WO2021100316A1 - Drug solution diffusing system and drug solution diffusion promoting device - Google Patents

Drug solution diffusing system and drug solution diffusion promoting device Download PDF

Info

Publication number
WO2021100316A1
WO2021100316A1 PCT/JP2020/036226 JP2020036226W WO2021100316A1 WO 2021100316 A1 WO2021100316 A1 WO 2021100316A1 JP 2020036226 W JP2020036226 W JP 2020036226W WO 2021100316 A1 WO2021100316 A1 WO 2021100316A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic wave
chemical
ultrasonic
drug solution
unit
Prior art date
Application number
PCT/JP2020/036226
Other languages
French (fr)
Japanese (ja)
Inventor
俊彦 宇都
船村 重彰
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021558192A priority Critical patent/JPWO2021100316A1/ja
Publication of WO2021100316A1 publication Critical patent/WO2021100316A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body

Definitions

  • the present invention relates to a system for diffusing a drug solution injected into the body and a drug solution diffusion promoting device in the treatment of cancer or the like.
  • Patent Document 1 describes light transmission / reception means for transmitting / receiving light to a living body, electroacoustic conversion means for transmitting / receiving ultrasonic waves to a living body, and light.
  • a control means for controlling the direction of ultrasonic wave transmission / reception and a drug administration means for administering a drug in the vicinity of a living body irradiated with therapeutic ultrasonic waves are provided, and the drug administration means is a catheter-type applicator.
  • Patent Document 2 discloses an ultrasonic catheter system for providing treatment to a treatment site at one or more positions of a subject, and the system includes a tubular member, a microbubble reservoir, and an ultrasonic wave.
  • An energy source, the ultrasonic energy is adapted to imaging the treatment site and bursting the microbubbles, and is electrically connected to the ultrasonic energy source and the ultrasonic energy source. It is disclosed to include a control circuit configured to send activation.
  • an object of the present invention is to provide a chemical solution diffusion system and a chemical solution diffusion promoting device capable of appropriately diffusing a chemical solution.
  • a drug solution diffusion system for diffusing a drug solution to a target tissue in a living body, and includes a drug solution injection tube pierced by the target tissue.
  • a two-dimensional or three-dimensional target tissue that is provided in the chemical injection tube and is connected to the first ultrasonic generator that generates the first ultrasonic wave for diffusing the chemical solution and the first ultrasonic generator.
  • It has an ultrasonic control unit that controls the irradiation conditions of the first ultrasonic wave according to the image, and the ultrasonic control unit has a propagation direction, intensity, and oscillation of the first ultrasonic wave generated by the first ultrasonic wave generating unit.
  • the gist is to control at least one of the frequencies.
  • at least one of the propagation direction, intensity and oscillation frequency of the first ultrasonic wave is controlled according to the two-dimensional or three-dimensional image of the target tissue, so that the target tissue is in a state of being affected.
  • the drug solution can be appropriately diffused to the required site. Therefore, it is possible to shorten the irradiation time of ultrasonic waves required for treatment, which contributes to the reduction of the burden on the patient and the operator.
  • the chemical diffusion system is connected to a second ultrasonic generation unit that generates a second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave and an ultrasonic control unit, and irradiates the target tissue with the second ultrasonic wave. It is preferable to further have an image forming unit that forms an image using the reflected wave of the time, and a storage unit that is connected to the ultrasonic control unit and stores the image formed by the image forming unit.
  • the chemical solution diffusion system further has a processing unit connected to an ultrasonic control unit, and the processing unit further includes an image of the target tissue before the chemical solution injection and after the chemical solution injection and after the irradiation of the first ultrasonic wave.
  • the image of the target tissue is compared, and the ultrasonic control unit preferably controls the irradiation conditions of the first ultrasonic wave by using the comparison result in the processing unit.
  • the drug solution diffusion system further has a data storage unit and a processing unit connected to the ultrasonic control unit, respectively, and the data storage unit is provided with data on the diffusion pattern of the drug solution according to the type of tumor.
  • the pattern table is stored, and the processing unit compares the reference result of the diffusion pattern table with the image of the target tissue after the injection of the chemical solution and after the irradiation of the first ultrasonic wave, and the ultrasonic control unit. It is preferable to control the irradiation conditions of the first ultrasonic wave by using the comparison result in the processing unit.
  • the chemical diffusion system further includes a measuring unit connected to an ultrasonic control unit, and the measuring unit is at least one of the shape, size, spread, and hardness of the tumor from the image before injection of the chemical solution. It is preferable that the ultrasonic control unit controls the irradiation condition of the first ultrasonic wave by using the measurement result of the measurement unit.
  • the chemical solution diffusion system further has a processing unit connected to an ultrasonic control unit, and the processing unit further includes an image of the target tissue after the chemical solution injection and before the irradiation of the first ultrasonic wave, and after the chemical solution injection. Therefore, the images of the target tissue after the irradiation of the first ultrasonic wave are compared, and it is preferable that the ultrasonic control unit controls the irradiation condition of the first ultrasonic wave by using the comparison result in the processing unit.
  • the chemical solution diffusion system further has a third ultrasonic wave generating unit that generates a third ultrasonic wave for heating the target tissue at an oscillation frequency different from that of the first ultrasonic wave.
  • the first ultrasonic wave generator is different from the first ultrasonic wave, the second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave and used for image formation for diagnosis, and the first ultrasonic wave. It is preferable to generate a third ultrasonic wave having an oscillation frequency for heating the target tissue.
  • the chemical solution diffusion system further includes a liquid supply unit connected to a proximal portion of the chemical solution injection tube to supply the chemical solution into the chemical solution injection tube, and a cooling unit connected to the liquid supply unit to cool the chemical solution. Is preferable.
  • the chemical solution diffusion system further includes a liquid supply unit connected to the proximal portion of the chemical solution injection tube and supplying the chemical solution into the chemical solution injection tube, and a data storage unit connected to the ultrasonic control unit to provide data.
  • the storage unit has a drug solution table containing data on the type of drug solution and a tumor table containing data indicating the state of the tumor diagnosed in the past, and the ultrasonic control unit uses the reference result of the tumor table as a reference result. Based on this, it is preferable to select the type of chemical solution from the chemical solution table and issue a command signal to the liquid supply unit to supply the selected type of chemical solution into the chemical solution injection tube.
  • the data storage unit further has a frequency table containing data on the oscillation frequency of the first ultrasonic wave
  • the ultrasonic control unit further has a frequency table from the frequency table based on the reference result of the tumor table. It is preferable to select the value of the oscillation frequency of the sound wave and emit a command signal to generate the first ultrasonic wave of the selected oscillation frequency to the first ultrasonic wave generation unit.
  • the first ultrasonic wave generating section includes at least two oscillators, and the two oscillators are provided on the side wall portion of the chemical solution injection pipe.
  • the first ultrasonic wave generating portion is provided in the cavity of the chemical solution injection tube and has a rotation axis parallel to the longitudinal axis direction of the chemical solution injection tube.
  • the first ultrasonic wave generating unit emits the first ultrasonic wave toward the outside in the radial direction of the chemical solution injection tube.
  • the chemical diffusion system further includes a measuring unit connected to an ultrasonic control unit, and the measuring unit is at least one of the shape, size, spread, and hardness of the tumor from the image before injection of the chemical solution.
  • the ultrasonic control unit uses the measurement results of the tumor in the measurement unit to measure the intensity of the first ultrasonic wave with respect to the first ultrasonic wave generating unit depending on the position in the circumferential direction of the drug solution injection tube. It is preferable to emit a command signal that changes at least one of the oscillation frequency and the oscillation frequency.
  • the ultrasonic control unit gives a command to increase the intensity of the first ultrasonic wave in the circumferential direction of the chemical injection tube as the radial distance from the center of the longitudinal axis of the chemical injection tube to the outer edge of the tumor becomes longer. It is preferable to emit a signal.
  • the ultrasonic control unit lowers the oscillation frequency of the first ultrasonic wave in the circumferential direction of the chemical injection tube as the radial distance from the center of the longitudinal axis of the chemical injection tube to the outer edge of the tumor becomes longer. It is preferable to emit a command signal.
  • the chemical solution preferably contains fine bubbles.
  • the present invention also provides a chemical solution diffusion promoting device.
  • One embodiment of the drug solution diffusion promoting device of the present invention used in the above drug solution diffusion system is provided in a drug solution injection tube pierced by a target tissue and a drug solution injection tube, and is provided with a first ultrasonic wave for diffusing the drug solution.
  • the first ultrasonic wave generating unit includes at least two vibrators, and the two ultrasonic wave generators are provided on the side wall portion of the chemical injection pipe.
  • the first ultrasonic wave generating portion is provided in the cavity of the chemical solution injection tube and has a rotation axis parallel to the longitudinal axis direction of the chemical solution injection tube.
  • the state of the target tissue is adjusted. Therefore, the drug solution can be appropriately diffused to the required site. Therefore, it is possible to shorten the irradiation time of ultrasonic waves required for treatment, which contributes to the reduction of the burden on the patient and the operator. Further, according to the above-mentioned chemical solution diffusion promoting device, the irradiation direction, irradiation position, intensity and the like of ultrasonic waves can be changed without moving the first ultrasonic wave generating unit.
  • FIG. 1 A cross-sectional side view showing the structure of the chemical solution diffusion promoting device of the chemical solution diffusion system shown in FIG. 1 is shown.
  • a cross-sectional view taken along the line III-III of the chemical solution diffusion promoting device shown in FIG. 2 is shown.
  • a cross-sectional side view showing a modified example of the chemical solution diffusion promoting device shown in FIG. 2 is shown.
  • a cross-sectional side view showing another modification of the chemical solution diffusion promoting device shown in FIG. 2 is shown.
  • a cross-sectional view taken along the line VI-VI of the chemical solution diffusion promoting device shown in FIG. 5 is shown.
  • FIG. 2 shows an image of an ultrasonic diagnostic image when the drug solution injection tube and the ultrasonic wave generating portion of the drug solution diffusion promoting device shown in FIG. 2 are punctured into the tumor.
  • the figure which shows an example of the treatment flow in the drug solution diffusion system shown in FIG. 1 is shown.
  • a diagram showing another example of the treatment flow in the drug solution diffusion system shown in FIG. 1 is shown.
  • FIG. 6 shows a diagram showing still another example of the treatment flow in the drug solution diffusion system shown in FIG.
  • the block diagram of the chemical solution diffusion system which concerns on other embodiment of this invention is shown.
  • the block diagram of the chemical solution diffusion system which concerns on still another Embodiment of this invention is shown.
  • the figure which shows an example of the treatment flow in the drug solution diffusion system shown in FIG. 12 is shown.
  • the block diagram of the chemical solution diffusion system which concerns on still another Embodiment of this invention is shown.
  • One embodiment of the drug solution diffusion system of the present invention is a drug solution diffusion system for diffusing a drug solution to a target tissue in a living body, and is provided in a drug solution injection tube pierced by the target tissue and a drug solution injection tube.
  • the first ultrasonic wave generating part that generates the first ultrasonic wave for diffusing the chemical solution and the first ultrasonic wave generating part are connected to the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue. It has an ultrasonic control unit that controls irradiation conditions, and the ultrasonic control unit controls at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave generated by the first ultrasonic wave generating unit.
  • the drug solution diffusion system is used to spread a drug solution locally administered to a target tissue such as a tumor in a living body in drug therapy, which is one of the treatment methods for tumors such as cancer.
  • the drug solution is administered into the target tissue using a drug solution injection tube, and is diffused into the target tissue by ultrasonic waves emitted from the ultrasonic wave generating part.
  • the drug solution administered to the target tissue can include an anticancer drug.
  • anticancer agents include cytotoxic anticancer agents such as antimetabolites, microtubule inhibitors and antitumor antibiotics; endocrine therapeutic agents; molecular targeted agents such as immune checkpoint inhibitors; oncolytic virus.
  • a virus therapeutic drug or the like containing a sex virus or the like can be used.
  • the drug solution may contain absolute ethanol, which is used as an anticancer agent in percutaneous ethanol therapy.
  • the chemical solution may contain an ultrasonic contrast agent such as perflubutane or a mixture of galactose and palmitic acid.
  • the chemical solution preferably contains fine bubbles.
  • a fine bubble is a bubble having a sphere-equivalent diameter of 100 ⁇ m or less.
  • the bubble diameter of the fine bubble, the type of gas in the bubble, and the presence or absence of a shell for the gas core can be appropriately selected according to the condition of the tumor.
  • the type of gas in the bubble of the fine bubble is not particularly limited, but for example, an inert gas such as air, oxygen, nitrogen, carbon dioxide, hydrogen, helium, argon, xenon, krypton, carbon fluoride, sulfur hexafluoride, etc. Can be mentioned. Only one of these may be used, or two or more thereof may be used in combination.
  • an inert gas such as air, oxygen, nitrogen, carbon dioxide, hydrogen, helium, argon, xenon, krypton, carbon fluoride, sulfur hexafluoride, etc. Can be mentioned. Only one of these may be used, or two or more thereof may be used in combination.
  • Examples of the material constituting the shell for the gas core include phospholipids, polycationic lipids, proteins, higher fatty acids, sugars, sterols, surfactants, natural or synthetic molecules and the like. Only one of these may be used, or two or more thereof may be used in combination.
  • FIG. 1 shows a block diagram of a chemical solution diffusion system according to an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional side view showing the structure of the chemical solution diffusion promoting device of the chemical solution diffusion system shown in FIG.
  • FIG. 3 shows a cross-sectional view of the chemical solution diffusion promoting device shown in FIG. 2 along lines III-III.
  • 4 to 5 show cross-sectional side views showing a modified example of the chemical solution diffusion promoting device shown in FIG.
  • FIG. 6 shows a cross-sectional view of the chemical solution diffusion promoting device shown in FIG. 5 along the VI-VI line.
  • FIG. 1 shows a block diagram of a chemical solution diffusion system according to an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional side view showing the structure of the chemical solution diffusion promoting device of the chemical solution diffusion system shown in FIG.
  • FIG. 3 shows a cross-sectional view of the chemical solution diffusion promoting device shown in FIG. 2 along lines III-III.
  • 4 to 5 show cross-
  • FIG. 7 shows an image of an ultrasonic diagnostic image when the drug solution injection tube and the ultrasonic wave generating portion of the drug solution diffusion promoting device shown in FIG. 2 are punctured into the tumor.
  • FIG. 8 shows an example of a treatment flow in the drug solution diffusion system shown in FIG.
  • the chemical solution diffusion system 1 includes a chemical solution injection tube 3, a first ultrasonic wave generation unit 11, and an ultrasonic wave control unit 20.
  • a chemical solution diffusion promoting device 2 is provided in a chemical solution injection tube 3 that is pierced into a target tissue and a chemical solution injection tube 3, and a first ultrasonic wave that generates a first ultrasonic wave for diffusing the drug solution.
  • An example having the generation unit 11 is shown.
  • the chemical injection pipe 3 has a first end and a second end in the longitudinal axis direction. It can be said that the first end is the distal end and the second end is the proximal end.
  • the distal side is the first end side in the longitudinal axis direction of the drug solution injection tube 3 and refers to the treatment target side.
  • the proximal side is the second end side of the drug solution injection tube 3 in the longitudinal axis direction and refers to the hand side of the user (operator).
  • the proximal side may be referred to as a proximal portion and the distal side may be referred to as a distal portion.
  • the left side represents the distal side and the right side represents the proximal side.
  • the inside of the drug solution diffusion promoting device 2 refers to a direction toward the center of the longitudinal axis of the drug solution injection tube 3 in the radial direction of the drug solution injection tube 3, and the outside refers to a radiation direction opposite to the inside. Point.
  • the drug solution injection tube 3 is a tubular member that is punctured by the target tissue in the living body, and has a function of locally administering the drug solution into the target tissue.
  • the drug solution injection tube 3 has a distal portion and a proximal portion, and a puncture portion 3a to be inserted into the target tissue of the patient is provided in the distal portion.
  • the chemical solution injection tube 3 has one or a plurality of lumens 3b extending in the longitudinal axis direction thereof, and at least one lumen 3b functions as a flow path through which the chemical solution flows.
  • the distal end of the drug solution injection tube 3 is provided with an opening 3c that communicates with the outside, and the drug solution can be discharged to the outside of the drug solution injection tube 3 from the opening 3c.
  • the opening 3c may be provided so as to face the distal side as shown in FIG. 2, or may be provided on the side wall portion 3d of the chemical solution injection pipe 3 (not shown).
  • the drug solution injection tube 3 having the puncture portion 3a As the drug solution injection tube 3 having the puncture portion 3a, as shown in FIG. 2, the drug solution injection tube 3 is formed in a needle shape, and the tip of the needle is located on the distal side.
  • the puncture portion 3a is not particularly limited as long as it is formed so as to easily puncture the tissue, but it is preferable that the puncture portion 3a has an inclined opening edge 3e at the distal end of the drug solution injection tube 3 as shown in FIG. ..
  • a first grip portion 9 gripped by the operator is preferably connected to the proximal portion of the drug solution injection tube 3.
  • the chemical injection tube 3 is a hollow coil formed by spirally winding one or a plurality of metal wires, a hollow coil or at least one of the inner or outer surfaces of the hollow body coated with resin, and a tubular shape. Resin tubes of the above, or those in which these are connected in the longitudinal axis direction can be mentioned.
  • the chemical injection tube 3 is a tubular resin tube
  • the chemical injection tube 3 can be composed of a single layer or a plurality of layers, and a part in the longitudinal direction or the circumferential direction is composed of a single layer, and the like.
  • the unit may be composed of a plurality of layers.
  • the chemical injection tube 3 is preferably made of resin or metal.
  • the resin constituting the chemical injection tube 3 include polyamide-based resin, polyester-based resin, polyurethane-based resin, polyolefin-based resin, fluorine-based resin, vinyl chloride-based resin, silicone-based resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Of these, polyamide-based resins, polyester-based resins, polyurethane-based resins, polyolefin-based resins, and fluororesins are preferably used.
  • the metal constituting the chemical injection tube 3 examples include stainless steel such as SUS304 and SUS316, platinum, nickel, cobalt, chromium, titanium, tungsten, gold, Ni—Ti alloy, Co—Cr alloy, or a combination thereof. Can be mentioned.
  • the wire made of Ni—Ti alloy has excellent shape memory and high elasticity.
  • the wire rod may be a fiber material such as the above-mentioned metal, polyarylate fiber, aramid fiber, ultra-high molecular weight polyethylene fiber, PBO fiber, carbon fiber and the like. The fiber material may be monofilament or multifilament.
  • a tubular body made of resin on which a reinforcing material such as a metal wire is arranged may be used as the chemical injection pipe 3.
  • the chemical solution diffusion promoting device 2 has an outer tube 5 capable of accommodating the chemical solution injection tube 3.
  • the drug solution injection tube 3 can be arranged in the lumen 5b of the outer tube 5 so as not to damage the non-treatment tissue site or the inside of the forceps channel of the endoscope.
  • the outer tube 5 is a member having a distal portion and a proximal portion. Further, the outer tube 5 has a first end (distal end) and a second end (proximal end) in the longitudinal axis direction. The outer tube 5 communicates with the outside through an opening 5a provided on the distal side thereof.
  • a second grip portion 10 for the operator to grip may be provided in the proximal portion of the outer tube 5.
  • the second grip portion 10 can be formed in a tubular shape, for example.
  • the description of the constituent materials of the chemical injection tube 3 can be referred to.
  • the material of the outer tube 5 may be the same as or different from the material of the chemical injection tube 3.
  • the outer tube 5 is a tubular body, a metal tube, or a combination thereof formed by arranging a resin tube, a single wire or a plurality of wires, and a stranded wire in a specific pattern. Can be used.
  • the first ultrasonic wave generating unit 11 is provided in the chemical solution injection pipe 3 and is a portion that generates the first ultrasonic wave for diffusing the chemical solution.
  • the first ultrasonic wave is a therapeutic ultrasonic wave for diffusing a drug solution.
  • the oscillation frequency and ultrasonic output of the first ultrasonic wave generated by the first ultrasonic wave generating unit 11 can be appropriately set according to the type of treatment, the type and dose of the chemical solution.
  • Examples of the ultrasonic scanning method in the first ultrasonic wave generating unit 11 include an electronic scanning type and a mechanical scanning type.
  • a piezoelectric method and an electrostatic method can be mentioned.
  • the oscillation frequency of the first ultrasonic wave is preferably 1 kHz or more, more preferably 10 kHz or more, further preferably 100 kHz or more, preferably 10 MHz or less, and preferably 1 MHz or less. Is more preferable, and 500 kHz or less is further preferable. By setting the oscillation frequency in this way, the chemical solution can be effectively diffused.
  • Ultrasonic output Ispta of the first ultrasonic wave is preferably 100 mW / cm 2 or more, more preferably 300 mW / cm 2 or more, still more preferably 500 mW / cm 2 or more, also, 10 W / preferably cm 2 or less, more preferably 5W / cm 2 or less, and more preferably 1W / cm 2 or less.
  • the first sound wave generating unit 11 emits the first ultrasonic wave toward the outer side in the radial direction of the chemical injection tube 3.
  • the propagation direction of the first ultrasonic wave is shown in the direction z.
  • the first ultrasonic wave generating unit 11 may emit ultrasonic waves toward the distal side of the drug solution injection tube 3.
  • the first ultrasonic wave generating unit 11 can include an ultrasonic probe.
  • the ultrasonic probe converts an electric signal into an ultrasonic wave to transmit and receive an ultrasonic wave.
  • the ultrasonic probe may be a single oscillator type probe or a dual oscillator type probe having a transmitting oscillator and a receiving oscillator.
  • the oscillator can have, for example, a configuration having two electrodes and a piezoelectric material sandwiched between the two electrodes.
  • the piezoelectric material is a crystalline substance exhibiting piezoelectricity, and is a substance that generates a voltage when a mechanical strain is applied, or conversely, a material that generates a mechanical strain when a voltage is applied.
  • As the piezoelectric material barium titanate (BaTIO 3 ), lead zirconate titanate (PZT), polyvinylidene fluoride (PVDF), 1-3 composite composite piezoelectric material and the like can be used.
  • the first ultrasonic wave generating portion 11 is provided on the side wall portion 3d of the chemical solution injection pipe 3. This facilitates the irradiation of the target tissue in the living body with ultrasonic waves. It is more preferable that the first ultrasonic wave generating portion 11 is provided in the puncturing portion 3a of the chemical solution injection tube 3. As a result, the first ultrasonic wave generating portion 11 can be inserted into the target tissue, and the drug solution diffusion effect can be further enhanced.
  • the first ultrasonic wave generating unit 11 includes at least two oscillators 11A, and the two oscillators 11A are provided on the side wall portion 3d of the chemical injection pipe 3.
  • the first ultrasonic wave generating unit 11 includes at least two single-oscillator type probes, and the vibrators 11AB of at least two single-oscillator type probes are provided on the side wall portion 3d of the chemical injection pipe 3. Is more preferable.
  • the ultrasonic irradiation direction, irradiation position, intensity, etc. can be changed without moving the first ultrasonic wave generating unit 11 itself.
  • the array method can be used.
  • the first ultrasonic wave generating unit 11 includes at least two oscillators 11A, the two oscillators 11A are provided on the side wall portion 3d of the chemical injection tube 3, and the phase of the ultrasonic waves generated from the two oscillators 11A is It is preferable that they are offset from each other. As a result, the irradiation direction, irradiation position, intensity, and the like of the ultrasonic waves can be changed without moving the first ultrasonic wave generation unit 11 itself.
  • the phases of the ultrasonic waves generated from the two vibrators 11A are preferably T / 4 or more, more preferably T / 3 or more, and further preferably 2T / 5 or more.
  • the deviation is preferably 3T / 4 or less, more preferably 2T / 3 or less, and further preferably T / 2 or less.
  • T is the vibration period (unit: s) of the ultrasonic wave.
  • the two vibrators 11A which are out of phase with each other, are arranged next to each other in the circumferential direction of the chemical injection pipe 3. By arranging the vibrators 11A in this way, it becomes easier to control the interference of the ultrasonic wavefronts of the two vibrators 11A.
  • the first ultrasonic wave generating unit 11 includes at least two oscillators 11A, and the two oscillators 11A are provided on the side wall portion 3d of the chemical injection pipe 3, and the intensity of the ultrasonic waves generated from the two oscillators 11A is high. It is preferable that each is controlled so as to be different. By configuring the first ultrasonic wave generation unit 11 in this way, it is possible to change the ultrasonic wave irradiation direction, irradiation position, intensity, and the like without moving the first ultrasonic wave generation unit 11 itself.
  • the vibrator 11A can be formed into, for example, a polygonal shape such as a rectangular shape or a strip shape, a ring shape, or the like. With such a shape, a plurality of oscillators 11A can be arranged in an array, that is, regularly.
  • a polygonal shape such as a rectangular shape or a strip shape
  • the vibrator 11A into a ring shape ultrasonic waves can be generated over a wide range at one time, so that the chemical solution injected into the target tissue can be easily diffused in the circumferential direction.
  • the plurality of ring-shaped vibrators 11A can be easily arranged side by side in the longitudinal axis direction of the chemical injection pipe 3.
  • the number of vibrators 11A provided in the first ultrasonic wave generating unit 11 is not particularly limited, but it is more preferable that 8 or more are provided, 16 or more are further preferably provided, and 32 or more are provided. It is even more preferable that 64 or more are provided, and 256 or less may be provided, or 128 or less may be provided. By setting the number of oscillators 11A in this way, it is possible to accurately control the irradiation direction, irradiation position, intensity, and the like of ultrasonic waves.
  • the first ultrasonic wave generating unit 11 includes a plurality of vibrators 11A, and the plurality of vibrators 11A are continuously arranged.
  • the two oscillators 11A are arranged adjacent to each other in the circumferential direction of the chemical injection pipe 3.
  • the vibrator 11A is provided in this way, it is possible to construct an image in the 360-degree direction by sequentially receiving diagnostic ultrasonic waves in the circumferential direction.
  • the intensity of ultrasonic waves and the oscillation frequency can be changed depending on the position of the chemical injection tube 3 in the circumferential direction.
  • the arrangement of the plurality of oscillators 11A is not particularly limited, and may be arranged side by side in the longitudinal axis direction of the chemical solution injection tube 3, or arranged side by side in the longitudinal axis direction and the circumferential direction of the chemical solution injection tube 3. You may.
  • FIG. 4 is a cross-sectional side view showing a modified example of the chemical solution diffusion promoting device 2 shown in FIG.
  • the side wall portion 3d of the chemical solution injection pipe 3 is provided with a recess 3g.
  • at least a part of the first ultrasonic wave generating portion 11 is arranged in the recess 3g.
  • the recess 3g As a result, at least a part of the first ultrasonic wave generating portion 11 can be accommodated in the recess 3g, so that it is possible to prevent the first ultrasonic wave generating portion 11 from excessively protruding outward in the radial direction of the chemical solution injection pipe 3. it can. Therefore, it becomes easy to puncture the target tissue of the drug solution injection tube 3.
  • the outer end of the first ultrasonic wave generating unit 11 is at the same position as the outer end of the chemical injection pipe 3, or is inward of the outer end of the chemical injection pipe 3. It is preferably located at.
  • the first ultrasonic wave generating unit 11 does not protrude outward in the radial direction from the surface of the chemical solution injection tube 3, so that the target tissue of the chemical solution injection tube 3 is reached. It becomes easier to puncture.
  • the chemical solution diffusion promoting device 2 as shown in FIG. 4, an embodiment in which the entire first ultrasonic wave generating unit 11 is arranged in the recess 3g of the chemical solution injection pipe 3 can be mentioned.
  • the first ultrasonic wave generating portion 11 is arranged outside the outer surface of the side wall portion 3d of the chemical solution injection pipe 3, but as shown in FIG. 4, the first ultrasonic wave generating portion 11 is arranged. 1 At least a part of the ultrasonic wave generating portion 11 may be arranged in the wall of the side wall portion 3d. Further, although not shown, at least a part of the first ultrasonic wave generating portion 11 may be arranged in the lumen of the side wall portion 3d.
  • the sound absorbing material 11B is provided inward of the vibrator 11A in the radial direction of the chemical injection pipe 3.
  • the oscillator 11A is preferably supported by the sound absorbing material 11B.
  • the vibrator 11A is supported from the back surface by the sound absorbing material 11B, so that the deformation of the vibrator 11A can be suppressed.
  • the sound absorbing material 11B may be made of a material having an appropriate ultrasonic attenuation rate and acoustic impedance, and is made of, for example, a mixture containing a base material and a filler.
  • a base material include resins such as natural rubber, synthetic rubber, epoxy resin, and vinyl chloride resin.
  • the filler material include metal oxides and ceramic fine particles.
  • the vibrator 11A is arranged outside the chemical injection pipe 3 in the radial direction of the chemical injection pipe 3 and the specific gravity of the chemical injection pipe 3 is 1 or less. Since the specific gravity of the living tissue is approximately 1, the ultrasonic waves radiated inward from the vibrator can be attenuated by imparting the sound absorbing effect to the chemical injection tube 3 itself in this way.
  • the first ultrasonic wave generating unit 11 may have directivity in the propagation direction of ultrasonic waves. In that case, since it is not necessary to provide a plurality of vibrators 11A in the chemical injection pipe 3, it is possible to suppress an increase in the diameter of the chemical injection pipe 3 in the portion where the first ultrasonic wave generating portion 11 is provided. As a result, the burden on the patient for puncturing the drug solution injection tube 3 into the target tissue can be reduced.
  • the acoustic matching layer 11C may be provided on the outer side in the radial direction from the vibrator 11A. This makes it easier for the ultrasonic waves from the first ultrasonic wave generating unit 11 to enter the tumor. Further, from the viewpoint of focusing ultrasonic waves, it is preferable that the first ultrasonic wave generating unit 11 is provided with an acoustic lens on the outer side in the radial direction with respect to the vibrator 11A. The acoustic lens can be provided on the outer side in the radial direction with respect to the acoustic matching layer 11C.
  • the oscillator 11A and an energy supply source such as a power supply can be connected by a conducting wire.
  • the conducting wire can be arranged inside the side wall portion 3d of the chemical solution injection pipe 3 or on the outer surface or the inner surface of the side wall portion 3d.
  • Examples of the conducting wire include those using a conductor of electric energy or light energy, and the surface may be coated.
  • a conducting wire in which the core of the conductive material is coated with a non-conductive material, an optical fiber, or the like can be used.
  • a large diameter portion having the above may be provided.
  • a ring-shaped member provided on the outer side in the radial direction of the chemical solution injection pipe 3 can be mentioned. Due to the presence of the large diameter portion, even if the drug solution injected into the target tissue flows back to the proximal side, it can be blocked.
  • a second chemical injection tube that punctures the target tissue in the living body is further provided in the lumen 3b of the chemical injection tube 3 in which the first ultrasonic wave generating portion 11 is provided on the side wall portion 3d. You may be.
  • the drug solution can be discharged not only from the drug solution injection tube 3 but also from the second drug solution injection tube, so that the drug solution can be easily distributed throughout the tumor, and the therapeutic effect of the drug solution can be enhanced.
  • the description of the chemical injection tube 3 can be referred to.
  • the configuration of the second chemical injection tube may be the same as or different from the configuration of the chemical injection tube 3.
  • the type of the chemical solution supplied into the second chemical solution injection tube may be the same as or different from the type of the chemical solution supplied into the chemical solution injection tube 3.
  • the second chemical injection pipe can be moved in the longitudinal axis direction of the chemical injection pipe 3 with respect to the chemical injection pipe 3. Thereby, the discharge position of the chemical solution from the second chemical solution injection tube can be adjusted according to the shape of the target tissue or the like.
  • the distal end of the second drug solution injection tube is located distal to the distal end of the drug solution injection tube 3. It is preferable to do so.
  • the drug solution can be discharged from the second drug solution injection tube at a position distal to the drug solution injection tube 3, so that the drug solution can easily reach the distal side of the target tissue and the therapeutic effect of the drug solution is enhanced. be able to.
