WO2021100168A1 - Sealed compressor, refrigeration cycle device, and sealed-compressor manufacturing method - Google Patents

Sealed compressor, refrigeration cycle device, and sealed-compressor manufacturing method Download PDF

Info

Publication number
WO2021100168A1
WO2021100168A1 PCT/JP2019/045600 JP2019045600W WO2021100168A1 WO 2021100168 A1 WO2021100168 A1 WO 2021100168A1 JP 2019045600 W JP2019045600 W JP 2019045600W WO 2021100168 A1 WO2021100168 A1 WO 2021100168A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
cylinder
closed
spring
protruding
Prior art date
Application number
PCT/JP2019/045600
Other languages
French (fr)
Japanese (ja)
Inventor
幹一朗 杉浦
宏樹 長澤
勝俊 辰己
尚久 五前
亮 濱田
拓真 塚本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021558115A priority Critical patent/JP7162757B2/en
Priority to PCT/JP2019/045600 priority patent/WO2021100168A1/en
Priority to CZ2022180A priority patent/CZ2022180A3/en
Priority to CN201980102197.0A priority patent/CN114667394A/en
Publication of WO2021100168A1 publication Critical patent/WO2021100168A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/23Manufacture essentially without removing material by permanently joining parts together
    • F04C2230/231Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components

