce black silver sulfide and copper sulfide, which cause deterioration of the functions of electronic devices.
 例えば近年、青色LED素子の近傍に、YAG蛍光体など、黄色の蛍光を発する蛍光体を配置した白色LED装置や、赤色光、緑色光、青色光を発するLED素子を組み合わせた白色LED装置が開発されている。このような白色LED装置は、従来の蛍光灯や白熱電灯などの代替品として広く適用されており、長期間にわたって高い光取り出し効率を維持することが求められている。 For example, in recent years, a white LED device in which a phosphor that emits yellow fluorescence such as a YAG phosphor is arranged in the vicinity of a blue LED element, and a white LED device that combines LED elements that emit red light, green light, and blue light have been developed. Has been done. Such a white LED device is widely applied as an alternative to conventional fluorescent lamps and incandescent lamps, and is required to maintain high light extraction efficiency for a long period of time.
 しかし、従来の発光装置の光取り出し効率が低下する要因の一つに、発光装置に含まれる電極や発光素子の劣化が挙げられる。電極や発光素子の劣化は、例えば発光装置の使用環境に含まれる硫化水素ガスや水分などによって生じる。 However, one of the factors that reduce the light extraction efficiency of the conventional light emitting device is deterioration of the electrodes and light emitting elements contained in the light emitting device. Deterioration of electrodes and light emitting elements is caused by, for example, hydrogen sulfide gas or moisture contained in the usage environment of the light emitting device.
 したがって、リードフレームや電極などの硫化による劣化の防止策として、硫化物系ガス吸着剤や銀変色防止剤などを用いる技術が紹介されている(例えば特許文献1及び特許文献2参照。)。 Therefore, as a measure for preventing deterioration of lead frames and electrodes due to sulfide, a technique using a sulfide-based gas adsorbent, a silver discoloration inhibitor, or the like has been introduced (see, for example, Patent Document 1 and Patent Document 2).
 また、これら硫化防止剤の使用態様として、(1)電極上に硫化防止剤含有液を塗布する態様、及び(2)封止材に硫化防止剤含有液を添加し塗布する態様の2つが知られているが、硫化防止剤の溶媒に対する溶解性に問題があることから、うまく塗布することができないという問題もある。 In addition, there are two known modes of use of these anti-sulfurization agents: (1) an anti-sulfurization agent-containing solution is applied onto the electrode, and (2) an anti-sulfurization agent-containing solution is added to and applied to the encapsulant. However, there is also a problem that it cannot be applied well because there is a problem in the solubility of the anti-sulfuration agent in the solvent.
 一方、近年では、封止材として従来用いられていたエポキシ樹脂に代わって、耐光と耐熱に優れたシリコーン樹脂が使用されることが多くなってきている。しかし、シリコーン樹脂は、エポキシ樹脂に比べガス透過性が非常に高く、前記した銀を変色させる硫黄系ガスを簡単に透過させる。透過ガスは、封止内部の銀メッキ部などを変色させるため、銀メッキ部の反射率が低下する。その結果として、照度が低下する。そのため、銀メッキフレームに対するシリコーン樹脂による封止の問題点として、照度低下や耐久性低下が指摘されている。
 また、電極と封止材は冷熱衝撃を受けると剥がれやすいという密着性の問題も有している。
On the other hand, in recent years, a silicone resin having excellent light resistance and heat resistance has been increasingly used in place of the epoxy resin conventionally used as a sealing material. However, the silicone resin has a much higher gas permeability than the epoxy resin, and easily permeates the sulfur-based gas that discolors the silver described above. Since the permeated gas discolors the silver-plated portion inside the seal, the reflectance of the silver-plated portion decreases. As a result, the illuminance is reduced. Therefore, it has been pointed out that the illuminance and durability are lowered as problems of sealing the silver-plated frame with the silicone resin.
Further, the electrode and the sealing material also have a problem of adhesion that they are easily peeled off when subjected to a cold impact.
 したがって、封止材としてシリコーン樹脂を用いた際にも、銀の変色を防止し、その反射率の耐久性を確保できる技術が望まれている。
 なお、上記のような、金属硫化による性能低下は、LED素子だけでなく、光電変換素子などの他の電子デバイスでも問題となっている。
Therefore, there is a demand for a technique capable of preventing discoloration of silver and ensuring the durability of its reflectance even when a silicone resin is used as a sealing material.
The deterioration of performance due to metal sulfurization as described above has become a problem not only in LED elements but also in other electronic devices such as photoelectric conversion elements.
特許6555933号公報Japanese Patent No. 6555933 特開2015-79991号公報Japanese Unexamined Patent Publication No. 2015-79991
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、硫化水素などの硫黄化合物や硫黄同素体を含むガスによる金属の硫化を防止した電子デバイスを提供することである。また、そのための、硫化防止剤及び封止材を提供することである。 The present invention has been made in view of the above problems and situations, and a solution thereof is to provide an electronic device that prevents the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope. Further, it is an object of the present invention to provide an anti-sulfuration agent and a sealing material for that purpose.
 本発明者は、上記課題を解決すべく、上記問題の原因などについて検討する過程において、銀や銅などの金属と相互作用を持ち、かつ封止材に用いられるシリコーンなどの素材との相互作用も強い、窒素含有配位子を有する金属錯体が課題解決に有効であることを見出し、本発明を成すに至った。 In order to solve the above problems, the present inventor has an interaction with a metal such as silver or copper and an interaction with a material such as silicone used as a sealing material in the process of examining the cause of the above problem. We have found that a strong metal complex having a nitrogen-containing ligand is effective in solving the problem, and have come to the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problem according to the present invention is solved by the following means.
 1.少なくとも、金属含有部材層と下記一般式(1)で表される構造を有する化合物(1)を含有する層を有することを特徴とする電子デバイス。 1. An electronic device characterized by having at least a metal-containing member layer and a layer containing a compound (1) having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRは、それぞれ独立に、酸基、-ORa、-SRb、又は-NRcRdを表す。Ra、Rb、Rc及びRdは、それぞれ独立に、水素原子又は置換基を表す。Rは、窒素含有配位子を表す。Meは、銅(Cu)又は亜鉛(Zn)を表す。) (In the formula, R 1 and R 2 independently represent an acid group, -ORa, -SRb, or -NRcRd. Ra, Rb, Rc, and Rd independently represent a hydrogen atom or a substituent, respectively. R 3 represents a nitrogen-containing ligand. Me represents copper (Cu) or zinc (Zn).)
 2.前記一般式(1)中の前記R及びRが、酸基を表すことを特徴とする第1項に記載の電子デバイス。 2. The electronic device according to item 1 , wherein R 1 and R 2 in the general formula (1) represent an acid group.
 3.前記酸基が、カルボン酸基又は無機酸基であることを特徴とする第1項又は第2項に記載の電子デバイス。 3. The electronic device according to item 1 or 2, wherein the acid group is a carboxylic acid group or an inorganic acid group.
 4.前記金属含有部材層が、銀(Ag)又は銅(Cu)を含有することを特徴とする第1項から第3項までのいずれか一項に記載の電子デバイス。 4. The electronic device according to any one of items 1 to 3, wherein the metal-containing member layer contains silver (Ag) or copper (Cu).
 5.前記化合物(1)を含有する層が、樹脂又は樹脂前駆体を含有し、かつ、
 前記化合物(1)の含有量が1~50質量%範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載の電子デバイス。
5. The layer containing the compound (1) contains a resin or a resin precursor, and
The electronic device according to any one of items 1 to 4, wherein the content of the compound (1) is in the range of 1 to 50% by mass.
 6.前記化合物(1)を含有する層が、沸点が150℃以上の有機溶媒を含有することを特徴とする第1項から第5項までのいずれか一項に記載の電子デバイス。 6. The electronic device according to any one of items 1 to 5, wherein the layer containing the compound (1) contains an organic solvent having a boiling point of 150 ° C. or higher.
 7.前記電子デバイスが、発光ダイオード、光電変換素子又は有機エレクトロルミネッセンス素子であることを特徴とする第1項から第6項までのいずれか一項に記載の電子デバイス。 7. The electronic device according to any one of items 1 to 6, wherein the electronic device is a light emitting diode, a photoelectric conversion element, or an organic electroluminescence element.
 8.少なくとも、下記一般式(1)で表される構造を有する化合物(1)を含有することを特徴とする硫化防止剤。 8. An anti-sulfuration agent containing at least a compound (1) having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R及びRは、それぞれ独立に、酸基、-ORa、-SRb、又は-NRcRdを表す。Ra、Rb、Rc及びRdは、それぞれ独立に、水素原子又は置換基を表す。Rは、窒素含有配位子を表す。Meは、銅(Cu)又は亜鉛(Zn)を表す。) (In the formula, R 1 and R 2 independently represent an acid group, -ORa, -SRb, or -NRcRd. Ra, Rb, Rc, and Rd independently represent a hydrogen atom or a substituent, respectively. R 3 represents a nitrogen-containing ligand. Me represents copper (Cu) or zinc (Zn).)
 9.少なくとも、第8項に記載の硫化防止剤を含有することを特徴とする封止材。 9. A sealing material containing at least the anti-sulfuration agent according to item 8.
 本発明の上記手段により、硫化水素などの硫黄化合物や硫黄同素体を含むガスによる金属の硫化を防止した電子デバイスを提供することができる。また、そのための、硫化防止剤及び封止材を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
According to the above means of the present invention, it is possible to provide an electronic device in which sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope is prevented. Further, it is possible to provide an anti-sulfuration agent and a sealing material for that purpose.
Although the mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, it is inferred as follows.
 前記一般式(1)で表される構造を有する化合物(1)は、窒素含有配位子を有する金属錯体であり、また中心金属Meが、銅(Cu)又は亜鉛(Zn)であることから、銀や銅などの金属と相互作用が強く、かつ封止材に用いられるシリコーンなど素材との相互作用も強い。
 したがって、硫化水素などの硫黄化合物や硫黄同素体を含むガス中の、硫黄化合物などと銀や銅などとの反応が防止され、硫化銀や硫化銅などの金属硫化物の生成が防止されることによって、本発明に係る課題を解決できたと推察される。
The compound (1) having the structure represented by the general formula (1) is a metal complex having a nitrogen-containing ligand, and the central metal Me is copper (Cu) or zinc (Zn). It has a strong interaction with metals such as silver and copper, and also has a strong interaction with materials such as silicone used as a sealing material.
Therefore, the reaction between the sulfur compound and silver, copper, etc. in the gas containing the sulfur compound such as hydrogen sulfide and the sulfur homozygous substance is prevented, and the formation of metal sulfides such as silver sulfide and copper sulfide is prevented. It is presumed that the problem according to the present invention could be solved.
電子デバイスの金属含有部材を本発明の封止材で保護する例を示す概念図Conceptual diagram showing an example of protecting a metal-containing member of an electronic device with the sealing material of the present invention. 電子デバイスの金属含有部材を本発明の封止材で保護する例を示す概念図Conceptual diagram showing an example of protecting a metal-containing member of an electronic device with the sealing material of the present invention. LED発光装置の一形態例を示す断面概念図Cross-sectional conceptual diagram showing an example of one form of an LED light emitting device LED発光装置の他の形態例を示す断面概念図Cross-sectional conceptual diagram showing another embodiment of the LED light emitting device バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す   断面概念図A cross-sectional conceptual diagram showing a solar cell composed of a bulk heterojunction type organic photoelectric conversion element. 有機EL素子の一形態例を示す断面概念図Cross-sectional conceptual diagram showing an example of one form of an organic EL element
 本発明の電子デバイスは、少なくとも、金属含有部材層と前記一般式(1)で表される構造を有する化合物(1)を含有する層を有することを特徴とする。
 この特徴は下記各実施形態に共通する又は対応する特徴である。
The electronic device of the present invention is characterized by having at least a metal-containing member layer and a layer containing the compound (1) having the structure represented by the general formula (1).
This feature is common to or corresponds to each of the following embodiments.
 本発明の実施形態としては、本発明の効果発現の観点から、前記一般式(1)中の前記R及びRが、酸基を表すことが好ましい。また、前記酸基が、カルボン酸基又は無機酸基であることが好ましい。さらに、前記金属含有部材層が、銀(Ag)又は銅(Cu)を含有することが好ましい。 In the embodiment of the present invention, from the viewpoint of exhibiting the effect of the present invention, it is preferable that the R 1 and R 2 in the general formula (1) represent an acid group. Moreover, it is preferable that the acid group is a carboxylic acid group or an inorganic acid group. Further, it is preferable that the metal-containing member layer contains silver (Ag) or copper (Cu).
 本発明の実施形態としては、硫化水素などの硫黄化合物や硫黄同素体を含むガスによる金属の硫化を防止をする効果の観点から前記化合物(1)を含有する層が、樹脂又は樹脂前駆体を含有し、かつ、前記化合物(1)の含有量が1~50質量%範囲内であることも好ましい。また、同様の観点から、前記化合物(1)を含有する層が、沸点が150℃以上の有機溶媒を含有することが好ましい。 In an embodiment of the present invention, the layer containing the compound (1) contains a resin or a resin precursor from the viewpoint of the effect of preventing the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope. Moreover, it is also preferable that the content of the compound (1) is in the range of 1 to 50% by mass. From the same viewpoint, it is preferable that the layer containing the compound (1) contains an organic solvent having a boiling point of 150 ° C. or higher.
 本発明の電子デバイスとしては、発光ダイオード、光電変換素子又は有機エレクトロルミネッセンス素子であることが、本発明の効果発現の観点から好ましい。 As the electronic device of the present invention, a light emitting diode, a photoelectric conversion element or an organic electroluminescence element is preferable from the viewpoint of exhibiting the effect of the present invention.
 少なくとも、前記一般式(1)で表される構造を有する化合物(1)は、硫化防止剤に好適に用いることができる。また、封止材にも好適に用いることができる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
At least, the compound (1) having the structure represented by the general formula (1) can be suitably used as an antioxidant. It can also be suitably used as a sealing material.
Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
 1.本発明の電子デバイスの概要
 本発明の電子デバイスは、少なくとも、金属含有部材層と下記一般式(1)で表される構造を有する化合物(1)を含有する層を有することを特徴とする。
1. 1. Outline of the Electronic Device of the Present Invention The electronic device of the present invention is characterized by having at least a metal-containing member layer and a layer containing a compound (1) having a structure represented by the following general formula (1).
 ここで、「電子デバイス」とは、狭義では、電子のもつ運動エネルギー、位置エネルギーなどを利用して電気信号の発生、増幅、変換、又は制御などを行う素子をいう。例えば発光ダイオード素子、有機エレクトロルミネッセンス素子、光電変換素子及びトランジスターなどの能動素子が挙げられる。また、本発明においては、他からの働きかけに対し、「抵抗する」「蓄える」などの受け身的な仕事をする受動素子、例えば抵抗器・コンデンサーなども電子デバイスに含める。 Here, in a narrow sense, the "electronic device" refers to an element that generates, amplifies, converts, or controls an electric signal by using the kinetic energy, potential energy, etc. of an electron. Examples thereof include active elements such as light emitting diode elements, organic electroluminescence elements, photoelectric conversion elements and transistors. Further, in the present invention, passive elements such as resistors and capacitors that perform passive work such as "resisting" and "storing" against the action of others are also included in the electronic device.
 なお、広義では、「電子デバイス」とは、上記狭義の「電子デバイス」を実装した発光装置及び表示装置なども含めたものをいう。
 本発明では、用語「電子デバイス」を主に広義の定義に従って使用するが、説明の便宜上、狭義の定義に従う「電子デバイス」も適宜使用する。
In a broad sense, the "electronic device" includes a light emitting device and a display device on which the "electronic device" in the narrow sense is mounted.
In the present invention, the term "electronic device" is mainly used according to the definition in a broad sense, but for convenience of explanation, "electronic device" according to the definition in a narrow sense is also used as appropriate.
 本発明の実施形態としては、本発明の効果発現の観点から、下記一般式(1)中の下記R及びRが、酸基を表すことが好ましい。また、前記酸基が、カルボン酸基又は無機酸基であることが好ましい。さらに、前記金属含有部材層が、銀(Ag)又は銅(Cu)を含有することが好ましい。 In the embodiment of the present invention, from the viewpoint of exhibiting the effect of the present invention, it is preferable that the following R 1 and R 2 in the following general formula (1) represent an acid group. Moreover, it is preferable that the acid group is a carboxylic acid group or an inorganic acid group. Further, it is preferable that the metal-containing member layer contains silver (Ag) or copper (Cu).
 (1.1)金属含有部材層
 本発明において「金属含有部材層」とは、電子デバイスを構成する金属含有部材からなる層をいう。例えば金属含有電極やリードフレームなどをいう。なお、「リードフレーム」とは、ICやLSIなどの半導体パッケージに使用される金属薄板のことで、ICチップを支持固定し、プリント配線板に実装する際の接続端子となる部品をいう。
(1.1) Metal-containing member layer In the present invention, the “metal-containing member layer” means a layer made of metal-containing members constituting an electronic device. For example, it refers to a metal-containing electrode or a lead frame. The "lead frame" is a thin metal plate used for semiconductor packages such as ICs and LSIs, and refers to a component that serves as a connection terminal when an IC chip is supported and fixed and mounted on a printed wiring board.
 本発明の効果は、特に銀(Ag)や銅(Cu)を含有する金属含有部材層を有する電子デバイスにおいて顕著となることを特徴としている。 The effect of the present invention is particularly remarkable in an electronic device having a metal-containing member layer containing silver (Ag) or copper (Cu).
 (1.2)一般式(1)で表される構造を有する化合物(1)
 本発明の電子デバイスは、下記一般式(1)で表される構造を有する化合物(1)を含有する層を有することを特徴とする。
(1.2) Compound (1) having a structure represented by the general formula (1)
The electronic device of the present invention is characterized by having a layer containing a compound (1) having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは、それぞれ独立に、酸基、-ORa、-SRb、又は-NRcRdを表す。Ra、Rb、Rc及びRdは、それぞれ独立に、水素原子又は置換基を表す。Rは、窒素含有配位子を表す。Meは、銅(Cu)又は亜鉛(Zn)を表す。) (In the formula, R 1 and R 2 independently represent an acid group, -ORa, -SRb, or -NRcRd. Ra, Rb, Rc, and Rd independently represent a hydrogen atom or a substituent, respectively. R 3 represents a nitrogen-containing ligand. Me represents copper (Cu) or zinc (Zn).)
 上記一般式(1)中のR及びRが、酸基を表すことが好ましい。また、前記酸基が、カルボン酸基又は無機酸基であることが好ましい。
 ここで、「酸基」とは、無機又は有機の各種の酸の分子から、水素イオンとして電離し得る水素原子を一個以上除いた残りの原子又は原子団をいう。例えばカルボン酸R-COOHではR-COO-が酸基(「カルボン酸基」ともいう。)である。
It is preferable that R 1 and R 2 in the general formula (1) represent an acid group. Moreover, it is preferable that the acid group is a carboxylic acid group or an inorganic acid group.
Here, the "acid group" refers to the remaining atoms or atomic groups obtained by removing one or more hydrogen atoms that can be ionized as hydrogen ions from the molecules of various inorganic or organic acids. For example, in the carboxylic acid R-COOH, R-COO- is an acid group (also referred to as "carboxylic acid group").
 カルボン酸基としては、例えばギ酸基、酢酸基、プロピオン酸基、ブタン酸基、ペンタン酸基、ヘキサン酸基、ヘプタン酸基、オクチル酸基、2-エチルヘキサン酸基、ネオデカン酸基、ラウリン酸(ドデカン酸)基、ステアリン酸(オクタデカン酸)、メタクリル酸基、ウンデシレン酸基などの脂肪族モノカルボン酸基が挙げられる。 Examples of the carboxylic acid group include formic acid group, acetic acid group, propionic acid group, butanoic acid group, pentanoic acid group, hexanoic acid group, heptanic acid group, octyl acid group, 2-ethylhexanoic acid group, neodecanoic acid group and lauric acid. Examples thereof include aliphatic monocarboxylic acid groups such as (dodecanoic acid) group, stearic acid (octadecanoic acid), methacrylic acid group and undecylene acid group.
 また、蓚酸基、マロン酸基、コハク酸基、グルタル酸基、アジピン酸基などの脂肪族ポリカルボン酸基が挙げられる。
 さらに、安息香酸基、トルイル酸基などの芳香族モノカルボン酸基、フタル酸基、イソフタル酸基、テレフタル酸基、ニトロフタル酸基などの芳香族ポリカルボン酸基などが挙げられる。
In addition, aliphatic polycarboxylic acid groups such as a oxalic acid group, a malonic acid group, a succinic acid group, a glutaric acid group, and an adipic acid group can be mentioned.
Further, aromatic monocarboxylic acid groups such as benzoic acid group and toluic acid group, aromatic polycarboxylic acid groups such as phthalic acid group, isophthalic acid group, terephthalic acid group and nitrophthalic acid group can be mentioned.
 無機酸基としては、例えば塩化水素酸基、塩素酸基、亜塩素酸基、次亜塩素酸基などの塩素酸基、臭化水素酸基、過臭素酸基、臭素酸基、亜臭素酸基、次亜臭素酸基などの臭素酸基、ヨウ化水素酸基、過ヨウ素酸基、ヨウ素酸基、亜ヨウ素酸基、次亜ヨウ素酸基などのヨウ素酸基、硫酸基、二硫酸基、チオ硫酸基、スルファミン酸基、亜硫酸基、二亜硫酸基、チオ亜硫酸基などの硫黄酸基、硝酸基、亜硝酸基、次亜硝酸基、ニトロキシル酸基などの窒素酸基、オルトリン酸基、亜リン酸基、次亜リン酸基、亜ホスフィン酸基、ホスフェン酸基、亜ホスフェン酸基、二リン酸基、三リン酸基、メタリン酸基などのリン酸基、オルトホウ酸基、メタホウ酸基、過ホウ酸基、次ホウ酸基、ボロン酸基、ボリン酸基などのホウ酸基、炭酸水素基、炭酸基などが挙げられる。
 その他、フェノールスルホン酸基が挙げられる。
Examples of the inorganic acid group include a chloric acid group such as a hydrogen chloride group, a chloric acid group, a chlorite group, and a hypochlorous acid group, a hydrobromic acid group, a perbromic acid group, a bromine acid group, and a bromine acid group. Group, bromine acid group such as hypobromic acid group, hydroiodic acid group, perioic acid group, iodic acid group, phophophoric acid group, iodic acid group such as hypoiodium acid group, sulfate group, disulfate group , Sulfuric acid groups such as thiosulfate group, sulfamic acid group, sulfite group, disulfite group, thiosulfite group, nitrogen acid group such as nitrate group, nitrite group, hyponitrite group, nitroxylic acid group, orthophosphoric acid group, Phosphate groups such as phosphite group, hypophosphite group, phosphinic acid group, phosphenic acid group, phosphenic acid group, diphosphate group, triphosphate group, metaphosphate group, orthophosphite group, metaboric acid Examples thereof include borate groups such as groups, perboric acid groups, subboric acid groups, boronic acid groups and boric acid groups, hydrogen carbonate groups and carbonate groups.
In addition, a phenol sulfonic acid group can be mentioned.
 上記の酸基のうち、酢酸基、2-エチルヘキサン酸基、ネオデカン酸基、ラウリン酸(ドデカン酸)基、ステアリン酸(オクタデカン酸)、メタクリル酸基、ウンデシレン酸基、安息香酸基、硫酸基、硝酸基及びフェノールスルホン酸基などが一般式(1)で表される構造を有する化合物(1)すなわち金属錯体の安定性を高めることによる本発明の効果発現の大きさの観点から好ましい。
 なお、これらの酸基は2種以上の併用としてもよい。
Among the above acid groups, acetic acid group, 2-ethylhexanoic acid group, neodecanoic acid group, lauric acid (dodecanoic acid) group, stearic acid (octadecanoic acid), methacrylic acid group, undecylene acid group, benzoic acid group, sulfate group , Nitrate group, phenol sulfonic acid group and the like are preferable from the viewpoint of the magnitude of the effect manifestation of the present invention by enhancing the stability of the compound (1) having the structure represented by the general formula (1), that is, the metal complex.
