WO2021098272A1 - 一种数据读取方法、装置、计量设备和服务器 - Google Patents

一种数据读取方法、装置、计量设备和服务器 Download PDF

Info

Publication number
WO2021098272A1
WO2021098272A1 PCT/CN2020/105094 CN2020105094W WO2021098272A1 WO 2021098272 A1 WO2021098272 A1 WO 2021098272A1 CN 2020105094 W CN2020105094 W CN 2020105094W WO 2021098272 A1 WO2021098272 A1 WO 2021098272A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
metering
beacon information
encrypted data
server
Prior art date
Application number
PCT/CN2020/105094
Other languages
English (en)
French (fr)
Inventor
宋宜涛
Original Assignee
支付宝(杭州)信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 支付宝(杭州)信息技术有限公司 filed Critical 支付宝(杭州)信息技术有限公司
Publication of WO2021098272A1 publication Critical patent/WO2021098272A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3297Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving time stamps, e.g. generation of time stamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the solutions of the embodiments of this specification belong to the technical field of data processing, and particularly relate to a data reading method, device, metering device and server.
  • the reading of the meter can provide an important reference for relevant departments to charge fees and allocate resources.
  • the traditional manual meter reading method is used to obtain the meter readings.
  • the manual meter reading method not only requires the staff to personally enter the meter to read the meter, but also may require light and climbing, which will cause a large workload and work efficiency. Inferior issues.
  • Automatic meter reading does not require manual participation. It mainly uses a collector connected to the meter to obtain the readings of the meter, and then the collector sends the obtained readings to the concentrator, and the concentrator summarizes the readings of the meters under its jurisdiction Send to the data management center. It can be seen that automatic meter reading can read the information of meters, water meters, gas meters, and heat meters of multiple users at a time, and the meter reading is quick and convenient.
  • the collector when the collector sends the acquired data to the concentrator and the concentrator sends the aggregated meter readings to the data management center, they may be maliciously tampered with, resulting in the final data being not real data. .
  • the embodiments of this specification are intended to provide a data reading method, device, metering device and server, which can complete device data reading with low power consumption, low cost, high efficiency, and high security.
  • the data reading method, device, metering equipment, and server provided in the embodiments of this specification are implemented in the following manners.
  • a method for reading data comprising: acquiring metering data on a metering device, generating first encrypted data based on the metering data, an identification identifier, and a first time stamp, the first time stamp including the metering device acquiring the data The time corresponding to the metering data; the metering device sends beacon information to the terminal device, and the beacon information includes the metering data, the first encrypted data, and the identification identifier; The beacon information is sent to a server; the server generates second encrypted data based on the identification identifier, the metering data, and the corresponding second time stamp when the beacon information is received; the server compares the second The encrypted data and the first encrypted data are recorded when the comparison result meets the recording requirement.
  • a method for reading data comprising: receiving beacon information, the beacon information including metering data, first encrypted data, and an identification mark, the first encrypted data being based on the metering data, the identification mark, and the first encrypted data; A timestamp is generated, and the first timestamp includes the time corresponding to when the metering device obtains the metering data; based on the identification identifier, the metering data, and the second timestamp corresponding to when the beacon information is received Generate second encrypted data; compare the second encrypted data with the first encrypted data, and record the metering data when the comparison result meets the recording requirements.
  • a data reading method comprising: acquiring metering data, generating first encrypted data based on the metering data, an identification identifier, and a first time stamp, the first time stamp including when a metering device acquires the metering data The corresponding time; send beacon information to the server, the beacon information includes the metering data, the first encrypted data, and the identification identifier, so that the server is based on the identification identifier, the metering data And when the second time stamp corresponding to the beacon information is received, second encrypted data is generated, and the measurement data is recorded when it is determined that the comparison result of the second encrypted data and the first encrypted data meets the recording requirement.
  • a data reading device comprising: a receiving module for receiving beacon information, the beacon information including metering data, first encrypted data, and an identification identifier, the first encrypted data being based on the metering data , Generation of an identification and a first time stamp, where the first time stamp includes the time corresponding to when the metering device obtains the metering data; a first generation module for generating based on the identification identifier, the metering data, and receiving The second time stamp corresponding to the beacon information generates second encrypted data; a comparison module is used to compare the second encrypted data with the first encrypted data, and record the metering data when the comparison result meets the recording requirements .
  • a data reading device comprising: a second generating module for acquiring metering data, and generating first encrypted data based on the metering data, an identification identifier, and a first time stamp, the first time stamp including metering The corresponding time when the device obtains the measurement data; the sending module is used to send beacon information to the server, the beacon information includes the measurement data, the first encrypted data, and the identification identifier, so that all The server generates second encrypted data based on the identification identifier, the metering data, and the second timestamp corresponding to the time when the beacon information is received, and determines the difference between the second encrypted data and the first encrypted data. Record the measurement data when the comparison result meets the recording requirements.
  • a server includes a processor and a memory for storing executable instructions of the processor.
  • the processor executes the instructions, receives beacon information.
  • the beacon information includes metering data, first encrypted data, and identification. Identification, the first encrypted data is generated based on the measurement data, an identification identifier, and a first time stamp, the first time stamp includes the time corresponding to when the metering device obtains the measurement data; based on the identification identifier, the The measurement data and the corresponding second time stamp when the beacon information is received generate second encrypted data; compare the second encrypted data with the first encrypted data, and record the measurement when the comparison result meets the recording requirements data.
  • a metering device includes a processor and a memory for storing processor-executable instructions.
  • the processor executes the instructions, the processor obtains metering data, and generates a first time stamp based on the metering data, identification identifier, and first time stamp.
  • the first time stamp includes the time corresponding to when the metering device obtains the metering data; and the beacon information is sent to the server, and the beacon information includes the metering data, the first encrypted data, and the The identification identifier, so that the server generates second encrypted data based on the identification identifier, the metering data, and the corresponding second time stamp when the beacon information is received, and determines that the second encrypted data is The measurement data is recorded when the comparison result of the first encrypted data meets the recording requirement.
  • a data reading system includes a metering device and a server.
  • the metering device acquires metering data, generates first encrypted data based on the metering data, an identification identifier, and a first time stamp, and sends beacon information to the server.
  • a timestamp includes the time corresponding to when the metering device obtains the metering data, the beacon information includes the metering data, the first encrypted data, and the identification identifier; the server receives the beacon information, And generate second encrypted data based on the identification identifier, the metering data, and the corresponding second time stamp when the beacon information is received, compare the second encrypted data with the first encrypted data, and compare the result Record the measurement data when the record requirements are met.
  • a method for reading data comprising: acquiring metering data on a metering device, generating first encrypted data based on the metering data, an identification identifier, and a first time stamp, the first time stamp including the metering device acquiring the data The time corresponding to the metering data; the metering device sends beacon information to the server, the beacon information including the metering data, the first encrypted data, and the identification identifier; the server is based on the identification The identification, the metering data, and the corresponding second time stamp when the beacon information is received generate second encrypted data; the server compares the second encrypted data with the first encrypted data, and when the comparison result matches the record Record the metering data when required.
