WO2021098739A1 - 一种电池、电池模组、电池包和电动车 - Google Patents

一种电池、电池模组、电池包和电动车 Download PDF

Info

Publication number
WO2021098739A1
WO2021098739A1 PCT/CN2020/129852 CN2020129852W WO2021098739A1 WO 2021098739 A1 WO2021098739 A1 WO 2021098739A1 CN 2020129852 W CN2020129852 W CN 2020129852W WO 2021098739 A1 WO2021098739 A1 WO 2021098739A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
channel
liquid
liquid injection
hole
Prior art date
Application number
PCT/CN2020/129852
Other languages
English (en)
French (fr)
Inventor
朱建华
朱燕
邓洞军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020227016954A priority Critical patent/KR20220088453A/ko
Priority to US17/778,731 priority patent/US20230017407A1/en
Priority to EP20890023.3A priority patent/EP4050709A4/en
Priority to JP2022529504A priority patent/JP7492583B2/ja
Publication of WO2021098739A1 publication Critical patent/WO2021098739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • H01M50/645Plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • This application belongs to the field of batteries, and in particular relates to a battery, a battery module, a battery pack and an electric vehicle.
  • the voltage of a lithium titanate battery is 2.4 volts
  • the voltage of a lithium iron phosphate battery is 3.2 volts
  • the voltage of a ternary battery is 3.7 volts
  • the voltage of a multi-polymer battery is 4.3 volts. Therefore, when high voltage (high capacity) is required, multiple batteries need to be connected in series to form a battery pack, and then the battery pack is assembled into a power battery pack.
  • Common new energy vehicles generally have a width of more than 1 meter and a length of several meters.
  • the power battery pack of a new energy vehicle As the power battery pack of a new energy vehicle, it is generally placed on the bottom of the new energy vehicle.
  • the width of power battery packs on the market is generally about the same as that of new energy vehicles, about 1 meter or more.
  • the length is determined by the reserved space at the bottom of the new energy vehicle, which is generally more than 2 meters.
  • the size of the power battery pack is more than 1 meter in both the length and width directions.
  • the current battery length on the market is generally about 0.3 meters, so at least 3 batteries need to be connected in series in each battery pack, or even More, and the power connection between two adjacent batteries needs to be connected through external power connectors, which leads to more battery installation structures, which not only increases the cost, but also causes the overall weight of the power battery pack to increase; at the same time, the installation structure occupies This reduces the internal space of the battery pack body, resulting in a reduction in the overall capacity of the power battery pack. The more batteries there are, the more space is wasted. In addition, because multiple external power connectors need to be provided for power connection, the internal resistance increases, which increases the internal consumption of the power battery pack in use.
  • some batteries are also provided in the prior art.
  • a plurality of pole core groups connected in series are arranged inside the battery shell, and two adjacent pole core groups are separated by a separator, thereby reducing the outer shell.
  • the space utilization rate of the battery pack is improved, and the internal consumption of the battery pack in use is reduced, thereby ensuring the overall capacity of the power battery pack.
  • the internal potential difference of the battery is relatively high. If multiple electrode groups connected in series share the electrolyte in the same chamber, the electrolyte will most likely decompose due to the high potential difference, leading to battery failure.
  • the above-mentioned battery is provided with a separator between two adjacent electrode core groups, and each electrode core group is separated in its own chamber by the separator, and each chamber has a separate electrolyte.
  • the partition divides the inside of the shell into multiple individual cavities, how to safely and effectively inject electrolyte into each individual cavity and how to achieve the sealing problem of liquid injection, while ensuring that the two adjacent cavities Isolation is a technical problem that those skilled in the art urgently need to solve.
  • a battery which includes a casing, an end cover, a separator, and a plurality of electrode core groups.
  • the end caps are arranged at opposite ends of the shell to close the inner space of the shell.
  • the partition is arranged in the casing at intervals to separate a plurality of accommodating cavities arranged in sequence along the first direction in the internal space of the casing.
  • the pole core group is arranged in each accommodating cavity, and the plurality of pole core groups are arranged in sequence along the first direction and connected in series.
  • the separator is provided with a liquid injection channel, the liquid injection channel communicates with a containing cavity on at least one side of the separator, and the liquid injection channel is used for injecting electrolyte into the containing cavity from the outside of the battery.
  • the liquid injection channel is in a closed state after the liquid injection is completed to isolate the communication between the containing cavity and the outside of the battery.
  • the casing is provided with a through hole at a position corresponding to the liquid injection channel on the partition plate for communicating the liquid injection channel with the outside of the battery.
  • a battery module including the battery as described above.
  • a battery pack including the above-mentioned battery or battery module.
  • an electric vehicle including the above-mentioned battery pack, battery module, or battery.
  • the battery provided in the present application divides a plurality of sealed accommodating cavities to accommodate a plurality of pole core groups by arranging a partition inside the casing, and the plurality of pole core groups are connected in series, so that the battery has a higher battery capacity And voltage, which is beneficial to increase the overall capacity and voltage of the battery pack, and enhance the endurance of electric vehicles.
  • a liquid injection channel on the partition and providing a through hole on the housing corresponding to the position of the liquid injection channel on the partition, it is possible to insert the battery into each individual accommodating cavity after the battery is assembled.
  • the electrolyte is injected, thereby effectively solving the problem of injecting a battery with a plurality of electrode core groups connected in series.
  • FIG. 1 is a schematic diagram of the overall structure of a battery provided by an embodiment of the present application.
  • Fig. 2 is a cross-sectional view of the battery shown in Fig. 1.
  • Fig. 3 is a partial enlarged view of A in Fig. 2.
  • FIG. 4 is an exploded view of the structure of a battery provided by another embodiment of the application.
  • Fig. 5 is a structural exploded view of a battery provided by another embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a partition provided with a liquid injection channel according to another embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a partition provided with a liquid injection channel according to another embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a separator provided with a liquid conducting through hole provided in another embodiment of the application.
  • Fig. 9 is a schematic structural diagram of a sealing member and a sealing channel provided by an embodiment of the present application.
  • Fig. 10 is a cross-sectional view of the structure shown in Fig. 9.
  • Fig. 11 is a schematic structural diagram of a sealing member and a sealing channel provided in another embodiment of the present application.
  • Fig. 12 is a front view of the structure shown in Fig. 11.
  • Fig. 13 is a cross-sectional view of the structure shown in Fig. 11.
  • Fig. 14 is a schematic structural diagram of a sealing member and a sealing channel provided by another embodiment of the present application.
  • Fig. 15 is a front view of the structure shown in Fig. 14.
  • Fig. 16 is a cross-sectional view of the structure shown in Fig. 14.
  • Fig. 17 is a schematic structural diagram of a sealing member and a sealing channel provided by another embodiment of the present application.
  • Fig. 18 is a front view of the structure shown in Fig. 17.
  • Fig. 19 is a cross-sectional view of the structure shown in Fig. 17.
  • Fig. 20 is a schematic structural diagram of a sealing member and a sealing channel provided in another embodiment of the present application.
  • FIG. 21 is a schematic diagram of the structure of a battery pack provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a battery pack provided by another embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a battery module provided by an embodiment of the present application.
  • Fig. 24 is a schematic structural diagram of an electric vehicle provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a battery vehicle provided by another embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a battery vehicle provided by another embodiment of the present application.
  • Housing 11 through holes 111, 1122, isolation membrane 112, sub-isolation membrane 1121, end cap 121, partition 122, connecting through hole 123, packaging structure 124, side surface 125, circumferential surface 126, pole core assembly 13, section An electrode lead-out part 131, a second electrode lead-out part 132, the accommodating cavity 14, the pole core connector 15, the copper connection part 151, the aluminum connection part 152, the liquid injection channel 16, the liquid injection port 161, the liquid outlet 162, the first Channel 163, second channel 164, third channel 165, fourth channel 166, blocking member 17, liquid conducting hole 18, sealing member 19, sealing ring 191, metal ball 192, sealing sleeve 193, sealing channel 20, tray 50,
  • Battery module 200 battery pack 300,
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the present application provides a battery 100, which includes a casing 11, an end cover 121, a separator 122 and a plurality of electrode core groups 13.
  • the end caps 121 are provided at opposite ends of the casing 11 to close the inner space of the casing 11.
  • the partitions 122 are arranged in the casing 11 at intervals to separate a plurality of accommodating cavities 14 arranged in a first direction in the inner space of the casing 11.
  • the first direction is the X direction shown in FIG. 1.
  • a plurality of accommodating cavities 14 arranged in sequence along the first direction are separated in the internal space of the housing 11, and the partition 122 may divide the housing 11 inside the housing 11. Is divided into multiple parts to form multiple accommodating cavities 14. Alternatively, the partition 122 may be located in the housing 11 to divide a space in the housing 11 into multiple accommodating cavities. Accommodation cavity 14. The content of this part will be introduced in detail below.
  • the battery 100 may be a lithium ion battery, and the first direction is the length direction of the battery 100.
  • the casing 11 is used to increase the strength of the battery 100 and ensure the safe use of the battery 100. It can be a plastic casing or a metal casing. When it is a metal casing, the heat dissipation performance is better and the strength is better. Higher, it can play a supporting role by itself.
  • each containing cavity 14 is provided with the pole core set 13 which includes at least one pole core, and the plurality of pole core sets 13 extend along the first direction. Arranged in sequence and connected in series.
  • each accommodating cavity 14 is provided with a pole core set 13, and the pole core sets 13 in two adjacent accommodating cavities 14 are connected in series. In this way, the plurality of pole core groups 13 are sequentially connected in series. In other embodiments, a plurality of pole core groups 13 may be arranged side by side in the receiving cavity 14, for example, two or more pole core groups.
  • the pole core mentioned in this application is a pole core commonly used in the field of power batteries.
  • the pole core and the pole core group 13 are internal components of the casing 11 of the battery 100, and cannot be understood as the The battery 100 itself.
  • the pole core can be formed by winding or by lamination.
  • the pole core includes at least a positive electrode sheet, a separator, a negative electrode sheet, and electrolyte.
  • the pole core generally refers to a component that is not completely sealed. Therefore, the battery 100 mentioned in the present application is a single battery, which cannot be simply understood as a battery module or a battery pack because it contains multiple pole cores.
  • the pole core set 13 may be composed of a single pole core, or may include at least two pole cores, and at least two pole cores are connected in parallel to form the pole core set 13.
  • the number of series-connected electrode core groups included in the battery 100 may be determined according to the output voltage of each electrode core group 13, the width of the battery pack used, and the overall voltage requirements of the battery pack. For example, for a vehicle type, the output voltage of the battery system needs to be 300V, and the voltage of a traditional iron-lithium battery is 3.2V.
  • 100 batteries need to be connected in series in the package to meet the demand.
  • the battery pack provided in this application, assuming that a battery is connected in series with two electrode groups 13 in series, only 50 batteries 100 need to be arranged; and so on, if 10 electrode groups 13 are connected in series, only string Just connect 10 batteries 100. In this way, the design of the whole package and the arrangement of the batteries can be greatly reduced, the space can be effectively used, and the space utilization rate can be improved.
  • partitions 122 are arranged inside the housing 11 to separate a plurality of side-by-side accommodating cavities 14 inside the housing 11, and in each accommodating cavity 14
  • the pole core set 13 is provided, and the pole core sets 13 in each accommodating cavity 14 are connected in series, thereby effectively increasing the capacity and voltage of the battery 100;
  • a separator is passed between two adjacent accommodating cavities 14 122 is sealed and connected, which can simplify the installation structure of the battery 100, reduce the distance between two adjacent electrode core groups 13, reduce the internal consumption of the power battery pack, and make the battery pack have more internal space for accommodating the battery. , Thereby increasing the overall capacity and voltage of the battery pack, and improving the endurance of the electric vehicle 1000 using the battery pack.
  • the length directions of the casing 11 and the pole core set 13 both extend along the first direction, and the casing 11 is an integrated structure extending along the first direction.
  • the battery 100 is generally a rectangular parallelepiped, the battery 100 has a length L, a width H, and a thickness D.
  • the length L of the battery 100 is greater than the width H
  • the battery 100 has a length L, a width H, and a thickness D.
  • the width H is greater than the thickness D.