In addition, these acid groups may be used in combination of 2 or more types.
 また、R及びRは、上記酸基以外の基として、それぞれ独立に、-ORa、-SRb、又は-NRcRdを表す。Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。
 ここで、Ra、Rb、Rc及びRdは、それぞれ独立に置換基を表す場合、下記の置換基例を挙げることができる。
Further, R 1 and R 2 independently represent -ORa, -SRb, or -NRcRd as a group other than the above-mentioned acid group. Ra, Rb, Rc and Rd independently represent a hydrogen atom or a substituent.
Here, when Ra, Rb, Rc and Rd each independently represent a substituent, the following examples of substituents can be mentioned.
 すなわち、本発明において用いることができる置換基としては、例えばアルキル基(例えばメチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基など)、シクロアルキル基(例えばシクロペンチル基、シクロヘキシル基など)、アルケニル基(例えばビニル基、アリル基など)、アルキニル基(例えばエチニル基、プロパルギル基など)などを挙げることができる。 That is, examples of the substituent that can be used in the present invention include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group and a tridecyl group. , Tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), etc. it can.
 また、芳香族炭化水素基(芳香族炭素環基、アリール基などともいい、例えばフェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基など)などを挙げることができる。
 さらに、芳香族複素環基(例えばフリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基など)、複素環基(例えばピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基など)を挙げることができる。
In addition, an aromatic hydrocarbon group (also referred to as an aromatic carbocyclic group, an aryl group, etc., for example, a phenyl group, a p-chlorophenyl group, a mesityl group, a trill group, a xsilyl group, a naphthyl group, an anthryl group, an azulenyl group, an acenaphthenyl group, A fluorenyl group, a phenanthryl group, an indenyl group, a pyrenyl group, a biphenylyl group, etc.) can be mentioned.
In addition, aromatic heterocyclic groups (eg, fryl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group, carborinyl group, diaza Carbazolyl group (indicating that one of the carbon atoms constituting the carboline ring of the carborinyl group is replaced with a nitrogen atom), phthalazinyl group, etc.), heterocyclic group (for example, pyrrolidyl group, imidazolidyl group, morpholic group, Oxazolydyl group, etc.) can be mentioned.
 また、スルファモイル基(例えばアミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基など)、アシル基(例えばアセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基など)を挙げることができる。 Further, sulfamoyl groups (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, Naftylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (eg acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, (Phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.) can be mentioned.
 また、アミド基(例えばメチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基など)、カルバモイル基(例えばアミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基など)、ウレイド基(例えばメチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基など)を挙げることができる。 In addition, amide groups (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonyl Amino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (eg aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylamino Carbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexyl) Examples thereof include a ureido group, an octyl ureido group, a dodecyl ureido group, a phenyl ureido group, a naphthyl ureido group, and a 2-pyridyl amino ureido group.
 さらに、スルフィニル基(例えばメチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基など)、アルキルスルホニル基(例えばメチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基など)、アリールスルホニル基又はヘテロアリールスルホニル基(例えばフェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基など)を挙げることができる。 In addition, sulfinyl groups (eg, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl Group (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, 2) -Pyridylsulfonyl group, etc.) can be mentioned.
 また、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子など)、フッ化炭化水素基(例えばフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基など)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えばトリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基など)、リン酸エステル基(例えばジヘキシルホスホリル基など)、亜リン酸エステル基(例えばジフェニルホスフィニル基など)、ホスホノ基などが挙げられる。 In addition, halogen atoms (for example, fluorine atom, chlorine atom, bromine atom, etc.), fluorinated hydrocarbon groups (for example, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group. , Hydroxyl group, mercapto group, silyl group (eg, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphate ester group (eg, dihexylphosphoryl group, etc.), phosphite ester group (eg, dihexylphosphoryl group, etc.) Diphenylphosphinyl group, etc.), phosphono group, etc. can be mentioned.
 -ORaのRaとしては、アルキル基、芳香族炭化水素基、芳香族複素環基及び複素環基などが好ましい。
 -SRbのRbとしては、アルキル基、芳香族炭化水素基、芳香族複素環基及び複素環基などが好ましい。
 -NRcRdのRc及びRdとしては、アルキル基、芳香族炭化水素基、芳香族複素環基及び複素環基などが好ましい。
As Ra of −ORa, an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group and the like are preferable.
As Rb of -SRb, an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group and the like are preferable.
As Rc and Rd of -NRcRd, an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group and the like are preferable.
 Rは、窒素含有配位子を表す。当該窒素含有配位子は、特に構造上限定されるものではないが、銅(Cu)又は亜鉛(Zn)に配位し易い配位子であることが好ましい。 R 3 represents a nitrogen-containing ligand. The nitrogen-containing ligand is not particularly structurally limited, but is preferably a ligand that easily coordinates with copper (Cu) or zinc (Zn).
 本発明において、好適に用いられる窒素含有配位子としては、2-アミノエタノ―ル(モノエタノールアミン)、ジエタノールアミン、トリエタノールアミン、トリエチレンテトラミン、テトラメチレンジアミン、4-(2-アミノエチル)ピリジン、2,2′-ビピリジル、エチレンジアミン四酢酸、5,5′-ビス(トリイソプロポキシシリル)-2,2′-ビピリジン、ヘキシルアミン、ドデシルアミン、3-アミノプロピルトリエトキシシランなどが挙げられる。 As the nitrogen-containing ligand preferably used in the present invention, 2-aminoethanol (monoethanolamine), diethanolamine, triethanolamine, triethylenetetramine, tetramethylenediamine, 4- (2-aminoethyl) pyridine , 2,2'-bipyridyl, ethylenediaminetetraacetic acid, 5,5'-bis (triisopropoxysilyl) -2,2'-bipyridine, hexylamine, dodecylamine, 3-aminopropyltriethoxysilane and the like.
 前記一般式(1)で表される構造を有する化合物(1)は、窒素含有配位子を有する金属錯体であり、また中心金属Meが、銅(Cu)又は亜鉛(Zn)であることから、銀や銅などの金属と相互作用が強く、かつ封止材に用いられるシリコーンなど素材との相互作用も強い。
 したがって、硫化水素などの硫黄化合物や硫黄同素体を含むガス中の、硫黄化合物と銀や銅などとの反応が防止され、硫化銀や硫化銅などの金属硫化物の生成が防止される。
The compound (1) having the structure represented by the general formula (1) is a metal complex having a nitrogen-containing ligand, and the central metal Me is copper (Cu) or zinc (Zn). It has a strong interaction with metals such as silver and copper, and also has a strong interaction with materials such as silicone used as a sealing material.
Therefore, the reaction between the sulfur compound and silver, copper, etc. in the gas containing a sulfur compound such as hydrogen sulfide or a sulfur homogeneous substance is prevented, and the formation of metal sulfides such as silver sulfide and copper sulfide is prevented.
 一般式(1)で表される構造を有する化合物(1)の具体例(適宜、「例示化合物」という。)を下記表I及び表IIに示す。
なお、本発明に係る化合物(1)は、下記例に限定されるものではない。
Specific examples of the compound (1) having the structure represented by the general formula (1) (appropriately referred to as “exemplified compound”) are shown in Tables I and II below.
The compound (1) according to the present invention is not limited to the following examples.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (1.3)硫化防止剤
 本発明の硫化防止剤は、前記一般式(1)で表される構造を有する化合物(1)を含有することを特徴とする。
 当該硫化防止剤は、特に、硫化水素などの硫黄化合物や硫黄同素体を含むガスによる金属の硫化を防止することができることが特徴である。なお、金属以外の物質の硫化防止にも効果を有する場合もあり得る。
(1.3) Anti-Sulfide Agent The anti-sulfurization agent of the present invention is characterized by containing a compound (1) having a structure represented by the general formula (1).
The anti-sulfuration agent is particularly characterized in that it can prevent the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope. It may also be effective in preventing sulfurization of substances other than metals.
 当該硫化防止剤には、本発明の効果を阻害しない範囲で、目的に応じて他種の化合物を含有させてもよい。なお、硫化防止剤における前記一般式(1)で表される構造を有する化合物(1)の含有量は、60質量%以上であることが好ましい。 The anti-sulfuration agent may contain other types of compounds depending on the purpose, as long as the effects of the present invention are not impaired. The content of the compound (1) having the structure represented by the general formula (1) in the anti-sulfuration agent is preferably 60% by mass or more.
 硫化防止剤の使用方法は、特に限定されるものではなく、化合物を溶媒に溶解又は分散させた塗布液として電子デバイスの金属部材に塗布してもよいし、後述する封止材を構成する樹脂などの媒体に含有させることも好ましい。 The method of using the anti-sulfuration agent is not particularly limited, and the compound may be applied to a metal member of an electronic device as a coating liquid in which a compound is dissolved or dispersed in a solvent, or a resin constituting a sealing material described later. It is also preferable to include it in a medium such as.
 塗布液を調製する際に必要であれば用いることのできる有機溶媒としては、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などの炭化水素溶媒、ハロゲン化炭化水素溶媒、又は、脂肪族エーテル又は脂環式エーテルなどのエーテル類などが適宜使用できる。 Examples of the organic solvent that can be used when preparing the coating liquid include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbon solvents, or Ethers such as aliphatic ethers and alicyclic ethers can be appropriately used.
 塗布液における本発明に係る化合物(1)の濃度は、目的とする厚さや塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。 The concentration of the compound (1) according to the present invention in the coating liquid varies depending on the target thickness and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass.
 調製した塗布液は、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法などの塗布による方法、インクジェットプリント法を含む印刷法などのパターニングによる方法などの湿式形成法が挙げられ、材料に応じて使用できる。これらのうち好ましいのは、インクジェットプリント法である。インクジェットプリント法については、特に限定されるものではなく、公知の方法を採用することができる。 The prepared coating liquid may be a spray coating method, a spin coating method, a blade coating method, a dip coating method, a casting method, a roll coating method, a bar coating method, a die coating method, or a printing method including an inkjet printing method. A wet forming method such as a patterning method can be mentioned and can be used depending on the material. Of these, the inkjet printing method is preferable. The inkjet printing method is not particularly limited, and a known method can be adopted.
 (1.4)封止材
 本発明において、「封止材」とは、前記金属含有部材すなわち電子デバイスにおける金属を含有する機能性部材を被覆して、硫化水素などの硫黄化合物や硫黄同素体を含むガスによる金属の硫化を防止し保護すること目的とする、膜又は層状の部材をいう。なお、水分や酸素ガスの影響を防止する機能も持ち合わせている形態であることも好ましい。
(1.4) Encapsulant In the present invention, the "encapsulant" is a metal-containing member, that is, a metal-containing functional member in an electronic device, which is coated with a sulfur compound such as hydrogen sulfide or a sulfur allotrope. A film or layered member whose purpose is to prevent and protect metal from sulfurization by the contained gas. It is also preferable that the form also has a function of preventing the influence of water and oxygen gas.
 本発明では、前記硫化防止剤を金属含有部材に塗布して被覆した後に、更に封止材を被覆して金属含有部材を保護してもよい。また、封止材中に前記硫化防止剤を含有させてもよい(図1A及び図1B参照)。 In the present invention, the anti-sulfuration agent may be applied to the metal-containing member and coated, and then a sealing material may be further coated to protect the metal-containing member. Further, the anti-sulfuration agent may be contained in the sealing material (see FIGS. 1A and 1B).
 封止材を構成する素材は、特に限定されるものではなく、種々の素材を用いることができるが、好ましい素材としては、例えば熱可塑性樹脂及び熱硬化性樹脂、光硬化性樹脂などを挙げることができる。具体的には以下のような樹脂を例示することができる。 The material constituting the sealing material is not particularly limited, and various materials can be used, and preferred materials include, for example, a thermoplastic resin, a thermosetting resin, and a photocurable resin. Can be done. Specifically, the following resins can be exemplified.
 例えばシリコーン樹脂、エポキシ系樹脂、ポリエチレン、ポリプロピレン、ポリブチレン、及びそれらの共重合体類、シクロポリオレフィンなどのポリオレフィン系樹脂、アルキド系樹脂、グアナミン系樹脂、フェノール系樹脂、テトラフルオロエチレン(PTFE)、フッ化エチレンポリプロピレンコポリマー(FEP)などのフッ素プラスチック系樹脂、ポリアクリロニトリル系樹脂、ポリスチレン系樹脂、ポリアセタール系樹脂、ナイロン6、11、12、46、66、610、612、及びそれらの共重合体などのポリアミド系樹脂、ポリメチルアクリレート、ポリメチルメタクリレート、エチレン-エチルアクリレート共重合体類などの(メタ)アクリル酸エステル系樹脂、熱可塑性ポリイミド、ポリエーテルイミドなどのポリイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエチレンオキサイド系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)及びそれらの共重合体類などのポリエステル系樹脂、ポリ酢酸ビニル系樹脂、ポリビニルアルコール系樹脂、ポリビニルエーテル系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンオキシド系樹脂、ポリメチルペンテン系樹脂、ポリウレタン系樹脂、メラミン系樹脂、ユリア系樹脂、ポリカーボネート系樹脂、フラン系樹脂、ケイ素系樹脂、アイオノマー系樹脂、ポリイソシアネート系樹脂、ポリテルペン系樹脂、及びこれらの共重合体などを挙げることができる。 For example, silicone resin, epoxy resin, polyethylene, polypropylene, polybutylene and their copolymers, polyolefin resin such as cyclopolyforme, alkyd resin, guanamine resin, phenol resin, tetrafluoroethylene (PTFE), foot Fluoroplastic resins such as ethylene-polypropylene copolymer (FEP), polyacrylonitrile resins, polystyrene resins, polyacetal resins, nylons 6, 11, 12, 46, 66, 610, 612, and copolymers thereof. Polyamic resin, polymethyl acrylate, polymethyl methacrylate, (meth) acrylic acid ester resin such as ethylene-ethyl acrylate copolymers, polyimide resin such as thermoplastic polyimide and polyetherimide, polyether ether ketone resin , Polyethylene oxide resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and their copolymers and other polyester resins, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl ether resin, polyphenylene ether resin. Resin, polyphenylene oxide resin, polymethylpentene resin, polyurethane resin, melamine resin, urea resin, polycarbonate resin, furan resin, silicon resin, ionomer resin, polyisocyanate resin, polyterpene resin, And these copolymers and the like.
 これらの中でもシリコーン樹脂、エポキシ系樹脂、シクロポリオレフィン系樹脂、ポリアクリロニトリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、(メタ)アクリル酸エステル系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、及びこれらの共重合体が好ましく、特定の性質を付与するために変性された樹脂であってもよい。また、これら樹脂は単独又は2種以上をブレンドして使用することもできる。 Among these, silicone resin, epoxy resin, cyclopolyolefin resin, polyacrylonitrile resin, polystyrene resin, polyamide resin, (meth) acrylic acid ester resin, polyether ether ketone resin, polyester resin, polycarbonate resin. Resins and copolymers thereof are preferable, and resins modified to impart specific properties may be used. Further, these resins can be used alone or in a blend of two or more kinds.
 (1.5)硫化防止剤を含有する封止材
 前述のように、本発明に係る封止材は、前記硫化防止剤を含有することも好ましい。当該封止材は、前記硫化防止剤を含有する塗布液を調製し、電子デバイス上に塗布して焼結又は紫外線を照射して重縮合させながら被膜化することで形成することができる。また、別途作製された封止材を用いることもできる。
(1.5) Encapsulant Containing Anti-Sulfurization Agent As described above, the encapsulant according to the present invention preferably contains the anti-sulfurization agent. The encapsulant can be formed by preparing a coating liquid containing the anti-sulfuration agent, coating it on an electronic device, sintering it, or irradiating it with ultraviolet rays to form a film while polycondensing it. Alternatively, a separately produced encapsulant can be used.
 塗布により封止材を形成する場合の材料としては、熱硬化型又はUV硬化型の無溶剤モノマーが好ましく、特に、硬化型シリコーンモノマーが好ましい。無溶剤モノマーを塗布後、熱硬化及び/又はUV硬化により固体薄膜化させ、封止材層を形成する。
 なお、当該封止材には、水分・酸素を吸収する化合物を混合してもよい。
 塗布液を塗布して封止材層を形成する場合の、溶媒及び塗布法は、前記硫化防止剤の場合と同様のものが使用できる。
As a material for forming a sealing material by coating, a thermosetting type or UV curable type solvent-free monomer is preferable, and a curable type silicone monomer is particularly preferable. After applying the solvent-free monomer, it is made into a solid thin film by thermosetting and / or UV curing to form a sealing material layer.
The encapsulant may be mixed with a compound that absorbs water and oxygen.
When the coating liquid is applied to form the sealing material layer, the same solvent and coating method as in the case of the anti-sulfuration agent can be used.
 封止材層の厚さは、ドライ膜で10nm~100μmの範囲内、より好ましくは、0.1~1μmの範囲内であることが、硫化防止効果を発現する上で好ましい。 The thickness of the encapsulant layer is preferably in the range of 10 nm to 100 μm, more preferably in the range of 0.1 to 1 μm in the dry film, in order to exhibit the anti-sulfuration effect.
 封止材は、金属の硫化防止効果を発現する観点から、シリコーン樹脂を含有することが好ましく、当該シリコーン樹脂としては、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサンなどを使用することができる。さらに、フッ素原子を含有するシロキサンも好適に使用することができる。 The encapsulant preferably contains a silicone resin from the viewpoint of exhibiting the anti-sulfurization effect of the metal, and as the silicone resin, polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, or the like can be used. .. Further, a siloxane containing a fluorine atom can also be preferably used.
 本発明に係る封止材層に用いられるシリコーン樹脂としては低分子体であってもよいし、高分子体でもよい。特に好ましくはオリゴマーやポリマーであり、具体的には、ポリシロキサン系化合物、ポリジメチルシロキサン系化合物、ポリジメチルシロキサン系共重合体などのポリシロキサン誘導体が挙げられる。また、これら化合物を組み合わせたものであってもよい。 The silicone resin used for the encapsulant layer according to the present invention may be a low molecular weight material or a high molecular weight material. Particularly preferred are oligomers and polymers, and specific examples thereof include polysiloxane derivatives such as polysiloxane-based compounds, polydimethylsiloxane-based compounds, and polydimethylsiloxane-based copolymers. Further, it may be a combination of these compounds.
 塗布後の塗布膜を固定化するには、低温で重合反応が可能なプラズマやオゾンや紫外線を使うことも好ましく、紫外線の中でも真空紫外線処理(VUVという。)を用いることが、薄膜表面の平滑性向上のために好ましい。 In order to immobilize the coating film after coating, it is preferable to use plasma, ozone, or ultraviolet rays that can carry out a polymerization reaction at a low temperature. Among the ultraviolet rays, using vacuum ultraviolet treatment (called VUV) smoothes the surface of the thin film. It is preferable for improving the sex.
 真空紫外線処理における紫外線の発生手段としては、例えばメタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザーなどが挙げられるが、特に限定されないがエキシマランプを用いることが好ましい。 Examples of means for generating ultraviolet rays in the vacuum ultraviolet treatment include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, UV light lasers, and the like, but the excimer lamps are not particularly limited. It is preferable to use it.
 本発明の封止材には、沸点が150℃以上の有機溶媒を含有することが、本発明の効果を高める点で好ましい。
 沸点150℃以上の溶媒例としては、シクロヘキサノン、N-メチルピロリドン、シクロヘプタノン、アニソール、テトラリン、シクロヘキシルベンゼン、メチルアニソール、フェノキシトルエン、メチルナフタレン、安息香酸ブチル、ジフェニルエーテル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、エチレングリコール、グリセリンなどを挙げることができる。
It is preferable that the encapsulant of the present invention contains an organic solvent having a boiling point of 150 ° C. or higher from the viewpoint of enhancing the effect of the present invention.
Examples of solvents having a boiling point of 150 ° C. or higher include cyclohexanone, N-methylpyrrolidone, cycloheptanone, anisole, tetraline, cyclohexylbenzene, methylanisole, phenoxytoluene, methylnaphthalene, butyl benzoate, diphenyl ether, N, N-dimethylformamide, and the like. Examples thereof include dimethyl sulfoxide, N, N-dimethylacetamide, ethylene glycol, glycerin and the like.
 2.電子デバイス
 本発明の硫化防止剤及びこれを含有する封止材は、種々の電子デバイスに応用できるが、本明細書では、LED素子、光電変換素子及び有機エレクトロルミネッセンス素子、ならびにそれらを用いた発光装置、太陽電池及び有機EL表示装置について説明する。
2. Electronic device The anti-sulfurization agent of the present invention and the encapsulant containing the same can be applied to various electronic devices, but in the present specification, an LED element, a photoelectric conversion element and an organic electroluminescence element, and light emission using them are used. The device, the solar cell, and the organic EL display device will be described.
 (2.1)発光ダイオード(LED)素子などを用いた発光装置
 本発明に係る発光装置には、図2に示されるように、電極15を有する基板11と、電極15と電気的に接続された発光素子12と、電極15及び発光素子12を被覆する封止材層13とが含まれる。発光装置100には、必要に応じて、発光素子12や封止材層13を被覆する波長変換層14が含まれてもよい。
(2.1) Light-emitting device using a light-emitting diode (LED) element or the like The light-emitting device according to the present invention is electrically connected to a substrate 11 having an electrode 15 and an electrode 15 as shown in FIG. The light emitting element 12 and the sealing material layer 13 that coats the electrode 15 and the light emitting element 12 are included. If necessary, the light emitting device 100 may include a wavelength conversion layer 14 that covers the light emitting element 12 and the sealing material layer 13.
 ここで、本発明に係る発光装置100に含まれる発光素子12の種類は、特に制限されず、半導体レーザー素子や、発光ダイオード(LED)素子、有機EL素子などでありうる。以下において、まず、発光素子がLED素子である場合を例に、本発明に係る発光装置について説明する。 Here, the type of the light emitting element 12 included in the light emitting device 100 according to the present invention is not particularly limited, and may be a semiconductor laser element, a light emitting diode (LED) element, an organic EL element, or the like. In the following, first, the light emitting device according to the present invention will be described by taking the case where the light emitting element is an LED element as an example.
 (2.1.1)基板
 図2において、基板11は、LED素子12を支持するための部材である。基板11には、金属からなる電極15が形成されており、当該電極15は、基板11の外部に配置される電源(図示せず)から、LED素子12に電気を供給する機能を有する。また、電極15は、LED素子12が発する光を、発光装置100の光取り出し面側に反射する機能をさらに有してもよい。電極15の形状は特に制限されず、発光装置100の種類や用途などに合わせて適宜選択される。
(2.1.1) Substrate In FIG. 2, the substrate 11 is a member for supporting the LED element 12. An electrode 15 made of metal is formed on the substrate 11, and the electrode 15 has a function of supplying electricity to the LED element 12 from a power source (not shown) arranged outside the substrate 11. Further, the electrode 15 may further have a function of reflecting the light emitted by the LED element 12 toward the light extraction surface side of the light emitting device 100. The shape of the electrode 15 is not particularly limited, and is appropriately selected according to the type and application of the light emitting device 100.
 基板11は、平板状であってもよく、図2に示されるようにキャビティ(凹部)を有してもよい。基板11がキャビティを有する場合、キャビティの形状は特に制限されない。
 例えば円錐台状であってもよく、角錐台状や、円柱状、角柱状などであってもよい。
The substrate 11 may have a flat plate shape or may have a cavity (recess) as shown in FIG. When the substrate 11 has a cavity, the shape of the cavity is not particularly limited.