  • the embodiment of this specification provides a data reading method, device, metering equipment and server.
  • the metering device encrypts its own metering data and then broadcasts it.
  • the server encrypts it based on the corresponding information, and compares the encrypted data with the received encrypted data.
  • the metering data of each metering device can be obtained without visual observation or on-site observation by meter readers, which can ensure the authenticity of the data recorded by the server, and can also effectively solve the problem of malicious tampering during data transmission and improve data reading. Take the security.
  • Figure 1 is a schematic diagram of a scene of a data reading method provided in this specification
  • FIG. 3 is a schematic flowchart of another embodiment of the data reading method provided in this specification.
  • Figure 4 is a schematic flowchart of an embodiment of a method that can be used on one side of a metering device provided in this specification;
  • FIG. 5 is a schematic flowchart of an embodiment of a method that can be used on the server side provided in this specification;
  • FIG. 6 is a block diagram of the hardware structure of a data reading server in an embodiment of this specification.
  • FIG. 7 is a schematic diagram of the module structure of an embodiment of a data reading device that can be used on the server side provided in this specification;
  • Figure 8 is a schematic diagram of the module structure of an embodiment of a data reading device that can be used on the metering equipment side provided in this specification.
  • the metering device may include a device that needs to read its own data, such as a water meter, an electric meter, or a gas meter.
  • the metering device may include a communication module, which can be connected to the terminal device via Bluetooth or WiFi for data transmission, and can also be connected to a remote server to realize data transmission with the server.
  • the terminal device may include a communication module, which may be connected and data transmission with a metering device through Bluetooth or WiFi, or may be connected to a remote server for communication to realize data transmission with the server.
  • the terminal device may include a mobile terminal, such as a smart phone or a tablet computer.
  • the server may include a single computer device, a server cluster composed of multiple servers, or a server structure of a distributed system.
  • the servers, metering devices, and terminal devices described in the embodiments of this specification include different information processing parties that are logically divided.
  • Fig. 1 is a schematic diagram of a scene of a data reading method provided in this specification.
  • metering devices such as water meters, electricity meters, or gas meters
  • terminal devices such as smart phones or tablet computers
  • the metering device and the terminal device can be connected and data transmitted through Bluetooth, and the metering device is in slave mode. Broadcast beacon information.
  • the terminal device can communicate with a remote server to realize data transmission with the server.
  • the metering device can encrypt its own metering data and then broadcast it via Bluetooth.
  • the terminal device can be within a preset distance range and trigger a matching instruction for a specified application.
  • FIG. 2 is a schematic flowchart of an embodiment of the data reading method provided in this specification.
  • this specification provides method operation steps or device structures as shown in the following embodiments or drawings, the method or device may include more or fewer operations after combining some functions based on conventional or without creative labor. Step or module unit. In steps or structures where there is no necessary causal relationship logically, the execution order of these steps or the module structure of the device is not limited to the execution order or module structure shown in the embodiments of this specification or the drawings.
  • the method may include step S10 to step S32.
  • S10 Obtain metering data on the metering device, and generate first encrypted data based on the metering data, the identification identifier, and a first time stamp, where the first time stamp includes the time corresponding to when the metering device acquires the metering data.
  • the metering device may include a device that needs to read its own data, such as a water meter, an electric meter, or a gas meter.
  • the metering device may include a communication module, which can be connected to the terminal device via Bluetooth or WiFi for data transmission, and can also be connected to a remote server to realize data transmission with the server.
  • the measurement data includes data that needs to be read on the measurement device, such as water consumption, electricity consumption, and gas consumption.
  • the identification identifier may include an identifier used to distinguish different devices (hereinafter may be simply referred to as a "device unique identifier"), a device number, and the like.
  • the timestamp can uniquely identify the time of a certain moment.
  • the first time stamp may include the time corresponding to when the metering device obtains the metering data. It should be noted that the unique device identification of the same device can remain unchanged, and the device number can be changed.
  • the metering device may include a broadcast firmware, an encryption module, and a data reading module.
  • the data reading module can be used to obtain current data of the metering device (for example, metering data, time stamp, etc.).
  • the encryption module can be used to perform encryption processing on the data read by the data module.
  • the broadcast firmware may be used to broadcast the data processed by the encryption module, and the broadcast firmware may be BLE (Bluetooth Low Energy) broadcast firmware or WiFi firmware.
  • the encryption processing algorithm may include a one-time password (One-time Password, OTP) algorithm, a one-time password (HMAC-based One-Time Password) encrypted based on a hashed message authentication code (Hashed Message Authentication Code, HMAC) algorithm, HOTP) algorithm and so on.
  • OTP One-time Password
  • HMAC Hashed Message Authentication Code
  • HOTP Hashed Message Authentication Code
  • algorithms such as OTP and HOTP can generate a time-related, unpredictable random number combination at intervals according to a special algorithm, and each password can only be used once.
  • OTP and HOTP may include a time window mechanism, and information encrypted through OTP and HOTP is valid within a preset time period and becomes invalid after a preset time period.
  • the metering data can be acquired through a data reading module included in the metering device, can also be acquired through a smart chip, can also be acquired through a metering device equipped with a smart chip, or can be acquired by other means.
  • the metering device obtains its own metering data as an example for schematic illustration, and other methods are similar, so we will not repeat them.
  • each metering device in order to safely and effectively provide the metering data of the metering equipment to the above-mentioned server, so that the server can accurately record the metering data, and accurately count the usage of each household owner based on the recorded metering data, each metering device It can read its own metering data respectively, and then generate corresponding encrypted data according to the unique device identification included in its own identification, the metering data, and the corresponding time when the metering data is read.
  • the metering device may be an electric meter.
  • the electric meter includes a BLE broadcast firmware, an OTP encryption module, and a data reading module.
  • the staff can trigger the matching instruction of the designated application on the mobile terminal within the preset distance of the metering device to send a request for the current meter data to the meter.
  • the meter can pass the data
  • the reading module obtains the current meter reading and the corresponding time, and then uses the OTP encryption module to generate the first encrypted data from the meter reading, the unique identifier of the meter, and the corresponding time. Since the electricity meter data on which the corresponding first encrypted data is generated is directly read, it can be guaranteed that the electricity meter data is authentic.
  • the identification identifier of the beacon information may not only include a unique identifier for distinguishing different devices, but also a device number. Therefore, in some embodiments, in order to prevent the transmission data from being maliciously tampered with and ensure the security of the transmission data, the metering device may use the unique identifier of the device included in the identification identifier when encrypting the acquired data. In some implementation scenarios, real-time communication can be carried out between the metering device, the terminal device, and the server. In this way, when the metering device obtains the metering data, the terminal device and the server can obtain and save the corresponding time. It should be noted that the terminal device and the server can obtain the corresponding time through any method known to those skilled in the art, which is not limited in this specification.