  • the length of the battery 100 may be 400 mm to 2500 mm.
  • the substantially rectangular parallelepiped shape of the battery 100 can be understood to mean that the battery 100 may be in the shape of a rectangular parallelepiped, a cube shape, or a part of a special shape but a substantially rectangular parallelepiped shape or a cube shape, or a part of the battery 100 may have a notch, convex, or inverted shape. Angle, radian, curved, but the overall shape is approximately cuboid or cube shape.
  • the size of the battery is set to 400mm ⁇ 2500mm. Because the battery is too long, if only one electrode core is provided, the internal resistance of the battery is too high, and the potentials at both ends of the positive and negative electrodes are too high. If the difference is too large, the electrolyte cannot work normally.
  • a battery with a length of 400 mm to 2500 mm can be manufactured more conveniently, and at the same time, the internal resistance and the connection of the structural parts will be reduced, and the cost will be further reduced.
  • the partition 122 includes a side surface 125 facing the adjacent pole core group 13 and a circumferential surface 126 connected to the side surface 125.
  • the circumferential surface 126 of the partition 122 cooperates with the housing 11 to partition the inner space of the housing 11 into the plurality of accommodating cavities 14.
  • the walls of the accommodating cavity 14 located at both ends of the battery 100 in the first direction include a partition 122 and an end at the end of the accommodating cavity 14 The cover 121, and the housing 11 located between the partition 122 and the end cover 121.
  • the cavity wall of the accommodating cavity 14 located in the middle of the battery 100 in the first direction among the plurality of accommodating cavities 14 includes two adjacent partitions 122 located at the ends of the accommodating cavity 14, and the adjacent two partitions 122 between the housing 11. That is, the partition 122 divides the housing 11 into a plurality of parts inside the housing 11, thereby forming a plurality of the accommodating cavities 14.
  • the electrolyte in different pole core sets 13 will have internal short circuit problems when they are connected, and there will be a higher problem between different pole core sets 13
  • Potential difference (take lithium iron phosphate battery as an example, the potential difference is about 4.0 ⁇ 7.6V)
  • the electrolyte located in it will decompose due to the large potential difference, which will affect the battery performance.
  • the partition 122 itself can be made of insulating material, that is, the partition 122 is an insulating partition. In this way, no other operations are required, and the partition 122 can directly isolate the two adjacent pole core groups 13 and maintain the insulation between the two.
  • the casing 11 may be a metal casing with an insulated inner surface.
  • the battery 100 further includes an isolating film 112 arranged in the casing 11, and the spacer 122 is arranged in the isolating film 112 at intervals.
  • the circumferential surface 126 of the partition 122 cooperates with the isolation film 112 to separate the inner space of the isolation film 112 from the plurality of accommodating cavities 14. That is, the isolation membrane 112 is an integrated membrane body, and the partition 122 is located in the isolation membrane 112 and divides the accommodating space of the isolation membrane 112 into a plurality of accommodating cavities 14.
  • a plurality of partitions 122 are located in the casing 22 of the battery 100 to divide the space in the casing 22 into a plurality of accommodating cavities 14 spaced apart in the first direction, wherein the plurality of accommodating cavities 14
  • the cavity wall of the accommodating cavity 14 located at both ends of the battery 100 in the first direction includes a partition 122 and an end cover 121 at the end of the accommodating cavity 14, and between the partition 122 and the end cover 121
  • the plurality of accommodating cavities 14 are located in the middle of the battery 100 in the first direction.
  • the cavity wall of the accommodating cavity 14 includes two adjacent partitions 122 located at the ends of the accommodating cavity 14, and at the same time. Adjacent to the isolation membrane 112 between the two partitions 122.
  • the battery 100 further includes an isolation film 112 disposed in the housing 11, and the isolation film 112 includes an isolation film 112 arranged along the first direction and connected to the
  • the multiple sub-isolation membranes 1121 corresponding to the multiple accommodating cavities 14 one-to-one, the opposite ends of each sub-isolation membrane 1121 are matched with the partitions 122 located at the two ends of the corresponding accommodating cavity 14, or the partitions 122 and the end caps 121 cooperate to form corresponding In the accommodating cavity 14, two adjacent accommodating cavities 14 share one partition 122.
  • a plurality of partitions 122 are located in the casing 22 of the battery 100 to divide the space in the casing 22 into a plurality of accommodating cavities 14 spaced apart in the first direction, wherein the plurality of accommodating cavities 14
  • the cavity wall of the accommodating cavity 14 located in the middle of the battery 100 in the first direction includes a corresponding sub-isolation film 1121 and two partitions 122 located at the ends of the corresponding sub-isolation film 1121, and a plurality of accommodating cavities
  • the cavity walls of the accommodating cavity 14 located at both ends of the battery 100 in the first direction in the first direction include a corresponding sub-isolation film 1121 and a partition 122 and an end cover 121 located at the end of the corresponding sub-isolation film 1121.
  • the plurality of sub-isolation films 1121 are a plurality of independent parts separated from each other, that is, the isolation film 112 is a split isolation film body, and each of the sub-isolation films 1121 is a cylindrical structure with open ends.
  • the pole core set 13 is located inside the cylindrical sub-isolation film 1121, and the partition 122 or the end cap 121 is sealed with the end opening of the corresponding isolation film 112.
  • the isolation membrane 112 and the partition 122 or the end cap 121 sealing there are no special restrictions on the manner and specific structure of the isolation membrane 112 and the partition 122 or the end cap 121 sealing, for example, when the material of the partition 122 or the end cap 121 is It is made of plastic material.
  • the isolation film 112 is made of plastic, the isolation film 112 and the partition 122 or the end cap 121 may be sealed by heat fusion.
  • a plurality of pole core groups 13 are connected in series, and the voltages between different pole core groups 13 will cause the casing, such as an aluminum casing, to have a low local potential, which can easily cause lithium ions to be embedded in the casing. , Forming a lithium aluminum alloy, corroding the aluminum shell.
  • an isolation membrane 112 is provided between the casing 11 and the pole core assembly 13 to effectively isolate the contact between the electrolyte and the casing 11.
  • the isolation film 112 has a certain degree of insulation and corrosion resistance to the electrolyte.
  • the material of the isolation film 112 is not particularly limited, as long as it can be insulated and does not react with the electrolyte.
  • the material of the isolation film 112 may include polypropylene (PP), polyethylene (PE) or a multilayer composite film.
  • the multilayer composite film includes an inner layer and an outer layer. And the middle layer located between the inner and outer layers.
  • the inner layer includes a plastic material.
  • the inner layer can be made of a material that is less reactive with the electrolyte in the isolation film 112 and has insulating properties, for example, PP or PE.
  • the intermediate layer includes a metal material, thereby being able to prevent the penetration of water vapor outside the battery 100 and at the same time preventing the leakage of the internal electrolyte.
  • a metal material aluminum foil, stainless steel foil, copper foil, etc. are preferably used.
  • the outer layer is a protective layer, which is mostly made of high melting point or nylon material, which has strong mechanical properties, prevents damage to the battery 100 by external forces, and plays a role in protecting the battery 100.
  • the isolation film 112 also has a certain degree of flexibility, which facilitates the molding and processing of the battery 100 and prevents punctures.
  • the accommodating cavity 14 on at least one side of the plate 122 is in communication, and is used for injecting electrolyte into the accommodating cavity 14 from the outside of the battery 100.
  • the liquid injection channel 16 is in a closed state after the liquid injection is completed to isolate the communication between the containing cavity 14 and the outside of the battery 100. It can be understood that the end cover 121 may also be provided with the liquid injection channel 16 communicating with the receiving cavity 14 on one side according to actual conditions.
  • the two ends of the liquid injection channel 16 are respectively formed as a liquid injection port 161 and a liquid outlet 162.
  • the liquid injection port 161 is located on the circumferential surface 126 of the partition 122 where it is located, and the liquid outlet port 162 is located on the side surface 125 of the partition 122 where it is located.
  • the electrolyte is injected into the liquid injection channel 16 from the liquid injection port 161 and into the containing cavity 14 from the liquid outlet 162.
  • the shape of the liquid injection channel 16 can be flexibly set, for example, it can be a circular arc or curved cylindrical channel, or it can be an L-shaped channel.
  • the housing 11 is provided with a through hole 111 at a position corresponding to the liquid injection channel 16 on the partition 122, and the through hole 111 is used to enable the injection
  • the liquid channel 16 communicates with the outside of the battery 100.
  • the isolation membrane 112 is also provided at a position corresponding to the liquid injection channel 16 on the partition 122.
  • the battery 100 can be After the assembly is completed, electrolyte is injected into each individual accommodating cavity 14, thereby effectively solving the problem of injecting a battery with a plurality of pole groups connected in series.
  • the battery 100 further includes a blocking member 17 for sealing the liquid injection channel 16 after the liquid injection is completed.
  • the blocking member 17 may be at least partially located in the liquid injection channel 16.
  • the partition 122 may have a protruding portion protruding outward, the protruding portion is made of plastic, the liquid injection port 161 is provided on the protruding portion, and the The liquid injection port 161 is sealed by hot melt after the liquid injection is completed.
  • the liquid injection channel 16 is provided on the partition 122.
  • the electrolyte leakage occurs in one of the accommodating chambers 14, If the other accommodating cavity 14 remains intact, there will still be no safety problems caused by electrolyte leakage.
  • the liquid injection channel 16 on the partition 122 of the cavity wall of the accommodating cavity 14 is in a sealed state.
  • the electrolyte in the accommodating cavity 14 will not flow out of the accommodating cavity 14 and contact the housing 11. An internal short circuit occurs.
  • the electrolyte will not flow between adjacent pole core accommodating cavities 14, will not affect each other, and will not be decomposed due to excessive potential difference, ensuring the safety and use of the battery 100 life.
  • the consistency of the working conditions of each battery is very important, which directly affects the performance of the overall battery pack.
  • the consistency of the working conditions of the various electrode core groups inside the battery will also affect the overall performance of each battery, which in turn affects the performance of the entire battery pack.
  • the amount of electrolyte will affect the performance of the battery, such as capacity and activity.
  • a liquid injection channel 16 is provided on the separator 122, so that the molding process of the battery 100 can be optimized under the condition of ensuring timely and effective infiltration of the electrolyte.
  • one liquid injection channel 16 may communicate with one accommodating cavity 14.
  • each accommodating cavity 14 containing the pole core assembly 13 can have a separate channel to inject the electrolyte, which can realize the shortest injection path, and the electrolyte can flow from the injection channel 16 to The corresponding accommodating cavity 14 ensures that the electrolyte can infiltrate the electrode core assembly 13 in a timely and effective manner.
  • the setting of multiple injection channels 16 can accurately control the electrolyte content in each accommodating cavity 14 and guarantee multiple accommodating cavities. The consistency of the electrolyte in 14.
  • one liquid injection channel 16 may communicate with two adjacent accommodating cavities 14 at the same time.
  • the liquid injection channel 16 includes a first channel 163 and a second channel 164.
  • the first channel 163 penetrates the partition 122 where it is located and communicates with two adjacent cavities 14 on both sides of the partition 122.
  • the second channel 164 communicates with the first channel 163 and the outside of the battery 100. That is, one liquid injection port 161 is provided on the circumferential surface 126 of the partition 122, and the liquid outlet 162 is provided on both side surfaces 125 of the partition 122.
  • the battery 100 further includes a blocking member 17 for sealing the second channel 164 after the liquid injection is completed, so as to block the communication between the second channel 164 and the outside.
  • the blocking member 17 is also used to block at least a part of the area of the first passage 163 to block the communication between the first passage 163 and two adjacent accommodating cavities 14.
  • liquid injection channels 16 on the partition 122 when one of the liquid injection channels 16 on the partition 122 is connected to the accommodating cavities 14 on both sides of the partition 122 at the same time, it is not necessary to provide the liquid injection channels 16 on each of the partitions 122. , The liquid injection channel 16 can be provided every other partition 122.
  • the liquid injection channels 16 on the partition 122 can simultaneously extend to the accommodating cavities adjacent to both sides of the partition 122.
  • the electrolyte is injected into 14, and the infiltration path of the electrolyte is short, and the electrolyte can still infiltrate the electrode core groups 13 on both sides in time and effectively.
  • the number of liquid injection channels 16 located on each partition 122 may be one or more.
  • the liquid injection channel 16 includes a third channel 165 and a fourth channel 166 that are independent of each other, that is, two liquid injection channels 16 are provided on a partition 122.
  • the third channel 165 communicates with the accommodation cavity 14 on one side of the partition 122 where it is located, and the fourth channel 166 communicates with the accommodation cavity 14 on the other side of the partition 122 where it is located.
