WO2021098388A1 - 一种路线生成方法、装置和割草机 - Google Patents

一种路线生成方法、装置和割草机 Download PDF

Info

Publication number
WO2021098388A1
WO2021098388A1 PCT/CN2020/118865 CN2020118865W WO2021098388A1 WO 2021098388 A1 WO2021098388 A1 WO 2021098388A1 CN 2020118865 W CN2020118865 W CN 2020118865W WO 2021098388 A1 WO2021098388 A1 WO 2021098388A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite positioning
point
measurement point
measurement
positions
Prior art date
Application number
PCT/CN2020/118865
Other languages
English (en)
French (fr)
Inventor
何明明
章心忆
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2021098388A1 publication Critical patent/WO2021098388A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks

Definitions

  • the present disclosure relates to the technical field of automatic control, and in particular to a route generation method, device and lawn mower.
  • the present disclosure provides a route generation method and device.
  • a route generation method including:
  • the measuring point is set on the user-defined area to be mowed;
  • the position of the measurement point after the starting point is determined, and the route is generated.
  • the method further includes:
  • the method further includes :
  • the determining the position of the measurement point after the starting point according to the received satellite positioning signal, and generating the route includes:
  • the connecting the positions of the measuring points to obtain a measuring point position curve and generating the route includes:
  • the method before the receiving the satellite positioning signal of the measurement point, the method further includes:
  • the method further includes:
  • the manner of determining that the quality of the satellite positioning signal is within a preset threshold range includes:
  • the number of receiving satellites is within the preset threshold range and/or the signal-to-noise ratio of the satellite positioning signal is within the preset threshold range.
  • the method further includes:
  • the measurement point is set according to a preset distance or a preset time for receiving satellite positioning signals or a preset time for acquiring sensor data.
  • the determining the position of the measurement point after the starting point according to the received satellite positioning signal, and generating the route includes:
  • the location of the measurement point after the starting point is determined, and the route is generated.
  • the determining the position of the first measurement point by using the sensor positioning data of the first measurement point includes:
  • the positions of the two corrected measurement points are used to respectively correct the sensor positioning positions of the plurality of consecutive first measurement points to generate the positions of the first measurement points.
  • using the positions of the two corrected measurement points to respectively correct the sensor positioning positions of the multiple consecutive first measurement points to generate the positions of the first measurement points includes:
  • the difference value is allocated to the plurality of consecutive first measurement points to generate the position of the first measurement point.
  • the method further includes:
  • the sensor positioning data of the measuring point is used to determine the position of the measuring point, and the first measuring point whose position is determined is set as the starting point of the route.
  • the determining the position of the measurement point after the starting point according to the received satellite positioning signal, and generating the route includes:
  • the positions of the two correction measuring points are used to respectively correct the sensor positioning positions of the measuring points to generate the positions of the measuring points.
  • the using the positions of the two correcting measuring points to respectively correct the sensor positioning positions of the measuring points to generate the positions of the measuring points includes:
  • a route generating device which is detachably mounted on a lawn mower, and includes:
  • a satellite signal receiver for receiving the satellite positioning signal of a measuring point, the measuring point being set on a user-defined area to be mowed;
  • the processor is used to execute the following methods:
  • the position of the measurement point after the starting point is determined, and the route is generated.
  • the processor is further configured to execute the following method:
  • the step of implementing the processor includes:
  • the connecting the positions of the measuring points to obtain a measuring point position curve and generating the route includes:
  • the processor before implementing the step of receiving the satellite positioning signal of the measurement point, the processor further includes:
  • the processor is further configured to execute the following method:
  • the manner in which the processor determines that the quality of the satellite positioning signal is within a preset threshold range includes:
  • the processor is further configured to execute the following method:
  • the measurement point is set according to a preset distance or a preset time for receiving satellite positioning signals or a preset time for acquiring sensor data.
  • the device includes:
  • the step of implementing the processor includes:
  • the location of the measurement point after the starting point is determined, and the route is generated.
  • the step includes:
  • the positions of the two corrected measurement points are used to respectively correct the sensor positioning positions of the plurality of consecutive first measurement points to generate the positions of the first measurement points.
  • the processor uses the positions of the two corrected measurement points to respectively correct the sensor positioning positions of the multiple consecutive first measurement points in the implementing step to generate the first measurement
  • the position of the point includes:
  • the difference value is allocated to the plurality of consecutive first measurement points to generate the position of the first measurement point.
  • the processor after the processor receives the satellite positioning signal of the measurement point in the implementation step, the processor further includes:
  • the sensor positioning data of the measuring point is used to determine the position of the measuring point, and the first measuring point whose position is determined is set as the starting point of the route.
  • the step of implementing the processor to determine the position of the measurement point after the starting point according to the received satellite positioning signal, and when generating the route includes:
  • the positions of the two correction measuring points are used to respectively correct the sensor positioning positions of the measuring points to generate the positions of the measuring points.
  • the processor when the processor uses the positions of two correction measurement points to respectively correct the sensor positioning positions of the measurement points to generate the positions of the measurement points, the processor includes:
  • a lawn mower including:
  • a main body of the lawnmower which is provided with a cutting blade, a wheel, and a drive motor for driving the rotation of the wheel;
  • Positioning sensor used to obtain the sensor positioning data of the first measurement point whose satellite positioning signal quality is outside the preset threshold range
  • the route generating device is detachably installed on the lawn mower main body.
  • an electronic device including:
  • the memory is used to store instructions executable by the processor
  • a processor which implements the method described in any embodiment of the present disclosure when executing the instruction
  • Satellite signal receiver used to receive the satellite positioning signal of the measuring point
  • a display for displaying the quality of the satellite positioning signal and the position of the measurement point
  • the communication module is used for receiving the sensor positioning data of the first measurement point whose quality of the satellite positioning signal is outside the preset threshold range, and sending the route to the lawn mower.
  • a non-transitory computer-readable storage medium is provided.
  • the processor can execute the Methods.
  • a route generation method including:
  • the measuring point is set on the user-defined area to be mowed;
  • the sensor positioning data of the measuring point is used to determine the position of the measuring point, and the first measuring point whose position is determined is set as the starting point of the route.
  • the determining the position of the measurement point after the starting point according to the received satellite positioning signal, and generating the route includes:
  • the positions of the two correction measuring points are used to respectively correct the sensor positioning positions of the measuring points to generate the positions of the measuring points.
  • the using the positions of the two correcting measuring points to respectively correct the sensor positioning positions of the measuring points to generate the positions of the measuring points includes:
  • the present disclosure starts at any position at the junction of the mowing area and the non-mowing area, uses satellite navigation positioning to receive satellite positioning signals, and responds to the received satellites.
  • the quality of the positioning signal is judged in real time. If the quality of the satellite signal received by the current measurement point is less than or equal to the preset threshold, the satellite positioning signal does not need to be stored and continues to receive the satellite positioning signal of the next measurement point.
  • the measurement point whose received satellite signal quality is greater than the preset threshold is used as the starting point of the route, and the position data of the starting point and the measurement points after the starting point are stored.
  • there is no need to deliberately search for areas with better positioning signals which saves users from the trouble of multiple attempts, reduces the difficulty of operation, and improves user experience.
  • Fig. 1 is an application scenario diagram of a route generation method and device provided by the present disclosure.
  • Fig. 2 is a flow chart showing a method for generating a route according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for generating a route according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for generating a route according to an exemplary embodiment.
  • Fig. 5 is a block diagram showing a device for generating a route according to an exemplary embodiment.
  • Fig. 6 is a schematic structural diagram showing a lawn mower according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing an electronic device according to an exemplary embodiment.
  • Fig. 8 is a diagram showing a display interface of an electronic device according to an exemplary embodiment.
  • a route or a mowing map as a boundary between the mowing area and the non-mowing area, such as houses, trees, and landscapes.
  • the traditional route is by laying physical cables or physical barriers. Some physical cables will be energized to form an electronic circuit. The mower will detect the magnetic field signal within a length of the physical cable and stop moving forward. , Change direction; some lawn mowers will bounce back after touching the physical barrier and change direction.
  • the traditional route method is relatively inconvenient to install. If there is a disconnection, the inspection and maintenance cost is relatively high, and the safety is not high when encountering bad weather such as wind and thunder.
  • the present disclosure proposes a route generation method and device.
  • Fig. 1 is an application scenario diagram of a route generation method and device provided by the present disclosure
  • Fig. 2 is a flowchart of a route generation method according to an exemplary embodiment.
  • the user 100 in the process of generating the work area map, the user 100 can hold the route generation device or control the lawn mower 101 installed with the route generation device to walk along the boundary of the work area and other positions to record the boundary of the work area.
  • the user 100 can start mapping at any position on the border of the mowing area, and can start the program by pressing a button.
  • FIG. 1 is an application scenario diagram of a route generation method and device provided by the present disclosure
  • Fig. 2 is a flowchart of a route generation method according to an exemplary embodiment.
  • the user 100 in the process of generating the work area map, the user 100 can hold the route generation device or control the lawn mower 101 installed with the route generation device to walk along the boundary of the work area and other positions to record the boundary of the work area.
  • the user 100 can start mapping at any position
  • the route generating device receives a trigger instruction initiated by the user, starts a mapping procedure, uses a satellite navigation positioning receiver to receive the satellite positioning signal of the measurement point, and judges the quality of the satellite positioning signal.
  • the route generation device does not record the position of point A, and the user walks along the cutting border to B
  • the location point 103 when the location positioning signal becomes better, the route generating device uses the B location point 103 as the starting point of the route, and starts to record and store the positioning data. The user continues to walk. During this process, the satellite positioning signal of the measurement point is continuously received, and the position information of the measurement point is stored.
  • the received satellite positioning signal can be combined with the real-time dynamic carrier phase difference technology RTK (Real Time Kinematic)
  • the calculation of the position of the measurement point includes: placing another satellite navigation and positioning receiver on the reference station 107, continuously receiving satellite positioning signals, and transmitting the reference station position information and the received satellite positioning signals through the radio transmission equipment in real time
  • the satellite positioning signal received by the satellite navigation positioning receiver of the measurement point and the position information and satellite positioning signal data of the reference station received by the wireless receiving equipment are transmitted to the wireless receiving equipment at the measuring point.
  • the route generation device When the user walks to the C position point 104, the satellite positioning signal becomes weak due to the obstruction of the obstacle 105, and the route generation device will activate other positioning methods for mapping work. When the user walks to the D location point 106, the satellite positioning signal becomes stronger again, and the satellite positioning mode is restarted for positioning. When the user has walked a circle and arrives at the starting point of the map creation location B near the point 102, the user can press a button to ask whether the map creation is over. As shown in Figure 2, the route generation device starts the program to determine whether the mapping is completed, and automatically calculates the distance between the current measurement point and the starting point of the mark for determination.
  • the mapping is created The work is not over, the user continues to walk forward, and the receiver continuously receives satellite positioning signals. If the distance is less than the preset length value, the program will remind the user to receive the user’s end trigger instruction and the location of the measurement point of the route The inspection work is over.
  • the user can start the mapping work at any location, and there is no need to specifically search for areas with better signals, which reduces the user's labor and enables them to obtain a better user experience.
  • FIG. 3 is a method flowchart of an embodiment of a route generation method provided by the present disclosure.
  • the present disclosure provides method operation steps as shown in the following embodiments or drawings, more or less operation steps may be included in the method based on conventional or without creative labor. In steps where there is no necessary causality logically, the execution order of these steps is not limited to the execution order provided by the embodiments of the present disclosure.
  • FIG. 3 An embodiment of a route generation method provided by the present disclosure is shown in FIG. 3.
  • the method can be applied to an intelligent lawn mower or a lawn mower robot, and includes:
  • Step S31 Receive a satellite positioning signal of a measurement point, which is set on a user-defined area to be mowed.
  • the satellite positioning signal may include signals sent from a combined global navigation satellite system GNSS, or signals sent by independent navigation satellite systems, such as GPS in the United States, Glonass in Russia, and Galileo in Europe.
  • GNSS global navigation satellite system
  • independent navigation satellite systems such as GPS in the United States, Glonass in Russia, and Galileo in Europe.
  • WAAS Wide Area Augmentation System
  • EGNOS European Geographic Navigation Overlapping System
  • MSAS Multi-Function Transport Satellite Augmentation System
  • the area to be mowed may include the boundary position of the working area, such as the boundary of a lawn, and may also include the boundary of facilities existing in the working area, such as a garden, a pool, etc., and the area to be mowed is used to define a lawn mower.
  • the range of mowing, further, the area to be mowed may also include: a passage in the working area or a certain area defined by the user in the working area.
  • the measurement points are set on the user-defined area to be mowed.
  • the measurement points may include continuous measurement points or discrete measurement points. Considering the calculation complexity and actual application requirements, set discrete measurement points separated by a certain distance. The measuring point is more practical.
  • a satellite navigation and positioning receiver may be used to receive the satellite positioning signal of the measurement point, wherein the types of the satellite navigation and positioning receiver include a navigation receiver and/or a survey receiver.
  • Step S32 setting a measurement point whose quality of the first satellite positioning signal is within a preset threshold range as the starting point of the route, and determining the position of the starting point;
  • the route includes the boundary position of the mowing area and the non-mowing area, that is, the user-defined boundary of the mowing area described above, or the boundary map of the mowing area.
  • the starting point of the route refers to the starting point of constructing the virtual route, from which data is recorded and stored, excluding the starting point of the lawn mower for mowing work. Begin at any position at the border between the mowing area and the non-mowing area, use satellite navigation and positioning to receive satellite positioning signals, and at the same time, judge the quality of the received signal. If it does not reach the preset threshold range, the satellite will not be stored. Position signal data, continue to move forward, continue to receive satellite positioning signals and judge the quality of the received signal.
  • the current measurement point If the signal quality of the current measurement point is within the preset threshold range, indicating that the signal quality is good, set the current measurement point to The starting point of the route stores the satellite positioning signal data of the current measurement point.