  • the metering device sends beacon information to a terminal device, where the beacon information includes the metering data, the first encrypted data, and the identification identifier.
  • the identification identifier may include a unique device identifier, a device number, and the like.
  • the metering device after the metering device generates the respective first encrypted data, it can broadcast the metering data, encrypted data, and identification identifier through its built-in Bluetooth or WiFi network.
  • sending beacon information by the metering device to the terminal device may include: the terminal device establishes the said terminal device within a preset distance range of the metering device and/or based on a matching instruction of a specified application on the trigger terminal.
  • the conditions for establishing a communication connection between the metering device and the terminal device may include that the terminal device is within the preset distance range of the metering device or triggers a matching instruction of a designated application on the terminal device, or the terminal device is within the preset distance range of the metering device and triggers The matching instructions of the specified application on the terminal, etc.
  • the conditions for establishing a communication connection may also include other conditions, which are not limited in this specification.
  • the meter reading staff can start the metering app (Application) on the smart phone used, and then establish a communication connection with the metering device by clicking the "data receiving" control on the metering app, so that the metering device can be received Broadcast information.
  • the meter reading staff can start the metering app (Application) on the smartphone used within the preset distance range of the metering device, and then click the "data receiving" control on the metering app to establish a connection with the metering device Communication connection, so that you can receive the information broadcast by the metering device.
  • the terminal device may summarize the received information after receiving the metering data, the encrypted data, and the identification identifier. For example, a meter reading worker starts the metering app on the smart phone used, and clicks the "data receiving" control on the metering app to establish a communication connection with the metering device and receive the information broadcast by each metering device.
  • the information is summarized.
  • the terminal device after the terminal device receives the metering data, encrypted data, and identification, it can be summarized according to the time interval, can also be summarized according to the location information corresponding to the metering device, or can be summarized according to the quantity.
  • the terminal device after receiving the metering data, encrypted data, and identification, the terminal device can summarize the information belonging to the same cell, or it can summarize once when the received information reaches 100, and it can also summarize the information received within a week. Information is summarized, etc.
  • the identification identifier of the beacon information may not only include a unique identifier for distinguishing different devices, but also include device numbers and the like. Therefore, in some embodiments, in order to prevent the transmission data from being maliciously tampered with and to ensure the security of the transmission data, when the metering device broadcasts, the identification identifier included in the beacon information is the device number.
  • the above-mentioned information broadcast by the metering device including metering data, the first encrypted data and the device number are just exemplary descriptions, and the information broadcast by the metering device may also include other information, which is not limited in this specification.
  • S20 The terminal device sends the beacon information to the server.
  • the terminal device may aggregate the beacon information and send it to the server.
  • the terminal device may send the beacon information to the server when the preset sending requirement is met.
  • the preset sending requirement may include that the number of beacon information received by the terminal device reaches the preset number, or the terminal device receives one and sends one to the server, or the terminal device sends the beacon information after the verification of all beacon information is passed. Or it can be sent regularly, such as once an hour.
  • the terminal device may be a mobile terminal.
  • the sending the beacon information to the terminal device, and the terminal device sending the beacon information to the server may include: The mobile terminal establishes a communication connection between the metering device and the mobile terminal within the preset distance range of the metering device and/or based on a matching instruction that triggers a designated application on the mobile terminal; the metering device sends the beacon information To the mobile terminal; the mobile terminal sends the beacon information to the server when it meets the preset sending requirements.
  • the terminal device may aggregate the received information according to the device number and send it to the server .
  • the terminal device may pre-store relevant information of the above-mentioned metering devices, such as an identification identifier, where the device number and the unique device identifier in the pre-stored identification identifier may be pre-set to be associated with each other.
  • the terminal device may further include: S200: generating third encrypted data based on the measurement data, the identification identifier, and the third timestamp corresponding to when the beacon information is received; S202 : Compare the third encrypted data with the first encrypted data, and record the metering data when the comparison result meets the recording requirement.
  • the beacon information may include the metering data, the first encrypted data, and the identification identifier. In other embodiments, the beacon information may include other information, such as third encrypted data, in addition to the metering data, the first encrypted data, and the identification identifier. In some embodiments, meeting the recording requirements may include that the comparison result is within a preset error range, or the comparison result is the same, or others.
  • the terminal device may use the pre-stored information Find the device corresponding to the device number in the device, and obtain the unique identifier of the device, and encrypt the metering data, the unique identifier of the device, and the third time stamp corresponding to the beacon information received by the encryption method, to obtain the first Three encrypted information, and then the terminal device compares the third encrypted data with the first encrypted data, and when the comparison result meets the record requirements, it indicates that the received measurement data of the measurement device and the measurement data on which the first encrypted data was generated In the same way, it can be shown that the received metering data of the metering device is true, and finally the metering data, the identification identifier, and the first encrypted data can be sent to the server, thereby improving the security of data transmission.
  • the terminal device may search for information corresponding to the device number in the pre-stored information. And obtain the unique identifier of the device, encrypt the metering data, the unique identifier of the device, and the third timestamp corresponding to the beacon information received by the encryption method to obtain the third encrypted information, and then the terminal device will The third encrypted data is compared with the first encrypted data. When the comparison result does not meet the recording requirements, it indicates that the received measurement data of the measurement device is different from the measurement data on which the first encrypted data was generated, thereby indicating that the received The received measurement data of the measurement device is untrue. At this time, the untrue situation can be fed back to the relevant technical personnel to enhance the security of the data transmission process.
  • the terminal device may search for the device number in the pre-stored information.
  • the terminal device may search for the device number in the pre-stored information.
  • the terminal device may search for the device number in the pre-stored information.
  • the terminal device may obtain the unique identifier of the device, encrypt the metering data, the unique identifier of the device, and the corresponding third time stamp when the beacon information is received by an encryption method, obtain the third encrypted information, and then transfer the metering data
  • the data, the identification identifier, the first encrypted data, and the third encrypted data are sent to the server so that the server can perform further verification, thereby improving the security of data transmission.
  • the third time stamp may be the corresponding time when the terminal device receives the beacon information.
  • the third time stamp and the first time stamp used when generating the first encrypted data may be in the same time window or a preset time window period. For example, if the preset time window is 60 seconds and the time used to generate the first encrypted data is 16:12:24, the third time stamp can be between 16:12:24 and 16:13:24. .
  • the above encryption method may be the same as the encryption method adopted by the metering device, or may be a method different from the encryption method adopted by the metering device, which is not limited in this specification.
  • the server generates second encrypted data based on the identification identifier, the metering data, and the corresponding second timestamp when the beacon information is received.
  • the second time stamp and the first time stamp may be in the same time window or within a preset time window.
  • the server may pre-store the identification of each metering device.