  • each of the partitions 122 is provided with the liquid injection channel 16, so that each accommodating cavity 14 corresponds to a liquid injection channel 16 so as to accurately The amount of electrolyte injected into each accommodating cavity 14 is controlled to ensure the consistency of the electrolyte.
  • At least one of the partitions 122 is provided with a liquid conducting through hole 18, and the liquid conducting through hole 18 is used to communicate with adjacent two sides of the partition 122 where it is located.
  • the liquid injection channel 16 and the liquid conducting through hole 18 are provided on different partitions 122, wherein one of the two adjacent partitions 122 122 is provided with the liquid injection channel 16, and the other partition 122 is provided with the liquid conducting through hole 18.
  • the liquid injection channel 16 and the liquid conducting through hole 18 are provided on different partitions 122, wherein a part of the partitions 122 of the plurality of partitions 122
  • the liquid injection channel 16 is provided, and the liquid injection channel 16 communicates with the two accommodating cavities 14 adjacent to both sides of the partition wall 122 where it is located, and the other part of the partition wall 122 is provided with the liquid conducting through hole 18.
  • a part of the plurality of partitions 122 are provided with the liquid injection channel 16 and the liquid conducting hole 18 communicating with the liquid injection channel 16 at the same time.
  • a part of the partition wall 122 is provided with the liquid conducting through hole 18.
  • the battery 100 further includes a sealing member 19, which can block the liquid conducting hole 18 after the battery 100 is filled with liquid, so that the The liquid conducting hole 18 is in a closed state, so as to block the communication of the liquid conducting hole 18 with two adjacent cavities 14. That is, after the liquid injection is completed, the sealing member 19 seals the liquid conducting through hole 18 to isolate the two adjacent accommodating cavities 14. The electrolyte will not flow between the adjacent accommodating cavities 14. They will affect each other and will not be decomposed due to excessive potential difference, thereby ensuring the safety and service life of the battery 100.
  • the partition 122 is further provided on the circumferential surface 126 with the liquid conducting hole 18 and passing through the liquid conducting hole 18
  • the sealing channel 20, the sealing member 19 can block the liquid conducting through hole 18 under the action of external force.
  • the sealing member 19 is a sealing plug, and the sealing channel 20 matches the shape of the sealing plug.
  • the sealing member 19 has a rectangular parallelepiped structure.
  • the sealing member 19 may also be a cylindrical structure or a cylindrical structure with an elliptical cross section.
  • the shape of the sealing channel 20 can be flexibly set according to the shape of the sealing member 19.
  • the sealing member 19 has a wedge-shaped block structure.
  • the inner wall of the sealing channel 20 is provided with threads
  • the sealing member 19 is a cylinder or screw with threads on the surface.
  • the sealing member 19 has a cylindrical structure, and an elastic sealing ring 191 is sleeved at a position corresponding to the liquid conducting through hole 18 in the sealed state.
  • the sealing member 19 is a sealing ball, which includes a metal ball 192 and a sealing sleeve 193 wrapped on the outer surface of the metal ball.
  • the interference fit of the sealing ball is arranged in the sealing channel 20.
  • the sealing member 19 is in the first state before, during, or after the liquid injection of the battery 100, and the liquid conducting hole 18 is in a conducting state to communicate with it.
  • the sealing member 19 is switched from the first situation to the second situation, and the sealing member 19 blocks the liquid conducting hole 18 so that the liquid conducting hole 18 is blocked.
  • the through hole 18 is in a closed state, so as to block the communication of the liquid conducting through hole 18 to two adjacent accommodating cavities 14.
  • the sealing member 19 can be switched between the first situation and the second situation.
  • a first position and a second position may be formed in the sealing passage 20, and the sealing member 19 can move between the first position and the second position under the action of an external force.
  • the first situation is that the sealing element 19 is located at the first position
  • the second situation is that the sealing element 19 is located at the second position.
  • the external force is selected from one or more of gravity, electromagnetic force, inertial force or thermal force.
  • each of the pole core groups 13 includes a first electrode lead-out component 131 and a second electrode lead-out component 132 for drawing current.
  • the first electrode lead-out member 131 and the second electrode lead-out member 132 are respectively arranged on two opposite sides of the pole core group 13 along the first direction.
  • all the housings 11 and all the pole core groups 13 are arranged along the first direction, and the first electrode lead-out component 131 and the second electrode lead-out component 132 of the pole core group 13 are separately arranged in the first direction.
  • the opposite sides of the pole core groups 13, that is, between the pole core groups 13 are arranged in a “head-to-head” arrangement. This arrangement can conveniently realize the arrangement of the two adjacent pole core groups 13 in the battery 100.
  • the connection structure is simple.
  • the battery 100 with a longer length can be manufactured more conveniently by adopting this arrangement.
  • each electrode core group 13 includes a first electrode lead-out part 131 and a second electrode lead-out part 132 for drawing current. If the electrode core group 13 only contains one electrode core, the first electrode lead-out part 131 and the second electrode lead-out part 132 The electrode lead-out component 132 may be the positive ear and the negative ear of the pole core, or the negative ear and the positive ear, respectively. If the pole core set 13 contains multiple pole cores, the first electrode lead-out component may be a lead-out component formed by compounding and welding the positive lugs, and the second electrode lead-out component may be a lead-out component formed by compounding and welding the negative lugs together.
  • the first electrode lead-out component may be a lead-out component formed by compounding and welding the negative lugs together
  • the second electrode lead-out component may be a lead-out component formed by compounding and welding the positive lugs together.
  • the "first" and “second" of the first electrode lead-out component 131 and the second electrode lead-out component 132 are only used for name distinction and not used to limit the number.
  • the first electrode lead-out component may contain one or more.
  • the series connection mode provided in this embodiment can be a series connection between adjacent pole core groups 13, and the specific way of implementation can be direct connection of the current extraction components on the adjacent pole core groups 13 or electrical connection through additional conductive components. That is, the pole core groups 13 in two adjacent accommodating cavities 14 can be directly electrically connected or indirectly connected.
  • the battery 100 further includes a pole core connector 15, and the pole core connector 15 penetrates the separator 122.
  • the partition wall 122 is provided with a connecting through hole 123, and the pole core connecting member 15 penetrates through the connecting through hole 123, that is, the pole core connecting member 15 passes through the connecting hole 123. Thread one side to the other.
  • the first electrode extraction part 131 of one of the electrode core groups 13 in the adjacent two accommodating cavities 14 and the second electrode extraction part of the other electrode core group 13 132 is electrically connected through the pole core connector 15, that is, the pole core groups 13 in two adjacent cavities 14 are indirectly connected.
  • pole core connectors 15 which can give the pole core connectors 15 more design space, increase the flow area, and reduce the The internal resistance of the battery 100.
  • the pole core connector 15 may be a sheet structure.
  • the pole core connector 15 may be a columnar structure.
  • first electrode lead-out part 131 and the second electrode lead-out part 132 can be directly welded to the electrode core connector 15 in the corresponding separator 122. Compared with the existing batteries in series, the welding procedures and steps are reduced, the risks that may be caused by poor welding are reduced, and the overall safety and reliability of the batteries are improved.
  • the pole core connector 15 includes a copper connecting portion 151 and an aluminum connecting portion 152 that are electrically connected to each other. Since there is a potential difference between copper and aluminum with respect to lithium, corrosion is likely to occur if the copper connection portion 151 and the aluminum connection portion 152 are in contact with the electrolyte. In the one embodiment, the place where the copper connection portion 151 and the aluminum connection portion 152 are electrically connected is located inside the partition 122.
  • the battery 100 further includes an encapsulation structure 124 disposed in the connection through hole 123, and the encapsulation structure 124 is used to connect the pole core connector 15 is encapsulated in the connection through hole 123, and at the same time, the encapsulation structure 124 can close the connection through hole 123.
  • the contact position of the copper connection portion 151 and the aluminum connection portion 152 is sealed inside the separator 122 to prevent it from being exposed to the internal space of the battery 100, especially to prevent it from contacting the electrolyte, and to prevent the copper and aluminum connection from being corroded.
  • the packaging structure 124 only needs to have sealing performance and resistance to electrolyte corrosion and insulation, and may be a rubber plug or the like, for example.
  • connection through hole 123 needs to be re-encapsulated, which is very inconvenient to operate.
  • selection of materials used in the packaging structure 124 is complicated, which may affect the electrolyte inside the battery 100.
  • FIGS. 3 and 6 a solution of integral injection molding of the pole core connector 15 and the partition 122 is provided.
  • the pole core connecting piece 15 and the partition 122 are integrally injection molded. Specifically, the pole core connecting piece 15 is manufactured first, and then the separator 122 is injection-molded on the outside of the pole core connecting piece 15.
  • the contact part of the plastic and the metal adopts EPI molding technology.
  • the nano-plastic layer is first sintered with the metal surface, such as PPE or PPS. Wait, and then carry out the integral injection of the plastic parts.
  • the metal layer and the plastic layer can be more effectively combined, and the sealing performance of the entire structure can be improved.
  • the pole core assembly 13 and the pole core connector 15 can be directly connected, and there is no through hole to be packaged, which simplifies the process and reduces the risk.
  • the first electrode lead-out part 131 of one of the electrode core groups 13 in the adjacent two accommodating cavities 14 may be the same as the second electrode lead-out part 132 of the other electrode core group 13
  • the connection between the first electrode lead-out component 131 and the second electrode lead-out component is located in the separator 122 between the two-pole core group 13. That is, the first electrode extraction member 131 and the second electrode extraction member 132 are directly electrically connected.
  • the connection between the first electrode lead-out part 131 and the second electrode lead-out part 132 refers to the position where the first electrode lead-out part 131 and the second electrode lead-out part 132 are connected to each other.
  • the separator 122 is provided with a connection through hole, and the first electrode lead-out part 131 is connected to the first electrode lead-out part 131 and the second electrode lead-out part 132.
  • the connection point of the second electrode lead-out component 132 is located in the connection through hole of the separator 122 between the two-pole core group 13.
  • the battery 100 further includes a packaging structure provided in the connecting through hole, and the packaging structure is used for The connection is encapsulated in the connection through hole, and the encapsulation structure closes the connection through hole, so that the first electrode lead-out part and the second electrode lead-out part are separated from the separator 122 In order to isolate the electrolyte in the two adjacent pole core groups 13 on both sides of the separator 122 from moving with each other in a sealed connection.
  • the distance between the two pole core groups 13 is greatly reduced, compared to the two batteries 100 in the prior art.
  • the subsequent assembly process of the battery pack is simplified; at the same time, the use of materials is reduced and the weight is reduced.
  • the battery 100 may also include other structures, such as explosion-proof valves, current interrupting devices, etc., for other structures, reference may be made to conventional settings in the prior art, and details are not described herein.
  • the present application also provides a battery module, which includes the battery 100 of any of the foregoing embodiments.
  • a battery module which includes the battery 100 of any of the foregoing embodiments.
  • Using the battery module provided in the present application has fewer assembly processes and lower cost.
  • the present application also provides a battery pack 300, which includes a tray 50 and the battery 100 or the battery module 200 of any of the foregoing embodiments. Wherein, the battery 100 or the battery module 200 is arranged inside the tray 50.
  • the present application also provides an electric vehicle 1000 using the aforementioned battery pack as a power source, including the aforementioned battery 100 or battery module 200 or battery pack 300. Due to the use of the above-mentioned battery pack 300 provided in this application, the electric vehicle 1000 has a high endurance capability and a low cost.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
  • the description with reference to the terms “embodiment”, “specific embodiment”, “example”, etc. means that the specific feature, structure, material, or characteristic described in combination with the embodiment or example is included in at least the application. In one embodiment or example.
  • the schematic representation of the above-mentioned terms does not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电池、电池模组、电池包和电动车,电池包括壳体、端盖、隔板以及多个极芯组。端盖设于壳体相对的两端,以封闭壳体的内部空间,隔板间隔设于壳体内,以在壳体的内部空间分隔出沿第一方向依次排布的多个容纳腔。每个容纳腔内设有所述极芯组,极芯组包含有至少一个极芯,多个极芯组沿第一方向依次排布且串联连接。隔板上开设有注液通道,注液通道与隔板至少一侧的容纳腔连通,用于将电解液从电池外部注入到容纳腔内。注液通道在注液完成后呈封闭状态,以隔绝容纳腔与电池外部的连通。壳体在对应隔板上的注液通道的位置设有通孔。