  • the position of the measurement point can be calculated after all the measurement points of the entire route are collected, or the position of the measurement point can be calculated in real time. When the position of the measurement point is calculated in real time, The position data of the measuring point can be stored without storing the received satellite positioning signal, so as to save storage space.
  • Step S33 Determine the position of the measurement point after the starting point according to the received satellite positioning signal, and generate the route.
  • the content of the satellite positioning signal includes carrier signals of different frequencies, different ranging code signals, and satellite orbit information.
  • the method for generating the position of the measurement point includes obtaining the signal propagation time difference multiplied by the signal propagation speed.
  • the received satellite positioning signal can be combined with real-time dynamic carrier phase difference technology RTK to calculate the position of the measurement point, including: placing another satellite navigation positioning receiver on the reference station to continuously receive satellite positioning Signal, and send the position information of the reference station and the received satellite positioning signal to the wireless receiving equipment at the measuring point through the radio transmission equipment in real time, using the satellite positioning signal received by the satellite navigation positioning receiver of the measuring point and using wireless receiving
  • the position information about the reference station and the satellite positioning signal data received by the equipment calculates the three-dimensional coordinates of the measurement point position in real time.
  • the longitude position and the latitude position in the three-dimensional position data of the measurement point may be used to indicate the position of the measurement point.
  • the position information of the measurement point A may be expressed as (S, W)
  • the measurement The position information of the measuring point is 48°36' south latitude and 89°52' west longitude, which is expressed as (S48°36', W89°52').
  • the present disclosure starts at any position at the junction of the mowing area and the non-mowing area, uses satellite navigation and positioning to receive satellite positioning signals, and judges the quality of the received satellite positioning signals in real time. If the quality of the satellite signal is less than or equal to the preset threshold, there is no need to store the satellite positioning signal, continue to receive the satellite positioning signal of the next measurement point, and use the first encountered measurement point with the received satellite signal quality greater than the preset threshold as The starting point of the route, storing the starting point and the position data of the measuring point after the starting point. In the embodiments of the present disclosure, there is no need to deliberately search for areas with better positioning signals, which saves users from the trouble of multiple attempts, reduces the difficulty of operation, and improves user experience.
  • the method for generating the route further includes:
  • step S34 it is judged whether the distance between the measurement point and the starting point is less than the preset length value, and if the distance is less than the preset length value, a prompt message of completion is sent.
  • the process of acquiring the position data of the measurement point along the mowing boundary it is necessary to compare the position of the measurement point with the starting point position to avoid repeated measurement. It can be determined whether the distance between the measurement point and the starting point is less than a preset length value, and if the distance is less than the preset length value, a prompt message is sent to prompt the completion of the measurement.
  • the prompt method of the prompt message can be implemented in any manner such as voice, video animation, text, and pictures.
  • the embodiment of the present disclosure has an accurate evaluation effect on the measurement result by comparing the distance between the starting point and the measurement point and the preset length value, and avoids the weak accuracy and uncertainty of manual judgment.
  • the route generation method further includes:
  • step S35 a trigger instruction of whether to complete is received.
  • the user in the process of acquiring the position data of the measurement points along the cutting edge, the user will have an initial judgment. For example, after walking a circle along the cutting edge, it is estimated that the detection is about to be completed. Therefore, set a Whether to complete the trigger instruction, after receiving the whether to complete the trigger instruction, the distance between the starting point and the measurement point and the preset length value are compared, if the conditions are met, the user is prompted to complete the detection .
  • the present disclosure avoids the defect of occupying resources due to the judgment every time a measurement point is tested, and improves the detection efficiency.
  • step S33 according to the received satellite positioning signal, the position of the measurement point after the starting point is determined, and the route is generated.
  • Step S334 Determine the position of the measurement point after the starting point according to the received satellite positioning signal
  • Step S335 Connect the positions of the measurement points to obtain a position curve of the measurement points, and generate the route.
  • any of the foregoing embodiments may be used to determine the position data of the measurement point after the starting point, and connect the positions of the measurement points to obtain the position curve of the measurement point.
  • step S335, connecting the positions of the measuring points to obtain a measuring point position curve, and generating the route includes:
  • Step S3351 connecting the positions of the measuring points to obtain a measuring point position curve
  • Step S3352 Perform smoothing processing on the measurement point position curve to generate the route.
  • the curve of the position of the measurement point formed by the connection is not smooth, which is manifested as a sharp corner of the curve. Therefore, it is necessary to correct all the measurement points.
  • the position curve of the measuring point is smoothed.
  • smoothing can be performed by the moving average method, including determining measurement points of a certain length, such as three measurement points or five measurement points, and replace the position of the center measurement point within the length with the average value of the measurement points. It needs to be explained
  • the smoothing method of the measurement point position curve is not limited to the above examples. For example, Savitzky-Golay filtering and Spline spline curve smoothing methods can also be used. Under the enlightenment of the technical essence of this application, those skilled in the art may also Other changes are made, but as long as the realized functions and effects are the same or similar to those of this application, they shall be covered by the scope of protection of this application.
  • the route generation method further includes:
  • Step S36 receiving a start trigger instruction
  • Step S37 in response to the trigger instruction, start to receive the satellite positioning signal of the measurement point.
  • the start trigger instruction is used to start the route generation program
  • the receiving method includes but is not limited to the button start, the sound control start, the preset gesture start, etc.
  • the control to receive the trigger instruction can be Installed on the application program of the terminal device such as lawn mower or mobile phone, among them, the trigger command installed on the terminal device is sent to the receiving end through wireless or bluetooth after being activated. After receiving the initial trigger instruction, in response to the trigger instruction, start to receive the satellite positioning signal of the measurement point.
  • the route generation method further includes:
  • Step S38 receiving an end trigger instruction
  • Step S39 in response to the trigger instruction, stop receiving the satellite positioning signal of the measurement point.
  • the end trigger instruction is used to terminate the route generation program work
  • the receiving method may include, but is not limited to, the button activation, the sound control activation, the preset gesture activation, etc. in the above embodiments.
  • the control that receives the trigger instruction can be installed on a lawn mower or an application program of a terminal device such as a mobile phone.
  • the trigger instruction installed on the terminal device is started and sent to the receiving end through wireless or Bluetooth. After receiving the end trigger instruction, in response to the trigger instruction, stop receiving the satellite positioning signal of the measurement point.
  • the manner of determining that the quality of the satellite positioning signal is within a preset threshold range includes:
  • Step S310 Determine that the number of receiving satellites is within a preset threshold range and/or determine that the signal-to-noise ratio of the satellite positioning signal is within a preset threshold range.
  • the method of generating the position of the measurement point includes multiplying the signal propagation time difference by the signal propagation speed.
  • the satellite signal can be judged within a preset range according to the number of satellites. For example, if the number of satellites detected is greater than 3, the quality of the satellite positioning signal is within the preset threshold range, and the three-dimensional position data and time information of the measurement point can be obtained through the equation.
  • the satellite positioning signal may also include an RTK signal.
  • Combining the satellite positioning technology with the RTK technology includes: placing another satellite navigation positioning receiver on the reference station to continuously receive the satellite positioning signal, and The position information of the reference station and the received satellite positioning signal are sent to the wireless receiving equipment at the measurement point in real time through the radio transmission equipment, and the satellite positioning signal received by the satellite navigation positioning receiver at the measurement point is used as well as the wireless receiving equipment.
  • the position information of the reference station and the satellite positioning signal data according to the principle of relative positioning, real-time settlement of the three-dimensional coordinates of the location of the measurement point.
  • the satellite positioning signal received by the receiver and the position information about the reference station and the satellite positioning signal data received by the wireless receiving device also have a greater impact on the positioning result, so it can be based on whether the signal-to-noise ratio of the RTK signal is The strength of the satellite positioning signal is judged within the preset threshold range.
  • the RTK signal includes the satellite positioning signal received by the receiver and the position information and satellite positioning signal about the reference station received by the wireless receiving device.
  • the setting method for determining that the quality of the satellite positioning signal is within the preset threshold range is not limited to the above examples. Those skilled in the art may also make other changes under the enlightenment of the technical essence of this application, but As long as the functions and effects achieved are the same or similar to those of this application, they should be covered by the scope of protection of this application
  • the route generation method further includes:
  • step S311 the measurement point is set according to a preset distance or a preset time for receiving satellite positioning signals or a preset time for acquiring sensor data.
  • the measurement point is set on the boundary of the user-defined area to be mowed, and can be set according to a preset distance. For example, after the position of the current measurement point is determined, it is along the boundary of the mowing area. Travel a preset distance of 0.5 meters as the position of the new measurement point, or according to the user's step length, the line is further used as a measurement point, and then the line is further used as the next measurement point.
  • the time for receiving satellite positioning signals or the time for acquiring sensor data can also be preset, including: when the quality of the satellite positioning signal is within a preset threshold, the time of receiving the satellite positioning signal is used to determine the measurement point, for example, After determining the location of the current measurement point, drive along the border of the mowing area, receive the satellite positioning signal at one second interval, and use the position where the satellite positioning signal is received as the new measurement point; when the satellite positioning signal is less than or equal to the preset In the case of threshold, use the time of acquiring sensor data to determine the measurement point. For example, after determining the location of the current measurement point, drive along the border of the mowing area and receive sensor data at 0.5 second intervals. Sensor data will be received As the new measuring point.
  • the step S33, determining the position of the measurement point after the starting point according to the received satellite positioning signal, and generating the route includes:
  • S331 Determine a first measurement point where the quality of the satellite positioning signal after the starting point is outside the preset threshold range;
  • S332 Determine the position of the first measurement point by using the sensor positioning data of the first measurement point.
  • S333 Determine the position of the measurement point after the starting point, and generate the route.
  • the starting point after the starting point is determined, there are still many measurement points on the route, which are distributed to form a closed-loop mowing area boundary.
  • the starting point After the starting point, it may also include one or more measurement points of the route in a weak signal area, which is referred to as the first measurement point in the embodiment of the present disclosure.
  • the measurement of the signal strength can be achieved by judging whether the quality of the satellite positioning signal at the first measurement point is outside the preset threshold range.
  • the position of the first measurement point may be obtained through other positioning methods.
  • the position of the first measurement point may be determined through sensor positioning data.
  • the sensor positioning data is derived from data acquired by the sensor.
  • the sensor may include: inertial navigation sensors, such as gyroscopes and accelerometers. The gyroscopes are used for angular velocity values.
  • the value is integrated and accumulated to calculate the deflection angle relative to the starting direction, Among them, ⁇ is the deflection angle relative to the starting direction at time t, w is the instantaneous angular velocity, and t 0 is the starting time.
  • the one-time integration or two-time integration of the measured value can respectively calculate the angle or position parameter.
  • the sensor may further include: a rotary receiver, where 3 or more beacon positions are known, and the rotary receiver is used to scan the beacon position to obtain the beacon position and the rotary receiver Based on the relative angle of the location, triangulation is used to calculate the position of the measurement point based on the relative angle.
  • the measurement point after the starting point can determine its position in two ways.
  • the sensor positioning data is used to determine the first measurement.
  • the satellite positioning signal of the measurement point is greater than the preset value, the satellite positioning signal is used to determine the position of the measurement point.
  • the two complement each other and give full play to their respective advantages. The positioning interruption caused by the obstruction of terrain obstacles and the defect that the positioning error of the sensor accumulates over time.
  • the step S332 using the sensor positioning data of the first measurement point to determine the position of the first measurement point, includes:
  • Step S3321 in the case that there are multiple consecutive first measurement points, respectively determine two correction measurement points whose satellite positioning signal quality is greater than the preset threshold before and after the multiple consecutive first measurement points;
  • Step S3322 Determine the sensor positioning position of the first measurement point according to the sensor positioning data of the first measurement point
  • Step S3323 Use the positions of the two corrected measurement points to respectively correct the sensor positioning positions of the multiple consecutive first measurement points to generate the positions of the first measurement points.
  • the position data of the two correction measurement points can be used to correct the first measurement point.
  • the correction measurement point can be determined by marking.
  • the current The measurement point is marked as the first corrected measurement point; for another example, if the satellite positioning signal quality of the current measurement point is detected outside the preset threshold range, and the satellite positioning signal of the next measurement point is within the preset threshold range, the next The measuring point is marked as the second corrected measuring point.
  • each measurement point can be numbered. For example, the quality of the satellite positioning signal at measurement point 9 changes from strong to weak for the first time.
  • the strong indicates that the quality of the satellite positioning signal is within a preset threshold range
  • Said weak means that the quality of the satellite positioning signal is less than the preset threshold
  • the 8th measurement point before the 9th measurement point is determined to be the first correction measurement point; for example, the satellite positioning signal for the 30th measurement point changes from weak to strong for the first time
  • the 30th measuring point is determined as the second corrected measuring point.
  • the method for determining the sensor positioning position of the first measurement point according to the sensor positioning data of the first measurement point in the embodiments of the present disclosure includes, but is not limited to:
  • the value is integrated and accumulated to calculate the deflection angle relative to the starting direction, Among them, ⁇ is the deflection angle relative to the starting direction at time t, w is the instantaneous angular velocity, and t 0 is the starting time to obtain the angle or position parameter of the measuring point; use the rotating receiver to scan the beacon position to obtain the According to the relative angle between the position of the beacon and the position of the rotary receiver, the position of the measurement point is calculated by triangulation according to the relative angle.
  • the accelerometer detects the linear acceleration of the current first measurement point, and then integrates to obtain the velocity and displacement. At the same time, it is compared with the angular rate detected by the gyroscope. And integration to obtain the current position of the first measurement point, but with the passage of time, the calibration error of the first measurement point and the cumulative error of the gyro drift after the current first measurement point position increase rapidly, and two more accurate corrections can be used.
  • the difference between the position of the measuring point and the position of the first measuring point measured by the sensor corrects the positioning position of the sensor.