  • an ultrasonic wave generating part (hereinafter referred to as a "fourth ultrasonic wave generating part") may be provided on the side wall of the second chemical injection pipe.
  • the fourth ultrasonic wave generating unit is a portion that generates the fourth ultrasonic wave for diffusing the chemical solution, similarly to the first ultrasonic wave generating unit 11.
  • the oscillation frequency and ultrasonic output of the fourth ultrasonic wave can be appropriately set according to the type of treatment, the type and dose of the drug solution.
  • the oscillation frequency and ultrasonic output of the fourth ultrasonic wave may be the same as or different from that of the first ultrasonic wave.
  • the description of the first ultrasonic wave generating unit 11 can be referred to.
  • the fourth ultrasonic wave generating portion When the fourth ultrasonic wave generating portion is provided on the side wall portion of the second chemical solution injection tube, the fourth ultrasonic wave is generated when the second chemical solution injection tube is moved to the most distal side with respect to the chemical solution injection tube 3.
  • the distal end of the generating portion is preferably located distal to the distal end of the first ultrasonic generating portion 11.
  • the fourth ultrasonic wave for diffusing the drug solution can be generated by the fourth ultrasonic wave generator at a position distal to the drug solution injection tube 3, so that the drug solution can be easily spread throughout the tumor, and the treatment with the drug solution is performed. The effect can be enhanced.
  • FIG. 5 shows a cross-sectional side view showing a modified example of the chemical solution diffusion promoting device shown in FIG. 2, and FIG. 6 shows a cross-sectional view of the chemical solution diffusion promoting device shown in FIG. 5 along the VI-VI line.
  • the first ultrasonic wave generating unit 11 is provided in the cavity 3b of the chemical injection pipe 3, and has a rotation shaft 11d parallel to the longitudinal axis direction of the chemical injection pipe 3. You may have. In that case, it is preferable that the first ultrasonic wave generating unit 11 rotates 360 degrees around the rotation axis 11d. By providing the first ultrasonic wave generating unit 11 in this way, the mechanical scanning type chemical solution diffusion promoting device 2 can be obtained. The same configuration as the chemical solution diffusion promoting device 2 shown in FIGS. 2 to 4 will not be described.
  • the first ultrasonic wave generating unit 11 When the first ultrasonic wave generating unit 11 is provided in the cavity 3b of the chemical solution injection tube 3 and has a rotation axis 11d parallel to the longitudinal axis direction of the chemical solution injection tube 3, the first ultrasonic wave is generated. It is preferable that the portion 11 has directivity in the propagation direction of the ultrasonic wave. This makes it easier to irradiate the necessary portion of the target tissue with ultrasonic waves from the first ultrasonic wave generating unit 11.
  • the specific gravity of the chemical solution injection tube 3 is preferably 1 or more.
  • the specific gravity of at least a part of the chemical injection pipe 3 in the longitudinal axis direction is preferably 1 or more.
  • the specific gravity of the portion of the chemical injection pipe 3 that overlaps with the first ultrasonic wave generating portion 11 in the longitudinal direction is It is more preferably 1 or more.
  • the chemical solution diffusion promoting device 2 further includes an interpolation member 4 arranged in the lumen 3b of the chemical injection tube 3.
  • An embodiment in which the first ultrasonic wave generating portion 11 is held at the distal end portion of the interpolation member 4 can be mentioned.
  • the chemical solution can flow to the outside of the interpolation member 4 in the lumen 3b of the chemical solution injection tube 3.
  • the interpolation member 4 is arranged in the hollow shaft 4A extending in the longitudinal axis direction of the chemical injection pipe 3 and the lumen of the shaft 4A, and is arranged in the lumen of the shaft 4A, and is the longitudinal length of the shaft 4A. It can be configured to have a support member 4B extending in the axial direction. In that case, the first ultrasonic wave generating portion 11 can be fixed to the distal portion of the support member 4B.
  • the support member 4B may be fixed to the shaft 4A or may not be fixed to the shaft 4A.
  • the distal end of the shaft 4A is preferably closed in order to prevent the chemical solution from entering the lumen of the shaft 4A.
  • the material of the shaft 4A may be the same as or different from the material of the chemical injection tube 3.
  • the shaft 4A is a tubular body, a metal tube, or a combination thereof formed by arranging a resin tube, a single wire or a plurality of wires, and a stranded wire in a specific pattern, similarly to the chemical injection pipe 3. Can be used.
  • the specific gravity of the portion of the shaft 4A that overlaps with the first ultrasonic wave generating unit 11 in the longitudinal axis direction Is preferably 1 or more.
  • the method of fixing the first ultrasonic wave generating portion 11 to the distal portion of the support member 4B is not particularly limited, and as shown in FIG. 5, a flat portion 4Ba is provided at the distal portion of the support member 4B, and the flat portion 4Ba is provided with the flat portion 4Ba.
  • the first ultrasonic wave generating unit 11 may be fixed. Further, the first ultrasonic wave generating portion 11 may be connected to the distal end portion of the support member 4B. The first ultrasonic wave generating portion 11 may be provided on the distal side of the support member 4B.
  • Examples of the support member 4B include a rod-shaped member and a torque wire.
  • Examples of the torque wire include a coil body formed by spirally winding one or a plurality of wires.
  • the support member 4B is a torque wire. As a result, the rotational torque on the proximal side can be efficiently transmitted to the first ultrasonic wave generating unit 11.
  • the shaft 4A when the support member 4B is fixed to the shaft 4A, the shaft 4A may be rotated on the hand side in order to change the propagation direction of ultrasonic waves. Therefore, in this case, it is preferable that the wire rods are arranged on the shaft 4A in a specific pattern. By configuring the shaft 4A in this way, it is possible to efficiently transmit the rotational torque on the proximal side to the first ultrasonic wave generating unit 11.
  • the interpolation member 4 is movable with respect to the chemical injection pipe 3 in the longitudinal axis direction of the chemical injection pipe 3. As a result, the irradiation position of the first ultrasonic wave from the first ultrasonic wave generating unit 11 can be adjusted according to the shape of the target tissue and the like.
  • the distal end of the insertion member 4 is located on the distal side of the distal end of the drug solution injection tube 3. Is preferable.
  • the first ultrasonic wave can be generated at a position distal to the drug solution injection tube 3, so that the drug solution can be easily distributed throughout the tumor, and the therapeutic effect of the drug solution can be enhanced.
  • the interpolation member 4 as shown in FIGS. 5 to 6 may be provided in the lumen 3b of the chemical solution injection tube 3 shown in FIGS. 2 to 4. That is, the first ultrasonic wave generating portion 11 is provided on the side wall portion 3d of the chemical liquid injection pipe 3, and the second insertion member is arranged in the lumen 3b of the chemical liquid injection pipe 3, and the second insertion member of the second insertion member.
  • An ultrasonic wave generating part (hereinafter referred to as a “fifth ultrasonic wave generating part”) may be held at the distal end portion.
  • the fifth ultrasonic wave generating unit is a portion that generates the fifth ultrasonic wave for diffusing the chemical solution, similarly to the first ultrasonic wave generating unit 11.
  • the oscillation frequency and ultrasonic output of the fifth ultrasonic wave can be appropriately set according to the type of treatment, the type and dose of the drug solution.
  • the oscillation frequency and ultrasonic output of the fifth ultrasonic wave may be the same as or different from that of the first ultrasonic wave.
  • the configuration of the fifth ultrasonic wave generating unit the description of the first ultrasonic wave generating unit 11 can be referred to.
  • the second insertion member When the fifth ultrasonic generator is held at the distal end of the second insertion member, the second insertion member is moved to the most distal side with respect to the drug solution injection tube 3.
  • the distal end of the insertion member is preferably located distal to the distal end of the drug solution injection tube 3, and the distal end of the fifth ultrasonic generator is far from the first ultrasonic generator 11. It is more preferably located distal to the position end.
  • the fifth ultrasonic wave for diffusing the drug solution can be generated by the fifth ultrasonic wave generator at a position distal to the drug solution injection tube 3, so that the drug solution can be easily spread throughout the tumor, and the treatment with the drug solution is performed. The effect can be enhanced.
  • the ultrasonic control unit 20 is connected to the first ultrasonic wave generation unit 11 and controls the irradiation conditions of the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue. Specifically, at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave generated by the first ultrasonic wave generating unit 11 is controlled. According to the chemical diffusion system 1, at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave is controlled according to the two-dimensional or three-dimensional image of the target tissue, so that the state of the target tissue is adjusted. Therefore, the drug solution can be appropriately diffused to the required site.
  • the irradiation conditions of the first ultrasonic wave can be appropriately set according to the shape, size, spread, hardness, etc. of the tumor, such as when the distance between the two differs depending on the position of the drug solution injection tube 3 in the circumferential direction. it can. Therefore, the drug solution can be easily spread over the entire tumor, and the therapeutic effect of the drug solution can be enhanced. In addition, it is possible to shorten the irradiation time of ultrasonic waves required for treatment, which contributes to reducing the burden on the patient and the operator.
  • the ultrasonic control unit 20 changes at least one of the propagation direction, intensity, and oscillation frequency of the ultrasonic waves generated by the first ultrasonic wave generation unit 11 with respect to the time with respect to the first ultrasonic wave generation unit 11. It is preferable to issue a command signal to make the sound wave. By changing the ultrasonic conditions over time in this way, the diffusion promoting effect of the chemical solution can be enhanced.
  • a two-dimensional or three-dimensional image of the target tissue can be obtained by using an image forming unit 23 preferably included in the chemical diffusion system 1 or an external device not included in the system 1.
  • the ultrasonic control unit 20 controls the irradiation conditions of the first ultrasonic wave according to the acquired two-dimensional or three-dimensional image of the target tissue.
  • the ultrasonic control unit 20 commands the first ultrasonic wave generation unit 11 to change at least one of the intensity of the first ultrasonic wave and the oscillation frequency depending on the position in the longitudinal axis direction or the circumferential direction of the chemical solution injection pipe 3. A signal may be emitted. This makes it possible to set the irradiation conditions of the first ultrasonic wave according to the condition of the tumor and the degree of penetration of the drug solution into the tumor before the irradiation of the first ultrasonic wave, and it is possible to enhance the diffusion effect of the drug solution. It becomes.
  • FIG. 7 is an image diagram of an ultrasonic diagnostic image when the drug solution injection tube 3 and the first ultrasonic wave generating portion 11 shown in FIG. 2 are punctured into the tumor 100. As shown in FIG.
  • the ultrasonic control unit 20 is the first in the circumferential direction of the drug solution injection tube 3 as the radial distance from the longitudinal axis center 3f of the drug solution injection tube 3 to the outer edge 101 of the tumor 100 is longer.
  • a command signal may be issued to increase the intensity x of the sound wave. This makes it easier for the drug solution to spread throughout the tumor, so that the therapeutic effect of the drug solution can be enhanced.
  • the fact that the intensity distribution of the first ultrasonic wave is unevenly distributed from the center 3f of the longitudinal axis of the chemical injection tube 3 means that the intensity x of the ultrasonic wave differs depending on the position in the circumferential direction of the chemical injection tube 3.
  • the ultrasonic control unit 20 lowers the oscillation frequency of the first ultrasonic wave in the circumferential direction of the chemical injection tube 3 as the radial distance from the center 3f of the longitudinal axis of the chemical injection tube 3 to the outer edge 101 of the tumor 100 is longer.
  • a command signal may be issued.
  • a program for performing each process of at least one of the ultrasonic control unit 20 and the processing unit 30 described later may be recorded on a computer-readable medium. This allows you to install the above program on your computer.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium. Examples of the non-transient recording medium include a recording medium such as a CD-ROM.
  • the chemical diffusion system 1 can include a processor for executing the above program in at least one of the ultrasonic control unit 20 and the processing unit 30 described later.
  • Processors include microprocessors mounted on integrated circuits.
  • the computer may include a processor and a storage device described below.
  • on-off control may be used, variable PI control may be used, or PID control may of course be used.
  • FIG. 8 shows an example of the treatment flow in the drug solution diffusion system 1 shown in FIG. Using the drug solution diffusion system 1 of FIG. 1, the following procedure can be performed.
  • the drug solution injection tube 3 is punctured into the target tissue (step S1).
  • step S1 it is preferable that the first ultrasonic wave generating unit 11 is arranged in the target tissue.
  • the drug solution is injected into the target tissue (step S2).
  • the ultrasonic control unit 20 controls the irradiation conditions of the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue (step S3).
  • step S3 at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave generated by the first ultrasonic wave generating unit 11 is controlled.
  • the first ultrasonic wave is irradiated to the target tissue using the first ultrasonic wave generating unit 11 (step S4).
  • a two-dimensional or three-dimensional image of the target tissue may be obtained after the irradiation of the first ultrasonic wave in step S4 (step S5). It is preferable to confirm the diffusion state of the drug solution using the image obtained in step S5 (step S6). When it is determined in step S6 that the diffusion state of the chemical solution has not reached the target value, it is preferable to return to step S3 to control the irradiation conditions of the first ultrasonic wave and carry out step S4 and subsequent steps. If it is determined in step S6 that the diffusion state of the drug solution has reached the target value, the treatment is terminated.
  • the chemical diffusion system 1 may further include a second ultrasonic wave generating unit 12 that generates a second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave.
  • a two-dimensional or three-dimensional image of the target tissue can be formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave. That is, the second ultrasonic wave can be used to generate a diagnostic image.
  • the image formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave may be a two-dimensional image or a three-dimensional image. Further, the image formed by using the reflected wave may be a still image or a moving image.
  • the oscillation frequency and ultrasonic output of the second ultrasonic wave generated by the second ultrasonic wave generating unit 12 can be appropriately set according to the type of treatment, the type and dose of the chemical solution.
  • the oscillation frequency of the second ultrasonic wave may be higher than the oscillation frequency of the first ultrasonic wave.
  • the oscillation frequency of the second ultrasonic wave is preferably 20 MHz or more, more preferably 30 MHz or more. It is more preferably 40 MHz or more, more preferably 100 MHz or less, more preferably 90 MHz or less, and even more preferably 80 MHz or less.
  • the ultrasonic output Ispta of the second ultrasonic wave is preferably 30 mW / cm 2 or more, more preferably 50 mW / cm 2 or more, further preferably 100 mW / cm 2 or more, and 720 W / cm 2 or more. preferably cm 2 or less, more preferably 500 W / cm 2 or less, and more preferably 300 W / cm 2 or less.
  • the second ultrasonic wave generating unit 12 may be provided in the chemical solution injection pipe 3 as shown in FIGS. 1 to 2, but may be provided in the outer tube 5, and is separate from the chemical solution diffusion promoting device 2. It may be provided. Further, the first ultrasonic wave generating unit 11 may also serve as the second ultrasonic wave generating unit 12. That is, the first ultrasonic wave generating unit 11 may generate the first ultrasonic wave and the second ultrasonic wave.
  • the description of the first ultrasonic wave generating unit 11 can be referred to.
  • the ultrasonic control unit 20 determines the type of the chemical solution supplied to the chemical solution injection tube 3 or It is preferable to control the amount. As a result, the drug solution can be appropriately administered to the target tissue.
  • the chemical diffusion system 1 is connected to the ultrasonic control unit 20 and has an image forming unit 23 that forms an image using the reflected wave when the target tissue is irradiated with the second ultrasonic wave.
  • a storage unit 25 which is connected to the ultrasonic control unit 20 and stores an image formed by the image forming unit 23.
  • the image formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave visualizes the state of the target tissue before, after the injection of the chemical solution, after the irradiation, etc., and can be used for diagnosis. ..
  • the image for diagnosis is stored in the storage unit 25, the data can be appropriately read out when the data is processed in the processing unit described later, so that the validity of the treatment can be verified and a further treatment policy can be formulated. Can contribute to.
  • the image forming unit 23 forms a two-dimensional or three-dimensional image of the target tissue by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave.
  • the image forming unit 23 is preferably connected to the storage unit 25.
  • the image formed by the image forming unit 23 can be transmitted to the storage unit 25, so that the image can be read out from the storage unit 25 when the irradiation conditions are set.
  • a processor preferably provided in the chemical solution diffusion system 1 may execute the program of the image forming unit 23.
  • the image forming unit 23 may be connected to a processing unit 30 described later. As a result, the processing unit 30 can perform processing necessary for grasping the state of the target tissue, such as comparison between images, using the image formed by the image forming unit 23.
  • the storage unit 25 may be a main storage device such as a RAM or ROM included in the computer, or an auxiliary storage device such as a hard disk.
  • the chemical diffusion system 1 is connected to a receiving unit that receives the reflected wave when the target tissue is irradiated with the second ultrasonic wave, and the second ultrasonic wave is applied to the target tissue. It may further have a display unit for displaying an image formed by using the reflected wave when irradiated.
  • the image forming unit 23 is preferably connected to the receiving unit. As a result, the reflected wave when the target tissue is irradiated with the second ultrasonic wave through the receiving unit can be transmitted to the image forming unit 23.
  • the chemical solution diffusion system 1 further has a processing unit 30 connected to the ultrasonic control unit 20.
  • the processing unit 30 can perform various processes such as calculation and comparison for grasping the state of the target organization.
  • the processing unit 30 compares the image of the target tissue before the injection of the chemical solution with the image of the target tissue after the injection of the chemical solution, and the ultrasonic control unit 20 uses the comparison result of the processing unit 30 to make a first comparison. 1 It is preferable to control the ultrasonic irradiation conditions. This makes it possible to set appropriate irradiation conditions based on the comparison result of the state of the target tissue before and after the injection of the drug solution.
  • the processing unit 30 compares the image of the target tissue before the chemical solution injection with the image of the target tissue after the chemical solution injection and after the irradiation of the first ultrasonic wave, and the ultrasonic control unit 20 is the processing unit. It is preferable to control the irradiation condition of the first ultrasonic wave by using the comparison result in No. 30. Thereby, based on the comparison result of the state of the target tissue before the injection of the chemical solution and after the injection of the chemical solution and after the irradiation of the first ultrasonic wave, it is determined whether or not the irradiation of the additional first ultrasonic wave is necessary. be able to.
  • the processing unit 30 compares the image of the target tissue after the injection of the chemical solution and before the irradiation of the first ultrasonic wave with the image of the target tissue after the injection of the chemical solution and after the irradiation of the first ultrasonic wave. It is preferable that the ultrasonic control unit 20 controls the irradiation conditions of the first ultrasonic wave by using the comparison result of the processing unit 30. Thereby, based on the comparison result of the state of the target tissue after the injection of the chemical solution and before and after the irradiation of the first ultrasonic wave, it is possible to determine whether or not the irradiation of the additional first ultrasonic wave is necessary.
  • the processing unit 30 includes an image of the target tissue after the injection of the chemical solution and after the nth irradiation of the first ultrasonic wave, and an image of the target tissue after the injection of the chemical solution and after the n + 1th irradiation of the first ultrasonic wave. It is preferable that the ultrasonic control unit 20 controls the irradiation condition of the first ultrasonic wave n + 2 by using the comparison result in the processing unit 30. Note that n is an integer of 1 or more. Thereby, the irradiation condition of the n + 2nd first ultrasonic wave can be appropriately set according to the state of the target tissue.
  • FIG. 9 shows another example of the treatment flow in the drug solution diffusion system 1 shown in FIG.
  • the flow shown in FIG. 9 is a two-dimensional or three-dimensional image using the reflected wave when the second ultrasonic wave is generated by the second ultrasonic wave generating unit 12 and the second ultrasonic wave is applied to the target tissue.
  • the flow is different from that shown in FIG. 8 in that the formed image is used for controlling the irradiation condition of the first ultrasonic wave and determining the diffusion state of the chemical solution.
  • the drug solution injection tube 3 is punctured into the target tissue (step S11).
  • step S11 it is preferable that the first ultrasonic wave generating unit 11 and the second ultrasonic wave generating unit 12 are arranged in the target tissue.
  • the second ultrasonic wave generation unit 12 generates a second ultrasonic wave, and a two-dimensional or three-dimensional image is formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave (step S12). This makes it possible to visualize the state of the target tissue before injecting the drug solution.
  • the drug solution is injected into the target tissue (step S13).
  • the second ultrasonic wave is generated by the second ultrasonic wave generator 12, and the reflected wave when the second ultrasonic wave is applied to the target tissue is used to make the target tissue two-dimensional or tertiary after the injection of the chemical solution.
  • the original image may be formed (step S14).
  • the ultrasonic control unit 20 controls the irradiation condition of the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue at least before or after the drug solution injection (step S15). According to the irradiation conditions set in step S15, the first ultrasonic wave is irradiated to the target tissue using the first ultrasonic wave generating unit 11 (step S16).
  • the second ultrasonic wave is generated by the second ultrasonic wave generating unit 12, and the reflected wave when the second ultrasonic wave is irradiated to the target tissue is used to inject the chemical solution and the target tissue after the irradiation of the first ultrasonic wave.
  • Form a two-dimensional or three-dimensional image of (step S17). It is preferable to confirm the diffusion state of the drug solution using the image formed in step S17 (step S18). When it is determined in step S18 that the diffusion state of the chemical solution has not reached the target value, it is preferable to return to step S15 to control the irradiation conditions of the first ultrasonic wave and carry out step S16 and subsequent steps.
  • step S18 when it is determined that the diffusion state of the drug solution has reached the target value and the diffusion state of the drug solution has reached the target value, the treatment is terminated.
  • FIG. 10 shows another example of the treatment flow in the drug solution diffusion system 1 shown in FIG. Using the drug solution diffusion system 1 of FIG. 1, the following procedure may be performed.
  • steps S21 to S27 shown in FIG. 10 are the same as steps S11 to S17 shown in FIG. 9, description thereof will be omitted.
  • step S27 in the processing unit 30, a two-dimensional or three-dimensional image of the target tissue formed in step S22 before injection of the chemical solution and after injection of the chemical solution formed in step S27.
  • the two-dimensional or three-dimensional images of the target tissue after irradiation with the first ultrasonic waves are compared (step S28).
  • step 28 when it is determined that the diffusion state of the chemical solution has not reached the target value based on the comparison result of the images, the process returns to step S25 to control the irradiation condition of the first ultrasonic wave, and steps S26 and subsequent steps are performed. It is preferable to carry out.
  • step S28 when it is determined that the diffusion state of the drug solution has reached the target value based on the comparison result of the images, the treatment is terminated.
  • FIG. 11 shows a block diagram showing a modified example of the chemical solution diffusion system 1 shown in FIG.
  • the second ultrasonic wave generating unit 12 may be provided outside the chemical injection pipe 3. That is, the chemical solution diffusion system 1 may have a diagnostic ultrasonic wave generator having a second ultrasonic wave generator 12 in addition to the chemical solution diffusion promoting device 2.
  • the treatment can be performed in the same flow as the chemical solution diffusion system 1 of FIG.
  • the chemical solution diffusion system 1 may have an image forming portion 23. The same applies to the aspects shown below.
  • FIG. 12 shows a block diagram showing another modification of the drug solution diffusion system 1 shown in FIG.
  • the chemical solution diffusion system 1 has a chemical solution injection pipe 3, an ultrasonic control unit 20, a processing unit 30, and a data storage unit 35 connected to the ultrasonic control unit 20. May be good.
  • the data storage unit 35 can store reference data necessary for setting the irradiation conditions of the first ultrasonic wave.
  • the data storage unit 35 may be a main storage device such as a RAM or ROM included in the computer, or an auxiliary storage device such as a hard disk. That is, the storage unit 25 and the data storage unit 35 can be provided in the main storage device and the auxiliary storage device.
  • the data storage unit 35 stores a diffusion pattern table containing data on the diffusion pattern of the drug solution according to the type of tumor.
  • the processing unit 30 compares the reference result of the diffusion pattern table with the image of the target tissue after the injection of the chemical solution and after the irradiation of the first ultrasonic wave, and the ultrasonic control unit 20 processes. It is preferable to control the irradiation condition of the first ultrasonic wave by using the comparison result in the part 30. As a result, whether or not additional first ultrasonic wave irradiation is necessary based on the reference result of the diffusion pattern table and the comparison result of the state of the target tissue after the chemical solution injection and after the first ultrasonic wave irradiation. Can be determined.
  • the tumor type data stored in the diffusion pattern table includes the site where the tumor is formed, the shape, the size, the spread, the hardness, and the like.
  • the diffusion pattern data of the drug solution stored in the diffusion pattern table is formed by using the reflected wave when the target tissue is irradiated with ultrasonic waves for diagnosis before injecting the drug solution into the tumor in the past cases.
  • a two-dimensional or three-dimensional image of the image can be mentioned.
  • the chemical solution diffusion system 1 may have a storage unit 25 and a data storage unit 35. This makes it possible to compare the image stored in the storage unit 25 with the data stored in the data storage unit 35.
  • the chemical solution diffusion system 1 is connected to a proximal portion of the chemical solution injection pipe 3 and is connected to a liquid supply unit 40 for supplying the chemical solution into the chemical solution injection tube 3 and an ultrasonic control unit 20. It may further have a data storage unit 35 and the like.
  • the data storage unit 35 has a drug solution table containing data on the type of the drug solution, and a tumor table containing data indicating the state of the tumor diagnosed in the past, and the ultrasonic control unit 20 has the ultrasonic control unit 20. It is preferable to select the type of the drug solution from the drug solution table based on the reference result of the tumor table and issue a command signal to the liquid supply unit 40 to supply the selected type of drug solution into the drug solution injection tube 3. As a result, an appropriate type of drug solution suitable for the type of tumor can be selected, so that the drug solution diffusion effect can be further enhanced.
  • the liquid supply unit 40 is a member for supplying the chemical solution to the cavity 3b of the chemical solution injection tube 3, and for example, an injection pump controlled by a syringe or a motor can be used.
  • the data storage unit 35 further has a frequency table including data of the oscillation frequency of the first ultrasonic wave.
  • the ultrasonic control unit 20 selects the value of the oscillation frequency of the first ultrasonic wave from the frequency table based on the reference result of the tumor table, and the selected oscillation with respect to the first ultrasonic wave generation unit 11. It is preferable to emit a command signal that generates a first ultrasonic wave of frequency. As a result, an appropriate oscillation frequency of the first ultrasonic wave can be selected according to the type of tumor, so that the drug solution diffusion effect in the target tissue can be further enhanced.
  • FIG. 13 shows an example of the treatment flow in the drug solution diffusion system 1 shown in FIG. Using the drug solution diffusion system 1 of FIG. 12, the following procedure can be performed.
  • steps S31 to S37 shown in FIG. 13 are the same as steps S11 to S17 shown in FIG. 9, description thereof will be omitted.
  • the flow shown in FIG. 13 differs from the flow of FIG. 9 in that the processing unit 30 has a diffusion pattern table provided with data on the diffusion pattern of the drug solution according to the type of tumor stored in the data storage unit 35.
  • the reference result of (step S38) is being compared with the image formed in step S37 after injection of the chemical solution and after irradiation with the first ultrasonic wave (step S38).
  • step S38 If it is determined that the diffusion state of the drug solution has not reached the target value based on the comparison result in step S38, the process returns to step S35 to control the irradiation condition of the first ultrasonic wave, and steps S36 and subsequent steps are performed. Is preferable. If it is determined that the diffusion state of the drug solution has reached the target value based on the comparison result in step S38, the treatment is terminated.
  • FIG. 14 shows a block diagram showing still another modification of the drug solution diffusion system 1 shown in FIG.
  • the chemical solution diffusion system 1 may further include a measuring unit 45 connected to the ultrasonic control unit 20.
  • the measuring unit 45 measures at least one of the shape, size, spread, and hardness of the tumor from the image before the injection of the drug solution
  • the ultrasonic control unit 20 is the measuring unit 45. It is preferable to control the irradiation condition of the first ultrasonic wave by using the measurement result of. As a result, the irradiation conditions of the first ultrasonic wave can be appropriately set according to the state of the tumor, so that the effect of diffusing the drug solution in the target tissue can be enhanced.
  • the measuring unit 45 is a part that analyzes the shape, size, spread, and hardness of the tumor before irradiation with the first ultrasonic wave by using a two-dimensional or three-dimensional image of the target tissue before injecting the drug solution. Is preferable. In that case, a processor preferably provided in the chemical solution diffusion system 1 may execute the program of the measuring unit 45.
  • the measuring unit 45 may be a device that directly measures various parameters such as the shape and size of the tumor.
  • a device for directly measuring the hardness of a tumor for example, an ultrasonic hardness meter can be mentioned.
  • the first ultrasonic wave generating unit 11 By generating ultrasonic waves having a frequency in a range suitable for measuring hardness, which is different from the first ultrasonic wave, the first ultrasonic wave generating unit 11 also serves as the measuring unit 45. can do.
  • the measurement unit 45 shows the shape, size, spread and hardness of the tumor from the image before the drug solution injection.
  • the ultrasonic control unit 20 measures the circumference of the drug solution injection tube 3 with respect to the first ultrasonic wave generating unit 11 by using the measurement result of the tumor in the measuring unit 45. It is preferable to emit a command signal that changes at least one of the intensity of the first ultrasonic wave and the oscillation frequency depending on the position in the direction. As a result, the irradiation conditions of the first ultrasonic wave can be appropriately set according to the state of the tumor, so that the effect of diffusing the drug solution in the target tissue can be further enhanced.
  • the harder the tumor the stronger the intensity of the ultrasonic waves generated by the first ultrasonic wave generating unit 11. This makes it easier for the drug solution to spread to the hard part of the tumor, so that the therapeutic effect of the drug solution can be enhanced.
  • the chemical diffusion system 1 further includes a third ultrasonic wave generating unit 13 that generates a third ultrasonic wave for heating the target tissue at an oscillation frequency different from that of the first ultrasonic wave. It is preferable to have.
  • the thermal effect the drug solution diffusion effect and the immunity enhancing effect in the target tissue can be further enhanced.
  • the oscillation frequency and ultrasonic output of the third ultrasonic wave can be appropriately set according to the type of treatment, the type and dose of the drug solution.
  • the oscillation frequency of the third ultrasonic wave may be lower than the oscillation frequency of the second ultrasonic wave, and is set to, for example, 10 kHz or more, 100 kHz or more, or 1 MHz or more, and 100 MHz or less, 10 MHz or less, 5 MHz or less. Is also acceptable. By setting the oscillation frequency in this way, the thermal effect can be exhibited.
  • the description of the first ultrasonic wave generating unit 11 can be referred to.
  • the first ultrasonic wave generating unit 11 may also serve as a second ultrasonic wave generating unit 12 for generating a second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave and a third ultrasonic wave generating unit 13. That is, the first ultrasonic wave generating unit 11 has an oscillation frequency different from that of the first ultrasonic wave, the first ultrasonic wave, and the second ultrasonic wave used for image formation for diagnosis, and an oscillation frequency different from the first ultrasonic wave.
  • a third ultrasonic wave may be generated to heat the target tissue.
  • the chemical solution diffusion system 1 is connected to a proximal portion of the chemical solution injection pipe 3 and is connected to a liquid supply unit 40 for supplying the chemical solution into the chemical solution injection pipe 3 and a liquid supply unit 40. It is preferable to have a cooling unit 50 for cooling the chemical solution. As a result, the chemical solution whose temperature has been adjusted by the cooling unit 50 can be supplied into the chemical solution injection pipe 3, so that excessive heating of the chemical solution can be prevented.
  • the cooling unit 50 may directly cool the chemical solution, but it is preferable to cool the container in which the chemical solution is stored.
  • a cooler having fins formed around the container and air-cooled by a blower, a heat pump type cooler, a cooler using a Peltier element, or the like can be used.