Description

一种电池、电池模组、电池包和电动车
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2019年11月22日提交的、发明名称为“一种电池、电池模组、电池包和电动车”的中国专利申请号“201911171817.4”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电池领域,尤其涉及一种电池、电池模组、电池包和电动车。
背景技术
随着新能源汽车的不断普及,对新能源汽车中动力电池的使用要求变得越来越高。特别是用户对新能源汽车续时里程要求的不断提高,对新能源汽车使用的动力电池包而言,其总体容量需要不断地提高;同时,在动力电池包的使用过程中,因内阻导致的内耗则要求尽量减少。
一般而言,电池的外壳内仅设有一个裸电芯或多个处于并联状态的裸电芯,而含有单个裸电芯或多个并联电芯都无法提高整个电池的电压。例如,钛酸锂类电池的电压是2.4伏,磷酸铁锂类电池的电压是3.2伏,三元类电池的电压是3.7伏,多元聚合物类电池的电压是4.3伏。所以在需要高电压(高容量)时,需要将多个电池串联成电池组,再将电池组组装成动力电池包。
常见的新能源汽车,其宽度一般在1米以上,长度则在数米。作为新能源汽车的动力电池包,一般放置在新能源汽车的底部。目前,市场上的动力电池包的宽度一般都与新能源汽车的宽度大概一致,大概在1米以上。长度则根据新能源汽车的底部预留空间而定,一般都在2米以上。整个而言,动力电池包的尺寸无论在长度还是宽度方向,都超过1米,而目前市面上的电池的长度一般在0.3米左右,所以在每个电池组中需要串联至少3个电池,甚至更多,且相邻两个电池之间需要通过外设的动力连接件进行动力连接,从而导致电池安装结构较多,不仅成本提高,而且导致动力电池包的整体重量上升;同时,安装结构占用了电池包较多的包体内部空间,造成动力电池包整体容量降低,电池数量越多,空间浪费就越多。另外,因需要设置多个外置动力连接件进行动力连接,导致内阻增加,提高了动力电池包在使用中的内耗。
为了解决上述技术问题,现有技术中也提供了一些电池,通过在电池壳体内部设置多个串联连接的极芯组,并采用隔板将相邻两个极芯组隔开,从而减少外壳以及外部安装结 构,提高电池包的空间利用率,降低电池包在使用中的内耗,进而保证动力电池包的整体容量。
由于并排串联多个极芯组,导致电池内部电位差较高,若串联的多个极组共用一个腔室内的电解液,电解液会因为电位差高而极可能发生分解,导致电池失效。为解决上述问题,上述电池通过在相邻两个极芯组之间设置隔板,通过隔板将各个极芯组分隔在各自的腔室内,每个腔室内具有单独的电解液。然而,由于隔板将壳体内部分隔成了多个单独的腔体,如何安全有效地向各个单独的腔体内注入电解液以及如何实现注液的密封问题,同时保证相邻的两个腔体隔离,是本领域的技术人员亟需解决的技术难题。
发明内容
本申请内容旨在至少解决现有技术中存在的技术问题之一。为此,在本申请的第一个方面,提供一种电池,包括壳体、端盖、隔板以及多个极芯组。所述端盖设于所述壳体相对的两端,以封闭所述壳体的内部空间。所述隔板间隔设于所述壳体内,以在所述壳体的内部空间分隔出沿第一方向依次排布的多个容纳腔。每个所述容纳腔内设有所述极芯组,所述多个极芯组沿所述第一方向依次排布且串联连接。所述隔板上开设有注液通道,所述注液通道与所述隔板至少一侧的容纳腔连通,所述注液通道用于将电解液从电池外部注入到所述容纳腔内。所述注液通道在注液完成后呈封闭状态,以隔绝所述容纳腔与电池外部的连通。所述壳体在对应所述隔板上的注液通道的位置设有通孔,用于使所述注液通道与电池外部连通。
在本申请的第二个方面,提供一种电池模组,包括如上述的电池。
在本申请的第三个方面,提供一种电池包,包括上述的电池或电池模组。
在本申请的第四个方面,提供一种电动车,包括上述电池包、电池模组、或电池。
本申请提供的电池通过在壳体内部设置隔板来分隔出多个密封的容纳腔以容纳多个极芯组,且多个极芯组之间串联连接,从而使电池具有较高的电池容量和电压,进而有利于提高电池包的整体容量及电压、提升电动车的续航能力。同时,通过在隔板上设置注液通道,且在壳体上对应所述隔板上的注液通道的位置设置通孔,可实现在所述电池组装完毕之后再向各个单独的容纳腔内注入电解液,从而有效地解决了具有多个串联连接的极芯组的电池的注液问题。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请一实施例提供的电池的整体结构示意图。
图2是图1所示的电池的截面视图。
图3是图2中A处的局部放大图。
图4为本申请另一个实施例提供的电池的结构分解图。
图5为本申请另一个实施例提供的电池的结构分解图。
图6为本申请另一实施例提供的隔板上设置有注液通道的结构示意图。
图7为本申请另一实施例提供的隔板上设置有注液通道的结构示意图。
图8为本申请另一实施例提供的隔板上设置有导液通孔的结构示意图。
图9是本申请一实施例提供的密封件与密封通道密封配合的结构示意图。
图10是图9所示结构的剖视图。
图11是本申请另一实施例提供的密封件与密封通道密封配合的结构示意图。
图12是图11所示结构的主视图。
图13是图11所示结构的剖视图。
图14是本申请另一实施例提供的密封件与密封通道密封配合的结构示意图。
图15是图14所示结构的主视图。
图16是图14所示结构的剖视图。
图17是本申请另一实施例提供的密封件与密封通道密封配合的结构示意图。
图18是图17所示结构的主视图。
图19是图17所示结构的剖视图。
图20是本申请另一实施例提供的密封件与密封通道密封配合的结构示意图。
图21是本申请实施例提供的电池包的结构示意图。
图22是本申请另一实施例提供的电池包的结构示意图。
图23是本申请实施例提供的电池模组的结构示意图。
图24是本申请实施例提供的电动车的结构示意图。
图25是本申请另一实施例提供的电池车的结构示意图。
图26是本申请另一实施例提供的电池车的结构示意图。
主要元件符号说明
电池100,
壳体11,通孔111、1122,隔离膜112,子隔离膜1121,端盖121,隔板122,连接通孔123,封装结构124,侧面125,周向面126,极芯组13,第一电极引出部件131,第二电极引出部件132,容纳腔14,极芯连接件15,铜连接部151,铝连接部152,注液通道 16,注液口161,出液口162,第一通道163,第二通道164,第三通道165,第四通道166,封堵件17,导液通孔18,密封件19,密封圈191,金属球192,密封套193,密封通道20,托盘50,
电池模组200,电池包300,
电动车1000。
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
如图1和图2所示,本申请提供了一种电池100,所述电池100包括壳体11、端盖121、隔板122以及多个极芯组13。其中,所述端盖121设于所述壳体11相对的两端,以封闭所述壳体11的内部空间。所述隔板122间隔设于所述壳体11内,以在所述壳体11的内部空间分隔出沿第一方向依次排布的多个容纳腔14。例如,所述第一方向为图1中所示的X方向。
在本申请中,在所述壳体11的内部空间分隔出沿第一方向依次排布的多个容纳腔14,可以是所述隔板122在所述壳体11内部将所述壳体11分为多个部分,从而形成多个所述容纳腔14;也可以是所述隔板122位于所述壳体11内,将位于所述壳体11内的某个空间分隔成多个所述容纳腔14。下文中将会对此部分的内容做具体介绍。
在本实施方式中,所述电池100可以为锂离子电池,所述第一方向为所述电池100的长度方向。所述壳体11用于提高所述电池100的强度,保证所述电池100的安全使用,可 以为塑料壳体,也可以为金属壳体,当为金属壳体时,散热性能较好,强度较高,可以自身起到支撑的作用。
在本实施方式中,每个所述容纳腔14内设有所述极芯组13,所述极芯组13包含有至少一个极芯,所述多个极芯组13沿所述第一方向依次排布且串联连接。
在本实施方式中,每个所述容纳腔14内设有一个极芯组13,相邻两个容纳腔14内的极芯组13之间串联连接。如此,所述多个极芯组13依次串联连接。在其他实施方式中,所述容纳腔14内也可以并排设置多个极芯组13,例如2个或2个以上。
本申请中所提到的极芯为动力电池领域常用的极芯,所述极芯以及所述极芯组13为所述电池100的壳体11内部的组成部分,而不能被理解为所述电池100本身。所述极芯可以是卷绕形成的,也可以是叠片的方式制成的。一般情况下,极芯至少包括正极片、隔膜和负极片以及电解液,极芯一般是指未完全密封的组件。因而,本申请提到的电池100为单体电池,不能因其包含多个极芯,而将其简单的理解为电池模组或电池组。在本申请中,所述极芯组13可以是由一个单独的极芯构成,也可以包括至少两个极芯,且至少两个极芯并联连接,构成所述极芯组13。
在本申请中,通过将所述多个极芯组13串联连接,可以实现所述电池100的高容量以及高电压,并减小制造工艺和成本。
一般情况下,所述电池100中包含的串联极芯组的个数,可根据每个极芯组13的输出电压、所应用的电池包的宽度以及电池包整体电压需求而定。例如,一种车型,需要电池系统输出的电压为300V,一个传统铁锂电池的电压为3.2V,现有技术中,包体内需要串联100个电池才能满足需求。而本申请提供的电池包中,假设一个电池内部串联2个极芯组13,则仅需要排布50个电池100即可;以此类推,若串联10个极芯组13,则只需要串接10个电池100即可。如此,可极大地减少了整包的设计和电池的排布,可以有效的利用空间,提高空间利用率。
在现有技术中,为了实现电池的高容量以及高电压,通常需要将两个或两个以上的电池进行串联。然而,相邻两个串联的电池之间在相接处需要通过各自端部的端盖与外设的动力连接件进行动力连接,从而导致电池安装结构较多,不仅成本提高,而且导致动力电池包的整体重量上升;同时,安装结构占用了电池包较多的包体内部空间,造成动力电池包整体容量降低。另外,因需要设置多个外置动力连接件进行动力连接,导致内阻增加,提高了动力电池包在使用中的内耗。
相比于现有技术,本申请中通过设置在所述壳体11内部间隔设置隔板122,以在所述壳体11内部分隔出多个并排的容纳腔14,以及在各个容纳腔14内设置极芯组13,并使各个容纳腔14内的极芯组13串联连接,从而可有效地提高所述电池100的容量和电压;此 外,相邻两个容纳腔14之间通过一个隔板122进行密封连接,从而可简化电池100的安装结构、减小相邻两个极芯组13之间的间距、降低了动力电池包的内耗,使电池包具有更多的内部空间用于容纳电池,进而提高电池包的整体容量及电压,以及提升使用该电池包的电动车1000的续航能力。
在本实施方式中,所述壳体11和所述极芯组13的长度方向均沿所述第一方向延伸,且所述壳体11为沿所述第一方向延伸的一体式结构。
在本申请中,如图1所示,所述电池100大体为长方体,所述电池100具有长度L、宽度H和和厚度D,所述电池100的长度L大于宽度H,所述电池100的宽度H大于厚度D。其中,所述电池100的长度可为400mm~2500mm。在本申请中,所述电池100的长度L与宽度H之间的比值为L/H=4~21。