Definitions

  • the present invention relates to a method for manufacturing a closed compressor, a refrigerating cycle device, and a closed compressor used in an air conditioner, a refrigerator, a refrigerator, or the like.
  • the closed compressor has an annular cylinder housed in a closed container, a rolling piston that rotates eccentrically in the cylinder, and a vane that reciprocates in a vane groove provided in the cylinder.
  • the vane is urged by a spring so that the tip of the vane is constantly in contact with the rolling piston, and the space inside the cylinder is divided into a low pressure space and a high pressure space. Then, the rolling piston moves eccentrically in the cylinder, so that the volume of the low-pressure space is reduced to become a high-pressure space, and the refrigerant sucked into the cylinder is compressed.
  • the spring that urges the vane is housed in the spring insertion hole formed in the cylinder and held in the cylinder.
  • the length of the spring is restricted by the distance between the end surface on the rear end side of the vane and the inner peripheral surface of the closed container, and cannot be made longer than that. Therefore, when the vane moves to the rearmost top dead center position of the reciprocating motion, the total length of the spring reaches the close contact length at which the spring contracts to the maximum, the stress generated in the spring increases, and the spring is damaged by fatigue. There is a risk of doing.
  • the closed compressor of Patent Document 1 has a configuration in which a protruding container protruding from the closed container in the radial direction of the cylinder to the opposite side of the cylinder is joined to the closed container, and a spring is arranged directly in the protruding container. is there.
  • a protruding container protruding from the closed container in the radial direction of the cylinder to the opposite side of the cylinder is joined to the closed container, and a spring is arranged directly in the protruding container. is there.
  • the springs are required to be arranged along a direction orthogonal to the central axis of the cylinder.
  • the present invention solves the above-mentioned problems, and provides a method for manufacturing a closed compressor, a refrigerating cycle device, and a closed compressor capable of ensuring the accuracy of the positional relationship between the spring and the vane. To do.
  • the closed compressor according to the present invention has a closed container, a hollow cylinder housed in the closed container, a rolling piston that rotates eccentrically along the inner peripheral wall of the cylinder, and a cylinder in a vane groove provided in the cylinder.
  • a vane that reciprocates in the radial direction of the cylinder, a spring that urges the vane to the placement side of the rolling piston, and a vane that protrudes from the closed container to the opposite side of the cylinder in the radial direction of the cylinder, and one of them is provided in the closed container.
  • the outer wall of the cylinder is provided with a protruding container whose ends are joined to communicate with the inside of the closed container to form a closed space, and a spring guide which is arranged in the closed space of the protruding container and has a spring fixed inside.
  • An insertion hole is formed in the spring guide, and one end of the spring guide is inserted into the insertion hole of the cylinder and fixed.
  • the spring guide is directly fixed to the cylinder, the positional accuracy between the spring fixed in the spring guide and the vane arranged in the vane groove of the cylinder can be ensured.
  • FIG. FIG. 5 is a schematic cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a schematic cross-sectional view showing a structural example 1 of a contact portion between a protruding container and a closed container of the closed compressor according to the first embodiment.
  • FIG. FIG. 5 is a schematic cross-sectional view showing a structural example 3 of a contact portion between a protruding container and a closed container of the closed compressor according to the first embodiment.
  • FIG. It is a flow chart which shows the manufacturing process of the closed type compressor which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the modified example of the protruding container of the closed type compressor which concerns on Embodiment 1.
  • FIG. It is a schematic vertical sectional view of the closed type compressor which concerns on Embodiment 2.
  • FIG. It is a figure which shows the refrigerant circuit of the refrigerating cycle apparatus which concerns on Embodiment 3.
  • FIG. 1 is a schematic vertical sectional view of the sealed compressor according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG. However, FIG. 2 shows the AA line cross section rotated 90 degrees counterclockwise.
  • the closed compressor 100 is one of the elements constituting the refrigerating cycle used in, for example, an air conditioner, a refrigerator, a refrigerator, a vending machine, a water heater, and the like.
  • the closed type compressor 100 is a twin rotary type compressor that constitutes two compression chambers.
  • the closed compressor 100 has a closed container 10, an electric mechanism portion 20 housed inside the closed container 10, and a compression mechanism portion 30.
  • the closed type compressor 100 has an accumulator 13 outside the closed container 10, and has a suction pipe 11 for connecting the closed container 10 and the accumulator 13. Further, the closed compressor 100 has a protruding container 50 that accommodates a spring 36 that urges a vane 35, which will be described later, and forms a closed space 50e that communicates with the closed container 10.
  • the closed container 10 constitutes the outer shell of the closed compressor 100, and is made of an iron member.
  • the closed container 10 includes a substantially cylindrical middle container 10a, an upper container 10b that closes the upper opening of the middle container 10a, and a lower container 10c that closes the lower opening of the middle container 10a.
  • the upper container 10b is fitted into the opening above the middle container 10a
  • the lower container 10c is fitted into the opening below the middle container 10a to maintain the closed state.
  • the closed container 10 is arranged on the pedestal 14, and the lower container 10c is fixed to the pedestal 14.
  • the sealed compressor 100 is installed with the pedestal 14 fixed at the installation location by bolts or the like.
  • a suction pipe 11 to which the accumulator 13 is attached is connected to the central container 10a.
  • a discharge pipe 12 is connected to the upper container 10b.
  • the suction pipe 11 is a connecting pipe for sending the low-temperature low-pressure gas refrigerant sucked through the accumulator 13 into the compression mechanism unit 30.
  • the discharge pipe 12 is a connecting pipe for discharging the high-temperature and high-pressure gas refrigerant in the closed container 10 compressed by the compression mechanism unit 30 to the outside of the closed container 10.
  • the electric mechanism unit 20 rotates the rotating shaft 32 inside the closed container 10.
  • the electric mechanism unit 20 is arranged above the compression mechanism unit 30 in the closed container 10.
  • the electric mechanism portion 20 includes a stator 21 fixed to the inner peripheral wall of the central container 10a, and a rotor 22 rotatably fitted to the inner peripheral side of the stator 21.
  • the stator 21 is fixed to the central container 10a of the closed container 10 by various fixing methods such as shrink fitting or welding.
  • a rotating shaft 32 is fixed to the center of the rotor 22.
  • the rotating shaft 32 extends downward from the electric mechanism portion 20.
  • the stator 21 rotates the rotor 22 by electric power supplied from the outside of the closed compressor 100.
  • the compression mechanism unit 30 is housed in the closed container 10 and compresses the refrigerant flowing into the closed container 10.
  • the compression mechanism portion 30 is arranged below the electric mechanism portion 20 and is fixed to the central container 10a.
  • the compression mechanism unit 30 includes two compression mechanisms arranged in the axial direction of the rotating shaft 32, an upper bearing 38, a lower bearing 39, and a partition plate 37.
  • Each compression mechanism includes a hollow cylinder 31, a rolling piston 33, a vane 35, a spring 36, and a tubular spring guide 40 in which the spring 36 is housed.
  • the two spring guides 40 are arranged in the protruding container 50.
  • the protruding container 50 is provided in the closed container 10 so as to project from the closed container 10 in the radial direction of the cylinder 31 to the opposite side of the cylinder 31.
  • the cylinder 31 of the upper compression mechanism is referred to as an upper cylinder 31A
  • the cylinder 31 of the lower compression mechanism is referred to as a lower cylinder 31B.
  • the upper cylinder 31A is arranged above the lower cylinder 31B.
  • An upper bearing 38 is arranged in contact with the upper end surface of the upper cylinder 31A on the upper portion of the upper cylinder 31A, and the upper end surface of the upper cylinder 31A is closed by the upper bearing 38.
  • a lower bearing 39 is arranged in contact with the lower end surface of the lower cylinder 31B at the lower portion of the lower cylinder 31B, and the lower end surface of the lower cylinder 31B is closed by the lower bearing 39.
  • the partition plate 37 is arranged between the upper cylinder 31A and the lower cylinder 31B, and closes the lower end surface of the upper cylinder 31A and the upper end surface of the lower cylinder 31B.
  • Each of the upper cylinder 31A and the lower cylinder 31B is formed with suction holes 34 and discharge holes 34B on both sides of the vane groove 31e in the circumferential direction, as shown in FIG. 2 to be described later.
  • a suction pipe 11A is connected to the suction hole 34 of the upper cylinder 31A.
  • a suction pipe 11B is connected to the suction hole 34 of the lower cylinder 31B.
  • the above-mentioned suction pipe 11 is a general term for the suction pipe 11A and the suction pipe 11B.
  • the discharge hole 34B is formed from the inner peripheral wall 31b of the cylinder 31 toward the outer side in the radial direction, and communicates with the space inside the closed container 10 through a discharge hole (not shown) formed in the upper bearing 38. There is.
  • the rotating shaft 32 has an eccentric portion 32a eccentric in one direction in the radial direction on one end side in the axial direction. Further, the rotating shaft 32 is fixed by inserting the other end side in the axial direction into the central portion of the rotor 22 of the electric mechanism portion 20.
  • the rotating shaft 32 is rotatably supported by the upper bearing 38 and the lower bearing 39, and rotates together with the rotor 22.
  • the spring guide 40 is provided so as to project outward from the closed container 10, and the spring 36 is housed and fixed inside.
  • the spring guide 40 is provided corresponding to each of the upper cylinder 31A and the lower cylinder 31B, and each of them is housed in the projecting container 50 together.
  • the cylinder 31 is formed to be hollow.
  • the cylinder 31 has a cylinder chamber 31d concentric with the rotating shaft 32 inside.
  • a rolling piston 33 is arranged in the cylinder chamber 31d.
  • the inner peripheral wall 31b of the cylinder 31 faces the outer peripheral wall 33a of the rolling piston 33 formed in a cylindrical shape.
  • the rolling piston 33 is formed in a cylindrical shape.
  • the rolling piston 33 is located at an eccentric position with respect to the central axis C of the rotating shaft 32.
  • the rolling piston 33 is mounted on the eccentric portion 32a of the rotating shaft 32 in the cylinder chamber 31d so as to rotate together with the rotating shaft 32.
  • the rolling piston 33 eccentrically rotates along the inner peripheral wall 31b of the cylinder 31 due to the rotation of the rotating shaft 32.
  • the cylinder 31 is formed with a vane groove 31e that communicates with the cylinder chamber 31d and extends in the radial direction.
  • the vane 35 is arranged so as to be able to advance and retreat in the cylinder radial direction.
  • a vane 35 is slidably arranged in the vane groove 31e.
  • An insertion hole 31g communicating with the vane groove 31e is formed on the outer side of the vane groove 31e in the cylinder radial direction. The insertion hole 31g is formed so as to extend from the vane groove 31e to the outer peripheral wall 31f of the cylinder 31.
  • a spring 36 is inserted into the insertion hole 31g from the outer peripheral wall 31f side and arranged.
  • the spring 36 urges the vane 35 arranged in the vane groove 31e to the arrangement side of the rolling piston 33, and brings the tip portion 35a of the vane 35 into contact with the rolling piston 33.
  • the vane 35 is pressed inward in the radial direction of the cylinder by the urging force of the spring 36, so that the tip portion 35a of the vane 35 is always in contact with the rolling piston 33.
  • the inside of the cylinder chamber 31d is divided into a suction chamber 31d1 leading to the suction hole 34 and a compression chamber 31d2 leading to the discharge hole 34B.
  • the vane 35 reciprocates in the vane groove 31e with the tip portion 35a in contact with the outer peripheral wall 33a of the rolling piston 33 as the rolling piston 33 in the cylinder chamber 31d rotates eccentrically.
  • the insertion hole 31g includes an outer peripheral side insertion hole 31g2 formed on the outer peripheral wall 31f side of the cylinder 31 and an inner peripheral side insertion hole 31g1 formed on the inner peripheral wall 31b side of the cylinder 31, that is, the vane groove 31e side.
  • the cross-sectional shapes of the outer peripheral side insertion hole 31g2 and the inner peripheral side insertion hole 31g1 are both circular. When the diameter of the outer peripheral side insertion hole 31g2 is ⁇ D and the diameter of the inner peripheral side insertion hole 31g1 is ⁇ d, ⁇ d is smaller than ⁇ D ( ⁇ d ⁇ D).
  • the insertion hole 31g has a plurality of portions having different diameters in the central axis direction of the insertion hole 31g from the outer peripheral wall 31f side to the inner peripheral wall 31b side of the cylinder 31.
  • the insertion hole 31g is formed between the outer peripheral wall 31f of the cylinder 31 and the vane groove 31e with a diameter as small as the vane groove 31e side.
  • the central axis of the outer peripheral side insertion hole 31g2 and the central axis of the inner peripheral side insertion hole 31g1 are coaxial, and both central axes intersect with the central axis C of the rotating shaft 32 extending perpendicularly to the paper surface.
  • the spring 36 is arranged in the spring guide 40.
  • the spring 36 is arranged along a direction orthogonal to the central axis C of the cylinder 31.
  • one end 36a in the length direction is attached to the back end 35b of the vane 35, and the other end 36b is fixed to the bottom lid 40c described later of the spring guide 40. That is, the spring 36 is arranged between the rear end portion 35b of the vane 35 and the bottom lid portion 40c of the spring guide 40.
  • the spring 36 is a compression coil spring that compresses and utilizes the reaction force, and is a cylindrical coil spring.
  • the spring 36 is preferably a cylindrical coil spring, but is not limited to the cylindrical coil spring.
  • the spring 36 may have the same coil outer diameter or different coil outer diameters in the length direction.
  • a configuration in which the coil outer diameter of the spring 36 is different for example, a configuration in which the diameter of the other end portion 36b of the spring 36 is formed to be larger than that of the other portions can be considered.
  • the spring 36 may be fixed in the spring guide 40 at the large-diameter portion.
  • the spring 36 may be fixed in the spring guide 40 by providing a circumferential groove on the inner peripheral surface of the spring guide 40 and fitting a large diameter portion into the groove. In this way, when the spring 36 is fixed in the spring guide 40 with a large diameter portion, the bottom lid portion 40c for holding the spring 36 in the spring guide 40 becomes unnecessary. Therefore, the bottom lid portion 40c may be omitted.
  • the spring guide 40 is a tubular member, and one end 40a is inserted into and fixed to an insertion hole 31g provided in the cylinder 31, and the other end 40b is a through hole provided in the closed container 10. It projects to the outside of the closed container 10 through 10d.
  • the other end 40b of the spring guide 40 is closed by the bottom lid 40c.
  • the spring guide 40 defines the expansion / contraction direction of the spring 36 and guides the expansion / contraction operation. Further, the spring guide 40 regulates the radial movement of the spring 36 so that the deviation of the axis of the spring 36 does not become large. Therefore, it is desirable that the distance between the inner wall of the spring guide 40 and the coil outer mold of the spring 36 is small. Therefore, the spring guide 40 has an inner wall along the outer diameter of the coil of the spring 36. For example, if the spring 36 is a cylindrical coil spring, the spring guide 40 has an inner wall having a circular cross-sectional shape, and if the spring 36 is an elliptical coil spring, the spring guide 40 has an inner wall having an elliptical cross-sectional shape.
  • the protruding container 50 has a tubular tubular portion 51 having both ends open and a protruding container lid 52.
  • One end 50a of the tubular portion 51 is joined to a through hole 10d formed in the central container 10a of the closed container 10, and the tubular portion 51 communicates with the inside of the closed container 10.
  • the other end 50b of the tubular portion 51 is closed by a protruding container lid 52.
  • the protruding container 50 communicates with the inside of the closed container 10, and the other end 50b of the tubular portion 51 is closed by the protruding container lid 52 to form a closed space 50e.
  • the spring guide 40 is accommodated in the closed space 50e.
  • the end portion of the protruding container 50 on the joint side with the closed container 10 will be referred to as one end portion 50a using a reference numeral attached to the tubular portion 51.
  • the spring is directly arranged in the protruding container provided so as to project from the closed container in the radial direction of the cylinder to the opposite side of the cylinder.
  • the protruding container is joined to the closed container, and more specifically, the protruding container is joined to the closed container along the direction orthogonal to the central axis of the closed container. Since the protruding container is joined to the closed container in this way, if the assembly accuracy between the closed container and the cylinder is poor, the positional relationship between the protruding container joined to the closed container and the cylinder deviates from the normal positional relationship.
  • the cylinder 31 is fixed in the closed container 10 so that the central axis of the cylinder 31 coincides with the central axis of the closed container 10.
  • the spring 36 is arranged along the direction orthogonal to the central axis of the cylinder 31.
  • the protruding container 50 is tilted with respect to the direction orthogonal to the central axis of the cylinder 31. It becomes a state.
  • the spring 36 also tilts from the direction orthogonal to the central axis of the cylinder 31. Then, the positional relationship between the spring 36 and the vane 35 deviates from the normal positional relationship. If the positional relationship between the spring 36 and the vane 35 is deviated, for example, when the spring 36 expands and contracts, the spring 36 may be twisted, and the spring 36 may not expand and contract as designed.
  • a spring guide 40 is separately provided in the projecting container 50, and the spring 36 is arranged in the spring guide 40. Then, the spring guide 40 is directly fixed to the cylinder 31. That is, the spring 36 is installed with reference to the cylinder 31. Therefore, even if the central axis of the cylinder 31 is tilted with respect to the central axis of the closed container 10 at the time of manufacturing, the spring 36 is not affected by the tilt and is orthogonal to the central axis of the cylinder 31. Can be installed with high accuracy. Therefore, the positional accuracy of the spring 36 and the vane 35 can be ensured. As a result, it is possible to suppress a situation in which the spring 36 is twisted when the spring 36 expands and contracts, and the spring 36 can be operated stably.
  • One end 40a of the spring guide 40 is press-fitted into the outer peripheral side insertion hole 31g2 of the insertion hole 31g formed in the outer peripheral wall 31f of the cylinder 31 by using a seal tube 31h described later and fixed to the cylinder 31.
  • the seal tube 31h is a cylindrical tube.
  • the spring guide 40 and the seal pipe 31h have the following dimensional relationship in the state before press fitting. That is, the outer diameter of the spring guide 40 is smaller than the inner diameter of the seal tube 31h.
  • the outer diameter of the seal tube 31h is larger than the inner diameter of the outer peripheral side insertion hole 31g2.
  • the seal tube 31h is press-fitted between the outer peripheral surface of one end 40a of the spring guide 40 inserted into the outer peripheral side insertion hole 31g2 and the inner peripheral surface of the outer peripheral side insertion hole 31g2, and the spring guide 40 is pressed. Is press-fitted and fixed to the cylinder 31.
  • the spring guide 40 When the spring guide 40 is fixed to the cylinder 31, the inside of the spring guide 40 and the inner peripheral side insertion hole 31g1 of the insertion hole 31g formed in the cylinder 31 communicate with each other.
  • the inner diameter of the spring guide 40 and the inner diameter of the inner peripheral side insertion hole 31g1 are the same, and the spring guide 40 is a cylinder so that the central axis of the spring guide 40 and the central axis of the inner peripheral side insertion hole 31g1 coincide with each other. It is fixed to 31.
  • a through hole 10d is formed in the inner container 10a of the closed container 10, and one end 50a of the projecting container 50 is joined to the through hole 10d. Since the contact portion between one end 50a of the protruding container 50 and the middle container 10a of the closed container 10 is a curved surface, a gap is likely to occur, and defects such as blow holes occur in the joining method by brazing or fusion welding. Easy to do. Therefore, resistance welding is desirable for the method of joining one end 50a of the protruding container 50 to the middle container 10a of the closed container 10.
  • Resistance welding is a welding method that enables efficient welding in a short time, and is characterized in that it is not easily affected by heat because it is welded in a short time.
  • the protruding container 50 is made of an iron member like the closed container 10.
  • one end 50a of the protruding container 50 When one end 50a of the protruding container 50 is resistance welded to the middle container 10a of the closed container 10, the contact width between the one end 50a of the protruding container 50 and the middle container 10a of the closed container 10 should be reduced. Is desirable. When this contact width is small, the electric resistance increases, the joint temperature tends to rise even at a low current, and the joint becomes easy. Therefore, in the first embodiment, one end 50a of the protruding container 50 adopts the structure shown in FIG. 3 or 4 below as a structure for reducing the contact width with the middle container 10a of the closed container 10. ..
  • FIG. 3 is a schematic cross-sectional view showing a structural example 1 of a contact portion between a protruding container and a closed container of the closed compressor according to the first embodiment.
  • one end 50a of the protruding container 50 has a tapered shape as the wall thickness decreases toward the closed container 10.
  • FIG. 4 is a schematic cross-sectional view showing a structural example 2 of a contact portion between the protruding container and the closed container of the closed compressor according to the first embodiment.
  • one end 50a of the protruding container 50 has a part of the end surface 50aa located inside the through hole 10d of the closed container 10 when viewed in the direction of the axis 53 of the protruding container 50. ..
  • the end surface 50aa of one end 50a of the tubular portion 51 of the protruding container 50 does not come into full contact with the closed container 10.
  • the contact width between one end 50a of the protruding container 50 and the middle container 10a of the closed container 10 can be reduced, and joining by resistance welding becomes easy.
  • FIG. 5 shows an example of the structure of the contact portion between the projecting container 50 and the closed container 10 when joining by brazing or fusion welding.
  • FIG. 5 is a schematic cross-sectional view showing a structural example 3 of a contact portion between the protruding container and the closed container of the closed compressor according to the first embodiment.
  • the inner container 10a of the closed container 10 projects around the through hole 10d to which the protruding container 50 is joined with respect to the closed container 10 in the radial direction of the cylinder 31 on the opposite side of the cylinder 31.
  • the projecting container 50 is joined by brazing or fusion welding with one end 50a of the tubular portion 51 inserted inside the collar 10e. That is, one end 50a of the tubular portion 51 is joined to the inner peripheral surface 10ea of the collar 10e by brazing or fusion welding.
  • one end 50a of the tubular portion 51 may be expanded outward, and the expanded portion may be joined to the inner wall surface 10aa of the closed container 10. Further, one end 50a of the tubular portion 51 may be joined to both the inner peripheral surface 10ea of the collar 10e and the inner wall surface 10aa of the closed container 10.
  • FIG. 6 is a flow chart showing a manufacturing process of the sealed compressor according to the first embodiment. It is desirable that the protruding container 50 is attached to the closed container 10 in the following order.
  • a joining step of joining one end 50a of the tubular portion 51 of the protruding container 50 to the central container 10a of the closed container 10 is performed (step S1).
  • step S1 the above-mentioned resistance welding is used.
  • a cylinder fixing step of fixing the cylinder 31 in the central container 10a of the closed container 10 is performed (step S2).
  • the sealed compressor 100 of FIG. 1 has a plurality of compression mechanisms. Therefore, in the cylinder fixing step, an integral body in which the upper bearing 38, the two cylinders 31, the partition plate 37, the lower bearing 39, and the rotating shaft 32 having the two rolling pistons 33 are combined is sealed. It is inserted into the container 10 and the two cylinders 31 are fixed to the inner peripheral surface of the middle container 10a. Each cylinder 31 is fixed to the central container 10a at a position where the insertion hole 31g faces the through hole 10d of the closed container 10.
  • a vane placement step of arranging the vane 35 from the other end 50b of the tubular portion 51 of the projecting container 50 to the vane groove 31e of the cylinder 31 is performed (step S3).
  • a spring guide fixing step of inserting the spring guide 40 from the other end 50b of the tubular portion 51 and fixing it to the cylinder 31 is performed (step S4).
  • the spring 36 is inserted into the spring guide 40, one end of the spring 36 on the tip end side in the insertion direction is attached to the back surface side end portion 35b of the vane 35, and the other end portion 36b is fixed to the bottom lid portion 40c of the spring guide 40.
  • Perform the spring mounting process step S5.
  • a closing step is performed in which the protruding container lid 52 is joined to the other end 50b of the tubular portion 51 to seal the inside of the tubular portion 51 (step S6).
  • the protruding container 50 is joined to the closed container 10 at the first stage, thermal distortion of the spring guide 40 and the spring 36 can be prevented. That is, when the step of joining the protruding container 50 to the closed container 10 is performed after incorporating the spring guide 40 and the spring 36 into the closed container 10, the heat at the time of joining may be transferred to the spring guide 40 and the spring 36. is there.
  • the spring guide 40 and the spring 36 are thermally distorted by performing the step of joining the protruding container 50 to the closed container 10 before incorporating the spring guide 40 and the spring 36 into the closed container 10. Can be prevented.
  • the tubular portion 51 made of an iron member and the protruding container lid 52 made of an iron member are joined by resistance welding or fusion welding.
  • the closing step (step S6) for example, by making the protruding container lid 52 a copper member or a copper-plated iron member, the tubular portion 51 and the protruding container lid 52 may be joined by brazing. it can. Brazing is performed by a low heat input joining method such as high frequency brazing.
  • FIG. 7 is a schematic cross-sectional view of a modified example of the protruding container of the closed compressor according to the first embodiment.
  • the tubular portion 51 may be composed of one component as shown in FIGS. 1 to 5, or as shown in FIG. 7, for example, with the front tubular portion 51a divided in the axial 53 direction at the central portion. It may be composed of two parts with a rear tubular portion 51b.
  • the front tubular portion 51a and the rear tubular portion 51b are tubular members that accommodate the spring guide 40 inside.
  • One end 51a of the front tubular portion 51a is joined to the middle container 10a of the closed container 10, and one end 51ba of the rear tubular portion 51b is joined to the other end 51ab. There is.
  • the front tubular portion 51a becomes thinner toward one end portion 51a and is formed in a tapered shape.
  • one end 51ba is joined to the other end 51ab of the front tubular portion 51a, and the protruding container lid 52 is joined to the other end 51bb.
  • the protruding container 50 of the modified example is sealed by closing the other end portion 51bb of the rear tubular portion 51b with the protruding container lid 52.
  • the front tubular portion 51a and the rear tubular portion 51b can be made of different materials. Further, by using the following manufacturing method, it is possible to improve workability.
  • the flow of attaching the protruding container 50 to the closed container 10 shown in FIG. 7 is the same as that in FIG. Since the tubular portion 51 is divided into a front tubular portion 51a and a rear tubular portion 51b, in the joining step (step S1), the front tubular portion 51a and the closed container 10 are first joined.
  • the front tubular portion 51a an iron member like the closed container 10
  • the front tubular portion 51a of the protruding container 50 and the closed container 10 can be joined by resistance welding.
  • the tubular portion 51 is divided into two and only the front tubular portion 51a is joined to the middle container 10a of the closed container 10, the length in the shaft 53 direction is longer than that in the undivided configuration. Is shortened, and the operator can easily perform the joining work.
  • step S2 the cylinder fixing step (step S2), the spring guide fixing step (step S4), and the spring mounting step (step S5) are performed. Also in each of these steps, the length in the axis 53 direction is shorter than that in the configuration in which the tubular portion 51 is not divided, so that the operator can easily perform the work. Then, the rear tubular portion 51b is joined to the front tubular portion 51a, and subsequently, the closing step (step S6) is performed.
  • the rear tubular portion 51b of the projecting container 50 and the projecting container lid 52 can be joined by brazing by forming the rear tubular portion 51b and the projecting container lid 52 into copper members. it can.
  • the brazing method for joining the rear tubular portion 51b and the protruding container lid 52 include high-frequency brazing, gas brazing, and the like.
  • the rear tubular portion 51b and the protruding container lid 52 can be joined by resistance welding or fusion welding.
  • the rear tubular portion 51b and the protruding container lid 52 When either one or both of the rear tubular portion 51b and the protruding container lid 52 is made of an iron member and the iron member is subjected to copper plating treatment, the rear tubular portion 51b and the protruding container lid 52 are used.
  • the strength of the projecting container 50 can be increased as compared with the case where both of the members are made of copper.
  • the front tubular portion 51a of the protruding container 50 is joined to the closed container 10, and after the spring mounting step (step S5) is completed, the rear tubular portion 51b is joined to the front tubular portion 51a.
  • the next process order may be used. That is, the front tubular portion 51a may be joined to the rear tubular portion 51b to form the tubular portion 51, and then the front tubular portion 51a may be joined to the closed container 10.
  • the front tubular portion 51a is made of an iron member and the rear tubular portion 51b is made of a copper member, for example, the front tubular portion 51a and the rear tubular portion 51b are joined by brazing in a furnace or the like to join the tubular portion 51. Can be configured.
  • the tip portion 35a of the vane 35 is in contact with the outer peripheral wall 33a of the rolling piston 33 due to the urging force of the spring 36. Then, the vane 35 moves forward and backward in the vane groove 31e with the eccentric rotation of the rolling piston 33. At this time, the spring 36 expands and contracts along the inner wall of the spring guide 40, and the expansion and contraction direction of the spring 36 is guided by the inner wall of the spring guide 40.
  • the gas refrigerant compressed in the compression chamber 31d2 is discharged into the internal space of the closed container 10 from a discharge port (not shown) provided in the upper bearing 38.
  • the gas refrigerant orbiting the internal space of the closed container 10 passes through a gas hole (not shown) provided in the rotor 22 and a gap between the stator 21 and the rotor 22, respectively, in the closed container. It reaches the upper part of the inside of the 10 and is discharged from the discharge pipe 12 into the refrigerant circuit outside the closed container 10.
  • the closed compressor 100 of the first embodiment eccentrically rotates along the closed container 10, the hollow cylinder 31 housed in the closed container 10, and the inner peripheral wall 31b of the cylinder 31.
  • a rolling piston 33, a vane 35 that reciprocates in the vane groove 31e provided in the cylinder 31 in the radial direction of the cylinder 31, and a spring 36 that urges the vane 35 to the arrangement side of the rolling piston 33 are provided.
  • the closed compressor 100 further In the radial direction of the cylinder 31, it is provided so as to project from the closed container 10 on the side opposite to the cylinder 31, and one end 40a is joined to the closed container 10 to communicate with the inside of the closed container 10 to form a closed space 50e.
  • a protruding container 50 to be formed and a spring guide 40 arranged in the closed space 50e of the protruding container 50 and to which the spring 36 is fixed inside are provided.
  • An insertion hole 31g is formed in the outer peripheral wall 31f of the cylinder 31, and one end 40a of the spring guide 40 is inserted into the insertion hole 31g of the cylinder 31 and fixed.
  • a spring guide 40 is separately provided in the projecting container 50, and the spring guide 40 is directly fixed to the cylinder 31.
  • the positional accuracy of the spring 36 and the vane 35 can be ensured as compared with the configuration in which the spring 36 is housed in the protruding container 50 joined to the closed container 10.
  • the structure is such that the spring guide 40 is directly fixed to the cylinder 31, the only component for incorporating the spring 36 into the cylinder 31 is the spring guide 40. From this point as well, the positional accuracy of the spring 36 and the vane 35 can be ensured.
  • the space for arranging the spring 36 is expanded by the amount of the projecting container 50, and the expansion / contraction allowance of the spring 36 can be secured as compared with the configuration in which the projecting container 50 is not provided.
  • the sealed compressor 100 of the first embodiment has a plurality of cylinders 31, and a plurality of spring guides 40 are fixed to the plurality of cylinders 31, and the projecting container 50 has a plurality of spring guides 40. Contain all together.
  • the closed compressor is compared with the configuration in which each of the plurality of spring guides 40 is housed in the separate projecting containers 50.
  • the manufacturing process of 100 can be simplified. That is, if each of the plurality of spring guides 40 is housed in separate projecting containers 50, a joining step (step S1) of joining the projecting containers 50 to the closed container 10 is required for each spring guide 40. On the other hand, if the projecting container 50 is configured to house a plurality of spring guides 40 together, the joining step (step S1) can be performed only once.
  • One end 50a of the protruding container 50 becomes thinner toward the closed container 10 and is formed in a tapered shape.
  • the closed container 10 has a through hole 10d to which one end 50a of the protruding container 50 is joined, and the end surface 50aa of the one end 50a of the protruding container 50 is viewed in the axial direction of the protruding container 50. , A part of it is located inside the through hole 10d of the closed container 10 and does not come into full contact with the closed container 10.
  • the closed container 10 is a collar in which the circumference of the through hole 10d to which one end 50a of the protruding container 50 is joined is curved so as to project from the closed container 10 to the opposite side of the cylinder 31 in the radial direction of the cylinder 31. Having 10e, the protruding container 50 is joined to one or both of the inner peripheral surface 10ea of the collar 10e and the inner wall surface 10aa of the closed container 10.
  • the protruding container 50 is formed in a tubular shape, and has a tubular portion 51 to which one end 50a is joined to the closed container 10 and a protruding container lid 52 that closes the other end 50b of the tubular portion 51.
  • the projecting container 50 is composed of the tubular portion 51 and the projecting container lid 52 that closes the other end portion 50b of the tubular portion 51, so that the closed space 50e can be formed.
  • the tubular portion 51 of the protruding container 50 is composed of two parts divided in the axial direction of the tubular portion 51.
  • step S1 By having the structure in which the tubular portion 51 is divided in this way, the length in the axis 53 direction is shortened. Therefore, in each of the joining step (step S1), the cylinder fixing step (step S2), the spring guide fixing step (step S4), and the spring mounting step (step S5) at the time of manufacturing, the operator can easily work. ..
  • the manufacturing method of the closed type compressor 100 includes a joining step of joining one end 50a of the tubular portion 51 to the through hole 10d of the closed container 10 so as to protrude from the closed container 10, and a rolling piston 33. It has a cylinder fixing step of fixing the hollow cylinder 31 in which the is housed in the closed container 10.
  • the method for manufacturing the closed compressor 100 further includes a vane placement step of arranging the vane 35 in the vane groove 31e formed in the cylinder 31, and inserting the tubular spring guide 40 from the other end 50b of the tubular portion 51. It has a spring guide fixing step of fixing to the cylinder 31.
  • a spring 36 that urges the vane 35 on the arrangement side of the rolling piston 33 is inserted into the spring guide 40, one end portion 36a of the spring 36 is brought into contact with the vane 35, and the other end. It has a spring mounting step of fixing the portion 36b to the spring guide 40, and a closing step of joining the protruding container lid 52 to the other end portion 50b of the tubular portion 51 to seal the inside of the tubular portion 51.
  • the tubular portion 51 and the protruding container lid 52 are joined by resistance welding.
  • the tubular portion 51 and the protruding container lid 52 are joined by brazing.
  • the tubular portion 51 and the protruding container lid 52 are joined by fusion welding.
  • FIG. 8 is a schematic vertical sectional view of the sealed compressor according to the second embodiment. Parts having the same configuration as the closed compressor 100 of FIGS. 1 to 7 are designated by the same reference numerals. Items not particularly described in the closed compressor 110 according to the second embodiment are the same as those of the closed compressor 100 according to the first embodiment, and the same functions and configurations are described by using the same reference numerals. To do.
  • the number of protruding containers 50 was always one regardless of the number of cylinders 31 arranged in the closed container 10.
  • the number of protruding containers 50 changes according to the number of cylinders 31 arranged in the closed container 10. That is, the closed compressor 110 has the same number of protruding containers 50 as the number of cylinders 31.
  • each protruding container 50 houses one spring guide 40.
  • the closed compressor 110 according to the second embodiment has two cylinders 31 arranged in the closed container 10.
  • the number of protruding containers 50 joined to the central container 10a is also two.
  • a spring guide 40 fixed to the upper cylinder 31A is housed in one of the two protruding containers 50, and a spring fixed to the lower cylinder 31B is housed in the other protruding container 50.
  • the guide 40 is housed.
  • Two through holes 10d1 and 10d2 are formed in the inner container 10a of the closed container 10 corresponding to the two spring guides 40.
  • Each one end 40a of each spring guide 40 is press-fitted and fixed to the outer peripheral side insertion hole 31g2 of the insertion hole 31g of the cylinder 31 through the through holes 10d1 and 10d2 as in the first embodiment.
  • each protruding container 50 is joined to the through holes 10d1 and 10d2 of the inner container 10a of the closed container 10 by resistance welding, brazing, fusion welding or the like in the same manner as in the first embodiment to form a closed space 50e. doing.
  • the sealed compressor 110 has a plurality of cylinders 31, and a plurality of spring guides 40 are fixed to the plurality of cylinders 31.
  • the closed compressor 110 has a plurality of projecting containers 50 having the same number as the number of the plurality of cylinders 31, and each of the plurality of projecting containers 50 accommodates one spring guide 40.
  • the sealed space 50e can be formed for each spring guide 40.
  • the sealed compressor 100 is a twin rotary compressor having two cylinders 31, but it may be a single rotary compressor having one cylinder 31.
  • the cross-sectional shape of the insertion hole 31g formed in the cylinder 31 is not limited to a circular shape, and may be formed into, for example, an insertion shape, an oval shape, or a polygonal shape.
  • the cross-sectional shape of the insertion hole 31g is an insertion shape, an oval shape, or a polygonal shape
  • the cross-sectional shape of the spring guide 40 is formed into an elliptical shape, an oval shape, or a polygonal shape according to the cross-sectional shape of the insertion hole 31g. ..
  • FIG. 9 is a diagram showing a refrigerant circuit of the refrigeration cycle device according to the third embodiment.
  • the refrigeration cycle device 60 includes a closed compressor 61, a condenser 62, an expansion valve 63 as a decompression device, and an evaporator 64.
  • the closed compressor 61 is composed of the closed compressor 100 of the first embodiment or the closed compressor 110 of the second embodiment.
  • the gas refrigerant discharged from the closed compressor 61 flows into the condenser 62, exchanges heat with the air passing through the condenser 62, and flows out as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the condenser 62 is depressurized by the expansion valve 63 to become a low-pressure gas-liquid two-phase refrigerant, which flows into the evaporator 64.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the evaporator 64 exchanges heat with the air passing through the evaporator 64 to become a low-pressure gas refrigerant, which is again sucked into the closed compressor 61.
  • the refrigeration cycle apparatus 60 configured in this way includes, as the closed compressor 61, the closed compressor 100 of the first embodiment or the closed compressor 110 of the second embodiment, thereby providing a stable vane 35 and a stable vane 35.
  • the operation of the spring 36 can be obtained. This makes it possible to configure a highly reliable refrigeration cycle device 60.
  • the refrigerating cycle device 60 can be applied to an air conditioner, a refrigerator, a refrigerator, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a sealed compressor having: a sealed container; a hollow cylinder that is accommodated inside the sealed container; a rolling piston that eccentrically rotates along an inner circumferential wall of the cylinder; a vane that reciprocates, in a vane groove provided on the cylinder, in a radial direction of the cylinder; and a spring that biases the vane toward the side where the rolling piston is disposed. The sealed compressor further includes: a protruding container which is provided so as to protrude toward the opposite side from the cylinder with respect to the sealed container in the radial direction of the cylinder, and one end of which is bonded to the sealed container to communicate with the inside of the sealed container and form a closed space; and a spring guide which is disposed in the closed space of the protruding container and inside which the spring is fixed. An insertion hole is formed in an outer circumferential wall of the cylinder, and one end of the spring guide is inserted into the insertion hole of the cylinder and is fixed therein.

