WO2021098375A1 - 时间信息传输的处理方法、装置及存储介质 - Google Patents

时间信息传输的处理方法、装置及存储介质 Download PDF

Info

Publication number
WO2021098375A1
WO2021098375A1 PCT/CN2020/117526 CN2020117526W WO2021098375A1 WO 2021098375 A1 WO2021098375 A1 WO 2021098375A1 CN 2020117526 W CN2020117526 W CN 2020117526W WO 2021098375 A1 WO2021098375 A1 WO 2021098375A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
time information
identifier
mac
pdu
Prior art date
Application number
PCT/CN2020/117526
Other languages
English (en)
French (fr)
Inventor
孙军帅
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2021098375A1 publication Critical patent/WO2021098375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • This application relates to the field of wireless communication, and in particular to a processing method, device and storage medium for time information transmission.
  • the embodiments of the present application provide a processing method, device, and storage medium for time information transmission, aiming to meet the time synchronization requirements of flexibly arranged industrial equipment.
  • the embodiment of the present application provides a processing method for time information transmission, which is applied to a first communication device, and the method includes:
  • NAS Non-access stratum
  • PDU Protocol Data Unit
  • the NAS PDU contains time information, and the time information is transmitted to the second communication device through signaling radio bearers (SRB) in the transparent transmission mode, or the time information is transmitted to the second communication device on the SRB according to the instruction The second communication device.
  • SRB signaling radio bearers
  • the transmitting the time information to the second communication device through the SRB in the transparent transmission mode includes:
  • the radio resource control (RRC) layer transmits the time information to the medium access control (MAC) layer through the SRB in the transparent transmission mode;
  • the MAC layer puts the time information in the MAC PDU, and sends the MAC PDU.
  • the method further includes:
  • the configuration parameters are set during the process of establishing the RRC connection or the process of RRC reconfiguration to generate the SRB in the transparent transmission mode; the configuration parameters include: the first configuration parameters corresponding to the transparent transmission packet data convergence protocol (PDCP) layer and / Or the second configuration parameter corresponding to the radio link control (RLC) layer.
  • PDCP transparent transmission packet data convergence protocol
  • RLC radio link control
  • the transmitting the time information to the second communication device on the SRB according to the instruction includes:
  • the RRC layer delivers the NAS PDU and the first identifier to one of the following: PDCP layer, RLC layer, and MAC layer;
  • the RRC layer transfers the NAS PDU and the first identifier to the PDCP layer, and the PDCP layer determines that the first identifier is valid, the PDCP layer transfers the NAS PDU and the second identifier to the RLC layer;
  • the RLC layer determines that the second identifier is valid, the RLC layer passes the NAS PDU and the third identifier to the MAC layer, and when the MAC layer determines that the third identifier is valid, it puts the time information in the transparent In the MAC PDU with a valid transmission identifier, send the MAC PDU; or,
  • the RRC layer transmits the NAS PDU and the first identifier to the PDCP layer, and the PDCP layer determines that the first identifier is valid, the PDCP layer transmits the NAS PDU and the second identifier to the MAC layer;
  • the MAC layer determines that the second identifier is valid, the MAC layer puts the time information into a MAC PDU with a valid transparent transmission identifier, and sends the MAC PDU; or,
  • the RRC layer transfers the NAS PDU and the first identifier to the RLC layer, and the RLC layer determines that the first identifier is valid, the RLC layer transfers the NAS PDU and the second identifier to the MAC layer.
  • the MAC layer determines that the second identifier is valid, the MAC layer puts the time information into a MAC PDU with a valid transparent transmission identifier, and sends the MAC PDU; or,
  • the MAC layer If the RRC layer passes the NAS PDU and the first identifier to the MAC layer, and when the MAC layer determines that the first identifier is valid, the MAC layer puts the time information into the MAC PDU with a valid transparent transmission identifier, Send the MAC PDU.
  • the MAC layer sends the MAC PDU to the air interface through the radio resources of the physical layer or copies them into multiple copies and sends them to the air interface.
  • An embodiment of the present application also provides a processing method for time information transmission, which is applied to a second communication device, and the method includes:
  • the transparent transmission identifier carried by the MAC PDU is valid, and the time information is carried through the SRB under the indication of the identifier; or the transparent transmission identifier carried by the MAC PDU is determined to be invalid, and the transparent transmission mode SRB carries the Time information.
  • the carrying the time information through the SRB under the indication of the identifier includes:
  • the MAC layer transparently transmits the time information to the RRC layer through instructions
  • the RRC layer transfers the time information to the NAS.
  • the time information carried by the SRB in the transparent transmission mode includes:
  • the MAC layer transmits the time information to the RRC layer through the SRB in the transparent transmission mode
  • the RRC layer transfers the time information to the NAS.
  • the method further includes:
  • the configuration parameters are set in the process of establishing the RRC connection or in the process of RRC reconfiguration to generate the SRB in the transparent transmission mode; the configuration parameters include: the third configuration parameter corresponding to the PDCP layer and/or the fourth configuration parameter corresponding to the RLC layer Configuration parameters.
  • the embodiment of the present application further provides a processing device for time information transmission, which is applied to a first communication device, and the device includes:
  • the first receiving module is configured to receive NAS PDU
  • the sending module is configured to determine that the NAS PDU contains time information, and transmit the time information to the second communication device through the SRB in the transparent transmission mode, or transmit the time information to the second communication device on the SRB according to an instruction.
  • the sending module transmits the time information to the second communication device through the SRB in the transparent transmission mode, including:
  • the RRC layer transmits the time information to the MAC layer through the SRB in the transparent transmission mode
  • the MAC layer puts the time information in the MAC PDU, and sends the MAC PDU.
  • the device further includes:
  • the first configuration module is configured to set configuration parameters during the process of establishing an RRC connection or during the process of RRC reconfiguration, and generate the SRB in the transparent transmission mode; the configuration parameters include: the first configuration parameters corresponding to the PDCP layer and/ Or the second configuration parameter corresponding to the RLC layer.
  • the sending module transmits the time information to the second communication device on the SRB according to an instruction, including:
  • the RRC layer delivers the NAS PDU and the first identifier to one of the following: PDCP layer, RLC layer, and MAC layer;
  • the PDCP layer transfers the NAS PDU and the first identifier to the PDCP layer, and the PDCP layer determines that the first identifier is valid, the PDCP layer transfers the NAS PDU and the second identifier to the RLC layer;
  • the RLC layer determines that the second identifier is valid, the RLC layer passes the NAS PDU and the third identifier to the MAC layer;
  • the MAC layer determines that the third identifier is valid, the MAC layer sends the time The information is put into a MAC PDU with a valid transparent transmission identifier, and the MAC PDU is sent; or,
  • the PDCP layer transfers the NAS PDU and the first identifier to the PDCP layer, and the PDCP layer determines that the first identifier is valid, the PDCP layer transfers the NAS PDU and the second identifier to the MAC layer;
  • the MAC layer determines that the second identifier is valid, the MAC layer puts the time information into a MAC PDU with a valid transparent transmission identifier, and sends the MAC PDU; or,
  • the RRC layer transfers the NAS PDU and the first identifier to the RLC layer, and the RLC layer determines that the first identifier is valid, the RLC layer transfers the NAS PDU and the second identifier to the MAC layer.
  • the MAC layer determines that the second identifier is valid, the MAC layer puts the time information into a MAC PDU with a valid transparent transmission identifier, and sends the MAC PDU; or,
  • the MAC layer If the RRC layer passes the NAS PDU and the first identifier to the MAC layer, and when the MAC layer determines that the first identifier is valid, the MAC layer puts the time information into the MAC PDU with a valid transparent transmission identifier, Send the MAC PDU.
  • the sending module is further configured to:
  • the MAC layer sends the MAC PDU to the air interface through the radio resources of the physical layer or copies them into multiple copies and sends them to the air interface.
  • An embodiment of the present application also provides a processing device for time information transmission, which is applied to a second communication device, and the device includes:
  • the second receiving module is configured to receive MAC PDU carrying time information
  • the first transmission module is configured to determine that the transparent transmission identifier carried by the MAC PDU is valid, and under the indication of the identifier, carry the time information through the SRB;
  • the second transmission module is configured to determine that the transparent transmission identifier carried by the MAC PDU is invalid, and carry the time information through the SRB in the transparent transmission mode.
  • the first transfer module is further configured to:
  • the MAC layer transparently transmits the time information to the RRC layer through instructions
  • the RRC layer transfers the time information to the NAS.
  • the second transfer module is further configured to:
  • the MAC layer transmits the time information to the RRC layer through the SRB in the transparent transmission mode
  • the RRC layer transfers the time information to the NAS.
  • the device further includes:
  • the second configuration module is configured to set configuration parameters in the process of establishing an RRC connection or in the process of RRC reconfiguration, and generate the SRB in the transparent transmission mode; the configuration parameters include: the third configuration parameter corresponding to the PDCP layer and/ Or the fourth configuration parameter corresponding to the RLC layer.