需要说明的是,所述电池100大体为长方体可以理解为,所述电池100可为长方体形状、正方体形状,或局部存在异形但大致为长方体形状或正方体形状,或部分存在缺口、凸起、倒角、弧度、弯曲但整体呈近似长方体形状或正方体形状。
在现有技术中,为了提高电池包的体积利用率,将电池的尺寸设置成400mm~2500mm,由于电池过长,如果只设置一个极芯,电池的内阻过高,正负极两端的电位差差过大,电解液无法正常工作。而采用本申请的技术方案可以较为方便的制造出长度在400mm~2500mm的电池,同时又会减小内部电阻、以及结构件的连接,成本会进一步降低。
如图3所示,所述隔板122包括面向相邻的所述极芯组13的侧面125以及与所述侧面125相连接的周向面126。所述隔板122的周向面126与所述壳体11配合将所述壳体11的内部空间分隔出所述多个容纳腔14。
在一种实施方式中,请再次参阅图2,多个容纳腔14中在第一方向上位于所述电池100两端的容纳腔14的腔壁包括位于容纳腔14端部的隔板122和端盖121,以及位于所述隔板122与所述端盖121之间的所述壳体11。多个容纳腔14中在第一方向上位于所述电池100中部的容纳腔14的腔壁包括位于容纳腔14端部的相邻两个隔板122,以及位于所述相邻两个隔板122之间的所述壳体11。即,所述隔板122在所述壳体11内部将所述壳体11分为多个部分,从而形成多个所述容纳腔14。
在本申请中,当多个极芯组13之间串联时,不同极芯组13内的电解液在连通的情形下会存在内部短路问题,且不同的极芯组13之间存在较高的电位差(以磷酸铁锂电池为例,电位差大约为4.0~7.6V),位于其中的电解液会因电位差较大导致分解,影响电池性能。为了更好地起到绝缘隔离的作用,可以选择隔板122本身为绝缘材料制成,即所述隔板122为绝缘隔板。如此,无需进行其他操作,可以直接通过隔板122隔离相邻的两个极芯组13且保持两者之间的绝缘。其中,所述壳体11可为内表面绝缘的金属壳体。
在另一种实施方式中,如图4所示,所述电池100还包括设置于所述壳体11内的隔离膜112,所述隔板122间隔设于所述隔离膜112内,所述隔板122的周向面126与所述隔离膜112配合将所述隔离膜112的内部空间分隔出所述多个容纳腔14。即,所述隔离膜112为一体式膜体,所述隔板122位于所述隔离膜112内,将所述隔离膜112的收容空间分隔成多个所述容纳腔14。
在该实施方式中,多个隔板122位于电池100的壳体22内,以将壳体22内的空间分隔为沿第一方向间隔开的多个容纳腔14,其中,多个容纳腔14中在第一方向上位于所述电池100两端的容纳腔14的腔壁包括位于容纳腔14端部的隔板122和端盖121,以及位于所述隔板122与所述端盖121之间的所述隔离膜112,同时多个容纳腔14在第一方向上位于所述电池100中部的容纳腔14的腔壁包括位于容纳腔14端部的相邻两个隔板122,以及位于相邻两个隔板122之间的所述隔离膜112。
在另一种实施方式中,如图5所示,所述电池100还包括设置于所述壳体11内的隔离膜112,所述隔离膜112包括沿所述第一方向排布且与所述多个容纳腔14一一对应的多个子隔离膜1121,每个子隔离膜1121的相对两端与位于相应的容纳腔14两端的隔板122,或隔板122和端盖121配合形成相应的容纳腔14,相邻两个容纳腔14共用一个所述隔板122。
在该实施方式中,多个隔板122位于电池100的壳体22内,以将壳体22内的空间分隔为沿第一方向间隔开的多个容纳腔14,其中,多个容纳腔14中在第一方向上位于所述电池100中部的所述容纳腔14的腔壁包括相应的子隔离膜1121以及位于相应的子隔离膜1121端部的两个隔板122,以及多个容纳腔14中在第一方向上位于所述电池100两端所述容纳腔14的腔壁包括相应的子隔离膜1121以及位于相应的子隔离膜1121端部的隔板122和端盖121。
其中,所述多个子隔离膜1121为相互分离的多个独立部分,即,所述隔离膜112为分体式隔离膜体,每个所述子隔离膜1121为两端开口的筒状结构,所述极芯组13位于筒状的子隔离膜1121内部,所述隔板122或所述端盖121与对应的隔离膜112的端部开口封接。
在本申请中,对于所述隔离膜112与所述隔板122或所述端盖121封接的方式及具体结构不作特殊限制,例如,当所述隔板122或所述端盖121的材质为塑料材质,所述隔离膜112由塑料制成时,所述隔离膜112与所述隔板122或所述端盖121之间可采用热熔封接。
在本申请中,多个极芯组13之间串联,不同极芯组13之间由于电压不同,会导致壳体,如铝壳,局部电位过低,此时极易导致锂离子嵌入外壳内部,形成锂铝合金,腐蚀铝壳。本申请通过在壳体11与极芯组13之间设置隔离膜112,可有效隔离电解液与壳体11 的接触。
所述隔离膜112具有一定的绝缘性以及耐电解液腐蚀性,隔离膜112的材料不作特殊限制,只要能够绝缘以及不与电解液反应即可。在一些实施例中,所述隔离膜112的材料可以包括聚丙烯(PP)、聚乙烯(PE)或者多层复合膜,例如,在一些实施例中,多层复合膜包括内层、外层和位于内、外层之间的中间层。其中,内层包括塑料材料,例如内层可使用与隔离膜112内的电解液具有较少反应性并且具有绝缘性质的材料来制成,例如,PP或PE。中间层包括金属材料,从而能够防止电池100外部的水汽渗透,同时防止内部电解液的渗出。作为金属层,优选使用铝箔、不锈钢箔、铜箔等。外层为保护层,多采用高熔点的举止或尼龙材料,有较强的机械性能,防止外力对电池100的损伤,起到保护电池100的作用。在一些实施方式中,所述隔离膜112还具有一定的柔韧性,便于电池100的成型加工以及防止刺破等。
在本申请中,为了向极芯组13所在的容纳腔14内注入电解液,如图3所示,所述隔板122上开设有注液通道16,所述注液通道16与所述隔板122至少一侧的容纳腔14连通,用于将电解液从所述电池100外部注入到所述容纳腔14内。所述注液通道16在注液完成后呈封闭状态,以隔绝所述容纳腔14与电池100外部的连通。可以理解的是,所述端盖121上也可以根据实际情况设置与其一侧的容纳腔14连通的所述注液通道16。
所述注液通道16的两端分别形成为注液口161和出液口162。其中,所述注液口161位于所在的隔板122的周向面126上,所述出液口162位于所在的隔板122的侧面125上。所述电解液从所述注液口161注入所述注液通道16中,并从所述出液口162注入所述容纳腔14内。
在本申请中,所述注液通道16的形状可以灵活设置,例如可以呈圆弧状或曲线状的圆柱形通道,也可以是L形通道。
请再次参阅图1以及图3,在本实施方式中,所述壳体11在对应所述隔板122上的注液通道16的位置设有通孔111,通孔111用于使所述注液通道16与电池100外部连通。
可以理解的是,当所述壳体11内部设有一体式的隔离膜112时,如图4所示,所述隔离膜112在对应所述隔板122上的注液通道16的位置也设有通孔1122,通孔1122用于使所述注液通道16与电池100外部连通。
在本申请中,通过在所述电池100的壳体11,或壳体11和隔离膜112上对应所述隔板122上的注液通道16的位置设置通孔,可实现在所述电池100组装完毕之后再向各个单独的容纳腔14内注入电解液,从而有效地解决具有多个串联连接的极芯组的电池的注液问题。
可以理解的是,在向所述容纳腔14注入电解液后,需要对所述注液通道16进行密封。 在一种实施方式中,如图3所示,所述电池100还包括封堵件17,所述封堵件17用于在注液完成后密封所述注液通道16。其中,所述封堵件17可至少部分位于所述注液通道16内。
在另一种实施方式中,所述隔板122可向外凸出有凸出部,所述凸出部由塑料制成,所述注液口161设在所述凸出部上,所述注液口161在注液完成后采用热熔密封。
在本申请中,通过所述隔板122将相邻两个壳体11进行密封连接,并将注液通道16设在所述隔板122上,一旦其中一个容纳腔14内发生电解液泄漏,其他容纳腔14保持完整,则仍然不会发生因电解液泄露导致安全问题。在完成注液后,容纳腔14的腔壁的隔板122上的注液通道16处于密封状态,一方面使容纳腔14中的电解液不会从该容纳腔14中流出来与壳体11接触而发生内部短路,另一方面,电解液不会在相邻的极芯容纳腔14之间流动,不会相互影响,且不会因电位差过大而分解,保证电池100的安全性和使用寿命。
在动力电池领域,各电池的工况一致性至关重要,直接影响到整体电池包的性能。同理,电池内部的各极芯组工况一致性,也将影响每个电池的整体性能表现,进而影响整个电池包的性能。而在电池内部,电解液的多少,将影响到电池的性能表现,比如容量、活性等。在本申请中,在所述隔板122上开设注液通道16,在保证电解液及时有效的浸润的情况下,可以优化电池100的成型工艺。
关于注液通道16的设置方式,在一种实施方式中,如图3所示,一条注液通道16可与一个容纳腔14连通。
需要说明的是,当一条注液通道16只连通一个容纳腔14时,需要在每个所述隔板122上均设置注液通道16。通过多次开口多次注液,使每个容纳有极芯组13的容纳腔14均能有单独的通道注入电解液,可以实现注液路径最短,电解液能够及时由注液通道16流至对应的容纳腔14内,保证电解液及时有效地浸润极芯组13,同时多个注液通道16的设置,可以精准的控制每个容纳腔14内电解液的含量,保征多个容纳腔14中的电解液的一致性。
可选地,在另一种实施方式中,如图6所示,一条注液通道16可与相邻的两个容纳腔14同时连通。
具体地,所述注液通道16包括第一通道163和第二通道164,所述第一通道163贯穿其所在的隔板122并连通所述隔板122两侧相邻的两个容纳腔14,所述第二通道164连通所述第一通道163与电池100外部。即,所述隔板122的周向面126上设有一个所述注液口161,所述隔板122的两个侧面125上均设有所述出液口162。
所述电池100还包括封堵件17,所述封堵件17用于在注液完成后密封所述第二通道164,以阻断所述第二通道164与外部的连通。所述封堵件17还用于封堵所述第一通道163的至少一部分区域,以阻断所述第一通道163对相邻两个所述容纳腔14的连通。
需要说明的是,当一个所述隔板122上的注液通道16同时连通所述隔板122两侧的容纳腔14时,则不必在每个所述隔板122上均设置注液通道16,可以每隔一个隔板122设置注液通道16。
在该种实施方式中,由于位于所述隔板122两侧的容纳腔14的距离较近,所述隔板122上的注液通道16可同时向该隔板122两侧相邻的容纳腔14中注入电解液,电解液的浸润路径较短,仍然可以实现电解液及时有效地浸润两侧的极芯组13。
可选地,在另一种实施方式中,位于每个隔板122上的注液通道16的数量可以为1个,也可以为多个。
例如图7所示,所述注液通道16包括相互独立的第三通道165和第四通道166,即,在一个隔板122上设置两条注液通道16。所述第三通道165与其所在的隔板122一侧的容纳腔14连通,所述第四通道166与其所在的隔板122另一侧的容纳腔14连通。