For example, it may have a truncated cone shape, a truncated cone shape, a columnar shape, a prismatic shape, or the like.
 基板11は、絶縁性及び耐熱性を有することが好ましく、セラミック樹脂や耐熱性樹脂からなることが好ましい。耐熱性樹脂の例には、液晶ポリマー、ポリフェニレンスルフィド、芳香族ナイロン、エポキシ樹脂、硬質シリコーンレジン、ポリフタル酸アミドなどが含まれる。 The substrate 11 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin. Examples of heat-resistant resins include liquid crystal polymers, polyphenylene sulfides, aromatic nylons, epoxy resins, hard silicone resins, polyphthalic acid amides and the like.
 また、基板11には、無機フィラーが含まれていてもよい。無機フィラーは、酸化チタン、酸化亜鉛、アルミナ、シリカ、チタン酸バリウム、リン酸カルシウム、炭酸カルシウム、ホワイトカーボン、タルク、炭酸マグネシウム、窒化ホウ素、グラスファイバーなどでありうる。 Further, the substrate 11 may contain an inorganic filler. The inorganic filler may be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber and the like.
 電極15を有する基板11の作製方法は特に制限されず、一般的には、所望の形状のリードフレームと、樹脂とを一体成型して得られる。 The method for producing the substrate 11 having the electrode 15 is not particularly limited, and it is generally obtained by integrally molding a lead frame having a desired shape and a resin.
 (2.1.2)LED素子
 LED素子12は、基板11に形成された電極15と電気的に接続されて、特定の波長の光を発する素子である。LED素子12が出射する光の波長は特に制限されない。LED素子12は、例えば青色光(420~485nm程度の光)を発する素子であってもよく、紫外光を発する素子であってもよい。またさらに、緑色光や赤色光などを発する素子であってもよい。
(2.1.2) LED element The LED element 12 is an element that is electrically connected to an electrode 15 formed on a substrate 11 and emits light having a specific wavelength. The wavelength of the light emitted by the LED element 12 is not particularly limited. The LED element 12 may be, for example, an element that emits blue light (light of about 420 to 485 nm) or an element that emits ultraviolet light. Further, it may be an element that emits green light, red light, or the like.
 LED素子12の構成は、特に制限されない。LED素子12が、青色光を発する素子である場合、LED素子12は、n-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体などでありうる。 The configuration of the LED element 12 is not particularly limited. When the LED element 12 is an element that emits blue light, the LED element 12 includes an n-GaN-based compound semiconductor layer (clad layer), an InGaN-based compound semiconductor layer (light emitting layer), and a p-GaN-based compound semiconductor layer. It may be a laminate of a (clad layer) and a transparent electrode layer.
 また、LED素子12の形状は特に制限されず、例えば(200~300)μm×(200~300)μmの発光面を有するものでありうる。またLED素子12の高さは、通常50~200μm程度である。LED素子12は、上面だけでなく、側面や底面からも光が取り出されるものであってもよい。なお、図2に示される発光装置100には、基板11に1つのLED素子12のみが配置されているが、基板11に複数のLED素子12が配置されてもよい。 Further, the shape of the LED element 12 is not particularly limited, and may have, for example, a light emitting surface of (200 to 300) μm × (200 to 300) μm. The height of the LED element 12 is usually about 50 to 200 μm. The LED element 12 may be one in which light is extracted not only from the upper surface but also from the side surface and the bottom surface. In the light emitting device 100 shown in FIG. 2, only one LED element 12 is arranged on the substrate 11, but a plurality of LED elements 12 may be arranged on the substrate 11.
 LED素子12と前述の電極15との接続方法は特に制限されない。例えばLED素子12と電極15とが、図2に示されるように、金属ワイヤ16を介して接続されてもよい。また、LED素子12と電極15とが、突起電極(図示せず)を介して接続されてもよい。LED素子12と電極15とが、金属ワイヤを介して接続される態様をワイヤボンディング型という。一方、LED素子12と電極15とが突起電極を介して接続される態様をフリップチップボンディング型という。 The connection method between the LED element 12 and the above-mentioned electrode 15 is not particularly limited. For example, the LED element 12 and the electrode 15 may be connected via a metal wire 16 as shown in FIG. Further, the LED element 12 and the electrode 15 may be connected via a protrusion electrode (not shown). A mode in which the LED element 12 and the electrode 15 are connected via a metal wire is called a wire bonding type. On the other hand, a mode in which the LED element 12 and the electrode 15 are connected via a protruding electrode is called a flip chip bonding type.
 フリップチップボンディング型の発光装置100では、LED素子12と基板11との隙間にアンダーフィル材(図示せず)が充填されてもよい。アンダーフィル材は、シリコーン樹脂や、エポキシ樹脂、後述の封止材層13と同様の材料などからなる部材でありうる。 In the flip-chip bonding type light emitting device 100, an underfill material (not shown) may be filled in the gap between the LED element 12 and the substrate 11. The underfill material may be a member made of a silicone resin, an epoxy resin, a material similar to the sealing material layer 13 described later, or the like.
 (2.1.3)封止材層
 封止材層13は、前述のLED素子12や電極15を被覆する層であり、LED素子12や、電極15を発光装置外部の湿度や硫化水素ガスから保護する層である。封止材層13の形成領域は特に制限されず、封止材層13はLED素子12及び電極15のみを被覆する層であってもよい。また、LED素子12や電極15だけでなく、LED素子12が配置された側の基板11を全て被覆する層であってもよい。
(2.1.3) Encapsulant layer The encapsulant layer 13 is a layer that covers the LED element 12 and the electrode 15 described above, and the LED element 12 and the electrode 15 are covered with humidity and hydrogen sulfide gas outside the light emitting device. It is a layer that protects from. The formation region of the encapsulant layer 13 is not particularly limited, and the encapsulant layer 13 may be a layer that covers only the LED element 12 and the electrode 15. Further, it may be a layer that covers not only the LED element 12 and the electrode 15 but also the substrate 11 on the side on which the LED element 12 is arranged.
 封止材層13には、ポリシロキサンと、本発明に係る化合物(1)が含有されている。
 封止材層13の厚さは、0.1~15μmの範囲内であり、好ましくは0.3~4μmの範囲内である。封止材層の厚さが15μm以下であれば、封止材層3の成膜時に歪みが生じ難く、クラックが生じ難い。
The encapsulant layer 13 contains polysiloxane and the compound (1) according to the present invention.
The thickness of the encapsulant layer 13 is in the range of 0.1 to 15 μm, preferably in the range of 0.3 to 4 μm. When the thickness of the sealing material layer is 15 μm or less, distortion is unlikely to occur during film formation of the sealing material layer 3, and cracks are unlikely to occur.
 一方、封止材層13の厚さが0.1μm以上であると、封止材層3のガスバリア性が十分に高まりやすく、LED素子12や電極15などが、発光装置100外部の湿度や硫化成分から十分に保護される。封止材層13の厚さは、LED素子12の上面(発光面)に配置された封止材層13の最大厚さとする。また、層の厚さは、レーザホロゲージを用いて測定される。 On the other hand, when the thickness of the encapsulant layer 13 is 0.1 μm or more, the gas barrier property of the encapsulant layer 3 is likely to be sufficiently enhanced, and the LED element 12, the electrode 15, and the like are subject to humidity and sulfurization outside the light emitting device 100. Well protected from the ingredients. The thickness of the encapsulant layer 13 is the maximum thickness of the encapsulant layer 13 arranged on the upper surface (light emitting surface) of the LED element 12. The layer thickness is also measured using a laser holo gauge.
 (2.1.4)波長変換層
 本発明に係る発光装置には、波長変換層14が含まれてもよい。波長変換層14は、LED素子12が出射した特定波長の光を、他の特定波長の光に変換する層である。波長変換層14は、エポキシ樹脂やシリコーン樹脂などの中に蛍光体粒子が分散された層でありうる。
(2.1.4) Wavelength conversion layer The light emitting device according to the present invention may include a wavelength conversion layer 14. The wavelength conversion layer 14 is a layer that converts light of a specific wavelength emitted by the LED element 12 into light of another specific wavelength. The wavelength conversion layer 14 may be a layer in which phosphor particles are dispersed in an epoxy resin, a silicone resin, or the like.
 波長変換層14に含まれる蛍光体粒子は、LED素子12から出射する光により励起されて、LED素子12からの出射光と異なる波長の蛍光を発するものであればよい。
 例えば黄色の蛍光を発する蛍光体粒子の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体などがある。YAG蛍光体は、青色LED素子から出射される青色光(波長420~485nmの範囲内)を受けて、黄色の蛍光(波長550~650nmの範囲内)を発する。
The phosphor particles contained in the wavelength conversion layer 14 may be excited by the light emitted from the LED element 12 and emit fluorescence having a wavelength different from the light emitted from the LED element 12.
For example, examples of phosphor particles that emit yellow fluorescence include YAG (yttrium aluminum garnet) phosphors. The YAG phosphor receives blue light (wavelength in the range of 420 to 485 nm) emitted from the blue LED element and emits yellow fluorescence (wavelength in the range of 550 to 650 nm).
 蛍光体粒子は、例えば(a)所定の組成を有する混合原料に、フラックス(フッ化アンモニウムなどのフッ化物)を適量混合して加圧し、これを成形体とする。(b)得られた成形体を坩堝に詰め、空気中で1350~1450℃の温度範囲で、2~5時間焼成し、焼結体とすることで得られる。 For the phosphor particles, for example, (a) a mixed raw material having a predetermined composition is mixed with an appropriate amount of flux (fluoride such as ammonium fluoride) and pressed, and this is used as a molded product. (B) It is obtained by packing the obtained molded product in a crucible and firing it in air in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Gaなどの酸化物、又は高温で容易に酸化物となる化合物を、化学量論比で十分に混合して得られる。また、所定の組成を有する混合原料は、(a)Y、Gd、Ce、Smの希土類元素を化学両論比で酸に溶解した溶液と、シュウ酸とを混合し、共沈酸化物を得る。(b)この共沈酸化物と、酸化アルミニウム、又は酸化ガリウムとを混合しても得られる。
 蛍光体の種類は、YAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体など、他の蛍光体であってもよい。
The mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, in a stoichiometric ratio. Be done. Further, the mixed raw material having a predetermined composition is obtained by mixing (a) a solution of rare earth elements of Y, Gd, Ce and Sm in an acid in a chemical ratio and oxalic acid to obtain a co-precipitated oxide. (B) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
The type of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet-based phosphor that does not contain Ce.
 蛍光体粒子の平均粒径は1~50μmの範囲内であることが好ましく、10μm以下であることがより好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)が高くなる。
 一方、蛍光体粒子の粒径が大きすぎると、蛍光体粒子と樹脂との界面に生じる隙間が大きくなる。これにより、波長変換層14の強度が低下しやすい。蛍光体粒子の平均粒径は、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置などがある。波長変換層14中に含まれる蛍光体粒子の量は、波長変換層14の全質量に対して、通常5~15質量%の範囲内である。
The average particle size of the phosphor particles is preferably in the range of 1 to 50 μm, and more preferably 10 μm or less. The larger the particle size of the phosphor particles, the higher the luminous efficiency (wavelength conversion efficiency).
On the other hand, if the particle size of the phosphor particles is too large, the gap formed at the interface between the phosphor particles and the resin becomes large. As a result, the strength of the wavelength conversion layer 14 tends to decrease. The average particle size of the phosphor particles refers to the value of D50 measured by a laser diffraction type particle size distribution meter. An example of a laser diffraction type particle size distribution measuring device is a laser diffraction type particle size distribution measuring device manufactured by Shimadzu Corporation. The amount of phosphor particles contained in the wavelength conversion layer 14 is usually in the range of 5 to 15% by mass with respect to the total mass of the wavelength conversion layer 14.
 波長変換層14の厚さは、25μm~5mmの範囲内程度であることが好ましい。波長変換層14の厚さが厚すぎると、蛍光体粒子の濃度が過剰に低くなり、蛍光体粒子が均一に分散されない場合がある。波長変換層14の厚さは、LED素子12の発光面上に成膜された波長変換層14の最大厚さを意味する。波長変換層14の厚さは、レーザホロゲージで測定することができる。 The thickness of the wavelength conversion layer 14 is preferably in the range of 25 μm to 5 mm. If the thickness of the wavelength conversion layer 14 is too thick, the concentration of the phosphor particles becomes excessively low, and the phosphor particles may not be uniformly dispersed. The thickness of the wavelength conversion layer 14 means the maximum thickness of the wavelength conversion layer 14 formed on the light emitting surface of the LED element 12. The thickness of the wavelength conversion layer 14 can be measured with a laser holo gauge.
 (2.1.5)LED発光装置の基本的構成についての補足
 本発明に係るLED発光装置の基本的な構成としては、以下で説明する表面実装型(SMTタイプ)のLED発光装置、パッケージ方法が異なるチップサイズであるCSPタイプ、及びTFTを用いるTFTタイプを挙げることができる。
(2.1.5) Supplementary note on basic configuration of LED light emitting device The basic configuration of the LED light emitting device according to the present invention includes a surface mount type (SMT type) LED light emitting device and a packaging method described below. Examples include a CSP type having different chip sizes and a TFT type using a TFT.
 表面実装型(SMTタイプ、Surface Mount Technology)のLED発光装置とは、金属端子(リードフレーム)の付いた基板上にLED素子を載せて、ボンディングワイヤーでLED素子と電極をつなぐ実装方式である。 A surface mount type (SMT type, Surface Mount Technology) LED light emitting device is a mounting method in which an LED element is placed on a substrate with a metal terminal (lead frame) and the LED element and the electrode are connected by a bonding wire.
 また、パッケージ方法が異なるチップサイズであるCSPタイプ(Chip Size Package)のLED発光装置とは、LED素子自体に金属化された陽極及び陰極を有し、回路基板に直接はんだ付けする実装方式である。 Further, the CSP type (Chip Size Package) LED light emitting device having a chip size different in the packaging method is a mounting method in which the LED element itself has a metalized anode and cathode and is directly soldered to the circuit board. ..
 また、TFTタイプのLED発光装置とは、TFTを具備してLEDの発光を制御する方式である。 Further, the TFT type LED light emitting device is a method in which a TFT is provided to control the light emission of the LED.
 図3は、本発明に係る硫化防止剤である前記化合物(1)を含有するSMTタイプのLED発光装置の一例を示す概略断面図である。
 図3に示すLED発光装置200は、表面実装型(SMTタイプ)のLED発光装置を示しており、パッケージ基板Pを構成する絶縁性基板20上に、電極なるリードフレーム21とLED素子25が接続用端子24を介して接続され、LED素子25表面に設けたはんだ26とボンディングワイヤー27を介して、リードフレーム21と接続されている。
FIG. 3 is a schematic cross-sectional view showing an example of an SMT type LED light emitting device containing the compound (1), which is an antioxidant according to the present invention.
The LED light emitting device 200 shown in FIG. 3 shows a surface mount type (SMT type) LED light emitting device, and a lead frame 21 as an electrode and an LED element 25 are connected on an insulating substrate 20 constituting the package substrate P. It is connected via the terminal 24, and is connected to the lead frame 21 via a solder 26 and a bonding wire 27 provided on the surface of the LED element 25.
 このLED素子25や、ボンディングワイヤー27、リードフレーム21などを被覆する構成で封止材層28が設けられ、封止材層28中には、蛍光体粒子29aと共に、本発明に係る硫化防止剤である化合物(1)29bを含有させた構成である。 The encapsulant layer 28 is provided so as to cover the LED element 25, the bonding wire 27, the lead frame 21, and the like. In the encapsulant layer 28, together with the phosphor particles 29a, the anti-sulfuration agent according to the present invention. It is a structure containing the compound (1) 29b which is.
 図3の構成では、更に封止材層28の周辺部には、反射層23が形成されている。反射層23はあってもなくてもよい。この反射層23は反射率の高いAgが好ましく、またAg以外にAlやNi、Tiなどの金属を用いることもできる。 In the configuration of FIG. 3, a reflective layer 23 is further formed around the sealing material layer 28. The reflective layer 23 may or may not be present. The reflective layer 23 is preferably Ag having a high reflectance, and a metal such as Al, Ni, or Ti can be used in addition to Ag.
 図3で示す構成のLED発光装置200では、蛍光体29aを含有する封止材層28に分散状態で存在している硫化防止剤含有粒子29bが、LED発光装置200の外部より侵入してくる硫化水素と反応し、当該硫化水素を捕獲することにより、LED素子の構成材料や反射層を構成する銀などの金属成分の腐食を、極めて効率的に防止することができる。 In the LED light emitting device 200 having the configuration shown in FIG. 3, the anti-sulfuration agent-containing particles 29b existing in a dispersed state in the sealing material layer 28 containing the phosphor 29a invade from the outside of the LED light emitting device 200. By reacting with hydrogen sulfide and capturing the hydrogen sulfide, corrosion of metal components such as silver constituting the constituent material of the LED element and the reflective layer can be prevented extremely efficiently.
 (2.1.6)発光装置の製造方法
 前述の発光装置の製造方法は、以下の3つ工程を有する態様の方法でありうる。
 (1)LED素子が実装された基板を準備する工程
 (2)LED素子及び電極を被覆するように、封止用組成物を塗布する工程
 (3)封止用組成物を硬化させる工程
(2.1.6) Method for manufacturing a light emitting device The method for manufacturing a light emitting device described above may be a method having the following three steps.
(1) Step of preparing a substrate on which the LED element is mounted (2) Step of applying a sealing composition so as to cover the LED element and electrodes (3) Step of curing the sealing composition
 発光装置の製造方法には、必要に応じて(4)封止材層上に、蛍光体粒子を含む波長変換層を形成する工程を有してもよい。 The method for manufacturing the light emitting device may include (4) a step of forming a wavelength conversion layer containing phosphor particles on the encapsulant layer, if necessary.
 [1]LED素子準備工程
 LED素子準備工程では、LED素子と電極とが接続された基板を準備する。例えば前述の電極を有する基板を準備し、当該基板にLED素子を固定し、基板の電極と、LED素子のカソード電極及びアノード電極とを接続する工程でありうる。LED素子と電極との接続方法や、LED素子を基板に固定する方法は特に制限されず、従来公知の方法と同様の方法でありうる。
[1] LED element preparation step In the LED element preparation step, a substrate to which the LED element and the electrode are connected is prepared. For example, it may be a step of preparing a substrate having the above-mentioned electrodes, fixing the LED element to the substrate, and connecting the electrode of the substrate with the cathode electrode and the anode electrode of the LED element. The method of connecting the LED element and the electrode and the method of fixing the LED element to the substrate are not particularly limited, and may be the same method as the conventionally known method.
 [2]封止用組成物塗布工程
 封止用組成物塗布工程は、前述の硫化防止剤含有塗布液を、電極、及びLED素子を覆うように塗布する工程でありうる。塗布液には、金属硫化防止、ポリシロキサン前駆体、メルカプト基含有シランカップリング剤、及び溶媒が含まれる。
[2] Sealing Composition Coating Step The sealing composition coating step may be a step of applying the above-mentioned anti-sulfuration agent-containing coating liquid so as to cover the electrodes and the LED element. The coating liquid contains a metal sulfurization inhibitor, a polysiloxane precursor, a mercapto group-containing silane coupling agent, and a solvent.
 封止用組成物の塗布方法は特に制限されず、ブレード塗布、スピンコート塗布、ディスペンサー塗布、スプレー塗布など、公知の塗布方法でありうる。 The coating method of the sealing composition is not particularly limited, and may be a known coating method such as blade coating, spin coating coating, dispenser coating, and spray coating.
 [3]封止材塗布膜硬化工程
 封止材塗布膜硬化工程は、塗布膜を加熱する工程でありうる。当該塗布膜硬化工程では、封止材塗布膜の溶媒を除去すると共に、ポリシロキサン前駆体を脱水縮合してポリシロキサンとして、封止材塗布膜を硬化させる。
[3] Encapsulant coating film curing step The encapsulant coating film curing step may be a step of heating the coating film. In the coating film curing step, the solvent of the sealing material coating film is removed, and the polysiloxane precursor is dehydrated and condensed to form polysiloxane, and the sealing material coating film is cured.
 封止塗布膜を硬化させる際の温度は、100℃以上であることが好ましく、より好ましくは150~300℃の範囲内である。加熱温度が100℃未満であると、ポリシロキサン前駆体の脱水縮合が十分に行われないことあり、封止材層の強度が十分に高まらないことがある。また、さらにポリシロキサン前駆体が脱水縮合の際に生じる水などが十分に除去されず、封止材層の耐光性などが低下する可能性がある。 The temperature at which the sealing coating film is cured is preferably 100 ° C. or higher, more preferably 150 to 300 ° C. If the heating temperature is less than 100 ° C., the polysiloxane precursor may not be sufficiently dehydrated and condensed, and the strength of the encapsulant layer may not be sufficiently increased. Further, water or the like generated when the polysiloxane precursor is dehydrated and condensed may not be sufficiently removed, and the light resistance of the encapsulant layer may be lowered.
 [4]波長変換層形成工程
 波長変換層形成工程は、蛍光体粒子及び樹脂又はその前駆体が含まれる波長変換層用組成物を、前述の封止材層上に塗布し、これを硬化させる工程でありうる。
 波長変換層用組成物には、必要に応じて溶媒が含まれる。波長変換層用組成物に含まれる溶媒は、前述の樹脂又はその前駆体を溶解又は分散させることが可能なものであれば、特に制限されない。溶媒はトルエン、キシレンなどの炭化水素類;アセトン、メチルエチルケトンなどのケトン類;ジエチルエーテル、テトラヒドロフランなどのエーテル類、プロピレングリコールモノメチルエーテルアセテート、エチルアセテートなどのエステル類などでありうる。
[4] Wavelength conversion layer forming step In the wavelength conversion layer forming step, a composition for a wavelength conversion layer containing phosphor particles and a resin or a precursor thereof is applied onto the above-mentioned encapsulant layer and cured. It can be a process.
The composition for the wavelength conversion layer contains a solvent, if necessary. The solvent contained in the composition for the wavelength conversion layer is not particularly limited as long as it can dissolve or disperse the above-mentioned resin or its precursor. The solvent may be hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether and tetrahydrofuran, esters such as propylene glycol monomethyl ether acetate and ethyl acetate.
 また、波長変換層用組成物の混合は、例えば撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機などで行うことができる。撹拌条件を調整することで、波長変換層用組成物における蛍光体粒子の沈降が抑制される。 Further, the composition for the wavelength conversion layer can be mixed by, for example, a stirring mill, a blade kneading stirring device, a thin film swirl type disperser, or the like. By adjusting the stirring conditions, the precipitation of the phosphor particles in the composition for the wavelength conversion layer is suppressed.
 波長変換層用組成物の塗布方法は適宜選択され、例えばディスペンサー塗布などでありうる。また、波長変換層用組成物の塗布後、これを硬化させる。波長変換層用組成物の硬化方法や硬化条件は、樹脂の種類により適宜選択される。硬化方法の一例として、加熱硬化が挙げられる。 The coating method of the composition for the wavelength conversion layer is appropriately selected, and may be, for example, dispenser coating. Further, after the composition for the wavelength conversion layer is applied, it is cured. The curing method and curing conditions of the composition for the wavelength conversion layer are appropriately selected depending on the type of resin. As an example of the curing method, heat curing can be mentioned.