  • the method includes but is not limited to using the Kalman filtering algorithm and the Sage-Husa adaptive filtering algorithm.
  • the position information of the two corrected measurement points of which the quality of the satellite positioning signal adjacent to the plurality of consecutive first measurement points is greater than the preset threshold is used to correct the sensor positioning position of the first measurement point , Get a more accurate position of the first measurement point, and improve the accuracy of the route.
  • step S3323 the positions of the two correction measurement points are used to respectively correct the sensor positioning positions of the multiple consecutive first measurement points to generate the position of the first measurement point. position.
  • Step S33231 Obtain satellite positioning signals and sensor positioning data of the two corrected measurement points
  • Step S33232 determining the difference between the satellite positioning positions of the two corrected measurement points and the sensor positioning positions
  • Step S33233 Allocate the difference value to the multiple consecutive first measurement points to generate the position of the first measurement point.
  • a satellite navigation and positioning receiver may be used to receive the satellite positioning signals of the two corrected measurement points, and the propagation time difference of the passing signal in the above-mentioned embodiment may be multiplied by the propagation speed of the signal to determine the three-dimensionality of the corrected measurement point.
  • the position data, and the sensor data of the corrected measuring point obtained by the sensor, and the inertial navigation sensor in the above-mentioned embodiment can be used to calculate the deflection angle relative to the initial direction by integrating the angular velocity value to obtain the corrected measuring point.
  • Angle or position parameter use the rotary receiver to scan the position of the beacon to obtain the relative angle between the position of the beacon and the position of the rotary receiver, and use the triangulation method to calculate and correct the position of the measurement point according to the relative angle. Then determine the difference ⁇ between the satellite positioning positions of the two correction measurement points and the sensor positioning positions.
  • the difference value is allocated to the plurality of consecutive first measurement points to generate the position of the first measurement point. It may include: obtaining the number N of the first measurement points, and evenly distributing the difference according to the number of the first measurement, and the error value of each first measurement point is Then the position of the first measurement point is finally the sensor positioning position and the error value Sum.
  • the difference allocation method is not limited to the above examples, and those skilled in the art may also make other changes under the enlightenment of the technical essence of this application, but as long as the functions and effects achieved are the same or similar to those of this application , Should be covered in the scope of protection of this application.
  • the present disclosure corrects the sensor positioning position of the first measurement point by calculating the difference between the satellite positioning position of the two correction points and the sensor positioning position, and distributing the difference according to the number of the first measurement point.
  • the algorithm is simple and easy to implement.
  • the method further includes:
  • Step S312 If the quality of the satellite positioning signal of the measurement point is outside the preset threshold range, use the sensor positioning data of the measurement point to determine the position of the measurement point, and set the first measurement point of the determined position as the route Starting point.
  • the difference between the embodiment of the present disclosure and the above-mentioned embodiment is that when the route is determined at any position at the junction of the mowing area and the non-mowing area, if it encounters an area with weaker satellite positioning signal quality, that is, the measurement point satellite When the quality of the positioning signal is outside the preset threshold range, the sensor positioning data is used to determine the position of the measurement point, and the first determined measurement point is set as the starting point of the route. After the starting point is determined, if it encounters When the quality of the satellite positioning signal is greater than the measurement point of the preset threshold, there is no need to set the first measurement point with the quality of the satellite positioning signal within the preset threshold as the starting point of the route. When the embodiment of the present disclosure ends the route, pass Directly accept the user's end instruction and stop working.
  • the step S33, determining the position of the measurement point after the starting point according to the received satellite positioning signal, and generating the route includes:
  • Step S336 In the case that there are multiple consecutive measurement points whose quality of the satellite positioning signal is outside the preset threshold range, respectively determine that the quality of the satellite positioning signal adjacent to the measurement point before and after the measurement point is greater than two of the preset threshold. Correction measuring points;
  • Step S337 using the positions of the two corrected measuring points to respectively correct the sensor positioning positions of the measuring points to generate the positions of the measuring points.
  • the correction measurement point can be determined by marking. For example, it is detected that the satellite positioning signal quality of the current measurement point is outside the preset threshold range, and the satellite positioning signal of the next measurement point is in the pre-defined range.
  • the current measurement point will be marked as the first corrected measurement point; for another example, if it is detected that the quality of the satellite positioning signal at the current measurement point is greater than the preset threshold range, the satellite positioning signal at the next measurement point is in the preset threshold. If the threshold is outside the range, the next measurement point will be marked as the second corrected measurement point.
  • each measurement point can be numbered. For example, the quality of the satellite positioning signal at the 15th measurement point changes from weak to strong for the first time. Here, the strong means that the quality of the satellite positioning signal is within the preset threshold range.
  • the word “weak” means that the quality of the satellite positioning signal is outside the preset threshold range, and measurement point 15 is determined as the first correction measurement point; for another example, if the satellite positioning signal of measurement point 150 becomes strong or weak for the first time, the signal quality of measurement point 150 is The previous measurement point No. 149 is determined as the second correction measurement point.
  • the embodiment of the present disclosure uses the difference between the positions of the two more accurate correction measurement points and the positions of the measurement points whose quality of the satellite positioning signal measured by the sensor is outside the preset threshold range to correct the positioning position of the sensor to obtain a more accurate result. Accurate measurement point location improves the accuracy of the route.
  • the step S337 of using the positions of the two corrected measurement points to respectively correct the sensor positioning positions of the measurement points to generate the positions of the measurement points includes:
  • Step S3371 Obtain satellite positioning signals and sensor positioning data of the two corrected measurement points
  • Step S3372 determining the difference between the satellite positioning positions of the two corrected measurement points and the sensor positioning positions
  • Step S3373 Allocate the difference to the measurement points where the quality of the plurality of continuous satellite positioning signals is outside the preset threshold range, and generate the positions of the measurement points.
  • the specific method for correcting the sensor positioning position of the measurement point whose satellite positioning signal is outside the preset threshold range by using the positions of the two correcting measurement points is the same as the corresponding method in the above-mentioned embodiment, and will not be omitted here. Go into details.
  • the present disclosure calculates the difference between the satellite positioning position of the two correction points and the sensor positioning position, and distributes the difference according to the number of measurement points to correct the sensor positioning position of the measurement point.
  • the algorithm is simple and easy to implement.
  • Fig. 4 is a method flowchart of an embodiment of a route generation method provided by the present disclosure.
  • the user holds the positioning module, walks along the boundary of the working area, uses the satellite navigation positioning receiver to measure the positioning data of the point, and judges the quality of the satellite positioning signal.
  • the satellite If the quality of the positioning signal is within the preset threshold range, it is determined that the signal is good, otherwise, it is set to the bad signal.
  • the method uses sensor positioning data to determine measurement points with poor satellite positioning signals, and selects correction measurement points to correct the positions of the measurement points with poor satellite positioning signals.
  • start the program By receiving the user's inquiry instruction to end the mapping, start the program to determine whether the mapping is completed, and automatically calculate the distance between the current measurement point and the starting point of the mark for judgment. If the distance is greater than or equal to the preset length value, the mapping work has not been completed yet.
  • the user continues to walk forward, and the receiver continuously receives satellite positioning signals. If the distance is less than the preset length value, the program will remind the user to receive the user’s end trigger instruction, and the measurement point position of the route will be detected. the end. In another example, if the quality of the satellite positioning signal is less than or equal to the preset threshold, the sensor positioning data is used to directly locate the position of the measurement point.
  • the sensor includes any one of the above embodiments, and the positioning method is also It has been described in the above-mentioned embodiments, and will not be repeated here. Record this position as the starting point and start to store the coordinates.
  • the method related to the above-mentioned embodiment can be used to determine the measurement point with a bad satellite positioning signal using the sensor positioning data, and select the correct measurement point for the satellite The position of the measurement point with a bad positioning signal is corrected.
  • the user can end the map creation instruction by receiving the user's instruction, and the user can end the map creation after walking along the work area for a week based on memory.
  • the embodiments of the present disclosure do not need to deliberately search for areas with better positioning signals, which saves the user from the trouble of multiple attempts, reduces the difficulty of operation, and improves the user experience.
  • Fig. 5 is a block diagram showing a device 500 for generating a route according to an exemplary embodiment.
  • the device includes:
  • the satellite signal receiver 501 is used to receive the satellite positioning signal of the measurement point, the measurement point is set on the user-defined area to be mowed;
  • the processor 502 is configured to execute the following methods:
  • the position of the measurement point after the starting point is determined, and the route is generated.
  • the route generation device includes:
  • the processor is also used to execute the following methods:
  • the route generation device includes:
  • the steps include:
  • the processor connects the positions of the measurement points in the implementing step to obtain a measurement point position curve, and generate the route, including:
  • the route generation device includes:
  • the processor Before implementing the step of receiving the satellite positioning signal of the measurement point, the processor further includes:
  • the route generation device includes:
  • the processor is also used to execute the following methods:
  • the route generation device includes:
  • the manner in which the processor determines that the quality of the satellite positioning signal is within a preset threshold range includes:
  • the route generation device includes:
  • the processor is also used to execute the following methods:
  • the measurement point is set according to a preset distance or a preset time for receiving satellite positioning signals or a preset time for acquiring sensor data.
  • the route generation device includes:
  • the steps include:
  • the location of the measurement point after the starting point is determined, and the route is generated.
  • the route generation device includes:
  • the method includes:
  • the positions of the two corrected measurement points are used to respectively correct the sensor positioning positions of the plurality of consecutive first measurement points to generate the positions of the first measurement points.
  • the route generation device includes:
  • the steps include:
  • the difference value is allocated to the plurality of consecutive first measurement points to generate the position of the first measurement point.
  • the processor after the processor receives the satellite positioning signal of the measurement point after the implementation step, the processor further includes:
  • the sensor positioning data of the measuring point is used to determine the position of the measuring point, and the first measuring point whose position is determined is set as the starting point of the route.
  • the step of implementing the processor to determine the position of the measurement point after the starting point according to the received satellite positioning signal, and when generating the route includes:
  • the positions of the two correction measuring points are used to respectively correct the sensor positioning positions of the measuring points to generate the positions of the measuring points.
  • the processor when the processor uses the positions of two correction measurement points to respectively correct the sensor positioning positions of the measurement points to generate the positions of the measurement points, the processor includes:
  • Fig. 6 is a schematic structural diagram showing a lawn mower according to an exemplary embodiment.
  • the lawn mower includes:
  • the lawn mower body 600 is provided with a cutting blade 602, wheels 601, a driving motor that drives the wheels to rotate, and a positioning sensor.
  • the driving motor and the positioning sensor are both located in the mowing machine.
  • the positioning sensor is used to obtain the sensor positioning data of the first measurement point whose satellite positioning signal quality is outside the preset threshold range.
  • the route generating device 500 is detachably installed on the main body of the lawn mower.
  • the user can push the lawn mower along the border of the mowing area, and use the route generation device 603 to receive the data of the measurement points, or the route generation device 500 can be detached from the lawn mower. Along the border of the mowing area, the data is received at the measuring point.
  • Fig. 7 is a block diagram showing an electronic device according to an exemplary embodiment.
  • the electronic device 700 includes:
  • the memory 71 is used to store instructions executable by the processor
  • the processor 502 when executing the instruction, implements the route generation method described in any embodiment of the present disclosure
  • the satellite signal receiver 73 is used to receive the satellite positioning signal of the measurement point
  • the display 75 is used to display the quality of the satellite positioning signal and the position of the measurement point;
  • the communication module 76 is configured to receive the sensor positioning data of the first measurement point whose quality of the satellite positioning signal is outside the preset threshold range, and send the route to the lawn mower.
  • the electronic device 700 may include a smart phone, a tablet personal computer, a mobile phone, a video phone, an e-book reader, a desktop PC, a laptop PC, a netbook computer, a workstation, a server, and a personal digital assistant ( At least one of a PDA), a portable multimedia player (PMP), an audio layer 3 (MP3) player, a mobile medical device, a camera, or a wearable device.
  • a PDA personal digital assistant
  • PMP portable multimedia player
  • MP3 audio layer 3
  • wearable devices may include jewelry type (for example, watches, rings, bracelets, anklets, necklaces, glasses, contact lenses, or head-mounted devices (HDM)), fabric or clothing types (for example, electronic clothing), physical At least one of accessory type (such as skin pad or tattoo) or body implantability (such as implantable circuit).
  • the electronic device 700 may be one of the above-mentioned devices or a combination thereof.
  • the electronic device 700 according to the embodiment may It is not limited to the above-mentioned electronic devices, and may include other electronic devices and new electronic devices according to the development of technology.
  • the satellite signal receiver 73, the memory 71, the processor 502, the positioning sensor 74, the display 75, and the communication module 76 may be connected via a bus 77.
  • the bus 77 includes circuits for communicating communication (such as control messages and/or data) between the aforementioned components.
  • the processor 42 may include one or more of a central processing unit (CPU), an application processor (AP), or a communication processor (CP), and the processor 502 may implement the present disclosure when executing the instructions.
  • the route is displayed on the display 75.
  • Fig. 8 is a diagram showing a display interface of an electronic device according to an exemplary embodiment.
  • the display interface can display the quality of the satellite positioning signal, see the signal quality mark 801 in the upper left corner of Figure 8, and the location of the measurement point 802, which can be marked with some special symbols, such as a triangle 803
  • the five-pointed star symbol 804 indicates the current measuring point position.
  • the display is provided with controls 805, including whether to complete controls, start controls, and end controls.
  • the route generation application When the start control is pressed, the route generation application starts to work and receives satellite positioning signal data; when the completion control is pressed, the route generation application compares the current measurement point position with the starting point position, if the distance between the two is less than the preset Set the length value to remind the user. You can end; when you press the end control, the route generation application ends its work, indicating that the route generation is complete.
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which may be executed by a processor of the device 500 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种路线生成方法、装置和割草机。包括:接收测量点的卫星定位信号,测量点被设置于用户自定义的待割草区域上(S31);将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为割草路线的起点,并确定起点的位置(S32);根据接收的卫星定位信号,确定起点之后的测量点的位置,生成割草路线(S33)。不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。