可选地,在另一种实施方式中,每个所述隔板122上均设有所述注液通道16,如此,每个容纳腔14均对应有一条注液通道16,从而可精确地控制注入到各个容纳腔14内的电解液的量,进而保证电解液的一致性。
在一种实施方式中,如图8所示,至少一个所述隔板122上设有导液通孔18,所述导液通孔18用于连通其所在的隔板122两侧相邻的两个所述容纳腔14。其中,所述导液通孔18贯穿所述隔板122相对的两个侧面125。
具体地,在一些实施方式中,所述注液通道16与所述导液通孔18设置在不同的所述隔板122上,其中,相邻两个所述隔板122中的一个隔板122设有所述注液通道16,另一个隔板122设有所述导液通孔18。
可选地,在一些实施方式中,所述注液通道16与所述导液通孔18设置在不同的所述隔板122上,其中,所述多个隔板122中的一部分隔板122设有所述注液通道16,所述注液通道16与其所在的隔板122两侧相邻的两个所述容纳腔14连通,另一部分隔板122设有所述导液通孔18。
可选地,在一些实施方式中,所述多个隔板122中的一部分隔板122上同时设有所述注液通道16以及与所述注液通道16连通的导液通孔18,另一部分隔板122设有所述导液通孔18。
在一种实施方式中,如图9所示,所述电池100还包括密封件19,所述密封件19能够在所述电池100注液完成后阻断所述导液通孔18,使所述导液通孔18处于关闭状态,以阻断所述导液通孔18对相邻两个容纳腔14的连通。即,在注液完成后,所述密封件19封闭所述导液通孔18,使相邻两个容纳腔14之间隔离,电解液不会在相邻的容纳腔14之间流动,不会相互影响,且不会因电位差过大而分解,从而保证电池100的安全性和使用寿 命。
在一种实施方式中,如图9和图10所示,所述隔板122在所述周向面126上还设有与所述导液通孔18连通且贯穿所述导液通孔18的密封通道20,所述密封件19能够在外力作用下阻断所述导液通孔18。
在一些实施方式中,所述密封件19为密封塞,所述密封通道20与所述密封塞的形状相匹配。
如图9和图10所示,所述密封件19为长方体结构。可选地,所述密封件19也可为圆柱体结构或横截面为椭圆形的柱体结构。其中,所述密封通道20的形状可以根据所述密封件19的形状灵活设置。
可选地,如图11、图12、图13所示,所述密封件19为楔形块结构。
可选地,如图14、图15、图16所示,所述密封通道20的内壁上设有螺纹,所述密封件19为表面具有螺纹的圆柱体或螺钉。
可选地,如图17、图18、图19所示,所述密封件19为柱状结构,且在密封状态下对应所述导液通孔18的部位套设有弹性密封圈191。
在一些实施方式中,如图20所示,所述密封件19为密封球,包括金属球192以及包裹于所述金属球外表面的密封套193。其中,所述密封球过盈配合设置在所述密封通道20内。
在一些实施方式中,所述电池100注液前、注液时、或注液后化成时,所述密封件19处于第一情形,所述导液通孔18处于导通状态以连通其所在的隔板122两侧相邻的两个容纳腔14。所述电池100注液后或注液化成后,所述密封件19由所述第一情形切换至第二情形,所述密封件19阻断所述导液通孔18,使所述导液通孔18处于关闭状态,以阻断所述导液通孔18对相邻两个容纳腔14的连通。其中,所述密封件19能够在所述第一情形和所述第二情形之间切换。
具体地,所述密封通道20内可形成有第一位置和第二位置,且所述密封件19在外力作用下能够在所述第一位置和所述第二位置之间移动。其中,所述第一情形为所述密封件19位于所述第一位置,所述第二情形为所述密封件19位于所述第二位置。所述外力选自重力、电磁力、惯性力或热力中的一种或几种。
请再次参阅图2和图3,在本申请中,每个所述极芯组13均包括用于引出电流的第一电极引出部件131和第二电极引出部件132。在本实施方式中,所述第一电极引出部件131和所述第二电极引出部件132分别沿所述第一方向分设于所述极芯组13相对的两侧。
本申请通过将所有壳体11以及所有极芯组13沿所述第一方向排布,并将极芯组13的第一电极引出部件131和第二电极引出部件132沿第一方向分设于该极芯组13相对的两 侧,即各个极芯组13之间采用“头对头”的排布方式,此排布方式可以较为方便地实现所述电池100中相邻两个极芯组13之间的串联,连接结构简单。另外,采用这种排布方式可以较为方便地制造出长度较长的电池100。
一般每个所述极芯组13均包括用于引出电流的第一电极引出部件131和第二电极引出部件132,如果极芯组13仅含有一个极芯,第一电极引出部件131和第二电极引出部件132可以分别为极芯的正极耳和负极耳,或者分别为负极耳和正极耳。如果极芯组13含有多个极芯,第一电极引出部件可以是由正极耳复合并焊接在一起形成的引出部件,第二电极引出部件可以是由负极耳复合并焊接在一起形成的引出部件;或者,第一电极引出部件可以是由负极耳复合并焊接在一起形成的引出部件,第二电极引出部件可以是由正极耳复合并焊接在一起形成的引出部件。第一电极引出部件131和第二电极引出部件132的“第一”和“第二”仅用于名称区分,并不用于限定数量,例如第一电极引出部件可以含有一个也可以含有多个。
本实施方式提供的串联方式可以为相邻极芯组13间串联连接,实现的具体方式可以为相邻极芯组13上的电流引出部件直接连接,也可以是通过额外的导电部件实现电连接,即,相邻两个容纳腔14内的极芯组13之间可以直接电连接,也可以间接连接。
具体地,在一种实施方式中,所述电池100还包括极芯连接件15,所述极芯连接件15贯穿所述隔板122。例如,所述隔板122上开设有连接通孔123,所述极芯连接件15穿设在所述连接通孔123内,即,所述极芯连接件15从所述连接通孔123的一侧穿至另一侧。
在所述一种实施方式中,相邻两个容纳腔14内的极芯组13中的其中一个极芯组13的第一电极引出部件131与另一个极芯组13的第二电极引出部件132通过所述极芯连接件15电连接,即,相邻两个容纳腔14内的极芯组13之间间接连接。
在所述一种实施方式中,相邻两个极芯组13通过极芯连接件15连接,能够给予所述极芯连接件15更大的设计空间,增大过流面积,减小所述电池100的内阻。
在一些实施方式中,所述极芯连接件15可为片状结构。可选地,在一些实施方式中,所述极芯连接件15可为柱状结构。
其中,所述第一电极引出部件131和所述第二电极引出部件132可直接与对应的隔板122中的极芯连接件15焊接。与现有电池之间串联相比,减少了焊接程序和步骤,降低了不良焊接可能带来的风险,提高了电池整体的安全性和可靠性。
如图3所示,所述极芯连接件15包括相互电连接的铜连接部151和铝连接部152。由于铜和铝对锂有电位差,因而铜连接部151和铝连接部152相接之处若与电解液接触,则容易发生腐蚀。在所述一种实施方式中,所述铜连接部151和铝连接部152电连接之处位于所述隔板122的内部。
为了避免铜连接部151和铝连接部152电连接之处被电解液腐蚀,同时也为了隔离隔板122两侧的容纳腔14,阻止位于所述隔板122两侧的容纳腔14中的电解液互相渗透,在一些实施例中,如图7所示,所述电池100还包括设于所述连接通孔123内的封装结构124,所述封装结构124用于将所述极芯连接件15封装在所述连接通孔123内,同时所述封装结构124能够封闭所述连接通孔123。如此,铜连接部151和铝连接部152接触的位置被密封在隔板122内部,防止其暴露在电池100内部空间,特别是防止其与电解液接触,避免铜铝连接的位置被腐蚀。
在本申请中,所述封装结构124只要能起到密封性能且耐电解液腐蚀以及绝缘即可,例如可以为橡胶塞等。
在上述实施例提供的极芯连接件15的安装方案中,需要对所述连接通孔123进行二次封装,操作非常不方便。同时,在进行二次封装时,所述封装结构124所用的材料选取复杂,可能会对电池100内部的电解液产生影响。鉴于此,在另一个实施例中,如图3和图6所示,提供了一种极芯连接件15与隔板122一体注塑成型的方案。该方案中,所述极芯连接件15与所述隔板122一体注塑成型。具体的,先制作极芯连接件15,再在极芯连接件15外部注塑成型隔板122。其中,为了更好地实现所述隔板122的密封效果,在一体注塑成型过程中,塑料与金属接触的部位采用EPI成型技术,例如,先将纳米塑料层与金属表面烧结,如PPE、PPS等,再进行塑料件的一体注塑。采用此方法可使金属层与塑料层更加有效的结合在一起,提高整个结构件的密封性能。在组装过程中,直接将极芯组13与极芯连接件15相连即可,没有通孔需要进行封装,简化了工艺同时降低了风险。
在再一种实施方式中,相邻两个容纳腔14内的极芯组13的其中一个极芯组13的第一电极引出部件131可与另一极芯组13的第二电极引出部件132电连接,所述第一电极引出部件131与所述第二电极引出部件的连接处位于两极芯组13之间的隔板122中。即,第一电极引出部件131与第二电极引出部件132直接电连接。其中,第一电极引出部件131与第二电极引出部件132的连接处是指所述第一电极引出部件131与第二电极引出部件132两者相互连接的位置。
与前面的实施方式类似,为了便于第一电极引出部件131和第二电极引出部件132之间的电连接,所述隔板122上开设有连接通孔,所述第一电极引出部件131与所述第二电极引出部件132的连接处位于两极芯组13之间的隔板122的所述连接通孔中。
为了阻止位于所述隔板122两侧的极芯组13的容纳腔14中的电解液互相渗透,所述电池100还包括设于所述连接通孔内的封装结构,所述封装结构用于将所述连接处封装在所述连接通孔内,且所述封装结构封闭所述连接通孔,从而使所述第一电极引出部件和所述第二电极引出部件与所述隔板122之间密封连接,以隔绝所述隔板122两侧相邻的两个 所述极芯组13中的电解液相互移动。
在本实施方式中,因相邻两个壳体11之间共用同一个隔板122,极大地减小了两个极芯组13之间的间距,相对于现有技术中的两个电池100之间通过第一电极引出部件131和第二电极引出部件132与外设的动力连接件相连而言,简化了后续电池包的组装工序;同时,减少了材料的使用,减轻了重量。
在本申请中,所述电池100还可包括其他结构,如防爆阀、电流中断装置等,该其他结构可参考现有技术的常规设置,在此不作赘述。
如图23所示,本申请还提供了一种电池模组,所述电池模组包括上述任一实施例的电池100。采用本申请提供的电池模组,组装工艺少,成本较低。
如图21和图22所示,本申请还提供了一种电池包300,包括托盘50以及上述任一实施例的电池100或电池模组200。其中,所述电池100或电池模组200设置于所述托盘50内部。采用本申请提供的电池包,组装工艺少,成本较低,能量密度较高。如图24至图26所示,本申请还提供了一种采用上述的电池包作为动力源的电动车1000,包括上述的电池100或电池模组200或电池包300。由于采用本申请提供的上述电池包300,所述电动车1000的续航能力高,成本较低。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“实施例”、“具体实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (24)