Abstract

Provided is a drug solution diffusing system (1) for diffusing a drug solution to subject tissue inside a living body, the drug solution diffusing system (1) comprising a drug solution injecting tube (3) to be pierced into the subject tissue, a first ultrasonic wave generating unit (11) which is provided on the drug solution injecting tube (3) and generates first ultrasonic waves for diffusing the drug solution, and an ultrasonic wave control unit (20) which is connected to the first ultrasonic wave generating unit (11) and controls the irradiation conditions of the first ultrasonic waves according to a two-dimensional or three-dimensional image of the subject tissue, wherein the ultrasonic wave control unit (20) controls at least one of a direction of propagation, intensity, and oscillating frequency of the first ultrasonic waves.

Description

薬液拡散システムおよび薬液拡散促進装置Chemical diffusion system and chemical diffusion accelerator
 本発明は、がん等の治療において、体内に注入された薬液を拡散するためのシステムおよび薬液拡散促進装置に関するものである。 The present invention relates to a system for diffusing a drug solution injected into the body and a drug solution diffusion promoting device in the treatment of cancer or the like.
 がん等の腫瘍の治療において、腫瘍等の体内組織に薬液を局所的に投与した後、当該組織に超音波を照射することによって薬液を体内組織へ拡散させる方法が提案されている。そのような治療に用いる装置として、特許文献1には、生体に対して光の送受波を行う光送受波手段と、生体に対して超音波の送受波を行う電気音響変換手段と、光および超音波の送受波の方向を制御する制御手段と、治療用の超音波が照射される生体の近傍に薬剤を投与するための薬剤投与手段を少なくとも備え、薬剤投与手段が、カテーテル型アプリケータの先端部近傍に投与口が設けられている診断・治療装置が開示されている。また、特許文献2には、対象の1つ以上の位置における処置部位に治療を提供するための超音波カテーテル・システムが開示され、該システムは、管状部材と、マイクロバブル貯蔵器と、超音波エネルギー源であって、該超音波エネルギーは、該処置部位をイメージングすることと、該マイクロバブルを破裂させることとに対して適合される、超音波エネルギー源と、該超音波エネルギー源に電気的活性化を送るように構成される制御回路とを含むことが開示されている。 In the treatment of tumors such as cancer, a method has been proposed in which a drug solution is locally administered to a body tissue such as a tumor and then the drug solution is diffused into the body tissue by irradiating the tissue with ultrasonic waves. As devices used for such treatments, Patent Document 1 describes light transmission / reception means for transmitting / receiving light to a living body, electroacoustic conversion means for transmitting / receiving ultrasonic waves to a living body, and light. A control means for controlling the direction of ultrasonic wave transmission / reception and a drug administration means for administering a drug in the vicinity of a living body irradiated with therapeutic ultrasonic waves are provided, and the drug administration means is a catheter-type applicator. A diagnostic / therapeutic device having an administration port near the tip is disclosed. In addition, Patent Document 2 discloses an ultrasonic catheter system for providing treatment to a treatment site at one or more positions of a subject, and the system includes a tubular member, a microbubble reservoir, and an ultrasonic wave. An energy source, the ultrasonic energy is adapted to imaging the treatment site and bursting the microbubbles, and is electrically connected to the ultrasonic energy source and the ultrasonic energy source. It is disclosed to include a control circuit configured to send activation.
特開2004-290548号公報Japanese Unexamined Patent Publication No. 2004-290548 特表2011-500288号公報Japanese Patent Publication No. 2011-500288
 しかしながら、特許文献1~2に記載の装置は、腫瘍全体に薬液が拡散されにくい点で改善の余地があった。そこで、本発明は、薬液を適切に拡散することができる薬液拡散システムおよび薬液拡散促進装置を提供することを目的とする。 However, the devices described in Patent Documents 1 and 2 have room for improvement in that the drug solution is difficult to diffuse throughout the tumor. Therefore, an object of the present invention is to provide a chemical solution diffusion system and a chemical solution diffusion promoting device capable of appropriately diffusing a chemical solution.
 前記課題を解決することができた本発明の薬液拡散システムの一実施態様は、薬液を生体内の対象組織に拡散するための薬液拡散システムであって、対象組織に穿刺される薬液注入管と、薬液注入管に設けられており、薬液を拡散させるための第1超音波を発生する第1超音波発生部と、第1超音波発生部に接続され、対象組織の二次元または三次元の像に応じて第1超音波の照射条件を制御する超音波制御部と、を有し、超音波制御部は、第1超音波発生部で発生する第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御する点に要旨を有する。上記薬液拡散システムでは、対象組織の二次元または三次元の像に応じて、第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御するため、対象組織の状態に応じて薬液を必要な部位に適切に拡散することできる。このため、治療に必要な超音波の照射時間を短くすることが可能であり、患者や術者の負担の軽減に寄与するものとなる。 One embodiment of the drug solution diffusion system of the present invention that has been able to solve the above problems is a drug solution diffusion system for diffusing a drug solution to a target tissue in a living body, and includes a drug solution injection tube pierced by the target tissue. , A two-dimensional or three-dimensional target tissue that is provided in the chemical injection tube and is connected to the first ultrasonic generator that generates the first ultrasonic wave for diffusing the chemical solution and the first ultrasonic generator. It has an ultrasonic control unit that controls the irradiation conditions of the first ultrasonic wave according to the image, and the ultrasonic control unit has a propagation direction, intensity, and oscillation of the first ultrasonic wave generated by the first ultrasonic wave generating unit. The gist is to control at least one of the frequencies. In the above-mentioned chemical diffusion system, at least one of the propagation direction, intensity and oscillation frequency of the first ultrasonic wave is controlled according to the two-dimensional or three-dimensional image of the target tissue, so that the target tissue is in a state of being affected. The drug solution can be appropriately diffused to the required site. Therefore, it is possible to shorten the irradiation time of ultrasonic waves required for treatment, which contributes to the reduction of the burden on the patient and the operator.
 上記薬液拡散システムは、第1超音波と異なる発振周波数の第2超音波を発生させる第2超音波発生部と、超音波制御部に接続されており、第2超音波を対象組織に照射したときの反射波を用いて像を形成する像形成部と、超音波制御部に接続されており、像形成部により形成された像を記憶する記憶部と、をさらに有することが好ましい。 The chemical diffusion system is connected to a second ultrasonic generation unit that generates a second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave and an ultrasonic control unit, and irradiates the target tissue with the second ultrasonic wave. It is preferable to further have an image forming unit that forms an image using the reflected wave of the time, and a storage unit that is connected to the ultrasonic control unit and stores the image formed by the image forming unit.
 上記薬液拡散システムは、超音波制御部に接続されている処理部をさらに有し、処理部は、薬液注入前の対象組織の像と、薬液注入後であって第1超音波の照射後の対象組織の像とを比較するものであり、超音波制御部は、処理部での比較結果を用いて第1超音波の照射条件を制御することが好ましい。 The chemical solution diffusion system further has a processing unit connected to an ultrasonic control unit, and the processing unit further includes an image of the target tissue before the chemical solution injection and after the chemical solution injection and after the irradiation of the first ultrasonic wave. The image of the target tissue is compared, and the ultrasonic control unit preferably controls the irradiation conditions of the first ultrasonic wave by using the comparison result in the processing unit.
 上記薬液拡散システムは、超音波制御部にそれぞれ接続されているデータ格納部と処理部とをさらに有し、データ格納部には、腫瘍の種類に応じた薬液の拡散パターンのデータを備えた拡散パターンテーブルが格納されており、処理部は、拡散パターンテーブルの参照結果と、薬液注入後であって第1超音波の照射後の対象組織の像とを比較するものであり、超音波制御部は、処理部での比較結果を用いて第1超音波の照射条件を制御することが好ましい。 The drug solution diffusion system further has a data storage unit and a processing unit connected to the ultrasonic control unit, respectively, and the data storage unit is provided with data on the diffusion pattern of the drug solution according to the type of tumor. The pattern table is stored, and the processing unit compares the reference result of the diffusion pattern table with the image of the target tissue after the injection of the chemical solution and after the irradiation of the first ultrasonic wave, and the ultrasonic control unit. It is preferable to control the irradiation conditions of the first ultrasonic wave by using the comparison result in the processing unit.
 上記薬液拡散システムは、超音波制御部に接続されている計測部をさらに有し、計測部は、薬液注入前の像から、腫瘍の形状、大きさ、広がりおよび硬さの少なくともいずれか1つを計測するものであり、超音波制御部は、計測部での計測結果を用いて第1超音波の照射条件を制御することが好ましい。 The chemical diffusion system further includes a measuring unit connected to an ultrasonic control unit, and the measuring unit is at least one of the shape, size, spread, and hardness of the tumor from the image before injection of the chemical solution. It is preferable that the ultrasonic control unit controls the irradiation condition of the first ultrasonic wave by using the measurement result of the measurement unit.
 上記薬液拡散システムは、超音波制御部に接続されている処理部をさらに有し、処理部は、薬液注入後であって第1超音波の照射前の対象組織の像と、薬液注入後であって第1超音波の照射後の対象組織の像を比較するものであり、超音波制御部は、処理部での比較結果を用いて第1超音波の照射条件を制御することが好ましい。 The chemical solution diffusion system further has a processing unit connected to an ultrasonic control unit, and the processing unit further includes an image of the target tissue after the chemical solution injection and before the irradiation of the first ultrasonic wave, and after the chemical solution injection. Therefore, the images of the target tissue after the irradiation of the first ultrasonic wave are compared, and it is preferable that the ultrasonic control unit controls the irradiation condition of the first ultrasonic wave by using the comparison result in the processing unit.
 上記薬液拡散システムは、第1超音波と異なる発振周波数であって対象組織を加熱するための第3超音波を発生させる第3超音波発生部をさらに有することが好ましい。 It is preferable that the chemical solution diffusion system further has a third ultrasonic wave generating unit that generates a third ultrasonic wave for heating the target tissue at an oscillation frequency different from that of the first ultrasonic wave.
 上記薬液拡散システムにおいて、第1超音波発生部が、第1超音波と、第1超音波と異なる発振周波数であって診断用の像形成に用いる第2超音波と、第1超音波と異なる発振周波数であって対象組織を加熱するための第3超音波を発生させることが好ましい。 In the chemical solution diffusion system, the first ultrasonic wave generator is different from the first ultrasonic wave, the second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave and used for image formation for diagnosis, and the first ultrasonic wave. It is preferable to generate a third ultrasonic wave having an oscillation frequency for heating the target tissue.
 上記薬液拡散システムは、薬液注入管の近位部に接続され、薬液注入管内に薬液を供給する液体供給部と、液体供給部に接続されており、薬液を冷却させる冷却部と、をさらに有することが好ましい。 The chemical solution diffusion system further includes a liquid supply unit connected to a proximal portion of the chemical solution injection tube to supply the chemical solution into the chemical solution injection tube, and a cooling unit connected to the liquid supply unit to cool the chemical solution. Is preferable.
 上記薬液拡散システムは、薬液注入管の近位部に接続され、薬液注入管内に薬液を供給する液体供給部と、超音波制御部に接続されているデータ格納部と、をさらに有し、データ格納部は、薬液の種類のデータを備えた薬液テーブルと、過去に診断された腫瘍の状態を示すデータを備えた腫瘍テーブルと、を有し、超音波制御部は、腫瘍テーブルの参照結果に基づき、薬液テーブルから薬液の種類を選択して、液体供給部に対して、選択された種類の薬液を薬液注入管内に供給する指令信号を発することが好ましい。 The chemical solution diffusion system further includes a liquid supply unit connected to the proximal portion of the chemical solution injection tube and supplying the chemical solution into the chemical solution injection tube, and a data storage unit connected to the ultrasonic control unit to provide data. The storage unit has a drug solution table containing data on the type of drug solution and a tumor table containing data indicating the state of the tumor diagnosed in the past, and the ultrasonic control unit uses the reference result of the tumor table as a reference result. Based on this, it is preferable to select the type of chemical solution from the chemical solution table and issue a command signal to the liquid supply unit to supply the selected type of chemical solution into the chemical solution injection tube.
 上記薬液拡散システムにおいて、データ格納部は、第1超音波の発振周波数のデータを備えた周波数テーブルをさらに有し、超音波制御部は、腫瘍テーブルの参照結果に基づき、周波数テーブルから第1超音波の発振周波数の値を選択して、第1超音波発生部に対して、選択された発振周波数の第1超音波を発生する指令信号を発することが好ましい。 In the above-mentioned chemical diffusion system, the data storage unit further has a frequency table containing data on the oscillation frequency of the first ultrasonic wave, and the ultrasonic control unit further has a frequency table from the frequency table based on the reference result of the tumor table. It is preferable to select the value of the oscillation frequency of the sound wave and emit a command signal to generate the first ultrasonic wave of the selected oscillation frequency to the first ultrasonic wave generation unit.
 上記薬液拡散システムにおいて、第1超音波発生部は少なくとも2つの振動子を含み、2つの振動子は薬液注入管の側壁部に設けられていることが好ましい。 In the chemical solution diffusion system, it is preferable that the first ultrasonic wave generating section includes at least two oscillators, and the two oscillators are provided on the side wall portion of the chemical solution injection pipe.
 上記薬液拡散システムにおいて、第1超音波発生部は、薬液注入管の内腔に設けられており、かつ、薬液注入管の長手軸方向に平行な回転軸を有していることが好ましい。 In the above-mentioned chemical solution diffusion system, it is preferable that the first ultrasonic wave generating portion is provided in the cavity of the chemical solution injection tube and has a rotation axis parallel to the longitudinal axis direction of the chemical solution injection tube.
 上記薬液拡散システムにおいて、第1超音波発生部は、薬液注入管の径方向の外方に向かって第1超音波を発射することが好ましい。 In the chemical solution diffusion system, it is preferable that the first ultrasonic wave generating unit emits the first ultrasonic wave toward the outside in the radial direction of the chemical solution injection tube.
 上記薬液拡散システムは、超音波制御部に接続されている計測部をさらに有し、計測部は、薬液注入前の像から、腫瘍の形状、大きさ、広がりおよび硬さの少なくともいずれか1つを計測するものであり、超音波制御部は、計測部での腫瘍の計測結果を用いて、第1超音波発生部に対して、薬液注入管の周方向の位置によって第1超音波の強度と発振周波数の少なくともいずれか一方を変化させる指令信号を発することが好ましい。 The chemical diffusion system further includes a measuring unit connected to an ultrasonic control unit, and the measuring unit is at least one of the shape, size, spread, and hardness of the tumor from the image before injection of the chemical solution. The ultrasonic control unit uses the measurement results of the tumor in the measurement unit to measure the intensity of the first ultrasonic wave with respect to the first ultrasonic wave generating unit depending on the position in the circumferential direction of the drug solution injection tube. It is preferable to emit a command signal that changes at least one of the oscillation frequency and the oscillation frequency.
 上記薬液拡散システムにおいて、超音波制御部は、薬液注入管の周方向において、薬液注入管の長手軸中心から腫瘍の外縁までの径方向の距離が長いほど第1超音波の強度を大きくする指令信号を発することが好ましい。 In the above-mentioned chemical diffusion system, the ultrasonic control unit gives a command to increase the intensity of the first ultrasonic wave in the circumferential direction of the chemical injection tube as the radial distance from the center of the longitudinal axis of the chemical injection tube to the outer edge of the tumor becomes longer. It is preferable to emit a signal.
 上記薬液拡散システムにおいて、超音波制御部は、薬液注入管の周方向において、薬液注入管の長手軸中心から腫瘍の外縁までの径方向の距離が長いほど第1超音波の発振周波数を低くする指令信号を発することが好ましい。 In the above-mentioned chemical diffusion system, the ultrasonic control unit lowers the oscillation frequency of the first ultrasonic wave in the circumferential direction of the chemical injection tube as the radial distance from the center of the longitudinal axis of the chemical injection tube to the outer edge of the tumor becomes longer. It is preferable to emit a command signal.
 上記薬液拡散システムにおいて、薬液はファインバブルを含んでいることが好ましい。 In the above chemical solution diffusion system, the chemical solution preferably contains fine bubbles.
 本発明は薬液拡散促進装置も提供する。上記薬液拡散システムに用いられる本発明の薬液拡散促進装置の一実施態様は、対象組織に穿刺される薬液注入管と、薬液注入管に設けられており、薬液を拡散させるための第1超音波を発生する第1超音波発生部と、を有し、第1超音波発生部は少なくとも2つの振動子を含み、2つの振動子は薬液注入管の側壁部に設けられている。これにより、第1超音波発生部を動かすことなく超音波の照射方向、照射位置、強度等を変えることができる。 The present invention also provides a chemical solution diffusion promoting device. One embodiment of the drug solution diffusion promoting device of the present invention used in the above drug solution diffusion system is provided in a drug solution injection tube pierced by a target tissue and a drug solution injection tube, and is provided with a first ultrasonic wave for diffusing the drug solution. The first ultrasonic wave generating unit includes at least two vibrators, and the two ultrasonic wave generators are provided on the side wall portion of the chemical injection pipe. As a result, the irradiation direction, irradiation position, intensity, and the like of ultrasonic waves can be changed without moving the first ultrasonic wave generating unit.
 上記薬液拡散促進装置において、第1超音波発生部は、薬液注入管の内腔に設けられており、かつ、薬液注入管の長手軸方向に平行な回転軸を有していることが好ましい。 In the above-mentioned chemical solution diffusion promoting device, it is preferable that the first ultrasonic wave generating portion is provided in the cavity of the chemical solution injection tube and has a rotation axis parallel to the longitudinal axis direction of the chemical solution injection tube.
 上記薬液拡散システムによれば、対象組織の二次元または三次元の像に応じて、第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御するため、対象組織の状態に応じて薬液を必要な部位に適切に拡散することできる。このため、治療に必要な超音波の照射時間を短くすることが可能であり、患者や術者の負担の軽減に寄与するものとなる。また、上記薬液拡散促進装置によれば、第1超音波発生部を動かすことなく超音波の照射方向、照射位置、強度等を変えることができる。 According to the above-mentioned chemical diffusion system, in order to control at least one of the propagation direction, intensity and oscillation frequency of the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue, the state of the target tissue is adjusted. Therefore, the drug solution can be appropriately diffused to the required site. Therefore, it is possible to shorten the irradiation time of ultrasonic waves required for treatment, which contributes to the reduction of the burden on the patient and the operator. Further, according to the above-mentioned chemical solution diffusion promoting device, the irradiation direction, irradiation position, intensity and the like of ultrasonic waves can be changed without moving the first ultrasonic wave generating unit.
本発明の一実施形態に係る薬液拡散システムのブロック図を表す。The block diagram of the chemical solution diffusion system which concerns on one Embodiment of this invention is shown. 図1に示した薬液拡散システムの薬液拡散促進装置の構造を示す断面側面図を表す。A cross-sectional side view showing the structure of the chemical solution diffusion promoting device of the chemical solution diffusion system shown in FIG. 1 is shown. 図2に示した薬液拡散促進装置のIII-III線に沿った断面図を表す。A cross-sectional view taken along the line III-III of the chemical solution diffusion promoting device shown in FIG. 2 is shown. 図2に示した薬液拡散促進装置の変形例を示す断面側面図を表す。A cross-sectional side view showing a modified example of the chemical solution diffusion promoting device shown in FIG. 2 is shown. 図2に示した薬液拡散促進装置の他の変形例を示す断面側面図を表す。A cross-sectional side view showing another modification of the chemical solution diffusion promoting device shown in FIG. 2 is shown. 図5に示した薬液拡散促進装置のVI-VI線に沿った断面図を表す。A cross-sectional view taken along the line VI-VI of the chemical solution diffusion promoting device shown in FIG. 5 is shown. 図2に示した薬液拡散促進装置の薬液注入管および超音波発生部を腫瘍内に穿刺したときの超音波診断画像のイメージ図を表す。FIG. 2 shows an image of an ultrasonic diagnostic image when the drug solution injection tube and the ultrasonic wave generating portion of the drug solution diffusion promoting device shown in FIG. 2 are punctured into the tumor. 図1に示した薬液拡散システムにおける処置フローの一例を示す図を表す。The figure which shows an example of the treatment flow in the drug solution diffusion system shown in FIG. 1 is shown. 図1に示した薬液拡散システムにおける処置フローの他の例を示す図を表す。A diagram showing another example of the treatment flow in the drug solution diffusion system shown in FIG. 1 is shown. 図1に示した薬液拡散システムにおける処置フローのさらに他の例を示す図を表す。FIG. 6 shows a diagram showing still another example of the treatment flow in the drug solution diffusion system shown in FIG. 本発明の他の実施形態に係る薬液拡散システムのブロック図を表す。The block diagram of the chemical solution diffusion system which concerns on other embodiment of this invention is shown. 本発明のさらに他の実施形態に係る薬液拡散システムのブロック図を表す。The block diagram of the chemical solution diffusion system which concerns on still another Embodiment of this invention is shown. 図12に示した薬液拡散システムにおける処置フローの一例を示す図を表す。The figure which shows an example of the treatment flow in the drug solution diffusion system shown in FIG. 12 is shown. 本発明のさらに他の実施形態に係る薬液拡散システムのブロック図を表す。The block diagram of the chemical solution diffusion system which concerns on still another Embodiment of this invention is shown.
 以下、下記実施の形態に基づき本発明をより具体的に説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、各図面において、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、明細書や他の図面を参照するものとする。また、図面における種々部材の寸法は、本発明の特徴の理解に資することを優先しているため、実際の寸法とは異なる場合がある。 Hereinafter, the present invention will be described in more detail based on the following embodiments, but the present invention is not limited by the following embodiments as well as the present invention, and appropriate changes are made to the extent that it can be adapted to the purpose of the above and the following. In addition, it is of course possible to carry out, and all of them are included in the technical scope of the present invention. In each drawing, hatching, member reference numerals, and the like may be omitted for convenience, but in such cases, the specification and other drawings shall be referred to. In addition, the dimensions of various members in the drawings may differ from the actual dimensions because priority is given to contributing to the understanding of the features of the present invention.
 本発明の薬液拡散システムの一実施態様は、薬液を生体内の対象組織に拡散するための薬液拡散システムであって、対象組織に穿刺される薬液注入管と、薬液注入管に設けられており、薬液を拡散させるための第1超音波を発生する第1超音波発生部と、第1超音波発生部に接続され、対象組織の二次元または三次元の像に応じて第1超音波の照射条件を制御する超音波制御部と、を有し、超音波制御部は、第1超音波発生部で発生する第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御する点に要旨を有する。上記薬液拡散システムによれば、対象組織の二次元または三次元の像に応じて、第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御するため、対象組織の状態に応じて薬液を必要な部位に適切に拡散することできる。このため、治療に必要な超音波の照射時間を短くすることが可能であり、患者や術者の負担の軽減に寄与するものとなる。 One embodiment of the drug solution diffusion system of the present invention is a drug solution diffusion system for diffusing a drug solution to a target tissue in a living body, and is provided in a drug solution injection tube pierced by the target tissue and a drug solution injection tube. , The first ultrasonic wave generating part that generates the first ultrasonic wave for diffusing the chemical solution and the first ultrasonic wave generating part are connected to the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue. It has an ultrasonic control unit that controls irradiation conditions, and the ultrasonic control unit controls at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave generated by the first ultrasonic wave generating unit. It has a gist in the points to be done. According to the above-mentioned chemical diffusion system, in order to control at least one of the propagation direction, intensity and oscillation frequency of the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue, the state of the target tissue is adjusted. Therefore, the drug solution can be appropriately diffused to the required site. Therefore, it is possible to shorten the irradiation time of ultrasonic waves required for treatment, which contributes to the reduction of the burden on the patient and the operator.
 薬液拡散システムは、がん等の腫瘍の治療方法の一つである薬物療法において、生体内の腫瘍等の対象組織に局所的に投与された薬液を拡散するために用いられる。 The drug solution diffusion system is used to spread a drug solution locally administered to a target tissue such as a tumor in a living body in drug therapy, which is one of the treatment methods for tumors such as cancer.
 薬液は、薬液注入管を用いて対象組織内に投与され、超音波発生部から照射される超音波によって対象組織内に拡散される。対象組織に投与される薬液は、抗がん剤を含むことができる。抗がん剤としては、例えば、代謝拮抗剤、微小管阻害剤、抗腫瘍性抗生物質等の細胞障害性抗がん薬;内分泌療法薬;免疫チェックポイント阻害剤等の分子標的薬;腫瘍溶解性ウィルス等を含むウィルス療法薬等を用いることができる。あるいは、経皮的エタノール療法において抗がん剤として用いられる無水エタノールが薬液に含まれていてもよい。薬液は、ペルフルブタンやガラクトース・パルミチン酸混合物等の超音波造影剤を含んでいてもよい。 The drug solution is administered into the target tissue using a drug solution injection tube, and is diffused into the target tissue by ultrasonic waves emitted from the ultrasonic wave generating part. The drug solution administered to the target tissue can include an anticancer drug. Examples of anticancer agents include cytotoxic anticancer agents such as antimetabolites, microtubule inhibitors and antitumor antibiotics; endocrine therapeutic agents; molecular targeted agents such as immune checkpoint inhibitors; oncolytic virus. A virus therapeutic drug or the like containing a sex virus or the like can be used. Alternatively, the drug solution may contain absolute ethanol, which is used as an anticancer agent in percutaneous ethanol therapy. The chemical solution may contain an ultrasonic contrast agent such as perflubutane or a mixture of galactose and palmitic acid.
 薬液はファインバブルを含むことが好ましい。ファインバブルは、球相当直径が100μm以下の気泡である。ファインバブルと超音波の併用により、治療的観点では熱的効果またはキャビテーションもしくはラジエーションといった非熱的効果等の様々な機序で高いドラックデリバリー効果を発現することができる。また、診断的観点ではファインバブルを含有する組織の超音波反射強度を高めることができるため、超音波反射画像の輝度を上昇させることが可能となる。 The chemical solution preferably contains fine bubbles. A fine bubble is a bubble having a sphere-equivalent diameter of 100 μm or less. By using fine bubbles and ultrasonic waves in combination, a high drug delivery effect can be exhibited by various mechanisms such as a thermal effect or a non-thermal effect such as cavitation or radiation from a therapeutic point of view. Further, from a diagnostic point of view, the ultrasonic reflection intensity of the tissue containing fine bubbles can be increased, so that the brightness of the ultrasonic reflection image can be increased.
 ファインバブルの気泡径、気泡内気体の種類、気体コアに対するシェルの有無については、腫瘍の状態に応じて適宜選択することができる。 The bubble diameter of the fine bubble, the type of gas in the bubble, and the presence or absence of a shell for the gas core can be appropriately selected according to the condition of the tumor.
 ファインバブルの気泡内気体の種類は特に限定されないが、例えば、空気、酸素、窒素、二酸化炭素、水素、ヘリウム、アルゴン、キセノン、クリプトン等の不活性ガスや、フッ化炭素、六フッ化硫黄等を挙げることができる。これらは1種のみを用いてもよく、2種以上を併用してもよい。 The type of gas in the bubble of the fine bubble is not particularly limited, but for example, an inert gas such as air, oxygen, nitrogen, carbon dioxide, hydrogen, helium, argon, xenon, krypton, carbon fluoride, sulfur hexafluoride, etc. Can be mentioned. Only one of these may be used, or two or more thereof may be used in combination.
 気体コアに対するシェルを構成する材料としては、例えば、リン脂質、ポリカチオン性脂質、タンパク質、高級脂肪酸、糖類、ステロール類、界面活性剤、天然または合成分子等を挙げることができる。これらは1種のみを用いてもよく、2種以上を併用してもよい。 Examples of the material constituting the shell for the gas core include phospholipids, polycationic lipids, proteins, higher fatty acids, sugars, sterols, surfactants, natural or synthetic molecules and the like. Only one of these may be used, or two or more thereof may be used in combination.
 図1~図8を参照しながら、薬液拡散システムの構成例およびこのシステムにおける処置フローの例を説明する。図1は、本発明の一実施形態に係る薬液拡散システムのブロック図を表す。図2は、図1に示した薬液拡散システムの薬液拡散促進装置の構造を示す断面側面図を表す。図3は、図2に示した薬液拡散促進装置のIII-III線に沿った断面図を表す。図4~図5は、図2に示した薬液拡散促進装置の変形例を示す断面側面図を表す。図6は、図5に示した薬液拡散促進装置のVI-VI線に沿った断面図を表す。図7は、図2に示した薬液拡散促進装置の薬液注入管および超音波発生部を腫瘍内に穿刺したときの超音波診断画像のイメージ図を表す。図8は、図1に示した薬液拡散システムにおける処置フローの一例を示す図を表す。薬液拡散システム1は、薬液注入管3と、第1超音波発生部11と、超音波制御部20と、を有する。図1では、薬液拡散促進装置2が、対象組織に穿刺される薬液注入管3と、薬液注入管3に設けられており、薬液を拡散させるための第1超音波を発生する第1超音波発生部11と、を有している例を示している。 An example of a configuration of a drug solution diffusion system and an example of a treatment flow in this system will be described with reference to FIGS. 1 to 8. FIG. 1 shows a block diagram of a chemical solution diffusion system according to an embodiment of the present invention. FIG. 2 shows a cross-sectional side view showing the structure of the chemical solution diffusion promoting device of the chemical solution diffusion system shown in FIG. FIG. 3 shows a cross-sectional view of the chemical solution diffusion promoting device shown in FIG. 2 along lines III-III. 4 to 5 show cross-sectional side views showing a modified example of the chemical solution diffusion promoting device shown in FIG. FIG. 6 shows a cross-sectional view of the chemical solution diffusion promoting device shown in FIG. 5 along the VI-VI line. FIG. 7 shows an image of an ultrasonic diagnostic image when the drug solution injection tube and the ultrasonic wave generating portion of the drug solution diffusion promoting device shown in FIG. 2 are punctured into the tumor. FIG. 8 shows an example of a treatment flow in the drug solution diffusion system shown in FIG. The chemical solution diffusion system 1 includes a chemical solution injection tube 3, a first ultrasonic wave generation unit 11, and an ultrasonic wave control unit 20. In FIG. 1, a chemical solution diffusion promoting device 2 is provided in a chemical solution injection tube 3 that is pierced into a target tissue and a chemical solution injection tube 3, and a first ultrasonic wave that generates a first ultrasonic wave for diffusing the drug solution. An example having the generation unit 11 is shown.
 薬液注入管3は長手軸方向に第1端と第2端を有している。第1端は遠位端、第2端は近位端ということもできる。薬液拡散システム1および薬液拡散促進装置2において、遠位側とは薬液注入管3の長手軸方向の第1端側であって処置対象側を指す。また近位側とは薬液注入管3の長手軸方向の第2端側であって使用者(術者)の手元側を指す。各部材をその長手軸方向で二等分割したときの近位側を近位部、遠位側を遠位部と称することがある。図2においては左側が遠位側、右側が近位側を表している。また、薬液拡散促進装置2の内方とは、薬液注入管3の径方向において薬液注入管3の長手軸中心に向かう方向を指し、外方とは、内方とは反対方向の放射方向を指す。 The chemical injection pipe 3 has a first end and a second end in the longitudinal axis direction. It can be said that the first end is the distal end and the second end is the proximal end. In the drug solution diffusion system 1 and the drug solution diffusion promoting device 2, the distal side is the first end side in the longitudinal axis direction of the drug solution injection tube 3 and refers to the treatment target side. The proximal side is the second end side of the drug solution injection tube 3 in the longitudinal axis direction and refers to the hand side of the user (operator). When each member is divided into two equal parts in the longitudinal axis direction, the proximal side may be referred to as a proximal portion and the distal side may be referred to as a distal portion. In FIG. 2, the left side represents the distal side and the right side represents the proximal side. Further, the inside of the drug solution diffusion promoting device 2 refers to a direction toward the center of the longitudinal axis of the drug solution injection tube 3 in the radial direction of the drug solution injection tube 3, and the outside refers to a radiation direction opposite to the inside. Point.