Description

密閉型圧縮機、冷凍サイクル装置および密閉型圧縮機の製造方法Manufacturing method of closed compressor, refrigeration cycle device and closed compressor
 本発明は、空気調和装置、冷蔵庫または冷凍機等に用いられる密閉型圧縮機、冷凍サイクル装置および密閉型圧縮機の製造方法に関するものである。 The present invention relates to a method for manufacturing a closed compressor, a refrigerating cycle device, and a closed compressor used in an air conditioner, a refrigerator, a refrigerator, or the like.
 密閉型圧縮機は、密閉容器内に収容された環状のシリンダーと、シリンダー内を偏心回転するローリングピストンと、シリンダーに設けられたベーン溝内を往復運動するベーンとを有する。ベーンは、スプリングによって付勢されてローリングピストンに常時、ベーン先端部が当接し、シリンダー内部の空間を低圧空間と高圧空間とに仕切っている。そして、ローリングピストンがシリンダー内で偏心運動することで、低圧空間の体積が縮小して高圧空間となり、シリンダー内に吸入された冷媒が圧縮されるようになっている。 The closed compressor has an annular cylinder housed in a closed container, a rolling piston that rotates eccentrically in the cylinder, and a vane that reciprocates in a vane groove provided in the cylinder. The vane is urged by a spring so that the tip of the vane is constantly in contact with the rolling piston, and the space inside the cylinder is divided into a low pressure space and a high pressure space. Then, the rolling piston moves eccentrically in the cylinder, so that the volume of the low-pressure space is reduced to become a high-pressure space, and the refrigerant sucked into the cylinder is compressed.
 この種の密閉型圧縮機において、ベーンを付勢するスプリングは、シリンダーに形成されたスプリング挿入穴に収納されてシリンダー内に保持されている。このようにスプリングがシリンダー内に保持されている構成では、スプリングの長さが、ベーンの後端側の端面と密閉容器の内周面との距離に制約を受け、それ以上に長くできない。このため、ベーンが往復運動の最も後方の上死点位置に移動したときに、スプリングの全長が、スプリングが最大限縮んだ密着長さに達し、スプリングに生じる応力が大きくなってスプリングが疲労破損する恐れがある。 In this type of closed compressor, the spring that urges the vane is housed in the spring insertion hole formed in the cylinder and held in the cylinder. In such a configuration in which the spring is held in the cylinder, the length of the spring is restricted by the distance between the end surface on the rear end side of the vane and the inner peripheral surface of the closed container, and cannot be made longer than that. Therefore, when the vane moves to the rearmost top dead center position of the reciprocating motion, the total length of the spring reaches the close contact length at which the spring contracts to the maximum, the stress generated in the spring increases, and the spring is damaged by fatigue. There is a risk of doing.
 そこで、スプリングを収容するスペースを密閉容器の外部に確保し、スプリングの長さに関する制約を無くしてスプリングへの過剰な応力による疲労破損を防ぐようにした技術がある(例えば、特許文献1参照)。 Therefore, there is a technique in which a space for accommodating the spring is secured outside the closed container to eliminate restrictions on the length of the spring and prevent fatigue damage due to excessive stress on the spring (see, for example, Patent Document 1). ..
特開昭63-16189号公報Japanese Unexamined Patent Publication No. 63-16189
 特許文献1の密閉型圧縮機は、密閉容器に、シリンダーの径方向において密閉容器に対してシリンダーとは反対側に突出する突出容器を接合し、突出容器内に直接、スプリングを配置した構成である。この構成の場合、密閉容器とシリンダーとの組立精度が悪いと、密閉容器に接合される突出容器とシリンダーとの位置関係が正規の位置からずれる。スプリングは、シリンダーの中心軸に対して直交する方向に沿うように配置することが求められる。しかし、突出容器とシリンダーとの位置関係が正規の位置からずれると、シリンダーを基準に位置が決まるベーンと、突出容器を基準に位置が決まるスプリングとの位置関係もまた、正規の位置からずれてしまうという問題があった。 The closed compressor of Patent Document 1 has a configuration in which a protruding container protruding from the closed container in the radial direction of the cylinder to the opposite side of the cylinder is joined to the closed container, and a spring is arranged directly in the protruding container. is there. In the case of this configuration, if the assembly accuracy of the closed container and the cylinder is poor, the positional relationship between the protruding container and the cylinder joined to the closed container deviates from the regular position. The springs are required to be arranged along a direction orthogonal to the central axis of the cylinder. However, if the positional relationship between the protruding container and the cylinder deviates from the regular position, the positional relationship between the vane whose position is determined based on the cylinder and the spring whose position is determined based on the protruding container also deviates from the regular position. There was a problem that it would end up.
 本発明は、上記のような課題を解決するものであり、スプリングとベーンとの位置関係の精度を確保することが可能な密閉型圧縮機、冷凍サイクル装置および密閉型圧縮機の製造方法を提供する。 The present invention solves the above-mentioned problems, and provides a method for manufacturing a closed compressor, a refrigerating cycle device, and a closed compressor capable of ensuring the accuracy of the positional relationship between the spring and the vane. To do.
 本発明に係る密閉型圧縮機は、密閉容器と、密閉容器内に収容された中空のシリンダーと、シリンダーの内周壁に沿って偏心回転するローリングピストンと、シリンダーに設けられたベーン溝内をシリンダーの径方向に往復運動するベーンと、ベーンをローリングピストンの配置側に付勢するスプリングと、シリンダーの径方向において密閉容器に対してシリンダーとは反対側に突出して設けられ、密閉容器に一方の端部が接合されて密閉容器の内部と連通し、密閉空間を形成する突出容器と、突出容器の密閉空間に配置され、スプリングが内部に固定されるスプリングガイドと、を備え、シリンダーの外周壁には挿入孔が形成されており、スプリングガイドは、一方の端部がシリンダーの挿入孔に挿入されて固定されているものである。 The closed compressor according to the present invention has a closed container, a hollow cylinder housed in the closed container, a rolling piston that rotates eccentrically along the inner peripheral wall of the cylinder, and a cylinder in a vane groove provided in the cylinder. A vane that reciprocates in the radial direction of the cylinder, a spring that urges the vane to the placement side of the rolling piston, and a vane that protrudes from the closed container to the opposite side of the cylinder in the radial direction of the cylinder, and one of them is provided in the closed container. The outer wall of the cylinder is provided with a protruding container whose ends are joined to communicate with the inside of the closed container to form a closed space, and a spring guide which is arranged in the closed space of the protruding container and has a spring fixed inside. An insertion hole is formed in the spring guide, and one end of the spring guide is inserted into the insertion hole of the cylinder and fixed.
 本発明によれば、スプリングガイドをシリンダーに直接固定する構造としたので、スプリングガイド内に固定されたスプリングと、シリンダーのベーン溝内に配置されたベーンとの位置精度を確保することができる。 According to the present invention, since the spring guide is directly fixed to the cylinder, the positional accuracy between the spring fixed in the spring guide and the vane arranged in the vane groove of the cylinder can be ensured.
実施の形態1に係る密閉型圧縮機の概略縦断面図である。It is a schematic vertical sectional view of the closed type compressor which concerns on Embodiment 1. FIG. 図1のA-A線断面模式図である。FIG. 5 is a schematic cross-sectional view taken along the line AA of FIG. 実施の形態1に係る密閉型圧縮機の突出容器と密閉容器との接触部の構造例1を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a structural example 1 of a contact portion between a protruding container and a closed container of the closed compressor according to the first embodiment. 実施の形態1に係る密閉型圧縮機の突出容器と密閉容器との接触部の構造例2を示す断面模式図である。It is sectional drawing which shows the structural example 2 of the contact part between the projecting container and the closed container of the closed type compressor which concerns on Embodiment 1. FIG. 実施の形態1に係る密閉型圧縮機の突出容器と密閉容器との接触部の構造例3を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing a structural example 3 of a contact portion between a protruding container and a closed container of the closed compressor according to the first embodiment. 実施の形態1に係る密閉型圧縮機の製造工程を示すフロー図である。It is a flow chart which shows the manufacturing process of the closed type compressor which concerns on Embodiment 1. FIG. 実施の形態1に係る密閉型圧縮機の突出容器の変形例の断面模式図である。It is sectional drawing of the modified example of the protruding container of the closed type compressor which concerns on Embodiment 1. FIG. 実施の形態2に係る密閉型圧縮機の概略縦断面図である。It is a schematic vertical sectional view of the closed type compressor which concerns on Embodiment 2. FIG. 実施の形態3に係る冷凍サイクル装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the refrigerating cycle apparatus which concerns on Embodiment 3.
 以下、実施の形態に係る密閉型圧縮機100および密閉型圧縮機110について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係および形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語、例えば「上」、「下」、「前」、「後」などを適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置および向きを限定するものではない。 Hereinafter, the closed type compressor 100 and the closed type compressor 110 according to the embodiment will be described with reference to drawings and the like. In the following drawings including FIG. 1, the relative dimensional relationships and shapes of the constituent members may differ from the actual ones. Further, in the following drawings, those having the same reference numerals are the same or equivalent thereof, and this shall be common to the entire text of the specification. In addition, terms indicating directions, such as "top", "bottom", "front", and "back", are appropriately used for ease of understanding, but these notations are described as such for convenience of explanation. It does not limit the arrangement and orientation of the device or component.
実施の形態1.
[密閉型圧縮機100]
 図1は、実施の形態1に係る密閉型圧縮機の概略縦断面図である。図2は、図1のA-A線断面模式図である。ただし、図2は、A-A線断面を反時計回りに90度回転した状態で表わしている。
 密閉型圧縮機100は、例えば、空気調和装置、冷蔵庫、冷凍機、自動販売機または給湯器等に用いられる冷凍サイクルを構成する要素の1つとなるものである。密閉型圧縮機100は、圧縮室を2つ構成するツインロータリー式の圧縮機である。密閉型圧縮機100は、密閉容器10と、密閉容器10の内部に収容された電動機構部20および圧縮機構部30とを有する。また、密閉型圧縮機100は、密閉容器10の外部にアキュムレータ13を有し、密閉容器10とアキュムレータ13とを接続する吸入管11を有する。さらに、密閉型圧縮機100は、後述するベーン35を付勢するスプリング36を収容し、密閉容器10に連通する密閉空間50eを形成する突出容器50を有する。
Embodiment 1.
[Sealed compressor 100]
FIG. 1 is a schematic vertical sectional view of the sealed compressor according to the first embodiment. FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG. However, FIG. 2 shows the AA line cross section rotated 90 degrees counterclockwise.
The closed compressor 100 is one of the elements constituting the refrigerating cycle used in, for example, an air conditioner, a refrigerator, a refrigerator, a vending machine, a water heater, and the like. The closed type compressor 100 is a twin rotary type compressor that constitutes two compression chambers. The closed compressor 100 has a closed container 10, an electric mechanism portion 20 housed inside the closed container 10, and a compression mechanism portion 30. Further, the closed type compressor 100 has an accumulator 13 outside the closed container 10, and has a suction pipe 11 for connecting the closed container 10 and the accumulator 13. Further, the closed compressor 100 has a protruding container 50 that accommodates a spring 36 that urges a vane 35, which will be described later, and forms a closed space 50e that communicates with the closed container 10.
(密閉容器10)
 密閉容器10は、密閉型圧縮機100の外郭を構成しており、鉄製部材で構成されている。密閉容器10は、略円筒形状の中部容器10aと、中部容器10aの上部の開口を塞ぐ上部容器10bと、中部容器10aの下部の開口を塞ぐ下部容器10cとを備えている。密閉容器10は、中部容器10aの上方の開口部に上部容器10bが嵌入され、中部容器10aの下方の開口部に下部容器10cが嵌入されて密閉状態が保たれている。密閉容器10は、台座14の上に配置されており、下部容器10cは台座14に固定されている。密閉型圧縮機100は、ボルト等により台座14が設置場所に固定されて設置される。
(Sealed container 10)
The closed container 10 constitutes the outer shell of the closed compressor 100, and is made of an iron member. The closed container 10 includes a substantially cylindrical middle container 10a, an upper container 10b that closes the upper opening of the middle container 10a, and a lower container 10c that closes the lower opening of the middle container 10a. In the closed container 10, the upper container 10b is fitted into the opening above the middle container 10a, and the lower container 10c is fitted into the opening below the middle container 10a to maintain the closed state. The closed container 10 is arranged on the pedestal 14, and the lower container 10c is fixed to the pedestal 14. The sealed compressor 100 is installed with the pedestal 14 fixed at the installation location by bolts or the like.
 中部容器10aには、アキュムレータ13を取り付けた吸入管11が接続されている。上部容器10bには、吐出管12が接続されている。吸入管11は、アキュムレータ13を介して吸入する低温低圧のガス冷媒を圧縮機構部30内に送り込むための接続管である。吐出管12は、圧縮機構部30によって圧縮された密閉容器10内の高温高圧のガス冷媒を、密閉容器10の外部に吐出させるための接続管である。 A suction pipe 11 to which the accumulator 13 is attached is connected to the central container 10a. A discharge pipe 12 is connected to the upper container 10b. The suction pipe 11 is a connecting pipe for sending the low-temperature low-pressure gas refrigerant sucked through the accumulator 13 into the compression mechanism unit 30. The discharge pipe 12 is a connecting pipe for discharging the high-temperature and high-pressure gas refrigerant in the closed container 10 compressed by the compression mechanism unit 30 to the outside of the closed container 10.
(電動機構部20)
 電動機構部20は、密閉容器10の内部において、回転軸32を回転させるものである。電動機構部20は、密閉容器10内において圧縮機構部30の上方に配置されている。電動機構部20は、中部容器10aの内周壁に固定された固定子21と、固定子21の内周側に回転自在に嵌合された回転子22とを備えている。固定子21は、例えば、焼き嵌めまたは溶接など各種の固定方法により密閉容器10の中部容器10aに固定されている。回転子22の中心部には、回転軸32が固定されている。回転軸32は、電動機構部20から下方に向けて延びている。固定子21は、密閉型圧縮機100の外部から供給される電力によって、回転子22を回転させるものである。
(Electric mechanism unit 20)
The electric mechanism unit 20 rotates the rotating shaft 32 inside the closed container 10. The electric mechanism unit 20 is arranged above the compression mechanism unit 30 in the closed container 10. The electric mechanism portion 20 includes a stator 21 fixed to the inner peripheral wall of the central container 10a, and a rotor 22 rotatably fitted to the inner peripheral side of the stator 21. The stator 21 is fixed to the central container 10a of the closed container 10 by various fixing methods such as shrink fitting or welding. A rotating shaft 32 is fixed to the center of the rotor 22. The rotating shaft 32 extends downward from the electric mechanism portion 20. The stator 21 rotates the rotor 22 by electric power supplied from the outside of the closed compressor 100.
(圧縮機構部30)
 圧縮機構部30は、密閉容器10に収容され、密閉容器10内に流入する冷媒を圧縮するものである。圧縮機構部30は、電動機構部20の下方に配置され、中部容器10aに固定されている。圧縮機構部30は、回転軸32の軸方向に配置された2つの圧縮機構と、上部軸受38と、下部軸受39と、仕切板37とを備えている。各圧縮機構は、中空のシリンダー31と、ローリングピストン33と、ベーン35と、スプリング36と、スプリング36が内部に収容される筒状のスプリングガイド40と、を備えている。2つのスプリングガイド40は突出容器50内に配置されている。突出容器50は、密閉容器10に、シリンダー31の径方向において密閉容器10に対してシリンダー31とは反対側に突出して設けられている。以下、上側の圧縮機構のシリンダー31を上部シリンダー31A、下側の圧縮機構のシリンダー31を下部シリンダー31Bという。
(Compression mechanism 30)
The compression mechanism unit 30 is housed in the closed container 10 and compresses the refrigerant flowing into the closed container 10. The compression mechanism portion 30 is arranged below the electric mechanism portion 20 and is fixed to the central container 10a. The compression mechanism unit 30 includes two compression mechanisms arranged in the axial direction of the rotating shaft 32, an upper bearing 38, a lower bearing 39, and a partition plate 37. Each compression mechanism includes a hollow cylinder 31, a rolling piston 33, a vane 35, a spring 36, and a tubular spring guide 40 in which the spring 36 is housed. The two spring guides 40 are arranged in the protruding container 50. The protruding container 50 is provided in the closed container 10 so as to project from the closed container 10 in the radial direction of the cylinder 31 to the opposite side of the cylinder 31. Hereinafter, the cylinder 31 of the upper compression mechanism is referred to as an upper cylinder 31A, and the cylinder 31 of the lower compression mechanism is referred to as a lower cylinder 31B.
 密閉容器10内において、上部シリンダー31Aは、下部シリンダー31Bの上方に配置されている。上部シリンダー31Aの上部には、上部軸受38が上部シリンダー31Aの上端面に接して配置され、上部軸受38で上部シリンダー31Aの上端面が閉塞されている。下部シリンダー31Bの下部には、下部軸受39が下部シリンダー31Bの下端面に接して配置され、下部軸受39で下部シリンダー31Bの下端面が閉塞されている。仕切板37は、上部シリンダー31Aと下部シリンダー31Bとの間に配置され、上部シリンダー31Aの下端面と、下部シリンダー31Bの上端面とを閉塞している。 In the closed container 10, the upper cylinder 31A is arranged above the lower cylinder 31B. An upper bearing 38 is arranged in contact with the upper end surface of the upper cylinder 31A on the upper portion of the upper cylinder 31A, and the upper end surface of the upper cylinder 31A is closed by the upper bearing 38. A lower bearing 39 is arranged in contact with the lower end surface of the lower cylinder 31B at the lower portion of the lower cylinder 31B, and the lower end surface of the lower cylinder 31B is closed by the lower bearing 39. The partition plate 37 is arranged between the upper cylinder 31A and the lower cylinder 31B, and closes the lower end surface of the upper cylinder 31A and the upper end surface of the lower cylinder 31B.
 上部シリンダー31Aおよび下部シリンダー31Bのそれぞれには、後述の図2に示すように、ベーン溝31eを周方向に挟んで両側に吸入孔34および吐出孔34Bが形成されている。上部シリンダー31Aの吸入孔34には吸入管11Aが接続されている。下部シリンダー31Bの吸入孔34には吸入管11Bが接続されている。なお、上述した吸入管11は、吸入管11Aおよび吸入管11Bの総称である。吐出孔34Bは、シリンダー31の内周壁31bから径方向外側に向かって形成されており、上部軸受38に形成された吐出穴(図示せず)を介して密閉容器10内の空間と連通している。 Each of the upper cylinder 31A and the lower cylinder 31B is formed with suction holes 34 and discharge holes 34B on both sides of the vane groove 31e in the circumferential direction, as shown in FIG. 2 to be described later. A suction pipe 11A is connected to the suction hole 34 of the upper cylinder 31A. A suction pipe 11B is connected to the suction hole 34 of the lower cylinder 31B. The above-mentioned suction pipe 11 is a general term for the suction pipe 11A and the suction pipe 11B. The discharge hole 34B is formed from the inner peripheral wall 31b of the cylinder 31 toward the outer side in the radial direction, and communicates with the space inside the closed container 10 through a discharge hole (not shown) formed in the upper bearing 38. There is.
 回転軸32は、軸方向の一方の端部側に、径方向の一方向に偏心した偏心部32aを有している。また、回転軸32は、軸方向の他方の端部側が電動機構部20の回転子22の中心部に挿入され固定されている。回転軸32は、上部軸受38と下部軸受39とにより回転自在に支持され、回転子22と共に回転する。 The rotating shaft 32 has an eccentric portion 32a eccentric in one direction in the radial direction on one end side in the axial direction. Further, the rotating shaft 32 is fixed by inserting the other end side in the axial direction into the central portion of the rotor 22 of the electric mechanism portion 20. The rotating shaft 32 is rotatably supported by the upper bearing 38 and the lower bearing 39, and rotates together with the rotor 22.
 スプリングガイド40は、密閉容器10から外部に突出して設けられ、内部にスプリング36が収容されて固定されるものである。スプリングガイド40は、上部シリンダー31Aおよび下部シリンダー31Bのそれぞれに対応して設けられており、それぞれがまとめて突出容器50内に収容されている。 The spring guide 40 is provided so as to project outward from the closed container 10, and the spring 36 is housed and fixed inside. The spring guide 40 is provided corresponding to each of the upper cylinder 31A and the lower cylinder 31B, and each of them is housed in the projecting container 50 together.
 以下、図2および図1を用いて、圧縮機構部30の構成についてさらに説明する。なお、上部シリンダー31Aにおけるローリングピストン33と、ベーン35と、スプリング36と、スプリングガイド40との関係と、下部シリンダー31Bにおけるローリングピストン33と、ベーン35と、スプリング36と、スプリングガイド40との関係とは同じである。そのため、以下の説明では、上部シリンダー31Aと下部シリンダー31Bとを別々に説明するのではなく、上部シリンダー31Aと下部シリンダー31Bとの総称であるシリンダー31を用いて説明する。また、図2では、シリンダー31内に配置されている偏心部32aの図示を省略している。 Hereinafter, the configuration of the compression mechanism unit 30 will be further described with reference to FIGS. 2 and 1. The relationship between the rolling piston 33, the vane 35, the spring 36, and the spring guide 40 in the upper cylinder 31A, and the relationship between the rolling piston 33, the vane 35, the spring 36, and the spring guide 40 in the lower cylinder 31B. Is the same as. Therefore, in the following description, the upper cylinder 31A and the lower cylinder 31B will not be described separately, but will be described using a cylinder 31 which is a general term for the upper cylinder 31A and the lower cylinder 31B. Further, in FIG. 2, the illustration of the eccentric portion 32a arranged in the cylinder 31 is omitted.