 (2.2)光電変換素子及び太陽電池
 本発明の硫化防止剤は、例えば光電変換素子の有機機能層の封止材層に適用することが好ましい。
 図4は、バルクヘテロジャンクション型の有機光電変換素子からなるシングル構成(バルクヘテロジャンクション層が1層の構成)の太陽電池の一例を示す断面図である。
(2.2) Photoelectric conversion element and solar cell The anti-sulfuration agent of the present invention is preferably applied to, for example, the encapsulant layer of the organic functional layer of the photoelectric conversion element.
FIG. 4 is a cross-sectional view showing an example of a solar cell having a single configuration (a configuration in which a bulk heterojunction layer is one layer) composed of a bulk heterojunction type organic photoelectric conversion element.
 図4において、バルクヘテロジャンクション型の有機光電変換素子300は、基板31の一方面上に、透明電極(陽極32)、正孔輸送層33、バルクヘテロジャンクション層の光電変換部34、電子輸送層(又はバッファー層ともいう。)35及び対極(陰極36)が順次積層されている。 In FIG. 4, the bulk heterojunction type organic photoelectric conversion element 300 has a transparent electrode (anode 32), a hole transport layer 33, a photoelectric conversion portion 34 of the bulk heterojunction layer, and an electron transport layer (or an electron transport layer) on one surface of the substrate 31. (Also referred to as a buffer layer) 35 and a counter electrode (cathode 36) are sequentially laminated.
 基板31は、順次積層された透明電極32、光電変換部34及び対極36を保持する部材である。本実施形態では、基板31側から光電変換される光が入射するので、基板31は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材であることが好ましい。基板31は、例えばガラス基板や樹脂基板などが用いられる。この基板31は、必須ではなく、例えば光電変換部34の両面に透明電極32及び対極36を形成することでバルクヘテロジャンクション型の有機光電変換素子300が構成されてもよい。 The substrate 31 is a member that holds the transparent electrodes 32, the photoelectric conversion unit 34, and the counter electrode 36 that are sequentially laminated. In the present embodiment, since the light to be photoelectrically converted is incident from the substrate 31 side, the substrate 31 can transmit the photoelectrically converted light, that is, with respect to the wavelength of the light to be photoelectrically converted. It is preferably a transparent member. As the substrate 31, for example, a glass substrate or a resin substrate is used. The substrate 31 is not essential, and for example, the bulk heterojunction type organic photoelectric conversion element 300 may be configured by forming the transparent electrodes 32 and the counter electrode 36 on both surfaces of the photoelectric conversion unit 34.
 光電変換部34は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプター)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与又は受容するものではなく、光反応によって、電子を供与又は受容するものである。 The photoelectric conversion unit 34 is a layer that converts light energy into electrical energy, and is configured to have a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor). Here, the electron donor and the electron acceptor refer to "an electron donor that, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state). And electron acceptors, which donate or accept electrons by photoreaction, rather than simply donating or accepting electrons like electrodes.
 図4において、基板31を介して透明電極32から入射された光は、光電変換部34のバルクヘテロジャンクション層における電子受容体又は電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば透明電極32と対極36の仕事関数が異なる場合では透明電極32と対極36との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ光電流が検出される。 In FIG. 4, the light incident from the transparent electrode 32 via the substrate 31 is absorbed by an electron acceptor or an electron donor in the bulk heterojunction layer of the photoelectric conversion unit 34, and electrons move from the electron donor to the electron acceptor. Then, a hole-electron pair (charge separation state) is formed. The generated charge is caused by an internal electric field, for example, when the work functions of the transparent electrode 32 and the counter electrode 36 are different, the potential difference between the transparent electrode 32 and the counter electrode 36 causes electrons to pass between electron acceptors, and holes to pass between electron donors. The photocurrent is detected by being carried to different electrodes.
 例えば透明電極32の仕事関数が対極36の仕事関数よりも大きい場合では、電子は透明電極32へ、正孔は対極36へ輸送される。なお、仕事関数の大小が逆転すれば、電子と正孔はこれとは逆方向に輸送される。また、透明電極32と対極36との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。 For example, when the work function of the transparent electrode 32 is larger than the work function of the counter electrode 36, electrons are transported to the transparent electrode 32 and holes are transported to the counter electrode 36. If the magnitude of the work function is reversed, electrons and holes are transported in the opposite direction. Further, the transport direction of electrons and holes can be controlled by applying an electric potential between the transparent electrode 32 and the counter electrode 36.
 なお、図4には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、又は平滑化層などの他の層を有していてもよい。 Although not shown in FIG. 4, it may have other layers such as a hole block layer, an electron block layer, an electron injection layer, a hole injection layer, or a smoothing layer.
 また、さらなる太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成(バルクヘテロジャンクション層を複数有する構成)であってもよい。 Further, for the purpose of further improving the solar utilization rate (photoelectric conversion efficiency), a tandem type configuration (a configuration having a plurality of bulk heterojunction layers) in which such photoelectric conversion elements are laminated may be used.
 上記のような層に用いることができる材料については、例えば特開2015-149483号公報の段落0045~0113に記載のn型半導体材料、及びp型半導体材料が挙げられる。 Examples of the material that can be used for the layer as described above include the n-type semiconductor material and the p-type semiconductor material described in paragraphs 0045 to 0113 of Japanese Patent Application Laid-Open No. 2015-149843.
 (バルクヘテロジャンクション層の形成方法)
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)などを例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
(Method of forming bulk heterojunction layer)
Examples of the method for forming the bulk heterojunction layer in which the electron acceptor and the electron donor are mixed include a thin film deposition method, a coating method (including a casting method and a spin coating method), and the like. Of these, the coating method is preferable in order to increase the area of the interface where the holes and electrons are charged-separated and to produce an element having high photoelectric conversion efficiency. The coating method is also excellent in production speed.
 本発明においては、上記のバルクヘテロジャンクション層を構成するn型半導体材料及びp型半導体材料を本発明の電子デバイス用有機材料として用いることができる。すなわち、バルクヘテロジャンクション層を、当該n型半導体材料及びp型半導体材料と、有機溶媒と、セルロースナノファイバーを含む溶液を、塗布によって形成することが好ましく、当該n型半導体材料及びp型半導体材料と、有機溶媒と、セルロースナノファイバーを含む塗布液において、50℃以下、大気圧条件下での有機溶媒に対する溶存二酸化炭素濃度を1ppm~前記有機溶媒に対する飽和濃度とすることが好ましい。 In the present invention, the n-type semiconductor material and the p-type semiconductor material constituting the bulk heterojunction layer can be used as the organic material for the electronic device of the present invention. That is, the bulk heterojunction layer is preferably formed by coating a solution containing the n-type semiconductor material and the p-type semiconductor material, an organic solvent, and cellulose nanofibers, and the n-type semiconductor material and the p-type semiconductor material. In a coating solution containing an organic solvent and cellulose nanofibers, the concentration of dissolved carbon dioxide with respect to the organic solvent under atmospheric pressure conditions of 50 ° C. or lower is preferably 1 ppm to the saturation concentration with respect to the organic solvent.
 溶存二酸化炭素濃度を上記範囲とする手段としては、上述したように、n型半導体材料及びp型半導体材料と、有機溶媒と、セルロースナノファイバーを含む溶液に炭酸ガスをバブリングする方法、又は、有機溶媒及び二酸化炭素を含有する超臨界流体を用いた超臨界クロマトグラフィー法が挙げられる。 As a means for setting the dissolved carbon dioxide concentration in the above range, as described above, a method of bubbling carbon dioxide gas into a solution containing an n-type semiconductor material, a p-type semiconductor material, an organic solvent, and cellulose nanofibers, or an organic method. Examples thereof include a supercritical chromatography method using a supercritical fluid containing a solvent and carbon dioxide.
 塗布後は、残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が配列又は結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。 After coating, it is preferable to perform heating in order to remove residual solvent, moisture and gas, and to improve mobility by crystallization of the semiconductor material and cause absorption lengthening. When annealed at a predetermined temperature during the manufacturing process, a part thereof is microscopically arranged or crystallized, and the bulk heterojunction layer can have an appropriate phase-separated structure. As a result, the carrier mobility of the bulk heterojunction layer is improved, and high efficiency can be obtained.
 光電変換部(バルクヘテロジャンクション層)34、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。 The photoelectric conversion unit (bulk heterojunction layer) 34 may be composed of a single layer in which the electron acceptor and the electron donor are uniformly mixed, but a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be composed of.
 次に、有機光電変換素子を構成する電極について説明する。 Next, the electrodes constituting the organic photoelectric conversion element will be described.
 有機光電変換素子は、バルクヘテロジャンクション層で生成した正電荷と負電荷とが、それぞれp型有機半導体材料、及びn型有機半導体材料を経由して、それぞれ透明電極及び対極から取り出され、電池として機能するものである。それぞれの電極には、電極を通過するキャリアに適した特性が求められる。 In the organic photoelectric conversion element, the positive charge and the negative charge generated in the bulk heterojunction layer are taken out from the transparent electrode and the counter electrode, respectively, via the p-type organic semiconductor material and the n-type organic semiconductor material, respectively, and function as a battery. To do. Each electrode is required to have characteristics suitable for a carrier passing through the electrode.
 (対極)
 本発明において対極(陰極)とは、電子を取り出す電極のことが好ましい。例えば陰極として用いる場合、導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。
(Opposite pole)
In the present invention, the counter electrode (cathode) is preferably an electrode that extracts electrons. For example, when it is used as a cathode, it may be a single layer of a conductive material, but in addition to a material having conductivity, a resin that retains these may be used in combination.
 対極材料としては、十分な導電性を有し、かつ前記n型半導体材料と接合したときにショットキーバリアーを形成しない程度に近い仕事関数を有し、かつ劣化しないことが求められる。つまり、バルクヘテロジャンクション層に用いるn型半導体材料のLUMOよりも0~0.3eV大きい仕事関数を有する金属であることが好ましく、4.0~5.1eVの仕事関数であることが好ましい。 The counter electrode material is required to have sufficient conductivity, a work function close to the extent that it does not form a Schottky barrier when bonded to the n-type semiconductor material, and does not deteriorate. That is, it is preferable that the metal has a work function 0 to 0.3 eV larger than that of the LUMO of the n-type semiconductor material used for the bulk heterojunction layer, and it is preferable that the work function is 4.0 to 5.1 eV.
 他方で正孔を取り出す透明電極(陽極)より仕事関数が小さくなる(深くなる)ことは好ましくなく、n型半導体材料より大きい(浅い)仕事関数の金属では層間抵抗が発生することがあるため、実際には4.2~4.8eVの仕事関数を有する金属であることが好ましい。
 したがって、アルミニウム、金、銀、銅、インジウム、又は酸化亜鉛、ITO、酸化チタンなどの酸化物系の材料でも好ましい。より好ましくは、アルミニウム、銀、銅であり、さらに好ましくは銀である。
 なお、これらの金属の仕事関数は、同様に紫外光電子分光法(UPS)を利用して測定することができる。
On the other hand, it is not preferable that the work function is smaller (deeper) than that of the transparent electrode (anode) that extracts holes, and a metal having a work function larger (shallow) than the n-type semiconductor material may cause interlayer resistance. Actually, it is preferable that the metal has a work function of 4.2 to 4.8 eV.
Therefore, aluminum, gold, silver, copper, indium, or oxide-based materials such as zinc oxide, ITO, and titanium oxide are also preferable. More preferably, it is aluminum, silver, copper, and even more preferably silver.
The work function of these metals can also be measured using ultraviolet photoelectron spectroscopy (UPS).
 なお、必要に応じて合金にしてもよく、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウムなどが好適である。対極はこれらの電極物質を蒸着やスパッタリングなどの方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μmの範囲内、好ましくは50~200nmの範囲内で選ばれる。 If necessary, an alloy may be used, and for example, a magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like are preferable. is there. The counter electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably in the range of 50 to 200 nm.
 また、対極側を光透過性とする場合は、例えばアルミニウム及びアルミニウム合金、銀及び銀化合物などの対極に適した導電性材料を薄く1~20nmの範囲内程度の膜厚で作製した後、導電性光透過性材料の膜を設けることで、光透過性対極とすることができる。 When the counter electrode side is to be light-transmitting, for example, a conductive material suitable for the counter electrode such as aluminum and aluminum alloy, silver and silver compound is thinly prepared with a film thickness in the range of 1 to 20 nm, and then conductive. By providing a film of a light-transmitting material, a light-transmitting counter electrode can be obtained.
 (透明電極)
 本発明において透明電極は、正孔を取り出す電極であることが好ましい。例えば陽極として用いる場合、好ましくは380~800nmの範囲内の光を透過する電極である。材料としては、例えばインジウム・スズ酸化物(ITO)、SnO、ZnOなどの透明導電性金属酸化物、金、銀、白金などの金属薄膜、金属ナノワイヤー、カーボンナノチューブなどを用いることができる。
(Transparent electrode)
In the present invention, the transparent electrode is preferably an electrode that extracts holes. For example, when used as an anode, it is preferably an electrode that transmits light in the range of 380 to 800 nm. As the material, for example, transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 , ZnO, metal thin films such as gold, silver and platinum, metal nanowires, carbon nanotubes and the like can be used.
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子なども用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。 In addition, it is selected from the group consisting of derivatives of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaften, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacetylene, polyphenylacetylene, polydiaacetylene and polynaphthalene. Conductive polymers and the like can also be used. Further, a plurality of these conductive compounds can be combined to form a transparent electrode.
 (中間電極)
 また、タンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタンなどの透明金属酸化物、Ag、Al、Auなどの非常に薄い金属層又はナノ粒子・ナノワイヤーを含有する層、PEDOT:PSS、ポリアニリンなどの導電性高分子材料など)を用いることができる。
(Intermediate electrode)
Further, the material of the intermediate electrode required in the case of the tandem configuration is preferably a layer using a compound having both transparency and conductivity, and a material (ITO, AZO, FTO) as used in the transparent electrode. , Transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, PEDOT: PSS, conductive polymer materials such as polyaniline, etc.) Can be done.
 なお前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。
 次に、電極及びバルクヘテロジャンクション層以外を構成する材料について述べる。
In addition, among the hole transport layer and the electron transport layer described above, there is also a combination that acts as an intermediate electrode by appropriately combining and laminating, and such a configuration is preferable because the step of forming one layer can be omitted.
Next, materials constituting other than the electrodes and the bulk heterojunction layer will be described.
 (正孔輸送層及び電子ブロック層)
 有機光電変換素子は、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、バルクヘテロジャンクション層と透明電極との中間には正孔輸送層・電子ブロック層を有していることが好ましい。
(Hole transport layer and electron block layer)
Since the organic photoelectric conversion element can take out the electric charge generated in the bulk heterojunction layer more efficiently, it has a hole transport layer / electron block layer between the bulk heterojunction layer and the transparent electrode. Is preferable.
 これらの層を構成する材料としては、例えば正孔輸送層としては、ヘレウス社製CleviousなどのPEDOT、ポリアニリン及びそのドープ材料、WO2006/019270号などに記載のシアン化合物などを用いることができる。 As the material constituting these layers, for example, as the hole transport layer, PEDOT such as Heraeus Clevious, polyaniline and its doping material, and the cyanide compound described in WO2006 / 019270 can be used.
 なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を透明電極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用する方が好ましい。 The hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the transparent electrode side. The electronic block function is provided. Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
 このような材料としては、特開平5-271166号公報などに記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステンなどの金属酸化物などを用いることができる。また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リークなどの影響が低減するため好ましい。 As such a material, a triarylamine compound described in JP-A-5-271166 or the like, or a metal oxide such as molybdenum oxide, nickel oxide, or tungsten oxide can be used. It is also possible to use a layer made of a single p-type semiconductor material used for the bulk heterojunction layer. The means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but a solution coating method is preferable. It is preferable to form a coating film on the lower layer before forming the bulk heterojunction layer because it has the effect of leveling the coating surface and reduces the influence of leaks and the like.
 (電子輸送層、正孔ブロック層及びバッファー層)
 有機光電変換素子は、バルクヘテロジャンクション層と対極との中間には電子輸送層・正孔ブロック層・バッファー層を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
(Electron transport layer, hole block layer and buffer layer)
By forming an electron transport layer, a hole block layer, and a buffer layer between the bulk heterojunction layer and the counter electrode, the organic photoelectric conversion element can take out the electric charge generated in the bulk heterojunction layer more efficiently. Therefore, it is preferable to have these layers.
 また、電子輸送層としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニンなど)を用いることができるが、同様に、バルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を対極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用する方が好ましい。 Further, as the electron transport layer, octaazaporphyrin and a perfluoro compound of a p-type semiconductor (perfluoropentacene, perfluorophthalocyanine, etc.) can be used, but similarly, the p-type semiconductor material used for the bulk heterojunction layer can be used. The electron transport layer having a HOMO level deeper than the HOMO level is provided with a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the opposite electrode side. Such an electron transport layer is also called a hole block layer, and it is preferable to use an electron transport layer having such a function.
 電子輸送層構成材料としては、バソキュプロインなどのフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミドなどのn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウムなどのn型無機酸化物、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層などを用いることもできる。 Examples of the electron transport layer constituent material include phenanthrene compounds such as vasocuproin, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide, and titanium oxide. , N-type inorganic oxides such as zinc oxide and gallium oxide, and layers made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used.
 また、フッ化リチウム、フッ化ナトリウム、フッ化セシウムなどのアルカリ金属化合物などを用いることができる。 In addition, alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
 これらの中でも、さらに有機半導体分子をドープし、前記金属電極(陰極)との電気的接合を改善する機能も有する、アルカリ金属化合物を用いることが好ましい。アルカリ金属化合物層の場合には、特にバッファー層ということもある。 Among these, it is preferable to use an alkali metal compound which is further doped with an organic semiconductor molecule and also has a function of improving electrical bonding with the metal electrode (cathode). In the case of an alkali metal compound layer, it may be a buffer layer in particular.
 (その他の層)
 エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。
(Other layers)
For the purpose of improving the energy conversion efficiency and the life of the device, various intermediate layers may be provided in the device. Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, a wavelength conversion layer, and the like.
 (基板)
 基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えばガラス基板や樹脂基板などが好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。
(substrate)
When the light to be photoelectrically converted is incident from the substrate side, the substrate is preferably a member capable of transmitting the photoelectrically converted light, that is, a member transparent to the wavelength of the light to be photoelectrically converted. .. As the substrate, for example, a glass substrate or a resin substrate is preferably used, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
 本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚さなどについては公知のものの中から適宜選択することができる。例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステルなどのポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂などのポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルムなどを挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、特に好ましい。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 The transparent resin film that can be preferably used as a transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness, and the like thereof can be appropriately selected from known ones. For example, polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, and polyolefin resins such as cyclic olefin resins. Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysalphon (PSF) resin film, polyether salphon (PES) resin film, polycarbonate (PC) resin film, Examples thereof include polyamide resin films, polyimide resin films, acrylic resin films, and triacetyl cellulose (TAC) resin films, but any resin film having a transmittance of 80% or more in the visible wavelength range (380 to 800 nm). Is particularly preferable. Among them, biaxially stretched polyethylene terephthalate film, biaxially stretched polyethylene naphthalate film, polyether sulfone film, and polycarbonate film are preferable from the viewpoint of transparency, heat resistance, ease of handling, strength, and cost, and biaxially stretched. More preferably, it is a polyethylene terephthalate film or a biaxially stretched polyethylene naphthalate film.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理などの表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体などを挙げることができる。 The transparent substrate used in the present invention can be surface-treated or provided with an easy-adhesion layer in order to ensure the wettability and adhesiveness of the coating liquid. Conventionally known techniques can be used for the surface treatment and the easy-adhesion layer. For example, examples of the surface treatment include surface activation treatments such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy-adhesion layer include polyester, polyamide, polyurethane, vinyl-based copolymer, butadiene-based copolymer, acrylic-based copolymer, vinylidene-based copolymer, and epoxy-based copolymer.
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアーコート層があらかじめリン光形成されていてもよい。 Further, a barrier coat layer may be preliminarily formed on the transparent substrate for the purpose of suppressing the permeation of oxygen and water vapor.
 (光学機能層)
 有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば反射防止膜、マイクロレンズアレイなどの集光層、対極で反射した光を散乱させて再度バルクヘテロジャンクション層に入射させることができるような光拡散層などを設けてもよい。
(Optical functional layer)
The organic photoelectric conversion element may have various optical functional layers for the purpose of receiving sunlight more efficiently. As the optical functional layer, for example, an antireflection film, a condensing layer such as a microlens array, a light diffusion layer capable of scattering the light reflected by the counter electrode and making it incident on the bulk heterojunction layer again may be provided. ..
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63の範囲内とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾルなどの比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 As the antireflection layer, various known antireflection layers can be provided. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy-adhesion layer adjacent to the film is 1.57 to 1. The range of 1.63 is more preferable because the interfacial reflection between the film substrate and the easy-adhesion layer can be reduced and the transmittance can be improved. The method of adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol to the binder resin and applying the mixture. The easy-adhesion layer may be a single layer, but may be composed of two or more layers in order to improve the adhesiveness.
 集光層としては、例えば支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、又はいわゆる集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。 As the condensing layer, for example, the light receiving amount from a specific direction can be increased by processing the support substrate so as to provide a structure on the microlens array on the sunlight receiving side, or by combining with a so-called condensing sheet. On the contrary, the dependence of sunlight on the incident angle can be reduced.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚さが厚くなり好ましくない。 As an example of a microlens array, a quadrangular pyramid having a side of 30 μm and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate. One side is preferably in the range of 10 to 100 μm. If it is smaller than this, the effect of diffraction occurs and it is colored, and if it is too large, the thickness becomes thick, which is not preferable.
 また、光散乱層としては、各種のアンチグレア層、金属又は各種無機酸化物などのナノ粒子・ナノワイヤーなどを無色透明なポリマーに分散した層などを挙げることができる。 Examples of the light scattering layer include various anti-glare layers and a layer in which nanoparticles / nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer.
 (パターニング)
 前記電極、発電層、正孔輸送層、電子輸送層などをパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
(Patterning)
The method or process for patterning the electrode, the power generation layer, the hole transport layer, the electron transport layer, or the like is not particularly limited, and a known method can be appropriately applied.
 バルクヘテロジャンクション層、輸送層などの可溶性の材料であれば、ダイコート、ディップコートなどの全面塗布後に不要部だけ拭き取ってもよいし、インクジェットプリント法やスクリーン印刷などの方法を使用して塗布時に直接パターニングしてもよい。 If it is a soluble material such as a bulk heterojunction layer or a transport layer, only unnecessary parts may be wiped off after full coating such as die coating and dip coating, or direct patterning at the time of coating using a method such as inkjet printing or screen printing. You may.
 電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチング又はリフトオフなどの公知の方法によってパターニングしたりすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。 In the case of an insoluble material such as an electrode material, the electrode can be mask-deposited at the time of vacuum deposition, or patterned by a known method such as etching or lift-off. Further, the pattern may be formed by transferring the pattern formed on another substrate.
 (封止)
 また、作製した有機光電変換素子が環境中の酸素、水分などで劣化しないために、本発明の封止材以外の手法を併用することも好ましい。例えばアルミ又はガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウムなどのガスバリアー層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリアー性の高い有機高分子材料(ポリビニルアルコールなど)をスピンコートする方法、ガスバリアー性の高い無機薄膜(酸化ケイ素、酸化アルミニウムなど)又は有機膜(パリレンなど)を真空下で堆積する方法、及びこれらを複合的に積層する方法などを挙げることができる。
(Sealing)
Further, since the produced organic photoelectric conversion element is not deteriorated by oxygen, moisture, etc. in the environment, it is also preferable to use a method other than the encapsulant of the present invention in combination. For example, a method of sealing by adhering a cap made of aluminum or glass with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are adhered with an adhesive. Matching method, spin coating method of organic polymer material with high gas barrier property (polyvinyl alcohol, etc.), inorganic thin film (silicon oxide, aluminum oxide, etc.) or organic film (parylene, etc.) with high gas barrier property under vacuum Examples thereof include a method of depositing and a method of laminating these in a composite manner.