  • An embodiment of the present application also provides a first communication device, including: a processor and a memory for storing a computer program that can run on the processor, wherein the processor is configured to execute the computer program when the computer program is running. The steps of the method described on the side of the first communication device of the application embodiment.
  • the embodiment of the present application further provides a second communication device, including: a processor and a memory for storing a computer program that can run on the processor, wherein the processor is configured to execute the computer program when it is configured to run the computer program.
  • a second communication device including: a processor and a memory for storing a computer program that can run on the processor, wherein the processor is configured to execute the computer program when it is configured to run the computer program.
  • An embodiment of the present application also provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in any of the embodiments of the present application are implemented.
  • the first communication device receives the NAS PDU, determines that the NAS PDU contains time information, and transmits the time information to the second communication device through the SRB in the transparent transmission mode, or on the SRB according to the instruction
  • the transmission delay of the time information can be reduced, and the accuracy of time synchronization can be improved.
  • FIG. 1 is a schematic flowchart of a method for processing time information transmission on the side of a first communication device according to an embodiment of this application;
  • FIG. 2 is a schematic flowchart of a method for processing time information transmission on a second communication device side according to an embodiment of this application;
  • FIG. 3 is a schematic diagram of the principle of carrying a time frame control information data packet on an SRB according to an application embodiment of the application;
  • FIG. 4 is a schematic structural diagram of an apparatus for processing time information transmission on the side of a first communication device according to an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of an apparatus for processing time information transmission on a second communication device side according to an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a first communication device according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a second communication device according to an embodiment of the application.
  • the TSN in order to ensure strict synchronization of the time of each node, the TSN needs to send time information, and the time accuracy does not exceed 50 ns.
  • RAN Radio Access Network, access network
  • UE user equipment
  • the time information is transmitted to the next communication node through the SRB in the transparent transmission mode, or the time information is transmitted to the next communication node on the SRB according to the instructions, which can reduce the time information.
  • the transmission delay improves the accuracy of time synchronization.
  • the embodiment of the present application provides a processing method for time information transmission, which is applied to a first communication device. As shown in FIG. 1, the method includes:
  • Step 101 Receive NAS PDU
  • the first communication device may be a network device or a terminal device.
  • the base station receives a time frame control information data packet sent by a core network (CN) in the form of a NAS PDU, where the time frame control information data packet carries at least time information used for time synchronization. And when the core network sends the NAS PDU, it indicates that the NAS PDU is a time frame control information data packet through the associated road identifier.
  • CN core network
  • Step 102 It is determined that the NAS PDU contains time information, and the time information is transmitted to the second communication device through the SRB in the transparent transmission mode, or the time information is transmitted to the second communication device on the SRB according to an instruction.
  • the first communication device determines that the NAS PDU contains time information according to the path-associated identifier, that is, the NAS PDU is a time frame control information data packet with time information, and transmits the time information to the second communication device through the SRB in the transparent transmission mode, Or according to the instruction, the time information is transmitted to the second communication device on the SRB.
  • the second communication device may be a network device or a terminal device that is communicatively connected with the first communication device. If the NAS PDU is not a time frame control information packet, it will be processed according to the existing processing method.
  • the transmitting the time information to the second communication device through the SRB in the transparent transmission mode includes:
  • the RRC layer transmits the time information to the MAC layer through the SRB in the transparent transmission mode
  • the MAC layer puts the time information into the MAC PDU, and sends the MAC PDU.
  • the first communication device is the base station and the second communication device is the user equipment (UE) as an example for description.
  • a transparent mode (TM, Transparent Mode) SRB is established between the base station and the user equipment.
  • the function of PDCP is defined as: for any PDCP SDU carried in the RB in the transparent transmission mode, no content is added, no operations such as encryption, header compression, integrity protection, etc. are performed, and the PDCP PDU is directly used.
  • RLC adds DCCH (dedicated control channel) processing in the transparent transmission mode, which can transmit NAS messages.
  • DCCH dedicated control channel
  • the RRC layer When the RRC layer uses the SRB in the transparent transmission mode to transmit data, it directly transmits the RRC SDU (that is, NAS PDU) to the PDCP layer in the form of RRC PDU.
  • the RRC layer does not perform ASN.1 encoding and does not add accompanying RRC control information.
  • the PDCP layer does not process the PDCP SDU (that is, RRC PDU), that is, the PDCP layer does not assign the SN number to the PDCP SDU, does not start the sending window, does not set the buffer function for the data packet, and directly transmits the PDCP SDU to the RLC in the form of PDCP PDU Floor.
  • the RLC layer does not process the RLC SDU (ie, PDCP PDU), and directly transmits the RLC SDU to the MAC layer in the form of RLC PDU.
  • the RRC layer in the transparent transmission mode, considering that the RRC PDU passes through the PDCP layer and the RLC layer, the content does not change.
  • the RRC layer can directly send the RRC PDU and the corresponding SRB ID to the MAC layer.
  • the MAC layer receives the time frame control information data packet, puts the time frame control new data packet into the MAC PDU, and sends the MAC PDU.
  • the MAC layer can be based on SRB's QoS (Quality of Service) parameters, such as GBR (Guaranteed Bit Rate, guaranteed bit rate), Latency (delay), etc., or the SRB needs to be configured in other ways.
  • QoS Quality of Service
  • the identification of priority scheduling such as sending an instruction to increase the scheduling priority to the MAC directly through RRC, and scheduling the data packet on the first available air interface frequency domain resource and time domain resource (ie, MAC PDU with time information) .
  • the MAC layer may send the MAC PDU to the air interface through wireless resources of the physical layer.
  • the MAC layer may copy the MAC PDU into multiple copies through radio resources of the physical layer and send them to the air interface.
  • the MAC sends multiple MAC PDUs, it can be sent at the same time or sent in multiple times.
  • the MAC layer sends MAC PDUs by means of duplication transmission it uses CA (Carrier Aggregation) to put MAC PDUs on multiple carriers and send them to the air interface at the same time. .
  • the HARQ Hybrid Automatic Repeat
  • the MAC sends multiple MAC PDUs physical layer radio resources in the non-carrier aggregation technology may also be used.
  • the method further includes:
  • the configuration parameters are set in the process of establishing the RRC connection (RRC connection establishment) or the process of RRC reconfiguration (RRC Reconfiguration) to generate the SRB in the transparent transmission mode.
  • the configuration parameters include: a first configuration parameter corresponding to the PDCP layer of the transparent packet data convergence protocol and/or a second configuration parameter corresponding to the radio link control RLC layer.
  • the first configuration parameter is used to set the transparent transmission mode when the PDCP layer is established
  • the second configuration parameter is used to add DCCH processing in the transparent transmission mode of the RLC layer.
  • the RLC transparent transmission mode can "transparent" the data transmitted by the DCCH to the lower MAC layer.
  • the transmitting the time information to the second communication device on the SRB according to the instruction includes:
  • the RRC layer delivers the NAS PDU and the first identifier to one of the following: PDCP layer, RLC layer, and MAC layer;
  • the PDCP layer transfers the NAS PDU and the first identifier to the PDCP layer, and the PDCP layer determines that the first identifier is valid, the PDCP layer transfers the NAS PDU and the second identifier to the RLC layer;
  • the RLC layer determines that the second identifier is valid, the RLC layer passes the NAS PDU and the third identifier to the MAC layer;
  • the MAC layer determines that the third identifier is valid, the MAC layer sends the time The information is put into a MAC PDU with a valid transparent transmission identifier, and the MAC PDU is sent; or,
  • the PDCP layer transfers the NAS PDU and the first identifier to the PDCP layer, and the PDCP layer determines that the first identifier is valid, the PDCP layer transfers the NAS PDU and the second identifier to the MAC layer;
  • the MAC layer determines that the second identifier is valid, the MAC layer puts the time information into a MAC PDU with a valid transparent transmission identifier, and sends the MAC PDU; or,
  • the RRC layer transfers the NAS PDU and the first identifier to the RLC layer, and the RLC layer determines that the first identifier is valid, the RLC layer transfers the NAS PDU and the second identifier to the MAC layer.
  • the MAC layer determines that the second identifier is valid, the MAC layer puts the time information into a MAC PDU with a valid transparent transmission identifier, and sends the MAC PDU; or,
  • the MAC layer If the RRC layer passes the NAS PDU and the first identifier to the MAC layer, and when the MAC layer determines that the first identifier is valid, the MAC layer puts the time information into the MAC PDU with a valid transparent transmission identifier, Send the MAC PDU.
  • the identifier is used to transmit the time frame control information data packet from the RRC layer to the MAC layer.
  • the RRC layer receives the NAS PDU sent by the core network, and judges the data packet type of the NAS PDU according to the associated identifier.
  • the RRC layer directly sends the RRC SDU (i.e. NAS) PDU) is delivered to the PDCP layer in the manner of RRC PDU and carries the first identifier along the way.
  • the PDCP layer determines that the value of the first identifier is valid, and the PDCP layer does not add any content to the received PDCP SDU (that is, RRC PDU), and does not perform operations such as encryption, header compression, integrity inclusion, etc., and directly sends it in the form of PDCP PDU.