  • the identification identifier may include a unique device identifier, a device number, and the like. Among them, the device number and the unique identifier of the device can be associated with each other in advance.
  • the second time stamp may include the corresponding time when the server receives the beacon information.
  • the time window may represent a preset time period.
  • the second time stamp and the first time stamp in the same time window can be understood as: taking the first time stamp as the starting time, the sum of the starting time and the preset time period is the ending time, and the second time stamp can be Between the start time and the end time.
  • the second time stamp and the first time stamp are in the same time window, which can prevent data from being tampered with.
  • the server can use an encryption algorithm to identify the metering data and The unique identification of the device in the identification and the corresponding time are encrypted to obtain encrypted data.
  • the server may pre-store the identification identification of each metering device, and the device number included in the identification identification is associated with the unique identification of the device.
  • the identification identification received by the server includes the device number, it can be based on the The device number included in the beacon information searches the server for the corresponding unique device identifier, and then encrypts the metering data, the found device unique identifier, and the corresponding time through an encryption algorithm to obtain the second encrypted data.
  • the server may first search for the corresponding unique device identifier in the server according to the device number in the identification identifier, and then search the found device The unique identification is compared with the unique identification of the device included in the received beacon information, and if the two are the same, the metering data, the unique identification of the device in the identification identification and the corresponding time are encrypted by an encryption algorithm to obtain the second encrypted data.
  • the unique identification of the device found is not the same as the unique identification of the device included in the received beacon information, it can be fed back to relevant technical personnel to enhance the security of the data transmission process.
  • the encryption method may be the encryption method adopted by the metering device, or may be a method different from the encryption method adopted by the metering device, which is not limited in this specification.
  • S32 The server compares the second encrypted data with the first encrypted data, and records the metering data when the comparison result meets the recording requirement.
  • the server after the server generates the second encrypted data, it compares it with the previously received encrypted data to determine whether the received metering data has been tampered with, thereby improving the security of data transmission.
  • meeting the record requirements may include that the comparison result is within a preset error range, or the comparison result is the same, or other requirements, etc.
  • the second encrypted data can be compared with the first encrypted data included in the received beacon information. If the comparison result meets the recording requirements, it indicates that the received measurement data of the measurement device is the same as the measurement data on which the first encrypted data was generated, which can indicate that the received measurement data of the measurement device is true, and the server can record The measurement data of the measurement device. Otherwise, it indicates that the received metering data of the metering device is not the same as the metering data on which the first encrypted data is generated, which can indicate that the received metering data of the metering device may have been maliciously fabricated during the previous data transmission process Or tampered with, it is untrue.
  • the second encrypted data may be compared with the received first encrypted data and third encrypted data.
  • the comparison result of the second encrypted data, the first encrypted data, and the third encrypted data meets the recording requirements, it indicates that the received measurement data of the measurement device is the same as the measurement data on which the first encrypted data was generated, which can indicate The received metering data of the metering device is true, and the server can record the metering data of the metering device.
  • the server can feed back the untrue situation to the relevant technical personnel to strengthen the data Security of the transmission process. In this way, the metering data of each metering device can be obtained without visual observation by the meter reader, and the authenticity of the data recorded by the server can also be guaranteed.
  • This manual also provides another scenario example.
  • each owner's home corresponds to a metering device, and a smart total meter can be set up in the building.
  • each metering device After each metering device reads its metering data and generates the corresponding first encrypted data, it can broadcast via Bluetooth.
  • the smart total meter can be aggregated after scanning and receiving the information broadcast by the metering device, and then establish with the server
  • the communication connection sends the aggregated information to the server, and the server verifies the received information to obtain the real data of the metering device.
  • the metering device and the smart meter can include a Bluetooth module and/or a WiFi module.
  • the metering device and the smart meter can be connected and data transmitted through a Bluetooth or WiFi network, and the metering device is in a slave mode to broadcast information.
  • the smart total meter can also include a remote communication module, which can communicate with a remote server to realize data transmission with the server.
  • the embodiment of this specification provides a data reading method.
  • the metering device can encrypt its own metering data and then broadcast it via Bluetooth. After receiving the information, the server encrypts it based on the corresponding information, and combines the encrypted data with the received data. To compare the encrypted data. In this way, the meter reading personnel can obtain the measurement data of each metering device without visual observation or on-site observation, so as to ensure the authenticity of the data recorded by the server, and effectively solve the problem of malicious tampering during the data transmission process and improve the data. Security of reading.
  • FIG. 3 is a schematic flowchart of another embodiment of the data reading method provided in this specification.
  • the method may include: S40: Obtain measurement data on a measurement device, and generate first encrypted data based on the measurement data, an identification identifier, and a first time stamp, and the first time stamp It includes the time corresponding to when the metering device obtains the metering data; S42: the metering device sends beacon information to the server, and the beacon information includes the metering data, the first encrypted data, and the identification identifier; S50: The server generates second encrypted data based on the identification identifier, the metering data, and the corresponding second time stamp when the beacon information is received; S52: The server compares the second encrypted data with the For the first encrypted data, the measurement data is recorded when the comparison result meets the recording requirement.
  • the metering device may include a Bluetooth module and a WiFi module, and is in the slave mode to broadcast information.
  • the metering device may also include a remote communication module, which can communicate with a remote server to realize data transmission with the server.
  • each metering device after each metering device reads its metering data and generates the corresponding first encrypted data, it can broadcast via Bluetooth or WiFi network. After the server scans and receives the information broadcast by the metering device, it can By verifying the received information, the real data of the metering equipment can be obtained. In this way, not only does the meter readers need to observe with the naked eye or on-site observation, but also does not need terminal equipment to perform corresponding processing, can obtain the measurement data of each metering device, ensure the authenticity of the data recorded by the server, and improve the security of data reading.
  • Fig. 4 is a schematic flowchart of an embodiment of a method that can be used on one side of a metering device provided in this specification.
  • the method may include: S60: Obtain metering data, and generate first encrypted data based on the metering data, the identification identifier, and a first timestamp, where the first timestamp includes acquisition by the metering device The time corresponding to the measurement data; S62: Send beacon information to the server, where the beacon information includes the measurement data, the first encrypted data, and the identification identifier, so that the server is based on the The identification identifier, the metering data, and the corresponding second time stamp when the beacon information is received generate second encrypted data, and when it is determined that the comparison result of the second encrypted data and the first encrypted data meets the recording requirements Record the measurement data at the time.
  • the sending of the beacon information to the terminal device may adopt a Bluetooth or WiFi network.
  • the sending the beacon information to the server may include: sending the beacon information to a terminal device, and the terminal device sends the beacon information to the server.
  • the terminal device may be a mobile terminal. Accordingly, the sending the beacon information to the terminal device, and the terminal device sending the beacon information to the server may include: the mobile terminal The terminal establishes a communication connection between the metering device and the mobile terminal within the preset distance range of the metering device and/or based on a matching instruction that triggers a designated application on the mobile terminal; the metering device sends the beacon information to The mobile terminal; the mobile terminal sends the beacon information to the server when it reaches a preset sending requirement.