 (2.3)有機EL素子を用いた表示装置
 (2.3.1)有機EL表示装置
 図5は、有機EL素子の構成の一例を示す概略断面図である。有機EL表示装置400は、基板41上に、陰極45、有機機能層群46、透明電極(陽極47)が積層されて有機EL素子40を形成している。
 本発明における封止の一形態として、硫化防止層49は、前記有機EL素子40を覆うように形成されている。また、当該硫化防止層49は、封止材層48に覆われている。
 なお、硫化防止剤を封止材層に含有させる形態であっても良い。
 以下において、有機EL表示装置を構成する要素について説明する。
(2.3) Display device using an organic EL element (2.3.1) Organic EL display device FIG. 5 is a schematic cross-sectional view showing an example of the configuration of an organic EL element. In the organic EL display device 400, the cathode 45, the organic functional layer group 46, and the transparent electrode (anode 47) are laminated on the substrate 41 to form the organic EL element 40.
As one form of sealing in the present invention, the sulfurization prevention layer 49 is formed so as to cover the organic EL element 40. Further, the sulfurization prevention layer 49 is covered with a sealing material layer 48.
In addition, the form may include the anti-sulfuration agent in the sealing material layer.
Hereinafter, the elements constituting the organic EL display device will be described.
 (基板)
 有機EL素子に用いることのできる基板(以下、基体、支持基板、基材、支持体などともいう。)としては、特に限定は無く、ガラス基板、プラスチック基板などを用いることができ、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明プラスチック基板を挙げることができる。
(substrate)
The substrate that can be used for the organic EL element (hereinafter, also referred to as a substrate, a support substrate, a substrate, a support, etc.) is not particularly limited, and a glass substrate, a plastic substrate, or the like can be used, and the substrate is transparent. It may be present or opaque. When light is taken out from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent plastic substrate.
 また、基板としては、基板側からの酸素や水の侵入を阻止するため、JIS Z-0208に準拠した試験において、その厚さが1μm以上で水蒸気透過度が1g/(m・24h・atm)(25℃)以下であるものが好ましい。 Further, as the substrate, to prevent oxygen and water from entering from the substrate side, JIS Z-0208 in test according to, the thickness of the water vapor permeability at 1μm or more 1g / (m 2 · 24h · atm ) (25 ° C.) or less is preferable.
 ガラス基板としては、具体的には、例えば無アルカリガラス、低アルカリガラス、ソーダライムガラスなどが挙げられる。水分の吸着が少ない点からは無アルカリガラスが好ましいが、充分に乾燥を行えばこれらのいずれを用いてもよい。 Specific examples of the glass substrate include non-alkali glass, low-alkali glass, and soda lime glass. Non-alkali glass is preferable from the viewpoint of less adsorption of water, but any of these may be used as long as it is sufficiently dried.
 プラスチック基板は、可撓性が高く、軽量で割れにくいこと、さらに有機EL素子のさらなる薄型化を可能にできることなどの理由で近年注目されている。 Plastic substrates have been attracting attention in recent years because of their high flexibility, light weight, and resistance to cracking, and their ability to further reduce the thickness of organic EL elements.
 プラスチック基板の基材として用いられる樹脂フィルムとしては、特に限定は無く、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレートなどのセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、有機無機ハイブリッド樹脂などを挙げることができる。 The resin film used as the base material of the plastic substrate is not particularly limited, and is, for example, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose triacetate (TAC). , Cellulosic acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate phthalate, cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, Norbornen resin, polymethylpentene, polyether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyallylate Kind, organic-inorganic hybrid resin and the like can be mentioned.
 有機無機ハイブリッド樹脂としては、有機樹脂とゾル・ゲル反応によって得られる無機高分子(例えばシリカ、アルミナ、チタニア、ジルコニアなど)を組み合わせて得られるものが挙げられる。これらのうちでは、特にアートン(JSR(株)製)又はアペル(三井化学(株)製)といったノルボルネン(又はシクロオレフィン系)樹脂が好ましい。 Examples of the organic-inorganic hybrid resin include those obtained by combining an organic resin with an inorganic polymer (for example, silica, alumina, titania, zirconia, etc.) obtained by a sol-gel reaction. Of these, norbornene (or cycloolefin-based) resins such as Arton (manufactured by JSR Corporation) or Appel (manufactured by Mitsui Chemicals, Inc.) are particularly preferable.
 通常生産されているプラスチック基板は、水分の透過性が比較的高く、また、基板内部に水分を含有している場合もある。そのため、このようなプラスチック基板を用いる際には、樹脂フィルム上に水蒸気や酸素などの侵入を抑制するバリアー膜(「ガスバリアー膜」又は「水蒸気封止膜」ともいう。)を設け、ガスバリアーフィルムとしたものが好ましい。 The plastic substrate normally produced has relatively high moisture permeability, and may contain moisture inside the substrate. Therefore, when such a plastic substrate is used, a barrier film (also referred to as "gas barrier film" or "water vapor sealing film") that suppresses the intrusion of water vapor, oxygen, etc. is provided on the resin film to provide a gas barrier. A film is preferable.
 バリアー膜を構成する材料は、特に限定は無く、無機物、有機物の被膜又はその両者のハイブリッドなどが用いられる。被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高バリアー性フィルムであることが好ましい。 The material constituting the barrier film is not particularly limited, and an inorganic substance, an organic film, or a hybrid of both of them is used. A film may be formed, and the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g / (. preferably m 2 · 24h) or less of the barrier film, and further, the measured oxygen permeability by the method based on JIS K 7126-1987 is, 1 × 10 -3 mL / ( m 2 · 24h · atm) or less, the water vapor permeability is preferably 1 × 10 -5 g / (m 2 · 24h) or less of the high barrier film.
 バリアー膜を構成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であれば特に限定は無く、例えば金属酸化物、金属酸窒化物又は金属窒化物などの無機物、有機物、又はその両者のハイブリッド材料などを用いることができる。 The material constituting the barrier film is not particularly limited as long as it is a material having a function of suppressing infiltration of a material that causes deterioration of the element such as moisture and oxygen, and is, for example, a metal oxide, a metal oxynitride, a metal nitride, or the like. Inorganic substances, organic substances, or hybrid materials of both can be used.
 金属酸化物、金属酸窒化物又は金属窒化物としては、酸化ケイ素、酸化チタン、酸化インジウム、酸化スズ、インジウム・スズ酸化物(ITO)、酸化アルミニウムなどの金属酸化物、窒化ケイ素などの金属窒化物、酸窒化ケイ素、酸窒化チタンなどの金属酸窒化物などが挙げられる。 Examples of the metal oxide, metal oxynitride or metal nitride include metal oxides such as silicon oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide (ITO) and aluminum oxide, and metal nitrides such as silicon nitride. Examples thereof include metal oxynitrides such as silicon oxynitrides and titanium oxynitrides.
 さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 Further, in order to improve the fragility of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of an organic material. The stacking order of the inorganic layer and the organic layer is not particularly limited, but it is preferable to stack the inorganic layer and the organic layer alternately a plurality of times.
 前記樹脂フィルムに、バリアー膜を設ける方法は、特に限定されず、いかなる方法でもよいが、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、CVD法(例えばプラズマCVD法、レーザーCVD法、熱CVD法など)、コーティング法、ゾル・ゲル法などを用いることができる。これらのうち、緻密な膜を形成できる点から、大気圧又は大気圧近傍でのプラズマCVD処理による方法が好ましい。 The method for providing the barrier film on the resin film is not particularly limited, and any method may be used. For example, a vacuum vapor deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, or an ion plating method. , Plasma polymerization method, atmospheric pressure plasma polymerization method, CVD method (for example, plasma CVD method, laser CVD method, thermal CVD method, etc.), coating method, sol-gel method and the like can be used. Of these, the method by plasma CVD treatment at atmospheric pressure or near atmospheric pressure is preferable from the viewpoint that a dense film can be formed.
 不透明な基板としては、例えばアルミ、ステンレスなどの金属板、フィルムや不透明樹脂基板、セラミック製の基板などが挙げられる。 Examples of the opaque substrate include a metal plate such as aluminum and stainless steel, a film or opaque resin substrate, and a ceramic substrate.
 (陽極)
 有機EL素子の陽極としては、仕事関数の大きい(4eV以上)金属、合金、金属の電気伝導性化合物、又はこれらの混合物を電極物質とするものが好ましく用いられる。
(anode)
As the anode of the organic EL element, a metal having a large work function (4 eV or more), an electrically conductive compound of a metal, or a mixture thereof as an electrode material is preferably used.
 ここで、「金属の電気伝導性化合物」とは、金属と他の物質との化合物のうち電気伝導性を有するものをいい、具体的には、例えば金属の酸化物、ハロゲン化物などであって電気伝導性を有するものをいう。 Here, the "electrically conductive compound of a metal" means a compound having electric conductivity among compounds of a metal and another substance, and specifically, for example, an oxide of a metal, a halide, or the like. A compound having electrical conductivity.
 このような電極物質の具体例としては、Auなどの金属、CuI、インジウム・スズ酸化物(ITO)、SnO、ZnOなどの導電性透明材料が挙げられる。上記陽極は、これらの電極物質からなる薄膜を、蒸着やスパッタリングなどの公知の方法により、前記基板上に形成させることで作製することができる。 Specific examples of such an electrode material include metals such as Au and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2, and ZnO. The anode can be produced by forming a thin film made of these electrode substances on the substrate by a known method such as thin film deposition or sputtering.
 また、この薄膜にフォトリソグラフィー法で所望の形状のパターンを形成してもよく、また、パターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 Further, a pattern having a desired shape may be formed on this thin film by a photolithography method, and if pattern accuracy is not required so much (about 100 μm or more), the desired shape may be formed during vapor deposition or sputtering of the electrode material. The pattern may be formed through a mask.
 陽極から発光を取り出す場合には、光透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は、数百Ω/sq.以下が好ましい。さらに陽極の膜厚は、構成する材料にもよるが、通常10nm~1μmの範囲内、好ましくは10~200nmの範囲内で選ばれる。 When extracting light from the anode, it is desirable to increase the light transmittance to more than 10%. The sheet resistance as an anode is several hundred Ω / sq. The following is preferable. Further, the film thickness of the anode depends on the constituent material, but is usually selected in the range of 10 nm to 1 μm, preferably in the range of 10 to 200 nm.
 (有機機能層)
 有機機能層(「有機EL層」、「有機化合物層」ともいう。)には少なくとも発光層が含まれるが、発光層とは広義には、陰極と陽極とからなる電極に電流を流した際に発光する層のことを指し、具体的には、陰極と陽極とからなる電極に電流を流した際に発光する有機化合物を含有する層を指す。
(Organic functional layer)
The organic functional layer (also referred to as "organic EL layer" or "organic compound layer") includes at least a light emitting layer, but in a broad sense, the light emitting layer is when an electric current is passed through an electrode composed of a cathode and an anode. Specifically, it refers to a layer containing an organic compound that emits light when an electric current is passed through an electrode composed of a cathode and an anode.
 本発明に用いられる有機EL素子は、必要に応じ、発光層の他に、正孔注入層、電子注入層、正孔輸送層及び電子輸送層を有していてもよく、これらの層が陰極と陽極とで挟持された構造をとる。 The organic EL device used in the present invention may have a hole injection layer, an electron injection layer, a hole transport layer and an electron transport layer in addition to the light emitting layer, if necessary, and these layers are cathodes. It has a structure sandwiched between an electron and an anode.
 具体的には、
(i)陽極/発光層/陰極
(ii)陽極/正孔注入層/発光層/陰極
(iii)陽極/発光層/電子注入層/陰極
(iv)陽極/正孔注入層/発光層/電子注入層/陰極
(v)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(vi)陽極/正孔輸送層/発光層/電子輸送層/陰極
などの構造が挙げられる。
In particular,
(I) Anode / light emitting layer / cathode (ii) anode / hole injection layer / light emitting layer / cathode (iii) anode / light emitting layer / electron injection layer / cathode (iv) anode / hole injection layer / light emitting layer / electron Injection layer / cathode (v) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (vi) anode / hole transport layer / light emitting layer / electron transport layer / cathode, etc. The structure of.
 さらに、電子注入層と陰極との間に、陰極バッファー層(例えばフッ化リチウムなど)を挿入してもよく、陽極と正孔注入層との間に、陽極バッファー層(例えば銅フタロシアニンなど)を挿入してもよい。 Further, a cathode buffer layer (for example, lithium fluoride) may be inserted between the electron injection layer and the cathode, and an anode buffer layer (for example, copper phthalocyanine) may be inserted between the anode and the hole injection layer. You may insert it.
 (発光層)
 発光層は、電極又は電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。発光層は単一の組成を持つ層であってもよいし、同一又は異なる組成をもつ複数の層からなる積層構造であってもよい。
(Light emitting layer)
The light emitting layer is a layer in which electrons and holes injected from the electrode or the electron transport layer and the hole transport layer are recombined to emit light, and the light emitting portion is a light emitting layer even in the light emitting layer. It may be an interface with an adjacent layer. The light emitting layer may be a layer having a single composition, or may have a laminated structure composed of a plurality of layers having the same or different compositions.
 この発光層自体に、正孔注入層、電子注入層、正孔輸送層及び電子輸送層などの機能を付与してもよい。すなわち、発光層に(1)電界印加時に、陽極又は正孔注入層により正孔を注入することができ、かつ陰極又は電子注入層より電子を注入することができる注入機能、(2)注入した電荷(電子と正孔)を電界の力で移動させる輸送機能、(3)電子と正孔の再結合の場を発光層内部に提供し、これを発光につなげる発光機能のうちの少なくとも一つの機能を付与してもよい。なお、発光層は、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また、正孔と電子の移動度で表される輸送機能に大小があってもよいが、少なくともどちらか一方の電荷を移動させる機能を有するものが好ましい。 The light emitting layer itself may be provided with functions such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer. That is, (1) an injection function capable of injecting holes through the anode or hole injection layer and electrons being injected from the cathode or electron injection layer when an electric field is applied to the light emitting layer, (2) injection. At least one of the transport function of moving electric charges (electrons and holes) by the force of an electric field, and (3) the light emitting function of providing a field of recombination of electrons and holes inside the light emitting layer and connecting this to light emission. Functions may be added. The light emitting layer may have a difference in the ease of injecting holes and the ease of injecting electrons, and may have different transport functions represented by the mobility of holes and electrons. , Which has a function of transferring at least one of the charges is preferable.
 この発光層に用いられる発光材料の種類については、特に制限はなく、従来、有機EL素子における発光材料として公知のものを用いることができる。このような発光材料は、主に有機化合物であり、所望の色調により、例えばMacromol.Symp.125巻17~26頁に記載の化合物が挙げられる。また、発光材料はp-ポリフェニレンビニレンやポリフルオレンのような高分子材料でもよく、さらに前記発光材料を側鎖に導入した高分子材料や前記発光材料を高分子の主鎖とした高分子材料を使用してもよい。なお、上述したように、発光材料は、発光性能の他に、正孔注入機能や電子注入機能を併せ持っていてもよいため、後述する正孔注入材料や電子注入材料のほとんどが発光材料としても使用できる。 The type of light emitting material used for this light emitting layer is not particularly limited, and conventionally known light emitting materials for organic EL devices can be used. Such a light emitting material is mainly an organic compound, and depending on a desired color tone, for example, Macromol. Symp. Examples include the compounds described in Vol. 125, pp. 17-26. Further, the light emitting material may be a polymer material such as p-polyphenylene vinylene or polyfluorene, and further, a polymer material in which the light emitting material is introduced into a side chain or a polymer material in which the light emitting material is used as a main chain of a polymer is used. You may use it. As described above, since the light emitting material may have a hole injection function and an electron injection function in addition to the light emission performance, most of the hole injection materials and electron injection materials described later can also be used as the light emitting material. Can be used.
 有機EL素子を構成する層において、その層が2種以上の有機化合物で構成されるとき、主成分をホスト、その他の成分をドーパントといい、発光層においてホストとドーパントを併用する場合、主成分であるホスト化合物に対する発光層のドーパント(以下発光ドーパントともいう)の混合比は好ましくは質量で0.1~30質量%の範囲内である。 In the layer constituting the organic EL element, when the layer is composed of two or more kinds of organic compounds, the main component is called a host, the other components are called dopants, and when the host and the dopant are used together in the light emitting layer, the main component. The mixing ratio of the dopant of the light emitting layer (hereinafter, also referred to as the light emitting dopant) with respect to the host compound is preferably in the range of 0.1 to 30% by mass in terms of mass.
 発光層に用いるドーパントは、大きく分けて、蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。 The dopant used for the light emitting layer is roughly divided into two types: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
 蛍光性ドーパントの代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体、その他公知の蛍光性化合物などが挙げられる。 Typical examples of fluorescent dopants are coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, and perylene dyes. , Fluorescein-based dyes, polythiophene-based dyes, rare earth complex-based phosphors, and other known fluorescent compounds.
 本発明においては、少なくとも1層の発光層がリン光性化合物を含有するのが好ましい。 In the present invention, it is preferable that at least one light emitting layer contains a phosphorescent compound.
 本発明においてリン光性化合物とは、励起三重項からの発光が観測される化合物であり、リン光量子収率が25℃において0.001以上の化合物である。 In the present invention, the phosphorescent compound is a compound in which light emission from the excited triplet is observed, and the phosphorescence quantum yield is 0.001 or more at 25 ° C.
 リン光量子収率は、好ましくは0.01以上、さらに好ましくは0.1以上である。上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光性化合物は、任意の溶媒のいずれかにおいて上記リン光量子収率が達成されればよい。 The phosphorus photon yield is preferably 0.01 or more, more preferably 0.1 or more. The phosphorus photon yield can be measured by the method described on page 398 (1992 edition, Maruzen) of Spectroscopy II of the 4th edition Experimental Chemistry Course 7. The phosphorescent quantum yield in a solution can be measured using various solvents, but the phosphorescent compound used in the present invention may achieve the above phosphorescent quantum yield in any of any solvents.
 リン光性ドーパントはリン光性化合物であり、その代表例としては、好ましくは元素の周期律表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくは、イリジウム化合物、オスミウム化合物、ロジウム化合物、パラジウム化合物、又は白金化合物(白金錯体系化合物)であり、中でも好ましくはイリジウム化合物、ロジウム化合物、白金化合物であり、最も好ましくはイリジウム化合物である。 The phosphorescent dopant is a phosphorescent compound, and as a typical example thereof, it is preferably a complex compound containing a metal of Group 8 to 10 in the periodic table of elements, and more preferably an iridium compound or an osmium compound. , A rhodium compound, a palladium compound, or a platinum compound (platinum complex-based compound), preferably an iridium compound, a rhodium compound, or a platinum compound, and most preferably an iridium compound.
 ドーパントの例としては、以下の文献又は特許公報に記載されている化合物である。J.Am.Chem.Soc.123巻4304~4312頁、国際公開第2000/70655号、同2001/93642号、同2002/02714号、同2002/15645号、同2002/44189号、同2002/081488号、特開2002-280178号公報、同2001-181616号公報、同2002-280179号公報、同2001-181617号公報、同2002-280180号公報、同2001-247859号公報、同2002-299060号公報、同2001-313178号公報、同2002-302671号公報、同2001-345183号公報、同2002-324679号公報、同2002-332291号公報、同2002-50484号公報、同2002-332292号公報、同2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、同2002-338588号公報、同2002-170684号公報、同2002-352960号公報、同2002-50483号公報、同2002-100476号公報、同2002-173674号公報、同2002-359082号公報、同2002-175884号公報、同2002-363552号公報、同2002-184582号公報、同2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、同2002-226495号公報、同2002-234894号公報、同2002-235076号公報、同2002-241751号公報、同2001-319779号公報、同2001-319780号公報、同2002-62824号公報、同2002-100474号公報、同2002-203679号公報、同2002-343572号公報、同2002-203678号公報など。 Examples of dopants are compounds described in the following documents or patent gazettes. J. Am. Chem. Soc. Vol. 123, pp. 4304 to 4312, International Publication No. 2000/70655, No. 2001/93642, No. 2002/02714, No. 2002/15645, No. 2002/44189, No. 2002/081488, Japanese Patent Application Laid-Open No. 2002-280178 No. 2001-181616, 2002-280179, 2001-181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178. Publication, Publication No. 2002-302671, Publication No. 2001-345183, Publication No. 2002-324679, Publication No. 2002-332291, Publication No. 2002-50484, Publication No. 2002-332292, Publication No. 2002-83684 , Japanese Patent Application Laid-Open No. 2002-540572, Japanese Patent Application Laid-Open No. 2002-117978, Japanese Patent Application Laid-Open No. 2002-338588, Japanese Patent Application Laid-Open No. 2002-170684, Japanese Patent Application Laid-Open No. 2002-352960, Japanese Patent Application Laid-Open No. 2002-50483, 2002-100476. Publication No. 2002-173674, No. 2002-359082, No. 2002-175884, No. 2002-363552, No. 2002-184582, No. 2003-7469, No. 2002-525808. Japanese Patent Application Laid-Open No. 2003-7471, Japanese Patent Application Laid-Open No. 2002-525833, JP-A-2003-31366, JP-A-2002-226495, JP-A-2002-234894, JP-A-2002-23507, JP-A-2002 No. 241751, No. 2001-319779, No. 2001-319780, No. 2002-62824, No. 2002-100474, No. 2002-203679, No. 2002-343572, No. 2002-203678. Issue publication etc.
 発光ドーパントは1種のみを用いてもよいし、複数種類を用いてもよく、これらドーパントからの発光を同時に取り出すことにより、複数の発光極大波長を持つ発光素子を構成することもできる。また、例えばリン光性ドーパントと、蛍光性ドーパントの両方が加えられていてもよい。複数の発光層を積層して有機EL素子を構成する場合、それぞれの層に含有される発光ドーパントは同じであっても異なっていても、単一種類であっても複数種類であってもよい。 Only one type of light emitting dopant may be used, or a plurality of types may be used, and by simultaneously extracting light emitted from these dopants, a light emitting element having a plurality of maximum light emitting wavelengths can be configured. Further, for example, both a phosphorescent dopant and a fluorescent dopant may be added. When a plurality of light emitting layers are laminated to form an organic EL element, the light emitting dopants contained in each layer may be the same or different, or may be of a single type or a plurality of types. ..
 さらには、前記発光ドーパントを高分子鎖に導入した、又は前記発光ドーパントを高分子の主鎖とした高分子材料を使用してもよい。 Further, a polymer material in which the light emitting dopant is introduced into a polymer chain or the light emitting dopant is used as a main chain of a polymer may be used.
 上記ホスト化合物としては、例えばカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物などの基本骨格を有するものが挙げられ、後述の電子輸送材料及び正孔輸送材料もその相応しい一例として挙げられる。 Examples of the host compound include those having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, and an oligoarylene compound, and electron transport described later. Materials and hole transporting materials are also examples of suitable examples.
 青色又は白色の発光素子、表示装置及び照明装置に適用する場合には、ホスト化合物の蛍光極大波長が415nm以下であることが好ましく、リン光性ドーパントを用いる場合、ホスト化合物のリン光の0-0バンドが450nm以下であることがさらに好ましい。発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。 When applied to blue or white light emitting elements, display devices and lighting devices, the fluorescence maximum wavelength of the host compound is preferably 415 nm or less, and when a phosphorescent dopant is used, the phosphorescence of the host compound is 0-. It is more preferable that the 0 band is 450 nm or less. As the light emitting host, a compound having hole transporting ability and electron transporting ability, preventing the wavelength of light emission from being lengthened, and having a high Tg (glass transition temperature) is preferable.