  • the RLC layer determines that the value of the second identifier is valid, and the RLC layer does not process the received RLC SDU (ie, PDCP PDU), and directly sends the RLC SDU to the MAC layer in the form of RLC PDU, and carries the third identifier along the way.
  • RLC SDU ie, PDCP PDU
  • the first identification, the second identification, and the third identification may use the same road-associated identification to simplify the processing of the road-association.
  • the identifier valid means that the identifier indicates that the transmitted data packet is a data packet with time information; otherwise, the identifier is invalid.
  • the MAC layer determines that the value of the received third identifier is valid. In order to correctly parse the data packet on the UE side, it is necessary to send the transparent transmission indication information (that is, the transparent transmission identifier) to the UE.
  • the identification bit indication field is reserved in the PDU header of the MAC PDU.
  • the identification bit indication field is set to be valid, and the time frame control The information data packet is put into the MAC PDU with a valid transparent transmission identifier.
  • the identification length is at least one bit, 0 indicates an invalid value, and 1 indicates a valid value.
  • the R (Reserved) field of the PDU header of the MAC PDU can be set as an indication field, with a length of 1 bit, and a value of 0 indicates that the value of the transparent transmission flag is invalid; when the value is 1, it indicates The value of the transparent transmission flag is valid.
  • the MAC layer can send data to the air interface Uu through the physical layer (PHY).
  • PHY physical layer
  • the MAC uses the CA control method, including using one or more PDCCHs to indicate multiple PDSCHs respectively, and sending data packets to the UE.
  • the embodiment of the present application also provides a processing method for time information transmission, which is applied to a second communication device. As shown in FIG. 2, the method includes:
  • Step 201 Receive a MAC PDU carrying time information
  • Step 202 Determine that the transparent transmission identifier carried by the MAC PDU is valid, and, under the indication of the identifier, carry the time information through the SRB; or determine that the transparent transmission identifier carried by the MAC PDU is invalid and pass the SRB in the transparent transmission mode Carry the time information.
  • the MAC layer on the second communication device side After the MAC layer on the second communication device side receives the MAC PDU carrying time information sent by the first communication device via the SRB from each carrier of the CA, it decompresses the MAC PDU. It is determined that the value of the transparent transmission identifier carried in the indication field in the data packet is valid, that is, it is 1, then under the indication of the identifier, the time information is carried through the SRB. If the value of the transparent transmission identifier carried in the indication field of the MAC PDU is invalid, that is, 0, the time information is carried by the SRB in the transparent transmission mode.
  • the carrying the time information through the SRB under the indication of the identifier includes:
  • the MAC layer transparently transmits the time information to the RRC layer through instructions
  • the RRC layer transfers the time information to the NAS.
  • the MAC layer directly transfers the time frame control information data packet to the RLC layer via the fourth identifier.
  • the RLC layer determines that the fourth identifier is valid, and directly transfers the time frame control information data packet via the fifth path-associated identifier.
  • the PDCP layer determines that the fifth identifier is valid, and directly transfers the time frame control information data packet to the RRC layer via the sixth identifier.
  • the fourth, fifth, and sixth identifiers can use the same road-associated flag to simplify the process of road-association.
  • the identifier valid means that the identifier indicates that the transmitted data packet is a data packet with time information; otherwise, the identifier is invalid.
  • the SRB in the transparent transmission mode to carry the time information includes:
  • the MAC layer transmits the time information to the RRC layer through the SRB in the transparent transmission mode
  • the RRC layer transfers the time information to the NAS.
  • the MAC layer directly transmits the time frame control information data packet to the RLC layer
  • the RLC layer directly transparently transmits the time frame control information data packet to the PDCP layer
  • the PDCP layer directly transmits the time frame control information data packet to the PDCP layer.
  • the time frame control information packet is passed to the RRC layer.
  • the method further includes:
  • the configuration parameters are set during the process of establishing the RRC connection or during the process of RRC reconfiguration, and the SRB in the transparent transmission mode is generated.
  • the configuration parameters include: a third configuration parameter corresponding to the PDCP layer and/or a fourth configuration parameter corresponding to the RLC layer.
  • the third configuration parameter is used to set the transparent transmission mode when the PDCP layer is established
  • the fourth configuration parameter is used to add DCCH processing in the transparent transmission mode of the RLC layer, so that the RLC layer can "transparent" the data transmitted by the DCCH. Transmitted to the PDCP layer.
  • the base station adopts a 5G base station (gNB), the base station is connected to the core network (CN), and the base station is connected to the user equipment (UE).
  • gNB and CN form the network side.
  • the data processing flow on the network side is as follows:
  • Step1 is the interaction between NAS and RRC.
  • the NAS sends the time frame control information data packet to the RRC in the form of NAS PDU, and gives a clear indication that the data packet is a time frame control information data packet along with the route.
  • the RRC judges the data packet type indication. If it is not a time frame control information packet, it will be processed according to the existing processing method; if it is a time frame control information packet, then:
  • the RRC SDU (i.e. NAS PDU) does not add any content and does not modify any content, and directly sends it to the lower layer through the SRB in the form of RRC PDU.
  • RRC does not perform ASN.1 encoding, and does not add accompanying RRC control information.
  • the transparent transmission identifier is carried along the path, and the value is a valid value.
  • the transparent transmission identifier is a valid value, after PDCP receives the RRC PDU carrying the identifier, that is, the PDCP SDU, it does not add any content, does not perform operations such as encryption, header compression, integrity inclusion, etc., and directly sends it in the form of PDCP PDU RLC, and also send the transparent transmission identifier to RLC.
  • TM mode Transparent Mode: transparent transmission mode
  • the function of PDCP is defined as: for any PDCP SDU carried in the RB of this mode, Do not add any content, do not perform operations such as encryption, header compression, integrity protection, etc., and directly send it to RLC in the form of PDCP PDU.
  • RRC uses the SRB to send data, it directly sends the control data packet to PDCP.
  • the PDCP does not assign the SN number to the control data packet, does not start the sending window, and does not set the buffer for the data packet Features.
  • the RLC layer still uses the TM mode. In the RLC TM mode, the processing of the DCCH logical channel type is added.
  • the RLC TM adds the processing of the DCCH (Dedicated Control Channel, dedicated control logical channel) channel.
  • DCCH Dedicated Control Channel, dedicated control logical channel
  • PDCP sends data to the RLC, it directly uses the RLC TM mode of the SRB for transmission. If the transparent transmission identifier sent by PDCP is also received while receiving the RLC SDU, the RLC must also send the transparent transmission identifier to the MAC.
  • the MAC layer receives data: a) to receive RLC PDU from RLC; b) to receive data packets directly from RRC.
  • the above steps 1, 2, and 3 are carried out in sequence.
  • the MAC is sent.
  • MAC scheduling MAC according to the QoS (Quality of Service) parameters of the SRB, such as GBR, Latency, etc., or the identification of the SRB that requires high-priority scheduling configured in other ways, such as sending directly to the MAC through RRC Increase the scheduling priority indication, etc., and schedule the data packet on the first available air interface frequency domain resource and time domain resource.
  • QoS Quality of Service
  • the MAC sends the data packet by means of multiple replication (duplication), and sends the data packet to the air interface on multiple carriers simultaneously by using the CA (Carrier Aggregation) method.
  • the number of transmissions of the HARQ process that transmits the data is set to 1 or other values, that is, no retransmission is performed to reduce delay and jitter.
  • the indication information of the transparent transmission mode needs to be sent to the receiving end.
  • the identifier is carried in the PDU header of the MAC PDU corresponding to the data packet.
  • the identification length is at least one bit, 0 indicates an invalid value, and 1 indicates a transparent transmission mode.
  • the data processing procedure on the UE side is as follows:
  • the MAC layer receives the data packet from each carrier of CA.
  • the data packet will be parsed and sent to the upper layer.
  • the MAC layer sends the data packet to RRC (for example, the data packet can be sent to RRC through the path-associated identifier), and then sent after RRC processing To the NAS layer.
  • the MAC layer sends the data packet to the RLC.
  • the RLC receives the RLC PDU, and processes the data packet according to the transparent transmission mode configured by the SRB. If it is the DCCH channel in the transparent transmission mode, the data packet is directly sent to the PDCP.
  • the PDCP After the PDCP receives the data packet, it processes the data packet according to the mode configured by the SRB, and then sends it to the RRC.
  • the RRC picks up the data packet After the RRC picks up the data packet, it is sent to the NAS layer.
  • the embodiment of the present application also provides a processing device for time information transmission, which is set in a first communication device.
  • the device includes a first receiving module 401 and a sending module 402. ;among them,
  • the first receiving module 401 is configured to receive NAS PDU
  • the sending module 402 is configured to determine that the NAS PDU contains time information, and transmit the time information to the second communication device through the SRB in the transparent transmission mode, or transmit the time information to the second communication device on the SRB according to an instruction .