  • the metering device can start to obtain the corresponding metering data based on the instruction, and generate the first encrypted data based on the metering data, the identification mark and the time stamp, and then broadcast the corresponding information , So that the server generates and compares the second encrypted data based on the received information to determine whether the received metering data is the real data obtained by the metering device, thereby preventing malicious tampering or falsification during data transmission.
  • Fig. 5 is a schematic flowchart of an embodiment of a method that can be used on the server side provided in this specification.
  • the method may include: S70: receiving beacon information, where the beacon information includes metering data, first encrypted data, and an identification identifier, and the first encrypted data is based on the metering data , Generation of an identification and a first timestamp, where the first timestamp includes the time corresponding to when the metering device obtains the metering data; S72: based on the identification, the metering data, and the beacon information received Generate second encrypted data corresponding to the second timestamp at time; S74: compare the second encrypted data with the first encrypted data, and record the metering data when the comparison result meets the recording requirement.
  • the beacon information received by the server may be directly sent by the metering device, or may be forwarded through other terminal devices.
  • the embodiment of this specification provides a data reading method.
  • the metering device encrypts its own metering data and broadcasts it via Bluetooth.
  • the server encrypts it based on the corresponding information, and combines the encrypted data with the received data.
  • the encrypted data is compared.
  • the meter reading personnel can obtain the measurement data of each metering device without visual observation or on-site observation, so as to ensure the authenticity of the data recorded by the server, and effectively solve the problem of malicious tampering during the data transmission process and improve the data. Security of reading.
  • FIG. 6 is a block diagram of the hardware structure of a data reading server in an embodiment of this specification.
  • the server 10 may include one or more (only one is shown in the figure) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA), The memory 104 for storing data, and the transmission module 106 for communication functions.
  • the structure shown in FIG. 6 is only for illustration, and does not limit the structure of the above electronic device.
  • the server 10 may also include more or less components than those shown in FIG. 6, for example, may also include other processing hardware, such as GPU (Graphics Processing Unit, image processor), or have different components from those shown in FIG. Configuration.
  • GPU Graphics Processing Unit
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the data reading method in the embodiment of the present invention.
  • the processor 102 executes the software programs and modules stored in the memory 104 by running the software programs and modules. This kind of functional application and data processing realizes the above-mentioned data reading method.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the storage 104 may further include storage remotely provided with respect to the processor 102, and these remote storages may be connected to the server 10 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission module 106 is used to receive or send data via a network.
  • the above-mentioned specific examples of the network may include a wireless network provided by the communication provider of the server 10.
  • the transmission module 106 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission module 106 may be a radio frequency (RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF radio frequency
  • this specification also provides a data reading device.
  • the described devices may include systems (including distributed systems), software (applications), modules, components, servers, metering equipment, etc. that use the methods described in the embodiments of this specification, combined with necessary hardware implementation equipment devices.
  • the processing device in an embodiment provided in this specification is as described in the following embodiment. Since the implementation scheme of the device to solve the problem is similar to the method, the implementation of the specific processing device in the embodiment of this specification can refer to the implementation of the foregoing method, and the repetition will not be repeated.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived. Specifically, as shown in FIG.
  • FIG. 7 is a schematic diagram of the module structure of an embodiment of a data reading device that can be used on the server side provided in this specification. Specifically, it may include: a receiving module 120, which can be used to receive information. Beacon information, the beacon information includes metering data, first encrypted data, and an identification mark, the first encrypted data is generated based on the metering data, the identification mark, and a first time stamp, and the first time stamp includes a metering device The corresponding time when the metering data is acquired; the first generating module 122 may be used to generate second encrypted data based on the identification identifier, the metering data, and the corresponding second timestamp when the beacon information is received The comparison module 124 can be used to compare the second encrypted data with the first encrypted data, and record the measurement data when the comparison result meets the recording requirements.
  • a receiving module 120 which can be used to receive information. Beacon information, the beacon information includes metering data, first encrypted data, and an identification mark, the first encrypted data is generated based on
  • FIG. 8 is a schematic diagram of the module structure of an embodiment of a data reading device that can be used on the metering equipment side provided in this specification.
  • a second generation module 210 for acquiring metering data, based on the metering data , An identification and a first timestamp to generate first encrypted data, the first timestamp including the time corresponding to when the metering device obtains the metering data;
  • the sending module 212 can be used to send beacon information to the server, the The beacon information includes the measurement data, the first encrypted data, and the identification identifier, so that the server is based on the identification identifier, the measurement data, and the corresponding second time when the beacon information is received
  • the second encrypted data is generated by stamping, and the measurement data is recorded when it is determined that the comparison result of the second encrypted data and the first encrypted data meets the recording requirement.
  • the sending module 212 may include: a first sending unit, which may be used to send the beacon information to a terminal device, and the terminal device sends the beacon information to server.
  • the terminal device is a mobile terminal.
  • the sending the beacon information to the terminal device, and the terminal device sending the beacon information to the server includes: establishing The connecting unit is configured to establish a communication connection between the metering device and the mobile terminal when the mobile terminal is within a preset distance range of the metering device and/or based on a matching instruction that triggers a designated application on the mobile terminal; a second sending unit , For the metering device to send the beacon information to the mobile terminal; a third sending unit, for the mobile terminal to send the beacon information to the server when the mobile terminal meets a preset sending requirement.
  • the data reading method provided in the embodiments of this specification can be implemented in a computer by a processor executing corresponding program instructions, such as using the c++ language of the windows operating system to implement on the PC side, or other corresponding systems such as Linux, android, and iOS
  • corresponding program instructions such as using the c++ language of the windows operating system to implement on the PC side, or other corresponding systems such as Linux, android, and iOS
  • the server may include a processor and a memory for storing executable instructions of the processor, and when the processor executes the instructions, the following is achieved: Beacon information, the beacon information includes metering data, first encrypted data, and an identification mark, the first encrypted data is generated based on the metering data, the identification mark, and a first time stamp, and the first time stamp includes a metering device The time corresponding to when the metering data is acquired; generating second encrypted data based on the identification identifier, the metering data, and the second timestamp corresponding to when the beacon information is received; comparing the second encrypted data with The first encrypted data records the measurement data when the comparison result meets the recording requirement.
  • a metering device provided in this specification implements the embodiments of the above method.
  • the metering device may have a processor and a memory for storing executable instructions of the processor, and when the processor executes the instructions, the following is achieved: Data, generating first encrypted data based on the metering data, identification identifier, and a first time stamp, the first time stamp including the time corresponding to when the metering device obtains the metering data; sending beacon information to the server, the The beacon information includes the measurement data, the first encrypted data, and the identification identifier, so that the server is based on the identification identifier, the measurement data, and the corresponding second time when the beacon information is received
  • the second encrypted data is generated by stamping, and the measurement data is recorded when it is determined that the comparison result of the second encrypted data and the first encrypted data meets the recording requirement.