 発光ホストの具体例としては、例えば以下の文献に記載されている化合物が好適である。 As a specific example of the light emitting host, for example, the compounds described in the following documents are suitable.
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報など。 JP 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002. 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003 -3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002- 302516, 2002-305083, 2002-305084, 2002-308837, etc.
 発光ドーパントはホスト化合物を含有する層全体に分散されていてもよいし、部分的に分散されていてもよい。発光層には、さらに別の機能を有する化合物が加えられていてもよい。 The luminescent dopant may be dispersed throughout the layer containing the host compound, or may be partially dispersed. A compound having yet another function may be added to the light emitting layer.
 上記の材料を用いて、例えば蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット法)、インクジェットプリント法、印刷法などの公知の方法により薄膜化することにより、発光層を形成することができるが、形成された発光層は、特に分子堆積膜であることが好ましい。 A light emitting layer is formed by thinning the above materials by a known method such as a vapor deposition method, a spin coating method, a casting method, an LB method (Langmuir Brodget method), an inkjet printing method, or a printing method. However, the formed light emitting layer is particularly preferably a molecular deposition film.
 ここで、分子堆積膜とは、上記化合物の気相状態から沈着され形成された薄膜や、該化合物の溶融状態又は液相状態から固体化され形成された膜のことである。通常、この分子堆積膜とLB法により形成された薄膜(分子累積膜)とは、凝集構造、高次構造の相違や、それに起因する機能的な相違により区別することができる。 Here, the molecular deposition film is a thin film deposited and formed from the vapor phase state of the compound, and a film solidified and formed from the molten state or the liquid phase state of the compound. Usually, this molecular deposition film and the thin film (molecular cumulative film) formed by the LB method can be distinguished by the difference in the aggregated structure and the higher-order structure and the functional difference caused by the difference.
 本発明においては、上記の発光材料であるリン光性ドーパント及びホスト化合物を本発明の電子デバイス用有機材料として用いることが好ましい。すなわち、発光層を、当該リン光性ドーパント及びホスト化合物と、有機溶媒と、セルロースナノファイバーを含む溶液(電子デバイス作製用組成物)を、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法などの塗布によって形成することが、分子堆積膜からなる発光層を形成することができるため好ましい。中でも、均質な膜が得られやすく、かつ、ピンホールが生成しにくいなどの観点から、インクジェットプリント法が好ましい。 In the present invention, it is preferable to use the phosphorescent dopant and the host compound, which are the above-mentioned light emitting materials, as the organic material for the electronic device of the present invention. That is, the light emitting layer is printed with a solution (composition for manufacturing an electronic device) containing the phosphorescent dopant and the host compound, an organic solvent, and cellulose nanofibers by a spin coating method, a casting method, an inkjet method, a spray method, or a printing method. It is preferable to form by coating by a method, a slot type coater method, or the like because a light emitting layer made of a molecular deposition film can be formed. Above all, the inkjet printing method is preferable from the viewpoint that a homogeneous film can be easily obtained and pinholes are less likely to be formed.
 そして、当該リン光性ドーパント及びホスト化合物と、有機溶媒と、セルロースナノファイバーを含む塗布液において、50℃以下、大気圧条件下での有機溶媒に対する溶存二酸化炭素濃度を1ppm~前記有機溶媒に対する飽和濃度とすることが好ましい。溶存二酸化炭素濃度を上記範囲とする手段としては、リン光性ドーパント及びホスト化合物と、有機溶媒とを含む溶液に炭酸ガスをバブリングする方法、又は、有機溶媒及び二酸化炭素を含有する超臨界流体を用いた超臨界クロマトグラフィー法が挙げられる。 Then, in the coating liquid containing the phosphorescent dopant, the host compound, the organic solvent, and the cellulose nanofibers, the dissolved carbon dioxide concentration in the organic solvent under atmospheric pressure conditions of 50 ° C. or lower is saturated from 1 ppm to the organic solvent. The concentration is preferably set. As a means for setting the dissolved carbon dioxide concentration in the above range, a method of bubbling carbon dioxide gas into a solution containing a phosphorescent dopant and a host compound and an organic solvent, or a supercritical fluid containing an organic solvent and carbon dioxide is used. Examples thereof include the supercritical chromatography method used.
 (正孔注入層及び正孔輸送層)
 正孔注入層に用いられる正孔注入材料は、正孔の注入、電子の障壁性のいずれかを有するものである。また、正孔輸送層に用いられる正孔輸送材料は、電子の障壁性を有するとともに正孔を発光層まで輸送する働きを有するものである。したがって、本発明においては、正孔輸送層は正孔注入層に含まれる。
(Hole injection layer and hole transport layer)
The hole injection material used for the hole injection layer has either hole injection or electron barrier property. Further, the hole transport material used for the hole transport layer has an electron barrier property and also has a function of transporting holes to the light emitting layer. Therefore, in the present invention, the hole transport layer is included in the hole injection layer.
 これら正孔注入材料及び正孔輸送材料は、有機物、無機物のいずれであってもよい。具体的には、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、ポルフィリン化合物、チオフェンオリゴマーなどの導電性高分子オリゴマーが挙げられる。これらのうちでは、アリールアミン誘導体及びポルフィリン化合物が好ましい。 The hole injection material and the hole transport material may be either an organic substance or an inorganic substance. Specifically, for example, triazole derivative, oxadiazole derivative, imidazole derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amino-substituted chalcone derivative, oxazole derivative, styrylanthracene derivative, fluorenone derivative. , Hydrazone derivatives, stylben derivatives, silazane derivatives, aniline-based copolymers, porphyrin compounds, thiophene oligomers and other conductive polymer oligomers. Of these, arylamine derivatives and porphyrin compounds are preferred.
 アリールアミン誘導体の中では、芳香族第三級アミン化合物及びスチリルアミン化合物が好ましく、芳香族第三級アミン化合物がより好ましい。 Among the arylamine derivatives, aromatic tertiary amine compounds and styrylamine compounds are preferable, and aromatic tertiary amine compounds are more preferable.
 上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)ビフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベン;N-フェニルカルバゾール、さらには、米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(以下、α-NPDと略す。)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。また、p型-Si、p型-SiCなどの無機化合物も正孔注入材料として使用することができる。 Typical examples of the above aromatic tertiary amine compound and styrylamine compound are N, N, N', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'. -Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1- Bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N', N'-tetra-p-tolyl-4,4'-diaminobiphenyl; 1,1-bis (4-di-p-) Trillaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ′ -Di (4-methoxyphenyl) -4,4′-diaminobiphenyl; N, N, N ′, N′-tetraphenyl-4,4′-diaminodiphenyl ether; 4,4′-bis (diphenylamino) biphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4'-[4- (di-p-tolylamino) styryl] stilben; 4-N, N-diphenylamino -(2-Diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostylben; N-phenylcarbazole, as well as the two condensed aromatics described in US Pat. No. 5,061569. Those having a ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (hereinafter abbreviated as α-NPD), described in JP-A-4-308688. Examples include 4,4', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) in which three triphenylamine units are linked in a starburst type. Further, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material.
 また、本発明においては、正孔輸送層の正孔輸送材料は、415nm以下に蛍光極大波長を有することが好ましい。すなわち、正孔輸送材料は、正孔輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tgである化合物が好ましい。 Further, in the present invention, the hole transport material of the hole transport layer preferably has a fluorescence maximum wavelength of 415 nm or less. That is, the hole transporting material is preferably a compound having a hole transporting ability, preventing the wavelength of light emission from being lengthened, and having a high Tg.
 正孔注入層及び正孔輸送層は、上記正孔注入材料及び正孔輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法、プリント法、印刷法などの公知の方法により、薄膜化することにより形成することができる。 As the hole injection layer and the hole transport layer, the hole injection material and the hole transport material are known, for example, vacuum deposition method, spin coating method, casting method, LB method, inkjet method, printing method, printing method and the like. It can be formed by thinning the film according to the method.
 本発明においては、上記正孔注入材料及び正孔輸送材料を、本発明の電子デバイス用有機材料として用いることが好ましい。そして、上記正孔注入材料及び正孔輸送材料と、有機溶媒と、セルロースナノファイバーを含む溶液(電子デバイス作製用組成物)を、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法などの塗布によって形成することが好ましい。中でも、均質な膜が得られやすく、かつ、ピンホールが生成しにくいなどの観点から、インクジェットプリント法が好ましい。 In the present invention, it is preferable to use the hole injection material and the hole transport material as the organic material for the electronic device of the present invention. Then, the hole injection material, the hole transport material, the organic solvent, and the solution containing the cellulose nanofibers (composition for manufacturing an electronic device) are subjected to a spin coating method, a casting method, an inkjet method, a spray method, a printing method, and the like. It is preferably formed by coating such as a slot type coater method. Above all, the inkjet printing method is preferable from the viewpoint that a homogeneous film can be easily obtained and pinholes are less likely to be formed.
 正孔注入層及び正孔輸送層の厚さについては、特に制限はないが、通常は5nm~5μmの範囲内程度である。なお、上記正孔注入層及び正孔輸送層は、それぞれ上記材料の1種又は2種以上からなる1層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。また、正孔注入層と正孔輸送層を両方設ける場合には、上記の材料のうち、通常、異なる材料を用いるが、同一の材料を用いてもよい。 The thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually within the range of 5 nm to 5 μm. The hole injection layer and the hole transport layer may have a one-layer structure composed of one or more of the above materials, respectively, and may have a laminated structure composed of a plurality of layers having the same composition or a different composition. May be good. When both the hole injection layer and the hole transport layer are provided, different materials are usually used among the above materials, but the same material may be used.
 (電子注入層及び電子輸送層)
 電子注入層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
(Electron injection layer and electron transport layer)
The electron injection layer may have a function of transferring electrons injected from the cathode to the light emitting layer, and as the material thereof, any conventionally known compound can be selected and used.
 この電子注入層に用いられる材料(以下、電子注入材料ともいう)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体などが挙げられる。 Examples of materials used for this electron-injected layer (hereinafter, also referred to as electron-injected materials) include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, and naphthalene perylene, and carbodiimides. , Freolenilidene methane derivative, anthraquinodimethane and antron derivative, oxadiazole derivative and the like.
 また、特開昭59-194393号公報に記載されている一連の電子伝達性化合物は、該公報では発光層を形成する材料として開示されているが、本発明者らが検討の結果、電子注入材料として用いうることが分かった。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子注入材料として用いることができる。 Further, a series of electron transporting compounds described in JP-A-59-194393 are disclosed as materials for forming a light emitting layer in the publication, but as a result of examination by the present inventors, electron injection It was found that it could be used as a material. Further, among the oxadiazole derivatives, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is replaced with a sulfur atom, and a quinoxalin derivative having a quinoxalin ring known as an electron-withdrawing group can also be used as an electron injection material.
 また、8-キノリノール誘導体の金属錯体、例えばトリス(8-キノリノール)アルミニウム(Alqと略す。)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も電子注入材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives, such as tris (8-quinolinol) aluminum ( abbreviated as Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-). Kinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metal of these metal complexes is In. , Mg, Cu, Ca, Sn, Ga or Pb replaced with a metal complex can also be used as the electron injection material.
 その他、メタルフリーやメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されているものも電子注入材料として好ましく用いることができる。また、正孔注入層と同様にn型-Si、n型-SiCなどの無機半導体も電子注入材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like can also be preferably used as an electron injection material. Further, similarly to the hole injection layer, inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron injection material.
 電子輸送層に用いられる好ましい化合物は、415nm以下に蛍光極大波長を有することが好ましい。すなわち、電子輸送層に用いられる化合物は、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ、高Tgである化合物が好ましい。 The preferred compound used in the electron transport layer preferably has a maximum fluorescence wavelength of 415 nm or less. That is, the compound used for the electron transport layer is preferably a compound having an electron transport ability, preventing a long wavelength of light emission, and having a high Tg.
 電子注入層は、上記電子注入材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法、プリント法、印刷法などの公知の方法により、薄膜化することにより形成することができる。 The electron injection layer can be formed by thinning the electron injection material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an inkjet method, a printing method, or a printing method. it can.
 本発明においては、上記電子注入材料を、本発明の電子デバイス用有機材料として用いることが好ましい。そして、上記電子注入材料と、有機溶媒と、セルロースナノファイバーを含む溶液(電子デバイス作製用組成物)を、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法などの塗布によって形成することが好ましい。中でも、均質な膜が得られやすく、かつ、ピンホールが生成しにくいなどの観点から、インクジェット法が好ましい。 In the present invention, it is preferable to use the electron-injected material as the organic material for the electronic device of the present invention. Then, the solution containing the electron injection material, the organic solvent, and the cellulose nanofibers (composition for manufacturing an electronic device) is subjected to a spin coating method, a casting method, an inkjet method, a spray method, a printing method, a slot type coater method, or the like. It is preferably formed by coating. Above all, the inkjet method is preferable from the viewpoint that a homogeneous film can be easily obtained and pinholes are less likely to be formed.
 また、電子注入層としての厚さは特に制限はないが、通常は5nm~5μmの範囲内で選ばれる。この電子注入層は、これらの電子注入材料の1種又は2種以上からなる1層構造であってもよいし、又は同一組成又は異種組成の複数層からなる積層構造であってもよい。 The thickness of the electron injection layer is not particularly limited, but is usually selected within the range of 5 nm to 5 μm. The electron-injected layer may have a one-layer structure composed of one or more of these electron-injected materials, or may have a laminated structure composed of a plurality of layers having the same composition or a different composition.
 なお、本明細書においては、前記電子注入層のうち、発光層と比較してイオン化エネルギーが大きい場合には、特に電子輸送層と呼ぶこととする。したがって、本明細書においては、電子輸送層は電子注入層に含まれる。 In the present specification, among the electron injection layers, when the ionization energy is larger than that of the light emitting layer, it is referred to as an electron transport layer. Therefore, in the present specification, the electron transport layer is included in the electron injection layer.
 上記電子輸送層は、正孔阻止層(ホールブロック層)ともいわれ、例えば国際公開第2000/70655号、特開2001-313178号公報、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第237頁などに記載されているものが挙げられる。特に発光層にオルトメタル錯体系ドーパントを用いるいわゆる「リン光発光素子」においては、前記(v)及び(vi)のように電子輸送層(正孔阻止層)を有する構成を採ることが好ましい。 The electron transport layer is also referred to as a hole blocking layer (hole block layer). For example, International Publication No. 2000/70655, JP-A-2001-313178, JP-A-11-204258, JP-A-11-204359, And those described on page 237 of "Organic EL Element and Its Industrialization Frontline (November 30, 1998, published by NTS)". In particular, in a so-called "phosphorescent light emitting device" that uses an orthometal complex-based dopant for the light emitting layer, it is preferable to adopt a configuration having an electron transport layer (hole blocking layer) as described in (v) and (vi).
 (バッファー層)
 陽極と発光層又は正孔注入層の間、及び、陰極と発光層又は電子注入層との間には、バッファー層(電極界面層)を存在させてもよい。
(Buffer layer)
A buffer layer (electrode interface layer) may be present between the anode and the light emitting layer or the hole injection layer, and between the cathode and the light emitting layer or the electron injection layer.
 バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(第123~166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。 The buffer layer is a layer provided between the electrode and the organic layer in order to reduce the driving voltage and improve the luminous efficiency. "Organic EL element and its industrialization frontline (November 30, 1998, published by NTS). ) ”, Volume 2, Chapter 2,“ Electrode Materials ”(pages 123 to 166), and includes an anode buffer layer and a cathode buffer layer.
 陽極バッファー層は、特開平9-45479号、同9-260062号、同8-288069号などにもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェンなどの導電性高分子を用いた高分子バッファー層などが挙げられる。 The details of the anode buffer layer are also described in JP-A-9-45479, 9-2660062, 8-288609, etc., and specific examples thereof include a phthalocyanine buffer layer typified by copper phthalocyanine and vanadium oxide. Examples thereof include an oxide buffer layer represented by the above, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層は、特開平6-325871号、同9-17574号、同10-74586号などにもその詳細が記載されており、具体的にはストロンチウムやアルミニウムなどに代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層などが挙げられる。 The details of the cathode buffer layer are described in JP-A-6-325871, No. 9-17574, No. 10-74586, etc., and specifically, a metal buffer layer typified by strontium, aluminum, or the like. Examples thereof include an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and an oxide buffer layer typified by aluminum oxide.
 上記バッファー層はごく薄い膜であることが望ましく、素材にもよるが、その厚さは0.1~100nmの範囲が好ましい。さらに、上記基本構成層の他に、必要に応じてその他の機能を有する層を適宜積層してもよい。 The buffer layer is preferably a very thin film, and the thickness is preferably in the range of 0.1 to 100 nm, although it depends on the material. Further, in addition to the above basic constituent layers, layers having other functions may be appropriately laminated, if necessary.
 (陰極)
 上述のように有機EL素子の陰極としては、一般に仕事関数の小さい(4eV未満)金属(以下、電子注入性金属と称する)、合金、金属の電気伝導性化合物又はこれらの混合物を電極物質とするものが用いられる。
(cathode)
As described above, as the cathode of the organic EL element, a metal having a small work function (less than 4 eV) (hereinafter referred to as an electron-injectable metal), an alloy, an electrically conductive compound of the metal, or a mixture thereof is generally used as an electrode material. Things are used.
 このような電極物質の具体例としては、ナトリウム、マグネシウム、リチウム、アルミニウム、インジウム、希土類金属、ナトリウム-カリウム合金、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが挙げられる。 Specific examples of such electrode materials include sodium, magnesium, lithium, aluminum, indium, rare earth metals, sodium-potassium alloys, magnesium / copper mixtures, magnesium / silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum. / Aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture and the like.
 本発明においては、上記に列挙したものを陰極の電極物質として用いてもよいが、陰極は第13族金属元素を含有してなることが好ましい。すなわち本発明では、後述するように陰極の表面をプラズマ状態の酸素ガスで酸化して、陰極表面に酸化被膜を形成することにより、それ以上の陰極の酸化を防止し、陰極の耐久性を向上させることができる。 In the present invention, those listed above may be used as the electrode material of the cathode, but the cathode preferably contains a Group 13 metal element. That is, in the present invention, as will be described later, the surface of the cathode is oxidized with oxygen gas in a plasma state to form an oxide film on the surface of the cathode, thereby preventing further oxidation of the cathode and improving the durability of the cathode. Can be made to.
 したがって、陰極の電極物質としては、陰極に要求される好ましい電子注入性を有する金属であって、緻密な酸化被膜を形成しうる金属であることが好ましい。 Therefore, the electrode material of the cathode is preferably a metal having preferable electron injection properties required for the cathode and capable of forming a dense oxide film.
 前記第13族金属元素を含有してなる陰極の電極物質としては、具体的には、例えばアルミニウム、インジウム、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが挙げられる。なお、上記混合物の各成分の混合比率は、有機EL素子の陰極として従来公知の比率を採用することができるが、特にこれに限定されない。上記陰極は、上記の電極物質を蒸着やスパッタリングなどの方法により、前記有機化合物層(有機EL層)上に薄膜形成することにより、作製することができる。 Specific examples of the electrode material of the cathode containing the Group 13 metal element include aluminum, indium, magnesium / aluminum mixture, magnesium / indium mixture, and aluminum / aluminum oxide (Al 2 O 3 ) mixture. Examples include a lithium / aluminum mixture. The mixing ratio of each component of the mixture can be a conventionally known ratio as the cathode of the organic EL element, but the mixing ratio is not particularly limited to this. The cathode can be produced by forming a thin film on the organic compound layer (organic EL layer) by forming the electrode material on the organic compound layer (organic EL layer) by a method such as vapor deposition or sputtering.
 また、陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、膜厚は、通常10nm~1μmの範囲内、好ましくは50~200nmの範囲内で選ばれる。なお、発光光を透過させるために、有機EL素子の陽極又は陰極のいずれか一方を透明又は半透明にすると、発光効率が向上して好ましい。 Also, the sheet resistance as a cathode is several hundred Ω / sq. The following is preferable, and the film thickness is usually selected in the range of 10 nm to 1 μm, preferably in the range of 50 to 200 nm. It is preferable to make either the anode or the cathode of the organic EL element transparent or translucent in order to transmit the emitted light because the luminous efficiency is improved.
 [有機EL素子の製造方法]
 有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製方法について説明する。
[Manufacturing method of organic EL element]
As an example of a method for manufacturing an organic EL device, a method for manufacturing an organic EL device including an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
 まず適当な基材上に、所望の電極物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10~200nmの範囲内の厚さになるように、蒸着やスパッタリングなどの方法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜(有機薄膜)を形成させる。 First, a thin film made of a desired electrode substance, for example, an anode substance, is formed on a suitable substrate by a method such as thin film deposition or sputtering so as to have a thickness of 1 μm or less, preferably in the range of 10 to 200 nm. , Make the anode. Next, an organic compound thin film (organic thin film) of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer, which are element materials, is formed on this.
 これらの有機薄膜の薄膜化の方法としては、上述したように、スピンコート法、キャスト法、インクジェットプリント法、スプレー法、蒸着法、印刷法、スロットコート法などがあるが、均質な膜が得られやすく、かつ、ピンホールが生成しにくいなどの点と、本発明においては、本発明の電子デバイス作製用組成物を用いることができる点でインクジェットプリント法が好ましい。 As a method for thinning these organic thin films, as described above, there are a spin coating method, a casting method, an inkjet printing method, a spray method, a vapor deposition method, a printing method, a slot coating method, etc., and a homogeneous film can be obtained. The inkjet printing method is preferable because it is easy to generate and pinholes are not easily formed, and in the present invention, the composition for producing an electronic device of the present invention can be used.
 た、層ごとに異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類などにより異なるが、一般にボート加熱温度50~450℃の範囲内、真空度10-6~10-2Paの範囲内、蒸着速度0.01~50nm/秒の範囲内、基板温度-50~300℃の範囲内、厚さ0.1nm~5μmの範囲内で適宜選ぶことが望ましい。 Alternatively, a different film forming method may be applied to each layer. When a thin-film deposition method is used for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is within the range of 50 to 450 ° C and the degree of vacuum is within the range of 10-6 to 10-2 Pa. It is desirable to appropriately select the vapor deposition rate within the range of 0.01 to 50 nm / sec, the substrate temperature within the range of -50 to 300 ° C., and the thickness within the range of 0.1 nm to 5 μm.
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲内の厚さになるように、例えば蒸着やスパッタリングなどの方法により形成させ、陰極を設けることにより、所望の有機EL素子が得られる。この有機EL素子の作製は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施してもかまわない。その際、作業を乾燥不活性ガス雰囲気下で行うなどの配慮が必要となる。 After forming these layers, a thin film made of a material for a cathode is formed on the thin film so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a cathode is provided by a method such as vapor deposition or sputtering. Thereby, a desired organic EL element can be obtained. The organic EL element is preferably manufactured from the hole injection layer to the cathode by one vacuuming, but it may be taken out in the middle and a different film forming method may be applied. At that time, consideration must be given to performing the work in a dry inert gas atmosphere.
 [有機EL素子の封止]
 有機EL素子の封止方法としては、特に限られないが、例えば有機EL素子の外周部を封止用接着剤で封止した後、有機EL素子の発光領域を覆うように封止部材を配置する方法が挙げられる。
[Encapsulation of organic EL element]
The method for sealing the organic EL element is not particularly limited, but for example, after sealing the outer peripheral portion of the organic EL element with a sealing adhesive, a sealing member is arranged so as to cover the light emitting region of the organic EL element. There is a way to do it.
