WO2021098366A1 - 一种基于树形qkd网络的量子密钥分发方法及系统 - Google Patents

一种基于树形qkd网络的量子密钥分发方法及系统 Download PDF

Info

Publication number
WO2021098366A1
WO2021098366A1 PCT/CN2020/116326 CN2020116326W WO2021098366A1 WO 2021098366 A1 WO2021098366 A1 WO 2021098366A1 CN 2020116326 W CN2020116326 W CN 2020116326W WO 2021098366 A1 WO2021098366 A1 WO 2021098366A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
relay
qkd
key
untrusted
Prior art date
Application number
PCT/CN2020/116326
Other languages
English (en)
French (fr)
Inventor
陈熹
杨力帆
侯功华
林昕怡
林巍
王远征
邹保平
黄莘程
陈微
钱思源
李恺
黄长贵
叶跃骈
冯笑
黎金城
林睫菲
陈如尹
Original Assignee
国网福建省电力有限公司
国网福建省电力有限公司福州供电公司
国网信通亿力科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网福建省电力有限公司, 国网福建省电力有限公司福州供电公司, 国网信通亿力科技有限责任公司 filed Critical 国网福建省电力有限公司
Priority to US17/251,333 priority Critical patent/US11438149B2/en
Publication of WO2021098366A1 publication Critical patent/WO2021098366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0855Quantum cryptography involving additional nodes, e.g. quantum relays, repeaters, intermediate nodes or remote nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0827Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving distinctive intermediate devices or communication paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/085Secret sharing or secret splitting, e.g. threshold schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords

Definitions

  • the invention relates to the field of quantum communication technology, in particular to a method and system for quantum key distribution based on a tree-shaped QKD network.
  • QKD Quantum Key Distribution
  • QKD Quantum Key Distribution
  • QKD can securely distribute shared random number sequences (which can be used as a symmetric key for encryption and decryption, message authentication and other functions) between communication parties, and attackers cannot eavesdrop on public channels.
  • Quantum key distribution is different from classical cryptography. Its security does not depend on the computational complexity of mathematical algorithms, but is based on the basic laws of quantum physics and can provide unique long-term security guarantees.
  • the QKD system can guarantee in principle that it is invalid to attack the quantum channel alone. If the implementation of the QKD system does not conform to the theoretical design, it will bring the risk of key leakage. It must be ensured that: (1) The data transmitted by the QKD system on the classic channel cannot be tampered with; (2) The terminal of the QKD system must be credible.
  • the tree-type quantum network topology similar to the bus topology is widely used in real scenarios because of its easy scalability, but the security of the entire quantum network will be greatly threatened when the root node of the tree-type topology is tapped.
  • MDI-QKD Measurement-Device-Independent Quantum Key Distribution
  • the tree topology is similar to a combined network topology composed of a multi-level star structure, and this multi-level star structure has more and more nodes from top to bottom.
  • the tree structure adopts a hierarchical centralized control method. Each parent node manages its multiple child nodes.
  • the transmission medium can have many branches and each communication line supports two-way transmission, but these branches do not form a closed loop. Therefore, the tree topology has the following advantages: (1) Easy to expand; (2) Easy to isolate faults.
  • the tree topological structure can extend many branches and sub-branches, and these new nodes and new branches are easily added to the network.
  • the expansion of the quantum network is very complicated, and the tree-type quantum network topology can well solve the problem that new quantum nodes are difficult to join.
  • each node of the tree topology is highly dependent on the root node. If the root node of the tree quantum network is eavesdropped on by an attacker, a large part or even the security of the entire network will be threatened. Therefore, the biggest problem in applying tree topology to quantum networks is that untrusted nodes may cause unbearable security threats.
  • a trusted repeater R is connected between node A and node B, and node A sends K AB to the trusted relay after being encrypted with a one-time pad (OTP) through K AR R, and decrypt to get K AB .
  • the trusted repeater R uses the key K AR to re-encrypt K AB and sends it to the node B. After the node B decrypts the K AB , the node A and the node B can perform encrypted communication through the shared key K AB.
  • an improved trusted relay scheme has been produced: exclusive OR Relay technology.
  • exclusive OR Relay technology only the quantum key after the XOR is temporarily stored at the relay node, and the quantum key plaintext only appears in the short time after the key is generated at the relay node, and it is difficult for the attacker to know the quantum key. The key generation time point, thus improving the security of the user's key.
  • the MDI-QKD protocol solves the problem of attacks on the detection side.
  • This protocol has high security and can invalidate any attacks against detection equipment; secondly, the protocol also has a great advantage over traditional QKD in terms of transmission distance.
  • the combination of this protocol and the decoy state method can ensure the safety of using non-ideal single-photon sources.
  • the trusted relay technology requires that the relay node must be trusted. When the relay node is attacked, the trusted relay will face great security threats. Trusted relay nodes and non-trusted relay nodes co-exist in the real tree-shaped quantum network, so the trusted relay technology still has security problems that cannot be ignored in real scenarios. At present, the transmission distance of MDI-QKD is limited. How to break through the limitation of distance in real scenes is a problem that the MDI-QKD solution must face to achieve large-scale practicality.
  • the purpose of the present invention is to propose a quantum key distribution method and system based on a tree-shaped QKD network, which can realize quantum key distribution between any two points in the tree-shaped network when some nodes are trusted. Effectively reduce the construction and deployment costs of the quantum key distribution network.
  • the invention adopts the following scheme to realize: a quantum key distribution method based on a tree-shaped QKD network.
  • a quantum key distribution method based on a tree-shaped QKD network.
  • the source The node and the destination node use the parent node as the MDI-QKD detector to generate the key.
  • the shared key is transmitted directly through the XOR relay; when the parent node of the source node and the destination node are not the same node , And when there is an untrusted relay node that does not appear continuously in the transmission path, the untrusted node is used as the MDI-QKD detector to generate the key, and then the shared key is transferred through the exclusive OR relay method.