Description

一种路线生成方法、装置和割草机
本申请要求了申请日为2019年11月20日,申请号为201911143593.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及自动控制技术领域,尤其涉及一种路线生成方法、装置和割草机。
背景技术
现有的智能割草机或割草机器人在户外进行割草前,需要先构建虚拟路线,以限定割草区域和非割草区域,确定智能割草机的行进边界。为了精确的构建路线,路线的起点位置数据较为重要,配有定位装置操作人员往往在割草区域尝试多次,以选择一个信号较好的区域作为路线的起点位置,不仅增加了作业难度而且大大降低智能割草机的使用体验性。
发明内容
为克服相关技术中存在的问题,实现快速精准的绘制路线,本公开提供一种路线生成方法和装置。
根据本公开实施例的第一方面,提供一种路线生成方法,包括:
接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述方法还包括:
判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
在一种可能的实现方式中,在所述判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息之前,还包括:
接收是否完成的触发指令。
在一种可能的实现方式中,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
在一种可能的实现方式中,所述连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
连接所述测量点的位置,得到测量点位置曲线;
对所述测量点位置曲线进行平滑处理,生成所述路线。
在一种可能的实现方式中,在所述接收测量点的卫星定位信号之前,还包括:
接收开始的触发指令;
响应于所述触发指令,开始接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述方法还包括:
接收结束的触发指令;
响应于所述触发指令,停止接收所述测量点的卫星定位信号。
在一种可能的实现方式中,判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
判断接收卫星的数量在预设阈值范围以内和/或判断卫星定位信号的信噪比在预设阈值范围以内。
在一种可能的实现方式中,所述方法还包括:
按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
在一种可能的实现方式中,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
利用所述第一测量点的传感器定位数据确定所述第一测量点的位置;
确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述利用所述第一测量点的传感器定位数据确定所述第一测量点的位置,包括:
在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
在一种可能的实现方式中,利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
在一种可能的实现方式中,在所述接收测量点的卫星定位信号步骤之后,还包括:
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
在一种可能的实现方式中,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
在一种可能的实现方式中,所述利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
根据本公开实施例的第二方面,提供一种路线生成装置,所述路线生成装置可拆卸式地安装于割草机上,包括:
卫星信号接收器,用于接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
处理器,用于执行下述方法:
将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述处理器还用于执行下述方法:
判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度 值,则发送完成的提示消息。
在一种可能的实现方式中,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
连接所述测量点的位置,得到测量点位置曲线。
在一种可能的实现方式中,所述连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
连接所述测量点的位置,得到测量点位置曲线;
对所述测量点位置曲线进行平滑处理,生成所述路线。
对所述测量点位置曲线进行平滑处理,生成所述路线。
在一种可能的实现方式中,所述处理器在实现步骤接收测量点的卫星定位信号之前,还包括:
接收开始的触发指令;
响应于所述触发指令,开始接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述处理器还用于执行下述方法:
接收结束的触发指令;
响应于所述触发指令,停止接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述处理器判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
判断接收卫星的数量是否大于预设数值和/或判断卫星定位信号的信噪比是否大于预设信噪比值。
在一种可能的实现方式中,所述处理器还用于执行下述方法:
按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。在一种可能的实现方式中,所述装置包括:
对应地,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
利用所述第一测量点的所述传感器定位数据确定所述第一测量点的位置;
确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述处理器在实现步骤利用所述第一测量点的传感器定位数据确定所述第一测量点的位置时,包括:
在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤接收测量点的卫星定位信号,之后,还包括:
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
在一种可能的实现方式中,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
根据本公开实施例的第三方面,提供一种割草机,包括:
割草机主体,所述割草机主体上设有切割刀片、车轮以及驱动车轮转动的驱动电机;
定位传感器,用于获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
根据本公开任一实施例所述的路线生成装置,所述路线生成装置可拆卸地安装于所述割草机主体上。
根据本公开实施例的第四方面,提供一种电子设备,包括:
存储器,用于存储处理器可执行的指令;
处理器,执行所述指令时实现本公开任一实施例所述的方法;
卫星信号接收器,用于接收测量点的卫星定位信号;
显示器,用于显示所述卫星定位信号的质量以及所述测量点的位置;
通信模块,用于接收卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据,以及将路线发送给割草机。
根据本公开实施例的第五方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据本公开任一实施例所述的方法。
根据本公开实施例的第六方面,提供一种路线生成方法,包括:
接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
在一种可能的实现方式中,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
在一种可能的实现方式中,所述利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
本公开的实施例提供的技术方案可以包括以下有益效果:本公开通过在所述割草区域与非割草区域的交界任意位置开始,利用卫星导航定位接收卫星定位信号,并对接收到的卫星定位信号的质量进行实时的判断,若当前测量点接收的卫星信号的质量小于或等于预设阈值,则不用存储所述卫星定位信号,继续接收下一测量点的卫星定位信号,将首次遇到的接收卫星信号质量大于所述预设阈值的测量点作为路线的起点,存储所述起点以及起点之后测量点的位置数据。本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本公开提供的一种路线生成方法和装置的应用场景图。
图2是根据一示例性实施例示出的一种路线生成方法的流程图。
图3是根据一示例性实施例示出的一种路线生成方法的流程图。
图4是根据一示例性实施例示出的一种路线生成方法的流程图。
图5是根据一示例性实施例示出的一种路线生成装置的框图。
图6是根据一示例性实施例示出的一种割草机的结构示意图。
图7是根据一示例性实施例示出的一种电子设备的框图。
图8是根据一示例性实施例示出的一种电子设备显示界面图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了方便本领域技术人员理解本公开实施例提供的技术方案,下面先对技术方案实现的技术环境进行说明。
智能割草机或割草机器人在户外进行割草前,需要先构建路线或割草地图,作为割草区域和非割草区域的边界,所述非割草区域如房屋、树木、景观等。传统的路线的通过布设物理线缆或物理屏障,有些物理线缆上会通电,形成电子回路,割草机在距离所述物理 线缆一长度范围内,会检测到磁场信号,从而停止前行,转换方向;一些割草机在触碰到物理屏障后会反弹回来,转换方向。传统的路线方法安装起来较为不便,若出现断线,检测维护成本较大,遇上恶劣天气如刮风雷电时,安全性不高。近年来,为了克服上述缺陷,相关技术中提出了虚拟的路线,并利用导航技术,将割草机的行驶范围限定在虚拟路线以内,为了避免割草机行驶到非割草区域,路线的位置准确性显得尤为重要。而路线的起点位置更成为重中之重,为了确定路线的起点位置,配有定位装置的操作人员需要寻找开阔的地方,并在割草区域边界尝试多次,以选择一个信号较好的位置点,不仅增加了作业难度,降低作业效率而且严重影响割草机的使用体验性。
基于类似于上文所述的实际技术需求,本公开提出了一种路线生成方法和装置。
下面结合附图1和附图2对本公开所述的路线生成方法进行详细的说明。图1是本公开提供的一种路线生成方法和装置的应用场景图,图2是根据一示例性实施例示出的一种路线生成方法的流程图。参考图1所示,生成工作区域地图的过程中,用户100可以手持路线生成装置或者控制安装有路线生成装置的割草机101沿着工作区域的边界等位置行走来记录工作区域的边界。用户100可以在所述割草区域边界的任一位置开始建图,可以通过按键的方式将程序启动。参考图2所示,所述路线生成装置,接收用户开始的触发指令,开始建图程序,利用卫星导航定位接收机接收测量点的卫星定位信号,并对所述卫星定位信号的质量进行判断。参考图1所示,若用户选择在A位置点102启动程序,而A位置点102的卫星定位信号较弱,则所述路线生成装置不记录A点的位置,用户沿割草边界行走至B位置点103,该位置定位信号变好,则路线生成装置将B位置点103为路线的起点,开始记录存储定位数据。用户继续行走,在此过程中不断的接收测量点的卫星定位信号,存储测量点的位置信息,在一个示例中,可以将接收的卫星定位信号与实时动态载波相位差分技术RTK(Real Time Kinematic)相结合,计算测量点的位置,包括:在基准站107上安置另外一台卫星导航定位接收机,连续接收卫星定位信号,并将基准站位置信息和接收到的卫星定位信号通过无线电传输设备实时地发送给测量点处的无线接收设备,利用测量点的卫星导航定位接收机接收到的卫星定位信号以及利用无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据,根据相对定位的原理,实时计算出测量点位置的三维坐标。当用户行走至C位置点104时,由于障碍物105的遮挡,卫星定位信号变弱,所述路线生成装置则会启动其他定位方式进行建图工作。当用户行走至D位置点106时,卫星定位信号重新变强,则重新启动卫星定位方式进行定位。当用户行走完一圈,至建图起点位置B位置点102附近时,可以通过按键询问是否建图结束。参考 图2所示,所述路线生成装置则启动判断是否建图结束的程序,自动计算当前测量点与标记的起点的距离进行判断,若所述距离大于或等于预设长度值,则建图工作尚未结束,用户继续向前行走,接收机不断的接收卫星定位信号,若所述距离小于所述预设长度值,则程序会提醒用户,接收用户的结束的触发指令,路线的测量点位置检测工作结束。本公开实施例中,用户可以在任意位置启动建图工作,不需要特意寻找信号较好的区域,减少了用户的劳动,使其获得更好的用户体验。
图3是本公开提供的一种路线生成方法的一种实施例的方法流程图。虽然本公开提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本公开实施例提供的执行顺序。
具体的,本公开提供的一种路线生成方法的一种实施例如图3所示,所述方法可以应用于智能割草机或割草机器人中,包括:
步骤S31,接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上。
本公开实施例中,所述卫星定位信号既可以包括来自组合的全球导航卫星系统GNSS发送的信号,又可以包括独立的导航卫星系统发送的信号,如美国的GPS、俄罗斯的Glonass、欧洲的Galileo以及中国的北斗卫星导航系统,还可以包括相关的增强系统,如美国的WAAS(广域增强系统)、欧洲的EGNOS(欧洲静地导航重叠系统)和日本的MSAS(多功能运输卫星增强系统)等,还可以包括在建和以后要建设的其他卫星导航系统所发送的信号。所述待割草区域可以包括工作区域的边界位置,如草坪的边界,还可以包括在工作区域中存在的设施的边界,如花园、水池等,所述待割草区域用于限定割草机割草的范围,进一步的,所述待割草区域还可以包括:工作区域中的通道或者所述工作区域内由用户限定的某一区域等情况。所述测量点被设置于用户自定义的待割草区域上,所述测量点可以包括连续的测量点也可以包括离散的测量点,考虑计算复杂度以及实际应用需求,设置间隔一定距离的离散测量点较为实用。可以利用卫星导航定位接收机接收测量点的卫星定位信号,其中所述卫星导航定位接收机的类型包括导航型接收机和/或测量型接收机。