 薬液注入管3は、生体内の対象組織に穿刺される管状の部材であり、対象組織内に局所的に薬液を投与する機能を有する。薬液注入管3は遠位部と近位部を有しており、遠位部に患者の対象組織に挿入される穿刺部3aが設けられている。また、薬液注入管3は、その長手軸方向に延在している一または複数の内腔3bを有しており、少なくとも1つの内腔3bは薬液が流れる流路として機能する。 The drug solution injection tube 3 is a tubular member that is punctured by the target tissue in the living body, and has a function of locally administering the drug solution into the target tissue. The drug solution injection tube 3 has a distal portion and a proximal portion, and a puncture portion 3a to be inserted into the target tissue of the patient is provided in the distal portion. Further, the chemical solution injection tube 3 has one or a plurality of lumens 3b extending in the longitudinal axis direction thereof, and at least one lumen 3b functions as a flow path through which the chemical solution flows.
 薬液注入管3の遠位端部には外部と連通する開口3cが設けられており、開口3cから薬液を薬液注入管3の外に放出可能であることが好ましい。開口3cは、図2に示すように遠位側を向くように設けられていてもよく、図示していないが薬液注入管3の側壁部3dに設けられていてもよい。 It is preferable that the distal end of the drug solution injection tube 3 is provided with an opening 3c that communicates with the outside, and the drug solution can be discharged to the outside of the drug solution injection tube 3 from the opening 3c. The opening 3c may be provided so as to face the distal side as shown in FIG. 2, or may be provided on the side wall portion 3d of the chemical solution injection pipe 3 (not shown).
 穿刺部3aを有する薬液注入管3として、図2に示すように、薬液注入管3が針状に形成され、当該針の先端が遠位側に位置しているものが挙げられる。穿刺部3aは、組織に穿刺しやすいように形成されていれば特に限定されないが、図2に示すように薬液注入管3の遠位端に傾斜した開口縁3eを有していることが好ましい。 As the drug solution injection tube 3 having the puncture portion 3a, as shown in FIG. 2, the drug solution injection tube 3 is formed in a needle shape, and the tip of the needle is located on the distal side. The puncture portion 3a is not particularly limited as long as it is formed so as to easily puncture the tissue, but it is preferable that the puncture portion 3a has an inclined opening edge 3e at the distal end of the drug solution injection tube 3 as shown in FIG. ..
 図2に示すように、薬液注入管3の近位部には術者が把持する第1把持部9が好ましく接続される。 As shown in FIG. 2, a first grip portion 9 gripped by the operator is preferably connected to the proximal portion of the drug solution injection tube 3.
 薬液注入管3は、一または複数の金属線材がらせん状に巻回され形成されている中空コイル、上記中空コイルまたは中空体の内面または外面の少なくともいずれか一方に樹脂をコーティングしたもの、筒状の樹脂チューブ、またはこれらを長手軸方向に接続したものが挙げられる。薬液注入管3が筒状の樹脂チューブである場合、薬液注入管3は単層または複数層から構成することができ、長手軸方向または周方向の一部が単層から構成されており、他部が複数層から構成されていてもよい。 The chemical injection tube 3 is a hollow coil formed by spirally winding one or a plurality of metal wires, a hollow coil or at least one of the inner or outer surfaces of the hollow body coated with resin, and a tubular shape. Resin tubes of the above, or those in which these are connected in the longitudinal axis direction can be mentioned. When the chemical injection tube 3 is a tubular resin tube, the chemical injection tube 3 can be composed of a single layer or a plurality of layers, and a part in the longitudinal direction or the circumferential direction is composed of a single layer, and the like. The unit may be composed of a plurality of layers.
 薬液注入管3は樹脂または金属から構成されることが好ましい。薬液注入管3を構成する樹脂としては、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。中でも、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂が好適に用いられる。薬液注入管3を構成する金属としては、例えば、SUS304、SUS316等のステンレス鋼、白金、ニッケル、コバルト、クロム、チタン、タングステン、金、Ni-Ti合金、Co-Cr合金、またはこれらの組み合わせが挙げられる。特に、Ni-Ti合金から構成されている線材は、形状記憶性に優れており、高弾性である。また、線材は、上述の金属、ポリアリレート繊維、アラミド繊維、超高分子量ポリエチレン繊維、PBO繊維、炭素繊維等の繊維材料であってもよい。繊維材料は、モノフィラメントであっても、マルチフィラメントであってもよい。また、樹脂から構成されている筒状体に金属線材等の補強材が配設されているものを薬液注入管3として用いてもよい。 The chemical injection tube 3 is preferably made of resin or metal. Examples of the resin constituting the chemical injection tube 3 include polyamide-based resin, polyester-based resin, polyurethane-based resin, polyolefin-based resin, fluorine-based resin, vinyl chloride-based resin, silicone-based resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Of these, polyamide-based resins, polyester-based resins, polyurethane-based resins, polyolefin-based resins, and fluororesins are preferably used. Examples of the metal constituting the chemical injection tube 3 include stainless steel such as SUS304 and SUS316, platinum, nickel, cobalt, chromium, titanium, tungsten, gold, Ni—Ti alloy, Co—Cr alloy, or a combination thereof. Can be mentioned. In particular, the wire made of Ni—Ti alloy has excellent shape memory and high elasticity. Further, the wire rod may be a fiber material such as the above-mentioned metal, polyarylate fiber, aramid fiber, ultra-high molecular weight polyethylene fiber, PBO fiber, carbon fiber and the like. The fiber material may be monofilament or multifilament. Further, a tubular body made of resin on which a reinforcing material such as a metal wire is arranged may be used as the chemical injection pipe 3.
 図2に示すように、薬液拡散促進装置2は、薬液注入管3を収容可能な外管5を有していることが好ましい。これにより、治療非対象組織部位や内視鏡の鉗子チャンネル内を傷つけないように、外管5の内腔5bに薬液注入管3を配置することができる。外管5は、遠位部と近位部を有する部材である。また外管5は長手軸方向に第1端(遠位端)と第2端(近位端)を有している。外管5はその遠位側に設けられている開口5aを介して外部と連通している。対象組織に薬液注入管3を穿刺する際には、開口5aから薬液注入管3の穿刺部3aを突出させる。なお、外管5の近位部には術者が把持するための第2把持部10が設けられていてもよい。第2把持部10は、例えば筒状に形成することができる。 As shown in FIG. 2, it is preferable that the chemical solution diffusion promoting device 2 has an outer tube 5 capable of accommodating the chemical solution injection tube 3. As a result, the drug solution injection tube 3 can be arranged in the lumen 5b of the outer tube 5 so as not to damage the non-treatment tissue site or the inside of the forceps channel of the endoscope. The outer tube 5 is a member having a distal portion and a proximal portion. Further, the outer tube 5 has a first end (distal end) and a second end (proximal end) in the longitudinal axis direction. The outer tube 5 communicates with the outside through an opening 5a provided on the distal side thereof. When the drug solution injection tube 3 is punctured into the target tissue, the puncture portion 3a of the drug solution injection tube 3 is projected from the opening 5a. A second grip portion 10 for the operator to grip may be provided in the proximal portion of the outer tube 5. The second grip portion 10 can be formed in a tubular shape, for example.
 外管5は、薬液注入管3の構成材料の説明を参照することができる。外管5の材料は、薬液注入管3の材料と同じであってもよく、異なっていてもよい。外管5は薬液注入管3と同様に、樹脂チューブ、単線または複数の線材、撚線の線材を特定のパターンで配置することによって形成された筒状体、金属管またはこれらを組み合わせたものを用いることができる。 For the outer tube 5, the description of the constituent materials of the chemical injection tube 3 can be referred to. The material of the outer tube 5 may be the same as or different from the material of the chemical injection tube 3. Similar to the chemical injection tube 3, the outer tube 5 is a tubular body, a metal tube, or a combination thereof formed by arranging a resin tube, a single wire or a plurality of wires, and a stranded wire in a specific pattern. Can be used.
 第1超音波発生部11は、薬液注入管3に設けられており、薬液を拡散させるための第1超音波を発生する部分である。第1超音波は、薬液拡散のための治療用の超音波である。第1超音波発生部11で発生する第1超音波の発振周波数や超音波出力は、処置の種類、薬液の種類や用量に応じて適宜設定することができる。第1超音波発生部11における超音波のスキャン方式としては、電子走査式や機械走査式が挙げられる。また、超音波の発生方法としては、圧電方式や静電方式が挙げられる。 The first ultrasonic wave generating unit 11 is provided in the chemical solution injection pipe 3 and is a portion that generates the first ultrasonic wave for diffusing the chemical solution. The first ultrasonic wave is a therapeutic ultrasonic wave for diffusing a drug solution. The oscillation frequency and ultrasonic output of the first ultrasonic wave generated by the first ultrasonic wave generating unit 11 can be appropriately set according to the type of treatment, the type and dose of the chemical solution. Examples of the ultrasonic scanning method in the first ultrasonic wave generating unit 11 include an electronic scanning type and a mechanical scanning type. Moreover, as a method of generating ultrasonic waves, a piezoelectric method and an electrostatic method can be mentioned.
 第1超音波の発振周波数は、1kHz以上であることが好ましく、10kHz以上であることがより好ましく、100kHz以上であることがさらに好ましく、また、10MHz以下であることが好ましく、1MHz以下であることがより好ましく、500kHz以下であることがさらに好ましい。このように発振周波数を設定することにより、薬液を効果的に拡散することが可能となる。 The oscillation frequency of the first ultrasonic wave is preferably 1 kHz or more, more preferably 10 kHz or more, further preferably 100 kHz or more, preferably 10 MHz or less, and preferably 1 MHz or less. Is more preferable, and 500 kHz or less is further preferable. By setting the oscillation frequency in this way, the chemical solution can be effectively diffused.
 第1超音波の超音波出力Isptaは、100mW/cm2以上であることが好ましく、300mW/cm2以上であることがより好ましく、500mW/cm2以上であることがさらに好ましく、また、10W/cm2以下であることが好ましく、5W/cm2以下であることがより好ましく、1W/cm2以下であることがさらに好ましい。このように超音波出力を設定することにより、薬液を効果的に拡散することが可能となる。 Ultrasonic output Ispta of the first ultrasonic wave, is preferably 100 mW / cm 2 or more, more preferably 300 mW / cm 2 or more, still more preferably 500 mW / cm 2 or more, also, 10 W / preferably cm 2 or less, more preferably 5W / cm 2 or less, and more preferably 1W / cm 2 or less. By setting the ultrasonic output in this way, the chemical solution can be effectively diffused.
 図2に示すように、第1音波発生部11は、薬液注入管3の径方向の外方に向かって第1超音波を発射することが好ましい。これにより、薬液注入管3を生体内の対象組織に挿入したときに、薬液注入管3の周りに存在する対象組織に向けて超音波を照射することが可能となる。図2では、第1超音波の伝搬方向を方向zで示している。なお、第1超音波発生部11は、薬液注入管3の遠位側に向かって超音波を発射してもよい。 As shown in FIG. 2, it is preferable that the first sound wave generating unit 11 emits the first ultrasonic wave toward the outer side in the radial direction of the chemical injection tube 3. As a result, when the drug solution injection tube 3 is inserted into the target tissue in the living body, it is possible to irradiate the target tissue existing around the drug solution injection tube 3 with ultrasonic waves. In FIG. 2, the propagation direction of the first ultrasonic wave is shown in the direction z. The first ultrasonic wave generating unit 11 may emit ultrasonic waves toward the distal side of the drug solution injection tube 3.
 第1超音波発生部11は、超音波探触子を含むことができる。超音波探触子は、電気信号を超音波に変換して、超音波の発信および受信を行うものである。超音波探触子は、一振動子型探触子であってもよく、発信振動子および受信振動子を有する二振動子型探触子であってもよい。振動子は、例えば、2つの電極と、この2つの電極に挟持されている圧電材料とを有する構成とすることができる。圧電材料は、圧電性を示す結晶性物質であり、機械的ひずみを与えたとき電圧を発生するか、逆に電圧を加えると機械的ひずみを発生する物質である。圧電材料としては、チタン酸バリウム(BaTiO3)、ジルコンチタン酸鉛(PZT)、ポリフッ化ビニリデン(PVDF)、1-3コンポジット複合圧電材料等を用いることができる。 The first ultrasonic wave generating unit 11 can include an ultrasonic probe. The ultrasonic probe converts an electric signal into an ultrasonic wave to transmit and receive an ultrasonic wave. The ultrasonic probe may be a single oscillator type probe or a dual oscillator type probe having a transmitting oscillator and a receiving oscillator. The oscillator can have, for example, a configuration having two electrodes and a piezoelectric material sandwiched between the two electrodes. The piezoelectric material is a crystalline substance exhibiting piezoelectricity, and is a substance that generates a voltage when a mechanical strain is applied, or conversely, a material that generates a mechanical strain when a voltage is applied. As the piezoelectric material, barium titanate (BaTIO 3 ), lead zirconate titanate (PZT), polyvinylidene fluoride (PVDF), 1-3 composite composite piezoelectric material and the like can be used.
 図2~図3に示すように、第1超音波発生部11は、薬液注入管3の側壁部3dに設けられていることが好ましい。これにより、生体内の対象組織への超音波の照射が行いやすくなる。なお、第1超音波発生部11は、薬液注入管3の穿刺部3aに設けられていることがより好ましい。これにより、第1超音波発生部11を対象組織内に挿入することが可能となり、より一層、薬液拡散効果を高めることができる。 As shown in FIGS. 2 to 3, it is preferable that the first ultrasonic wave generating portion 11 is provided on the side wall portion 3d of the chemical solution injection pipe 3. This facilitates the irradiation of the target tissue in the living body with ultrasonic waves. It is more preferable that the first ultrasonic wave generating portion 11 is provided in the puncturing portion 3a of the chemical solution injection tube 3. As a result, the first ultrasonic wave generating portion 11 can be inserted into the target tissue, and the drug solution diffusion effect can be further enhanced.
 図3に示すように、第1超音波発生部11は少なくとも2つの振動子11Aを含み、2つの振動子11Aは、薬液注入管3の側壁部3dに設けられていることが好ましい。第1超音波発生部11は少なくとも2つの一振動子型探触子を含み、少なくとも2つの一振動子型探触子の振動子11ABは薬液注入管3の側壁部3dに設けられていることがより好ましい。これにより、各振動子11Aの発信および受信のタイミングを電子制御することで、第1超音波発生部11そのものを動かすことなく、超音波の照射方向、照射位置、強度等を変えることができるフェーズドアレイ法を用いることができる。 As shown in FIG. 3, it is preferable that the first ultrasonic wave generating unit 11 includes at least two oscillators 11A, and the two oscillators 11A are provided on the side wall portion 3d of the chemical injection pipe 3. The first ultrasonic wave generating unit 11 includes at least two single-oscillator type probes, and the vibrators 11AB of at least two single-oscillator type probes are provided on the side wall portion 3d of the chemical injection pipe 3. Is more preferable. As a result, by electronically controlling the transmission and reception timings of each oscillator 11A, the ultrasonic irradiation direction, irradiation position, intensity, etc. can be changed without moving the first ultrasonic wave generating unit 11 itself. The array method can be used.
 第1超音波発生部11は少なくとも2つの振動子11Aを含み、2つの振動子11Aは薬液注入管3の側壁部3dに設けられており、2つの振動子11Aから発生する超音波の位相は互いにずれていることが好ましい。これにより、第1超音波発生部11そのものを動かすことなく、超音波の照射方向、照射位置、強度等を変えることができる。 The first ultrasonic wave generating unit 11 includes at least two oscillators 11A, the two oscillators 11A are provided on the side wall portion 3d of the chemical injection tube 3, and the phase of the ultrasonic waves generated from the two oscillators 11A is It is preferable that they are offset from each other. As a result, the irradiation direction, irradiation position, intensity, and the like of the ultrasonic waves can be changed without moving the first ultrasonic wave generation unit 11 itself.
 2つの振動子11Aから発生する超音波の位相は互いにT/4以上ずれていることが好ましく、T/3以上ずれていることがより好ましく、2T/5以上ずれていることがさらに好ましく、また、3T/4以下ずれていることが好ましく、2T/3以下ずれていることがより好ましく、T/2以下ずれていることがさらに好ましい。なお、Tは超音波の振動周期(単位:s)である。このように超音波の位相のずれを上記範囲に設定することで、第1超音波発生部11を動かさなくても、超音波の照射方向、照射位置、強度等を変えることができる。 The phases of the ultrasonic waves generated from the two vibrators 11A are preferably T / 4 or more, more preferably T / 3 or more, and further preferably 2T / 5 or more. The deviation is preferably 3T / 4 or less, more preferably 2T / 3 or less, and further preferably T / 2 or less. Note that T is the vibration period (unit: s) of the ultrasonic wave. By setting the phase shift of the ultrasonic waves in the above range in this way, the irradiation direction, irradiation position, intensity, and the like of the ultrasonic waves can be changed without moving the first ultrasonic wave generation unit 11.
 超音波の位相が互いにずれている関係にある2つの振動子11Aは、薬液注入管3の周方向において隣り合って配置されていることが好ましい。このように振動子11Aを配置することにより、2つの振動子11Aの超音波の波面の干渉を制御しやすくなる。 It is preferable that the two vibrators 11A, which are out of phase with each other, are arranged next to each other in the circumferential direction of the chemical injection pipe 3. By arranging the vibrators 11A in this way, it becomes easier to control the interference of the ultrasonic wavefronts of the two vibrators 11A.
 第1超音波発生部11は少なくとも2つの振動子11Aを含み、2つの振動子11Aは薬液注入管3の側壁部3dに設けられており、2つの振動子11Aから発生する超音波の強度がそれぞれ異なるように制御されていることが好ましい。このように第1超音波発生部11を構成することによっても、第1超音波発生部11そのものを動かすことなく、超音波の照射方向、照射位置、強度等を変えることができる。 The first ultrasonic wave generating unit 11 includes at least two oscillators 11A, and the two oscillators 11A are provided on the side wall portion 3d of the chemical injection pipe 3, and the intensity of the ultrasonic waves generated from the two oscillators 11A is high. It is preferable that each is controlled so as to be different. By configuring the first ultrasonic wave generation unit 11 in this way, it is possible to change the ultrasonic wave irradiation direction, irradiation position, intensity, and the like without moving the first ultrasonic wave generation unit 11 itself.
 振動子11Aは、例えば、矩形状や帯状等の多角形状、リング状等に形成することができる。このような形状にすることでアレイ状つまり規則的に複数の振動子11Aを配列することができる。振動子11Aを矩形状や帯状等の多角形状にすることによって、複数の振動子11Aを薬液注入管3の長手軸方向または周方向に並べて配置しやすくなる。また、振動子11Aをリング状にすることによって、超音波を一度に広範囲に亘って発生させることができるため、対象組織に注入した薬液を周方向に拡散させやすくなる。また、リング状の複数の振動子11Aは薬液注入管3の長手軸方向に並べて配置しやすくなる。 The vibrator 11A can be formed into, for example, a polygonal shape such as a rectangular shape or a strip shape, a ring shape, or the like. With such a shape, a plurality of oscillators 11A can be arranged in an array, that is, regularly. By forming the vibrator 11A into a polygonal shape such as a rectangular shape or a strip shape, it becomes easy to arrange the plurality of vibrators 11A side by side in the longitudinal axis direction or the circumferential direction of the chemical solution injection pipe 3. Further, by forming the vibrator 11A into a ring shape, ultrasonic waves can be generated over a wide range at one time, so that the chemical solution injected into the target tissue can be easily diffused in the circumferential direction. Further, the plurality of ring-shaped vibrators 11A can be easily arranged side by side in the longitudinal axis direction of the chemical injection pipe 3.
 第1超音波発生部11に設けられる振動子11Aの数は特に限定されないが、8個以上設けられていることがより好ましく、16個以上設けられていることがさらに好ましく、32個以上設けられていることがさらにより好ましく、64個以上設けられていることが特に好ましく、また、256個以下設けられていてもよく、128個以下設けられていてもよい。このように振動子11Aの数を設定することにより、超音波の照射方向、照射位置、強度等を精度よく制御することができる。 The number of vibrators 11A provided in the first ultrasonic wave generating unit 11 is not particularly limited, but it is more preferable that 8 or more are provided, 16 or more are further preferably provided, and 32 or more are provided. It is even more preferable that 64 or more are provided, and 256 or less may be provided, or 128 or less may be provided. By setting the number of oscillators 11A in this way, it is possible to accurately control the irradiation direction, irradiation position, intensity, and the like of ultrasonic waves.
 第1超音波発生部11が複数の振動子11Aを含み、複数の振動子11Aが連続的に配列されていることが好ましい。例えば、2つの振動子11Aが、薬液注入管3の周方向に隣り合って配置されていることが好ましい。このように振動子11Aが設けられている場合には、診断用超音波を周方向に順番に受信することで360度方向の画像を構築することが可能となる。また、薬液注入管3の周方向の位置によって超音波の強度や発振周波数を変化させることができる。その他、複数の振動子11Aの配列は特に限定されず、薬液注入管3の長手軸方向に並んで配置されていてもよく、薬液注入管3の長手軸方向および周方向に並んで配置されていてもよい。 It is preferable that the first ultrasonic wave generating unit 11 includes a plurality of vibrators 11A, and the plurality of vibrators 11A are continuously arranged. For example, it is preferable that the two oscillators 11A are arranged adjacent to each other in the circumferential direction of the chemical injection pipe 3. When the vibrator 11A is provided in this way, it is possible to construct an image in the 360-degree direction by sequentially receiving diagnostic ultrasonic waves in the circumferential direction. In addition, the intensity of ultrasonic waves and the oscillation frequency can be changed depending on the position of the chemical injection tube 3 in the circumferential direction. In addition, the arrangement of the plurality of oscillators 11A is not particularly limited, and may be arranged side by side in the longitudinal axis direction of the chemical solution injection tube 3, or arranged side by side in the longitudinal axis direction and the circumferential direction of the chemical solution injection tube 3. You may.
 図4は、図2に示した薬液拡散促進装置2の変形例を示す断面側面図である。図4に示すように、薬液注入管3の側壁部3dに凹部3gが設けられていることが好ましい。その場合、第1超音波発生部11の少なくとも一部が凹部3gに配置されていることが好ましい。これにより、第1超音波発生部11の少なくとも一部を凹部3gに収めることができるため、薬液注入管3の径方向外方への第1超音波発生部11の過度な突出を防ぐことができる。このため、薬液注入管3の対象組織への穿刺が行いやすくなる。 FIG. 4 is a cross-sectional side view showing a modified example of the chemical solution diffusion promoting device 2 shown in FIG. As shown in FIG. 4, it is preferable that the side wall portion 3d of the chemical solution injection pipe 3 is provided with a recess 3g. In that case, it is preferable that at least a part of the first ultrasonic wave generating portion 11 is arranged in the recess 3g. As a result, at least a part of the first ultrasonic wave generating portion 11 can be accommodated in the recess 3g, so that it is possible to prevent the first ultrasonic wave generating portion 11 from excessively protruding outward in the radial direction of the chemical solution injection pipe 3. it can. Therefore, it becomes easy to puncture the target tissue of the drug solution injection tube 3.
 薬液注入管3の径方向において、第1超音波発生部11の外方端が薬液注入管3の外方端と同一の位置にあるか、または薬液注入管3の外方端よりも内方に位置していることが好ましい。このように第1超音波発生部11を配置することにより、第1超音波発生部11が薬液注入管3の表面から径方向外方に向かって突出しないため、薬液注入管3の対象組織への穿刺が行いやすくなる。このような薬液拡散促進装置2としては、図4に示すように、薬液注入管3の凹部3gに第1超音波発生部11全体が配置されている態様が挙げられる。 In the radial direction of the chemical injection pipe 3, the outer end of the first ultrasonic wave generating unit 11 is at the same position as the outer end of the chemical injection pipe 3, or is inward of the outer end of the chemical injection pipe 3. It is preferably located at. By arranging the first ultrasonic wave generating unit 11 in this way, the first ultrasonic wave generating unit 11 does not protrude outward in the radial direction from the surface of the chemical solution injection tube 3, so that the target tissue of the chemical solution injection tube 3 is reached. It becomes easier to puncture. As the chemical solution diffusion promoting device 2, as shown in FIG. 4, an embodiment in which the entire first ultrasonic wave generating unit 11 is arranged in the recess 3g of the chemical solution injection pipe 3 can be mentioned.
 図2~図3では、第1超音波発生部11は、薬液注入管3の側壁部3dの外表面よりも外方に配置されている例を示したが、図4に示すように、第1超音波発生部11の少なくとも一部が、側壁部3dの壁内に配置されていてもよい。また、図示していないが、第1超音波発生部11の少なくとも一部が側壁部3dの内腔に配置されていてもよい。 2 to 3 show an example in which the first ultrasonic wave generating portion 11 is arranged outside the outer surface of the side wall portion 3d of the chemical solution injection pipe 3, but as shown in FIG. 4, the first ultrasonic wave generating portion 11 is arranged. 1 At least a part of the ultrasonic wave generating portion 11 may be arranged in the wall of the side wall portion 3d. Further, although not shown, at least a part of the first ultrasonic wave generating portion 11 may be arranged in the lumen of the side wall portion 3d.
 再び、図3に戻って説明する。薬液注入管3の径方向において、振動子11Aよりも内方に吸音材11Bが設けられていることが好ましい。このように吸音材11Bを設けることにより、振動子11Aから内方に向かって照射される超音波を減衰することができる。なお、振動子11Aは吸音材11Bに支持されていることが好ましい。これにより、吸音材11Bによって振動子11Aを背面から支持することにより、振動子11Aの変形を抑えることができる。 Returning to FIG. 3 for explanation. It is preferable that the sound absorbing material 11B is provided inward of the vibrator 11A in the radial direction of the chemical injection pipe 3. By providing the sound absorbing material 11B in this way, the ultrasonic waves radiated inward from the vibrator 11A can be attenuated. The oscillator 11A is preferably supported by the sound absorbing material 11B. As a result, the vibrator 11A is supported from the back surface by the sound absorbing material 11B, so that the deformation of the vibrator 11A can be suppressed.
 吸音材11Bは、超音波の減衰率や音響インピーダンスを適切に有している材料から構成されていればよく、例えば母材とフィラーを含む混合物から構成される。母材の材料としては、例えば、天然ゴム、合成ゴム、エポキシ樹脂、塩化ビニル樹脂等の樹脂を挙げることができる。フィラーの材料としては、金属酸化物やセラミック系微粒子を挙げることができる。 The sound absorbing material 11B may be made of a material having an appropriate ultrasonic attenuation rate and acoustic impedance, and is made of, for example, a mixture containing a base material and a filler. Examples of the material of the base material include resins such as natural rubber, synthetic rubber, epoxy resin, and vinyl chloride resin. Examples of the filler material include metal oxides and ceramic fine particles.
 薬液注入管3の径方向において、振動子11Aは薬液注入管3よりも外方に配置されており、薬液注入管3の比重が1以下であることが好ましい。生体組織の比重はほぼ1であるため、このように薬液注入管3自体に吸音効果を付与することによっても、振動子から内方に向かって照射される超音波を減衰することができる。 It is preferable that the vibrator 11A is arranged outside the chemical injection pipe 3 in the radial direction of the chemical injection pipe 3 and the specific gravity of the chemical injection pipe 3 is 1 or less. Since the specific gravity of the living tissue is approximately 1, the ultrasonic waves radiated inward from the vibrator can be attenuated by imparting the sound absorbing effect to the chemical injection tube 3 itself in this way.
 図示していないが、第1超音波発生部11は、超音波の伝搬方向に指向性を有していてもよい。その場合、薬液注入管3に複数の振動子11Aを設ける必要はないため、第1超音波発生部11が設けられている部分における薬液注入管3の大径化を抑制することができる。その結果、対象組織への薬液注入管3の穿刺の患者の負担を低減することができる。 Although not shown, the first ultrasonic wave generating unit 11 may have directivity in the propagation direction of ultrasonic waves. In that case, since it is not necessary to provide a plurality of vibrators 11A in the chemical injection pipe 3, it is possible to suppress an increase in the diameter of the chemical injection pipe 3 in the portion where the first ultrasonic wave generating portion 11 is provided. As a result, the burden on the patient for puncturing the drug solution injection tube 3 into the target tissue can be reduced.
 第1超音波発生部11において、振動子11Aよりも径方向の外方に音響整合層11Cが設けられていてもよい。これにより、第1超音波発生部11からの超音波が腫瘍内に入射しやすくなる。また、超音波を集束させる観点からは、第1超音波発生部11において、振動子11Aよりも径方向の外方に音響レンズが設けられていることが好ましい。音響レンズは、音響整合層11Cよりも径方向の外方に設けることができる。 In the first ultrasonic wave generating unit 11, the acoustic matching layer 11C may be provided on the outer side in the radial direction from the vibrator 11A. This makes it easier for the ultrasonic waves from the first ultrasonic wave generating unit 11 to enter the tumor. Further, from the viewpoint of focusing ultrasonic waves, it is preferable that the first ultrasonic wave generating unit 11 is provided with an acoustic lens on the outer side in the radial direction with respect to the vibrator 11A. The acoustic lens can be provided on the outer side in the radial direction with respect to the acoustic matching layer 11C.
 図示していないが、振動子11Aと電源などのエネルギー供給源は導線によって接続することができる。導線は、薬液注入管3の側壁部3dの内部や側壁部3dの外表面上または内表面上に配置することができる。導線としては、電気エネルギーや光エネルギーの導体を用いたものが挙げられ、表面にコーティングがされていてもよい。導線としては、導電性材料のコアに非導電性材料の被覆を行った導線、光ファイバーなどを用いることができる。 Although not shown, the oscillator 11A and an energy supply source such as a power supply can be connected by a conducting wire. The conducting wire can be arranged inside the side wall portion 3d of the chemical solution injection pipe 3 or on the outer surface or the inner surface of the side wall portion 3d. Examples of the conducting wire include those using a conductor of electric energy or light energy, and the surface may be coated. As the conducting wire, a conducting wire in which the core of the conductive material is coated with a non-conductive material, an optical fiber, or the like can be used.
 図示していないが、薬液注入管3の外側であって第1超音波発生部11よりも近位側には、薬液注入管3の長手軸方向の中央位置での外径よりも大きい外径を有する大径部が設けられていてもよい。大径部としては、薬液注入管3の径方向の外方に設けられたリング状部材を挙げることができる。大径部の存在により、対象組織内に注入された薬液が近位側に逆流してもこれを堰き止めることが可能となる。 Although not shown, an outer diameter larger than the outer diameter at the center position in the longitudinal axis direction of the chemical injection pipe 3 on the outside of the chemical injection pipe 3 and proximal to the first ultrasonic wave generating portion 11. A large diameter portion having the above may be provided. As the large-diameter portion, a ring-shaped member provided on the outer side in the radial direction of the chemical solution injection pipe 3 can be mentioned. Due to the presence of the large diameter portion, even if the drug solution injected into the target tissue flows back to the proximal side, it can be blocked.
 図示していないが、第1超音波発生部11が側壁部3dに設けられている薬液注入管3の内腔3bに、生体内の対象組織に穿刺される第2薬液注入管がさらに設けられていてもよい。これにより、薬液注入管3だけでなく第2薬液注入管からも薬液を放出することができるため、薬液が腫瘍全体に行き渡りやすくなり、薬液による治療効果を高めることができる。 Although not shown, a second chemical injection tube that punctures the target tissue in the living body is further provided in the lumen 3b of the chemical injection tube 3 in which the first ultrasonic wave generating portion 11 is provided on the side wall portion 3d. You may be. As a result, the drug solution can be discharged not only from the drug solution injection tube 3 but also from the second drug solution injection tube, so that the drug solution can be easily distributed throughout the tumor, and the therapeutic effect of the drug solution can be enhanced.
 第2薬液注入管の構成については、薬液注入管3の説明を参照することができる。第2薬液注入管の構成は、薬液注入管3の構成と同じであってもよく、異なっていてもよい。また、第2薬液注入管内に供給される薬液の種類は、薬液注入管3内に供給される薬液の種類と同じであってもよく、異なっていてもよい。 For the configuration of the second chemical injection tube, the description of the chemical injection tube 3 can be referred to. The configuration of the second chemical injection tube may be the same as or different from the configuration of the chemical injection tube 3. Further, the type of the chemical solution supplied into the second chemical solution injection tube may be the same as or different from the type of the chemical solution supplied into the chemical solution injection tube 3.
 第2薬液注入管は、薬液注入管3に対して薬液注入管3の長手軸方向に移動可能であることが好ましい。これにより、対象組織の形状等に応じて第2薬液注入管からの薬液の放出位置を調整することができる。 It is preferable that the second chemical injection pipe can be moved in the longitudinal axis direction of the chemical injection pipe 3 with respect to the chemical injection pipe 3. Thereby, the discharge position of the chemical solution from the second chemical solution injection tube can be adjusted according to the shape of the target tissue or the like.
 第2薬液注入管を薬液注入管3に対して最も遠位側に移動させたときに、第2薬液注入管の遠位端は、薬液注入管3の遠位端よりも遠位側に位置することが好ましい。これにより、薬液注入管3よりも遠位側の位置で第2薬液注入管から薬液を放出することができるため、薬液を対象組織の遠位側に到達させやすくなり、薬液による治療効果を高めることができる。 When the second drug solution injection tube is moved to the most distal side with respect to the drug solution injection tube 3, the distal end of the second drug solution injection tube is located distal to the distal end of the drug solution injection tube 3. It is preferable to do so. As a result, the drug solution can be discharged from the second drug solution injection tube at a position distal to the drug solution injection tube 3, so that the drug solution can easily reach the distal side of the target tissue and the therapeutic effect of the drug solution is enhanced. be able to.
 図示していないが、第2薬液注入管の側壁部に超音波発生部(以下では「第4超音波発生部」と称する)が設けられていてもよい。第4超音波発生部は、第1超音波発生部11と同様に、薬液を拡散させるための第4超音波を発生する部分である。このように第4超音波発生部を設けることにより、薬液が腫瘍全体により一層行き渡りやすくなり、薬液による治療効果を高めることができる。 Although not shown, an ultrasonic wave generating part (hereinafter referred to as a "fourth ultrasonic wave generating part") may be provided on the side wall of the second chemical injection pipe. The fourth ultrasonic wave generating unit is a portion that generates the fourth ultrasonic wave for diffusing the chemical solution, similarly to the first ultrasonic wave generating unit 11. By providing the fourth ultrasonic wave generating portion in this way, the drug solution can be more easily spread over the entire tumor, and the therapeutic effect of the drug solution can be enhanced.