  • Step S1 Confirm the source node S 0 and the destination node S d ; each node confirms whether there is a key generation request according to the broadcast message. Each node checks whether the node needs to perform key generation with other nodes through a broadcast request;
  • Step S2 Determine the path from the source node S 0 to the destination node S d; the path between the parent node of the source node S 0 and the parent node of the destination node S d is unique, so the path between the two points can be determined.
  • Step S3 the source node determines the destination node S 0 and S d parent node position, if the source node S 0 and S d is the destination node is the parent node of the same node, the process proceeds to step S4, otherwise it proceeds to step S5;
  • Step S4 If the parent node is a trusted relay node, directly pass the initial shared key of the source node S 0 and the parent node to the destination node S d through the XOR relay method, end, and mark as successful; if The parent node is an untrusted relay node.
  • the source node S 0 and the destination node S d transmit photons to the parent node’s MDI-QKD receiver through the QKD transmitter, use the MDI-QKD method to generate a shared key, and then use the exclusive OR relay
  • the scheme performs key transmission, ends, and marks the request as successful;
  • Step S5 If all the relay nodes in the path are trustworthy, directly pass the initial shared K 1 key to the destination node S d through the exclusive OR relay scheme, and end, and mark the request as successful; if the path is in The trusted relay and the untrusted relay coexist, go to step S6;
  • Step S6 If untrusted relay nodes appear continuously, the quantum key distribution cannot be performed, and the request is marked as failed; if untrusted relay nodes do not appear continuously, the untrusted node is regarded as MDI-QKD The detector generates the key, and then transmits the shared key through the XOR relay method.
  • step S6 if the untrusted relay node does not continuously appear, using the untrusted node as the MDI-QKD detector to generate the key, and then transfer the shared key through the exclusive OR relay method specifically includes The following steps:
  • Step S61 before the untrusted relay node appears, the shared key is transferred through the exclusive OR relay method
  • Step S62 When the trusted non-shared key is transmitted to the relay node previous S u S A trusted relay node, the node connected to the node S A and S u another trusted relay node S B transmitted through the QKD machine emitted photons to the node S u MDI-QKD receiver using MDI-QKD protocol generate a security key K AB achieved untrusted where the receiver node; K AB and then XOR the encrypted shared key to the node K 1 S B , node S B uses K AB to XOR the received encryption key to obtain the shared key K 1 , and then complete the key transmission from the trusted node to the untrusted node and then to the trusted node.
  • the present invention also provides a quantum key distribution system based on a tree-shaped QKD network, which includes more than one node, and each node composes a tree topology.
  • a quantum key distribution system based on a tree-shaped QKD network, which includes more than one node, and each node composes a tree topology.
  • the present invention Compared with the prior art, the present invention has the following beneficial effects: the present invention provides a quantum key distribution method for a tree network in a coexistence scenario of a trusted relay and an untrusted relay. A detailed solution is presented, which can realize the quantum key distribution between any two points in the above-mentioned network under the condition that some nodes are trusted, which effectively reduces the construction and deployment cost of the quantum key distribution network.
  • Fig. 1 is a tree network deployment diagram in a scenario where a trusted relay and an untrusted relay coexist according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a method according to an embodiment of the present invention.
  • FIG. 3 is a diagram of a specific embodiment of a tree network in a scenario where a trusted relay and an untrusted relay coexist according to an embodiment of the present invention.
  • the tree network topology is similar to the bus topology.
  • the tree network contains branches, and each branch can contain multiple nodes.
  • the tree-type network topology starts from the root node and expands downward, and the hierarchy is distinct.
  • the specific deployment diagram of the tree-type network is shown in Figure 1.
  • the tree network has good scalability and can extend many branches and sub-branches, and it is easier to add new nodes.
  • the root node or a branch node is not trusted, the trusted relay technology alone cannot achieve security.
  • Quantum key distribution In this scenario where trusted relays and untrusted relays coexist, the flow chart of the quantum key distribution method for any two points in the tree network is shown in Figure 2.
  • this embodiment provides a quantum key distribution method based on a tree-shaped QKD network.
  • the source node and the destination node use the parent node as the MDI-QKD detector to generate the key.