步骤S32,将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
本公开实施例中,所述路线包括割草区域与非割草区域的交界位置,即上文所述的用户自定义的待割草区域的边界,或称割草区域的边界地图。所述路线的起点指的是构建虚 拟路线的起始点,从这一点开始记录并存储数据,不包括割草机进行割草工作的起始点。在所述割草区域与非割草区域的交界任一位置开始,利用卫星导航定位接收卫星定位信号,同时,对接收信号的质量进行判断,如果没有达到预设阈值范围以内,则不存储卫星定位信号数据,继续前行,并继续接收卫星定位信号以及对接收信号的质量进行判断,假如当前测量点的信号质量在预设阈值范围以内,表示信号质量较好,则将当前测量点设置为路线的起点,存储当前测量点卫星定位信号数据,可以在整个路线的所有测量点采集结束以后计算测量点的位置,也可以实时的计算测量点的位置,当实时的计算测量点的位置时,可以存储测量点的位置数据而不存储接收到的卫星定位信号,以节省存储空间。
步骤S33,根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
本公开实施例中,所述卫星定位信号的内容包括不同频率的载波信号、不同的测距码信号以及卫星的轨道信息。在一个示例中,测量点的位置生成方式包括通过信号传播时间差乘以信号的传播速度获得。在另一示例中,可以将接收的卫星定位信号与实时动态载波相位差分技术RTK相结合,计算测量点的位置,包括:在基准站上安置另外一台卫星导航定位接收机,连续接收卫星定位信号,并将基准站位置信息和接收到的卫星定位信号通过无线电传输设备实时地发送给测量点处的无线接收设备,利用测量点的卫星导航定位接收机接收到的卫星定位信号以及利用无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据,根据相对定位的原理,实时计算出测量点位置的三维坐标。
本公开实施例中,可以利用所述测量点的三维位置数据中的经度位置和维度位置标示所述测量点的位置,比如,测量点A的位置信息可以表示成(S,W),测得测量点的位置信息是南纬48°36′,西经89°52′,则表示成(S48°36′,W89°52′)。
本公开通过在所述割草区域与非割草区域的交界任意位置开始,利用卫星导航定位接收卫星定位信号,并对接收到的卫星定位信号的质量进行实时的判断,若当前测量点接收的卫星信号的质量小于或等于预设阈值,则不用存储所述卫星定位信号,继续接收下一测量点的卫星定位信号,将首次遇到的接收卫星信号质量大于所述预设阈值的测量点作为路线的起点,存储所述起点以及起点之后测量点的位置数据。本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。
在一种可能的实现方式中,所述路线的生成方法还包括:
步骤S34,判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述 预设长度值,则发送完成的提示消息。
本公开实施例中,在沿割草边界进行获取测量点的位置数据过程中,需要对测量点的位置与起点位置进行比较,避免重复测量。可以通过判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送提示消息,提示完成测量。在一个示例中,所述提示消息的提示方法可以通过语音、视频动画、文字、图片等任一种方式实现。
本公开实施例通过比较所述起点与所述测量点的距离与预设长度值之间的大小,对测量结果有着准确的评估作用,避免了人工判断的准确度弱和不确定性。
在一种可能的实现方式中,所述路线生成方法还包括:
步骤S35,接收是否完成的触发指令。
本公开实施例中,在沿割草边界进行获取测量点的位置数据过程中,用户会有一个初判断,比如沿割草边界行走完一圈后,会预估检测即将完成,因此,设置一个是否完成的触发指令,在接收到所述是否完成的触发指令后,对所述起点与所述测量点的距离与预设长度值之间的大小进行比较,如果满足条件,则提示用户检测完成。
本公开通过设置判断触发指令,避免了每进行一次测量点的测试都进行一次判断造成占用资源的缺陷,提高了检测效率。
在一种可能的实现方式中,所述步骤S33,根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。包括
步骤S334,根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
步骤S335,连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
本公开实施例中,可以采用上述任一种实施例确定所述起点之后测量点的位置数据,连接所述测量点的位置,得到测量点的位置曲线。
在一种可能的实现方式中,所述步骤S335,连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
步骤S3351,连接所述测量点的位置,得到测量点位置曲线;
步骤S3352,对所述测量点位置曲线进行平滑处理,生成所述路线。
本公开实施例中,考虑到每个测量点都是离散的,且测量存在误差的可能,因此,连接形成测量点位置曲线出现不平滑的现象,表现为曲线的尖角,因此有必要对所述测量点的位置曲线进行平滑处理。在一个示例中,可以通过滑动平均法进行平滑,包括确定一定长度的测量点,比如三个测量点或五个测量点,用测量点的平均值代替该长度内中心测量 点的位置,需要说明的是,所述测量点位置曲线的平滑方式不限于上述举例,例如,还可以通过Savitzky-Golay滤波、Spline样条曲线平滑的方法,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
在一种可能的实现方式中,所述路线生成方法还包括:
步骤S36,接收开始的触发指令;
步骤S37,响应于所述触发指令,开始接收所述测量点的卫星定位信号。
本公开实施例中,所述开始的触发指令,用于启动路线的生成程序工作,其中接收的方式包括但不限于通过按键启动、声音控制启动、预设手势启动等,接收触发指令的控件可以安装于割草机上或手机等终端设备的应用程序上,其中,安装于终端设备上的触发指令启动后通过无线、或蓝牙等方式发送至接收端。在接收到开始的触发指令以后,响应于所述触发指令,开始接收测量点的卫星定位信号。
在一种可能的实现方式中,所述路线生成方法还包括:
步骤S38,接收结束的触发指令;
步骤S39,响应于所述触发指令,停止接收所述测量点的卫星定位信号。
本公开实施例中,所述结束的触发指令,用于终止路线的生成程序工作,其中接收的方式可以包括但不限于上述实施例中的通过按键启动、声音控制启动、预设手势启动等,接收触发指令的控件可以安装于割草机上或手机等终端设备的应用程序上,其中,安装于终端设备上的触发指令启动后通过无线、或蓝牙等方式发送至接收端。在接收到结束的触发指令以后,响应于所述触发指令,停止接收测量点的卫星定位信号。
在一种可能的实现方式中,所述判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
步骤S310,判断接收卫星的数量在预设阈值范围以内和/或判断卫星定位信号的信噪比在预设阈值范围以内。
本公开实施例中,根据卫星定位的原理:测量点的位置生成方式包括通过信号传播时间差乘以信号的传播速度,在一个示例中,可以根据卫星的数量在预设范围以内进行判断卫星信号的强弱,例如,可以设置为若检测到卫星数量大于3颗,则对应为卫星定位信号的质量在预设阈值范围以内,通过方程式,得到测量点的三维位置数据和时间信息。在另一个示例中,所述卫星定位信号还可以包括RTK信号,将卫星定位技术与RTK技术相结合,包括:在基准站上安置另外一台卫星导航定位接收机,连续接收卫星定位信号,并将 基准站位置信息和接收到的卫星定位信号通过无线电传输设备实时地发送给测量点处的无线接收设备,利用测量点的卫星导航定位接收机接收到的卫星定位信号以及利用无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据,根据相对定位的原理,实时结算处测量点位置的三维坐标。可以看出,接收机接收到的卫星定位信号以及无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据对定位结果的影响也比较大,因此可以根据RTK信号的信噪比是否在预设阈值范围以内进行判断卫星定位信号的强弱。在这里,所述RTK信号包括接收机接收到的卫星定位信号以及无线接收设备接收到的关于基准站的位置信息和卫星定位信号。需要说明的是,所述判断所述卫星定位信号的质量在预设阈值范围以内的设置方式不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内
在一种可能的实现方式中,所述路线生成方法还包括:
步骤S311,按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
本公开实施例中,所述测量点被设置于用户自定义的待割草区域的边界上,可以按照预设距离进行设置,比如,确定完当前测量点的位置以后,沿割草区域的边界行驶预设距离0.5米的位置,作为新的测量点的位置,或者根据用户步长,行进一步作为一个测量点,再行进一步作为下一个测量点。还可以按照预设接收卫星定位信号的时间或获取传感器数据的时间,包括:在卫星定位信号质量在预设阈值范围以内的情况下,利用接收卫星定位信号的时间进行测量点的确定,比如,确定完当前测量点的位置以后,沿割草区域边界向前行驶,间隔一秒接收到了卫星定位信号,将接收到卫星定位信号的位置作为新的测量点;在卫星定位信号小于或等于预设阈值的情况下,利用获取传感器数据的时间进行测量点的确定,比如,确定完当前测量点的位置以后,沿割草区域边界向前行驶,间隔0.5秒接收到了传感器数据,将接收到传感器数据的位置作为新的测量点。
在一种可能的实现方式中,所述步骤S33,根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
S331,确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
S332,利用所述第一测量点的传感器定位数据确定所述第一测量点的位置;
S333,确定所述起点之后的测量点的位置,生成所述路线。
本公开实施例中,在确定好起点后,所述路线上还有很多的测量点,分布构成一个闭环的割草区域边界。在所述起点之后,还可能包括一段或多段路线处于信号较弱的区域的测量点,本公开实施例中称之为第一测量点。其中信号强弱的衡量可以通过判断所述第一测量点的卫星定位信号的质量是否在预设阈值范围以外来实现。
本公开实施例中,若所述测量点的卫星信号质量在预设阈值范围以外,则不能通过卫星定位信号去确定测量点的位置,或得到的测量点的位置不准确,对于这样的第一测量点,可以通过其他定位方式获取所述第一测量点的位置,在一个示例中,可以通过传感器定位数据确定所述第一测量点的位置。其中,所述传感器定位数据来源于传感器获取的数据,在一个示例中,所述传感器可以包括:惯导传感器,如陀螺仪和加速度计,所述陀螺仪用于角速度值,通过对所述角速度值进行积分累计处理计算相对于起始方向的偏转角度,
Figure PCTCN2020118865-appb-000001
其中,δ为在t时刻相对起始方向的偏转角度,w为瞬间角速度,t 0为起始时刻。所述测量值的一次积分或两次积分可分别求出角度或位置参量。在另一个示例中,所述传感器还可以包括:旋转接收器,已知3个或3个以上的信标位置,利用旋转接收器扫描所述信标位置得到所述信标位置与旋转接收器所在位置的相对角,根据所述相对角,利用三角测量法计算测量点的位置。需要说明的是,所述传感器的设置方式不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
本公开实施例中,所述起点之后的测量点可以通过两种方式确定其位置,当所述测量点的卫星定位信号质量小于或等于预设值时,利用传感器定位数据确定所述第一测量点的位置,当所述测量点的卫星定位信号质量大于所述预设值时,利用卫星定位信号确定测量点的位置,两者相互补充,充分发挥各自的优势,同时客服了卫星定位导航受地形障碍物遮挡而导致的定位中断和传感器定位误差随时间而累积的缺陷。
在一种可能的实现方式中,所述步骤S332,利用所述第一测量点的传感器定位数据确定所述第一测量点的位置,包括:
步骤S3321,在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
步骤S3322,根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
步骤S3323,利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
本公开实施例中,在测量点接收卫星定位信号的过程中,会遇到卫星定位信号较弱的区域,此时,会连续出现多个卫星定位信号质量小于或等于预设值的测量点,称之为第一测量点。所述第一测量点的位置需要通过传感器定位数据确定,其定位的准确性相较于卫星定位信号的定位准确性较低,因此,需要对利用传感器定位数据定位的第一测量点的位置进行修正。本公开实施例中,可以利用两个修正测量点的位置数据对第一测量点进行修正。在一个示例中,可以通过标记的方式确定修正测量点,比如,检测到当前测量点的卫星定位信号质量大于预设阈值,下一测量点的卫星定位信号在预设阈值范围以外,则将当前测量点标记为第一个修正测量点;再比如,检测到当前测量点的卫星定位信号质量在预设阈值范围以外,下一个测量点的卫星定位信号在预设阈值范围以内,则将下一个测量点标记为第二个修正测量点。在另一示例中,可以为每个测量点进行编号,比如9号测量点的卫星定位信号质量首次由强变弱,在这里,所述强表示卫星定位信号质量在预设阈值范围以内,所述弱表示卫星定位信号质量小于预设阈值,在9号测量点之前的8号测量点被确定为第一个修正测量点;再比如,30号测量点卫星定位信号首次由弱变强,则30号测量点被确定为第二个修正测量点。
本公开实施例中所述根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置的方法包括但不限于上述实施例中的:利用惯导传感器通过对所述角速度值进行积分累计处理计算相对于起始方向的偏转角度,
Figure PCTCN2020118865-appb-000002
其中,δ为在t时刻相对起始方向的偏转角度,w为瞬间角速度,t 0为起始时刻,来求出测量点的角度或位置参量;利用旋转接收器扫描所述信标位置得到所述信标位置与旋转接收器所在位置的相对角,根据所述相对角,利用三角测量法计算测量点的位置。