  • the above-mentioned instructions can be stored in a variety of computer-readable storage media.
  • the computer-readable storage medium may include a physical device for storing information, and the information may be digitized and then stored in an electric, magnetic, or optical medium.
  • the computer-readable storage medium described in this embodiment may include: devices that use electrical energy to store information, such as various types of memory, such as RAM, ROM, etc.; devices that use magnetic energy to store information, such as hard disks, floppy disks, magnetic tapes, and magnets. Core memory, bubble memory, U disk; devices that use optical methods to store information, such as CD or DVD.
  • devices that use electrical energy to store information such as various types of memory, such as RAM, ROM, etc.
  • devices that use magnetic energy to store information such as hard disks, floppy disks, magnetic tapes, and magnets.
  • Core memory bubble memory, U disk
  • devices that use optical methods to store information such as CD or DVD.
  • quantum memory graphene memory
  • the system may include a metering device and a server.
  • the metering device obtains metering data based on the metering data, the identification identifier, and the first
  • the first encrypted data is generated by the timestamp, and beacon information is sent to the server.
  • the first timestamp includes the time corresponding to when the metering device obtains the metering data, and the beacon information includes the metering data, the first Encrypted data and the identification; the server receives the beacon information, and generates second encrypted data based on the identification, the metering data, and the second timestamp corresponding to when the beacon information is received, The second encrypted data is compared with the first encrypted data, and the measurement data is recorded when the comparison result meets the recording requirement.
  • the embodiment of this specification provides a data reading metering device or server.
  • the metering device can encrypt its own metering data and broadcast it via Bluetooth. After receiving the information, the server encrypts it based on the corresponding information, and then The encrypted data is compared with the received encrypted data. In this way, the meter reading personnel can obtain the measurement data of each metering device without visual observation or on-site observation, so as to ensure the authenticity of the data recorded by the server, and effectively solve the problem of malicious tampering during the data transmission process and improve the data. Security of reading.
  • a programmable logic device for example, a Field Programmable Gate Array (Field Programmable Gate Array, FPGA)
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal JHDL
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • VHDL Very-High-Speed Integrated Circuit Hardware Description Language
  • Verilog Verilog
  • the controller can be implemented in any suitable manner.
  • the controller can take the form of, for example, a microprocessor or a processor and a computer-readable medium storing computer-readable program codes (such as software or firmware) executable by the (micro)processor. , Logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers. Examples of controllers include but are not limited to the following microcontrollers: ARC625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicon Labs C8051F320, the memory controller can also be implemented as part of the memory control logic.
  • controllers in addition to implementing the controller in a purely computer-readable program code manner, it is entirely possible to program the method steps to make the controller use logic gates, switches, application-specific integrated circuits, programmable logic controllers, and embedded logic.
  • the same function can be realized in the form of a microcontroller or the like. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for realizing various functions can also be regarded as a structure within the hardware component. Or even, the device for realizing various functions can be regarded as both a software module for realizing the method and a structure within a hardware component.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a vehicle-mounted human-computer interaction device, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, and a tablet.
  • Computers, wearable devices, or any combination of these devices may be implemented by computer chips or entities, or implemented by products with certain functions.
  • the computer may be, for example, a personal computer, a laptop computer, a vehicle-mounted human-computer interaction device, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, and a tablet.