 封止用接着剤としては、例えばアクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステルなどの湿気硬化型などの接着剤を挙げることができる。また、エポキシ系などの熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Examples of the sealing adhesive include acrylic acid-based oligomers, photocurable and thermosetting adhesives having a reactive vinyl group of methacrylic acid-based oligomers, and moisture-curable adhesives such as 2-cyanoacrylic acid ester. Can be mentioned. In addition, heat and chemical curing type (two-component mixture) such as epoxy type can be mentioned. Further, hot melt type polyamide, polyester and polyolefin can be mentioned. In addition, a cation-curable type ultraviolet-curable epoxy resin adhesive can be mentioned.
 封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルム及び金属フィルムを好ましく使用することができる。ポリマーフィルムの場合は、前述のガスバリアー性を付与することが好ましい。 As the sealing member, a polymer film and a metal film can be preferably used from the viewpoint that the organic EL element can be thinned. In the case of a polymer film, it is preferable to impart the above-mentioned gas barrier property.
 封止構造としては、有機EL素子と封止部材の間が中空になっている構造や、有機EL素子と封止部材の間に接着剤などのシール材が充填されている充填封止構造が挙げられる。 The sealing structure includes a structure in which the space between the organic EL element and the sealing member is hollow, and a filling and sealing structure in which a sealing material such as an adhesive is filled between the organic EL element and the sealing member. Can be mentioned.
 封止部材と有機EL素子の発光領域との間隙には、封止用接着剤の他には、気相及び液相では窒素、アルゴンなどの不活性気体やフッ化炭化水素、シリコーンオイルのような不活性液体を注入することもできる。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に不活性ガスを封入したり、乾燥剤を配置することもできる。 In the gap between the sealing member and the light emitting region of the organic EL element, in addition to the sealing adhesive, in the gas phase and liquid phase, an inert gas such as nitrogen or argon, fluorine hydrocarbon, silicone oil, etc. It is also possible to inject a non-active liquid. Further, the gap between the sealing member and the display region of the organic EL element can be evacuated, an inert gas can be sealed in the gap, or a desiccant can be arranged.
 [有機EL表示装置]
 上記有機EL素子を用いる有機EL表示装置(以下、単に「表示装置」ともいう。)は、発光層形成時のみシャドーマスクを設け、他層は共通にすれば、シャドーマスクなどのパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法などで膜を形成できる。
[Organic EL display device]
The organic EL display device using the organic EL element (hereinafter, also simply referred to as “display device”) is provided with a shadow mask only when the light emitting layer is formed, and if the other layers are shared, patterning such as a shadow mask is unnecessary. Yes, a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like.
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェットプリント法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを用いたパターニングが好ましい。 When patterning only the light emitting layer, the method is not limited, but a vapor deposition method, an inkjet printing method, or a printing method is preferable. When the vapor deposition method is used, patterning using a shadow mask is preferable.
 また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 It is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
 このようにして得られた表示装置に、直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40Vの範囲内程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the display device obtained in this way, light emission can be observed by applying a voltage within the range of 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even if a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The waveform of the alternating current to be applied may be arbitrary.
 表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることにより、フルカラーの表示が可能となる。 The display device can be used as a display device, a display, and various light emitting light sources. Full-color display is possible by using three types of organic EL elements that emit blue, red, and green in the display device and display.
 表示デバイス、ディスプレイとしてはテレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示などが挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリックス(パッシブマトリックス)方式でもアクティブマトリックス方式でもどちらでもよい。 Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing a still image or a moving image, and the drive method when used as a display device for reproducing a moving image may be either a simple matrix (passive matrix) method or an active matrix method.
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源などが挙げられるがこれに限定するものではない。 Light sources include household lighting, interior lighting, backlights for clocks and liquid crystals, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. It can be mentioned, but it is not limited to this.
 また、本発明に係る有機EL素子に共振器構造を持たせた有機EL素子として用いてもよい。 Further, the organic EL element according to the present invention may be used as an organic EL element having a resonator structure.
 このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源などが挙げられるが、これらに限定されない。また、レーザー発振をさせることにより、上記用途に使用してもよい。 The purpose of using the organic EL element having such a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not limited. Further, it may be used for the above-mentioned applications by oscillating a laser.
 本発明に係る有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 The organic EL element according to the present invention may be used as a kind of lamp such as an illumination or an exposure light source, a projection device of a type for projecting an image, or a display of a type for directly visually recognizing a still image or a moving image. It may be used as a device (display). When used as a display device for video reproduction, the drive system may be either a simple matrix (passive matrix) system or an active matrix system. Alternatively, a full-color display device can be manufactured by using two or more kinds of organic EL elements of the present invention having different emission colors.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, the indication of "parts" or "%" is used, but unless otherwise specified, it indicates "parts by mass" or "% by mass".
 [実施例1]
 (LED素子(1-1)の作製)
 円形パッケージ(開口径3mm、底面直径2mm、壁面角度60°)の収容部の中央に、1つの青色LED素子(直方体状;200μm×300μm×100μm)をフリップチップ実装した。円形パッケージは、図2に示されるように、厚さ100nmの銀電極15が形成されているものを用いた。
 当該LED素子及び電極を覆うように、例示化合物13(1.0g)をエタノール100mlに溶解させた溶液をスプレー塗布し、150℃で10分間加熱・硬化した。
[Example 1]
(Manufacturing of LED element (1-1))
One blue LED element (rectangular parallelepiped; 200 μm × 300 μm × 100 μm) was flip-chip mounted in the center of the accommodating portion of the circular package (opening diameter 3 mm, bottom diameter 2 mm, wall surface angle 60 °). As the circular package, as shown in FIG. 2, a silver electrode 15 having a thickness of 100 nm was formed.
A solution prepared by dissolving Example Compound 13 (1.0 g) in 100 ml of ethanol was spray-coated so as to cover the LED element and the electrode, and heated and cured at 150 ° C. for 10 minutes.
 続いて、下記の方法で調製した蛍光体粒子を10質量%分散させたシリコーン樹脂(OE6630,東レダウ社製)を、円形パッケージ内にディスペンサーにより塗布し、150℃で1時間焼成し、波長変換層を形成した。波長変換層の厚さは2.5mmとした。 Subsequently, a silicone resin (OE6630, manufactured by Toray Dau) in which 10% by mass of the phosphor particles prepared by the following method is dispersed is applied in a circular package by a dispenser, and fired at 150 ° C. for 1 hour to convert the wavelength. A layer was formed. The thickness of the wavelength conversion layer was 2.5 mm.
 (蛍光体粒子の調製)
 Y 7.41g、Gd 4.01g、CeO 0.63g、及びAl 7.77gを十分に混合した。当該混合物にフラックスとしてフッ化アンモニウムを適量混合し、アルミ製の坩堝に充填した。
 当該充填物を、水素含有窒素ガスを流通させた還元雰囲気中において、1350~1450℃の温度範囲で2~5時間焼成して焼成品((Y0.72Gd0.24)3Al12:Ce0.04)を得た。
(Preparation of phosphor particles)
Y 2 O 3 7.41 g, Gd 2 O 3 4.01 g, CeO 2 0.63 g, and Al 2 O 3 7.77 g were thoroughly mixed. An appropriate amount of ammonium fluoride was mixed with the mixture as a flux, and the mixture was filled in an aluminum crucible.
The filler was calcined in a reducing atmosphere in which hydrogen-containing nitrogen gas was circulated in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a calcined product ((Y 0.72 Gd 0.24 ) 3Al 5 O 12). : Ce 0.04 ) was obtained.
 得られた焼成品を粉砕、洗浄、分離、乾燥して、平均粒径が10μm程度の黄色蛍光体粒子を得た。波長465nmの励起光における発光波長を測定したところ、おおよそ波長570nmにピーク波長を有していた。 The obtained fired product was pulverized, washed, separated, and dried to obtain yellow fluorescent particles having an average particle size of about 10 μm. When the emission wavelength of the excitation light having a wavelength of 465 nm was measured, it had a peak wavelength of approximately 570 nm.
 (LED素子(1-2)~(1-19)の作製)
 化合物と溶媒を、表IIIに示したように変更した以外は、LED素子(1-1)と同様
に各LED素子(発光装置)を作製した。
(Manufacturing of LED elements (1-2) to (1-19))
Each LED element (light emitting device) was produced in the same manner as the LED element (1-1) except that the compound and the solvent were changed as shown in Table III.
 <評価>
  各LED素子の密着性及び硫化耐性を以下の方法で評価した。評価結果を表IIIに示
す。
<Evaluation>
The adhesion and sulfurization resistance of each LED element were evaluated by the following methods. The evaluation results are shown in Table III.
 (密着性の評価)
 各LED素子を150℃で30分間乾燥した後、85℃、相対湿度85%の恒温恒湿槽に24時間静置した。その後、30分以内に265℃ピークのリフロー処理を行い、封止材層が剥離したかを確認した。
 また、全光束は、分光放射輝度計(CS-2000、コニカミノルタセンシング社製)により測定した。評価は以下の基準で行った。
(Evaluation of adhesion)
After drying each LED element at 150 ° C. for 30 minutes, the LED element was allowed to stand in a constant temperature and humidity chamber at 85 ° C. and a relative humidity of 85% for 24 hours. Then, within 30 minutes, a reflow treatment of the peak at 265 ° C. was performed, and it was confirmed whether the encapsulant layer was peeled off.
The total luminous flux was measured by a spectral radiance meter (CS-2000, manufactured by Konica Minolta Sensing Co., Ltd.). The evaluation was performed according to the following criteria.
◎:顕微鏡観察で封止材層のはく離が無く、発光装置に通電した際に点灯し、顕微鏡確認が困難な微小はく離に起因する全光束値低下が1%未満である
〇:顕微鏡観察で封止材層のはく離が無く、発光装置に通電した際に点灯するが、顕微鏡確認が困難な微小はく離に起因する全光束値低下が1%以上3%以下ある
△:顕微鏡観察で封止材層のはく離が有るが、発光装置に通電した際に点灯する
×:顕微鏡観察で封止材層のはく離が有り、発光装置に通電した際に点灯しない
⊚: There is no peeling of the encapsulant layer by microscopic observation, it lights up when the light emitting device is energized, and the decrease in total luminous value due to minute peeling that is difficult to confirm with a microscope is less than 1%. There is no peeling of the stop material layer, and it lights up when the light emitting device is energized, but the decrease in total luminous value due to minute peeling, which is difficult to confirm with a microscope, is 1% or more and 3% or less. There is peeling, but it lights up when the light emitting device is energized. ×: There is peeling of the encapsulant layer when the light emitting device is energized, and it does not light up when the light emitting device is energized.
 (硫化耐性評価)
 JIS規格のガス暴露試験(JIS C 60068-2-43)に基づき、LED装置を硫化水素ガス15ppm、温度25℃、相対湿度50%RHの環境下に1000時間暴露した。暴露前後の全光束測定を行い、下記の基準で硫化耐性を評価した。全光束は、分光放射輝度計(CS-2000、コニカミノルタセンシング社製)により測定した。
 下記比較化合物(1)(「比較1」とも称する。)素子(1-18)(比較例)の暴露後の輝度/暴露前の輝度の値を100として、相対値で表す。なお、数値が大きいほど、硫化耐性が良好である結果を示す。以上の評価結果を下記表IIIに示す。
(Sulfurization resistance evaluation)
Based on the JIS standard gas exposure test (JIS C 60068-2-43), the LED device was exposed to an environment of hydrogen sulfide gas 15 ppm, a temperature of 25 ° C., and a relative humidity of 50% RH for 1000 hours. The total luminous flux was measured before and after the exposure, and the sulfurization resistance was evaluated according to the following criteria. The total luminous flux was measured by a spectral radiance meter (CS-2000, manufactured by Konica Minolta Sensing Co., Ltd.).
The value of the brightness after exposure / brightness before exposure of the following comparative compound (1) (also referred to as “comparison 1”) element (1-18) (comparative example) is set as 100 and expressed as a relative value. The larger the value, the better the sulfurization resistance. The above evaluation results are shown in Table III below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 表IIIに示した結果から明らかなように本発明のLED素子は、密着性及び輝度が比較例より優れていることが分かる。
 なお、ガス暴露試験後の比較例の銀電極の表面の色は、本発明のLED素子の銀電極の表面の色に比べ黒ずんでいることが観察された。
As is clear from the results shown in Table III, it can be seen that the LED element of the present invention is superior in adhesion and brightness to the comparative example.
It was observed that the color of the surface of the silver electrode of the comparative example after the gas exposure test was darker than the color of the surface of the silver electrode of the LED element of the present invention.
 [実施例2]
 (LED素子(2-1)の作製)
 下記の方法に従って、LED発光素子であるLED素子(2-1)を作製した。
 LED1の作製に用いた各構成材料を以下に示す。
[Example 2]
(Manufacturing of LED element (2-1))
An LED element (2-1), which is an LED light emitting element, was produced according to the following method.
Each constituent material used for manufacturing LED1 is shown below.
 ・パッケージ基板:開口径3mm、底面直径2mm、壁面角度60°市販品
 ・蛍光体1:根本特殊化学社製 YAG 405C205;粒度分布D50:20.5μm
 ・樹脂層形成用樹脂1:シリコーン樹脂:東レ・ダウコーニング社製OE6630
 ・リードフレーム:銀メッキ仕上げ;株式会社アルファクト製 5050タイプ
 ・ボンディングワイヤー:銀合金製 田中貴金属製 SECタイプ
 ・LED素子:光源には発光波長が約460nmの青色光を発光するInGaN系のLED素子を用い、蛍光体にはYAG蛍光体を使用することで、青色光と黄色光の混色で白色光を得た。
-Package substrate: Opening diameter 3 mm, bottom diameter 2 mm, wall surface angle 60 ° Commercial product-Fluorescent material 1: Nemoto & Co., Ltd. YAG 405C205; Particle size distribution D50: 20.5 μm
-Resin layer forming resin 1: Silicone resin: OE6630 manufactured by Toray Dow Corning Co., Ltd.
・ Lead frame: Silver-plated finish; 5050 type manufactured by Alphact Co., Ltd. ・ Bonding wire: SEC type manufactured by Tanaka Kikinzoku made of silver alloy ・ LED element: InGaN-based LED element that emits blue light with an emission wavelength of about 460 nm as the light source By using a YAG phosphor as the phosphor, white light was obtained by mixing blue light and yellow light.
 〈LED素子の実装〉
 LED素子はコンタクトホールを形成したのち、ダイサー縦200um×横200um×高さ200umの直方体状のLED素子を用意した。
 パッケージ基板をプラズマ洗浄でクリーニングし、有機汚染物を除去したのち、パッケージ基板にLED素子をマウントし、リードフレームとLED端子をボンディングワイヤーで接続実装した。
<Mounting of LED element>
After forming a contact hole for the LED element, a rectangular parallelepiped LED element having a dicer length of 200 um × width of 200 um × height of 200 um was prepared.
After cleaning the package substrate by plasma cleaning to remove organic contaminants, the LED element was mounted on the package substrate, and the lead frame and the LED terminal were connected and mounted by a bonding wire.
 〈封止材層の形成〉
 封止材層の形成には、以下構成の樹脂層形成用組成物を用いた。
<Formation of encapsulant layer>
A composition for forming a resin layer having the following constitution was used for forming the encapsulant layer.
 ・樹脂層形成用樹脂1(シリコーン樹脂:東レ・ダウコーニング社製OE6630)
                            80質量部
 ・蛍光体1:根本特殊化学社製 YAG 405C205;粒度分布D50:20.5μm
                            20質量部
 ・硫化防止剤:例示化合物13              5質量部
 樹脂層形成用樹脂1及び蛍光体1を、クラボウ社製遊星式攪拌脱泡装置「マゼルスターKK-400」を用い、1500rpmで15分攪拌することで、樹脂層形成用組成物を調製し、ディスペンサー(武蔵野エンジニアリング社製 MPP-1)を用いてLED素子が接続されている上記パッケージ基板へ流し込み、110℃で30分の加熱処理を行い、その後樹脂の乾燥のため150℃で15分の熱処理を行って、LED素子(2-1)を作製した(図3参照)。
-Resin layer forming resin 1 (Silicone resin: OE6630 manufactured by Toray Dow Corning)
80 parts by mass ・ Fluorescent material 1: YAG 405C205 manufactured by Nemoto & Co., Ltd .; Particle size distribution D50: 20.5 μm
20 parts by mass ・ Anti-sulfuration agent: Exemplified compound 135 parts by mass The resin 1 for forming the resin layer and the phosphor 1 are stirred at 1500 rpm for 15 minutes using a planetary stirring and defoaming device “Mazelstar KK-400” manufactured by Kurabo. Therefore, a composition for forming a resin layer was prepared, poured into the above package substrate to which the LED element was connected using a dispenser (MPP-1 manufactured by Musashino Engineering Co., Ltd.), and heat-treated at 110 ° C. for 30 minutes. Then, the resin was heat-treated at 150 ° C. for 15 minutes to dry the resin to produce an LED element (2-1) (see FIG. 3).
 (LED素子(2-2)~(2-19)の作製)
 表IVに示した化合物と溶媒に変更した以外は、LED素子(2-1)の場合と同様にLED素子(発光装置)を作製した。
(Manufacturing of LED elements (2-2) to (2-19))
An LED element (light emitting device) was manufactured in the same manner as in the case of the LED element (2-1) except that the compounds and solvents shown in Table IV were changed.
 <評価>
 各LED素子の密着性及び硫化耐性を以下の方法で評価した。評価結果を表IVに示す。
<Evaluation>
The adhesion and sulfurization resistance of each LED element were evaluated by the following methods. The evaluation results are shown in Table IV.
 (密着性の評価)
 実施例1と同様に評価した。評価は以下の基準で行った。
◎:顕微鏡観察で封止材層のはく離が無く、発光装置に通電した際に点灯し、顕微鏡確認が困難な微小はく離に起因する全光束値低下が1%未満である
〇:顕微鏡観察で封止材層のはく離が無く、発光装置に通電した際に点灯するが、顕微鏡確認が困難な微小はく離に起因する全光束値低下が1%以上3%以下ある
△:顕微鏡観察で封止材層のはく離が有るが、発光装置に通電した際に点灯する
×:顕微鏡観察で封止材層のはく離が有り、発光装置に通電した際に点灯しない
(Evaluation of adhesion)
Evaluation was carried out in the same manner as in Example 1. The evaluation was performed according to the following criteria.
⊚: There is no peeling of the encapsulant layer by microscopic observation, it lights up when the light emitting device is energized, and the decrease in total luminous value due to minute peeling that is difficult to confirm with a microscope is less than 1%. There is no peeling of the stop material layer, and it lights up when the light emitting device is energized, but the decrease in total luminous value due to minute peeling, which is difficult to confirm with a microscope, is 1% or more and 3% or less. There is peeling, but it lights up when the light emitting device is energized. ×: There is peeling of the encapsulant layer when the light emitting device is energized, and it does not light up when the light emitting device is energized.
 (硫化耐性評価)
 JIS規格のガス暴露試験(JIS C 60068-2-43)に基づき、LED素子(発光装置)を硫化水素ガス15ppm、温度25℃、相対湿度50%RHの環境下に1000時間暴露した。曝露前後の全光束測定を行い、下記の基準で硫化耐性を評価した。全光束は、分光放射輝度計(CS-2000、コニカミノルタセンシング社製)により測定した。
 輝度は、素子1-18(比較例)の暴露後の輝度/暴露前の輝度の値を100として、相対値で表す。数値が大きいほど、硫化耐性が良好である結果を示す。
(Sulfide resistance evaluation)
Based on the JIS standard gas exposure test (JIS C 60068-2-43), the LED element (light emitting device) was exposed to an environment of hydrogen sulfide gas 15 ppm, a temperature of 25 ° C., and a relative humidity of 50% RH for 1000 hours. The total luminous flux was measured before and after the exposure, and the sulfurization resistance was evaluated according to the following criteria. The total luminous flux was measured by a spectral radiance meter (CS-2000, manufactured by Konica Minolta Sensing Co., Ltd.).
The brightness is expressed as a relative value, where the value of the brightness after exposure / the brightness before exposure of the element 1-18 (comparative example) is set to 100. The larger the value, the better the sulfurization resistance.
 (シリコーンへの分散性評価)
 目視で下記機銃に基づき判断した。
〇:溶解している。もしくは、均一分散している状態
×:まったく混ざらない状態
(Evaluation of dispersibility in silicone)
Judgment was made visually based on the following machine gun.
〇: It is dissolved. Or, uniformly dispersed state ×: State where they are not mixed at all
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表IVに示した結果から明らかなように、本発明のLED素子(発光装置)は、各評価性能において優れていることが分かる。
 なお、ガス暴露試験後の、リードフレーム及びボンディングワイヤーの表面の色は、本発明のものより、比較例のものの方が黒ずんでいることが観察された。
As is clear from the results shown in Table IV, it can be seen that the LED element (light emitting device) of the present invention is excellent in each evaluation performance.
It was observed that the colors of the surfaces of the lead frame and the bonding wire after the gas exposure test were darker in the comparative example than in the present invention.
 [実施例3]
 〈有機光電変換素子(3-1)の作製〉
 ガラス基板を、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥及びUVオゾン洗浄を行い、真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の真空度を1×10-4Paまで減圧した後、陽極として銀を100nm蒸着し、陽極の上に銅フタロシアニン(CuPC)とアントラ[9,1,2-c,d,e:10,5,6-c′,d′,e′][ビス[ベンゾイミダゾロ[2,1-a]イソキノリン]]-10,21-ジオン(PTCBI)をCuCP:PTCBI=1:1の割合で共蒸着し、400nmの厚さでバルクヘテロジャンクション層を設けた。
[Example 3]
<Manufacturing of organic photoelectric conversion element (3-1)>
The glass substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas and UV ozone cleaned, and fixed to the substrate holder of the vacuum vapor deposition apparatus.
After reducing the degree of vacuum in the vacuum vapor deposition apparatus to 1 × 10 -4 Pa, 100 nm of silver was deposited as an anode, and copper phthalocyanine (CuPC) and anthra [9,1,2-c, d, e] were deposited on the anode. : 10,5,6-c', d', e'] [Bis [benzoimidazolo [2,1-a] isoquinoline]] -10,21-dione (PTCBI) CuCP: PTCBI = 1: 1 Co-deposited in proportion, a bulk heterojunction layer was provided with a thickness of 400 nm.
 続いて陰極としてMg:Ag=1:9の陰極(15nm)を蒸着した。
 続いて陰極上に、例示化合物15を含有する封止材と、比較例として比較1の化合物を含有する封止材を、接着材を介して貼合して、有機光電変換素子(3-1)を作製した。
Subsequently, a cathode (15 nm) of Mg: Ag = 1: 9 was deposited as a cathode.
Subsequently, the encapsulant containing the example compound 15 and the encapsulant containing the compound of Comparative 1 as a comparative example are bonded to each other on the cathode via an adhesive, and the organic photoelectric conversion element (3-1) is bonded. ) Was prepared.
 (例示化合物15含有封止材の作製)
 グローブボックス内で、例示化合物15(1.0g)をエタノール100mlに溶解させた液を厚さ100μmのポリエチレンナフタレートフィルム(PEN:帝人フィルムソリューション株式会社製)にスプレー塗布し、150℃で10分間加熱・硬化した。
(Preparation of Encapsulant Containing Exemplified Compound 15)
In the glove box, a solution prepared by dissolving the example compound 15 (1.0 g) in 100 ml of ethanol is spray-coated on a polyethylene naphthalate film (PEN: manufactured by Teijin Film Solution Co., Ltd.) having a thickness of 100 μm, and the temperature is 150 ° C. for 10 minutes. Heated and cured.
 〈有機光電変換素子(3-2)及び(3-3)の作製〉
 硫化防止剤の種類を下記のように変更した以外は有機光電変換素子(3-1)と同様にして有機光電変換素子(3-2)及び(3-3)を作製した。
<Manufacturing of organic photoelectric conversion elements (3-2) and (3-3)>
The organic photoelectric conversion elements (3-2) and (3-3) were produced in the same manner as the organic photoelectric conversion element (3-1) except that the type of the anti-sulfuration agent was changed as follows.