本公开实施例中,所述利用惯导传感器计算第一测量点的位置时,即由加速度计检测当前第一测量点的线加速度,然后积分得到速度和位移,同时与陀螺仪检测的角速率以及积分得到当前第一测量点的位置,但随着时间的推移,所述当前第一测量点位置以后的第一测量点标定误差和陀螺漂移累计误差迅速增加,可以利用较为准确的两个修正测量点的位置与传感器测量的第一测量点的位置之间的差值对传感器定位位置进行修正,方法包括但不限于使用Kalman滤波算法、Sage-Husa自适应滤波算法。
本公开实施例利用与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点的位置信息,对第一测量点的传感器定位位置进行修正,得到更为准确的第一测量点的位置,提高了路线的准确性。
在一种可能的实现方式中,所述步骤S3323,利用所述两个修正测量点的位置分别对 所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。包括
步骤S33231,获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
步骤S33232,确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
步骤S33233,将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
本公开实施例中,可以利用卫星导航定位接收机接收所述两个修正测量点的卫星定位信号,并利用上述实施例中的通过信号传播时间差乘以信号的传播速度,确定修正测量点的三维位置数据,以及利用传感器获取修正测量点的传感器数据,并可以利用上述实施例中的利用惯导传感器通过对角速度值进行积分累计处理计算相对于起始方向的偏转角度来求出修正测量点的角度或位置参量;利用旋转接收器扫描所述信标位置得到所述信标位置与旋转接收器所在位置的相对角,根据所述相对角,利用三角测量法计算修正测量点的位置。进而确定两个修正测量点的卫星定位位置与传感器定位位置之间的差值δ。
本公开实施例中,所述将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。可以包括:获取第一测量点的个数N,将所述差值按照第一测量的个数进行平均分配,每个第一测量点的误差值为
Figure PCTCN2020118865-appb-000003
则所述第一测量点的位置最终为传感器定位位置与误差值
Figure PCTCN2020118865-appb-000004
之和。需要说明的是,所述差值分配方法不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
本公开通过将两个修正点的卫星定位位置与传感器定位位置求差值,并将差值按照第一测量点的数量进行分配,修正第一测量点的传感器定位位置,算法简单易于实现。
在一种可能的实现方式中,在所述步骤S31接收测量点的卫星定位信号步骤之后,还包括:
步骤S312,若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
本公开实施例与上述实施例不同的是,在所述割草区域与非割草区域的交界任意位置进行路线测定时,如遇到卫星定位信号质量较弱的区域,即所述测量点卫星定位信号的质量在预设阈值范围以外时,则利用传感器定位数据对所述测量点进行位置确定,并将首个确定的测量点设置为路线的起点,在所述起点确定之后,如遇到卫星定位信号质量大于所 述预设阈值的测量点的时候,无需再将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,本公开实施例结束路线时,通过直接接受用户结束的指令,便停止工作。
本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。
在一种可能的实现方式中,所述步骤S33,根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
步骤S336,在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
步骤S337,利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
本公开实施例中,在接收卫星定位信号的过程中,若存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,单独利用卫星定位信号数据很难实现所述测量点的准确定位,因此,选用通过传感器定位数据确定所述测量点的位置。同样的,定位的准确性相较于卫星定位信号的定位准确性较低,需要对传感器的定位位置进行修正。修正的方法,包括:在一个示例中,可以通过标记的方式确定修正测量点,比如,检测到当前测量点的卫星定位信号质量在预设阈值范围以外,下一测量点的卫星定位信号在预设阈值范围以内,则将当前测量点标记为第一个修正测量点;再比如,检测到当前测量点的卫星定位信号质量大在预设阈值范围以内,下一个测量点的卫星定位信号在预设阈值范围以外,则将下一个测量点标记为第二个修正测量点。在另一示例中,可以为每个测量点进行编号,比如15号测量点的卫星定位信号质量首次由弱变强,在这里,所述强表示卫星定位信号质量在预设阈值范围以内,所述弱表示卫星定位信号质量在预设阈值范围以外,15号测量点被确定为第一个修正测量点;再比如,150号测量点卫星定位信号首次有强变弱,则150号测量点的前一个测量点149号测量点被确定为第二个修正测量点。
本公开实施例利用较为准确的两个修正测量点的位置与传感器测量的卫星定位信号的质量在预设阈值范围以外的测量点的位置之间的差值对传感器定位位置进行修正,得到更为准确的测量点的位置,提高了路线的准确性。
在一种可能的实现方式中,所述步骤S337,利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置,包括:
步骤S3371,获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
步骤S3372,确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
步骤S3373,将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
本公开实施例利用两个修正测量点的位置对卫星定位信号在预设阈值范围以外的测量点的传感器定位位置进行修正的具体方法,与上述实施例中相对应的方法相同,在这里不再赘述。
本公开通过将两个修正点的卫星定位位置与传感器定位位置求差值,并将差值按照测量点的数量进行分配,修正测量点的传感器定位位置,算法简单易于实现。
图4是本公开提供的一种路线生成方法的一种实施例的方法流程图。参考图5所示,用户手持定位模块,沿工作区域的边界行走,利用卫星导航定位接收机手机测量点的定位数据,并对卫星定位信号的质量进行判断,在一个示例中,如所述卫星定位信号的质量在预设阈值范围以内,则判定信号好的情况,反之,设置为信号不好的情况。并利用卫星定位信号数据确定测量点的位置作为路线的起点位置,继续行走并存储定位数据,若在此过程中,再次遇到卫星定位信号质量不好的测量点,可以采用与上述实施例相关的方法,利用传感器定位数据确定所述卫星定位信号不好的测量点,并选取修正测量点对所述卫星定位信号不好的测量点的位置进行修正,在一种可能的实现方式中,可以通过接收用户结束建图的询问指令,启动判断是否建图结束的程序,自动计算当前测量点与标记的起点的距离进行判断,若所述距离大于或等于预设长度值,则建图工作尚未结束,用户继续向前行走,接收机不断的接收卫星定位信号,若所述距离小于所述预设长度值,则程序会提醒用户,接收用户的结束的触发指令,路线的测量点位置检测工作结束。在另一个示例中,所述卫星定位信号的质量小于或等于预设阈值,则直接利用传感器定位数据对测量点的位置进行定位,所述传感器包括上述实施例中任一种,其定位方法也已在上述实施例中进行了描述,在这里不再赘述。记录此位置作为起点并开始存储坐标,在此过程中,可以采用与上述实施例相关的方法,利用传感器定位数据确定所述卫星定位信号不好的测量点,并选取修正测量点对所述卫星定位信号不好的测量点的位置进行修正,在一种可能的实现方式中,可以通过接收用户结束建图的指令,用户可以凭记忆沿工作区域行走一周后,结束建图。
本公开实施例,本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次 尝试烦恼,降低了作业难度,提高了用户使用体验性。
图5是根据一示例性实施例示出的一种路线生成装置500框图。参照图5,该装置包括:
卫星信号接收器501,用于接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
处理器502,用于执行下述方法:
将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器还用于执行下述方法:
判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
在一种可能的实现方式中,所述处理器在实现步骤连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
连接所述测量点的位置,得到测量点位置曲线;
对所述测量点位置曲线进行平滑处理,生成所述路线。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤接收测量点的卫星定位信号之前,还包括:
接收开始的触发指令;
响应于所述触发指令,开始接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器还用于执行下述方法:
接收结束的触发指令;
响应于所述触发指令,停止接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
判断接收卫星的数量是否大于预设数值和/或判断RTK信号的信噪比是否大于预设信噪比值。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器还用于执行下述方法:
按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
利用所述第一测量点的所述传感器定位数据确定所述第一测量点的位置;
确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤利用所述第一测量点的传感器定位数据确定所述第一测量点的位置时,包括:
在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤接收测量点的卫星定位信号之后, 还包括:
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
在一种可能的实现方式中,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
关于上述实施例中的装置,其中各个部件执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图6是根据一示例性实施例示出的一种割草机的结构示意图。参照图6,所述割草机包括:
割草机主体600,所述割草机主体600上设有切割刀片602、车轮601以及驱动车轮转动的驱动电机、定位传感器,在本实施例中,所述驱动电机和定位传感器均位于割草机主体600的内部。定位传感器,用于获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据。根据本公开任一实施例所述的路线生成装置500,所述路线生成装置500可拆卸地安装于所述割草机主体上。在一种可能的实现方式中,用户可以推着割草机沿割草区域边界,利用所述路线生成装置603进行测量点的数据接收,也可以将路线生成装置500从割草机上拆卸下来,沿割草区域边界,进行测量点的数据接收。
图7是根据一示例性实施例示出的一种电子设备的框图。参照图7,该电子设备700包括:
存储器71,用于存储处理器可执行的指令;
处理器502,执行所述指令时实现本公开任一实施例所述的路线生成方法;
卫星信号接收器73,用于接收测量点的卫星定位信号;
显示器75,用于显示所述卫星定位信号的质量以及所述测量点的位置;
通信模块76,用于接收卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据,以及将路线发送给割草机。
本公开实施例中,电子设备700可以包括智能电话机、平板个人计算机、移动电话机、视频电话机、电子书籍阅读器、桌面PC、膝上PC、上网本计算机、工作站、服务器、个人数字助力(PDA)、便携多媒体播放器(PMP)、音频层3(MP3)播放器、移动医疗设备、相机、或可穿戴设备中的至少一个。其中,可穿戴设备可以包括首饰型(例如,手表、戒指、手镯、脚镯、项链、眼镜、隐形眼镜、或头戴式设备(HDM))、织物或衣物型(如,电子服装)、物理附件型(如,皮肤垫或纹身)、或身体植入性(如,可植入电路)中的至少一个,电子设备700可以是上述设备之一或其组合,根据实施例的电子设备700可以不限于上述电子设备,且可以包括其他电子设备和根据技术的发展的新电子设备。
本公开实施例中,所述卫星信号接收器73、存储器71、处理器502、定位传感器74、显示器75、通信模块76,可以通过总线77进行连接。所述总线77包括用于在上述组件之间传达通信(如控制消息和/或数据)的电路。所述处理器42可以包括中央处理单元(CPU)、应用处理器(AP)、或通信处理器(CP)中的一个或多个,所述处理器502可以执行执行所述指令时实现本公开任一实施例所述的路线生成方法,所述路线通过显示器75显示出来。
图8是根据一示例性实施例示出的一种电子设备显示界面图。参照图8,所述显示器界面可以显示所述卫星定位信号的质量,参见图8左上角的信号质量标志801,以及所述测量点的位置802,其中可以用一些特殊符号,如三角形803来标记起点位置,五角星符号804表示当前测量点位置,所述显示器上设有控件805,包括是否完成控件,开始控件以及结束控件。当按下开始控件,路线生成的应用便开始工作,接收卫星定位信号数据;当按下是否完成控件,路线生成的应用会将当前测量点的位置与起点位置做比较,若两者距离小于预设长度值,则提醒用户。可以结束了;当按下结束控件,路线生成应用便结束工作,表示路线生成完毕。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置500的处理器执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (27)