  • the shared key is transferred directly through the XOR relay; when the parent node of the source node and the destination node When the nodes are not the same node, and there are untrusted relay nodes that do not appear continuously in the transmission path, the untrusted node is used as the MDI-QKD detector to generate the key, and then the shared key is transmitted through the exclusive OR relay method .
  • Step S1 Confirm the source node S 0 and the destination node S d ; each node confirms whether there is a key generation request according to the broadcast message. Each node checks whether the node needs to perform key generation with other nodes through a broadcast request;
  • Step S2 Determine the path from the source node S 0 to the destination node S d; the path between the parent node of the source node S 0 and the parent node of the destination node S d is unique, so the path between the two points can be determined.
  • Step S3 the source node determines the destination node S 0 and S d parent node position, if the source node S 0 and S d is the destination node is the parent node of the same node, the process proceeds to step S4, otherwise it proceeds to step S5;
  • Step S4 If the parent node is a trusted relay node, directly pass the initial shared key of the source node S 0 and the parent node to the destination node S d through the XOR relay method, end, and mark as successful; if The parent node is an untrusted relay node.
  • the source node S 0 and the destination node S d transmit photons to the parent node’s MDI-QKD receiver through the QKD transmitter, use the MDI-QKD method to generate a shared key, and then use the exclusive OR relay
  • the scheme performs key transmission, ends, and marks the request as successful;
  • Step S5 If all the relay nodes in the path are trustworthy, directly pass the initial shared K 1 key to the destination node S d through the exclusive OR relay scheme, and end, and mark the request as successful; if the path is in The trusted relay and the untrusted relay coexist, go to step S6;
  • Step S6 If untrusted relay nodes appear continuously, the quantum key distribution cannot be performed, and the request is marked as failed; if untrusted relay nodes do not appear continuously, the untrusted node is regarded as MDI-QKD The detector generates the key, and then transmits the shared key through the XOR relay method.
  • step S6 if the untrusted relay node does not continuously appear, the untrusted node is used as the MDI-QKD detector to generate the key, and then the shared key is shared by the XOR relay method. Delivery, specifically including the following steps:
  • Step S61 before the untrusted relay node appears, the shared key is transferred through the exclusive OR relay method
  • Step S62 When the trusted non-shared key is transmitted to the relay node previous S u S A trusted relay node, the node connected to the node S A and S u another trusted relay node S B transmitted through the QKD machine emitted photons to the node S u MDI-QKD receiver using MDI-QKD protocol generate a security key K AB achieved untrusted where the receiver node; K AB and then XOR the encrypted shared key to the node K 1 S B , node S B uses K AB to XOR the received encryption key to obtain the shared key K 1 , and then complete the key transmission from the trusted node to the untrusted node and then to the trusted node.
  • This embodiment also provides a quantum key distribution system based on a tree-shaped QKD network, which includes more than one node, and each node forms a tree topology.
  • a quantum key distribution system based on a tree-shaped QKD network, which includes more than one node, and each node forms a tree topology.
  • the following describes an embodiment of a quantum key distribution method for a tree network in a scenario where a trusted relay and an untrusted relay coexist.
  • the trusted relay node in the current network is known, as shown in Figure 3, node D needs to complete the quantum key distribution with node J when receiving the request.
  • Nodes B and G in the current network are untrusted relay nodes, and all others are It is a trusted relay node.
  • Step 1 Confirm that the request gets the source node D and destination node J;
  • Step 2 Determine the path D ⁇ B ⁇ A ⁇ C ⁇ G ⁇ J;
  • Step 3 According to the path, it is known that there are two untrusted relay nodes B and G, and they are not continuous on the path;
  • Step 4 Node D and node A use node B as a third-party detector to generate the initial key K 0 through the MDI-QKD protocol;
  • Step 5 Node A and node C generate a shared key K 1 through the BB84 protocol;
  • Step 6 Node A uses the key K 1 to XOR encryption K 0 and sends it to node C;
  • Step 7 Node C uses the key K 1 to perform XOR decryption on the received encryption key to obtain K 0 ;
  • Step 8 Node C and node J use node G as a third-party detector to generate a key K 2 through the MDI-QKD protocol;
  • Step 9 Node C uses the key K 2 to XOR encryption K 0 and send it to node J;
  • Step 10 Node J uses the key K 2 to XOR the received encryption key to obtain K 0.
  • the source node D and the destination node J share the initial key K 0 and complete the request.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明涉及一种基于树形QKD网络的量子密钥分发方法及系统,在树形网络中,当源节点与目的节点的父节点为同一节点时,若父节点为不可信节点,源节点和目的节点将父节点作为MDI-QKD探测器生成密钥,若父节点为可信节点,直接通过异或中继进行共享密钥的传递;当源节点与目的节点的父节点不是同一节点,且传输路径中存在不连续出现的非可信中继节点时,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递。本发明可以实现树形网络在部分节点可信的情况下任意两点之间的量子密钥分发,有效降低了量子密钥分发网络的建设及部署成本。