 シリンダー31は、図2に示すように、中空に形成されている。シリンダー31は、内部に回転軸32と同心のシリンダー室31dを有する。シリンダー室31dには、ローリングピストン33が配置されている。シリンダー31の内周壁31bは、円筒状に形成されたローリングピストン33の外周壁33aと対向する。 As shown in FIG. 2, the cylinder 31 is formed to be hollow. The cylinder 31 has a cylinder chamber 31d concentric with the rotating shaft 32 inside. A rolling piston 33 is arranged in the cylinder chamber 31d. The inner peripheral wall 31b of the cylinder 31 faces the outer peripheral wall 33a of the rolling piston 33 formed in a cylindrical shape.
 ローリングピストン33は、円筒状に構成されている。ローリングピストン33は、回転軸32の中心軸Cに対し偏心した位置にある。ローリングピストン33は、回転軸32と共に回転するように、シリンダー室31d内で回転軸32の偏心部32aに装着されている。ローリングピストン33は、回転軸32の回転によって、シリンダー31の内周壁31bに沿って偏心回転する。 The rolling piston 33 is formed in a cylindrical shape. The rolling piston 33 is located at an eccentric position with respect to the central axis C of the rotating shaft 32. The rolling piston 33 is mounted on the eccentric portion 32a of the rotating shaft 32 in the cylinder chamber 31d so as to rotate together with the rotating shaft 32. The rolling piston 33 eccentrically rotates along the inner peripheral wall 31b of the cylinder 31 due to the rotation of the rotating shaft 32.
 シリンダー31には、シリンダー室31dに連通し、径方向に延びるベーン溝31eが形成されている。ベーン溝31e内には、シリンダー径方向に進退自在にベーン35が配置されている。ベーン溝31eには、ベーン35が摺動自在に配置されている。ベーン溝31eのシリンダー径方向外側には、ベーン溝31eに連通する挿入孔31gが形成されている。挿入孔31gは、ベーン溝31eからシリンダー31の外周壁31fまで延びて形成されている。 The cylinder 31 is formed with a vane groove 31e that communicates with the cylinder chamber 31d and extends in the radial direction. In the vane groove 31e, the vane 35 is arranged so as to be able to advance and retreat in the cylinder radial direction. A vane 35 is slidably arranged in the vane groove 31e. An insertion hole 31g communicating with the vane groove 31e is formed on the outer side of the vane groove 31e in the cylinder radial direction. The insertion hole 31g is formed so as to extend from the vane groove 31e to the outer peripheral wall 31f of the cylinder 31.
 挿入孔31gには、スプリング36が外周壁31f側から挿入されて配置されている。スプリング36は、ベーン溝31e内に配置されたベーン35をローリングピストン33の配置側に付勢して、ベーン35の先端部35aをローリングピストン33に当接させるものである。ベーン35は、スプリング36の付勢力によってシリンダー径方向内側に押圧されることで、ベーン35の先端部35aがローリングピストン33に常に当接している。このようにベーン35の先端部35aがローリングピストン33と当接することで、シリンダー室31d内が、吸入孔34に通じる吸入室31d1と、吐出孔34Bに通じる圧縮室31d2とに区分されている。ベーン35は、シリンダー室31d内のローリングピストン33の偏心回転に伴い、先端部35aがローリングピストン33の外周壁33aに当接したままベーン溝31e内を往復運動する。 A spring 36 is inserted into the insertion hole 31g from the outer peripheral wall 31f side and arranged. The spring 36 urges the vane 35 arranged in the vane groove 31e to the arrangement side of the rolling piston 33, and brings the tip portion 35a of the vane 35 into contact with the rolling piston 33. The vane 35 is pressed inward in the radial direction of the cylinder by the urging force of the spring 36, so that the tip portion 35a of the vane 35 is always in contact with the rolling piston 33. When the tip portion 35a of the vane 35 comes into contact with the rolling piston 33, the inside of the cylinder chamber 31d is divided into a suction chamber 31d1 leading to the suction hole 34 and a compression chamber 31d2 leading to the discharge hole 34B. The vane 35 reciprocates in the vane groove 31e with the tip portion 35a in contact with the outer peripheral wall 33a of the rolling piston 33 as the rolling piston 33 in the cylinder chamber 31d rotates eccentrically.
 挿入孔31gは、シリンダー31の外周壁31f側に形成された外周側挿入孔31g2と、シリンダー31の内周壁31b側、すなわち、ベーン溝31e側に形成された内周側挿入孔31g1と、を有している。外周側挿入孔31g2および内周側挿入孔31g1の断面形状は、いずれも円形状である。外周側挿入孔31g2の直径をφDとし、内周側挿入孔31g1の直径をφdとした場合、φdはφDよりも小さい(φd<φD)。すなわち、挿入孔31gは、シリンダー31の外周壁31f側から内周壁31b側に向かって、当該挿入孔31gの中心軸方向に、直径の異なる複数の部分を有している。挿入孔31gは、シリンダー31の外周壁31fとベーン溝31eとの間で、ベーン溝31e側ほど小さい直径で形成されている。外周側挿入孔31g2の中心軸と内周側挿入孔31g1の中心軸とは同軸であり、両中心軸は、紙面に垂直に延伸する回転軸32の中心軸Cと交差している。 The insertion hole 31g includes an outer peripheral side insertion hole 31g2 formed on the outer peripheral wall 31f side of the cylinder 31 and an inner peripheral side insertion hole 31g1 formed on the inner peripheral wall 31b side of the cylinder 31, that is, the vane groove 31e side. Have. The cross-sectional shapes of the outer peripheral side insertion hole 31g2 and the inner peripheral side insertion hole 31g1 are both circular. When the diameter of the outer peripheral side insertion hole 31g2 is φD and the diameter of the inner peripheral side insertion hole 31g1 is φd, φd is smaller than φD (φd <φD). That is, the insertion hole 31g has a plurality of portions having different diameters in the central axis direction of the insertion hole 31g from the outer peripheral wall 31f side to the inner peripheral wall 31b side of the cylinder 31. The insertion hole 31g is formed between the outer peripheral wall 31f of the cylinder 31 and the vane groove 31e with a diameter as small as the vane groove 31e side. The central axis of the outer peripheral side insertion hole 31g2 and the central axis of the inner peripheral side insertion hole 31g1 are coaxial, and both central axes intersect with the central axis C of the rotating shaft 32 extending perpendicularly to the paper surface.
 スプリング36は、スプリングガイド40内に配置されている。スプリング36は、シリンダー31の中心軸Cに対して直交する方向に沿うように配置される。スプリング36は、長さ方向の一端部36aがベーン35の背面側端部35bに取り付けられ、他端部36bがスプリングガイド40の後述の底蓋部40cに固定されている。すなわち、スプリング36は、ベーン35の背面側端部35bとスプリングガイド40の底蓋部40cとの間に配置されている。 The spring 36 is arranged in the spring guide 40. The spring 36 is arranged along a direction orthogonal to the central axis C of the cylinder 31. In the spring 36, one end 36a in the length direction is attached to the back end 35b of the vane 35, and the other end 36b is fixed to the bottom lid 40c described later of the spring guide 40. That is, the spring 36 is arranged between the rear end portion 35b of the vane 35 and the bottom lid portion 40c of the spring guide 40.
 スプリング36は、圧縮させて反力を利用する圧縮コイルばねであり、円筒コイルばねである。なお、スプリング36は、円筒コイルばねが望ましいが、円筒コイルばねに限定されるものではない。 The spring 36 is a compression coil spring that compresses and utilizes the reaction force, and is a cylindrical coil spring. The spring 36 is preferably a cylindrical coil spring, but is not limited to the cylindrical coil spring.
 また、スプリング36は、長さ方向に渡ってコイル外径が同じとしてもよいし、異なっていてもよい。スプリング36のコイル外径が異なる構成としては、例えばスプリング36の他端部36bの径をその他の部分よりも大径に形成した構成が考えられる。このようにスプリング36を、大径部と小径部とを有する構成にした場合、大径部でスプリング36をスプリングガイド40内に固定する構造としてもよい。例えば、スプリングガイド40の内周面に周状の溝を設け、この溝内に大径部を嵌め入れることで、スプリング36をスプリングガイド40内に固定するようにしてもよい。このように、スプリング36を大径部でスプリングガイド40内に固定する構造とした場合には、スプリングガイド40内にスプリング36を保持するための底蓋部40cが不要となる。したがって、底蓋部40cは省略してもよい。 Further, the spring 36 may have the same coil outer diameter or different coil outer diameters in the length direction. As a configuration in which the coil outer diameter of the spring 36 is different, for example, a configuration in which the diameter of the other end portion 36b of the spring 36 is formed to be larger than that of the other portions can be considered. When the spring 36 has a large-diameter portion and a small-diameter portion in this way, the spring 36 may be fixed in the spring guide 40 at the large-diameter portion. For example, the spring 36 may be fixed in the spring guide 40 by providing a circumferential groove on the inner peripheral surface of the spring guide 40 and fitting a large diameter portion into the groove. In this way, when the spring 36 is fixed in the spring guide 40 with a large diameter portion, the bottom lid portion 40c for holding the spring 36 in the spring guide 40 becomes unnecessary. Therefore, the bottom lid portion 40c may be omitted.
 スプリングガイド40は、筒状の部材であって、一方の端部40aがシリンダー31に設けられた挿入孔31gに挿入されて固定され、他方の端部40bが密閉容器10に設けられた貫通孔10dを通って密閉容器10の外部に突出している。スプリングガイド40の他方の端部40bは底蓋部40cによって閉塞されている。 The spring guide 40 is a tubular member, and one end 40a is inserted into and fixed to an insertion hole 31g provided in the cylinder 31, and the other end 40b is a through hole provided in the closed container 10. It projects to the outside of the closed container 10 through 10d. The other end 40b of the spring guide 40 is closed by the bottom lid 40c.
 スプリングガイド40は、スプリング36の伸縮方向を規定し、伸縮動作をガイドするものである。また、スプリングガイド40は、スプリング36の軸のずれが大きくならないように、スプリング36の径方向の動きを規制するものである。このため、スプリングガイド40の内壁と、スプリング36のコイル外型との間隔は小さいほうが望ましい。したがって、スプリングガイド40は、スプリング36のコイル外径に沿った内壁を有する。スプリングガイド40は、例えば、スプリング36が円筒コイルばねであれば円の断面形状の内壁を有し、スプリング36が楕円コイルばねであれば楕円の断面形状の内壁を有する。 The spring guide 40 defines the expansion / contraction direction of the spring 36 and guides the expansion / contraction operation. Further, the spring guide 40 regulates the radial movement of the spring 36 so that the deviation of the axis of the spring 36 does not become large. Therefore, it is desirable that the distance between the inner wall of the spring guide 40 and the coil outer mold of the spring 36 is small. Therefore, the spring guide 40 has an inner wall along the outer diameter of the coil of the spring 36. For example, if the spring 36 is a cylindrical coil spring, the spring guide 40 has an inner wall having a circular cross-sectional shape, and if the spring 36 is an elliptical coil spring, the spring guide 40 has an inner wall having an elliptical cross-sectional shape.
 突出容器50は、両端が開口した筒状の筒状部51と、突出容器蓋52とを有する。筒状部51の一方の端部50aは、密閉容器10の中部容器10aに形成された貫通孔10dに接合されており、筒状部51は密閉容器10の内部と連通している。筒状部51の他方の端部50bは、突出容器蓋52で閉塞されている。このように、突出容器50は、密閉容器10の内部と連通しており、筒状部51の他方の端部50bが突出容器蓋52で閉塞されることで密閉空間50eを形成している。そして、密閉空間50eにスプリングガイド40が収容されるようになっている。なお、以下では、突出容器50における密閉容器10との接合側の端部を、筒状部51に付した符号を用いて一方の端部50aという。 The protruding container 50 has a tubular tubular portion 51 having both ends open and a protruding container lid 52. One end 50a of the tubular portion 51 is joined to a through hole 10d formed in the central container 10a of the closed container 10, and the tubular portion 51 communicates with the inside of the closed container 10. The other end 50b of the tubular portion 51 is closed by a protruding container lid 52. In this way, the protruding container 50 communicates with the inside of the closed container 10, and the other end 50b of the tubular portion 51 is closed by the protruding container lid 52 to form a closed space 50e. The spring guide 40 is accommodated in the closed space 50e. In the following, the end portion of the protruding container 50 on the joint side with the closed container 10 will be referred to as one end portion 50a using a reference numeral attached to the tubular portion 51.
 ところで、従来の密閉型圧縮機では、シリンダーの径方向において密閉容器に対してシリンダーとは反対側に突出して設けられた突出容器内にスプリングを直接、配置する構造であった。突出容器は、密閉容器に接合されており、詳しくは、密閉容器の中心軸に直交する方向に沿うように密閉容器に接合されている。このように突出容器は密閉容器に接合されているため、密閉容器とシリンダーとの組立精度が悪いと、密閉容器に接合された突出容器とシリンダーとの位置関係が正規の位置関係からずれる。 By the way, in the conventional closed type compressor, the spring is directly arranged in the protruding container provided so as to project from the closed container in the radial direction of the cylinder to the opposite side of the cylinder. The protruding container is joined to the closed container, and more specifically, the protruding container is joined to the closed container along the direction orthogonal to the central axis of the closed container. Since the protruding container is joined to the closed container in this way, if the assembly accuracy between the closed container and the cylinder is poor, the positional relationship between the protruding container joined to the closed container and the cylinder deviates from the normal positional relationship.
 シリンダー31は、シリンダー31の中心軸が密閉容器10の中心軸と一致するように密閉容器10内に固定されることが理想である。そして、シリンダー31の中心軸に直交する方向に沿うように、スプリング36が配置されることが理想である。しかし、シリンダー31の中心軸が密閉容器10の中心軸と一致せずに傾いて設置される等、組み立て精度が悪いと、シリンダー31の中心軸に直交する方向に対して突出容器50が傾いた状態となる。このため、突出容器50内にスプリング36を直接配置する構造であると、スプリング36もまた、シリンダー31の中心軸に直交する方向から傾いてしまう。そうすると、スプリング36とベーン35との位置関係が正規の位置関係からずれる。スプリング36とベーン35との位置関係がずれると、例えばスプリング36の伸縮時に、スプリング36に捻じれが生じてしまう恐れがあり、スプリング36が設計どおりに伸縮しない可能性がある。 Ideally, the cylinder 31 is fixed in the closed container 10 so that the central axis of the cylinder 31 coincides with the central axis of the closed container 10. Ideally, the spring 36 is arranged along the direction orthogonal to the central axis of the cylinder 31. However, if the assembly accuracy is poor, such as when the central axis of the cylinder 31 is tilted so as not to coincide with the central axis of the closed container 10, the protruding container 50 is tilted with respect to the direction orthogonal to the central axis of the cylinder 31. It becomes a state. Therefore, if the structure is such that the spring 36 is directly arranged in the projecting container 50, the spring 36 also tilts from the direction orthogonal to the central axis of the cylinder 31. Then, the positional relationship between the spring 36 and the vane 35 deviates from the normal positional relationship. If the positional relationship between the spring 36 and the vane 35 is deviated, for example, when the spring 36 expands and contracts, the spring 36 may be twisted, and the spring 36 may not expand and contract as designed.
 これに対し、本実施の形態1では、突出容器50内に別途、スプリングガイド40を設け、スプリングガイド40にスプリング36を配置するようにしている。そして、スプリングガイド40をシリンダー31に直接固定するようにしている。つまり、スプリング36はシリンダー31を基準に設置される。このため、製造時にシリンダー31の中心軸が密閉容器10の中心軸に対して傾いて設置されたとしても、スプリング36は、その傾きの影響を受けること無く、シリンダー31の中心軸に直交する方向に精度良く設置することができる。したがって、スプリング36とベーン35との位置精度を確保することができる。これにより、スプリング36の伸縮時にスプリング36に捻じれが生じる等の事態を抑制でき、スプリング36を安定して動作させることができる。 On the other hand, in the first embodiment, a spring guide 40 is separately provided in the projecting container 50, and the spring 36 is arranged in the spring guide 40. Then, the spring guide 40 is directly fixed to the cylinder 31. That is, the spring 36 is installed with reference to the cylinder 31. Therefore, even if the central axis of the cylinder 31 is tilted with respect to the central axis of the closed container 10 at the time of manufacturing, the spring 36 is not affected by the tilt and is orthogonal to the central axis of the cylinder 31. Can be installed with high accuracy. Therefore, the positional accuracy of the spring 36 and the vane 35 can be ensured. As a result, it is possible to suppress a situation in which the spring 36 is twisted when the spring 36 expands and contracts, and the spring 36 can be operated stably.
 次に、スプリングガイド40のシリンダー31への固定構造について説明する。
 スプリングガイド40は、一方の端部40aが、シリンダー31の外周壁31fに形成された挿入孔31gの外周側挿入孔31g2に、後述のシール管31hを用いて圧入されてシリンダー31に固定されている。シール管31hは、円筒状の管である。スプリングガイド40およびシール管31hは、圧入前の状態で以下の寸法関係を有している。すなわち、スプリングガイド40の外径は、シール管31hの内径よりも小さい。シール管31hの外径は、外周側挿入孔31g2の内径よりも大きい。そして、シール管31hが、外周側挿入孔31g2に挿入されたスプリングガイド40の一方の端部40aの外周面と、外周側挿入孔31g2の内周面と、の間に圧入され、スプリングガイド40がシリンダー31に圧入固定されている。
Next, the structure for fixing the spring guide 40 to the cylinder 31 will be described.
One end 40a of the spring guide 40 is press-fitted into the outer peripheral side insertion hole 31g2 of the insertion hole 31g formed in the outer peripheral wall 31f of the cylinder 31 by using a seal tube 31h described later and fixed to the cylinder 31. There is. The seal tube 31h is a cylindrical tube. The spring guide 40 and the seal pipe 31h have the following dimensional relationship in the state before press fitting. That is, the outer diameter of the spring guide 40 is smaller than the inner diameter of the seal tube 31h. The outer diameter of the seal tube 31h is larger than the inner diameter of the outer peripheral side insertion hole 31g2. Then, the seal tube 31h is press-fitted between the outer peripheral surface of one end 40a of the spring guide 40 inserted into the outer peripheral side insertion hole 31g2 and the inner peripheral surface of the outer peripheral side insertion hole 31g2, and the spring guide 40 is pressed. Is press-fitted and fixed to the cylinder 31.
 スプリングガイド40がシリンダー31に固定された状態では、スプリングガイド40の内部と、シリンダー31に形成された挿入孔31gの内周側挿入孔31g1と、が連通する。スプリングガイド40の内径と、内周側挿入孔31g1の内径とは同じとなっており、スプリングガイド40の中心軸と内周側挿入孔31g1の中心軸とが一致するようにスプリングガイド40がシリンダー31に対して固定される。 When the spring guide 40 is fixed to the cylinder 31, the inside of the spring guide 40 and the inner peripheral side insertion hole 31g1 of the insertion hole 31g formed in the cylinder 31 communicate with each other. The inner diameter of the spring guide 40 and the inner diameter of the inner peripheral side insertion hole 31g1 are the same, and the spring guide 40 is a cylinder so that the central axis of the spring guide 40 and the central axis of the inner peripheral side insertion hole 31g1 coincide with each other. It is fixed to 31.
 スプリング36をシリンダー31に固定するにあたり、複数の部品を用いる構成であると、部品数が増えるほど、スプリング36とベーン35との位置精度の確保が困難となる。これに対し、本実施の形態1では、スプリング36をシリンダー31に固定するために必要な部品がスプリングガイド40のみであるため、スプリング36とベーン35との位置精度を確保できる。 When fixing the spring 36 to the cylinder 31, if a plurality of parts are used, it becomes difficult to secure the positional accuracy between the spring 36 and the vane 35 as the number of parts increases. On the other hand, in the first embodiment, since the only component required for fixing the spring 36 to the cylinder 31 is the spring guide 40, the positional accuracy between the spring 36 and the vane 35 can be ensured.
 次に、突出容器50の一方の端部50aを密閉容器10の中部容器10aに接合する方法について説明する。
 密閉容器10の中部容器10aには貫通孔10dが形成されており、この貫通孔10dに突出容器50の一方の端部50aが接合されている。突出容器50の一方の端部50aと密閉容器10の中部容器10aとの接触部は、曲面であるため隙間が発生し易く、ロウ付けまたは融接による接合方法では、ブローホール等の不良が発生し易い。そのため、突出容器50の一方の端部50aを、密閉容器10の中部容器10aに接合する方法については、抵抗溶接が望ましい。抵抗溶接は、短時間で効率的に溶接できる溶接方法であり、短時間で溶接するため熱による影響を与えにくいという特徴がある。なお、抵抗溶接を用いる場合には、突出容器50は密閉容器10と同様に鉄製部材で構成されているものとする。
Next, a method of joining one end 50a of the protruding container 50 to the middle container 10a of the closed container 10 will be described.
A through hole 10d is formed in the inner container 10a of the closed container 10, and one end 50a of the projecting container 50 is joined to the through hole 10d. Since the contact portion between one end 50a of the protruding container 50 and the middle container 10a of the closed container 10 is a curved surface, a gap is likely to occur, and defects such as blow holes occur in the joining method by brazing or fusion welding. Easy to do. Therefore, resistance welding is desirable for the method of joining one end 50a of the protruding container 50 to the middle container 10a of the closed container 10. Resistance welding is a welding method that enables efficient welding in a short time, and is characterized in that it is not easily affected by heat because it is welded in a short time. When resistance welding is used, the protruding container 50 is made of an iron member like the closed container 10.
 突出容器50の一方の端部50aを密閉容器10の中部容器10aに抵抗溶接する場合には、突出容器50の一方の端部50aと密閉容器10の中部容器10aとの接触幅を小さくすることが望ましい。この接触幅が小さいと、電気抵抗が増大し、低電流においても接合部温度が上昇し易くなり、接合が容易となる。したがって、本実施の形態1において突出容器50の一方の端部50aは、密閉容器10の中部容器10aとの接触幅を小さくする構造として、以下の図3または図4の構造を採用している。 When one end 50a of the protruding container 50 is resistance welded to the middle container 10a of the closed container 10, the contact width between the one end 50a of the protruding container 50 and the middle container 10a of the closed container 10 should be reduced. Is desirable. When this contact width is small, the electric resistance increases, the joint temperature tends to rise even at a low current, and the joint becomes easy. Therefore, in the first embodiment, one end 50a of the protruding container 50 adopts the structure shown in FIG. 3 or 4 below as a structure for reducing the contact width with the middle container 10a of the closed container 10. ..