  1. 一种路线生成方法,其特征在于,包括:
    接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
    将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
    根据预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,确定所述起点之后的测量点的位置,连接所述测量点的位置,得到测量点位置曲线,生成所述路线;
    所述生成所述路线之前还包括:确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点,利用所述第一测量点的传感器定位数据确定所述第一测量点的位置,
    其中,在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点,利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置;
    所述生成所述第一测量点的位置之前还包括:获取所述两个修正测量点的卫星定位信号以及传感器定位数据,确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值,将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
  3. 根据权利要求2所述的方法,其特征在于,在所述判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息之前,还包括:
    接收是否完成的触发指令。
  4. 根据权利要求1所述的方法,其特征在于,所述连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
    连接所述测量点的位置,得到测量点位置曲线;
    对所述测量点位置曲线进行平滑处理,生成所述路线。
  5. 根据权利要求1所述的方法,其特征在于,在所述接收测量点的卫星定位信号之 前,还包括:
    接收开始的触发指令;
    响应于所述触发指令,开始接收所述测量点的卫星定位信号。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    接收结束的触发指令;
    响应于所述触发指令,停止接收所述测量点的卫星定位信号。
  7. 根据权利要求1所述的方法,其特征在于,判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
    判断接收卫星的数量在预设阈值范围以内和/或判断卫星定位信号的信噪比在预设阈值范围以内。
  8. 根据权利要求1所述的方法,其特征在于,在所述接收测量点的卫星定位信号步骤之后,还包括:
    若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
  9. 根据权利要求8所述的方法,其特征在于,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
    在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
    利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
  10. 根据权利要求9所述的方法,其特征在于,所述利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置,包括:
    获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
    确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
    将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
  11. 一种路线生成装置,其特征在于,所述路线生成装置可拆卸式地安装于割草机上,包括:
    卫星信号接收器,用于接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
    处理器,用于执行下述方法:
    将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
    根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
  12. 根据权利要求11所述的装置,其特征在于,所述处理器还用于执行下述方法:
    判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
  13. 根据权利要求11所述的装置,其特征在于,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
    根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
    连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
  14. 根据权利要求13所述的装置,其特征在于,所述处理器在实现步骤连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
    连接所述测量点的位置,得到测量点位置曲线;
    对所述测量点位置曲线进行平滑处理,生成所述路线。
  15. 根据权利要求11所述的装置,其特征在于,所述处理器在实现步骤接收测量点的卫星定位信号之前,还包括:
    接收开始的触发指令;
    响应于所述触发指令,开始接收所述测量点的卫星定位信号。
  16. 根据权利要求11所述的装置,其特征在于,所述处理器还用于执行下述方法:
    接收结束的触发指令;
    响应于所述触发指令,停止接收所述测量点的卫星定位信号。
  17. 根据权利要求11所述的装置,其特征在于,所述处理器判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
    判断接收卫星的数量是否大于预设数值和/或判断卫星定位信号的信噪比是否大于预设信噪比值。
  18. 根据权利要求11所述的装置,其特征在于,所述处理器还用于执行下述方法:
    按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
  19. 根据权利要求11所述的装置,其特征在于,包括:
    所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
    获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
    确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
    利用所述第一测量点的所述传感器定位数据确定所述第一测量点的位置;
    确定所述起点之后的测量点的位置,生成所述路线。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器在实现步骤利用所述第一测量点的传感器定位数据确定所述第一测量点的位置时,包括:
    在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
    根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
    利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
  21. 根据权利要求20所述的装置,其特征在于,所述处理器在实现步骤利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置时,包括:
    获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
    确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
    将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
  22. 根据权利要求11所述的装置,其特征在于,所述处理器在实现步骤接收测量点的卫星定位信号,之后,还包括:
    若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
  23. 根据权利要求22所述的装置,其特征在于,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时包括:
    在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
    利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
  24. 根据权利要求23所述的装置,其特征在于,所述处理器在实现步骤利用两个修 正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置时,包括:
    获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
    确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
    将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
  25. 一种割草机,其特征在于,包括:
    割草机主体,所述割草机主体上设有切割刀片、车轮以及驱动车轮转动的驱动电机;
    定位传感器,用于获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
    根据权利要求11至24中任一项所述的路线生成装置,所述路线生成装置可拆卸地安装于所述割草机主体上。
  26. 一种电子设备,其特征在于,包括:
    存储器,用于存储处理器可执行的指令;
    处理器,执行所述指令时实现权利要求1至10中任一项所述的方法;
    卫星信号接收器,用于接收测量点的卫星定位信号;
    显示器,用于显示所述卫星定位信号的质量以及所述测量点的位置;
    通信模块,用于接收卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据,以及将路线发送给割草机。
  27. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据权利要求1至10中任一项所述的方法。
PCT/CN2020/118865 2019-11-20 2020-09-29 一种路线生成方法、装置和割草机 WO2021098388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911143593.6A CN112824937B (zh) 2019-11-20 2019-11-20 一种路线生成方法、装置和割草机
CN201911143593.6 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021098388A1 true WO2021098388A1 (zh) 2021-05-27