Description

一种基于树形QKD网络的量子密钥分发方法及系统 技术领域
本发明涉及量子通信技术领域,特别是一种基于树形QKD网络的量子密钥分发方法及系统。
背景技术
目前,商用的量子保密通信系统主要基于量子密钥分发(Quantum Key Distribution,QKD)技术实现。基于量子力学原理,QKD能够在通信双方之间安全地分发共享的随机数序列(可作为对称密钥用于加解密、消息认证等功能),且攻击者无法在公共信道上进行窃听。量子密钥分发不同于经典密码学,其安全性并不依赖于数学算法的计算复杂度,而是建立在量子物理学的基本定律之上,能够提供独特的长期安全性保障。
根据QKD系统的组成结构和技术原理,如果QKD系统的实现完全满足协议的设计,那么QKD系统在原理上可以保证单独对量子信道进行攻击是无效的。如果QKD系统的实现不符合理论设计,那么将带来密钥泄露的风险。必须保证:(1)QKD系统在经典信道上传输的数据不可被篡改;(2)QKD系统终端必须可信。类似总线拓扑的树型量子网络拓扑由于其易于扩展性而在现实场景中广泛应用,但是树型拓扑的根节点被窃听时整个量子网络的安全性将受到极大的威胁。
测量设备无关量子密钥分发(Measurement-Device-Independent Quantum Key Distribution,MDI-QKD)可以免疫探测器通道攻击,在节点间设置一个探测装置,对发送方发送过来的光子进行Bell态测量,然后经过相应的数据后处理系统得到安全密钥。但是由于MDI-QKD的性能受距离限制,所有在实际中的应用也难以推广。
在现实树型网络中,只有部分节点是可信的,由于非可信中继节点的存在,可信中继技术无法独立实现安全量子密钥分发。因此,在可信中继节点和非可信中继共存场景下如何实现任意两点的量子密钥分发是一个亟待解决的问题。
树型拓扑类似于由多级的星型结构共同组成的组合网络拓扑,而这种多级星型结构由上往下节点数越来越多。树型结构采用分级的集中控制方式,由每个父节点管理其多个子节点,其传输介质可以由很多分支并且每条通信线路支持双向传输,但是这些分支并不会形成闭合回路。因此,树型拓扑具有以下优点:(1)易于扩展;(2)易于故障隔离。树型拓扑结构可以延展很多分支和子分支,这些新节点和新分支都容易加入到网中。量子网络的扩建十分复杂,而采用树型量子网络拓扑则可以良好地解决新的量子节点难以加入的问题。然而,树型拓扑的各个节点对根节点依赖性强,树型量子网络的根节点如果被攻击者窃听,那么就会有很大一部分甚至整个网络的安全都受到威胁。因此,将树型拓扑应用到量子网络所面临的最大的问题正是不可信节点可能会引起难以承担的安全威胁。
远距离通信需要克服传输介质损耗对信号的影响。经典通信中,可采用放大器增强信号。但在量子网络中,由于量子不可克隆定理,放大器是无法使用的。基于量子纠缠交换,可以实现量子纠缠的中继,进而实现远距离量子通信。但量子中继技术难度很大,还不能实用。目前,为构建远距离量子密钥分发基础设施采用的过渡方案是可信中继器方案。具体原理为:节点A与节点B之间连接一个可信中继器R,节点A将K AB通过K AR以一次性密码本(One-time-pad,OTP)加密后发送至可信中继器R,并解密得到K AB。可信中继器R使用密钥K AR重新加密K AB,并将其发送给节点B,节点B解密后获得K AB,节点A和节点B便可以通过共享密钥K AB进行加密通信。
在可信中继节点,密钥已经失去量子特性,不再受到量子原理的保护,因此,为了增强对可信中继的安全防护,又产生了一种改进的可信中继方案:异或中继技术。这种方案的差异是在中继节点处只会暂存异或后的量子密钥,在中继节点处只有密钥生成后的短暂时间内出现量子密钥明文,而攻击者难以得知量子密钥的生成时间点,因此提高了用户密钥的安全性。
MDI-QKD协议解决了探测端攻击问题,该协议具有很高的安全性,可以使任何针对探测设备的攻击无效化;其次该协议在传输距离上相对传统QKD也有很大优势。该协议和诱骗态方法结合起来可以 保证其使用非理想单光子源的安全性。可信中继技术要求中继节点必须可信,当中继节点被攻击时可信中继将面临极大的安全威胁。在现实的树型量子网络中可信中继节点与非可信中继节点共同存在,因此可信中继技术在现实场景中依然存在着不可忽视的安全问题。目前来说MDI-QKD传输距离有限,如何在现实场景中突破距离的限制是MDI-QKD方案实现大范围实用化必须要面对的问题。
发明内容
有鉴于此,本发明的目的是提出一种基于树形QKD网络的量子密钥分发方法及系统,可以实现树形网络在部分节点可信的情况下任意两点之间的量子密钥分发,有效降低了量子密钥分发网络的建设及部署成本。
本发明采用以下方案实现:一种基于树形QKD网络的量子密钥分发方法,在树形网络中,当源节点与目的节点的父节点为同一节点时,若父节点为不可信节点,源节点和目的节点将父节点作为MDI-QKD探测器生成密钥,若父节点为可信节点,直接通过异或中继进行共享密钥的传递;当源节点与目的节点的父节点不是同一节点,且传输路径中存在不连续出现的非可信中继节点时,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递。
进一步地,包括以下步骤:
步骤S1:确认源节点S 0和目的节点S d;每个节点根据广播的消息确认是否有密钥生成请求。每个节点通过广播的请求查看本节点是否需要与其他节点进行密钥生成;
步骤S2:确定源节点S 0到目的节点S d的路径;源节点S 0的父节点与目的节点S d的父节点之间的路径唯一,因此可以确定两点之间的路径。
步骤S3:判断源节点S 0和目的节点S d的父节点位置,若源节点S 0和目的节点S d的父节点为同一节点,则进入步骤S4,否则进入步骤S5;
步骤S4:若父节点是可信中继节点,则直接通过异或中继方法,将源节点S 0与父节点的初始共享密钥传递到目的节点S d,结束,并标记为成功;若父节点是不可信中继节点,源节点S 0和目的节点S d通过QKD发射机发射光子到父节点的MDI-QKD接收机,利用MDI-QKD方法生成共享密钥,之后采用异或中继方案进行密钥传输,结束,并将请求标记为成功;
步骤S5:若路径中所有中继节点可信,直接通过异或中继方案,逐跳地将初始共享K 1密钥传递到目的节点S d,结束,并将请求标记为成功;若路径中可信中继与非可信中继共存,进入步骤S6;
步骤S6:若连续出现非可信中继节点,则无法进行量子密钥分发,结束,并将请求标记为失败;若未连续出现非可信中继节点,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递。
进一步地,步骤S6中,所述若未连续出现非可信中继节点,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递具体包括以下步骤:
步骤S61:在非可信中继节点出现前,通过异或中继方法进行共享密钥的传递;
步骤S62:当共享密钥传递到非可信中继节点S u的前一可信中继节点S A时,节点S A和连接节点S u的另一可信中继节点S B通过QKD发射机发射光子到节点S u的MDI-QKD接收机,使用MDI-QKD协议来实现接收机节点不可信情况下生成安全密钥K AB;然后用K AB异或加密共享密钥K 1发送到节点S B,节点S B使用K AB对接收到的加密密钥进行异或解密得到共享密钥K 1,进而完成由可信节点至不可信节点再至可信节点的密钥传输。
之后再次出现相同的情况则使用同样的方法,直至将初始共享密钥K 1传递到目的节点S d,并将请 求标记为成功。
本发明还提供了一种基于树形QKD网络的量子密钥分发系统,包括一个以上的节点,各个节点组成树型拓扑,当其中两个节点之间进行密钥分发时,采用如上文所述的方法步骤。
与现有技术相比,本发明有以下有益效果:本发明提供了一种可信中继与非可信中继共存场景下的树型网络的量子密钥分发方法,针对树型量子网络给出了详细方案,可以实现上述网络在部分节点可信的情况下任意两点之间的量子密钥分发,有效降低了量子密钥分发网络的建设及部署成本。
附图说明
图1为本发明实施例的可信中继与非可信中继共存场景下的树型网部署图。
图2为本发明实施例的方法原理图。
图3为本发明实施例的可信中继与非可信中继共存场景下的树型网具体实施例图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
树型网拓扑类似于总线拓扑,树型网络中包含了分支,每个分支又可以包含多个节点。树型网络拓扑从根节点开始向下扩展,层次分明,树型网络具体部署图如图1所示。树型网络具有很好的扩展性,可以延伸出很多分支和子分支,较为容易加入新的节点,但是,当根节点或者某一分支节点不可信时,仅靠可信中继技术无法实现安全的量子密钥分发。在这种可信中继和非可信中继共存场景下,实现树型网中任意两点的量子密钥分发方法流程图如图2。
如图2所示,本实施例提供了一种基于树形QKD网络的量子密钥分发方法,在树形网络中,当源节点与目的节点的父节点为同一节点时,若父节点为不可信节点,源节点和目的节点将父节点作为MDI-QKD探测器生成密钥,若父节点为可信节点,直接通过异或中继进行共享密钥的传递;当源节点与目的节点的父节点不是同一节点,且传输路径中存在不连续出现的非可信中继节点时,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递。
在本实施例中,包括以下步骤:
步骤S1:确认源节点S 0和目的节点S d;每个节点根据广播的消息确认是否有密钥生成请求。每个节点通过广播的请求查看本节点是否需要与其他节点进行密钥生成;
步骤S2:确定源节点S 0到目的节点S d的路径;源节点S 0的父节点与目的节点S d的父节点之间的路径唯一,因此可以确定两点之间的路径。
步骤S3:判断源节点S 0和目的节点S d的父节点位置,若源节点S 0和目的节点S d的父节点为同一节点,则进入步骤S4,否则进入步骤S5;
步骤S4:若父节点是可信中继节点,则直接通过异或中继方法,将源节点S 0与父节点的初始共享密钥传递到目的节点S d,结束,并标记为成功;若父节点是不可信中继节点,源节点S 0和目的节点S d通过QKD发射机发射光子到父节点的MDI-QKD接收机,利用MDI-QKD方法生成共享密钥,之后采用异或中继方案进行密钥传输,结束,并将请求标记为成功;
步骤S5:若路径中所有中继节点可信,直接通过异或中继方案,逐跳地将初始共享K 1密钥传递到目的节点S d,结束,并将请求标记为成功;若路径中可信中继与非可信中继共存,进入步骤S6;
步骤S6:若连续出现非可信中继节点,则无法进行量子密钥分发,结束,并将请求标记为失败;若未连续出现非可信中继节点,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递。
在本实施例中,步骤S6中,所述若未连续出现非可信中继节点,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递,具体包括以下步骤:
步骤S61:在非可信中继节点出现前,通过异或中继方法进行共享密钥的传递;
步骤S62:当共享密钥传递到非可信中继节点S u的前一可信中继节点S A时,节点S A和连接节点S u的另一可信中继节点S B通过QKD发射机发射光子到节点S u的MDI-QKD接收机,使用MDI-QKD协议来实现接收机节点不可信情况下生成安全密钥K AB;然后用K AB异或加密共享密钥K 1发送到节点S B,节点S B使用K AB对接收到的加密密钥进行异或解密得到共享密钥K 1,进而完成由可信节点至不可信节点再至可信节点的密钥传输。
其中,当节点S A为源节点时,节点S A和节点S B将节点S u作为第三方探测器通过MDI-QKD协议生成初始密码K 1
之后再次出现相同的情况则使用同样的方法,直至将初始共享密钥K 1传递到目的节点S d,并将请求标记为成功。
本实施例还提供了一种基于树形QKD网络的量子密钥分发系统,包括一个以上的节点,各个节点组成树型拓扑,当其中两个节点之间进行密钥分发时,采用如上文所述的方法步骤。
特别的,如图3所示,以下描述可信中继与非可信中继共存场景下的树型网的量子密钥分发方法的一个实施例。假设当前网络中的可信中继节点已知,如图3所示,节点D收到请求需要与节点J完成量子密钥分发,当前网络中节点B、G为不可信中继节点,其他均为可信中继节点。
接下来按照步骤完成请求:
步骤1:确认请求得到源节点D和目的节点J;
步骤2:确定路径D→B→A→C→G→J;
步骤3:根据路径得知有两个非可信中继节点B、G,且不是在路径上连续;
步骤4:节点D与节点A将节点B作为第三方探测器通过MDI-QKD协议生成初始密钥K 0
步骤5:节点A和节点C通过BB84协议生成共享密钥K 1
步骤6:节点A使用密钥K 1异或加密K 0并发送给节点C;
步骤7:节点C使用密钥K 1对接受到的加密密钥进行异或解密得到K 0
步骤8:节点C与节点J将节点G作为第三方探测器通过MDI-QKD协议生成密钥K 2
步骤9:节点C使用密钥K 2异或加密K 0并发送给节点J;
步骤10:节点J使用密钥K 2对接受到的加密密钥进行异或解密得到K 0,源节点D和目的节点J实现共享初始密钥K 0,完成请求。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和 /或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (4)