 第4超音波の発振周波数や超音波出力は、処置の種類、薬液の種類や用量に応じて適宜設定することができる。第4超音波の発振周波数や超音波出力は、第1超音波と同じであっても異なっていてもよい。第4超音波発生部の構成としては、第1超音波発生部11の説明を参照することができる。 The oscillation frequency and ultrasonic output of the fourth ultrasonic wave can be appropriately set according to the type of treatment, the type and dose of the drug solution. The oscillation frequency and ultrasonic output of the fourth ultrasonic wave may be the same as or different from that of the first ultrasonic wave. As the configuration of the fourth ultrasonic wave generating unit, the description of the first ultrasonic wave generating unit 11 can be referred to.
 第4超音波発生部が第2薬液注入管の側壁部に設けられている場合、第2薬液注入管を薬液注入管3に対して最も遠位側に移動させたときに、第4超音波発生部の遠位端は、第超音波発生部11の遠位端よりも遠位側に位置することが好ましい。これにより、薬液注入管3よりも遠位側の位置で第4超音波発生部により薬液拡散用の第4超音波を発生することができるため、薬液が腫瘍全体に行き渡りやすくなり、薬液による治療効果を高めることができる。 When the fourth ultrasonic wave generating portion is provided on the side wall portion of the second chemical solution injection tube, the fourth ultrasonic wave is generated when the second chemical solution injection tube is moved to the most distal side with respect to the chemical solution injection tube 3. The distal end of the generating portion is preferably located distal to the distal end of the first ultrasonic generating portion 11. As a result, the fourth ultrasonic wave for diffusing the drug solution can be generated by the fourth ultrasonic wave generator at a position distal to the drug solution injection tube 3, so that the drug solution can be easily spread throughout the tumor, and the treatment with the drug solution is performed. The effect can be enhanced.
 図5は、図2に示した薬液拡散促進装置の変形例を示す断面側面図を表し、図6は、図5に示した薬液拡散促進装置のVI-VI線に沿った断面図を表す。図5~図6に示すように、第1超音波発生部11は、薬液注入管3の内腔3bに設けられており、かつ、薬液注入管3の長手軸方向に平行な回転軸11dを有していてもよい。その場合、第1超音波発生部11は、回転軸11d周りに360度回転することが好ましい。このように第1超音波発生部11を設けることにより、機械走査式の薬液拡散促進装置2を得ることができる。なお、図2~図4に示した薬液拡散促進装置2と同様の構成については説明を省略する。 FIG. 5 shows a cross-sectional side view showing a modified example of the chemical solution diffusion promoting device shown in FIG. 2, and FIG. 6 shows a cross-sectional view of the chemical solution diffusion promoting device shown in FIG. 5 along the VI-VI line. As shown in FIGS. 5 to 6, the first ultrasonic wave generating unit 11 is provided in the cavity 3b of the chemical injection pipe 3, and has a rotation shaft 11d parallel to the longitudinal axis direction of the chemical injection pipe 3. You may have. In that case, it is preferable that the first ultrasonic wave generating unit 11 rotates 360 degrees around the rotation axis 11d. By providing the first ultrasonic wave generating unit 11 in this way, the mechanical scanning type chemical solution diffusion promoting device 2 can be obtained. The same configuration as the chemical solution diffusion promoting device 2 shown in FIGS. 2 to 4 will not be described.
 第1超音波発生部11が薬液注入管3の内腔3bに設けられており、かつ、薬液注入管3の長手軸方向に平行な回転軸11dを有している場合、第1超音波発生部11は超音波の伝搬方向に指向性を有していることが好ましい。これにより、対象組織のうち必要な部分に対して第1超音波発生部11からの超音波を照射しやすくなる。 When the first ultrasonic wave generating unit 11 is provided in the cavity 3b of the chemical solution injection tube 3 and has a rotation axis 11d parallel to the longitudinal axis direction of the chemical solution injection tube 3, the first ultrasonic wave is generated. It is preferable that the portion 11 has directivity in the propagation direction of the ultrasonic wave. This makes it easier to irradiate the necessary portion of the target tissue with ultrasonic waves from the first ultrasonic wave generating unit 11.
 第1超音波発生部11で発生する超音波が薬液注入管3に吸収されて減衰することを防ぐために、薬液注入管3の比重は1以上であることが好ましい。薬液注入管3の長手軸方向の少なくとも一部の比重が1以上であることが好ましく、例えば、薬液注入管3のうち長手軸方向において第1超音波発生部11と重なっている部分の比重が1以上であることがより好ましい。 In order to prevent the ultrasonic waves generated by the first ultrasonic wave generating unit 11 from being absorbed by the chemical solution injection tube 3 and being attenuated, the specific gravity of the chemical solution injection tube 3 is preferably 1 or more. The specific gravity of at least a part of the chemical injection pipe 3 in the longitudinal axis direction is preferably 1 or more. For example, the specific gravity of the portion of the chemical injection pipe 3 that overlaps with the first ultrasonic wave generating portion 11 in the longitudinal direction is It is more preferably 1 or more.
 第1超音波発生部11を薬液注入管3の内腔3bに配置する構成としては、薬液拡散促進装置2が、薬液注入管3の内腔3bに配置されている内挿部材4をさらに有し、内挿部材4の遠位端部に第1超音波発生部11が保持されている態様が挙げられる。これにより、薬液注入管3の内腔3bであって、内挿部材4の外方に薬液を流すことができる。薬液注入管3の長手軸方向に平行な直線を回転軸11dとして内挿部材4を回転させることにより、第1超音波発生部11を回転させることが可能となる。 As a configuration in which the first ultrasonic wave generating unit 11 is arranged in the cavity 3b of the chemical injection tube 3, the chemical solution diffusion promoting device 2 further includes an interpolation member 4 arranged in the lumen 3b of the chemical injection tube 3. An embodiment in which the first ultrasonic wave generating portion 11 is held at the distal end portion of the interpolation member 4 can be mentioned. As a result, the chemical solution can flow to the outside of the interpolation member 4 in the lumen 3b of the chemical solution injection tube 3. By rotating the insertion member 4 with a straight line parallel to the longitudinal axis direction of the chemical solution injection pipe 3 as the rotation axis 11d, the first ultrasonic wave generating unit 11 can be rotated.
 内挿部材4は、図5~図6に示すように、薬液注入管3の長手軸方向に延在している中空状のシャフト4Aと、シャフト4Aの内腔に配置され、シャフト4Aの長手軸方向に延在している支持部材4Bと、を有している構成とすることができる。その場合、支持部材4Bの遠位部に第1超音波発生部11を固定することができる。支持部材4Bはシャフト4Aと固定されていてもよく、シャフト4Aと非固定であってもよい。なお、シャフト4Aの内腔への薬液の浸入を抑制するために、シャフト4Aの遠位端は閉じられていることが好ましい。 As shown in FIGS. 5 to 6, the interpolation member 4 is arranged in the hollow shaft 4A extending in the longitudinal axis direction of the chemical injection pipe 3 and the lumen of the shaft 4A, and is arranged in the lumen of the shaft 4A, and is the longitudinal length of the shaft 4A. It can be configured to have a support member 4B extending in the axial direction. In that case, the first ultrasonic wave generating portion 11 can be fixed to the distal portion of the support member 4B. The support member 4B may be fixed to the shaft 4A or may not be fixed to the shaft 4A. The distal end of the shaft 4A is preferably closed in order to prevent the chemical solution from entering the lumen of the shaft 4A.
 シャフト4Aを構成する材料は、薬液注入管3の構成材料の説明を参照することができる。シャフト4Aの材料は、薬液注入管3の材料と同じであってもよく、異なっていてもよい。シャフト4Aとしては、薬液注入管3と同様に、樹脂チューブ、単線または複数の線材、撚線の線材を特定のパターンで配置することによって形成された筒状体、金属管またはこれらを組み合わせたものを用いることができる。しかしながら、第1超音波発生部11から発生した超音波がシャフト4Aに吸収されて減衰することを防ぐために、シャフト4Aのうち長手軸方向において第1超音波発生部11と重なっている部分の比重が1以上であることが好ましい。 For the material constituting the shaft 4A, the description of the constituent material of the chemical injection pipe 3 can be referred to. The material of the shaft 4A may be the same as or different from the material of the chemical injection tube 3. The shaft 4A is a tubular body, a metal tube, or a combination thereof formed by arranging a resin tube, a single wire or a plurality of wires, and a stranded wire in a specific pattern, similarly to the chemical injection pipe 3. Can be used. However, in order to prevent the ultrasonic waves generated from the first ultrasonic wave generating unit 11 from being absorbed by the shaft 4A and being attenuated, the specific gravity of the portion of the shaft 4A that overlaps with the first ultrasonic wave generating unit 11 in the longitudinal axis direction. Is preferably 1 or more.
 支持部材4Bの遠位部に第1超音波発生部11を固定する方法は特に限定されず、図5に示すように支持部材4Bの遠位部に偏平部4Baが設けられ、偏平部4Baに第1超音波発生部11が固定されていてもよい。また、支持部材4Bの遠位端部に第1超音波発生部11が接続されていてもよい。支持部材4Bよりも遠位側に第1超音波発生部11が設けられていてもよい。 The method of fixing the first ultrasonic wave generating portion 11 to the distal portion of the support member 4B is not particularly limited, and as shown in FIG. 5, a flat portion 4Ba is provided at the distal portion of the support member 4B, and the flat portion 4Ba is provided with the flat portion 4Ba. The first ultrasonic wave generating unit 11 may be fixed. Further, the first ultrasonic wave generating portion 11 may be connected to the distal end portion of the support member 4B. The first ultrasonic wave generating portion 11 may be provided on the distal side of the support member 4B.
 支持部材4Bとしては、棒状部材やトルクワイヤが挙げられる。トルクワイヤとしては、一または複数の線材がらせん状に巻回されて形成されているコイル体が挙げられる。 Examples of the support member 4B include a rod-shaped member and a torque wire. Examples of the torque wire include a coil body formed by spirally winding one or a plurality of wires.
 図5~図6に示した薬液拡散促進装置2において超音波の伝搬方向を変えるには、支持部材4Bがシャフト4Aと非固定である場合には、支持部材4Bを手元側で回転させる必要がある。したがって、この場合、支持部材4Bがトルクワイヤであることが好ましい。これにより、近位側の回転トルクを第1超音波発生部11に効率よく伝達することができる。 In order to change the propagation direction of ultrasonic waves in the chemical solution diffusion promoting device 2 shown in FIGS. 5 to 6, when the support member 4B is not fixed to the shaft 4A, it is necessary to rotate the support member 4B on the hand side. is there. Therefore, in this case, it is preferable that the support member 4B is a torque wire. As a result, the rotational torque on the proximal side can be efficiently transmitted to the first ultrasonic wave generating unit 11.
 図示していないが、支持部材4Bがシャフト4Aと固定されている場合、超音波の伝搬方向を変えるにはシャフト4Aを手元側で回転させてもよい。したがって、この場合、線材がシャフト4Aに特定のパターンで配置されていることが好ましい。このようにシャフト4Aを構成することによっても、近位側の回転トルクを第1超音波発生部11に効率よく伝達することが可能となる。 Although not shown, when the support member 4B is fixed to the shaft 4A, the shaft 4A may be rotated on the hand side in order to change the propagation direction of ultrasonic waves. Therefore, in this case, it is preferable that the wire rods are arranged on the shaft 4A in a specific pattern. By configuring the shaft 4A in this way, it is possible to efficiently transmit the rotational torque on the proximal side to the first ultrasonic wave generating unit 11.
 内挿部材4は、薬液注入管3に対して薬液注入管3の長手軸方向に移動可能であることが好ましい。これにより、対象組織の形状等に応じて第1超音波発生部11からの第1超音波の照射位置を調整することができる。 It is preferable that the interpolation member 4 is movable with respect to the chemical injection pipe 3 in the longitudinal axis direction of the chemical injection pipe 3. As a result, the irradiation position of the first ultrasonic wave from the first ultrasonic wave generating unit 11 can be adjusted according to the shape of the target tissue and the like.
 内挿部材4を薬液注入管3に対して最も遠位側に移動させたときに、内挿部材4の遠位端は、薬液注入管3の遠位端よりも遠位側に位置することが好ましい。これにより、薬液注入管3よりも遠位側の位置で第1超音波を発生させることができるため、薬液が腫瘍全体に行き渡りやすくなり、薬液による治療効果を高めることができる。 When the interpolation member 4 is moved to the most distal side with respect to the drug solution injection tube 3, the distal end of the insertion member 4 is located on the distal side of the distal end of the drug solution injection tube 3. Is preferable. As a result, the first ultrasonic wave can be generated at a position distal to the drug solution injection tube 3, so that the drug solution can be easily distributed throughout the tumor, and the therapeutic effect of the drug solution can be enhanced.
 その他、第1超音波発生部11の振動子の構成は、図2~図4に示した薬液拡散促進装置2の説明を参照することができる。 In addition, for the configuration of the vibrator of the first ultrasonic wave generating unit 11, the description of the chemical solution diffusion promoting device 2 shown in FIGS. 2 to 4 can be referred to.
 図示していないが、図2~図4に示す薬液注入管3の内腔3bに、図5~図6に示すような内挿部材4が設けられていてもよい。すなわち、第1超音波発生部11が薬液注入管3の側壁部3dに設けられており、薬液注入管3の内腔3bに第2内挿部材が配置されており、第2内挿部材の遠位端部に超音波発生部(以下では「第5超音波発生部」と称する)が保持されていてもよい。第5超音波発生部は、第1超音波発生部11と同様に、薬液を拡散させるための第5超音波を発生する部分である。このように第5超音波発生部を設けることにより、薬液が腫瘍全体により一層行き渡りやすくなり、薬液による治療効果を高めることができる。 Although not shown, the interpolation member 4 as shown in FIGS. 5 to 6 may be provided in the lumen 3b of the chemical solution injection tube 3 shown in FIGS. 2 to 4. That is, the first ultrasonic wave generating portion 11 is provided on the side wall portion 3d of the chemical liquid injection pipe 3, and the second insertion member is arranged in the lumen 3b of the chemical liquid injection pipe 3, and the second insertion member of the second insertion member. An ultrasonic wave generating part (hereinafter referred to as a “fifth ultrasonic wave generating part”) may be held at the distal end portion. The fifth ultrasonic wave generating unit is a portion that generates the fifth ultrasonic wave for diffusing the chemical solution, similarly to the first ultrasonic wave generating unit 11. By providing the fifth ultrasonic wave generating portion in this way, the drug solution can be more easily spread over the entire tumor, and the therapeutic effect of the drug solution can be enhanced.
 第5超音波の発振周波数や超音波出力は、処置の種類、薬液の種類や用量に応じて適宜設定することができる。第5超音波の発振周波数や超音波出力は、第1超音波と同じであっても異なっていてもよい。第5超音波発生部の構成としては、第1超音波発生部11の説明を参照することができる。 The oscillation frequency and ultrasonic output of the fifth ultrasonic wave can be appropriately set according to the type of treatment, the type and dose of the drug solution. The oscillation frequency and ultrasonic output of the fifth ultrasonic wave may be the same as or different from that of the first ultrasonic wave. As the configuration of the fifth ultrasonic wave generating unit, the description of the first ultrasonic wave generating unit 11 can be referred to.
 第2内挿部材の遠位端部に第5超音波発生部が保持されている場合、第2内挿部材を薬液注入管3に対して最も遠位側に移動させたときに、第2内挿部材の遠位端は、薬液注入管3の遠位端よりも遠位側に位置することが好ましく、第5超音波発生部の遠位端が、第1超音波発生部11の遠位端よりも遠位側に位置することがより好ましい。これにより、薬液注入管3よりも遠位側の位置で第5超音波発生部により薬液拡散用の第5超音波を発生することができるため、薬液が腫瘍全体に行き渡りやすくなり、薬液による治療効果を高めることができる。 When the fifth ultrasonic generator is held at the distal end of the second insertion member, the second insertion member is moved to the most distal side with respect to the drug solution injection tube 3. The distal end of the insertion member is preferably located distal to the distal end of the drug solution injection tube 3, and the distal end of the fifth ultrasonic generator is far from the first ultrasonic generator 11. It is more preferably located distal to the position end. As a result, the fifth ultrasonic wave for diffusing the drug solution can be generated by the fifth ultrasonic wave generator at a position distal to the drug solution injection tube 3, so that the drug solution can be easily spread throughout the tumor, and the treatment with the drug solution is performed. The effect can be enhanced.
 超音波制御部20は、第1超音波発生部11に接続され、対象組織の二次元または三次元の像に応じて第1超音波の照射条件を制御するものである。詳細には、第1超音波発生部11で発生する第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御する。薬液拡散システム1によれば、対象組織の二次元または三次元の像に応じて、第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御するため、対象組織の状態に応じて薬液を必要な部位に適切に拡散することできる。例えば、腫瘍がいびつな形状をしている場合、腫瘍の硬さが不均一な場合、薬液注入管3を腫瘍に穿刺したときに薬液注入管3の長手軸中心から腫瘍の外縁までの径方向の距離が薬液注入管3の周方向の位置によって異なっている場合等、腫瘍の形状、大きさ、広がりおよび硬さ等の状態に合わせて第1超音波の照射条件を適切に設定することができる。このため、薬液が腫瘍全体に行き渡りやすくなり、薬液による治療効果を高めることができる。また、治療に必要な超音波の照射時間を短くすることが可能であり、患者や術者の負担の軽減に寄与するものとなる。 The ultrasonic control unit 20 is connected to the first ultrasonic wave generation unit 11 and controls the irradiation conditions of the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue. Specifically, at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave generated by the first ultrasonic wave generating unit 11 is controlled. According to the chemical diffusion system 1, at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave is controlled according to the two-dimensional or three-dimensional image of the target tissue, so that the state of the target tissue is adjusted. Therefore, the drug solution can be appropriately diffused to the required site. For example, when the tumor has a distorted shape, the hardness of the tumor is uneven, or when the drug solution injection tube 3 is pierced into the tumor, the radial direction from the center of the longitudinal axis of the drug solution injection tube 3 to the outer edge of the tumor. The irradiation conditions of the first ultrasonic wave can be appropriately set according to the shape, size, spread, hardness, etc. of the tumor, such as when the distance between the two differs depending on the position of the drug solution injection tube 3 in the circumferential direction. it can. Therefore, the drug solution can be easily spread over the entire tumor, and the therapeutic effect of the drug solution can be enhanced. In addition, it is possible to shorten the irradiation time of ultrasonic waves required for treatment, which contributes to reducing the burden on the patient and the operator.
 超音波制御部20は、第1超音波発生部11に対して、第1超音波発生部11で発生する超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを時間に対して変動させる指令信号を発することが好ましい。このように超音波の条件を経時的に変化させることによって、薬液の拡散促進効果を高めることができる。対象組織の二次元または三次元の像は、薬液拡散システム1に好ましく含まれる像形成部23、またはシステム1には含まれない外部の装置を用いて取得することができる。超音波制御部20は、取得した対象組織の二次元または三次元の像に応じて第1超音波の照射条件を制御する。 The ultrasonic control unit 20 changes at least one of the propagation direction, intensity, and oscillation frequency of the ultrasonic waves generated by the first ultrasonic wave generation unit 11 with respect to the time with respect to the first ultrasonic wave generation unit 11. It is preferable to issue a command signal to make the sound wave. By changing the ultrasonic conditions over time in this way, the diffusion promoting effect of the chemical solution can be enhanced. A two-dimensional or three-dimensional image of the target tissue can be obtained by using an image forming unit 23 preferably included in the chemical diffusion system 1 or an external device not included in the system 1. The ultrasonic control unit 20 controls the irradiation conditions of the first ultrasonic wave according to the acquired two-dimensional or three-dimensional image of the target tissue.
 超音波制御部20は、第1超音波発生部11に対して、薬液注入管3の長手軸方向または周方向の位置によって第1超音波の強度と発振周波数の少なくともいずれか一方を変化させる指令信号を発してもよい。これにより、腫瘍の状態や、第1超音波の照射前の薬液の腫瘍への浸透度合いに応じて、第1超音波の照射条件を設定することができ、薬液の拡散効果を高めることが可能となる。 The ultrasonic control unit 20 commands the first ultrasonic wave generation unit 11 to change at least one of the intensity of the first ultrasonic wave and the oscillation frequency depending on the position in the longitudinal axis direction or the circumferential direction of the chemical solution injection pipe 3. A signal may be emitted. This makes it possible to set the irradiation conditions of the first ultrasonic wave according to the condition of the tumor and the degree of penetration of the drug solution into the tumor before the irradiation of the first ultrasonic wave, and it is possible to enhance the diffusion effect of the drug solution. It becomes.
 超音波制御部20は、第1超音波発生部11に対して、超音波の強度分布を薬液注入管3の長手軸中心3fから偏在させる指令信号を発することが好ましい。このように超音波の強度分布を偏在させることにより、薬液を必要な部位に適切に拡散することができる。図7は、図2に示した薬液注入管3および第1超音波発生部11を腫瘍100内に穿刺したときの超音波診断画像のイメージ図である。図7に示すように、超音波制御部20は、薬液注入管3の周方向において、薬液注入管3の長手軸中心3fから腫瘍100の外縁101までの径方向の距離が長いほど第1超音波の強度xを大きくする指令信号を発してもよい。これにより、薬液が腫瘍全体に行き渡りやすくなるため、薬液による治療効果を高めることができる。 It is preferable that the ultrasonic control unit 20 issues a command signal to the first ultrasonic wave generation unit 11 so that the intensity distribution of ultrasonic waves is unevenly distributed from the center 3f of the longitudinal axis of the chemical injection pipe 3. By unevenly distributing the intensity distribution of ultrasonic waves in this way, the chemical solution can be appropriately diffused to a required portion. FIG. 7 is an image diagram of an ultrasonic diagnostic image when the drug solution injection tube 3 and the first ultrasonic wave generating portion 11 shown in FIG. 2 are punctured into the tumor 100. As shown in FIG. 7, the ultrasonic control unit 20 is the first in the circumferential direction of the drug solution injection tube 3 as the radial distance from the longitudinal axis center 3f of the drug solution injection tube 3 to the outer edge 101 of the tumor 100 is longer. A command signal may be issued to increase the intensity x of the sound wave. This makes it easier for the drug solution to spread throughout the tumor, so that the therapeutic effect of the drug solution can be enhanced.
 第1超音波の強度分布が薬液注入管3の長手軸中心3fから偏在するとは、薬液注入管3の周方向の位置によって超音波の強度xが異なっていることを意味している。図7では、薬液注入管3の軸中心3fから腫瘍100の外縁101までの径方向の距離が長いほど、超音波の強度xが大きくなっているが、超音波の周方向の強度は腫瘍の形状、大きさ、広がりおよび硬さ等の状態に応じて適宜設定することができる。 The fact that the intensity distribution of the first ultrasonic wave is unevenly distributed from the center 3f of the longitudinal axis of the chemical injection tube 3 means that the intensity x of the ultrasonic wave differs depending on the position in the circumferential direction of the chemical injection tube 3. In FIG. 7, the longer the radial distance from the axial center 3f of the drug solution injection tube 3 to the outer edge 101 of the tumor 100, the higher the ultrasonic intensity x, but the circumferential intensity of the ultrasonic waves is that of the tumor. It can be appropriately set according to the state of shape, size, spread, hardness, and the like.
 超音波制御部20は、薬液注入管3の周方向において、薬液注入管3の長手軸中心3fから腫瘍100の外縁101までの径方向の距離が長いほど第1超音波の発振周波数を低くする指令信号を発してもよい。このように第1超音波の照射条件を設定することによっても薬液が腫瘍全体に行き渡りやすくなるため、薬液による治療効果を高めることができる。 The ultrasonic control unit 20 lowers the oscillation frequency of the first ultrasonic wave in the circumferential direction of the chemical injection tube 3 as the radial distance from the center 3f of the longitudinal axis of the chemical injection tube 3 to the outer edge 101 of the tumor 100 is longer. A command signal may be issued. By setting the irradiation conditions of the first ultrasonic wave in this way, the drug solution can be easily spread over the entire tumor, so that the therapeutic effect of the drug solution can be enhanced.
 薬液拡散システム1において、超音波制御部20と後述する処理部30の少なくともいずれか一方での各処理を実施するプログラムは、コンピュータ読取り可能媒体に記録されていてもよい。これにより、コンピュータに上記プログラムをインストールすることができる。上記プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体としては、例えば、CD-ROM等の記録媒体が挙げられる。 In the chemical solution diffusion system 1, a program for performing each process of at least one of the ultrasonic control unit 20 and the processing unit 30 described later may be recorded on a computer-readable medium. This allows you to install the above program on your computer. The computer-readable medium on which the program is recorded may be a non-transient recording medium. Examples of the non-transient recording medium include a recording medium such as a CD-ROM.
 薬液拡散システム1は、超音波制御部20と後述する処理部30の少なくともいずれか一方において上記プログラムを実行するためのプロセッサを含むことができる。プロセッサには、集積回路に実装されたマイクロプロセッサが含まれる。コンピュータが、プロセッサや後述する記憶装置を含んでいてもよい。 The chemical diffusion system 1 can include a processor for executing the above program in at least one of the ultrasonic control unit 20 and the processing unit 30 described later. Processors include microprocessors mounted on integrated circuits. The computer may include a processor and a storage device described below.
 超音波制御部20での制御には、オンオフ制御を用いてもよく、可変式PI制御を用いてもよく、また、PID制御を用いてももちろんよい。 For the control by the ultrasonic control unit 20, on-off control may be used, variable PI control may be used, or PID control may of course be used.
 図8は、図1に示した薬液拡散システム1における処置フローの一例を示す図を表す。図1の薬液拡散システム1を用いて、以下手順の処置を行うことができる。 FIG. 8 shows an example of the treatment flow in the drug solution diffusion system 1 shown in FIG. Using the drug solution diffusion system 1 of FIG. 1, the following procedure can be performed.
 薬液注入管3を対象組織に穿刺する(ステップS1)。なお、ステップS1において、第1超音波発生部11が対象組織内に配置されることが好ましい。次いで、薬液を対象組織に注入する(ステップS2)。対象組織の二次元または三次元の像に応じて、超音波制御部20で第1超音波の照射条件を制御する(ステップS3)。ステップS3では、第1超音波発生部11で発生する第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御する。ステップS3で設定された照射条件に従って、第1超音波発生部11を用いて第1超音波を対象組織に照射する(ステップS4)。必須ではないが、ステップS4の第1超音波の照射の後、対象組織の二次元または三次元の像を取得してもよい(ステップS5)。ステップS5で取得した像を用いて、薬液の拡散状態を確認することが好ましい(ステップS6)。ステップS6において、薬液の拡散状態が目標値に達していないと判別された場合には、ステップS3に戻って第1超音波の照射条件を制御し、ステップS4以降を実施することが好ましい。ステップS6において、薬液の拡散状態が目標値に達していると判別された場合には、処置を終了する。 The drug solution injection tube 3 is punctured into the target tissue (step S1). In step S1, it is preferable that the first ultrasonic wave generating unit 11 is arranged in the target tissue. Then, the drug solution is injected into the target tissue (step S2). The ultrasonic control unit 20 controls the irradiation conditions of the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue (step S3). In step S3, at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave generated by the first ultrasonic wave generating unit 11 is controlled. According to the irradiation conditions set in step S3, the first ultrasonic wave is irradiated to the target tissue using the first ultrasonic wave generating unit 11 (step S4). Although not essential, a two-dimensional or three-dimensional image of the target tissue may be obtained after the irradiation of the first ultrasonic wave in step S4 (step S5). It is preferable to confirm the diffusion state of the drug solution using the image obtained in step S5 (step S6). When it is determined in step S6 that the diffusion state of the chemical solution has not reached the target value, it is preferable to return to step S3 to control the irradiation conditions of the first ultrasonic wave and carry out step S4 and subsequent steps. If it is determined in step S6 that the diffusion state of the drug solution has reached the target value, the treatment is terminated.
 図1に示すように、薬液拡散システム1は、第1超音波と異なる発振周波数の第2超音波を発生させる第2超音波発生部12をさらに有していてもよい。第2超音波を対象組織に照射したときの反射波を用いて対象組織の二次元または三次元の像を形成することができる。すなわち、第2超音波を診断用の像の生成に利用することができる。 As shown in FIG. 1, the chemical diffusion system 1 may further include a second ultrasonic wave generating unit 12 that generates a second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave. A two-dimensional or three-dimensional image of the target tissue can be formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave. That is, the second ultrasonic wave can be used to generate a diagnostic image.
 第2超音波を対象組織に照射したときの反射波を用いて形成された像は、二次元の像でも三次元の像でもよい。また、上記反射波を用いて形成された像は、静止画であってもよく、動画であってもよい。 The image formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave may be a two-dimensional image or a three-dimensional image. Further, the image formed by using the reflected wave may be a still image or a moving image.
 第2超音波発生部12で発生する第2超音波の発振周波数や超音波出力は、処置の種類、薬液の種類や用量に応じて適宜設定することができる。 The oscillation frequency and ultrasonic output of the second ultrasonic wave generated by the second ultrasonic wave generating unit 12 can be appropriately set according to the type of treatment, the type and dose of the chemical solution.
 第2超音波の発振周波数は、第1超音波の発振周波数よりも高ければよく、例えば、第2超音波の発振周波数は、20MHz以上であることが好ましく、30MHz以上であることがより好ましく、40MHz以上であることがさらに好ましく、また、100MHz以下であることが好ましく、90MHz以下であることがより好ましく、80MHz以下であることがさらに好ましい。このように発振周波数を設定することにより、診断用の像の生成が行いやすくなる。 The oscillation frequency of the second ultrasonic wave may be higher than the oscillation frequency of the first ultrasonic wave. For example, the oscillation frequency of the second ultrasonic wave is preferably 20 MHz or more, more preferably 30 MHz or more. It is more preferably 40 MHz or more, more preferably 100 MHz or less, more preferably 90 MHz or less, and even more preferably 80 MHz or less. By setting the oscillation frequency in this way, it becomes easy to generate a diagnostic image.
 第2超音波の超音波出力Isptaは、30mW/cm2以上であることが好ましく、50mW/cm2以上であることがより好ましく、100mW/cm2以上であることがさらに好ましく、また、720W/cm2以下であることが好ましく、500W/cm2以下であることがより好ましく、300W/cm2以下であることがさらに好ましい。このように超音波出力を設定することにより、診断用の像の生成が行いやすくなる。 The ultrasonic output Ispta of the second ultrasonic wave is preferably 30 mW / cm 2 or more, more preferably 50 mW / cm 2 or more, further preferably 100 mW / cm 2 or more, and 720 W / cm 2 or more. preferably cm 2 or less, more preferably 500 W / cm 2 or less, and more preferably 300 W / cm 2 or less. By setting the ultrasonic output in this way, it becomes easy to generate a diagnostic image.
 第2超音波発生部12は、図1~図2に示すように薬液注入管3に設けられていてもよいが、外管5に設けられていてもよく、薬液拡散促進装置2とは別に設けられていてもよい。また、第1超音波発生部11が、第2超音波発生部12を兼ねていてもよい。つまり、第1超音波発生部11が、第1超音波と第2超音波を発生するものでもよい。 The second ultrasonic wave generating unit 12 may be provided in the chemical solution injection pipe 3 as shown in FIGS. 1 to 2, but may be provided in the outer tube 5, and is separate from the chemical solution diffusion promoting device 2. It may be provided. Further, the first ultrasonic wave generating unit 11 may also serve as the second ultrasonic wave generating unit 12. That is, the first ultrasonic wave generating unit 11 may generate the first ultrasonic wave and the second ultrasonic wave.
 その他、第2超音波発生部12の構成としては、第1超音波発生部11の説明を参照することができる。 In addition, as the configuration of the second ultrasonic wave generating unit 12, the description of the first ultrasonic wave generating unit 11 can be referred to.
 第2超音波を対象組織に照射したときの反射波を用いて形成された二次元または三次元の像に応じて、超音波制御部20は、薬液注入管3に供給される薬液の種類または量を制御することが好ましい。これにより、対象組織に対して適切に薬液を投与することができる。 Depending on the two-dimensional or three-dimensional image formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave, the ultrasonic control unit 20 determines the type of the chemical solution supplied to the chemical solution injection tube 3 or It is preferable to control the amount. As a result, the drug solution can be appropriately administered to the target tissue.
 図1に示すように、薬液拡散システム1は、超音波制御部20に接続されており、第2超音波を対象組織に照射したときの反射波を用いて像を形成する像形成部23と、超音波制御部20に接続されており、像形成部23により形成された像を記憶する記憶部25と、をさらに有していることが好ましい。第2超音波を対象組織に照射したときの反射波を用いて形成された像により、薬液注入前、薬液注入後、照射後等の対象組織の状態が可視化され、診断に利用することができる。また、記憶部25に診断用の像が記憶されることにより、後述する処理部でのデータ処理に際し、データの読み出しが適宜可能となるため、処置の妥当性の検証やさらなる治療方針の策定等に資することができる。 As shown in FIG. 1, the chemical diffusion system 1 is connected to the ultrasonic control unit 20 and has an image forming unit 23 that forms an image using the reflected wave when the target tissue is irradiated with the second ultrasonic wave. , It is preferable to further have a storage unit 25 which is connected to the ultrasonic control unit 20 and stores an image formed by the image forming unit 23. The image formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave visualizes the state of the target tissue before, after the injection of the chemical solution, after the irradiation, etc., and can be used for diagnosis. .. Further, since the image for diagnosis is stored in the storage unit 25, the data can be appropriately read out when the data is processed in the processing unit described later, so that the validity of the treatment can be verified and a further treatment policy can be formulated. Can contribute to.