 有機光電変換素子(3-2);比較化合物1(日本化薬(株)製)
 有機光電変換素子(3-3);ケスモンNS-20C(東亜合成(株)製)
Organic photoelectric conversion element (3-2); Comparative compound 1 (manufactured by Nippon Kayaku Co., Ltd.)
Organic photoelectric conversion element (3-3); Kesmon NS-20C (manufactured by Toagosei Co., Ltd.)
 <評価>
 得られた有機光電変換素子を、JIS規格のガス暴露試験(JIS C 60068-2-43)に基づき、LED装置を硫化水素ガス15ppm、温度25℃、相対湿度50%RHの環境下に10時間暴露した。暴露後、ソーラーシミュレーターの100mW/cmの強度の光を照射したところ、例示化合物15の有機光電変換素子は、比較化合物1を用いた有機光電変換素子に比べて、発光効率が高い値が得られた。
<Evaluation>
Based on the JIS standard gas exposure test (JIS C 60068-2-43), the obtained organic photoelectric conversion element was subjected to an LED device in an environment of hydrogen sulfide gas 15 ppm, temperature 25 ° C., and relative humidity 50% RH for 10 hours. Exposed. After the exposure, when the solar simulator was irradiated with light having an intensity of 100 mW / cm 2 , the organic photoelectric conversion element of Exemplified Compound 15 obtained a value having higher luminous efficiency than the organic photoelectric conversion element using Comparative Compound 1. Was done.
 評価基準は下記のようにした。
〇:硫化試験前に対して、90%以上の輝度
△:硫化試験前に対して、75%以上の輝度
×:硫化試験前に対して、75%未満の輝度
The evaluation criteria are as follows.
〇: Brightness of 90% or more compared to before the sulfurization test Δ: Brightness of 75% or more before the sulfurization test ×: Brightness of less than 75% compared to before the sulfurization test
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表Vに示した結果から、本発明の有機光電変換素子は、比較例において、硫化耐性が優れていることが分かる。なお、ガス暴露試験後の比較例の銀電極の表面の色は、本発明の有機光電変換素子の銀電極の表面の色に比べ黒ずんでいることが観察された。 From the results shown in Table V, it can be seen that the organic photoelectric conversion element of the present invention has excellent sulfurization resistance in the comparative example. It was observed that the color of the surface of the silver electrode of the comparative example after the gas exposure test was darker than the color of the surface of the silver electrode of the organic photoelectric conversion element of the present invention.
 [実施例4]
 (有機EL素子(4-1)の作製)
 陽極としてITO(Indium Tin Oxide)を100nm製膜したガラス基板を、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥及びUVオゾン洗浄を行い、真空蒸着装置の基板ホルダーに固定した。
[Example 4]
(Manufacturing of organic EL element (4-1))
A glass substrate having a 100 nm film of ITO (Indium Tin Oxide) as an anode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas and UV ozone washed, and fixed to a substrate holder of a vacuum vapor deposition apparatus.
 次いで、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)を10nm蒸着して正孔注入輸送層を設けた。 Next, HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was vapor-deposited at 10 nm to provide a hole injection transport layer.
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を前記正孔注入層上に蒸着し、厚さ40nmの正孔輸送層を設けた。 Next, α-NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer to provide a hole transport layer having a thickness of 40 nm. ..
 ホスト材料としてmCP(1,3-ビス(N-カルバゾリル)ベンゼン)と、発光性化合物としてBis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic)とを、それぞれ94%、6%の体積%になるように共蒸着し、厚さ30nmの発光層を設けた。 MCP (1,3-bis (N-carbazolyl) benzene) as the host material and Bis [2- (4,6-difluoropheneyl) pyridinato-C2, N] (picolinato) iridium (III) (FIrpic) as the luminescent compound. Was co-deposited so as to have a volume of 94% and 6%, respectively, and a light emitting layer having a thickness of 30 nm was provided.
 その後、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)を蒸着し、厚330nmの電子輸送層を設けた。
 さらに、銀100nmをさらに蒸着して陰極を設けた。
Then, BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) was vapor-deposited to provide an electron transport layer having a thickness of 330 nm.
Further, 100 nm of silver was further deposited to provide a cathode.
 (例示化合物15含有封止材の作製)
 グローブボックス内で、例示化合物15(1.0g)をエタノール100mlに溶解させた液を厚さ100μmのポリエチレンナフタレートフィルム(PEN:帝人フィルムソリューション株式会社製)にスプレー塗布し、150℃で10分間加熱・硬化した。
(Preparation of Encapsulant Containing Exemplified Compound 15)
In the glove box, a solution prepared by dissolving the example compound 15 (1.0 g) in 100 ml of ethanol is spray-coated on a polyethylene naphthalate film (PEN: manufactured by Teijin Film Solution Co., Ltd.) having a thickness of 100 μm, and the temperature is 150 ° C. for 10 minutes. Heated and cured.
 作製した封止材フィルムの片面に、封止樹脂層として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで形成した。そして、この封止樹脂層を設けたガスバリアーフィルムを、前記有機EL素子に重ね合わせた。このとき、陽極及び陰極の取出し部の端部が外に出るように、封止材フィルムの封止樹脂層形成面を、有機EL素子の封止面側に連続的に重ね合わせた。 A thermosetting liquid adhesive (epoxy resin) was formed as a sealing resin layer on one side of the produced sealing material film with a thickness of 25 μm. Then, the gas barrier film provided with the sealing resin layer was superposed on the organic EL element. At this time, the sealing resin layer forming surface of the sealing material film was continuously overlapped with the sealing surface side of the organic EL element so that the ends of the anode and the ejection portion of the cathode were exposed to the outside.
 次に、封止材フィルムを貼り合せた試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させた。
 なお、加熱は、グローブボックス内でホットプレートを用いて行った。
Next, the sample to which the encapsulant film was attached was placed in a decompression device, pressed under a depressurized condition of 0.1 MPa at 90 ° C., and held for 5 minutes. Subsequently, the sample was returned to the atmospheric pressure environment and further heated at 90 ° C. for 30 minutes to cure the adhesive.
The heating was performed using a hot plate in the glove box.
 上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppm以下の大気圧で行った。以上の方法により、化合物15含有封止材で封止した有機EL素子1を作製した。当該有機EL素子(4-1)の断面図を図5に示す。 The sealing step is based on JIS B 9920 under atmospheric pressure and a nitrogen atmosphere with a moisture content of 1 ppm or less, the measured cleanliness is class 100, the dew point temperature is -80 ° C or less, and the oxygen concentration is 0.8 ppm or less. I went at atmospheric pressure. By the above method, the organic EL element 1 sealed with the compound 15-containing encapsulant was produced. A cross-sectional view of the organic EL element (4-1) is shown in FIG.
 (有機EL素子(4-2)及び(4-3)の作製)
 硫化防止剤の種類を下記のように変更した以外は有機EL素子(4-1)と同様にして有機EL素子(4-2)及び(4-3)を作製した。
(Manufacturing of organic EL elements (4-2) and (4-3))
Organic EL devices (4-2) and (4-3) were produced in the same manner as the organic EL device (4-1) except that the type of the anti-sulfuration agent was changed as follows.
 有機EL素子(4-2);比較化合物1(2-エチルヘキサン亜鉛(日本化薬(株)製))
 有機EL素子(4-3);ケスモンNS-20C(東亜合成(株)製)
Organic EL device (4-2); Comparative compound 1 (2-ethylhexanezinc (manufactured by Nippon Kayaku Co., Ltd.))
Organic EL element (4-3); Kesmon NS-20C (manufactured by Toagosei Co., Ltd.)
 <評価>
 作製した上記各有機EL素子について、下記の各評価を行った。評価結果は、表VIに示す。
<Evaluation>
Each of the above-mentioned organic EL elements produced was evaluated as follows. The evaluation results are shown in Table VI.
 〔注入電圧の測定〕
 得られた有機EL素子を、JIS規格のガス暴露試験(JIS C 60068-2-43)に基づき、有機EL表示装置を硫化水素ガス15ppm、温度25℃、相対湿度50%RHの環境下に10時間暴露した。暴露後、各有機EL素子に、ADC社製の直流電圧・電流源/モニタ6234を用いて、30A/mの電流を流した時の電圧を測定し、これを注入電圧として求めた。有機EL素子(4-3)の注入電圧を100とした相対値を求めた。
[Measurement of injection voltage]
Based on the JIS standard gas exposure test (JIS C 60068-2-43), the obtained organic EL element was subjected to an organic EL display device in an environment of hydrogen sulfide gas 15 ppm, temperature 25 ° C., and relative humidity 50% RH. Exposed for hours. After the exposure, the voltage when a current of 30 A / m 2 was passed through each organic EL element using a DC voltage / current source / monitor 6234 manufactured by ADC was measured, and this was determined as the injection voltage. A relative value was obtained with the injection voltage of the organic EL element (4-3) as 100.
 〔電力効率の測定〕
 コニカミノルタ社製の分光放射輝度計CS-2000を用いて輝度を測定した。以下の式に基づき、電力効率を算出した。有機EL素子(4-3)の電力効率を100とした相対値を求めた。
  電力効率=(輝度)×円周率/(電流密度×電圧)(lm/W)
[Measurement of power efficiency]
The brightness was measured using a spectral radiance meter CS-2000 manufactured by Konica Minolta. The power efficiency was calculated based on the following formula. A relative value was obtained with the power efficiency of the organic EL element (4-3) as 100.
Power efficiency = (luminance) x pi / (current density x voltage) (lm / W)
 〔輝度ムラの測定〕
 コニカミノルタ社製の分光放射輝度計CS-2000を用いて、発光面の任意の位置50点における輝度を測定し、測定した輝度の平均輝度に対して、下記式に従って各点の輝度の差の絶対値の平均を指標Saとして求め、これを輝度ムラの尺度とした。有機EL素子(4-3)の輝度ムラを100とした相対値を求めた。
Figure JPOXMLDOC01-appb-M000012
[Measurement of brightness unevenness]
Using a spectral radiance meter CS-2000 manufactured by Konica Minolta, the brightness at any position 50 points on the light emitting surface was measured, and the difference in brightness at each point was measured according to the following formula with respect to the average brightness of the measured brightness. The average of the absolute values was obtained as the index Sa, and this was used as a measure of luminance unevenness. A relative value was obtained with the brightness unevenness of the organic EL element (4-3) as 100.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記評価結果から、本発明の封止材は、比較例の封止材より高い封止性能を有していることにより、有機EL素子の性能劣化が少ないことが認められた。
 なお、ガス暴露試験後の比較例の銀電極の表面の色は、本発明の有機EL素子の銀電極の表面の色に比べ黒ずんでいることが観察された。
From the above evaluation results, it was confirmed that the encapsulant of the present invention has higher encapsulation performance than the encapsulant of the comparative example, so that the performance deterioration of the organic EL element is small.
It was observed that the color of the surface of the silver electrode of the comparative example after the gas exposure test was darker than the color of the surface of the silver electrode of the organic EL device of the present invention.
 硫化水素などの硫黄化合物や硫黄同素体を含むガスによる金属の硫化を防止した電子デバイスを提供することができる。また、そのための、硫化防止剤及び封止材を提供することができる。 It is possible to provide an electronic device that prevents the sulfurization of a metal by a gas containing a sulfur compound such as hydrogen sulfide or a sulfur allotrope. Further, it is possible to provide an anti-sulfuration agent and a sealing material for that purpose.
 1 金属含有部材層
 2 硫化防止剤層
 3 封止材層(硫化防止剤を含有していない。)
 4 硫化防止剤含有封止材層
 100 発光装置
 11 基板
 12 発光素子(LED素子など)
 13 封止層
 14 波長変換層
 15 電極
 16 金属ワイヤ
 200 LED発光装置
 20 絶縁性基板
 21 リードフレーム
 22 パッケージ(バンクともいう。)
 23 反射層
 24 接続用端子
 25 LED素子
 26 はんだ
 27 ボンディングワイヤー
 28 封止材層
 29a 蛍光体粒子
 29b 硫化防止剤
 300 バルクヘテロジャンクション型の有機光電変換素子
 31 基板
 32 透明電極(陽極)
 33 正孔輸送層
 34 光電変換部(バルクヘテロジャンクション層)
 35 電子輸送層
 36 対極(陰極)
 400 有機EL表示装置
 40 有機EL素子
 41 基板
 42 ガラスカバー又はガスバリアーフィルム
 43 接着剤
 45 陰極
 46 有機機能層群
 47 透明電極付きガラス基板
 48 封止材層(金属硫化剤を含有していない。)
 49 金属硫化剤層
1 Metal-containing member layer 2 Anti-sulfuration agent layer 3 Encapsulant layer (does not contain anti-sulfurization agent)
4 Anti-sulfuration agent-containing encapsulant layer 100 Light emitting device 11 Substrate 12 Light emitting element (LED element, etc.)
13 Sealing layer 14 Wavelength conversion layer 15 Electrodes 16 Metal wires 200 LED light emitting device 20 Insulating substrate 21 Lead frame 22 Package (also called bank)
23 Reflective layer 24 Connection terminal 25 LED element 26 Solder 27 Bonding wire 28 Encapsulant layer 29a Fluorescent particle 29b Anti-sulfide agent 300 Bulk heterojunction type organic photoelectric conversion element 31 Substrate 32 Transparent electrode (anode)
33 Hole transport layer 34 Photoconverter (bulk heterojunction layer)
35 Electron transport layer 36 Counter electrode (cathode)
400 Organic EL display device 40 Organic EL element 41 Substrate 42 Glass cover or gas barrier film 43 Adhesive 45 Cathode 46 Organic functional layer group 47 Glass substrate with transparent electrode 48 Encapsulant layer (does not contain metal sulfide)
49 Metal sulfide layer

Claims (9)

  1.  少なくとも、金属含有部材層と下記一般式(1)で表される構造を有する化合物(1)を含有する層を有することを特徴とする電子デバイス。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、それぞれ独立に、酸基、-ORa、-SRb、又は-NRcRdを表す。Ra、Rb、Rc及びRdは、それぞれ独立に、水素原子又は置換基を表す。Rは、窒素含有配位子を表す。Meは、銅(Cu)又は亜鉛(Zn)を表す。)
    An electronic device characterized by having at least a metal-containing member layer and a layer containing a compound (1) having a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 independently represent an acid group, -ORa, -SRb, or -NRcRd. Ra, Rb, Rc, and Rd independently represent a hydrogen atom or a substituent, respectively. R 3 represents a nitrogen-containing ligand. Me represents copper (Cu) or zinc (Zn).)
  2.  前記一般式(1)中の前記R及びRが、酸基を表すことを特徴とする請求項1に記載の電子デバイス。 The electronic device according to claim 1, wherein R 1 and R 2 in the general formula (1) represent an acid group.
  3.  前記酸基が、カルボン酸基又は無機酸基であることを特徴とする請求項1又は請求項2に記載の電子デバイス。 The electronic device according to claim 1 or 2, wherein the acid group is a carboxylic acid group or an inorganic acid group.
  4.  前記金属含有部材層が、銀(Ag)又は銅(Cu)を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 3, wherein the metal-containing member layer contains silver (Ag) or copper (Cu).
  5.  前記化合物(1)を含有する層が、樹脂又は樹脂前駆体を含有し、かつ、
     前記化合物(1)の含有量が1~50質量%範囲内であることを特徴とする請求項1から請求項4までのいずれか一項に記載の電子デバイス。
    The layer containing the compound (1) contains a resin or a resin precursor, and
    The electronic device according to any one of claims 1 to 4, wherein the content of the compound (1) is in the range of 1 to 50% by mass.
  6.  前記化合物(1)を含有する層が、沸点が150℃以上の有機溶媒を含有することを特徴とする請求項1から請求項5までのいずれか一項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 5, wherein the layer containing the compound (1) contains an organic solvent having a boiling point of 150 ° C. or higher.
  7.  前記電子デバイスが、発光ダイオード、光電変換素子又は有機エレクトロルミネッセンス素子であることを特徴とする請求項1から請求項6までのいずれか一項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 6, wherein the electronic device is a light emitting diode, a photoelectric conversion element, or an organic electroluminescence element.
  8.  少なくとも、下記一般式(1)で表される構造を有する化合物(1)を含有することを特徴とする硫化防止剤。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは、それぞれ独立に、酸基、-ORa、-SRb、又は-NRcRdを表す。Ra、Rb、Rc及びRdは、それぞれ独立に、水素原子又は置換基を表す。Rは、窒素含有配位子を表す。Meは、銅(Cu)又は亜鉛(Zn)を表す。)
    An anti-sulfuration agent containing at least a compound (1) having a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 and R 2 independently represent an acid group, -ORa, -SRb, or -NRcRd. Ra, Rb, Rc, and Rd independently represent a hydrogen atom or a substituent, respectively. R 3 represents a nitrogen-containing ligand. Me represents copper (Cu) or zinc (Zn).)
  9.  少なくとも、請求項8に記載の硫化防止剤を含有することを特徴とする封止材。 A sealing material containing at least the anti-sulfuration agent according to claim 8.
PCT/JP2020/038807 2019-11-19 2020-10-14 Electronic device, sulfidation inhibitor, and sealant WO2021100366A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558219A JPWO2021100366A1 (en) 2019-11-19 2020-10-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-208364 2019-11-19
JP2019208364 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021100366A1 true WO2021100366A1 (en) 2021-05-27

Family

ID=75980522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038807 WO2021100366A1 (en) 2019-11-19 2020-10-14 Electronic device, sulfidation inhibitor, and sealant

Country Status (3)

Country Link
JP (1) JPWO2021100366A1 (en)
TW (1) TWI777271B (en)
WO (1) WO2021100366A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052661A1 (en) * 2005-11-02 2007-05-10 Matsushita Electric Industrial Co., Ltd. Conductive adhesive
JP2011137140A (en) * 2009-12-02 2011-07-14 Yokohama Rubber Co Ltd:The Silicone resin composition for sealing heat-curable optical semiconductor, and optical semiconductor sealing object using this
JP2014017355A (en) * 2012-07-09 2014-01-30 Nichia Chem Ind Ltd Light emitting device
JP2015007672A (en) * 2013-06-24 2015-01-15 富士フイルム株式会社 Film mirror and method for producing film mirror
JP2015079991A (en) * 2010-04-22 2015-04-23 日本化薬株式会社 Silver anti-tarnishing agent, silver anti-tarnishing resin composition, silver anti-tarnishing method, and light-emitting diode arranged by use thereof
JP2015130452A (en) * 2014-01-09 2015-07-16 住友ベークライト株式会社 Conductive resin composition for optodevice, and optodevice
JP2015172803A (en) * 2014-03-11 2015-10-01 コニカミノルタ株式会社 Transparent electro-conductor, manufacturing method for the same, and electro-conductive paste
US20160027977A1 (en) * 2014-07-28 2016-01-28 Samsung Electronics Co. Ltd. Light emitting diode package and lighting device using the same
JP2017057339A (en) * 2015-09-18 2017-03-23 日立化成株式会社 Translucent gas barrier composition and sulfidation prevention layer, and optical semiconductor device provided with the same and method for manufacturing optical semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378455B2 (en) * 2005-06-30 2008-05-27 General Electric Company Molding composition and method, and molded article
TWI621650B (en) * 2011-06-23 2018-04-21 三井化學股份有限公司 Surface sealing agent for optical semiconductor, method of manufacturing organic el device using the same, organic el device, organic el display panel, and sheet-shaped surface sealing formed object
TWI601250B (en) * 2011-07-22 2017-10-01 先進封裝技術私人有限公司 Semiconductor substrate for making semiconductor package device and manufacturing method thereof
JP2013131595A (en) * 2011-12-21 2013-07-04 Hitachi Ltd Method for joining metal member and resin together and assembly of metal member and resin
KR20160012146A (en) * 2013-05-02 2016-02-02 테라-배리어 필름스 피티이 리미티드 Encapsulation barrier stack comprising dendrimer encapsulated nanoparticles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052661A1 (en) * 2005-11-02 2007-05-10 Matsushita Electric Industrial Co., Ltd. Conductive adhesive
JP2011137140A (en) * 2009-12-02 2011-07-14 Yokohama Rubber Co Ltd:The Silicone resin composition for sealing heat-curable optical semiconductor, and optical semiconductor sealing object using this
JP2015079991A (en) * 2010-04-22 2015-04-23 日本化薬株式会社 Silver anti-tarnishing agent, silver anti-tarnishing resin composition, silver anti-tarnishing method, and light-emitting diode arranged by use thereof
JP2014017355A (en) * 2012-07-09 2014-01-30 Nichia Chem Ind Ltd Light emitting device
JP2015007672A (en) * 2013-06-24 2015-01-15 富士フイルム株式会社 Film mirror and method for producing film mirror
JP2015130452A (en) * 2014-01-09 2015-07-16 住友ベークライト株式会社 Conductive resin composition for optodevice, and optodevice
JP2015172803A (en) * 2014-03-11 2015-10-01 コニカミノルタ株式会社 Transparent electro-conductor, manufacturing method for the same, and electro-conductive paste
US20160027977A1 (en) * 2014-07-28 2016-01-28 Samsung Electronics Co. Ltd. Light emitting diode package and lighting device using the same
JP2017057339A (en) * 2015-09-18 2017-03-23 日立化成株式会社 Translucent gas barrier composition and sulfidation prevention layer, and optical semiconductor device provided with the same and method for manufacturing optical semiconductor device

Also Published As

Publication number Publication date
TW202137434A (en) 2021-10-01
JPWO2021100366A1 (en) 2021-05-27
TWI777271B (en) 2022-09-11

Similar Documents

Publication Publication Date Title
USRE44831E1 (en) Organic electroluminescent device, display, and illuminating device
KR102241439B1 (en) Organic electroluminescent element, method for manufacturing the same, display device, and lighting device
CN109417131B (en) Organic electroluminescent element, display device, and lighting device
KR20180105234A (en) A luminescent thin film and an organic electroluminescence element
JP6601591B2 (en) Desiccant, organic thin film containing the same, organic laminated film in which organic thin film is laminated, and electronic device including the same
US9843011B2 (en) Organic electroluminescent element having intermediate electrode including two metal layers
WO2014097901A1 (en) Organic light emitting element
JP7136118B2 (en) Electronic device manufacturing method
US9837625B2 (en) Organic electroluminescent element
WO2017056553A1 (en) Organic electroluminescent element and lighting device provided with same
KR101867144B1 (en) Method for manufacturing organic electroluminescent element
WO2014196330A1 (en) Organic electroluminescence element
JPWO2020059326A1 (en) Benzonitrile derivatives and methods for producing them, ink compositions, organic electroluminescence element materials, light emitting materials, charge transport materials, light emitting thin films and organic electroluminescence elements.
TWI672075B (en) Transparent electrode and electronic device
WO2013141190A1 (en) Sealing element for organic electroluminescence element and method for manufacturing organic electroluminescence element
WO2015068779A1 (en) Organic electroluminescence element, production method for organic electroluminescence element, and organic electroluminescence element module
EP2728639B1 (en) Organic electroluminescent element and its manufacturing method
JP2011238827A (en) Organic electroluminescent device
JP6838268B2 (en) Light conversion material, light conversion film, and light emitting element
WO2021100366A1 (en) Electronic device, sulfidation inhibitor, and sealant
JP5472107B2 (en) Method for manufacturing organic electroluminescent element
JP5835217B2 (en) Organic electroluminescence device
WO2021059813A1 (en) Organic electroluminescent element
WO2021060024A1 (en) Organic electroluminescent element manufacturing method and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890622

Country of ref document: EP

Kind code of ref document: A1