  • each module can be implemented in the same one or more software and/or hardware, or a module that implements the same function can be implemented by a combination of multiple sub-modules or sub-units.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • controllers in addition to implementing the controller in a purely computer-readable program code manner, it is entirely possible to program the method steps to make the controller use logic gates, switches, application-specific integrated circuits, programmable logic controllers, and embedded logic.
  • the same function can be realized in the form of a microcontroller or the like. Therefore, such a controller can be regarded as a hardware component, and the devices included in the controller for realizing various functions can also be regarded as a structure within the hardware component. Or even, the device for realizing various functions can be regarded as both a software module for realizing the method and a structure within a hardware component.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in a computer readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • the embodiments of this specification can be provided as a method, a system or a computer program product. Therefore, the embodiments of this specification may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of this specification may adopt the form of computer program products implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the embodiments of this specification can also be practiced in distributed computing environments. In these distributed computing environments, tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules can be located in local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本说明书实施例公开了一种数据读取方法、装置、计量设备和服务器。通过获取计量设备上的计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,然后将包括所述计量数据、所述第一加密数据以及所述识别标识的信标信息发送至终端设备;终端设备将接收到的信标信息发送至服务器;服务器基于识别标识、计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。本方法提供的数据读取的实施方案,可以实现低功耗、低成本、高效率、高安全性的读取设备数据。

Description

一种数据读取方法、装置、计量设备和服务器 技术领域
本说明书实施例方案属于数据处理的技术领域,特别涉及一种数据读取方法、装置、计量设备和服务器。
背景技术
计量表的读数可以为相关部门收费和调配资源等提供重要参考。许多地区获取计量表的读数均以传统手工抄表方式为主,然而手工抄表方式不仅需要工作人员亲自入户抄表,而且可能需要光线以及爬高,这样就会造成工作量大、工作效率低下等问题。
随着科学技术的发展,传统人工逐户抄表的方式逐渐被自动抄表所取代。自动抄表无需人工参与,其主要是通过与计量表相连接的采集器获取计量表的读数,然后采集器将获取的读数发送至集中器,集中器将所管辖的计量表的读数进行汇总后发送到数据管理中心。可见,自动抄表可一次抄读多个用户的电表、水表、气表、热量表等计量表的信息,抄表快捷方便。然而,自动抄表过程中,采集器将获取的数据发送至集中器以及集中器将汇总后的计量表的读数发送到数据管理中心时都可能会被恶意篡改,导致最终获取的数据不是真实数据。
因此,业内亟需一种可以高效的、安全的获取计量表数据的解决方案。
发明内容
本说明书实施例在于提供一种数据读取方法、装置、计量设备和服务器,可以低功耗、低成本、高效率、高安全性的完成设备数据读取。
本说明书实施例提供的一种数据读取方法、装置、计量设备和服务器是包括以下方式实现的。
一种数据读取方法,所述方法包括:获取计量设备上的计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;所述计量设备发送信标信息至终端设备,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识;所述终端设备将所述信标信息发送至服务器;所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息 时对应的第二时间戳生成第二加密数据;所述服务器比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
一种数据读取方法,所述方法包括:接收信标信息,所述信标信息包括计量数据、第一加密数据以及识别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
一种数据读取方法,所述方法包括:获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
一种数据读取装置,所述装置包括:接收模块,用于接收信标信息,所述信标信息包括计量数据、第一加密数据以及识别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;第一生成模块,用于基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;比较模块,用于比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
一种数据读取装置,所述装置包括:第二生成模块,用于获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;发送模块,用于发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
一种服务器,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现:接收信标信息,所述信标信息包括计量数据、第一加密数据以及识 别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
一种计量设备,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现:获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
一种数据读取系统,包括计量设备和服务器,所述计量设备获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,发送信标信息至服务器,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识;所述服务器接收所述信标信息,并基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
一种数据读取方法,所述方法包括:获取计量设备上的计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;所述计量设备发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识;所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;所述服务器比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
本说明书实施例提供的一种数据读取方法、装置、计量设备和服务器。一些实施例中计量设备把自身的计量数据加密后进行广播,服务器在收到信息后,基于相应的信息进行加密,并将加密数据与接收到的加密数据进行比较。这样,无需抄表人员肉眼观测或上门观测,便可以获取各个计量设备的计量数据,从而可以保证服务器记录数据真实 性的同时,也可以有效解决数据传输过程中被恶意篡改的问题,提高数据读取的安全性。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本说明书提供的一种数据读取方法的一个场景示意图;
图2是本说明书提供的所述一种数据读取方法实施例的流程示意图;
图3是本说明书提供的所述一种数据读取方法另一实施例的流程示意图;
图4是本说明书提供的可以用于计量设备一侧方法一种实施例的流程示意图;
图5是本说明书提供的可以用于服务器一侧方法一种实施例的流程示意图;
图6是本说明书实施例中一种数据读取的服务器的硬件结构框图;
图7是本说明书提供的可以用于服务器一侧的一种数据读取装置实施例的模块结构示意图;
图8是本说明书提供的可以用于计量设备一侧的一种数据读取装置实施例的模块结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书中的一部分实施例,而不是全部的实施例。基于本说明书中的一个实施例或多个实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书实施例保护的范围。