  • the sending module 402 transmits the time information to the second communication device through the SRB in the transparent transmission mode, including:
  • the RRC layer transmits the time information to the MAC layer through the SRB in the transparent transmission mode
  • the MAC layer puts the time information into the corresponding MAC PDU, and sends the MAC PDU.
  • the device further includes:
  • the first configuration module 403 is configured to set configuration parameters during the process of establishing an RRC connection or during the process of RRC reconfiguration, and generate the SRB in the transparent transmission mode; the configuration parameters include: the first configuration parameters corresponding to the PDCP layer and /Or the second configuration parameter corresponding to the RLC layer.
  • the sending module 402 transmits the time information to the second communication device on the SRB according to the instruction, including:
  • the RRC layer delivers the NAS PDU and the first identifier to one of the following: PDCP layer or RLC layer or MAC layer;
  • the PDCP layer transfers the NAS PDU and the first identifier to the PDCP layer, and the PDCP layer determines that the first identifier is valid, the PDCP layer transfers the NAS PDU and the second identifier to the RLC layer;
  • the RLC layer determines that the second identifier is valid, the RLC layer passes the NAS PDU and the third identifier to the MAC layer;
  • the MAC layer determines that the third identifier is valid, the MAC layer sends the time The information is put into a MAC PDU with a valid transparent transmission identifier, and the MAC PDU is sent; or,
  • the PDCP layer transfers the NAS PDU and the first identifier to the PDCP layer, and the PDCP layer determines that the first identifier is valid, the PDCP layer transfers the NAS PDU and the second identifier to the MAC layer;
  • the MAC layer determines that the second identifier is valid, the MAC layer puts the time information into a MAC PDU with a valid transparent transmission identifier, and sends the MAC PDU; or,
  • the RRC layer transfers the NAS PDU and the first identifier to the RLC layer, and the RLC layer determines that the first identifier is valid, the RLC layer transfers the NAS PDU and the second identifier to the MAC layer.
  • the MAC layer determines that the second identifier is valid, the MAC layer puts the time information into a MAC PDU with a valid transparent transmission identifier, and sends the MAC PDU; or,
  • the MAC layer If the RRC layer passes the NAS PDU and the first identifier to the MAC layer, and when the MAC layer determines that the first identifier is valid, the MAC layer puts the time information into the MAC PDU with a valid transparent transmission identifier, Send the MAC PDU.
  • the sending module 402 is further configured to:
  • the MAC layer sends the MAC PDU to the air interface through the radio resources of the physical layer or copies them into multiple copies and sends them to the air interface.
  • the first receiving module 401, the sending module 402, and the first configuration module 403 may be implemented by a processor in a processing device for time information transmission.
  • the processor needs to run a computer program in the memory to realize its functions.
  • the embodiment of the present application also provides a processing device for time information transmission, which is configured in a second communication device.
  • the device includes: a second receiving module 501, a A transfer module 502 and a second transfer module 503.
  • the second receiving module 501 is configured to receive MAC PDU carrying time information
  • the first transmission module 502 is configured to determine that the transparent transmission identifier carried by the MAC PDU is valid, and under the indication of the identifier, carry the time information through the SRB;
  • the second transmission module 503 is configured to determine that the transparent transmission identifier carried in the MAC PDU is invalid, and carry the time information through the SRB in the transparent transmission mode.
  • the first transfer module 502 is further configured to:
  • the MAC layer transparently transmits the time information to the RRC layer through instructions
  • the RRC layer transfers the time information to the NAS.
  • the second transfer module 503 is further configured to:
  • the MAC layer transmits the time information to the RRC layer through the SRB in the transparent transmission mode
  • the RRC layer transfers the time information to the NAS.
  • the device further includes:
  • the second configuration module 504 is configured to set configuration parameters during the process of establishing an RRC connection or during the process of RRC reconfiguration, and generate the SRB in the transparent transmission mode; the configuration parameters include: the third configuration parameters corresponding to the PDCP layer and /Or the fourth configuration parameter corresponding to the RLC layer.
  • the second receiving module 501, the first transmission module 502, the second transmission module 503, and the second configuration module 504 may be implemented by a processor in a processing device for time information transmission.
  • the processor needs to run a computer program in the memory to realize its functions.
  • time information transmission processing device provided in the above embodiment performs time information transmission
  • only the division of the above-mentioned program modules is used as an example for illustration. In actual applications, the above-mentioned processing can be allocated to different types according to needs.
  • the program module is completed, that is, the internal structure of the device is divided into different program modules to complete all or part of the processing described above.
  • the apparatus for processing time information transmission provided in the foregoing embodiment and the embodiment of the method for processing time information transmission belong to the same concept. For the specific implementation process, please refer to the method embodiment, which will not be repeated here.
  • FIG. 6 only shows an exemplary structure of the first communication device, but not the entire structure, and part or all of the structure shown in FIG. 6 can be implemented as required.
  • the first communication device 600 provided in this embodiment of the present application includes: at least one processor 601, a memory 602, and at least one network interface 603.
  • the various components in the first communication device 600 are coupled together through the bus system 604.
  • the bus system 604 is used to implement connection and communication between these components.
  • the bus system 604 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 604 in FIG. 6.
  • the memory 602 in the embodiment of the present application is used to store various types of data to support the operation of the base station. Examples of these data include: any computer program for operating on the first communication device 600.
  • the processing method for time information transmission disclosed in the embodiment of the present application may be applied to the processor 601 or implemented by the processor 601.
  • the processor 601 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the processing method for time information transmission can be completed by hardware integrated logic circuits in the processor 601 or instructions in the form of software.
  • the aforementioned processor 601 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 601 may implement or execute various methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 602.
  • the processor 601 reads the information in the memory 602 and completes the steps of the time information transmission processing method provided in the embodiment of the present application in combination with its hardware.
  • the first communication device may be used by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device (CPLD, Complex Programmable Logic Device, FPGA, general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components are implemented to execute the aforementioned methods.
  • ASIC Application Specific Integrated Circuit
  • DSP programmable logic device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA general-purpose processor
  • controller microcontroller
  • MCU Micro Controller Unit
  • microprocessor Microprocessor
  • FIG. 7 only shows an exemplary structure of the second communication device, but not the entire structure, and part or all of the structure shown in FIG. 7 can be implemented as required.
  • the second communication device 700 provided in this embodiment of the present application includes: at least one processor 701, a memory 702, and at least one network interface 703.
  • the various components in the second communication device 700 are coupled together through the bus system 704.
  • the bus system 704 is used to implement connection and communication between these components.
  • the bus system 704 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 704 in FIG. 7.
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the user equipment. Examples of such data include: any computer program for operating on the second communication device 700.
  • the processing method for time information transmission disclosed in the embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the processing method for time information transmission can be completed by hardware integrated logic circuits in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the time information transmission processing provided in the embodiment of the present application in combination with its hardware.
  • the second communication device 700 may be implemented by one or more ASICs, DSPs, PLDs, CPLDs, FPGAs, general-purpose processors, controllers, MCUs, Microprocessors, or other electronic components for performing the aforementioned methods .
  • the memories 602 and 702 may be volatile memories or non-volatile memories, and may also include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM, Read Only Memory), a programmable read-only memory (PROM, Programmable Read-Only Memory), an erasable programmable read-only memory (EPROM, Erasable Programmable Read- Only Memory, Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory); magnetic surface memory can be magnetic disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memories described in the embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiment of the present application also provides a storage medium, that is, a computer storage medium, which may specifically be a computer-readable storage medium, for example, including memories 602 and 702 storing computer programs.
  • the processor 601 of the communication device and the processor 701 of the second communication device execute to complete the steps described in the method in the embodiment of the present application.