Family

ID=75906366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118865 WO2021098388A1 (zh) 2019-11-20 2020-09-29 一种路线生成方法、装置和割草机

Country Status (2)

Country Link
CN (1) CN112824937B (zh)
WO (1) WO2021098388A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543036A (zh) * 2021-07-16 2021-10-22 联想(北京)有限公司 数据处理方法、装置及电子设备
CN115016498B (zh) 2022-07-05 2023-07-11 未岚大陆(北京)科技有限公司 割草机的建图方法、装置、存储介质及割草机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120176270A1 (en) * 2011-01-10 2012-07-12 Samsung Electronics Co., Ltd. Method for providing reliability of reckoning location and mobile terminal therefor
CN105158785A (zh) * 2015-09-16 2015-12-16 佛山市中渔科技有限公司 用于喂虾机上基于雷达和gps定位的方法和喂虾机
CN107045137A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN107490803A (zh) * 2017-06-14 2017-12-19 合肥中导机器人科技有限公司 利用gps和惯导系统对机器人定位定向方法
CN108957512A (zh) * 2017-05-26 2018-12-07 苏州宝时得电动工具有限公司 定位装置及方法以及自动行走设备
CN109931927A (zh) * 2017-12-19 2019-06-25 阿里巴巴集团控股有限公司 轨迹记录方法、室内地图绘制方法、装置、设备及系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2193201A1 (en) * 2007-09-18 2010-06-09 BASF Plant Science GmbH Plants with increased yield
CN101206255A (zh) * 2007-12-13 2008-06-25 西安华迅微电子有限公司 一种捕获gps弱信号的方法
WO2011100690A2 (en) * 2010-02-14 2011-08-18 Trimble Navigation Limited Gnss signal processing with regional augmentation message
CN106342230B (zh) * 2010-12-01 2012-05-02 中国人民解放军兰州军区测绘信息中心 一种适合高原高寒地区的gps动态精确定位方法
CN103324192A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 边界设置方法及边界设置系统
CN103386665B (zh) * 2012-05-07 2015-07-01 苏州宝时得电动工具有限公司 电动工具的控制方法及执行该控制方法的电动工具
CN103491625B (zh) * 2012-06-11 2018-08-07 南京中兴软件有限责任公司 一种无线移动终端的定位方法及系统
CN103891464B (zh) * 2012-12-28 2016-08-17 苏州宝时得电动工具有限公司 自动割草系统
WO2015180021A1 (zh) * 2014-05-26 2015-12-03 中国科学院自动化研究所 剪枝机器人系统
US9420741B2 (en) * 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
CN105988415B (zh) * 2015-02-13 2019-09-20 苏州宝时得电动工具有限公司 多区域切割控制系统及其控制方法
CN105898711B (zh) * 2016-03-25 2019-05-31 北京智慧图科技有限责任公司 一种基于地磁基准线的定位方法及装置
JP6498627B2 (ja) * 2016-03-31 2019-04-10 本田技研工業株式会社 自律走行作業車の制御装置
CN107974995B (zh) * 2016-10-24 2020-04-14 苏州宝时得电动工具有限公司 自移动设备路径规划方法和系统
CN108227692A (zh) * 2016-12-09 2018-06-29 苏州宝时得电动工具有限公司 自动移动设备、自动工作系统及其控制方法
WO2018108180A1 (zh) * 2016-12-15 2018-06-21 苏州宝时得电动工具有限公司 自移动设备的工作区域的分区方法、装置和电子设备
CN109683604A (zh) * 2017-10-18 2019-04-26 苏州宝时得电动工具有限公司 自动行走设备及其定位方法及装置
CN109682371A (zh) * 2017-10-18 2019-04-26 苏州宝时得电动工具有限公司 自动行走设备及其定位方法及装置
CN110197519A (zh) * 2018-02-26 2019-09-03 苏州宝时得电动工具有限公司 地图生成过程中的信号补偿方法、装置及存储介质
CN109247117B (zh) * 2017-07-14 2021-02-09 苏州宝时得电动工具有限公司 自动检测边界线断线的方法、装置和智能割草机
CN207380746U (zh) * 2017-11-10 2018-05-18 江苏省泰州引江河管理处 一种湖泊网格化管理系统
WO2019096264A1 (zh) * 2017-11-16 2019-05-23 南京德朔实业有限公司 智能割草系统
JP6858695B2 (ja) * 2017-12-19 2021-04-14 株式会社クボタ 自動走行作業機
CN108040582A (zh) * 2018-01-26 2018-05-18 武汉理工大学 一种基于dgps的自动循迹电动割草机
CN109029444B (zh) * 2018-06-12 2022-03-08 深圳职业技术学院 一种基于图像匹配和空间定位的室内导航系统及导航方法
CN108955677A (zh) * 2018-08-02 2018-12-07 苏州中德睿博智能科技有限公司 一种基于激光雷达与gps的拓扑地图创建方法及建图装置
CN109032147A (zh) * 2018-09-10 2018-12-18 扬州方棱机械有限公司 基于卫星定位信号生成割草机器人虚拟边界的方法
CN109491397B (zh) * 2019-01-14 2021-07-30 傲基科技股份有限公司 割草机器人及其割草区域划定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120176270A1 (en) * 2011-01-10 2012-07-12 Samsung Electronics Co., Ltd. Method for providing reliability of reckoning location and mobile terminal therefor
CN105158785A (zh) * 2015-09-16 2015-12-16 佛山市中渔科技有限公司 用于喂虾机上基于雷达和gps定位的方法和喂虾机
CN107045137A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN108957512A (zh) * 2017-05-26 2018-12-07 苏州宝时得电动工具有限公司 定位装置及方法以及自动行走设备
CN107490803A (zh) * 2017-06-14 2017-12-19 合肥中导机器人科技有限公司 利用gps和惯导系统对机器人定位定向方法
CN109931927A (zh) * 2017-12-19 2019-06-25 阿里巴巴集团控股有限公司 轨迹记录方法、室内地图绘制方法、装置、设备及系统

Also Published As

Publication number Publication date
CN112824937B (zh) 2024-05-28
CN112824937A (zh) 2021-05-21

Similar Documents

Publication Publication Date Title
US11076529B2 (en) Intelligent mowing system
CN108226964B (zh) 自移动设备及其定位故障报警方法和自动工作系统
US11561275B2 (en) Moving robot, method for controlling the same, and terminal
US10809411B2 (en) Metal detection devices
US8934923B1 (en) System and method for geo-positioning guidance with respect to a land tract boundary
JP6202535B2 (ja) パーソナルナビゲーションデバイスのサービスの継続性を確保するための方法、およびそのデバイス
US6094625A (en) Augmented vision for survey work and machine control
US20210157334A1 (en) Moving object and positioning method therefor, automated working system, and storage medium
US20030014212A1 (en) Augmented vision system using wireless communications
US8626441B2 (en) Methods and apparatus for using position/attitude information to enhance a vehicle guidance system
WO2021098388A1 (zh) 一种路线生成方法、装置和割草机
US20220342426A1 (en) Map building method, self-moving device, and automatic working system
CN108308059B (zh) 宠物项圈系统及宠物项圈控制方法
CN105091878B (zh) 一种基于步态的定位方法和装置
JP2013543113A (ja) 測位ネットワークの利用可能性及び信頼性に基づくルーティング
US9835457B2 (en) Rock climbing navigational watch
US20220151147A1 (en) Self-moving lawn mower and supplementary operation method for an unmowed region thereof
US20230094756A1 (en) Autonomous mower navigation system and method
CN103760585A (zh) 一种适用林区的星-地结合定位方法
US20210378172A1 (en) Mower positioning configuration system
US8775066B2 (en) Three dimensional terrain mapping
US9689990B2 (en) Dual coaxial NSS receiver system
US20110317154A1 (en) Systems and methods for determining coordinate locations of sensor nodes of a sensor network
KR101968963B1 (ko) 홀컵 위치 전송기 및 이를 이용한 골프장 실시간 거리안내시스템
KR20130026031A (ko) 휴대용 단말기의 멀티패스 지역 내 위치정보 보정장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889893

Country of ref document: EP

Kind code of ref document: A1