 像形成部23は、第2超音波を対象組織に照射したときの反射波を用いて対象組織の二次元または三次元の像を形成する。像形成部23は、記憶部25に接続されていることが好ましい。これにより、像形成部23で形成された像を記憶部25に送信することができるため、照射条件を設定する際に記憶部25から像を読み出すことが可能となる。なお、薬液拡散システム1に好ましく設けられるプロセッサが像形成部23のプログラムを実行してもよい。図示していないが、像形成部23は、後述する処理部30に接続されていてもよい。これにより、処理部30において、像形成部23で形成された像を用いて、像同士の比較などの対象組織の状態の把握に必要な処理を行うことができる。 The image forming unit 23 forms a two-dimensional or three-dimensional image of the target tissue by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave. The image forming unit 23 is preferably connected to the storage unit 25. As a result, the image formed by the image forming unit 23 can be transmitted to the storage unit 25, so that the image can be read out from the storage unit 25 when the irradiation conditions are set. A processor preferably provided in the chemical solution diffusion system 1 may execute the program of the image forming unit 23. Although not shown, the image forming unit 23 may be connected to a processing unit 30 described later. As a result, the processing unit 30 can perform processing necessary for grasping the state of the target tissue, such as comparison between images, using the image formed by the image forming unit 23.
 記憶部25は、コンピュータに含まれるRAMやROMなどの主記憶装置やハードディスク等の補助記憶装置であってもよい。 The storage unit 25 may be a main storage device such as a RAM or ROM included in the computer, or an auxiliary storage device such as a hard disk.
 図示していないが、薬液拡散システム1は、第2超音波を対象組織に照射したときの反射波を受信する受信部と、該受信部に接続されており、第2超音波を対象組織に照射したときの反射波を用いて形成された像を表示する表示部とをさらに有していてもよい。その場合、像形成部23は受信部に接続されていることが好ましい。これにより、受信部を通じて第2超音波を対象組織に照射したときの反射波を像形成部23に送信することができる。 Although not shown, the chemical diffusion system 1 is connected to a receiving unit that receives the reflected wave when the target tissue is irradiated with the second ultrasonic wave, and the second ultrasonic wave is applied to the target tissue. It may further have a display unit for displaying an image formed by using the reflected wave when irradiated. In that case, the image forming unit 23 is preferably connected to the receiving unit. As a result, the reflected wave when the target tissue is irradiated with the second ultrasonic wave through the receiving unit can be transmitted to the image forming unit 23.
 図1に示すように、薬液拡散システム1は、超音波制御部20に接続されている処理部30をさらに有していることが好ましい。これにより、処理部30で対象組織の状態を把握するための演算や比較等の各種処理を行うことができる。 As shown in FIG. 1, it is preferable that the chemical solution diffusion system 1 further has a processing unit 30 connected to the ultrasonic control unit 20. As a result, the processing unit 30 can perform various processes such as calculation and comparison for grasping the state of the target organization.
 処理部30は、薬液注入前の対象組織の像と、薬液注入後の対象組織の像とを比較するものであり、超音波制御部20は、処理部30での比較結果を用いて、第1超音波の照射条件を制御することが好ましい。これにより、薬液注入前後の対象組織の状態の比較結果に基づき、適切な照射条件を設定することが可能となる。 The processing unit 30 compares the image of the target tissue before the injection of the chemical solution with the image of the target tissue after the injection of the chemical solution, and the ultrasonic control unit 20 uses the comparison result of the processing unit 30 to make a first comparison. 1 It is preferable to control the ultrasonic irradiation conditions. This makes it possible to set appropriate irradiation conditions based on the comparison result of the state of the target tissue before and after the injection of the drug solution.
 処理部30は、薬液注入前の対象組織の像と、薬液注入後であって第1超音波の照射後の対象組織の像とを比較するものであり、超音波制御部20は、処理部30での比較結果を用いて第1超音波の照射条件を制御することが好ましい。これにより、薬液注入前と、薬液注入後であって第1超音波の照射後の対象組織の状態の比較結果に基づき、追加の第1超音波の照射が必要であるか否かを判別することができる。 The processing unit 30 compares the image of the target tissue before the chemical solution injection with the image of the target tissue after the chemical solution injection and after the irradiation of the first ultrasonic wave, and the ultrasonic control unit 20 is the processing unit. It is preferable to control the irradiation condition of the first ultrasonic wave by using the comparison result in No. 30. Thereby, based on the comparison result of the state of the target tissue before the injection of the chemical solution and after the injection of the chemical solution and after the irradiation of the first ultrasonic wave, it is determined whether or not the irradiation of the additional first ultrasonic wave is necessary. be able to.
 処理部30は、薬液注入後であって第1超音波の照射前の対象組織の像と、薬液注入後であって第1超音波の照射後の対象組織の像を比較するものであり、超音波制御部20は、処理部30での比較結果を用いて第1超音波の照射条件を制御することが好ましい。これにより、薬液注入後であって第1超音波の照射前後の対象組織の状態の比較結果に基づき、追加の第1超音波の照射が必要であるか否かを判別することができる。 The processing unit 30 compares the image of the target tissue after the injection of the chemical solution and before the irradiation of the first ultrasonic wave with the image of the target tissue after the injection of the chemical solution and after the irradiation of the first ultrasonic wave. It is preferable that the ultrasonic control unit 20 controls the irradiation conditions of the first ultrasonic wave by using the comparison result of the processing unit 30. Thereby, based on the comparison result of the state of the target tissue after the injection of the chemical solution and before and after the irradiation of the first ultrasonic wave, it is possible to determine whether or not the irradiation of the additional first ultrasonic wave is necessary.
 処理部30は、薬液注入後であってn回目の第1超音波の照射後の対象組織の像と、薬液注入後であってn+1回目の第1超音波の照射後の対象組織の像とを比較するものであり、超音波制御部20は、処理部30での比較結果を用いて、n+2回目の第1超音波の照射条件を制御することが好ましい。なお、nは、1以上の整数である。これにより、対象組織の状態に合わせて、n+2回目の第1超音波の照射条件を適切に設定することができる。 The processing unit 30 includes an image of the target tissue after the injection of the chemical solution and after the nth irradiation of the first ultrasonic wave, and an image of the target tissue after the injection of the chemical solution and after the n + 1th irradiation of the first ultrasonic wave. It is preferable that the ultrasonic control unit 20 controls the irradiation condition of the first ultrasonic wave n + 2 by using the comparison result in the processing unit 30. Note that n is an integer of 1 or more. Thereby, the irradiation condition of the n + 2nd first ultrasonic wave can be appropriately set according to the state of the target tissue.
 図9は、図1に示した薬液拡散システム1における処置フローの他の例を示す図を表す。図1の薬液拡散システム1を用いて、以下手順の処置を行ってもよい。なお、図9に示したフローは、第2超音波発生部12によって第2超音波を発生し、第2超音波を対象組織に照射したときの反射波を用いて二次元または三次元の像を形成し、形成した像を第1超音波の照射条件の制御や薬液の拡散状態の判別に用いる点で、図8に示したフローと異なっている。 FIG. 9 shows another example of the treatment flow in the drug solution diffusion system 1 shown in FIG. Using the drug solution diffusion system 1 of FIG. 1, the following procedure may be performed. The flow shown in FIG. 9 is a two-dimensional or three-dimensional image using the reflected wave when the second ultrasonic wave is generated by the second ultrasonic wave generating unit 12 and the second ultrasonic wave is applied to the target tissue. The flow is different from that shown in FIG. 8 in that the formed image is used for controlling the irradiation condition of the first ultrasonic wave and determining the diffusion state of the chemical solution.
 薬液注入管3を対象組織に穿刺する(ステップS11)。ステップS11において、第1超音波発生部11および第2超音波発生部12が対象組織内に配置されることが好ましい。次いで第2超音波発生部12によって第2超音波を発生し、第2超音波を対象組織に照射したときの反射波を用いて二次元または三次元の像を形成する(ステップS12)。これにより、薬液注入前の対象組織の状態を可視化することができる。薬液を対象組織に注入する(ステップS13)。必要に応じて、第2超音波発生部12によって第2超音波を発生し、第2超音波を対象組織に照射したときの反射波を用いて、薬液注入後の対象組織の二次元または三次元の像を形成してもよい(ステップS14)。超音波制御部20で、薬液注入前と薬液注入後の少なくともいずれかにおける対象組織の二次元または三次元の像に応じて第1超音波の照射条件を制御することが好ましい(ステップS15)。ステップS15で設定された照射条件に従って、第1超音波発生部11を用いて第1超音波を対象組織に照射する(ステップS16)。第2超音波発生部12によって第2超音波を発生し、第2超音波を対象組織に照射したときの反射波を用いて、薬液注入後であって第1超音波の照射後の対象組織の二次元または三次元の像を形成する(ステップS17)。ステップS17で形成した像を用いて、薬液の拡散状態を確認することが好ましい(ステップS18)。ステップS18において、薬液の拡散状態が目標値に達していないと判別された場合には、ステップS15に戻って第1超音波の照射条件を制御し、ステップS16以降を実施することが好ましい。ステップS18において、薬液の拡散状態が目標値に薬液の拡散状態が目標値に達していると判別された場合には、処置を終了する。 The drug solution injection tube 3 is punctured into the target tissue (step S11). In step S11, it is preferable that the first ultrasonic wave generating unit 11 and the second ultrasonic wave generating unit 12 are arranged in the target tissue. Next, the second ultrasonic wave generation unit 12 generates a second ultrasonic wave, and a two-dimensional or three-dimensional image is formed by using the reflected wave when the target tissue is irradiated with the second ultrasonic wave (step S12). This makes it possible to visualize the state of the target tissue before injecting the drug solution. The drug solution is injected into the target tissue (step S13). If necessary, the second ultrasonic wave is generated by the second ultrasonic wave generator 12, and the reflected wave when the second ultrasonic wave is applied to the target tissue is used to make the target tissue two-dimensional or tertiary after the injection of the chemical solution. The original image may be formed (step S14). It is preferable that the ultrasonic control unit 20 controls the irradiation condition of the first ultrasonic wave according to the two-dimensional or three-dimensional image of the target tissue at least before or after the drug solution injection (step S15). According to the irradiation conditions set in step S15, the first ultrasonic wave is irradiated to the target tissue using the first ultrasonic wave generating unit 11 (step S16). The second ultrasonic wave is generated by the second ultrasonic wave generating unit 12, and the reflected wave when the second ultrasonic wave is irradiated to the target tissue is used to inject the chemical solution and the target tissue after the irradiation of the first ultrasonic wave. Form a two-dimensional or three-dimensional image of (step S17). It is preferable to confirm the diffusion state of the drug solution using the image formed in step S17 (step S18). When it is determined in step S18 that the diffusion state of the chemical solution has not reached the target value, it is preferable to return to step S15 to control the irradiation conditions of the first ultrasonic wave and carry out step S16 and subsequent steps. In step S18, when it is determined that the diffusion state of the drug solution has reached the target value and the diffusion state of the drug solution has reached the target value, the treatment is terminated.
 図10は、図1に示した薬液拡散システム1における処置フローの他の例を示す図を表す。図1の薬液拡散システム1を用いて、以下手順の処置を行ってもよい。 FIG. 10 shows another example of the treatment flow in the drug solution diffusion system 1 shown in FIG. Using the drug solution diffusion system 1 of FIG. 1, the following procedure may be performed.
 図10に示したステップS21~ステップS27は、図9に示したステップS11~ステップS17と同様のため説明を省略する。図10に示すように、ステップS27の後は、処理部30において、ステップS22で形成した薬液注入前の対象組織の二次元または三次元の像と、ステップS27で形成した薬液注入後であって第1超音波の照射後の対象組織の二次元または三次元の像を比較する(ステップS28)。ステップ28において、像の比較結果に基づき、薬液の拡散状態が目標値に達していないと判別された場合には、ステップS25に戻って第1超音波の照射条件を制御し、ステップS26以降を実施することが好ましい。ステップS28において、像の比較結果に基づき、薬液の拡散状態が目標値に達していると判別された場合には、処置を終了する。 Since steps S21 to S27 shown in FIG. 10 are the same as steps S11 to S17 shown in FIG. 9, description thereof will be omitted. As shown in FIG. 10, after step S27, in the processing unit 30, a two-dimensional or three-dimensional image of the target tissue formed in step S22 before injection of the chemical solution and after injection of the chemical solution formed in step S27. The two-dimensional or three-dimensional images of the target tissue after irradiation with the first ultrasonic waves are compared (step S28). In step 28, when it is determined that the diffusion state of the chemical solution has not reached the target value based on the comparison result of the images, the process returns to step S25 to control the irradiation condition of the first ultrasonic wave, and steps S26 and subsequent steps are performed. It is preferable to carry out. In step S28, when it is determined that the diffusion state of the drug solution has reached the target value based on the comparison result of the images, the treatment is terminated.
 図11は、図1に示した薬液拡散システム1の変形例を示すブロック図を表す。図11に示すように、第2超音波発生部12は薬液注入管3の外に設けられていてもよい。すなわち、薬液拡散システム1が、薬液拡散促進装置2とは別に、第2超音波発生部12を有する診断用超音波発生装置を有していてもよい。図11の薬液拡散システム1でも、図1の薬液拡散システム1と同様の流れで処置を行うことができる。なお、図11では示していないが、薬液拡散システム1は像形成部23を有していてもよい。以降に示す態様についても同様である。 FIG. 11 shows a block diagram showing a modified example of the chemical solution diffusion system 1 shown in FIG. As shown in FIG. 11, the second ultrasonic wave generating unit 12 may be provided outside the chemical injection pipe 3. That is, the chemical solution diffusion system 1 may have a diagnostic ultrasonic wave generator having a second ultrasonic wave generator 12 in addition to the chemical solution diffusion promoting device 2. In the chemical solution diffusion system 1 of FIG. 11, the treatment can be performed in the same flow as the chemical solution diffusion system 1 of FIG. Although not shown in FIG. 11, the chemical solution diffusion system 1 may have an image forming portion 23. The same applies to the aspects shown below.
 図12を参照しながら、図1や図11とは異なる構成の薬液拡散システム1について説明する。図12は、図1に示した薬液拡散システム1の他の変形例を示すブロック図を表す。図12に示すように、薬液拡散システム1は、薬液注入管3と、超音波制御部20と、処理部30と、超音波制御部20に接続されているデータ格納部35を有していてもよい。データ格納部35には、第1超音波の照射条件の設定に必要な参照用のデータを格納することができる。データ格納部35は、記憶部25と同様に、コンピュータに含まれるRAMやROMなどの主記憶装置やハードディスク等の補助記憶装置であってもよい。すなわち、主記憶装置や補助記憶装置に記憶部25やデータ格納部35を設けることができる。 With reference to FIG. 12, a chemical solution diffusion system 1 having a configuration different from that of FIGS. 1 and 11 will be described. FIG. 12 shows a block diagram showing another modification of the drug solution diffusion system 1 shown in FIG. As shown in FIG. 12, the chemical solution diffusion system 1 has a chemical solution injection pipe 3, an ultrasonic control unit 20, a processing unit 30, and a data storage unit 35 connected to the ultrasonic control unit 20. May be good. The data storage unit 35 can store reference data necessary for setting the irradiation conditions of the first ultrasonic wave. Like the storage unit 25, the data storage unit 35 may be a main storage device such as a RAM or ROM included in the computer, or an auxiliary storage device such as a hard disk. That is, the storage unit 25 and the data storage unit 35 can be provided in the main storage device and the auxiliary storage device.
 データ格納部35には、腫瘍の種類に応じた薬液の拡散パターンのデータを備えた拡散パターンテーブルが格納されていることが好ましい。その場合、処理部30は、拡散パターンテーブルの参照結果と、薬液注入後であって第1超音波の照射後の対象組織の像とを比較するものであり、超音波制御部20は、処理部30での比較結果を用いて第1超音波の照射条件を制御することが好ましい。これにより、拡散パターンテーブルの参照結果と、薬液注入後であって第1超音波の照射後の対象組織の状態の比較結果に基づき、追加の第1超音波の照射が必要であるか否かを判別することができる。 It is preferable that the data storage unit 35 stores a diffusion pattern table containing data on the diffusion pattern of the drug solution according to the type of tumor. In that case, the processing unit 30 compares the reference result of the diffusion pattern table with the image of the target tissue after the injection of the chemical solution and after the irradiation of the first ultrasonic wave, and the ultrasonic control unit 20 processes. It is preferable to control the irradiation condition of the first ultrasonic wave by using the comparison result in the part 30. As a result, whether or not additional first ultrasonic wave irradiation is necessary based on the reference result of the diffusion pattern table and the comparison result of the state of the target tissue after the chemical solution injection and after the first ultrasonic wave irradiation. Can be determined.
 拡散パターンテーブルに格納されている腫瘍の種類のデータとしては、腫瘍が形成されている部位、形状、大きさ、広がり、硬さ等が挙げられる。 The tumor type data stored in the diffusion pattern table includes the site where the tumor is formed, the shape, the size, the spread, the hardness, and the like.
 拡散パターンテーブルに格納されている薬液の拡散パターンのデータとしては、過去の症例において、腫瘍に薬液を注入する前に、診断用の超音波を対象組織に照射したときの反射波を用いて形成された二次元または三次元の像が挙げられる。 The diffusion pattern data of the drug solution stored in the diffusion pattern table is formed by using the reflected wave when the target tissue is irradiated with ultrasonic waves for diagnosis before injecting the drug solution into the tumor in the past cases. A two-dimensional or three-dimensional image of the image can be mentioned.
 図12に示すように、薬液拡散システム1は、記憶部25と、データ格納部35を有していてもよい。これにより、記憶部25に記憶された像と、データ格納部35に格納されているデータを比較する処理が可能となる。 As shown in FIG. 12, the chemical solution diffusion system 1 may have a storage unit 25 and a data storage unit 35. This makes it possible to compare the image stored in the storage unit 25 with the data stored in the data storage unit 35.
 図12に示すように、薬液拡散システム1は、薬液注入管3の近位部に接続され、薬液注入管3内に薬液を供給する液体供給部40と、超音波制御部20に接続されているデータ格納部35と、をさらに有していてもよい。その場合、データ格納部35は、薬液の種類のデータを備えた薬液テーブルと、過去に診断された腫瘍の状態を示すデータを備えた腫瘍テーブルと、を有し、超音波制御部20は、腫瘍テーブルの参照結果に基づき、薬液テーブルから薬液の種類を選択して、液体供給部40に対して、選択された種類の薬液を薬液注入管3内に供給する指令信号を発することが好ましい。これにより、腫瘍の種類に合った適切な薬液の種類を選択することができるため、薬液拡散効果をより一層高めることができる。 As shown in FIG. 12, the chemical solution diffusion system 1 is connected to a proximal portion of the chemical solution injection pipe 3 and is connected to a liquid supply unit 40 for supplying the chemical solution into the chemical solution injection tube 3 and an ultrasonic control unit 20. It may further have a data storage unit 35 and the like. In that case, the data storage unit 35 has a drug solution table containing data on the type of the drug solution, and a tumor table containing data indicating the state of the tumor diagnosed in the past, and the ultrasonic control unit 20 has the ultrasonic control unit 20. It is preferable to select the type of the drug solution from the drug solution table based on the reference result of the tumor table and issue a command signal to the liquid supply unit 40 to supply the selected type of drug solution into the drug solution injection tube 3. As a result, an appropriate type of drug solution suitable for the type of tumor can be selected, so that the drug solution diffusion effect can be further enhanced.
 液体供給部40は、薬液注入管3の内腔3bに薬液を供給するための部材であり、例えば、シリンジ、またはモーターで制御される注入ポンプを用いることができる。 The liquid supply unit 40 is a member for supplying the chemical solution to the cavity 3b of the chemical solution injection tube 3, and for example, an injection pump controlled by a syringe or a motor can be used.
 図12に示すように、薬液拡散システム1がデータ格納部35を有している場合、データ格納部35は、第1超音波の発振周波数のデータを備えた周波数テーブルをさらに有することが好ましい。その場合、超音波制御部20は、腫瘍テーブルの参照結果に基づき、周波数テーブルから第1超音波の発振周波数の値を選択して、第1超音波発生部11に対して、選択された発振周波数の第1超音波を発生する指令信号を発することが好ましい。これにより、腫瘍の種類に合った適切な第1超音波の発振周波数を選択することができるため、対象組織内での薬液拡散効果をより一層高めることができる。 As shown in FIG. 12, when the chemical solution diffusion system 1 has a data storage unit 35, it is preferable that the data storage unit 35 further has a frequency table including data of the oscillation frequency of the first ultrasonic wave. In that case, the ultrasonic control unit 20 selects the value of the oscillation frequency of the first ultrasonic wave from the frequency table based on the reference result of the tumor table, and the selected oscillation with respect to the first ultrasonic wave generation unit 11. It is preferable to emit a command signal that generates a first ultrasonic wave of frequency. As a result, an appropriate oscillation frequency of the first ultrasonic wave can be selected according to the type of tumor, so that the drug solution diffusion effect in the target tissue can be further enhanced.
 図13は、図12に示した薬液拡散システム1における処置フローの一例を示す図を表す。図12の薬液拡散システム1を用いて、以下手順の処置を行うことができる。 FIG. 13 shows an example of the treatment flow in the drug solution diffusion system 1 shown in FIG. Using the drug solution diffusion system 1 of FIG. 12, the following procedure can be performed.
 図13に示したステップS31~ステップS37は、図9に示したステップS11~ステップS17と同様のため説明を省略する。図13に示すフローにおいて、図9のフローと異なっているのは、処理部30において、データ格納部35に格納されている腫瘍の種類に応じた薬液の拡散パターンのデータを備えた拡散パターンテーブルの参照結果と、ステップS37で形成した薬液注入後かつ第1超音波照射後の像を比較しているところである(ステップS38)。ステップS38での比較結果に基づき、薬液の拡散状態が目標値に達していないと判別された場合には、ステップS35に戻って第1超音波の照射条件を制御し、ステップS36以降を実施することが好ましい。ステップS38での比較結果に基づき、薬液の拡散状態が目標値に達していると判別された場合には、処置を終了する。 Since steps S31 to S37 shown in FIG. 13 are the same as steps S11 to S17 shown in FIG. 9, description thereof will be omitted. The flow shown in FIG. 13 differs from the flow of FIG. 9 in that the processing unit 30 has a diffusion pattern table provided with data on the diffusion pattern of the drug solution according to the type of tumor stored in the data storage unit 35. The reference result of (step S38) is being compared with the image formed in step S37 after injection of the chemical solution and after irradiation with the first ultrasonic wave (step S38). If it is determined that the diffusion state of the drug solution has not reached the target value based on the comparison result in step S38, the process returns to step S35 to control the irradiation condition of the first ultrasonic wave, and steps S36 and subsequent steps are performed. Is preferable. If it is determined that the diffusion state of the drug solution has reached the target value based on the comparison result in step S38, the treatment is terminated.
 図14を参照しながら、図1や図11とは異なる構成の薬液拡散システム1について説明する。図14は、図1に示した薬液拡散システム1のさらに他の変形例を示すブロック図を表す。図14に示すように、薬液拡散システム1は、超音波制御部20に接続されている計測部45をさらに有していてもよい。その場合、計測部45は、薬液注入前の像から、腫瘍の形状、大きさ、広がりおよび硬さの少なくともいずれか1つを計測するものであり、超音波制御部20は、計測部45での計測結果を用いて第1超音波の照射条件を制御することが好ましい。これにより、腫瘍の状態に合わせて適切に第1超音波の照射条件を設定することができるため、対象組織内での薬液拡散効果を高めることができる。 With reference to FIG. 14, a chemical solution diffusion system 1 having a configuration different from that of FIGS. 1 and 11 will be described. FIG. 14 shows a block diagram showing still another modification of the drug solution diffusion system 1 shown in FIG. As shown in FIG. 14, the chemical solution diffusion system 1 may further include a measuring unit 45 connected to the ultrasonic control unit 20. In that case, the measuring unit 45 measures at least one of the shape, size, spread, and hardness of the tumor from the image before the injection of the drug solution, and the ultrasonic control unit 20 is the measuring unit 45. It is preferable to control the irradiation condition of the first ultrasonic wave by using the measurement result of. As a result, the irradiation conditions of the first ultrasonic wave can be appropriately set according to the state of the tumor, so that the effect of diffusing the drug solution in the target tissue can be enhanced.
 計測部45は、薬液注入前の対象組織の二次元または三次元の像を用いて、第1超音波を照射する前の腫瘍の形状、大きさ、広がりおよび硬さを解析する部分であることが好ましい。その場合、薬液拡散システム1に好ましく設けられるプロセッサが計測部45のプログラムを実行してもよい。 The measuring unit 45 is a part that analyzes the shape, size, spread, and hardness of the tumor before irradiation with the first ultrasonic wave by using a two-dimensional or three-dimensional image of the target tissue before injecting the drug solution. Is preferable. In that case, a processor preferably provided in the chemical solution diffusion system 1 may execute the program of the measuring unit 45.
 計測部45は、腫瘍の形状、大きさ等の各種パラメータを直接計測する機器であってもよい。例えば、腫瘍の硬さを直接計測する機器としては、例えば、超音波硬さ計を挙げることができる。第1超音波発生部11が第1超音波とは異なる、硬さの測定に適した範囲の周波数の超音波を発生させることにより、第1超音波発生部11が計測部45を兼ねる構成とすることができる。 The measuring unit 45 may be a device that directly measures various parameters such as the shape and size of the tumor. For example, as a device for directly measuring the hardness of a tumor, for example, an ultrasonic hardness meter can be mentioned. By generating ultrasonic waves having a frequency in a range suitable for measuring hardness, which is different from the first ultrasonic wave, the first ultrasonic wave generating unit 11 also serves as the measuring unit 45. can do.
 薬液拡散システム1が、超音波制御部20に接続されている計測部45をさらに有している場合、計測部45は、薬液注入前の像から、腫瘍の形状、大きさ、広がりおよび硬さの少なくともいずれか1つを計測するものであり、超音波制御部20は、計測部45での腫瘍の計測結果を用いて、第1超音波発生部11に対して、薬液注入管3の周方向の位置によって第1超音波の強度と発振周波数の少なくともいずれか一方を変化させる指令信号を発することが好ましい。これにより、腫瘍の状態に合わせて適切に第1超音波の照射条件を設定することができるため、対象組織内での薬液拡散効果をより一層高めることができる。 When the drug solution diffusion system 1 further has a measurement unit 45 connected to the ultrasonic control unit 20, the measurement unit 45 shows the shape, size, spread and hardness of the tumor from the image before the drug solution injection. The ultrasonic control unit 20 measures the circumference of the drug solution injection tube 3 with respect to the first ultrasonic wave generating unit 11 by using the measurement result of the tumor in the measuring unit 45. It is preferable to emit a command signal that changes at least one of the intensity of the first ultrasonic wave and the oscillation frequency depending on the position in the direction. As a result, the irradiation conditions of the first ultrasonic wave can be appropriately set according to the state of the tumor, so that the effect of diffusing the drug solution in the target tissue can be further enhanced.
 薬液注入管3の周方向において、腫瘍が硬いほど第1超音波発生部11で発生する超音波の強度を大きくしてもよい。これにより、薬液が腫瘍の硬い部分に行き渡りやすくなるため、薬液による治療効果を高めることができる。 In the circumferential direction of the drug solution injection tube 3, the harder the tumor, the stronger the intensity of the ultrasonic waves generated by the first ultrasonic wave generating unit 11. This makes it easier for the drug solution to spread to the hard part of the tumor, so that the therapeutic effect of the drug solution can be enhanced.
 図14に示すように、薬液拡散システム1は、第1超音波と異なる発振周波数であって対象組織を加熱するための第3超音波を発生させる第3超音波発生部13をさらに有していることが好ましい。温熱効果の発現により、対象組織内での薬液拡散効果や免疫増強効果をより一層高めることができる。 As shown in FIG. 14, the chemical diffusion system 1 further includes a third ultrasonic wave generating unit 13 that generates a third ultrasonic wave for heating the target tissue at an oscillation frequency different from that of the first ultrasonic wave. It is preferable to have. By the manifestation of the thermal effect, the drug solution diffusion effect and the immunity enhancing effect in the target tissue can be further enhanced.
 第3超音波の発振周波数や超音波出力は、処置の種類、薬液の種類や用量に応じて適宜設定することができる。例えば、第3超音波の発振周波数は、第2超音波の発振周波数よりも低ければよく、例えば、10kHz以上、100kHz以上、あるいは1MHz以上、また、100MHz以下、10MHz以下、5MHz以下に設定することも許容される。このように発振周波数を設定することによって温熱効果を発現することができる。 The oscillation frequency and ultrasonic output of the third ultrasonic wave can be appropriately set according to the type of treatment, the type and dose of the drug solution. For example, the oscillation frequency of the third ultrasonic wave may be lower than the oscillation frequency of the second ultrasonic wave, and is set to, for example, 10 kHz or more, 100 kHz or more, or 1 MHz or more, and 100 MHz or less, 10 MHz or less, 5 MHz or less. Is also acceptable. By setting the oscillation frequency in this way, the thermal effect can be exhibited.
 その他、第3超音波発生部13の構成としては、第1超音波発生部11の説明を参照することができる。 In addition, as the configuration of the third ultrasonic wave generating unit 13, the description of the first ultrasonic wave generating unit 11 can be referred to.
 第1超音波発生部11が、第1超音波と異なる発振周波数の第2超音波を発生させる第2超音波発生部12と、第3超音波発生部13を兼ねていてもよい。すなわち、第1超音波発生部11が、第1超音波と、第1超音波と異なる発振周波数であって診断用の像形成に用いる第2超音波と、第1超音波と異なる発振周波数であって対象組織を加熱するための第3超音波を発生させてもよい。これにより、第1超音波(治療用超音波)、第2超音波(診断用超音波)、第3超音波(温熱用超音波)を発生させるために個別に超音波発生部を設ける必要がない。 The first ultrasonic wave generating unit 11 may also serve as a second ultrasonic wave generating unit 12 for generating a second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave and a third ultrasonic wave generating unit 13. That is, the first ultrasonic wave generating unit 11 has an oscillation frequency different from that of the first ultrasonic wave, the first ultrasonic wave, and the second ultrasonic wave used for image formation for diagnosis, and an oscillation frequency different from the first ultrasonic wave. A third ultrasonic wave may be generated to heat the target tissue. As a result, it is necessary to individually provide ultrasonic generators in order to generate the first ultrasonic waves (therapeutic ultrasonic waves), the second ultrasonic waves (diagnostic ultrasonic waves), and the third ultrasonic waves (thermal ultrasonic waves). Absent.
 図14に示すように、薬液拡散システム1は、薬液注入管3の近位部に接続され、薬液注入管3内に薬液を供給する液体供給部40と、液体供給部40に接続されており、薬液を冷却させる冷却部50と、を有していることが好ましい。これにより、冷却部50によって温度が調整された薬液を薬液注入管3内に供給することができるため、薬液の過度な加熱を防ぐことができる。 As shown in FIG. 14, the chemical solution diffusion system 1 is connected to a proximal portion of the chemical solution injection pipe 3 and is connected to a liquid supply unit 40 for supplying the chemical solution into the chemical solution injection pipe 3 and a liquid supply unit 40. It is preferable to have a cooling unit 50 for cooling the chemical solution. As a result, the chemical solution whose temperature has been adjusted by the cooling unit 50 can be supplied into the chemical solution injection pipe 3, so that excessive heating of the chemical solution can be prevented.
 冷却部50は、薬液を直接冷やしてもよいが、薬液が収納されている容器を冷やすことが好ましい。冷却部50としては、容器の周囲にフィンを形成して、送風機により空冷する冷却器、ヒートポンプ型の冷却器、ペルチェ素子による冷却器等を用いることができる。 The cooling unit 50 may directly cool the chemical solution, but it is preferable to cool the container in which the chemical solution is stored. As the cooling unit 50, a cooler having fins formed around the container and air-cooled by a blower, a heat pump type cooler, a cooler using a Peltier element, or the like can be used.
 本願は、2019年11月18日に出願された日本国特許出願第2019-207836号および日本国特許出願第2019-207837号に基づく優先権の利益を主張するものである。2019年11月18日に出願された日本国特許出願第2019-207836号および日本国特許出願第2019-207837号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2019-207836 and Japanese Patent Application No. 2019-207837 filed on November 18, 2019. The entire contents of the specification of Japanese Patent Application No. 2019-207836 and Japanese Patent Application No. 2019-207837 filed on November 18, 2019 are incorporated herein by reference.
1:薬液拡散システム
2:薬液拡散促進装置
3:薬液注入管
3a:穿刺部、3b:内腔、3c:開口、3d:側壁部、3e:開口縁、3f:長手軸中心、3g:凹部
4:内挿部材
4A:シャフト、4B:支持部材
5:外管
9:第1把持部
10:第2把持部
11:第1超音波発生部
11A:振動子、11AB:一振動子型探触子の振動子、11B:吸音材、11C:音響整合層、11d:回転軸
12:第2超音波発生部
13:第3超音波発生部
20:超音波制御部
23:像形成部
25:記憶部
30:処理部
35:データ格納部
40:液体供給部
45:計測部
50:冷却部
100:腫瘍
101:外縁
x:第1超音波の強度
1: Chemical solution diffusion system 2: Chemical solution diffusion promoting device 3: Chemical solution injection tube 3a: puncture part, 3b: lumen, 3c: opening, 3d: side wall part, 3e: opening edge, 3f: longitudinal axis center, 3g: recess 4 : Insertion member 4A: Shaft, 4B: Support member 5: Outer tube 9: First gripping part 10: Second gripping part 11: First ultrasonic wave generating part 11A: Transducer, 11AB: Single oscillator type probe 11B: Sound absorbing material, 11C: Acoustic matching layer, 11d: Rotating shaft 12: Second ultrasonic wave generating unit 13: Third ultrasonic wave generating unit 20: Ultrasonic wave control unit 23: Image forming unit 25: Storage unit 30: Processing unit 35: Data storage unit 40: Liquid supply unit 45: Measurement unit 50: Cooling unit 100: Tumor 101: Outer edge x: Intensity of first ultrasonic wave