  • the computer-readable storage medium may be a memory such as ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种时间信息传输的处理方法、装置、设备及存储介质。其中,所述方法包括:接收非接入层(NAS)协议数据单元(PDU);确定所述NAS PDU包含时间信息,通过透传模式的信令无线承载(SRB)将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备。本申请实施例可以减少时间信息的传递时延,提高了时间同步的精度。

Description

时间信息传输的处理方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201911148304.1、申请日为2019年11月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信领域,尤其涉及一种时间信息传输的处理方法、装置及存储介质。
背景技术
相关技术中,在3GPP(第三代合作伙伴计划)的IIOT(Industrial Internet of Things,工业互联网)课题研究时,及时、安全地传输数据是工业通信的关键要求之一。如何将工业设备以无线方式连接到TSN(Time Sensitive Networks,时间敏感网络),以满足工业设备灵活部署和及时、安全地传输数据,是亟待解决的技术问题。
发明内容
有鉴于此,本申请实施例提供了一种时间信息传输的处理方法、装置及存储介质,旨在满足灵活布置的工业设备的时间同步要求。
本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种时间信息传输的处理方法,应用于第一通信设备,所述方法包括:
接收非接入层(NAS,Non-access stratum)协议数据单元(PDU,Protocol  Data Unit);
确定所述NAS PDU包含时间信息,通过透传模式的信令无线承载(SRB,signaling radio bearers)将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备。
上述方案中,所述通过透传模式的SRB将所述时间信息传至第二通信设备,包括:
无线资源控制(RRC)层通过透传模式的SRB将所述时间信息传递至媒体接入控制(MAC)层;
所述MAC层将所述时间信息放入MAC PDU中,发送所述MAC PDU。
上述方案中,所述方法还包括:
在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成所述透传模式的SRB;所述配置参数包括:透传分组数据会聚协议(PDCP)层对应的第一配置参数和/或无线链路控制(RLC)层对应的第二配置参数。
上述方案中,所述根据指示在SRB上将所述时间信息传至第二通信设备,包括:
RRC层将所述NAS PDU和第一标识传递至以下之一:PDCP层、RLC层及MAC层;
若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至RLC层;所述RLC层确定所述第二标识有效时,所述RLC层将所述NAS PDU和第三标识传递至MAC层,所述MAC层确定所述第三标识有效时,将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP 层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至MAC层;所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至RLC层,所述RLC层确定所述第一标识有效时,所述RLC层将所述NAS PDU和第二标识传递至MAC层,所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至MAC层,所述MAC层确定所述第一标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU。
上述方案中,所述MAC层通过物理层的无线资源把所述MAC PDU发送到空口或者复制成多份并发送到空口。
本申请实施例还提供了一种时间信息传输的处理方法,应用于第二通信设备,所述方法包括:
接收携带时间信息的MAC PDU;
确定所述MAC PDU携带的透传标识有效,在该标识的指示下,通过SRB承载所述时间信息;或者,确定所述MAC PDU携带的透传标识无效,通过透传模式的SRB承载所述时间信息。
上述方案中,所述在该标识的指示下,通过SRB承载所述时间信息,包括:
MAC层将所述时间信息通过指示透传至RRC层;
所述RRC层将所述时间信息传递至NAS。
上述方案中,所述通过透传模式的SRB承载所述时间信息,包括:
MAC层通过透传模式的SRB将所述时间信息传递至RRC层;
所述RRC层将所述时间信息传递至NAS。
上述方案中,所述方法还包括:
在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成所述透传模式的SRB;所述配置参数包括:PDCP层对应的第三配置参数和/或RLC层对应的第四配置参数。
本申请实施例又提供了一种时间信息传输的处理装置,应用于第一通信设备,所述装置包括:
第一接收模块,配置为接收NAS PDU;
发送模块,配置为确定所述NAS PDU包含时间信息,通过透传模式的SRB将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备。
上述方案中,所述发送模块通过透传模式的SRB将所述时间信息传至第二通信设备,包括:
RRC层通过所述透传模式的SRB将所述时间信息传递至MAC层;
所述MAC层将所述时间信息放入MAC PDU中,发送所述MAC PDU。
上述方案中,所述装置还包括:
第一配置模块,配置为在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成所述透传模式的SRB;所述配置参数包括:PDCP层对应的第一配置参数和/或RLC层对应的第二配置参数。
上述方案中,所述发送模块根据指示在SRB上将所述时间信息传至第二通信设备,包括:
RRC层将所述NAS PDU和第一标识传递至以下之一:PDCP层、RLC层及MAC层;
若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至RLC层;所述RLC层确定所述第二标识有效时,所述RLC层将所述 NAS PDU和第三标识传递至MAC层;所述MAC层确定所述第三标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至MAC层;所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至RLC层,所述RLC层确定所述第一标识有效时,所述RLC层将所述NAS PDU和第二标识传递至MAC层,所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至MAC层,所述MAC层确定所述第一标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU。
上述方案中,所述发送模块还配置为:
所述MAC层通过物理层的无线资源把所述MAC PDU发送到空口或者复制成多份并发送到空口。
本申请实施例还提供了一种时间信息传输的处理装置,应用于第二通信设备,所述装置包括:
第二接收模块,配置为接收携带时间信息的MAC PDU;
第一传递模块,配置为确定所述MAC PDU携带的透传标识有效,在该标识的指示下,通过SRB承载所述时间信息;
第二传递模块,配置为确定所述MAC PDU携带的透传标识无效,通过透传模式的SRB承载所述时间信息。
上述方案中,所述第一传递模块还配置为:
MAC层将所述时间信息通过指示透传至RRC层;
所述RRC层将所述时间信息传递至NAS。
上述方案中,所述第二传递模块还配置为:
MAC层通过透传模式的SRB将所述时间信息传递至RRC层;
所述RRC层将所述时间信息传递至NAS。
上述方案中,所述装置还包括:
第二配置模块,配置为在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成所述透传模式的SRB;所述配置参数包括:PDCP层对应的第三配置参数和/或RLC层对应的第四配置参数。
本申请实施例还提供了一种第一通信设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器,配置为运行计算机程序时,执行本申请实施例第一通信设备侧所述方法的步骤。
本申请实施例又提供了一种第二通信设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器,配置为运行计算机程序时,执行本申请实施例第二通信设备侧所述方法的步骤。
本申请实施例还提供了一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现本申请任一实施例所述方法的步骤。
本申请实施例提供的技术方案,第一通信设备接收NAS PDU,确定所述NAS PDU包含时间信息,通过透传模式的SRB将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备,可以减少时间信息的传递时延,提高了时间同步的精度。
附图说明
图1为本申请实施例第一通信设备侧时间信息传输的处理方法的流程示意图;
图2为本申请实施例第二通信设备侧时间信息传输的处理方法的流程示意图;
图3为本申请应用实施例SRB上承载时间帧控制信息数据包的原理示意图;
图4为本申请实施例第一通信设备侧时间信息传输的处理装置的结构示意图;
图5为本申请实施例第二通信设备侧时间信息传输的处理装置的结构示意图;
图6为本申请实施例第一通信设备的结构示意图;
图7为本申请实施例第二通信设备的结构示意图。
具体实施方式
下面结合附图及实施例对本申请再作进一步详细的描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
相关技术中,TSN为了保证各个节点的时间严格同步,需要发送时间信息,时间精度不超过50ns。引入RAN(Radio Access Network,接入网)作为TSN的传输节点,以将用户设备(UE)连接到TSN,需要基站与UE间或者基站与基站间传递时间帧控制信息数据包满足设定的时延要求。
基于此,在本申请的各种实施例中,通过透传模式的SRB将时间信息传递至下一通信节点,或者根据指示在SRB上将时间信息传递至下一通信节点,可以减少时间信息的传递时延,提高了时间同步的精度。
本申请实施例提供了一种时间信息传输的处理方法,应用于第一通信设备,如图1所示,所述方法包括:
步骤101,接收NAS PDU;
这里,第一通信设备可以为网络设备或者终端设备。以基站为例进行说明,基站接收核心网(CN)以NAS PDU的形式发送的时间帧控制信息数据包,所述时间帧控制信息数据包至少携带用于时间同步的时间信息。且核心网发送该NAS PDU时,通过随路标识指示该NAS PDU为时间帧控制信息数据包。
步骤102,确定所述NAS PDU包含时间信息,通过透传模式的SRB将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备。
第一通信设备根据随路标识确定该NAS PDU包含时间信息,即该NAS PDU为带时间信息的时间帧控制信息数据包,通过透传模式的SRB将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备。这里,第二通信设备可以为与第一通信设备通信连接的网络设备或者终端设备。若该NAS PDU不是时间帧控制信息数据包,则按照已有的处理方式进行处理。
在一实施例中,所述通过透传模式的SRB将所述时间信息传至第二通信设备,包括:
RRC层通过所述透传模式的SRB将所述时间信息传递至MAC层;
所述MAC层将所述时间信息放入MAC PDU,发送所述MAC PDU。