 図3は、実施の形態1に係る密閉型圧縮機の突出容器と密閉容器との接触部の構造例1を示す断面模式図である。
 図3に示すように、突出容器50の一方の端部50aは、密閉容器10に向かって肉厚が薄くなり、先細り形状を有する。
FIG. 3 is a schematic cross-sectional view showing a structural example 1 of a contact portion between a protruding container and a closed container of the closed compressor according to the first embodiment.
As shown in FIG. 3, one end 50a of the protruding container 50 has a tapered shape as the wall thickness decreases toward the closed container 10.
 図4は、実施の形態1に係る密閉型圧縮機の突出容器と密閉容器との接触部の構造例2を示す断面模式図である。
 図4に示すように、突出容器50の一方の端部50aは、突出容器50の軸53方向に見て、端面50aaの一部が、密閉容器10の貫通孔10dの内側に位置している。これにより、突出容器50の筒状部51の一方の端部50aの端面50aaが、密閉容器10に全面接触しない構成となっている。
FIG. 4 is a schematic cross-sectional view showing a structural example 2 of a contact portion between the protruding container and the closed container of the closed compressor according to the first embodiment.
As shown in FIG. 4, one end 50a of the protruding container 50 has a part of the end surface 50aa located inside the through hole 10d of the closed container 10 when viewed in the direction of the axis 53 of the protruding container 50. .. As a result, the end surface 50aa of one end 50a of the tubular portion 51 of the protruding container 50 does not come into full contact with the closed container 10.
 以上の構成により、突出容器50の一方の端部50aと密閉容器10の中部容器10aとの接触幅を小さくでき、抵抗溶接による接合が容易となる。 With the above configuration, the contact width between one end 50a of the protruding container 50 and the middle container 10a of the closed container 10 can be reduced, and joining by resistance welding becomes easy.
 また、突出容器50の一方の端部50aと密閉容器10との接合は、抵抗溶接の他、ロウ付けまたは融接によって行うこともできる。ロウ付けまたは融接による接合を行う場合の突出容器50と密閉容器10との接触部の構造例について次の図5に示す。 Further, the joining of one end 50a of the protruding container 50 and the closed container 10 can be performed by brazing or fusion welding in addition to resistance welding. The following FIG. 5 shows an example of the structure of the contact portion between the projecting container 50 and the closed container 10 when joining by brazing or fusion welding.
 図5は、実施の形態1に係る密閉型圧縮機の突出容器と密閉容器との接触部の構造例3を示す断面模式図である。
 図5に示すように、密閉容器10の中部容器10aは、突出容器50が接合される貫通孔10dの周囲を、シリンダー31の径方向において密閉容器10に対してシリンダー31とは反対側に突出して湾曲させたカラー10eを有する。突出容器50は、カラー10eの内部に筒状部51の一方の端部50aが挿入されてロウ付けまたは融接により接合されている。すなわち、筒状部51の一方の端部50aは、カラー10eの内周面10eaにロウ付けまたは融接により接合されている。なお、図示は省略するが、筒状部51の一方の端部50aが外向きに広がり、その広がった部分が密閉容器10の内壁面10aaに接合された構成としてもよい。また、筒状部51の一方の端部50aが、カラー10eの内周面10eaおよび密閉容器10の内壁面10aaの両方に接合された構成としてもよい。
FIG. 5 is a schematic cross-sectional view showing a structural example 3 of a contact portion between the protruding container and the closed container of the closed compressor according to the first embodiment.
As shown in FIG. 5, the inner container 10a of the closed container 10 projects around the through hole 10d to which the protruding container 50 is joined with respect to the closed container 10 in the radial direction of the cylinder 31 on the opposite side of the cylinder 31. Has a curved collar 10e. The projecting container 50 is joined by brazing or fusion welding with one end 50a of the tubular portion 51 inserted inside the collar 10e. That is, one end 50a of the tubular portion 51 is joined to the inner peripheral surface 10ea of the collar 10e by brazing or fusion welding. Although not shown, one end 50a of the tubular portion 51 may be expanded outward, and the expanded portion may be joined to the inner wall surface 10aa of the closed container 10. Further, one end 50a of the tubular portion 51 may be joined to both the inner peripheral surface 10ea of the collar 10e and the inner wall surface 10aa of the closed container 10.
 このように突出容器50が接合される貫通孔10dの周囲にカラー10eを設けた構成とすることで、筒状部51の一方の端部50aとカラー10eとの接触距離を確保することができる。したがって、ロウ付けまたは融接による接合方法を用いても、ブローホール等の不良が発生にくく、良好に接合を行える。 By providing the collar 10e around the through hole 10d to which the projecting container 50 is joined in this way, it is possible to secure the contact distance between one end 50a of the tubular portion 51 and the collar 10e. .. Therefore, even if a joining method by brazing or fusion welding is used, defects such as blow holes are less likely to occur, and good joining can be performed.
[密閉型圧縮機100の製造方法]
 次に、密閉型圧縮機の要部の製造方法について説明する。
[Manufacturing method of sealed compressor 100]
Next, a method of manufacturing the main part of the sealed compressor will be described.
 図6は、実施の形態1に係る密閉型圧縮機の製造工程を示すフロー図である。突出容器50の密閉容器10への取り付けは以下の順番で行われることが望ましい。突出容器50の密閉容器10への取り付けは、まず、密閉容器10の中部容器10aに突出容器50の筒状部51の一方の端部50aを接合する接合工程を行う(ステップS1)。接合工程(ステップS1)では、上述した抵抗溶接を用いる。 FIG. 6 is a flow chart showing a manufacturing process of the sealed compressor according to the first embodiment. It is desirable that the protruding container 50 is attached to the closed container 10 in the following order. To attach the protruding container 50 to the closed container 10, first, a joining step of joining one end 50a of the tubular portion 51 of the protruding container 50 to the central container 10a of the closed container 10 is performed (step S1). In the joining step (step S1), the above-mentioned resistance welding is used.
 次に、シリンダー31を密閉容器10の中部容器10a内に固定するシリンダー固定工程を行う(ステップS2)。なお、図1の密閉型圧縮機100は、複数の圧縮機構を有している。このため、シリンダー固定工程では、上部軸受38と、2つのシリンダー31と、仕切板37と、下部軸受39と、2つのローリングピストン33を備えた回転軸32と、を組み合わせた一体物を、密閉容器10の内部に挿入し、2つのシリンダー31を中部容器10aの内周面に固定する。各シリンダー31は、挿入孔31gが密閉容器10の貫通孔10dに対向する位置で中部容器10aに固定される。 Next, a cylinder fixing step of fixing the cylinder 31 in the central container 10a of the closed container 10 is performed (step S2). The sealed compressor 100 of FIG. 1 has a plurality of compression mechanisms. Therefore, in the cylinder fixing step, an integral body in which the upper bearing 38, the two cylinders 31, the partition plate 37, the lower bearing 39, and the rotating shaft 32 having the two rolling pistons 33 are combined is sealed. It is inserted into the container 10 and the two cylinders 31 are fixed to the inner peripheral surface of the middle container 10a. Each cylinder 31 is fixed to the central container 10a at a position where the insertion hole 31g faces the through hole 10d of the closed container 10.
 次に、突出容器50の筒状部51の他方の端部50bからシリンダー31のベーン溝31eにベーン35を配置するベーン配置工程を行う(ステップS3)。次に、スプリングガイド40を筒状部51の他方の端部50bから挿入してシリンダー31に固定するスプリングガイド固定工程を行う(ステップS4)。次に、スプリング36をスプリングガイド40に挿入し、スプリング36の挿入方向先端側の一端をベーン35の背面側端部35bに取り付け、他端部36bをスプリングガイド40の底蓋部40cに固定するスプリング取付工程を行う(ステップS5)。最後に、筒状部51の他方の端部50bに突出容器蓋52を接合して筒状部51内を密閉する閉塞工程を行う(ステップS6)。 Next, a vane placement step of arranging the vane 35 from the other end 50b of the tubular portion 51 of the projecting container 50 to the vane groove 31e of the cylinder 31 is performed (step S3). Next, a spring guide fixing step of inserting the spring guide 40 from the other end 50b of the tubular portion 51 and fixing it to the cylinder 31 is performed (step S4). Next, the spring 36 is inserted into the spring guide 40, one end of the spring 36 on the tip end side in the insertion direction is attached to the back surface side end portion 35b of the vane 35, and the other end portion 36b is fixed to the bottom lid portion 40c of the spring guide 40. Perform the spring mounting process (step S5). Finally, a closing step is performed in which the protruding container lid 52 is joined to the other end 50b of the tubular portion 51 to seal the inside of the tubular portion 51 (step S6).
 ステップS1~ステップS6の工程を経ることにより突出容器50の密閉容器10への取り付け工程が終了し、突出容器50内を密閉できる。 By going through the steps S1 to S6, the step of attaching the protruding container 50 to the closed container 10 is completed, and the inside of the protruding container 50 can be sealed.
 上記の製造方法では、突出容器50の密閉容器10への接合を最初の段階で行っておくようにしたので、スプリングガイド40およびスプリング36の熱歪を防止できる。つまり、スプリングガイド40およびスプリング36を密閉容器10に組み込んだ後に、突出容器50を密閉容器10に接合する工程を行った場合、その接合時の熱がスプリングガイド40およびスプリング36に伝わる可能性がある。しかし、本実施の形態1では、スプリングガイド40およびスプリング36を密閉容器10に組み込むより先に、突出容器50を密閉容器10に接合する工程を行うことで、スプリングガイド40およびスプリング36の熱歪を防止できる。 In the above manufacturing method, since the protruding container 50 is joined to the closed container 10 at the first stage, thermal distortion of the spring guide 40 and the spring 36 can be prevented. That is, when the step of joining the protruding container 50 to the closed container 10 is performed after incorporating the spring guide 40 and the spring 36 into the closed container 10, the heat at the time of joining may be transferred to the spring guide 40 and the spring 36. is there. However, in the first embodiment, the spring guide 40 and the spring 36 are thermally distorted by performing the step of joining the protruding container 50 to the closed container 10 before incorporating the spring guide 40 and the spring 36 into the closed container 10. Can be prevented.
 閉塞工程(ステップS6)では、例えば、鉄製部材で構成された筒状部51と、鉄製部材で構成された突出容器蓋52とが抵抗溶接または融接によって接合される。あるいは、閉塞工程(ステップS6)では、例えば、突出容器蓋52を銅製部材または銅メッキを施した鉄製部材とすることで、筒状部51と突出容器蓋52とをロウ付けによって接合することもできる。ロウ付けは、例えば、高周波ロウ付け等の低入熱な接合方法によって行われる。 In the closing step (step S6), for example, the tubular portion 51 made of an iron member and the protruding container lid 52 made of an iron member are joined by resistance welding or fusion welding. Alternatively, in the closing step (step S6), for example, by making the protruding container lid 52 a copper member or a copper-plated iron member, the tubular portion 51 and the protruding container lid 52 may be joined by brazing. it can. Brazing is performed by a low heat input joining method such as high frequency brazing.
 図7は、実施の形態1に係る密閉型圧縮機の突出容器の変形例の断面模式図である。
 筒状部51は、図1~図5に示したように1部品で構成してもよいし、図7に示すように、例えば中央部分で軸53方向に分割された前筒状部51aと後筒状部51bとの2部品で構成してもよい。前筒状部51aおよび後筒状部51bは、スプリングガイド40を内部に収容する筒状の部材である。
FIG. 7 is a schematic cross-sectional view of a modified example of the protruding container of the closed compressor according to the first embodiment.
The tubular portion 51 may be composed of one component as shown in FIGS. 1 to 5, or as shown in FIG. 7, for example, with the front tubular portion 51a divided in the axial 53 direction at the central portion. It may be composed of two parts with a rear tubular portion 51b. The front tubular portion 51a and the rear tubular portion 51b are tubular members that accommodate the spring guide 40 inside.
 前筒状部51aは、一方の端部51aaが、密閉容器10の中部容器10aに接合されており、他方の端部51abには、後筒状部51bの一方の端部51baが接合されている。前筒状部51aは、一方の端部51aaに向かって肉厚が薄くなり、先細り形状に形成されている。後筒状部51bは、一方の端部51baが前筒状部51aの他方の端部51abに接合され、他方の端部51bbには突出容器蓋52が接合されている。変形例の突出容器50は、後筒状部51bの他方の端部51bbが突出容器蓋52によって閉塞されることで密閉されている。 One end 51a of the front tubular portion 51a is joined to the middle container 10a of the closed container 10, and one end 51ba of the rear tubular portion 51b is joined to the other end 51ab. There is. The front tubular portion 51a becomes thinner toward one end portion 51a and is formed in a tapered shape. In the rear tubular portion 51b, one end 51ba is joined to the other end 51ab of the front tubular portion 51a, and the protruding container lid 52 is joined to the other end 51bb. The protruding container 50 of the modified example is sealed by closing the other end portion 51bb of the rear tubular portion 51b with the protruding container lid 52.
 このように筒状部51を分割した構成とした場合、前筒状部51aと後筒状部51bを、素材の異なる材料で構成することが可能となる。また、以下の製造方法を用いることで、作業性の向上を図ることも可能となる。 When the tubular portion 51 is divided in this way, the front tubular portion 51a and the rear tubular portion 51b can be made of different materials. Further, by using the following manufacturing method, it is possible to improve workability.
 図7に示した突出容器50の密閉容器10への取り付けの流れは、図6と同様である。なお、筒状部51は前筒状部51aと後筒状部51bとに分割されているため、接合工程(ステップS1)では、まず、前筒状部51aと密閉容器10とを接合する。前筒状部51aを密閉容器10と同様に鉄製部材とすることで、突出容器50の前筒状部51aと密閉容器10とを、抵抗溶接により接合することができる。なお、ここでは、筒状部51が2つに分割されていて前筒状部51aだけを密閉容器10の中部容器10aに接合するため、分割されていない構成に比べて軸53方向の長さが短くなり、作業者は接合作業がしやすくなる。 The flow of attaching the protruding container 50 to the closed container 10 shown in FIG. 7 is the same as that in FIG. Since the tubular portion 51 is divided into a front tubular portion 51a and a rear tubular portion 51b, in the joining step (step S1), the front tubular portion 51a and the closed container 10 are first joined. By making the front tubular portion 51a an iron member like the closed container 10, the front tubular portion 51a of the protruding container 50 and the closed container 10 can be joined by resistance welding. Here, since the tubular portion 51 is divided into two and only the front tubular portion 51a is joined to the middle container 10a of the closed container 10, the length in the shaft 53 direction is longer than that in the undivided configuration. Is shortened, and the operator can easily perform the joining work.
 そして、シリンダー固定工程(ステップS2)、スプリングガイド固定工程(ステップS4)、スプリング取付工程(ステップS5)を行う。これらの各工程においても、筒状部51が分割されていない構成に比べて軸53方向の長さが短いことで、作業者は作業がしやすくなる。そして、前筒状部51aに後筒状部51bを接合し、続いて閉塞工程(ステップS6)を行う。 Then, the cylinder fixing step (step S2), the spring guide fixing step (step S4), and the spring mounting step (step S5) are performed. Also in each of these steps, the length in the axis 53 direction is shorter than that in the configuration in which the tubular portion 51 is not divided, so that the operator can easily perform the work. Then, the rear tubular portion 51b is joined to the front tubular portion 51a, and subsequently, the closing step (step S6) is performed.
 閉塞工程(ステップS6)において、突出容器50の後筒状部51bと突出容器蓋52とは、後筒状部51bと突出容器蓋52とを銅製部材とすることでロウ付けにより接合することができる。後筒状部51bと突出容器蓋52とを接合するロウ付けの方法としては、例えば、高周波ロウ付け、あるいは、ガスロウ付け等がある。また、後筒状部51bと突出容器蓋52との両方を鉄製部材とした場合には、後筒状部51bと突出容器蓋52とを抵抗溶接または融接によって接合することもできる。なお、後筒状部51bと突出容器蓋52とのいずれか一方、または、両方を鉄製部材とし、鉄製部材に銅メッキ処理を施すようにした場合、後筒状部51bと突出容器蓋52との両方を銅製部材とする場合よりも突出容器50の強度を上げることができる。 In the closing step (step S6), the rear tubular portion 51b of the projecting container 50 and the projecting container lid 52 can be joined by brazing by forming the rear tubular portion 51b and the projecting container lid 52 into copper members. it can. Examples of the brazing method for joining the rear tubular portion 51b and the protruding container lid 52 include high-frequency brazing, gas brazing, and the like. Further, when both the rear tubular portion 51b and the protruding container lid 52 are made of iron, the rear tubular portion 51b and the protruding container lid 52 can be joined by resistance welding or fusion welding. When either one or both of the rear tubular portion 51b and the protruding container lid 52 is made of an iron member and the iron member is subjected to copper plating treatment, the rear tubular portion 51b and the protruding container lid 52 are used. The strength of the projecting container 50 can be increased as compared with the case where both of the members are made of copper.
 また、ここでは、突出容器50の前筒状部51aを密閉容器10に接合し、スプリング取付工程(ステップS5)を終えた後、前筒状部51aに後筒状部51bを接合したが、次の工程順としてもよい。すなわち、前筒状部51aに後筒状部51bを接合して筒状部51を構成した後、前筒状部51aを密閉容器10に接合してもよい。前筒状部51aを鉄製部材とし、後筒状部51bを銅製部材とした場合、例えば、炉中ロウ付け等により前筒状部51aと後筒状部51bとを接合して筒状部51を構成できる。 Further, here, the front tubular portion 51a of the protruding container 50 is joined to the closed container 10, and after the spring mounting step (step S5) is completed, the rear tubular portion 51b is joined to the front tubular portion 51a. The next process order may be used. That is, the front tubular portion 51a may be joined to the rear tubular portion 51b to form the tubular portion 51, and then the front tubular portion 51a may be joined to the closed container 10. When the front tubular portion 51a is made of an iron member and the rear tubular portion 51b is made of a copper member, for example, the front tubular portion 51a and the rear tubular portion 51b are joined by brazing in a furnace or the like to join the tubular portion 51. Can be configured.
[密閉型圧縮機100の動作]
 次に、図1および図2を用いて密閉型圧縮機100の動作について説明する。密閉型圧縮機100は、電動機構部20の駆動により回転軸32が回転すると、回転軸32と共にシリンダー31内のローリングピストン33も回転する。ローリングピストン33は、シリンダー室31d内を偏心的に回転し、ローリングピストン33に先端部35aが当接したベーン35は、ローリングピストン33の回転により往復運動する。この時、ガス冷媒は、吸入管11を介して圧縮機構部30の吸入孔34からシリンダー室31d内に入る。そして、シリンダー室31d内のガス冷媒は、ローリングピストン33の回転に伴って圧縮室31d2内の容積が小さくなるにつれ圧縮されていく。
[Operation of closed compressor 100]
Next, the operation of the closed compressor 100 will be described with reference to FIGS. 1 and 2. In the closed compressor 100, when the rotating shaft 32 is rotated by the drive of the electric mechanism unit 20, the rolling piston 33 in the cylinder 31 also rotates together with the rotating shaft 32. The rolling piston 33 rotates eccentrically in the cylinder chamber 31d, and the vane 35 in which the tip portion 35a abuts on the rolling piston 33 reciprocates due to the rotation of the rolling piston 33. At this time, the gas refrigerant enters the cylinder chamber 31d from the suction hole 34 of the compression mechanism unit 30 via the suction pipe 11. Then, the gas refrigerant in the cylinder chamber 31d is compressed as the volume in the compression chamber 31d2 becomes smaller as the rolling piston 33 rotates.
 この圧縮工程において、ベーン35の先端部35aは、スプリング36の付勢力により、ローリングピストン33の外周壁33aに当接している。そして、ベーン35は、ローリングピストン33の偏心的な回転に伴い、ベーン溝31e内を進退運動する。この際、スプリング36は、スプリングガイド40の内壁に沿って伸縮変形し、スプリング36の伸縮方向がスプリングガイド40の内壁によってガイドされる。 In this compression step, the tip portion 35a of the vane 35 is in contact with the outer peripheral wall 33a of the rolling piston 33 due to the urging force of the spring 36. Then, the vane 35 moves forward and backward in the vane groove 31e with the eccentric rotation of the rolling piston 33. At this time, the spring 36 expands and contracts along the inner wall of the spring guide 40, and the expansion and contraction direction of the spring 36 is guided by the inner wall of the spring guide 40.
 圧縮室31d2で圧縮されたガス冷媒は、上部軸受38に設けられた吐出口(図示せず)から密閉容器10の内部空間へ吐出される。密閉容器10の内部空間を周回しているガス冷媒は、回転子22に設けられたガス穴(図示せず)と、固定子21と回転子22との間の隙間とをそれぞれ通って密閉容器10内の上部に達し、吐出管12から密閉容器10の外部の冷媒回路内へ吐出される。 The gas refrigerant compressed in the compression chamber 31d2 is discharged into the internal space of the closed container 10 from a discharge port (not shown) provided in the upper bearing 38. The gas refrigerant orbiting the internal space of the closed container 10 passes through a gas hole (not shown) provided in the rotor 22 and a gap between the stator 21 and the rotor 22, respectively, in the closed container. It reaches the upper part of the inside of the 10 and is discharged from the discharge pipe 12 into the refrigerant circuit outside the closed container 10.
 以上説明したように、本実施の形態1の密閉型圧縮機100は、密閉容器10と、密閉容器10内に収容された中空のシリンダー31と、シリンダー31の内周壁31bに沿って偏心回転するローリングピストン33と、シリンダー31に設けられたベーン溝31e内をシリンダー31の径方向に往復運動するベーン35と、ベーン35をローリングピストン33の配置側に付勢するスプリング36とを備える。密閉型圧縮機100はさらに、
シリンダー31の径方向において密閉容器10に対してシリンダー31とは反対側に突出して設けられ、密閉容器10に一方の端部40aが接合されて密閉容器10の内部と連通し、密閉空間50eを形成する突出容器50と、突出容器50の密閉空間50eに配置され、スプリング36が内部に固定されるスプリングガイド40と、を備える。シリンダー31の外周壁31fには挿入孔31gが形成されており、スプリングガイド40は、一方の端部40aがシリンダー31の挿入孔31gに挿入されて固定されている。
As described above, the closed compressor 100 of the first embodiment eccentrically rotates along the closed container 10, the hollow cylinder 31 housed in the closed container 10, and the inner peripheral wall 31b of the cylinder 31. A rolling piston 33, a vane 35 that reciprocates in the vane groove 31e provided in the cylinder 31 in the radial direction of the cylinder 31, and a spring 36 that urges the vane 35 to the arrangement side of the rolling piston 33 are provided. The closed compressor 100 further