Claims (20)

  1.  薬液を生体内の対象組織に拡散するための薬液拡散システムであって、
     対象組織に穿刺される薬液注入管と、
     前記薬液注入管に設けられており、前記薬液を拡散させるための第1超音波を発生する第1超音波発生部と、
     該第1超音波発生部に接続され、対象組織の二次元または三次元の像に応じて前記第1超音波の照射条件を制御する超音波制御部と、を有し、
     前記超音波制御部は、前記第1超音波発生部で発生する前記第1超音波の伝搬方向、強度および発振周波数の少なくともいずれか1つを制御する薬液拡散システム。
    A drug solution diffusion system for diffusing a drug solution into a target tissue in the living body.
    A drug solution injection tube that punctures the target tissue,
    A first ultrasonic wave generating unit provided in the chemical injection tube and generating a first ultrasonic wave for diffusing the chemical solution, and a first ultrasonic wave generating unit.
    It has an ultrasonic control unit that is connected to the first ultrasonic wave generation unit and controls the irradiation conditions of the first ultrasonic wave according to a two-dimensional or three-dimensional image of the target tissue.
    The ultrasonic control unit is a chemical diffusion system that controls at least one of the propagation direction, intensity, and oscillation frequency of the first ultrasonic wave generated by the first ultrasonic wave generation unit.
  2.  前記第1超音波と異なる発振周波数の第2超音波を発生させる第2超音波発生部と、
     前記超音波制御部に接続されており、前記第2超音波を対象組織に照射したときの反射波を用いて前記像を形成する像形成部と、
     前記超音波制御部に接続されており、前記像形成部により形成された前記像を記憶する記憶部と、をさらに有する請求項1に記載の薬液拡散システム。
    A second ultrasonic wave generator that generates a second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave,
    An image forming unit connected to the ultrasonic control unit and forming the image using the reflected wave when the target tissue is irradiated with the second ultrasonic wave, and an image forming unit.
    The chemical diffusion system according to claim 1, further comprising a storage unit connected to the ultrasonic control unit and storing the image formed by the image forming unit.
  3.  前記超音波制御部に接続されている処理部をさらに有し、
     前記処理部は、薬液注入前の対象組織の前記像と、薬液注入後であって前記第1超音波の照射後の対象組織の前記像とを比較するものであり、
     前記超音波制御部は、前記処理部での比較結果を用いて前記第1超音波の照射条件を制御する請求項1または2に記載の薬液拡散システム。
    Further having a processing unit connected to the ultrasonic control unit,
    The processing unit compares the image of the target tissue before injection of the chemical solution with the image of the target tissue after injection of the chemical solution and after irradiation with the first ultrasonic wave.
    The chemical diffusion system according to claim 1 or 2, wherein the ultrasonic control unit controls the irradiation conditions of the first ultrasonic wave by using the comparison result in the processing unit.
  4.  前記超音波制御部にそれぞれ接続されているデータ格納部と処理部とをさらに有し、
     前記データ格納部には、腫瘍の種類に応じた薬液の拡散パターンのデータを備えた拡散パターンテーブルが格納されており、
     前記処理部は、前記拡散パターンテーブルの参照結果と、薬液注入後であって前記第1超音波の照射後の対象組織の前記像とを比較するものであり、
     前記超音波制御部は、前記処理部での比較結果を用いて前記第1超音波の照射条件を制御する請求項1または2に記載の薬液拡散システム。
    It further has a data storage unit and a processing unit connected to the ultrasonic control unit, respectively.
    In the data storage unit, a diffusion pattern table containing data on the diffusion pattern of the drug solution according to the type of tumor is stored.
    The processing unit compares the reference result of the diffusion pattern table with the image of the target tissue after injection of the chemical solution and after irradiation with the first ultrasonic wave.
    The chemical diffusion system according to claim 1 or 2, wherein the ultrasonic control unit controls the irradiation conditions of the first ultrasonic wave by using the comparison result in the processing unit.
  5.  前記超音波制御部に接続されている計測部をさらに有し、
     前記計測部は、薬液注入前の前記像から、腫瘍の形状、大きさ、広がりおよび硬さの少なくともいずれか1つを計測するものであり、
     前記超音波制御部は、前記計測部での計測結果を用いて前記第1超音波の照射条件を制御する請求項1~4のいずれか一項に記載の薬液拡散システム。
    Further having a measuring unit connected to the ultrasonic control unit,
    The measuring unit measures at least one of the shape, size, spread and hardness of the tumor from the image before injection of the drug solution.
    The chemical diffusion system according to any one of claims 1 to 4, wherein the ultrasonic control unit controls the irradiation conditions of the first ultrasonic wave by using the measurement result of the measurement unit.
  6.  前記超音波制御部に接続されている処理部をさらに有し、
     前記処理部は、薬液注入後であって前記第1超音波の照射前の対象組織の前記像と、薬液注入後であって前記第1超音波の照射後の対象組織の前記像を比較するものであり、
     前記超音波制御部は、前記処理部での比較結果を用いて前記第1超音波の照射条件を制御する請求項1~5のいずれか一項に記載の薬液拡散システム。
    Further having a processing unit connected to the ultrasonic control unit,
    The processing unit compares the image of the target tissue after injection of the chemical solution and before irradiation with the first ultrasonic wave with the image of the target tissue after injection of the chemical solution and after irradiation with the first ultrasonic wave. Is a thing
    The chemical diffusion system according to any one of claims 1 to 5, wherein the ultrasonic control unit controls the irradiation conditions of the first ultrasonic wave by using the comparison result in the processing unit.
  7.  前記第1超音波と異なる発振周波数であって対象組織を加熱するための第3超音波を発生させる第3超音波発生部をさらに有する請求項1~6のいずれか一項に記載の薬液拡散システム。 The chemical diffusion according to any one of claims 1 to 6, further comprising a third ultrasonic wave generating unit that generates a third ultrasonic wave for heating the target tissue at an oscillation frequency different from that of the first ultrasonic wave. system.
  8.  前記第1超音波発生部が、前記第1超音波と異なる発振周波数であって診断用の像形成に用いる第2超音波と、前記第1超音波と異なる発振周波数であって対象組織を加熱するための第3超音波を発生させる請求項1~6のいずれか一項に記載の薬液拡散システム。 The first ultrasonic wave generating unit heats the target tissue with a second ultrasonic wave having an oscillation frequency different from that of the first ultrasonic wave and used for image formation for diagnosis and an oscillation frequency different from that of the first ultrasonic wave. The chemical diffusion system according to any one of claims 1 to 6, which generates a third ultrasonic wave for generating a third ultrasonic wave.
  9.  前記薬液注入管の近位部に接続され、前記薬液注入管内に薬液を供給する液体供給部と、
     該液体供給部に接続されており、前記薬液を冷却させる冷却部と、をさらに有する請求項1~8のいずれか一項に記載の薬液拡散システム。
    A liquid supply unit connected to the proximal portion of the drug solution injection tube and supplying the drug solution into the drug solution injection tube.
    The chemical solution diffusion system according to any one of claims 1 to 8, further comprising a cooling unit connected to the liquid supply unit and cooling the chemical solution.
  10.  前記薬液注入管の近位部に接続され、前記薬液注入管内に薬液を供給する液体供給部と、
     前記超音波制御部に接続されているデータ格納部と、をさらに有し、
     前記データ格納部は、薬液の種類のデータを備えた薬液テーブルと、過去に診断された腫瘍の状態を示すデータを備えた腫瘍テーブルと、を有し、
     前記超音波制御部は、前記腫瘍テーブルの参照結果に基づき、前記薬液テーブルから薬液の種類を選択して、前記液体供給部に対して、選択された種類の薬液を前記薬液注入管内に供給する指令信号を発する請求項1~9のいずれか一項に記載の薬液拡散システム。
    A liquid supply unit connected to the proximal portion of the drug solution injection tube and supplying the drug solution into the drug solution injection tube.
    Further having a data storage unit connected to the ultrasonic control unit,
    The data storage unit has a drug solution table containing data on the type of drug solution and a tumor table containing data indicating the state of a tumor diagnosed in the past.
    The ultrasonic control unit selects a type of chemical solution from the chemical solution table based on the reference result of the tumor table, and supplies the selected type of chemical solution to the liquid supply unit into the chemical solution injection tube. The drug solution diffusion system according to any one of claims 1 to 9, which emits a command signal.
  11.  前記データ格納部は、前記第1超音波の発振周波数のデータを備えた周波数テーブルをさらに有し、
     前記超音波制御部は、前記腫瘍テーブルの参照結果に基づき、前記周波数テーブルから前記第1超音波の発振周波数の値を選択して、前記第1超音波発生部に対して、選択された発振周波数の前記第1超音波を発生する指令信号を発する請求項10に記載の薬液拡散システム。
    The data storage unit further has a frequency table containing data on the oscillation frequency of the first ultrasonic wave.
    The ultrasonic control unit selects the value of the oscillation frequency of the first ultrasonic wave from the frequency table based on the reference result of the tumor table, and the selected oscillation with respect to the first ultrasonic wave generating unit. The chemical diffusion system according to claim 10, wherein a command signal for generating the first ultrasonic wave having a frequency is emitted.
  12.  前記第1超音波発生部は少なくとも2つの振動子を含み、前記2つの振動子は、前記薬液注入管の側壁部に設けられている請求項1~11のいずれか一項に記載の薬液拡散システム。 The chemical diffusion according to any one of claims 1 to 11, wherein the first ultrasonic generator includes at least two oscillators, and the two oscillators are provided on the side wall of the chemical injection pipe. system.
  13.  前記第1超音波発生部は、前記薬液注入管の内腔に設けられており、かつ、前記薬液注入管の長手軸方向に平行な回転軸を有している請求項1~11のいずれか一項に記載の薬液拡散システム。 Any of claims 1 to 11, wherein the first ultrasonic wave generating portion is provided in the lumen of the chemical injection tube and has a rotation axis parallel to the longitudinal axis direction of the chemical injection tube. The drug solution diffusion system according to paragraph 1.
  14.  前記第1超音波発生部は、前記薬液注入管の径方向の外方に向かって前記第1超音波を発射する請求項1~13のいずれか一項に記載の薬液拡散システム。 The chemical solution diffusion system according to any one of claims 1 to 13, wherein the first ultrasonic wave generating unit emits the first ultrasonic wave toward the outside in the radial direction of the chemical solution injection tube.
  15.  前記超音波制御部に接続されている計測部をさらに有し、
     前記計測部は、薬液注入前の前記像から、腫瘍の形状、大きさ、広がりおよび硬さの少なくともいずれか1つを計測するものであり、
     前記超音波制御部は、前記計測部での前記腫瘍の計測結果を用いて、前記第1超音波発生部に対して、前記薬液注入管の周方向の位置によって前記第1超音波の強度と発振周波数の少なくともいずれか一方を変化させる指令信号を発する請求項12~14のいずれか一項に記載の薬液拡散システム。
    Further having a measuring unit connected to the ultrasonic control unit,
    The measuring unit measures at least one of the shape, size, spread and hardness of the tumor from the image before injection of the drug solution.
    The ultrasonic control unit uses the measurement result of the tumor in the measurement unit to determine the intensity of the first ultrasonic wave with respect to the first ultrasonic wave generation unit according to the position in the circumferential direction of the chemical solution injection tube. The chemical diffusion system according to any one of claims 12 to 14, which emits a command signal for changing at least one of the oscillation frequencies.
  16.  前記超音波制御部は、前記薬液注入管の周方向において、前記薬液注入管の長手軸中心から前記腫瘍の外縁までの径方向の距離が長いほど前記第1超音波の強度を大きくする指令信号を発する請求項15に記載の薬液拡散システム。 The ultrasonic control unit is a command signal that increases the intensity of the first ultrasonic wave as the radial distance from the center of the longitudinal axis of the chemical injection tube to the outer edge of the tumor is longer in the circumferential direction of the chemical injection tube. The drug solution diffusion system according to claim 15.
  17.  前記超音波制御部は、前記薬液注入管の周方向において、前記薬液注入管の長手軸中心から前記腫瘍の外縁までの径方向の距離が長いほど前記第1超音波の発振周波数を低くする指令信号を発する請求項15または16に記載の薬液拡散システム。 The ultrasonic control unit commands that the longer the radial distance from the center of the longitudinal axis of the chemical injection tube to the outer edge of the tumor in the circumferential direction of the chemical injection tube, the lower the oscillation frequency of the first ultrasonic wave. The drug solution diffusion system according to claim 15 or 16, which emits a signal.
  18.  前記薬液はファインバブルを含んでいる請求項1~17のいずれか一項に記載の薬液拡散システム。 The chemical solution diffusion system according to any one of claims 1 to 17, wherein the chemical solution contains fine bubbles.
  19.  請求項1~18のいずれか一項に記載の薬液拡散システムに用いられる薬液拡散促進装置であって、
     対象組織に穿刺される薬液注入管と、前記薬液注入管に設けられており、前記薬液を拡散させるための第1超音波を発生する第1超音波発生部と、を有し、
     前記第1超音波発生部は少なくとも2つの振動子を含み、前記2つの振動子は、前記薬液注入管の側壁部に設けられている薬液拡散促進装置。
    A chemical solution diffusion promoting device used in the chemical solution diffusion system according to any one of claims 1 to 18.
    It has a drug solution injection tube that is punctured by a target tissue, and a first ultrasonic wave generator that is provided in the drug solution injection tube and generates a first ultrasonic wave for diffusing the drug solution.
    The first ultrasonic wave generating unit includes at least two oscillators, and the two oscillators are a chemical solution diffusion promoting device provided on a side wall portion of the chemical solution injection pipe.
  20.  前記第1超音波発生部は、前記薬液注入管の内腔に設けられており、かつ、前記薬液注入管の長手軸方向に平行な回転軸を有している請求項19に記載の薬液拡散促進装置。 The chemical diffusion according to claim 19, wherein the first ultrasonic wave generating portion is provided in the lumen of the chemical injection pipe and has a rotation axis parallel to the longitudinal axis direction of the chemical injection pipe. Accelerator.
PCT/JP2020/036226 2019-11-18 2020-09-25 Drug solution diffusing system and drug solution diffusion promoting device WO2021100316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558192A JPWO2021100316A1 (en) 2019-11-18 2020-09-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019207837 2019-11-18
JP2019-207837 2019-11-18
JP2019-207836 2019-11-18
JP2019207836 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021100316A1 true WO2021100316A1 (en) 2021-05-27