  1. 一种电池,其特征在于,包括壳体、端盖、隔板以及多个极芯组;
    所述端盖设于所述壳体相对的两端,以封闭所述壳体的内部空间;
    所述隔板间隔设于所述壳体内,以在所述壳体的内部空间分隔出沿第一方向依次排布的多个容纳腔;
    每个所述容纳腔内设有所述极芯组;所述多个极芯组沿所述第一方向依次排布且串联连接;
    所述隔板上开设有注液通道,所述注液通道与所述隔板至少一侧的容纳腔连通,所述注液通道用于将电解液从电池外部注入到所述容纳腔内;所述注液通道在注液完成后呈封闭状态,以隔绝所述容纳腔与电池外部的连通;
    所述壳体在对应所述隔板上的注液通道的位置设有通孔,所述壳体的通孔用于使所述注液通道与电池外部连通。
  2. 根据权利要求1所述的电池,其特征在于,所述壳体为沿所述第一方向延伸的一体式结构,所述隔板包括面向相邻的所述极芯组的侧面以及与所述侧面相连接的周向面,所述隔板的周向面与所述壳体配合以将所述壳体的内部空间分隔出所述多个容纳腔;
    多个所述容纳腔中在所述第一方向上位于所述电池中部的所述容纳腔的腔壁包括位于容纳腔端部的相邻两个隔板,以及位于所述相邻两个隔板之间的所述壳体;以及多个容纳腔中在所述第一方向上位于所述电池两端的所述容纳腔的腔壁包括位于容纳腔端部的隔板和端盖,以及位于所述隔板与所述端盖之间的所述壳体。
  3. 根据权利要求1或2所述的电池,其特征在于,所述壳体为沿所述第一方向延伸的一体式结构,所述隔板包括面向相邻的所述极芯组的侧面以及与所述侧面相连接的周向面;
    所述电池还包括设置于所述壳体内的隔离膜,所述隔板间隔设于所述隔离膜内,所述隔板的周向面与所述隔离膜配合以将所述隔离膜的内部空间分隔出所述多个容纳腔;
    多个所述容纳腔中在所述第一方向上位于所述电池中部的所述容纳腔的腔壁包括位于容纳腔端部的相邻两个隔板,以及位于相邻两个隔板之间的所述隔离膜;以及多个所述容纳腔中在所述第一方向上位于所述电池两端的所述容纳腔的腔壁包括位于容纳腔端部的隔板和端盖,以及位于所述隔板与所述端盖之间的所述隔离膜;
    所述隔离膜在对应所述隔板上的注液通道的位置设有通孔,所述隔离膜的通孔用于使所述注液通道与电池外部连通。
  4. 根据权利要求1-3任意一项所述的电池,其特征在于,所述壳体为沿所述第一方向延伸的一体式结构,所述电池还包括设置于所述壳体内的隔离膜,所述隔离膜包括沿所述 第一方向排布且与所述多个容纳腔一一对应的多个子隔离膜,每个子隔离膜的相对两端与位于相应的容纳腔两端的隔板,或隔板和端盖配合形成相应的容纳腔,相邻两个容纳腔共用一个所述隔板;
    多个所述容纳腔中所述第一方向上位于所述电池中部的所述所述容纳腔的腔壁包括相应的子隔离膜以及位于相应的子隔离膜端部的两个隔板;以及多个容纳腔中在所述第一方向上位于所述电池两端的所述容纳腔的腔壁包括相应的子隔离膜以及位于相应的子隔离膜端部的隔板和端盖。
  5. 如权利要求1-4任意一项所述的电池,其特征在于,所述注液通道包括第一通道和第二通道,所述第一通道贯穿其所在的隔板并用于连通该隔板两侧相邻的两个容纳腔,所述第二通道用于连通所述第一通道与电池外部。
  6. 如权利要求5所述的电池,其特征在于,所述电池还包括封堵件,所述封堵件用于在注液完成后密封所述第二通道,以阻断所述第二通道与电池外部的连通。
  7. 如权利要求5所述的电池,其特征在于,所述电池还包括封堵件,所述封堵件用于封堵所述第一通道的至少一部分区域,以阻断所述第一通道对相邻两个容纳腔的连通。
  8. 如权利要求1-7任意一项所述的电池,其特征在于,所述注液通道包括相互独立的第三通道和第四通道,所述第三通道与其所在的隔板一侧的容纳腔连通,所述第四通道与其所在的隔板另一侧的容纳腔连通。
  9. 如权利要求1-8任意一项所述的电池,其特征在于,每个所述隔板上均设有所述注液通道。
  10. 如权利要求1-9任意一项所述的电池,其特征在于,至少一个所述隔板上设有导液通孔,所述导液通孔用于连通其所在的隔板两侧相邻的两个容纳腔。
  11. 如权利要求10所述的电池,其特征在于,所述注液通道与所述导液通孔设置在不同的所述隔板上,其中,相邻两个所述隔板中的一个所述隔板设有所述注液通道,另一个所述隔板设有所述导液通孔;或者,
    所述注液通道与所述导液通孔设置在不同的所述隔板上,其中,所述多个隔板中的一部分隔板设有所述注液通道,所述注液通道与其所在的隔板两侧相邻的两个容纳腔连通,另一部分所述隔板设有所述导液通孔;或者,
    所述注液通道与所述导液通孔设置在不同的所述隔板上,其中,所述多个隔板中的一部分所述隔板上设有所述注液通道以及与所述注液通道连通的导液通孔,另一部分所述隔板设有所述导液通孔。
  12. 如权利要求1-4任意一项所述的电池,其特征在于,所述电池还包括封堵件,所述封堵件用于在注液完成后密封所述注液通道。
  13. 如权利要求1-12任意一项所述的电池,其特征在于,所述注液通道的两端形成为注液口和出液口,所述电解液从所述注液口注入所述注液通道中,并从所述出液口注入所述容纳腔内;
    所述隔板向外凸出有凸出部,所述凸出部由塑料制成,所述注液口设在所述凸出部上,所述注液口在注液完成后采用热熔密封。
  14. 如权利要求10-13任意一项所述的电池,其特征在于,所述电池还包括密封件,所述密封件能够在所述电池注液完成后使所述导液通孔处于关闭状态,以阻断所述导液通孔对相邻两个容纳腔的连通。
  15. 如权利要求14所述的电池,其特征在于,所述隔板包括面向相邻的所述极芯组的侧面以及与所述侧面相连接的周向面;
    所述导液通孔贯穿所述隔板相对的两个侧面;
    所述隔板在所述周向面上还设有与所述导液通孔连通且贯穿所述导液通孔的密封通道,所述密封件能够在外力作用下由所述密封通道进入导液通孔中以阻断所述导液通孔。
  16. 如权利要求15所述的电池,其特征在于,所述密封件为密封塞,所述密封通道与所述密封塞的形状相匹配。
  17. 如权利要求16所述的电池,其特征在于,所述密封件为长方体结构、圆柱体结构、横截面为椭圆形的柱体结构、或楔形块结构;或者,
    所述密封通道的内壁上设有螺纹,所述密封塞为表面具有螺纹的圆柱体或螺钉;或者,
    所述密封件为柱状结构,且所述密封件对应所述导液通孔的部位套设有弹性密封圈。
  18. 如权利要求15所述的电池,其特征在于,所述密封件为密封球,包括金属球以及包裹于所述金属球外表面的密封套。
  19. 如权利要求14-18任意一项所述的电池,其特征在于,所述电池注液前、注液时、或注液后化成时,所述密封件处于第一情形,所述导液通孔处于导通状态以连通其所在的隔板两侧相邻的两个容纳腔;所述电池注液后或注液化成后,所述密封件由所述第一情形切换至第二情形,所述密封件阻断所述导液通孔,使所述导液通孔处于关闭状态,以阻断所述导液通孔对相邻两个容纳腔的连通;其中,所述密封件能够在所述第一情形和所述第二情形之间切换。
  20. 如权利要求19所述的电池,其特征在于,所述密封通道内形成有第一位置和第二位置,且所述密封件在外力作用下能够在所述第一位置和所述第二位置之间移动;
    所述第一情形为所述密封件位于所述第一位置;所述第二情形为所述密封件位于所述第二位置。
  21. 如权利要求20所述的电池,其特征在于,所述外力选自重力、电磁力、惯性力或 热力中的一种或几种。
  22. 一种电池模组,其特征在于,包括权利要求1-21任意一项所述的电池。
  23. 一种电池包,其特征在于,包括权利要求1-21任意一项所述的电池或权利要求22所述的电池模组。
  24. 一种电动车,其特征在于,包括权利要求23所述的电池包或权利要求22所述的电池模组或权利要求1-21任意一项所述的电池。
PCT/CN2020/129852 2019-11-22 2020-11-18 一种电池、电池模组、电池包和电动车 WO2021098739A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227016954A KR20220088453A (ko) 2019-11-22 2020-11-18 배터리, 배터리 모듈, 배터리 팩, 및 전기 자동차
US17/778,731 US20230017407A1 (en) 2019-11-22 2020-11-18 Battery, battery module, battery pack and electric vehicle
EP20890023.3A EP4050709A4 (en) 2019-11-22 2020-11-18 BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRIC VEHICLE
JP2022529504A JP7492583B2 (ja) 2019-11-22 2020-11-18 電池、電池モジュール、電池パック及び電気自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911171817.4 2019-11-22
CN201911171817.4A CN112838325B (zh) 2019-11-22 2019-11-22 一种电池、电池模组、电池包和电动车