In the radial direction of the cylinder 31, it is provided so as to project from the closed container 10 on the side opposite to the cylinder 31, and one end 40a is joined to the closed container 10 to communicate with the inside of the closed container 10 to form a closed space 50e. A protruding container 50 to be formed and a spring guide 40 arranged in the closed space 50e of the protruding container 50 and to which the spring 36 is fixed inside are provided. An insertion hole 31g is formed in the outer peripheral wall 31f of the cylinder 31, and one end 40a of the spring guide 40 is inserted into the insertion hole 31g of the cylinder 31 and fixed.
 このように、突出容器50内に別途、スプリングガイド40を設け、スプリングガイド40をシリンダー31に直接固定する構造とした。これにより、密閉容器10に接合された突出容器50内にスプリング36を収容する構成に比べて、スプリング36とベーン35との位置精度を確保することができる。また、スプリングガイド40をシリンダー31に直接固定する構造であるため、スプリング36をシリンダー31に組み込むための部品がスプリングガイド40のみとなる。この点からも、スプリング36とベーン35との位置精度を確保することができる。また、突出容器50内にスプリング36が収容されるため、スプリング36の配置スペースが突出容器50の分だけ拡大され、突出容器50を設けない構成に比べて、スプリング36の伸縮代を確保できる。 In this way, a spring guide 40 is separately provided in the projecting container 50, and the spring guide 40 is directly fixed to the cylinder 31. As a result, the positional accuracy of the spring 36 and the vane 35 can be ensured as compared with the configuration in which the spring 36 is housed in the protruding container 50 joined to the closed container 10. Further, since the structure is such that the spring guide 40 is directly fixed to the cylinder 31, the only component for incorporating the spring 36 into the cylinder 31 is the spring guide 40. From this point as well, the positional accuracy of the spring 36 and the vane 35 can be ensured. Further, since the spring 36 is housed in the projecting container 50, the space for arranging the spring 36 is expanded by the amount of the projecting container 50, and the expansion / contraction allowance of the spring 36 can be secured as compared with the configuration in which the projecting container 50 is not provided.
 本実施の形態1の密閉型圧縮機100は、複数のシリンダー31を有し、複数のシリンダー31には、複数のスプリングガイド40が固定されており、突出容器50は、複数のスプリングガイド40をまとめて収容する。 The sealed compressor 100 of the first embodiment has a plurality of cylinders 31, and a plurality of spring guides 40 are fixed to the plurality of cylinders 31, and the projecting container 50 has a plurality of spring guides 40. Contain all together.
 このように、突出容器50が複数のスプリングガイド40をまとめて収容する構成とすることで、複数のスプリングガイド40のそれぞれを別々の突出容器50に収容する構成と比較して、密閉型圧縮機100の製造工程を簡略化することができる。つまり、複数のスプリングガイド40のそれぞれを別々の突出容器50に収容する構成であると、スプリングガイド40毎に突出容器50を密閉容器10に接合する接合工程(ステップS1)が必要となる。これに対し、突出容器50が複数のスプリングガイド40をまとめて収容する構成であると、接合工程(ステップS1)が1回で済む。 In this way, by configuring the projecting container 50 to house the plurality of spring guides 40 together, the closed compressor is compared with the configuration in which each of the plurality of spring guides 40 is housed in the separate projecting containers 50. The manufacturing process of 100 can be simplified. That is, if each of the plurality of spring guides 40 is housed in separate projecting containers 50, a joining step (step S1) of joining the projecting containers 50 to the closed container 10 is required for each spring guide 40. On the other hand, if the projecting container 50 is configured to house a plurality of spring guides 40 together, the joining step (step S1) can be performed only once.
 突出容器50の一方の端部50aは、密閉容器10に向かって肉厚が薄くなり、先細り形状に形成されている。または、密閉容器10は、突出容器50の一方の端部50aが接合される貫通孔10dを有し、突出容器50の一方の端部50aの端面50aaは、突出容器50の軸方向に見て、一部が密閉容器10の貫通孔10dの内側に位置し、密閉容器10に全面接触しない。 One end 50a of the protruding container 50 becomes thinner toward the closed container 10 and is formed in a tapered shape. Alternatively, the closed container 10 has a through hole 10d to which one end 50a of the protruding container 50 is joined, and the end surface 50aa of the one end 50a of the protruding container 50 is viewed in the axial direction of the protruding container 50. , A part of it is located inside the through hole 10d of the closed container 10 and does not come into full contact with the closed container 10.
 これにより、突出容器50の一方の端部50aと密閉容器10とを接合する際の接触幅を小さくでき、抵抗溶接による接合が容易となる。 As a result, the contact width when joining one end 50a of the protruding container 50 and the closed container 10 can be reduced, and the joining by resistance welding becomes easy.
 密閉容器10は、突出容器50の一方の端部50aが接合される貫通孔10dの周囲を、シリンダー31の径方向において密閉容器10に対してシリンダー31とは反対側に突出して湾曲させたカラー10eを有し、突出容器50は、カラー10eの内周面10eaおよび密閉容器10の内壁面10aaの一方または両方と接合されている。 The closed container 10 is a collar in which the circumference of the through hole 10d to which one end 50a of the protruding container 50 is joined is curved so as to project from the closed container 10 to the opposite side of the cylinder 31 in the radial direction of the cylinder 31. Having 10e, the protruding container 50 is joined to one or both of the inner peripheral surface 10ea of the collar 10e and the inner wall surface 10aa of the closed container 10.
 これにより、突出容器50の一方の端部50aとカラー10eとの接触距離を確保することができ、ロウ付けまたは融接による接合を良好に行える。 As a result, the contact distance between one end 50a of the projecting container 50 and the collar 10e can be secured, and the joining by brazing or fusion welding can be performed satisfactorily.
 突出容器50は、筒状に形成され、密閉容器10に一方の端部50aが接合される筒状部51と、筒状部51の他方の端部50bを閉塞する突出容器蓋52と、を有する。 The protruding container 50 is formed in a tubular shape, and has a tubular portion 51 to which one end 50a is joined to the closed container 10 and a protruding container lid 52 that closes the other end 50b of the tubular portion 51. Have.
 このように、突出容器50が筒状部51と筒状部51の他方の端部50bを閉塞する突出容器蓋52とで構成されて密閉空間50eを形成できる。 As described above, the projecting container 50 is composed of the tubular portion 51 and the projecting container lid 52 that closes the other end portion 50b of the tubular portion 51, so that the closed space 50e can be formed.
 突出容器50の筒状部51は、筒状部51の軸方向に分割された2つの部品で構成されている。 The tubular portion 51 of the protruding container 50 is composed of two parts divided in the axial direction of the tubular portion 51.
 このように筒状部51が分割された構成を有することで、軸53方向の長さが短くなる。したがって、製造時における、接合工程(ステップS1)、シリンダー固定工程(ステップS2)、スプリングガイド固定工程(ステップS4)、スプリング取付工程(ステップS5)の各工程において、作業者は作業がしやすくなる。 By having the structure in which the tubular portion 51 is divided in this way, the length in the axis 53 direction is shortened. Therefore, in each of the joining step (step S1), the cylinder fixing step (step S2), the spring guide fixing step (step S4), and the spring mounting step (step S5) at the time of manufacturing, the operator can easily work. ..
 また、密閉型圧縮機100の製造方法は、密閉容器10の貫通孔10dに、密閉容器10から突出するようにして筒状部51の一方の端部50aを接合する接合工程と、ローリングピストン33が収容される中空のシリンダー31を密閉容器10内に固定するシリンダー固定工程とを有する。密閉型圧縮機100の製造方法はさらに、シリンダー31に形成されたベーン溝31eにベーン35を配置するベーン配置工程と、筒状のスプリングガイド40を筒状部51の他方の端部50bから挿入してシリンダー31に固定するスプリングガイド固定工程とを有する。密閉型圧縮機100の製造方法はさらに、ベーン35をローリングピストン33の配置側に付勢するスプリング36をスプリングガイド40に挿入し、スプリング36の一端部36aをベーン35と当接させ、他端部36bをスプリングガイド40に固定するスプリング取付工程と、筒状部51の他方の端部50bに突出容器蓋52を接合して筒状部51内を密閉する閉塞工程と、を有する。 Further, the manufacturing method of the closed type compressor 100 includes a joining step of joining one end 50a of the tubular portion 51 to the through hole 10d of the closed container 10 so as to protrude from the closed container 10, and a rolling piston 33. It has a cylinder fixing step of fixing the hollow cylinder 31 in which the is housed in the closed container 10. The method for manufacturing the closed compressor 100 further includes a vane placement step of arranging the vane 35 in the vane groove 31e formed in the cylinder 31, and inserting the tubular spring guide 40 from the other end 50b of the tubular portion 51. It has a spring guide fixing step of fixing to the cylinder 31. Further, in the method of manufacturing the closed compressor 100, a spring 36 that urges the vane 35 on the arrangement side of the rolling piston 33 is inserted into the spring guide 40, one end portion 36a of the spring 36 is brought into contact with the vane 35, and the other end. It has a spring mounting step of fixing the portion 36b to the spring guide 40, and a closing step of joining the protruding container lid 52 to the other end portion 50b of the tubular portion 51 to seal the inside of the tubular portion 51.
 このように、スプリングガイド40およびスプリング36を密閉容器10に組み込むより先に、突出容器50の密閉容器10への接合を行うことで、スプリングガイド40およびスプリング36の熱歪を防止し、突出容器50内を密閉することができる。 In this way, by joining the protruding container 50 to the closed container 10 before incorporating the spring guide 40 and the spring 36 into the closed container 10, thermal distortion of the spring guide 40 and the spring 36 is prevented, and the protruding container is prevented. The inside of 50 can be sealed.
 また、密閉型圧縮機100の製造方法は、閉塞工程(ステップS6)において、筒状部51と突出容器蓋52とを抵抗溶接によって接合する。または、閉塞工程(ステップS6)において、筒状部51と突出容器蓋52とをロウ付けによって接合する。または、閉塞工程(ステップS6)において、筒状部51と突出容器蓋52とを融接によって接合する。 Further, in the manufacturing method of the closed type compressor 100, in the closing step (step S6), the tubular portion 51 and the protruding container lid 52 are joined by resistance welding. Alternatively, in the closing step (step S6), the tubular portion 51 and the protruding container lid 52 are joined by brazing. Alternatively, in the closing step (step S6), the tubular portion 51 and the protruding container lid 52 are joined by fusion welding.
 このように、筒状部51と突出容器蓋52とを低入熱な接合方法により接合することで、スプリングガイド40およびスプリング36の熱歪を防止し、突出容器50内を密閉することができる。 By joining the tubular portion 51 and the projecting container lid 52 by a low heat input joining method in this way, thermal distortion of the spring guide 40 and the spring 36 can be prevented, and the inside of the projecting container 50 can be sealed. ..
実施の形態2.
[密閉型圧縮機110]
 図8は、実施の形態2に係る密閉型圧縮機の概略縦断面図である。図1~図7の密閉型圧縮機100と同一の構成を有する部位には同一の符号を付す。実施の形態2に係る密閉型圧縮機110において特に記述しない項目については、実施の形態1に係る密閉型圧縮機100と同様とし、同一の機能および構成については同一の符号を用いて述べることとする。
Embodiment 2.
[Sealed compressor 110]
FIG. 8 is a schematic vertical sectional view of the sealed compressor according to the second embodiment. Parts having the same configuration as the closed compressor 100 of FIGS. 1 to 7 are designated by the same reference numerals. Items not particularly described in the closed compressor 110 according to the second embodiment are the same as those of the closed compressor 100 according to the first embodiment, and the same functions and configurations are described by using the same reference numerals. To do.
 上記実施の形態1に係る密閉型圧縮機100は、突出容器50の数が、密閉容器10内に配置されたシリンダー31の数に関わらず常に1つであった。これに対して、実施の形態2に係る密閉型圧縮機110は、密閉容器10内に配置されたシリンダー31の数に応じて、突出容器50の数が変化する。すなわち、密閉型圧縮機110は、シリンダー31の数と同じ数の突出容器50を有している。 In the closed compressor 100 according to the first embodiment, the number of protruding containers 50 was always one regardless of the number of cylinders 31 arranged in the closed container 10. On the other hand, in the closed compressor 110 according to the second embodiment, the number of protruding containers 50 changes according to the number of cylinders 31 arranged in the closed container 10. That is, the closed compressor 110 has the same number of protruding containers 50 as the number of cylinders 31.
 そして、各突出容器50が、それぞれ1つのスプリングガイド40を収容する。例えば、図8に示すように、実施の形態2に係る密閉型圧縮機110は、密閉容器10内に配置されたシリンダー31の数が2つである。この場合、中部容器10aに接合される突出容器50の数も2つである。そして、2つの突出容器50のうち、一方の突出容器50内には、上部シリンダー31Aに固定されたスプリングガイド40が収容され、他方の突出容器50内には、下部シリンダー31Bに固定されたスプリングガイド40が収容されている。 Then, each protruding container 50 houses one spring guide 40. For example, as shown in FIG. 8, the closed compressor 110 according to the second embodiment has two cylinders 31 arranged in the closed container 10. In this case, the number of protruding containers 50 joined to the central container 10a is also two. A spring guide 40 fixed to the upper cylinder 31A is housed in one of the two protruding containers 50, and a spring fixed to the lower cylinder 31B is housed in the other protruding container 50. The guide 40 is housed.
 密閉容器10の中部容器10aには、2つのスプリングガイド40に対応して2つの貫通孔10d1および10d2が形成されている。各スプリングガイド40のそれぞれの一方の端部40aは、各貫通孔10d1、10d2を通って、実施の形態1と同様にシリンダー31の挿入孔31gの外周側挿入孔31g2に圧入固定されている。また、各突出容器50は、密閉容器10の中部容器10aの各貫通孔10d1および10d2に、実施の形態1と同様にして抵抗溶接、ロウ付けまたは融接などによって接合され、密閉空間50eを形成している。 Two through holes 10d1 and 10d2 are formed in the inner container 10a of the closed container 10 corresponding to the two spring guides 40. Each one end 40a of each spring guide 40 is press-fitted and fixed to the outer peripheral side insertion hole 31g2 of the insertion hole 31g of the cylinder 31 through the through holes 10d1 and 10d2 as in the first embodiment. Further, each protruding container 50 is joined to the through holes 10d1 and 10d2 of the inner container 10a of the closed container 10 by resistance welding, brazing, fusion welding or the like in the same manner as in the first embodiment to form a closed space 50e. doing.
 以上のように密閉型圧縮機110は、複数のシリンダー31を有し、複数のシリンダー31には、複数のスプリングガイド40が固定されている。そして、密閉型圧縮機110は、複数のシリンダー31の数と同じ数の複数の突出容器50を有しており、複数の突出容器50は、それぞれ1つのスプリングガイド40を収容する。 As described above, the sealed compressor 110 has a plurality of cylinders 31, and a plurality of spring guides 40 are fixed to the plurality of cylinders 31. The closed compressor 110 has a plurality of projecting containers 50 having the same number as the number of the plurality of cylinders 31, and each of the plurality of projecting containers 50 accommodates one spring guide 40.
 これにより、例えば、複数のスプリングガイド40のそれぞれのシリンダー31との固定位置が、それぞれ周方向で異なる構成であっても、スプリングガイド40毎に密閉空間50eを形成できる。 Thereby, for example, even if the fixed positions of the plurality of spring guides 40 with the cylinders 31 are different in the circumferential direction, the sealed space 50e can be formed for each spring guide 40.
 なお、本発明の実施の形態は、上記実施の形態1~実施の形態2に限定されず、以下のように種々の変更を加えることができる。 The embodiment of the present invention is not limited to the above-described first to second embodiments, and various modifications can be made as follows.
 例えば、上記では、密閉型圧縮機100が、シリンダー31を2つ有するツインロータリー式の圧縮機であったが、1つのシリンダー31を有するシングルロータリー式の圧縮機であってもよい。 For example, in the above, the sealed compressor 100 is a twin rotary compressor having two cylinders 31, but it may be a single rotary compressor having one cylinder 31.
 また、シリンダー31に形成された挿入孔31gの断面形状は、円形状に限らず、例えば、挿入形状、長円形状または多角形状に形成されてもよい。挿入孔31gの断面形状を挿入形状、長円形状または多角形状とした場合、スプリングガイド40の断面形状は、挿入孔31gの断面形状に合わせて楕円形状、長円形状または多角形状に形成される。 Further, the cross-sectional shape of the insertion hole 31g formed in the cylinder 31 is not limited to a circular shape, and may be formed into, for example, an insertion shape, an oval shape, or a polygonal shape. When the cross-sectional shape of the insertion hole 31g is an insertion shape, an oval shape, or a polygonal shape, the cross-sectional shape of the spring guide 40 is formed into an elliptical shape, an oval shape, or a polygonal shape according to the cross-sectional shape of the insertion hole 31g. ..
実施の形態3.
 図9は、実施の形態3に係る冷凍サイクル装置の冷媒回路を示す図である。
 冷凍サイクル装置60は、密閉型圧縮機61と、凝縮器62と、減圧装置としての膨張弁63と、蒸発器64とを備えている。密閉型圧縮機61は、実施の形態1の密閉型圧縮機100または実施の形態2の密閉型圧縮機110で構成されている。密閉型圧縮機61から吐出されたガス冷媒は凝縮器62に流入し、凝縮器62を通過する空気と熱交換して高圧液冷媒となって流出する。凝縮器62を流出した高圧液冷媒は膨張弁63で減圧されて低圧の気液二相冷媒となり、蒸発器64に流入する。蒸発器64に流入した低圧の気液二相冷媒は、蒸発器64を通過する空気と熱交換して低圧ガス冷媒となり、再び密閉型圧縮機61に吸入される。
Embodiment 3.
FIG. 9 is a diagram showing a refrigerant circuit of the refrigeration cycle device according to the third embodiment.
The refrigeration cycle device 60 includes a closed compressor 61, a condenser 62, an expansion valve 63 as a decompression device, and an evaporator 64. The closed compressor 61 is composed of the closed compressor 100 of the first embodiment or the closed compressor 110 of the second embodiment. The gas refrigerant discharged from the closed compressor 61 flows into the condenser 62, exchanges heat with the air passing through the condenser 62, and flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the condenser 62 is depressurized by the expansion valve 63 to become a low-pressure gas-liquid two-phase refrigerant, which flows into the evaporator 64. The low-pressure gas-liquid two-phase refrigerant flowing into the evaporator 64 exchanges heat with the air passing through the evaporator 64 to become a low-pressure gas refrigerant, which is again sucked into the closed compressor 61.
 このように構成された冷凍サイクル装置60は、密閉型圧縮機61として、実施の形態1の密閉型圧縮機100または実施の形態2の密閉型圧縮機110を備えることで、安定したベーン35およびスプリング36の動作が得られる。これにより、信頼性の高い冷凍サイクル装置60を構成できる。 The refrigeration cycle apparatus 60 configured in this way includes, as the closed compressor 61, the closed compressor 100 of the first embodiment or the closed compressor 110 of the second embodiment, thereby providing a stable vane 35 and a stable vane 35. The operation of the spring 36 can be obtained. This makes it possible to configure a highly reliable refrigeration cycle device 60.
 なお、冷凍サイクル装置60は、空気調和機、冷蔵庫または冷凍機等に適用することができる。 The refrigerating cycle device 60 can be applied to an air conditioner, a refrigerator, a refrigerator, or the like.
 10 密閉容器、10a 中部容器、10aa 内壁面、10b 上部容器、10c 下部容器、10d 貫通孔、10d1 貫通孔、10d2 貫通孔、10e カラー、10ea 内周面、11 吸入管、11A 吸入管、11B 吸入管、12 吐出管、13 アキュムレータ、14 台座、20 電動機構部、21 固定子、22 回転子、30 圧縮機構部、31 シリンダー、31A 上部シリンダー、31B 下部シリンダー、31b 内周壁、31d シリンダー室、31d1 吸入室、31d2 圧縮室、31e ベーン溝、31f 外周壁、31g 挿入孔、31g1 内周側挿入孔、31g2 外周側挿入孔、31h シール管、32 回転軸、32a 偏心部、33 ローリングピストン、33a 外周壁、34 吸入孔、34B 吐出孔、35 ベーン、35a 先端部、35b 背面側端部、36 スプリング、36a 一端部、36b 他端部、37 仕切板、38 上部軸受、39 下部軸受、40 スプリングガイド、40a 一方の端部、40b 他方の端部、40c 底蓋部、50 突出容器、50a 一方の端部、50aa 端面、50b 他方の端部、50e 密閉空間、51 筒状部、51a 前筒状部、51aa 一方の端部、51ab 他方の端部、51b 後筒状部、51ba 一方の端部、51bb 他方の端部、52 突出容器蓋、53 軸、60 冷凍サイクル装置、61 密閉型圧縮機、62 凝縮器、63 膨張弁、64 蒸発器、100 密閉型圧縮機、110 密閉型圧縮機、C 中心軸。 10 closed container, 10a middle container, 10aa inner wall surface, 10b upper container, 10c lower container, 10d through hole, 10d1 through hole, 10d2 through hole, 10e collar, 10ea inner peripheral surface, 11 suction tube, 11A suction tube, 11B suction Pipe, 12 discharge pipe, 13 accumulator, 14 pedestal, 20 electric mechanism, 21 stator, 22 rotor, 30 compression mechanism, 31 cylinder, 31A upper cylinder, 31B lower cylinder, 31b inner wall, 31d cylinder chamber, 31d1 Suction chamber, 31d2 compression chamber, 31e vane groove, 31f outer wall, 31g insertion hole, 31g1 inner peripheral side insertion hole, 31g2 outer peripheral side insertion hole, 31h seal tube, 32 rotation shaft, 32a eccentric part, 33 rolling piston, 33a outer circumference Wall, 34 suction hole, 34B discharge hole, 35 vane, 35a tip, 35b back side end, 36 spring, 36a one end, 36b other end, 37 partition plate, 38 upper bearing, 39 lower bearing, 40 spring guide , 40a one end, 40b the other end, 40c bottom lid, 50 protruding container, 50a one end, 50aa end face, 50b the other end, 50e sealed space, 51 tubular part, 51a front tubular Part, 51aa one end, 51ab the other end, 51b rear tubular part, 51ba one end, 51bb the other end, 52 protruding container lid, 53 shaft, 60 refrigeration cycle device, 61 sealed compressor , 62 Condenser, 63 Expansion valve, 64 Evaporator, 100 Sealed compressor, 110 Sealed compressor, C central axis.