  1. 一种基于树形QKD网络的量子密钥分发方法,其特征在于,在树形网络中,当源节点与目的节点的父节点为同一节点时,若父节点为不可信节点,源节点和目的节点将父节点作为MDI-QKD探测器生成密钥,若父节点为可信节点,直接通过异或中继进行共享密钥的传递;当源节点与目的节点的父节点不是同一节点,且传输路径中存在不连续出现的非可信中继节点时,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递。
  2. 根据权利要求1所述的一种基于树形QKD网络的量子密钥分发方法,其特征在于,包括以下步骤:
    步骤S1:确认源节点S 0和目的节点S d
    步骤S2:确定源节点S 0到目的节点S d的路径;
    步骤S3:判断源节点S 0和目的节点S d的父节点位置,若源节点S 0和目的节点S d的父节点为同一节点,则进入步骤S4,否则进入步骤S5;
    步骤S4:若父节点是可信中继节点,则直接通过异或中继方法,将源节点S 0与父节点的初始共享密钥传递到目的节点S d,结束;若父节点是不可信中继节点,源节点S 0和目的节点S d通过QKD发射机发射光子到父节点的MDI-QKD接收机,利用MDI-QKD方法生成共享密钥,之后采用异或中继方案进行密钥传输,结束;
    步骤S5:若路径中所有中继节点可信,直接通过异或中继方案,逐跳地将初始共享K 1密钥传递到目的节点S d,结束;若路径中可信中继与非可信中继共存,进入步骤S6;
    步骤S6:若连续出现非可信中继节点,则无法进行量子密钥分发,结束;若未连续出现非可信中继节点,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递。
  3. 根据权利要求2所述的一种基于树形QKD网络的量子密钥分发方法,其特征在于,步骤S6中,所述若未连续出现非可信中继节点,将非可信节点作为MDI-QKD探测器生成密钥,再通过异或中继方法进行共享密钥的传递具体包括以下步骤:
    步骤S61:在非可信中继节点出现前,通过异或中继方法进行共享密钥的传递;
    步骤S62:当共享密钥传递到非可信中继节点S u的前一可信中继节点S A时,节点S A和连接节点S u的另一可信中继节点S B通过QKD发射机发射光子到节点S u的MDI-QKD接收机,使用MDI-QKD协议来实现接收机节点不可信情况下生成安全密钥K AB;然后用K AB异或加密共享密钥K 1发送到节点S B,节点S B使用K AB对接收到的加密密钥进行异或解密得到共享密钥K 1,进而完成由可信节点至不可信节点再至可信节点的密钥传输。
  4. 一种基于树形QKD网络的量子密钥分发系统,其特征在于,包括一个以上的节点,各个节点组成树型拓扑,当其中两个节点之间进行密钥分发时,采用如权利要求1-3任一项所述的方法步骤。
PCT/CN2020/116326 2019-11-21 2020-09-18 一种基于树形qkd网络的量子密钥分发方法及系统 WO2021098366A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/251,333 US11438149B2 (en) 2019-11-21 2020-09-18 Quantum key distribution method and system based on tree QKD network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911145256.0 2019-11-21
CN201911145256.0A CN110808837B (zh) 2019-11-21 2019-11-21 一种基于树形qkd网络的量子密钥分发方法及系统