Publications (1)

Publication Number Publication Date
WO2021098739A1 true WO2021098739A1 (zh) 2021-05-27

Family

ID=75922344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129852 WO2021098739A1 (zh) 2019-11-22 2020-11-18 一种电池、电池模组、电池包和电动车

Country Status (6)

Country Link
US (1) US20230017407A1 (zh)
EP (1) EP4050709A4 (zh)
JP (1) JP7492583B2 (zh)
KR (1) KR20220088453A (zh)
CN (1) CN112838325B (zh)
WO (1) WO2021098739A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594535A (zh) * 2021-08-16 2021-11-02 傲普(上海)新能源有限公司 一种锂离子电池及其提高电解液浸润及延长寿命的方法
DE102022113187A1 (de) 2022-05-25 2023-11-30 Bayerische Motoren Werke Aktiengesellschaft Fortbewegungsmittel, elektrischer Energiespeicher und Verfahren zu dessen Fertigung
EP4300663A1 (en) * 2022-06-28 2024-01-03 CALB Co., Ltd. Battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128394A1 (ko) * 2021-12-27 2023-07-06 주식회사 엘지에너지솔루션 셀 유닛 및 이를 포함하는 배터리 팩
WO2023173444A1 (zh) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备、电池单体的制造方法和设备
CN114914644A (zh) * 2022-05-24 2022-08-16 厦门海辰新能源科技有限公司 电池、电解液的注液方法和注液设备
CN118044044A (zh) * 2022-07-29 2024-05-14 宁德时代新能源科技股份有限公司 端盖组件、电池组件、电池及用电设备
WO2024031660A1 (zh) * 2022-08-12 2024-02-15 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池及用电设备
WO2024055304A1 (zh) * 2022-09-16 2024-03-21 宁德时代新能源科技股份有限公司 电池和用电装置
CN116111201B (zh) * 2023-04-11 2023-09-08 陕西奥林波斯电力能源有限责任公司 一种大容量电池及该大容量电池的制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104167A (zh) * 2010-12-13 2011-06-22 湖南科力远新能源股份有限公司 具有内部串联式结构的电池组及其制作方法
CN102403479A (zh) * 2011-07-29 2012-04-04 湖南科霸汽车动力电池有限责任公司 方形蓄电池组内部电芯的连接方法及方形蓄电池组
CN106025392A (zh) * 2016-07-14 2016-10-12 卞超英 一种方型镍氢电池组
EP3113243A1 (en) * 2015-06-29 2017-01-04 Samsung SDI Co., Ltd. Battery pack
US20170040575A1 (en) * 2015-08-07 2017-02-09 Samsung Sdi Co., Ltd. Battery pack
CN107230801A (zh) * 2017-07-13 2017-10-03 庄新国 一种安全大容量锂离子电池
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN211743203U (zh) * 2019-11-22 2020-10-23 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN211743281U (zh) * 2019-11-22 2020-10-23 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224186B2 (ja) 1999-06-10 2009-02-12 パナソニック株式会社 集合型二次電池
JP4830302B2 (ja) * 2005-01-25 2011-12-07 トヨタ自動車株式会社 二次電池
JP2010080081A (ja) * 2008-09-24 2010-04-08 Panasonic Corp 二次電池
JP2010153179A (ja) * 2008-12-25 2010-07-08 Panasonic Ev Energy Co Ltd 電池モジュール
JP5368964B2 (ja) 2009-12-17 2013-12-18 Udトラックス株式会社 蓄電モジュール
CN106505169A (zh) * 2016-12-27 2017-03-15 宁德时代新能源科技股份有限公司 电池模组壳体结构及电池模组

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104167A (zh) * 2010-12-13 2011-06-22 湖南科力远新能源股份有限公司 具有内部串联式结构的电池组及其制作方法
CN102403479A (zh) * 2011-07-29 2012-04-04 湖南科霸汽车动力电池有限责任公司 方形蓄电池组内部电芯的连接方法及方形蓄电池组
EP3113243A1 (en) * 2015-06-29 2017-01-04 Samsung SDI Co., Ltd. Battery pack
US20170040575A1 (en) * 2015-08-07 2017-02-09 Samsung Sdi Co., Ltd. Battery pack
CN106025392A (zh) * 2016-07-14 2016-10-12 卞超英 一种方型镍氢电池组
CN107230801A (zh) * 2017-07-13 2017-10-03 庄新国 一种安全大容量锂离子电池
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN211743203U (zh) * 2019-11-22 2020-10-23 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN211743281U (zh) * 2019-11-22 2020-10-23 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4050709A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594535A (zh) * 2021-08-16 2021-11-02 傲普(上海)新能源有限公司 一种锂离子电池及其提高电解液浸润及延长寿命的方法
DE102022113187A1 (de) 2022-05-25 2023-11-30 Bayerische Motoren Werke Aktiengesellschaft Fortbewegungsmittel, elektrischer Energiespeicher und Verfahren zu dessen Fertigung
EP4300663A1 (en) * 2022-06-28 2024-01-03 CALB Co., Ltd. Battery

Also Published As

Publication number Publication date
JP2023502457A (ja) 2023-01-24
US20230017407A1 (en) 2023-01-19
EP4050709A4 (en) 2023-10-18
JP7492583B2 (ja) 2024-05-29
EP4050709A1 (en) 2022-08-31
CN112838325A (zh) 2021-05-25
KR20220088453A (ko) 2022-06-27
CN112838325B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2021098739A1 (zh) 一种电池、电池模组、电池包和电动车
WO2021077564A1 (zh) 一种电池、电池模组、电池包和电动车
WO2021077565A1 (zh) 一种锂离子电池、电池模组、电池包及汽车
WO2021098761A1 (zh) 一种电池、电池模组、电池包和电动车
CN112838303B (zh) 一种电池、电池模组、电池包和电动车
WO2021098760A1 (zh) 一种电池、电池模组、电池包及汽车
WO2021098762A1 (zh) 电池、电池模组、电池包及汽车
CN112993473B (zh) 一种电池、电池模组、电池包和电动车
CN112838335B (zh) 电池、电池模组、电池包及电动车
CN112838298B (zh) 电池、电池模组、电池包及电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227016954

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022529504

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020890023

Country of ref document: EP

Effective date: 20220524

NENP Non-entry into the national phase

Ref country code: DE