Claims (13)

  1.  密閉容器と、
     前記密閉容器内に収容された中空のシリンダーと、
     前記シリンダーの内周壁に沿って偏心回転するローリングピストンと、
     前記シリンダーに設けられたベーン溝内を前記シリンダーの径方向に往復運動するベーンと、
     前記ベーンを前記ローリングピストンの配置側に付勢するスプリングと、
     前記シリンダーの径方向において前記密閉容器に対して前記シリンダーとは反対側に突出して設けられ、前記密閉容器に一方の端部が接合されて前記密閉容器の内部と連通し、密閉空間を形成する突出容器と、
     前記突出容器の前記密閉空間に配置され、前記スプリングが内部に固定されるスプリングガイドと、を備え、
     前記シリンダーの外周壁には挿入孔が形成されており、
     前記スプリングガイドは、前記一方の端部が前記シリンダーの前記挿入孔に挿入されて固定されている密閉型圧縮機。
    With a closed container
    A hollow cylinder housed in the closed container and
    A rolling piston that rotates eccentrically along the inner peripheral wall of the cylinder,
    A vane that reciprocates in the radial direction of the cylinder in the vane groove provided in the cylinder, and
    A spring that urges the vane to the placement side of the rolling piston,
    It is provided so as to project from the closed container on the side opposite to the cylinder in the radial direction of the cylinder, and one end thereof is joined to the closed container to communicate with the inside of the closed container to form a closed space. With a protruding container,
    A spring guide, which is arranged in the closed space of the protruding container and in which the spring is fixed, is provided.
    An insertion hole is formed in the outer peripheral wall of the cylinder.
    The spring guide is a closed compressor in which one end thereof is inserted and fixed in the insertion hole of the cylinder.
  2.  複数の前記シリンダーを有し、
     複数の前記シリンダーには、複数の前記スプリングガイドが固定されており、
     前記突出容器は、複数の前記スプリングガイドをまとめて収容する請求項1に記載の密閉型圧縮機。
    Has multiple cylinders
    A plurality of the spring guides are fixed to the plurality of the cylinders.
    The closed compressor according to claim 1, wherein the protruding container collectively accommodates a plurality of the spring guides.
  3.  複数の前記シリンダーを有し、
     複数の前記シリンダーには、複数の前記スプリングガイドが固定されており、
     複数の前記シリンダーの数と同じ数の複数の前記突出容器を有し、
     複数の前記突出容器は、それぞれ1つの前記スプリングガイドを収容する請求項1に記載の密閉型圧縮機。
    Has multiple cylinders
    A plurality of the spring guides are fixed to the plurality of the cylinders.
    Having a plurality of said projectiles as many as the number of the plurality of cylinders
    The closed compressor according to claim 1, wherein each of the plurality of protruding containers houses one spring guide.
  4.  前記突出容器の前記一方の端部は、前記密閉容器に向かって肉厚が薄くなり、先細り形状に形成されている
     請求項1~請求項3のいずれか一項に記載の密閉型圧縮機。
    The closed compressor according to any one of claims 1 to 3, wherein the one end of the protruding container becomes thinner toward the closed container and is formed in a tapered shape.
  5.  前記密閉容器は、前記突出容器の前記一方の端部が接合される貫通孔を有し、
     前記突出容器の前記一方の端部の端面は、前記突出容器の軸方向に見て、一部が前記密閉容器の前記貫通孔の内側に位置し、前記密閉容器に全面接触しない
     請求項1~請求項3のいずれか一項に記載の密閉型圧縮機。
    The closed container has a through hole to which the one end of the protruding container is joined.
    A part of the end surface of the one end of the protruding container is located inside the through hole of the closed container when viewed in the axial direction of the protruding container, and does not come into full contact with the closed container. The sealed compressor according to any one of claims 3.
  6.  前記密閉容器は、前記突出容器の前記一方の端部が接合される貫通孔の周囲を、前記シリンダーの径方向において前記密閉容器に対して前記シリンダーとは反対側に突出して湾曲させたカラーを有し、
     前記突出容器は、前記カラーの内周面および前記密閉容器の内壁面の一方または両方と接合されている
     請求項1~請求項3のいずれか一項に記載の密閉型圧縮機。
    The closed container has a collar in which the circumference of the through hole to which the one end of the protruding container is joined is curved so as to project from the closed container to the opposite side of the cylinder in the radial direction of the cylinder. Have and
    The closed compressor according to any one of claims 1 to 3, wherein the protruding container is joined to one or both of the inner peripheral surface of the collar and the inner wall surface of the closed container.
  7.  前記突出容器は、
     筒状に形成され、前記密閉容器に一方の端部が接合される筒状部と、
     前記筒状部の他方の端部を閉塞する突出容器蓋と、
    を有する請求項1~請求項6のいずれか一項に記載の密閉型圧縮機。
    The protruding container is
    A tubular portion formed in a tubular shape and one end of which is joined to the closed container,
    A protruding container lid that closes the other end of the tubular portion,
    The closed compressor according to any one of claims 1 to 6.
  8.  前記突出容器の前記筒状部は、
     前記筒状部の軸方向に分割された2つの部品で構成されている
     請求項7に記載の密閉型圧縮機。
    The tubular portion of the protruding container is
    The sealed compressor according to claim 7, which is composed of two parts divided in the axial direction of the tubular portion.
  9.  請求項1~請求項8のいずれか一項に記載の密閉型圧縮機を備えた冷凍サイクル装置。 A refrigeration cycle apparatus provided with the sealed compressor according to any one of claims 1 to 8.
  10.  密閉容器の貫通孔に、前記密閉容器から突出するようにして両端が開口した筒状部の一方の端部を接合する接合工程と、
     ローリングピストンが収容される中空のシリンダーを前記密閉容器内に固定するシリンダー固定工程と、
     前記シリンダーに形成されたベーン溝にベーンを配置するベーン配置工程と、
     筒状のスプリングガイドを前記筒状部の他方の端部から挿入して前記シリンダーに固定するスプリングガイド固定工程と、
     前記ベーンを前記ローリングピストンの配置側に付勢するスプリングを前記スプリングガイドに挿入し、前記スプリングの一端部を前記ベーンと当接させ、他端部を前記スプリングガイドに固定するスプリング取付工程と、
     前記筒状部の前記他方の端部に突出容器蓋を接合して前記筒状部内を密閉する閉塞工程と、
     を有する密閉型圧縮機の製造方法。
    A joining step of joining one end of a tubular portion having both ends opened so as to protrude from the closed container into the through hole of the closed container.
    A cylinder fixing process for fixing a hollow cylinder in which a rolling piston is housed in the closed container,
    A vane placement step of arranging vanes in the vane groove formed in the cylinder, and
    A spring guide fixing step of inserting a tubular spring guide from the other end of the tubular portion and fixing it to the cylinder,
    A spring mounting step of inserting a spring that urges the vane to the arrangement side of the rolling piston into the spring guide, bringing one end of the spring into contact with the vane, and fixing the other end to the spring guide.
    A closing step of joining a protruding container lid to the other end of the tubular portion to seal the inside of the tubular portion.
    A method for manufacturing a closed compressor having.
  11.  前記閉塞工程において、
     前記筒状部と前記突出容器蓋とが抵抗溶接によって接合される請求項10に記載の密閉型圧縮機の製造方法。
    In the closing step
    The method for manufacturing a closed compressor according to claim 10, wherein the tubular portion and the protruding container lid are joined by resistance welding.
  12.  前記閉塞工程において、
     前記筒状部と、前記突出容器蓋とがロウ付けによって接合される請求項10に記載の密閉型圧縮機の製造方法。
    In the closing step
    The method for manufacturing a closed compressor according to claim 10, wherein the tubular portion and the protruding container lid are joined by brazing.
  13.  前記閉塞工程において、
     前記筒状部と、前記突出容器蓋とが融接によって接合される請求項10に記載の密閉型圧縮機の製造方法。
    In the closing step
    The method for manufacturing a closed compressor according to claim 10, wherein the tubular portion and the protruding container lid are joined by fusion welding.
PCT/JP2019/045600 2019-11-21 2019-11-21 Sealed compressor, refrigeration cycle device, and sealed-compressor manufacturing method WO2021100168A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021558115A JP7162757B2 (en) 2019-11-21 2019-11-21 Hermetic compressor, refrigeration cycle device, and method for manufacturing hermetic compressor
PCT/JP2019/045600 WO2021100168A1 (en) 2019-11-21 2019-11-21 Sealed compressor, refrigeration cycle device, and sealed-compressor manufacturing method
CZ2022180A CZ2022180A3 (en) 2019-11-21 2019-11-21 Hermetic compressor, refrigeration cycle equipment and method of producing the hermetic compressor
CN201980102197.0A CN114667394A (en) 2019-11-21 2019-11-21 Sealed compressor, refrigeration cycle device, and method for manufacturing sealed compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/045600 WO2021100168A1 (en) 2019-11-21 2019-11-21 Sealed compressor, refrigeration cycle device, and sealed-compressor manufacturing method