实际应用时,以第一通信设备为基站,第二通信设备为用户设备(UE)为例进行说明。基站与用户设备间建立透传模式(TM,Transparent Mode)的SRB。在透传模式下,PDCP的功能定义为:对承载在该透传模式的RB的任何一个PDCP SDU,不添加任何内容,不进行加密、头压缩、完整性保护等操作,直接以PDCP PDU的方式发送给RLC。RLC在透传模式中增加对DCCH(专用控制信道)的处理,该DCCH可以传输NAS消息。本申请实施例中,在建立SRB的PDCP协议实体(又称为PDCP层)时,直接 建立成透传模式,且RLC的透传模式支持对DCCH的处理。
当RRC层使用该透传模式的SRB传递数据时,直接把RRC SDU(即NAS PDU)以RRC PDU的方式传递至PDCP层,RRC层不进行ASN.1编码,不添加附带的RRC控制信息。PDCP层对PDCP SDU(即RRC PDU)不做处理,即PDCP层不给PDCP SDU分配SN号,不启动发送窗口,不对该数据包设置缓存功能,直接把PDCP SDU以PDCP PDU的方式传递至RLC层。RLC层对RLC SDU(即PDCP PDU)不做处理,直接把RLC SDU以RLC PDU的形式传递至MAC层。
在一实施例中,在透传模式下,考虑到RRC PDU经过了PDCP层及RLC层后,内容没有变化。为了节约传输时间,RRC层可以直接把该RRC PDU和对应的SRB ID一起发送给MAC层。
所述MAC层接收到时间帧控制信息数据包,将所述时间帧控制新数据包放入MAC PDU中,发送所述MAC PDU。
实际应用时,MAC层可以根据SRB的QoS(Quality of Service,服务质量)参数,比如GBR(Guaranteed Bit Rate,保证比特速率)、Latency(延迟)等,或者通过其他方式配置的该SRB的需要高优先级调度的标识,比如直接通过RRC给MAC发送调高调度优先级的指示等,在第一个可用的空口频域资源和时域资源上调度该数据包(即带时间信息的MAC PDU)。
实际应用时,所述MAC层可以通过物理层的无线资源把所述MAC PDU发送到空口。在一实施例中,所述MAC层可以通过物理层的无线资源把所述MAC PDU复制成多份并发送到空口。所述MAC在发送多份MAC PDU时,可以同时一次发送,也可以分多次发送。在一实施例中,MAC层采用多路复制(duplication)的发送的方式发送MAC PDU时,通过使用CA(Carrier Aggregation:载波聚合)的方式,把MAC PDU放入多个载波上同时发送到空口。在每个载波上把发送该数据的HARQ(混合自动重传) 进程的发送次数设置为1或者其它数值,即不进行重传以降低时延和抖动。在另一实施例中,所述MAC在发送多份MAC PDU时,也可以使用非载波聚合技术中的物理层无线资源。
为了通过透传模式的SRB将时间信息发送出去,在一实施例中,所述方法还包括:
在建立RRC连接(RRC connection establishment)的过程中或者RRC重配置(RRC Reconfiguration)的过程中设置配置参数,生成透传模式的SRB。所述配置参数包括:透传分组数据会聚协议PDCP层对应的第一配置参数和/或无线链路控制RLC层对应的第二配置参数。
这里,第一配置参数用于在PDCP层建立时设置透传模式,第二配置参数用于在RLC层的透传模式中增加DCCH的处理。这样,RLC的透传模式可以对DCCH传递的数据“透明”地传输到下层的MAC层。
在一实施例中,所述根据指示在SRB上将所述时间信息传至第二通信设备,包括:
RRC层将所述NAS PDU和第一标识传递至以下之一:PDCP层、RLC层及MAC层;
若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至RLC层;所述RLC层确定所述第二标识有效时,所述RLC层将所述NAS PDU和第三标识传递至MAC层;所述MAC层确定所述第三标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至MAC层;所述MAC层确定所述第二标识有效时,所述MAC层将所 述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至RLC层,所述RLC层确定所述第一标识有效时,所述RLC层将所述NAS PDU和第二标识传递至MAC层,所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至MAC层,所述MAC层确定所述第一标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU。
这里,可以不需要生成透传模式的SRB,而是采用标识将时间帧控制信息数据包从RRC层传输至MAC层。
实际应用时,RRC层接收到核心网发送的NAS PDU,根据随路标识判断该NAS PDU的数据包类型,确定该NAS PDU为时间帧控制信息数据包时,RRC层直接把RRC SDU(即NAS PDU)以RRC PDU的方式传递至PDCP层并随路携带第一标识。PDCP层确定第一标识取值有效,则PDCP层对接收的PDCP SDU(即RRC PDU),不添加任何内容,不进行加密、头压缩、完整性包含等操作,直接以PDCP PDU的方式发送给RLC层,并随路携带第二标识。RLC层确定第二标识取值有效,则RLC层对接收的RLC SDU(即PDCP PDU)不做处理,直接把RLC SDU以RLC PDU的形式发送给MAC层,并随路携带第三标识。
需要说明的是,在一实施例中,第一标识、第二标识及第三标识可以采用相同的随路标识,以简化随路的处理过程。这里,标识有效是指该标识指示传递的数据包为带时间信息的数据包,否则,标识为无效。
MAC层确定接收的第三标识取值有效,为了在UE侧能够正确解析该数据包,需要把透传传输的指示信息(即透传标识)发送给UE。实际应用时,在MAC PDU的PDU头中保留标识位指示域,MAC层确定接收的时 间帧控制信息数据包的随路标识有效时,将该标识位指示域设置成有效,并将时间帧控制信息数据包放入该透传标识有效的MAC PDU。标识长度至少为一个比特,0标识无效值,1标识为有效值。
实际应用时,可以将MAC PDU的PDU头的R(Reserved)字段设置为指示域,以长度为1个比特,取值为0时,表示透传标识取值无效;取值为1时,表示透传标识取值有效。
MAC层可以通过物理层(PHY)把数据发送到空口Uu。实际应用时,MAC使用CA控制方式,包括使用一个或者多个PDCCH分别指示多个PDSCH,把数据包发送给UE。
本申请实施例还提供了一种时间信息传输的处理方法,应用于第二通信设备,如图2所示,所述方法包括:
步骤201,接收携带时间信息的MAC PDU;
步骤202,确定所述MAC PDU携带的透传标识有效,在该标识的指示下,通过SRB承载所述时间信息;或者,确定所述MAC PDU携带的透传标识无效,通过透传模式的SRB承载所述时间信息。
这里,第二通信设备侧的MAC层从CA的每个载波上接收到第一通信设备经SRB发送的携带时间信息的MAC PDU后,解压该MAC PDU。确定数据包中指示域携带的透传标识取值有效,即为1,则在该标识的指示下,通过SRB承载所述时间信息。若MAC PDU中指示域携带的透传标识取值无效,即为0,则通过透传模式的SRB承载所述时间信息。
在一实施例中,所述在该标识的指示下,通过SRB承载所述时间信息,包括:
MAC层将所述时间信息通过指示透传至RRC层;
所述RRC层将所述时间信息传递至NAS。
实际应用时,MAC层直接把所述时间帧控制信息数据包经第四标识传 递至RLC层,RLC层确定第四标识有效,直接将所述时间帧控制信息数据包经第五随路标识传递至PDCP层,PDCP层确定第五标识有效,直接将所述时间帧控制信息数据包经第六标识传递至RRC层。这样,使得数据传递扁平化,提高了传递效率,利于降低延迟。需要说明的是,第四标识、第五标识及第六标识可以采用相同的随路标识,以简化随路的处理过程。这里,标识有效是指该标识指示传递的数据包为带时间信息的数据包,否则,标识为无效。
在一实施例中,所述通过透传模式的SRB承载所述时间信息,包括:
MAC层通过透传模式的SRB将所述时间信息传递至RRC层;
所述RRC层将所述时间信息传递至NAS。
这里,通过透传模式的SRB,MAC层将所述时间帧控制信息数据包直接传递至RLC层,RLC层直接将所述时间帧控制信息数据包透传至PDCP层,PDCP层直接将所述时间帧控制信息数据包传递至RRC层。
为了使用透传模式的SRB,在一实施例中,所述方法还包括:
在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成透传模式的SRB。所述配置参数包括:透PDCP层对应的第三配置参数和/或RLC层对应的第四配置参数。
这里,第三配置参数用于在PDCP层建立时设置透传模式,第四配置参数用于在RLC层的透传模式中增加DCCH的处理,使得RLC层可以将DCCH传递的数据“透明”地传输到PDCP层。
下面结合应用实施例对本申请再作进一步详细的描述。
如图3所示,本应用实施例中,基站采用5G基站(gNB),基站与核心网(CN)连接,且基站与用户设备(UE)连接。gNB与CN构成网络侧。
其中,网络侧的数据处理流程如下:
1、如图3所表示,Step1为NAS和RRC之间的交互。NAS以NAS PDU 的形式给RRC发送时间帧控制信息数据包,并给出随路明确指示该数据包为时间帧控制信息数据包。
2、RRC接收到NAS PDU后,判断数据包类型指示。如果不是时间帧控制信息数据包,则按照已有的处理方式进行处理;如果是时间帧控制信息数据包,则:
2.1、把该RRC SDU(即NAS PDU)不添加任何内容并且不修改任何内容,直接以RRC PDU的方式通过SRB发送给低层。RRC不进行ASN.1编码,不添加附带的RRC的控制信息。
2.2、如果低层为PDCP,则随路携带透传标识,取值为有效值。当透传标识为有效值时,PDCP收到携带该标识的RRC PDU后,即PDCP SDU,不添加任何内容,不进行加密、头压缩、完整性包含等操作,直接以PDCP PDU的方式发送给RLC,并把透传标识也发送给RLC。
也可以不使用随路的透传标识而是在PDCP层引入TM模式(Transparent Mode:透传模式),TM模式下,PDCP的功能定义为:对承载在该模式的RB的任何一个PDCP SDU,不添加任何内容,不进行加密、头压缩、完整性保护等操作,直接以PDCP PDU的方式发送给RLC。在建立SRB的PDCP协议实体时,直接建立成TM模式。当RRC使用该SRB发送数据时,直接把控制数据包发送给PDCP。
无论是透传标识指示下的PDCP透传处理,还是RRC信令配置的TM模式控制下的PDCP透传,PDCP不给该控制数据包分配SN号,不启动发送窗口,不对该数据包设置缓存功能。
3、RLC层仍然使用TM模式。在RLC TM模式中增加对DCCH逻辑信道类型的处理。
RLC的TM中增加对DCCH(Dedicated Control Channel,专用控制逻辑信道)信道的处理,PDCP发送数据给RLC时,直接使用SRB的RLC TM 模式进行发送。如果在接收RLC SDU的同时也接收到了PDCP发送来的透传标识,则RLC也要把该透传标识发送给MAC。
4、MAC层的处理。
MAC层接收数据有两种方式:a),从RLC接收RLC PDU;b),直接从RRC接收的数据包。
对于方式a),为上面1,2,3步的依次进行,数据包经过RLC处理后,发送MAC。
对于方式b),因为PDCP/RLC协议层都是TM模式,RRC PDU经过了PDCP/RLC后,内容没有变化。为了节约传输时间,RRC可以直接把该控制数据包和其对应的SRB ID一起发送给MAC。
MAC的调度:MAC根据该SRB的QoS(Quality of Service:服务质量)参数,比如GBR、Latency等,或者通过其他方式配置的该SRB的需要高优先级调度的标识,比如直接通过RRC给MAC发送调高调度优先级的指示等,在第一个可用的空口频域资源和时域资源上调度该数据包。