Family

ID=75981176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036226 WO2021100316A1 (en) 2019-11-18 2020-09-25 Drug solution diffusing system and drug solution diffusion promoting device

Country Status (2)

Country Link
JP (1) JPWO2021100316A1 (en)
WO (1) WO2021100316A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025467A (en) * 1999-07-14 2001-01-30 Olympus Optical Co Ltd Ultrasonic spray tube
JP2002521118A (en) * 1998-07-29 2002-07-16 ファーマソニックス,インコーポレイテッド Enhanced sonication of drug injections
JP2010520871A (en) * 2007-03-09 2010-06-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for controlling the release of a substance carried by ultrasonic sensing particles
JP2011500288A (en) * 2007-10-26 2011-01-06 ユニバーシティ オブ バージニア パテント ファウンデーション Therapy and imaging system using ultrasound energy and microbubbles and related methods
US20130046230A1 (en) * 2010-03-05 2013-02-21 Cornell University Ultrasound-assisted convection enhanced delivery of compounds in vivo with a transducer cannula assembly
JP2013517847A (en) * 2010-01-26 2013-05-20 エイ. エヴァンズ,マイケル Method, apparatus and medicament for denervation
WO2015049886A1 (en) * 2013-10-03 2015-04-09 国立大学法人東北大学 Drug injection device and drug injection method
JP2017502715A (en) * 2013-11-18 2017-01-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Thrombus dispersion method and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521118A (en) * 1998-07-29 2002-07-16 ファーマソニックス,インコーポレイテッド Enhanced sonication of drug injections
JP2001025467A (en) * 1999-07-14 2001-01-30 Olympus Optical Co Ltd Ultrasonic spray tube
JP2010520871A (en) * 2007-03-09 2010-06-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for controlling the release of a substance carried by ultrasonic sensing particles
JP2011500288A (en) * 2007-10-26 2011-01-06 ユニバーシティ オブ バージニア パテント ファウンデーション Therapy and imaging system using ultrasound energy and microbubbles and related methods
JP2013517847A (en) * 2010-01-26 2013-05-20 エイ. エヴァンズ,マイケル Method, apparatus and medicament for denervation
US20130046230A1 (en) * 2010-03-05 2013-02-21 Cornell University Ultrasound-assisted convection enhanced delivery of compounds in vivo with a transducer cannula assembly
WO2015049886A1 (en) * 2013-10-03 2015-04-09 国立大学法人東北大学 Drug injection device and drug injection method
JP2017502715A (en) * 2013-11-18 2017-01-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Thrombus dispersion method and apparatus

Also Published As

Publication number Publication date
JPWO2021100316A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US8801615B2 (en) System and method for ultrasound therapy treatment
CN103025381B (en) By office's system of HIFU Treatment hysteromyoma or other tissue
US9089340B2 (en) Ultrasound guided tissue ablation
EP1774989B1 (en) Treatment of cancer with high intensity focused ultrasound and chemotherapy
JP7203824B2 (en) Intraluminal ultrasound device with adjustable frequency
US20110054315A1 (en) Micromanipulator control arm for therapeutic and imaging ultrasound transducers
JP5541946B2 (en) Ultrasonic therapy device
JP2010534076A (en) An apparatus and method that applies non-invasive ultrasound to shape the body using skin contact cooling.
US20100022944A1 (en) Method and apparatus for treating an acute myocardial infarction
Lafon et al. Interstitial devices for minimally invasive thermal ablation by high-intensity ultrasound
JPH07231894A (en) Ultrasonic diagnostic and therapeutic system
US10772655B2 (en) Ultrasound ablation device
WO2021100316A1 (en) Drug solution diffusing system and drug solution diffusion promoting device
JP2004130145A (en) Ultrasonic therapy apparatus
JPH07227395A (en) Ultrasonic diagnostic and curing system
JPH10248854A (en) Ultrasonic treatment device
JPH10127678A (en) Ultrasonic diagnostic treatment system
JP2014176429A (en) Trans-body cavity cauterization device
JPH11164837A (en) Ultrasonic therapeutic device
JP6783319B2 (en) Implantable ultrasound generation therapy devices for the treatment of the spinal cord and / or spinal nerves, devices and methods comprising the devices.
JP2004121859A (en) Ultrasonic therapy system
JP2000093429A (en) Ultrasonic therapy applicator
JP4481600B2 (en) Energy therapy device
JP2019150361A (en) Ultrasonic treatment apparatus
JP7058116B2 (en) Medical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889526

Country of ref document: EP

Kind code of ref document: A1