Publications (1)

Publication Number Publication Date
WO2021098366A1 true WO2021098366A1 (zh) 2021-05-27

Family

ID=69490824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116326 WO2021098366A1 (zh) 2019-11-21 2020-09-18 一种基于树形qkd网络的量子密钥分发方法及系统

Country Status (3)

Country Link
US (1) US11438149B2 (zh)
CN (1) CN110808837B (zh)
WO (1) WO2021098366A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500337A (zh) * 2022-01-24 2022-05-13 西安电子科技大学 基于机器学习的量子城域网端到端可用密钥速率测量方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855438B (zh) * 2019-11-21 2022-09-06 国网福建省电力有限公司 一种基于环形qkd网络的量子密钥分发方法及系统
CN110808837B (zh) * 2019-11-21 2021-04-27 国网福建省电力有限公司 一种基于树形qkd网络的量子密钥分发方法及系统
CN112019331B (zh) * 2020-08-11 2023-09-26 如般量子科技有限公司 一种用于量子保密通信的加解密方法及系统
CN114338000B (zh) * 2020-10-10 2023-11-07 如般量子科技有限公司 基于分层结构的量子密钥分发方法及网络
CN114465718B (zh) * 2022-01-07 2023-11-03 南京邮电大学 量子密钥分发业务的多协议翻译方法及相关设备
CN114598462B (zh) * 2022-02-28 2023-10-17 西安电子科技大学 量子城域网中基于动态调整的端到端密钥生成方法
CN114268441B (zh) * 2022-03-03 2022-05-31 成都量安区块链科技有限公司 一种量子安全应用方法、客户端装置、服务器装置与系统
CN114362947B (zh) * 2022-03-17 2022-12-02 成都量安区块链科技有限公司 一种广域量子密钥服务方法与系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180241553A1 (en) * 2017-02-20 2018-08-23 Kabushiki Kaisha Toshiba Optical quantum communication system
CN109450628A (zh) * 2018-12-18 2019-03-08 华南师范大学 一种即插即用测量设备无关量子密钥分发网络系统及方法
US20190280859A1 (en) * 2016-02-29 2019-09-12 The Board Of Trustees Of The University Of Illinois Reconfigurable Free-Space Quantum Communication System
CN110808837A (zh) * 2019-11-21 2020-02-18 国网福建省电力有限公司 一种基于树形qkd网络的量子密钥分发方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512242B2 (en) * 2003-03-21 2009-03-31 Bbn Technologies Corp. Systems and methods for quantum cryptographic key transport
US20050286723A1 (en) * 2004-06-28 2005-12-29 Magiq Technologies, Inc. QKD system network
US8483394B2 (en) * 2010-06-15 2013-07-09 Los Alamos National Security, Llc Secure multi-party communication with quantum key distribution managed by trusted authority
US9509506B2 (en) * 2011-09-30 2016-11-29 Los Alamos National Security, Llc Quantum key management
US9471280B2 (en) * 2014-01-14 2016-10-18 The Regents Of The University Of Michigan Extraction of random numbers from physical systems
US9086824B1 (en) * 2014-01-15 2015-07-21 International Business Machines Corporation Requirements factorization mechanism
CN104579643B (zh) * 2015-01-04 2018-02-02 华南师范大学 一种两节点测量设备无关量子密钥分发系统
WO2016191679A1 (en) * 2015-05-28 2016-12-01 Massachusetts Institute Of Technology Apparatus and methods for quantum key distribution
GB2546514B (en) * 2016-01-20 2020-03-25 Toshiba Res Europe Limited Quantum communication system and method
US10365895B2 (en) * 2016-08-03 2019-07-30 Scott A. Wilber Synchronized true random number generator
CN107332627B (zh) * 2017-07-24 2019-07-23 中国科学技术大学 一种测量设备无关量子密钥分发系统和方法
ES2717548B2 (es) * 2017-11-08 2020-11-26 Univ Vigo Acuerdo seguro de clave con dispositivos no confiables
CN110266473A (zh) * 2019-04-22 2019-09-20 北京邮电大学 中继节点分发量子密钥的方法、中继节点以及分发方法
US11411722B2 (en) * 2019-05-03 2022-08-09 Quantumxchange, Inc. Method of operation of a quantum key controller
US11469888B2 (en) * 2019-05-03 2022-10-11 Quantumxchange, Inc. Tamper detection in a quantum communications system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190280859A1 (en) * 2016-02-29 2019-09-12 The Board Of Trustees Of The University Of Illinois Reconfigurable Free-Space Quantum Communication System
US20180241553A1 (en) * 2017-02-20 2018-08-23 Kabushiki Kaisha Toshiba Optical quantum communication system
CN109450628A (zh) * 2018-12-18 2019-03-08 华南师范大学 一种即插即用测量设备无关量子密钥分发网络系统及方法
CN110808837A (zh) * 2019-11-21 2020-02-18 国网福建省电力有限公司 一种基于树形qkd网络的量子密钥分发方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PIPARO NICOLO LO, RAZAVI MOHSEN: "Long-Distance Trust-Free Quantum Key Distribution", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ., US, vol. 21, no. 3, 1 May 2015 (2015-05-01), US, pages 123 - 130, XP055814493, ISSN: 1077-260X, DOI: 10.1109/JSTQE.2014.2364129 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500337A (zh) * 2022-01-24 2022-05-13 西安电子科技大学 基于机器学习的量子城域网端到端可用密钥速率测量方法

Also Published As

Publication number Publication date
US20210367773A1 (en) 2021-11-25
CN110808837B (zh) 2021-04-27
US11438149B2 (en) 2022-09-06
CN110808837A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2021098366A1 (zh) 一种基于树形qkd网络的量子密钥分发方法及系统
Ghosh et al. Multi-phase Quantum resistant Framework for Secure Communication in SCADA Systems
WO2016206498A1 (zh) 第一量子节点、第二量子节点、安全通信架构系统及方法
Chang et al. Quantum secure direct communication and authentication protocol with single photons
JP5631743B2 (ja) 量子暗号装置
JP7353375B2 (ja) エポック鍵交換を用いたエンドツーエンドの二重ラチェット暗号化
Mink et al. Quantum key distribution (QKD) and commodity security protocols: Introduction and integration
CN108449145B (zh) 一种基于量子密钥的密文传输方法
CN110855438B (zh) 一种基于环形qkd网络的量子密钥分发方法及系统
WO2022142307A1 (zh) 一种基于安全中继的量子通信方法和通信网络
CN103888249A (zh) 组播通信用代理重加密方法
Wen-Jie et al. Efficient quantum secure direct communication with authentication
Harn et al. General logic-operation-based lightweight group-key distribution schemes for Internet of Vehicles
WO2023078639A1 (en) Quantum-secured communication
Kartheek et al. Security in quantum computing using quantum key distribution protocols
Geddada et al. Distance Based Security using Quantum Entanglement: a survey
Chen et al. A novel tree-topology based routing algorithm for partially-trusted QKD networks
Malathy et al. Quantum Cryptographic Techniques
Lin et al. Quantum key distribution in partially-trusted QKD ring networks
CN112422286B (zh) 一种基于信任中心的量子密钥分发方法
Odedoyin et al. AQuantum CRYPTOGRAPHY PROTOCOL FOR ACCESS CONTROL IN BIG DATA
CN220421835U (zh) 一种安全传输的量子密钥分配系统
El Rifai et al. An IEEE 802.11 quantum handshake using the three-stage protocol
Marchsreiter et al. A PQC and QKD Hybridization for Quantum-Secure Communications
EP4123957A1 (en) A method and system for performing a secure key relay of an encryption key

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890243

Country of ref document: EP

Kind code of ref document: A1