为了降低时延,MAC采用多路复制(duplication)的发送的方式发送该数据包,通过使用CA(Carrier Aggregation:载波聚合)的方式,把该数据包在多个载波上同时发送到空口。在每个载波上把发送该数据的HARQ进程的发送次数设置为1或者其它数值,即不进行重传以降低时延和抖动。
如果PDCP和RLC的透传模式是通过发送数据时携带的随路方式发送给MAC的,为了接收端正确解析该数据包,需要把透传模式的指示信息发送给接收端。在该数据包对应的MAC PDU的PDU头中携带该标识。标识长度至少为一个比特,0标识无效值,1标识为透传模式。
其中,UE侧的数据处理流程如下:
1、MAC层从CA的每个载波上接收该数据包。
2、只要有一个接收成功了,则解析该数据包,并进行发送给上层。
2.1如果数据包中的指示域取值为有效值,即为1,则解析之后,MAC层把数据包发送给RRC(比如,可以通过随路标识将数据包发送给RRC),RRC处理后发送给NAS层。
2.2如果数据包中的指示域取值为无效值,即为0,则解析之后,MAC层把数据包发送给RLC。
RLC接收到该RLC PDU,按照该SRB配置的透传模式,处理该数据包。如果是透传模式下的DCCH信道,则把该数据包直接发送给PDCP。
PDCP接收到该数据包后,按照该SRB配置的模式,处理该数据包,然后发送给RRC。
RRC接送到该数据包后,发送给NAS层。
为了实现本申请实施例的方法,本申请实施例还提供一种时间信息传输的处理装置,设置在第一通信设备,如图4所示,该装置包括:第一接收模块401、发送模块402;其中,
第一接收模块401,配置为接收NAS PDU;
发送模块402,配置为确定所述NAS PDU包含时间信息,通过透传模式的SRB将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备。
在一实施例中,发送模块402通过透传模式的SRB将所述时间信息传至第二通信设备,包括:
RRC层通过所述透传模式的SRB将所述时间信息传递至MAC层;
所述MAC层将所述时间信息放入相应的MAC PDU中,发送所述MAC PDU。
在一实施例中,所述装置还包括:
第一配置模块403,配置为在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成所述透传模式的SRB;所述配置参数包括: PDCP层对应的第一配置参数和/或RLC层对应的第二配置参数。
在一实施例中,所述发送模块402根据指示在SRB上将所述时间信息传至第二通信设备,包括:
RRC层将所述NAS PDU和第一标识传递至以下之一:PDCP层或RLC层或MAC层;
若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至RLC层;所述RLC层确定所述第二标识有效时,所述RLC层将所述NAS PDU和第三标识传递至MAC层;所述MAC层确定所述第三标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至MAC层;所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至RLC层,所述RLC层确定所述第一标识有效时,所述RLC层将所述NAS PDU和第二标识传递至MAC层,所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
若RRC层将所述NAS PDU和第一标识传递至MAC层,所述MAC层确定所述第一标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU。
在一实施例中,所述发送模块402还配置为:
所述MAC层通过物理层的无线资源把所述MAC PDU发送到空口或者复制成多份并发送到空口。
实际应用时,第一接收模块401、发送模块402及第一配置模块403,可以由时间信息传输的处理装置中的处理器来实现。当然,处理器需要运行存储器中的计算机程序来实现它的功能。
为了实现本申请实施例的方法,本申请实施例还提供了一种时间信息传输的处理装置,配置在第二通信设备,如图5所示,所述装置包括:第二接收模块501、第一传递模块502及第二传递模块503。
第二接收模块501,配置为接收携带时间信息的MAC PDU;
第一传递模块502,配置为确定所述MAC PDU携带的透传标识有效,在该标识的指示下,通过SRB承载所述时间信息;
第二传递模块503,配置为确定所述MAC PDU携带的透传标识无效,通过透传模式的SRB承载所述时间信息。
在一实施例中,所述第一传递模块502还配置为:
MAC层将所述时间信息通过指示透传至RRC层;
所述RRC层将所述时间信息传递至NAS。
在一实施例中,所述第二传递模块503还配置为:
MAC层通过透传模式的SRB将所述时间信息传递至RRC层;
所述RRC层将所述时间信息传递至NAS。
在一实施例中,所述装置还包括:
第二配置模块504,配置为在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成所述透传模式的SRB;所述配置参数包括:PDCP层对应的第三配置参数和/或RLC层对应的第四配置参数。
实际应用时,第二接收模块501、第一传递模块502、第二传递模块503、及第二配置模块504,可以由时间信息传输的处理装置中的处理器来实现。当然,处理器需要运行存储器中的计算机程序来实现它的功能。
需要说明的是:上述实施例提供的时间信息传输的处理装置在进行时 间信息传输时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的时间信息传输的处理装置与时间信息传输的处理方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述程序模块的硬件实现,且为了实现本申请实施例的方法,本申请实施例还提供一种第一通信设备。图6仅仅示出了该第一通信设备的示例性结构而非全部结构,根据需要可以实施图6示出的部分结构或全部结构。
如图6所示,本申请实施例提供的第一通信设备600包括:至少一个处理器601、存储器602和至少一个网络接口603。第一通信设备600中的各个组件通过总线系统604耦合在一起。可以理解,总线系统604用于实现这些组件之间的连接通信。总线系统604除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线系统604。
本申请实施例中的存储器602用于存储各种类型的数据以支持基站的操作。这些数据的示例包括:用于在第一通信设备600上操作的任何计算机程序。
本申请实施例揭示的时间信息传输的处理方法可以应用于处理器601中,或者由处理器601实现。处理器601可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,时间信息传输的处理方法的各步骤可以通过处理器601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器601可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器601可以实现或者执行本申请实施例中的公开的各方 法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器602,处理器601读取存储器602中的信息,结合其硬件完成本申请实施例提供的时间信息传输的处理方法的步骤。
在示例性实施例中,第一通信设备可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或者其他电子元件实现,用于执行前述方法。
基于上述程序模块的硬件实现,且为了实现本申请实施例的方法,本申请实施例还提供一种第二通信设备。图7仅仅示出了该第二通信设备的示例性结构而非全部结构,根据需要可以实施图7示出的部分结构或全部结构。
如图7所示,本申请实施例提供的第二通信设备700包括:至少一个处理器701、存储器702和至少一个网络接口703。第二通信设备700中的各个组件通过总线系统704耦合在一起。可以理解,总线系统704用于实现这些组件之间的连接通信。总线系统704除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统704。
本申请实施例中的存储器702用于存储各种类型的数据以支持用户设备的操作。这些数据的示例包括:用于在第二通信设备700上操作的任何计算机程序。
本申请实施例揭示的时间信息传输的处理方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,时间信息传输的处理方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成本申请实施例提供的时间信息传输的处理的步骤。
在示例性实施例中,第二通信设备700可以被一个或多个ASIC、DSP、PLD、CPLD、FPGA、通用处理器、控制器、MCU、Microprocessor、或其他电子元件实现,用于执行前述方法。
可以理解,存储器602、702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。 易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在示例性实施例中,本申请实施例还提供了一种存储介质,即计算机存储介质,具体可以是计算机可读存储介质,例如包括存储计算机程序的存储器602、702,上述计算机程序可由第一通信设备的处理器601、第二通信设备的处理器701执行,以完成本申请实施例方法所述的步骤。计算机可读存储介质可以是ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
需要说明的是:“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
另外,本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种时间信息传输的处理方法,应用于第一通信设备,所述方法包括:
    接收非接入层NAS协议数据单元PDU;
    确定所述NAS PDU包含时间信息,通过透传模式的信令无线承载SRB将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备。
  2. 根据权利要求1所述的方法,其中,所述通过透传模式的SRB将所述时间信息传至第二通信设备,包括:
    无线资源控制RRC层通过透传模式的SRB将所述时间信息传递至媒体接入控制MAC层;
    所述MAC层将所述时间信息放入MAC PDU中,发送所述MAC PDU。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成所述透传模式的SRB;所述配置参数包括:透传分组数据会聚协议PDCP层对应的第一配置参数和/或无线链路控制RLC层对应的第二配置参数。
  4. 根据权利要求1所述的方法,其中,所述根据指示在SRB上将所述时间信息传至第二通信设备,包括:
    RRC层将所述NAS PDU和第一标识传递至以下之一:PDCP层、RLC层及MAC层;
    若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至RLC层;所述RLC层确定所述第二标识有效时,所述RLC层将所述 NAS PDU和第三标识传递至MAC层,所述MAC层确定所述第三标识有效时,将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
    若RRC层将所述NAS PDU和第一标识传递至PDCP层,所述PDCP层确定所述第一标识有效时,所述PDCP层将所述NAS PDU和第二标识传递至MAC层;所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
    若RRC层将所述NAS PDU和第一标识传递至RLC层,所述RLC层确定所述第一标识有效时,所述RLC层将所述NAS PDU和第二标识传递至MAC层,所述MAC层确定所述第二标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU;或者,