Publications (1)

Publication Number Publication Date
WO2021100168A1 true WO2021100168A1 (en) 2021-05-27

Family

ID=75980478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045600 WO2021100168A1 (en) 2019-11-21 2019-11-21 Sealed compressor, refrigeration cycle device, and sealed-compressor manufacturing method

Country Status (4)

Country Link
JP (1) JP7162757B2 (en)
CN (1) CN114667394A (en)
CZ (1) CZ2022180A3 (en)
WO (1) WO2021100168A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256484Y2 (en) * 1973-07-06 1977-12-21
JPS5597189U (en) * 1978-12-26 1980-07-05
JP2007077978A (en) * 2005-09-13 2007-03-29 Samsung Electronics Co Ltd Variable displacement rotary compressor
JP2018145936A (en) * 2017-03-08 2018-09-20 三菱電機株式会社 Rotary compressor and manufacturing method of rotary compressor
WO2019234881A1 (en) * 2018-06-07 2019-12-12 三菱電機株式会社 Sealed compressor and manufacturing method for sealed compressor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605362A (en) * 1985-06-17 1986-08-12 General Electric Company Rotary compressor and method of assembly
JPH0331595A (en) * 1989-06-27 1991-02-12 Sanyo Electric Co Ltd Suction pipe connecting device of rotary compressor
JPH07217572A (en) * 1994-01-31 1995-08-15 Hitachi Ltd Method and device for assembling rotary type compressor
JP2001132673A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Hermetic rotary compressor
CN1715675A (en) * 2004-06-28 2006-01-04 乐金电子(天津)电器有限公司 Air inhaling part connector for closed rotary compressor
JP4820204B2 (en) * 2006-04-24 2011-11-24 三菱電機株式会社 Hermetic compressor, manufacturing apparatus and manufacturing method thereof
JP5256484B2 (en) 2007-05-16 2013-08-07 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
US8318827B2 (en) 2008-03-28 2012-11-27 Fomo Products, Inc. Insect resistant polyurethane foam
CN102472266A (en) * 2010-04-27 2012-05-23 松下电器产业株式会社 Hermetic compressor
CN205013244U (en) * 2014-09-08 2016-02-03 三菱电机株式会社 Compressor
JP6290065B2 (en) * 2014-10-23 2018-03-07 三菱電機株式会社 Compressor manufacturing apparatus and compressor manufacturing method
JPWO2018154689A1 (en) * 2017-02-23 2019-11-07 三菱電機株式会社 Compressor
CN107061280B (en) * 2017-06-14 2019-07-05 珠海格力电器股份有限公司 Slip sheet anti-separation structure, assembling method and compressor with structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256484Y2 (en) * 1973-07-06 1977-12-21
JPS5597189U (en) * 1978-12-26 1980-07-05
JP2007077978A (en) * 2005-09-13 2007-03-29 Samsung Electronics Co Ltd Variable displacement rotary compressor
JP2018145936A (en) * 2017-03-08 2018-09-20 三菱電機株式会社 Rotary compressor and manufacturing method of rotary compressor
WO2019234881A1 (en) * 2018-06-07 2019-12-12 三菱電機株式会社 Sealed compressor and manufacturing method for sealed compressor

Also Published As

Publication number Publication date
CN114667394A (en) 2022-06-24
JP7162757B2 (en) 2022-10-28
JPWO2021100168A1 (en) 2021-05-27
CZ2022180A3 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
KR20060060542A (en) Rotary type two stage compressor
JP7012843B2 (en) Sealed compressor and manufacturing method of sealed compressor
JP6013257B2 (en) Cryogenic refrigerator,
JP2005201114A (en) Compressor
WO2021100168A1 (en) Sealed compressor, refrigeration cycle device, and sealed-compressor manufacturing method
CN111954761B (en) Rotary compressor and refrigeration cycle device
JP4374678B2 (en) Hermetic compressor
JP2006207594A (en) Scroll compressor
WO2005026547A1 (en) Plunger piston compressor for refrigerants
JP5617805B2 (en) Compressor, method for manufacturing the compressor, and jig used for manufacturing the compressor
JP2007224854A (en) Compressor
JP4651567B2 (en) Scroll compressor
CN111936746B (en) Rotary compressor and refrigeration cycle device
JP2006207593A (en) Scroll compressor
JP5634370B2 (en) Compressor and method for manufacturing the compressor
CN117642555B (en) Scroll compressor and refrigeration cycle device
CN115943258B (en) Compressor and method for manufacturing compressor
JP7361585B2 (en) Scroll compressor and method for manufacturing scroll compressor
JP5217869B2 (en) Two-stage compressor
CN210197788U (en) Compressor and refrigeration cycle device
WO2019123609A1 (en) Hermetic compressor and refrigeration cycle device
JP2020090897A (en) Rotary compressor, manufacturing method of rotary compressor and refrigeration cycle device
JP2003184771A (en) Rotary compressor
JP2003120561A (en) Sealed electric compressor
JP2008303738A (en) Fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953359

Country of ref document: EP

Kind code of ref document: A1