    若RRC层将所述NAS PDU和第一标识传递至MAC层,所述MAC层确定所述第一标识有效时,所述MAC层将所述时间信息放入透传标识有效的MAC PDU中,发送所述MAC PDU。
  5. 根据权利要求2或者4所述的方法,其中,
    所述MAC层通过物理层的无线资源把所述MAC PDU发送到空口或者复制成多份并发送到空口。
  6. 一种时间信息传输的处理方法,应用于第二通信设备,所述方法包括:
    接收携带时间信息的MAC PDU;
    确定所述MAC PDU携带的透传标识有效,在该标识的指示下,通过SRB承载所述时间信息;或者,确定所述MAC PDU携带的透传标识无效,通过透传模式的SRB承载所述时间信息。
  7. 根据权利要求6所述的方法,其中,所述在该标识的指示下,通过SRB承载所述时间信息,包括:
    MAC层将所述时间信息通过指示透传至RRC层;
    所述RRC层将所述时间信息传递至NAS。
  8. 根据权利要求6所述的方法,其中,所述通过透传模式的SRB承载所述时间信息,包括:
    MAC层通过透传模式的SRB将所述时间信息传递至RRC层;
    所述RRC层将所述时间信息传递至NAS。
  9. 根据权利要求6所述的方法,其中,所述方法还包括:
    在建立RRC连接的过程中或者RRC重配置的过程中设置配置参数,生成所述透传模式的SRB;所述配置参数包括:PDCP层对应的第三配置参数和/或RLC层对应的第四配置参数。
  10. 一种时间信息传输的处理装置,应用于第一通信设备,所述装置包括:
    第一接收模块,配置为接收NAS PDU;
    发送模块,配置为确定所述NAS PDU包含时间信息,通过透传模式的SRB将所述时间信息传至第二通信设备,或者根据指示在SRB上将所述时间信息传至第二通信设备。
  11. 一种时间信息传输的处理装置,应用于第二通信设备,所述装置包括:
    第二接收模块,配置为接收携带时间信息的MAC PDU;
    第一传递模块,配置为确定所述MAC PDU携带的透传标识有效,在该标识的指示下,通过SRB承载所述时间信息;
    第二传递模块,配置为确定所述MAC PDU携带的透传标识无效,通过透传模式的SRB承载所述时间信息。
  12. 一种第一通信设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器,配置为运行计算机程序时,执行权利要求1至5任一项所述方法的步骤。
  13. 一种第二通信设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器,配置为运行计算机程序时,执行权利要求6至9任一项所述方法的步骤。
  14. 一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1至5任一项或者权利要求6至9任一项所述方法的步骤。
PCT/CN2020/117526 2019-11-21 2020-09-24 时间信息传输的处理方法、装置及存储介质 WO2021098375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911148304.1 2019-11-21
CN201911148304.1A CN112825496B (zh) 2019-11-21 2019-11-21 时间信息传输的处理方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021098375A1 true WO2021098375A1 (zh) 2021-05-27

Family

ID=75907400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117526 WO2021098375A1 (zh) 2019-11-21 2020-09-24 时间信息传输的处理方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN112825496B (zh)
WO (1) WO2021098375A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500674A (zh) * 2022-03-22 2022-05-13 康键信息技术(深圳)有限公司 分布式系统数据透传方法、装置、存储介质及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170415A (zh) * 2012-06-27 2014-11-26 华为技术有限公司 消息传输方法、ue及网络设备
CN105846941A (zh) * 2016-05-23 2016-08-10 西安电子科技大学 基于ieee 1588标准的时钟透明传输装置及方法
WO2017136071A1 (en) * 2016-02-05 2017-08-10 Intel Corporation Packet data convergence protocol (pdcp) operation in a transparent mode
CN107979853A (zh) * 2016-10-25 2018-05-01 中兴通讯股份有限公司 数据的传输方法和装置、用户设备及基站
CN108282248A (zh) * 2017-01-05 2018-07-13 电信科学技术研究院 一种数据传输方法、网络侧设备及用户设备
US20190342800A1 (en) * 2018-05-22 2019-11-07 Alexander Sirotkin Mobility management for inter-gnb (next generation node-b) handover in new radio (nr) systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377803B (zh) * 2010-08-12 2013-02-27 华为技术有限公司 一种数据处理方法、装置和系统
CN104662950A (zh) * 2013-02-06 2015-05-27 华为技术有限公司 数据传输方法、装置和系统
CN111954314B (zh) * 2013-08-09 2023-01-06 华为技术有限公司 一种消息传输方法及设备
WO2015018094A1 (zh) * 2013-08-09 2015-02-12 华为技术有限公司 一种消息传输方法及设备
CA3034009A1 (en) * 2018-02-15 2019-08-15 Comcast Cable Communications, Llc Wireless communications using wireless device information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170415A (zh) * 2012-06-27 2014-11-26 华为技术有限公司 消息传输方法、ue及网络设备
WO2017136071A1 (en) * 2016-02-05 2017-08-10 Intel Corporation Packet data convergence protocol (pdcp) operation in a transparent mode
CN105846941A (zh) * 2016-05-23 2016-08-10 西安电子科技大学 基于ieee 1588标准的时钟透明传输装置及方法
CN107979853A (zh) * 2016-10-25 2018-05-01 中兴通讯股份有限公司 数据的传输方法和装置、用户设备及基站
CN108282248A (zh) * 2017-01-05 2018-07-13 电信科学技术研究院 一种数据传输方法、网络侧设备及用户设备
US20190342800A1 (en) * 2018-05-22 2019-11-07 Alexander Sirotkin Mobility management for inter-gnb (next generation node-b) handover in new radio (nr) systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "PDCP transparent mode for LTE/eMTC with CIoT CP solution", 3GPP DRAFT; R2-161265-LTE-SOL2-PDCP-TM, vol. RAN WG2, 6 February 2016 (2016-02-06), Malta, pages 1 - 3, XP051065765 *

Also Published As

Publication number Publication date
CN112825496A (zh) 2021-05-21
CN112825496B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
US20210219105A1 (en) Communications method and apparatus
WO2018130034A1 (zh) 数据处理方法、装置和系统
TWI336577B (en) Method and mobile terminal for communicating data in a wireless communications system
CN111757513B (zh) 通信方法及设备
ES2886360T3 (es) Procedimiento y aparato para transmitir y recibir datos utilizando una pluralidad de portadoras en un sistema de comunicación móvil
TWI425794B (zh) 在一行動通訊系統中傳輸資料的方法
EP3998786A1 (en) Data transmission method and apparatus, first communication node, and second communication node
WO2018202037A1 (zh) 传输数据的方法、终端设备和网络设备
JP7270766B2 (ja) 無線ベアラ構成方法、装置及びシステム
WO2018059518A1 (zh) 一种数据传输方法、装置和系统
CN111148163B (zh) 通信方法及装置
WO2020220943A1 (zh) 一种通信系统和网络设备
WO2015006896A1 (zh) 数据处理装置和方法
CN110999382B (zh) 用于控制分组复制的方法及设备
WO2018059438A1 (zh) 消息传输方法、设备和系统
WO2018166517A1 (zh) 一种数据传输方法、数据发送设备及数据接收设备
WO2020048517A1 (zh) 一种rrc连接方法、设备及系统
WO2017020302A1 (zh) 一种建立数据无线承载的方法及装置
EP4075880A1 (en) Context management method and apparatus
WO2021098375A1 (zh) 时间信息传输的处理方法、装置及存储介质
WO2021136444A1 (zh) 数据传输方法、装置、相关设备及存储介质
WO2017219365A1 (zh) 数据传输的方法和装置
WO2019062725A1 (zh) 一种上行数据传输方法及装置
JP2023105184A (ja) 端末装置、通信方法、および基地局装置
WO2022027523A1 (zh) 一种辅助信息的配置方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890327

Country of ref document: EP

Kind code of ref document: A1