本说明书提供的一种实施方案可以应用到计量设备/终端设备/服务器的系统构架中。所述计量设备可以包括需要读取自身数据的设备,如水表、电表或者燃气表等。所述计量设备可以包括通信模块,可以与终端设备通过蓝牙或WiFi进行连接和数据传输,也可以与远程的服务器进行通信连接,实现与所述服务器的数据传输。所述终端设备可以 包括通信模块,可以与计量设备通过蓝牙或WiFi进行连接和数据传输,也可以与远程的服务器进行通信连接,实现与所述服务器的数据传输。所述终端设备可以包括移动终端,如智能手机或平板电脑等。所述服务器可以包括单台计算机设备,也可以包括多个服务器组成的服务器集群,或者分布式系统的服务器结构。本说明书实施例中所述的服务器、计量设备、终端设备包括从逻辑上划分的不同信息处理方。
如图1所示,图1是本说明书提供的一种数据读取方法的一个场景示意图。其中,水表、电表或者燃气表等计量设备以及智能手机或平板电脑等终端设备包括蓝牙模块,计量设备与终端设备之间可以通过蓝牙进行连接和数据传输,且该计量设备处于从模式,用来广播信标信息。终端设备可以与远程的服务器进行通信连接,从而实现与服务器的数据传输。一些实施场景中,当需要获取计量设备中的数据时,计量设备可以将自身的计量数据加密后通过蓝牙的方式进行广播,终端设备可以在预设距离范围内且触发了指定应用的匹配指令时,建立与计量设备的通信连接,然后将接收到的信标信息进行汇总后发送至服务器,服务器在接收到汇总信息后,进行相应的验证,验证通过后记录计量数据。这样,无需抄表人员肉眼观测或上门观测,便可以获取各个计量设备的计量数据,从而可以保证服务器记录的数据的真实性的同时,可以有效解决数据传输过程中被恶意篡改的问题,提高数据读取的安全性。
下面以一个具体的应用场景为例对本说明书实施方案进行说明。具体的,图2是本说明书提供的所述一种数据读取方法实施例的流程示意图。虽然本说明书提供了如下述实施例或附图所示的方法操作步骤或装置结构,但基于常规或者无需创造性的劳动在所述方法或装置中可以包括更多或者部分功能合并后更少的操作步骤或模块单元。在逻辑性上不存在必要因果关系的步骤或结构中,这些步骤的执行顺序或装置的模块结构不限于本说明书实施例或附图所示的执行顺序或模块结构。所述的方法或模块结构的在实际中的装置、服务器或终端产品应用时,可以按照实施例或者附图所示的方法或模块结构进行顺序执行或者并行执行(例如并行处理器或者多线程处理的环境、甚至包括分布式处理、服务器集群的实施环境)。
需要说明的是,下述计量设备/终端设备/服务器交互的实施例描述并不对基于本说明书的其他可扩展到的应用场景中的技术方案构成限制。具体的一种实施例如图2所示,本说明书提供的一种数据读取方法的一种实施例中,所述方法可以包括步骤S10至步骤S32。
S10:获取计量设备上的计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间。
所述计量设备可以包括需要读取自身数据的设备,如水表、电表或者燃气表等。所述计量设备可以包括通信模块,可以与终端设备通过蓝牙或WiFi进行连接和数据传输,也可以与远程的服务器进行通信连接,实现与所述服务器的数据传输。所述计量数据包括所述计量设备上需要读取的数据,如用水量、用电度数、所用燃气量等。所述识别标识可以包括用来区分不同设备的标识(以下可以简称为“设备唯一标识”)、设备编号等。时间戳可以唯一标识某一刻的时间。所述第一时间戳可以包括计量设备获取计量数据时所对应的时间。需要说明的是,同一设备的设备唯一标识可以保持不变,设备编号可以更改。
本说明书一个实施例中,所述计量设备可以包括广播固件、加密模块以及数据读取模块。其中,所述数据读取模块可以用来获取计量设备当前数据(如,计量数据、时间戳等)。所述加密模块可以用来对所述数据模块读取的数据进行加密处理。所述广播固件可以用来对所述加密模块处理后的数据进行广播,所述广播固件可以是BLE(Bluetooth Low Energy,蓝牙低能耗)广播固件或者WiFi固件等。所述加密处理算法可以包括一次性密码(One-time Password,OTP)算法、基于散列消息身份验证码(Hashed Message Authentication Code,HMAC)算法加密的一次性密码(HMAC-based One-Time Password,HOTP)算法等。一些实施场景中,OTP、HOTP等算法可以根据专门的算法每隔一段时间生成一个与时间相关的、不可预测的随机数字组合,每个口令只能使用一次。一些实施场景中,OTP、HOTP可以包括时间窗口机制,通过OTP、HOTP进行加密后的信息,在预设时间段内有效,超过预设时间段失效。
需要说明的是,一些实施场景中,计量数据可以通过计量设备包括的数据读取模块获取,还可以通过智能芯片获取,也可以通过安装有智能芯片的计量设备获取,还可以通过其他方式获取。本说明书实施例以及附图中以计量设备获取自身计量数据为例进行示意性说明,其它方式类似,对此不作赘述。
本说明书实施例中,为了安全有效地将计量设备的计量数据提供给上述服务器,以便服务器准确地记录计量数据,并根据记录的计量数据准确统计各户业主家的用度情况,每个计量设备可以分别读取自身的计量数据,然后根据自身的识别标识中包括的设备唯一标识、计量数据和读取计量数据时所对应的时间,生成相应的加密数据。
一些实施场景中,所述计量设备可以为电表。例如,在一个小区的某栋楼里有多户业主,每户业主家分别对应一个电表,该电表包括BLE广播固件、OTP加密模块以及数据读取模块。当工作人员需要获取当前电表数据时,工作人员可以在计量设备预设距离范围内触发移动终端上指定应用的匹配指令向电表发送获取当前电表数据的请求,电表收到该请求后,可以通过数据读取模块获取当前电表读数和对应时间,然后通过OTP加密模块将电表读数、电表的唯一标识以及对应时间生成第一加密数据。由于在生成对应的第一加密数据时,所依据的电表数据是直接读取的,所以可以保证该电表数据是真实的。
需要说明的是,由于所述信标信息的识别标识中不仅可以包括用来区分不同设备的唯一标识,而且也可以包括设备编号。所以一些实施例中,为了防止传输数据被恶意篡改、保证传输数据的安全性,计量设备对获取的数据进行加密处理时,可以使用识别标识中包括的设备的唯一标识。一些实施场景中,计量设备、终端设备、服务器之间可以进行实时通信,这样,在计量设备获取计量数据时,终端设备和服务器可以获取对应的时间并保存。需要说明的是,终端设备和服务器获取对应时间可以通过本领域人员知晓的任意一种方式,本说明书对此不作限定。
S12:所述计量设备发送信标信息至终端设备,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识。
所述识别标识可以包括设备唯一标识、设备编号等。
本说明书一个实施例中,所述计量设备在生成各自对应的第一加密数据之后,可以通过自带的蓝牙或者WiFi网络将计量数据、加密数据以及识别标识广播出去。
本说明书一个实施例中,所述计量设备发送信标信息至终端设备可以包括:所述终端设备在计量设备预设距离范围内和/或基于触发终端上指定应用的匹配指令时,建立所述计量设备与所述终端设备的通信连接;所述计量设备将所述信标信息发送至所述终端设备。所述计量设备与所述终端设备建立通信连接的条件可以包括终端设备在计量设备预设距离范围内或触发了终端设备上指定应用的匹配指令或终端设备在计量设备预设距离范围内且触发了终端上指定应用的匹配指令等。需要说明的是,建立通信连接的条件还可以包括其他条件,本说明书对此不作限定。
例如一个实施场景中,抄表工作人员可以启动所使用的智能手机上的计量app(Application),然后通过点击该计量app上的“数据接收”控件与计量设备建立通信 连接,从而可以接收计量设备广播的信息。另一个实施场景中,抄表工作人员可以在计量设备预设距离范围内启动所使用的智能手机上的计量app(Application),然后通过点击该计量app上的“数据接收”控件与计量设备建立通信连接,从而可以接收计量设备广播的信息。
一些实施例中,终端设备在接收到计量数据、加密数据以及识别标识后,可以对接收到的信息进行汇总。例如,抄表工作人员启动所使用的智能手机上的计量app,并点击该计量app上的“数据接收”控件与计量设备建立通信连接并接收到各个计量设备广播的信息后,可以将接收到的信息进行汇总。例如一些实施场景中,终端设备在接收到计量数据、加密数据以及识别标识后,可以按照时间区间进行汇总,也可以按照计量设备对应的位置信息进行汇总,还可以按照数量进行汇总等。例如,终端设备在接收到计量数据、加密数据以及识别标识后,可以将属于同一个小区的信息进行汇总,也可以当接收到的信息满100个时汇总一次,还可以将一周内接收到的信息进行汇总等。
需要说明的是,由于所述信标信息的识别标识中不仅可以包括用来区分不同设备的唯一标识,而且也可以包括设备编号等。所以一些实施例中,为了防止传输数据被恶意篡改、保证传输数据的安全性,计量设备在进行广播时,所述信标信息中包括的识别标识是设备编号。此外,上述计量设备进行广播的信息包括计量数据、第一加密数据以及设备编号只是进行示例性说明,所述计量设备进行广播的信息还可以包括其他信息,本说明书对此不做限定。
S20:所述终端设备将所述信标信息发送至服务器。
本说明书一个实施例中,计量设备发送信标信息至终端设备后,所述终端设备可以将所述信标信息进行汇总后发送至服务器。一些实施例中,终端设备可以在达到预设的发送要求时,将所述信标信息发送至服务器。所述预设的发送要求可以包括终端设备接收到的信标信息的数量达到预设数量,或者终端设备接收到一个向服务器发送一个,或者终端设备对所有信标信息校验通过后才发送,或者是定时发送,如一个小时发一次等。
本说明书一个实施例中,所述终端设备可以为移动终端,相应的,所述将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器可以包括:所述移动终端在计量设备预设距离范围内和/或基于触发移动终端上指定应用的匹配指令时,建立所述计量设备与所述移动终端的通信连接;所述计量设备将所述信标信息发送至所述移动终端;所述移动终端在达到预设的发送要求时,将所述信标信息发送至服务器。
一些实施例中,当所述终端设备接收到的信息包括计量数据、第一加密数据以及识别标识中的设备编号时,所述终端设备可以将接收到的信息按照设备编号进行汇总后发送至服务器。
本说明书提供的另一个实施例中,所述终端设备可以预先存储上述各个计量设备的相关信息,如识别标识,其中预先存储的识别标识中的设备编号与设备唯一标识可以预先设置为相互关联。所述终端设备在接收到所述信标信息后,还可以包括:S200:基于所述计量数据、识别标识以及接收到所述信标信息时对应的第三时间戳生成第三加密数据;S202:比较所述第三加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
一些实施例中,所述信标信息可以包括所述计量数据、所述第一加密数据以及所述识别标识。另一些实施例中,所述信标信息中除了可以包括计量数据、第一加密数据以及识别标识外,还可以包括其他信息,如第三加密数据。一些实施例中,符合记录要求可以包括比较结果在预设误差范围内,或者比较结果相同,或者其它等。
为了提高数据传输的安全性,在一些实施例中,当所述终端设备接收到的信息包括计量数据、第一加密数据以及识别标识中的设备编号时,所述终端设备可以在预先存储的信息中查找与所述设备编号对应的设备,并获取该设备的唯一标识,通过加密方法对计量数据、设备的唯一标识以及接收到所述信标信息时对应的第三时间戳进行加密,获得第三加密信息,然后终端设备将第三加密数据与第一加密数据进行比较,在比较结果符合记录要求时,表明接收到的该计量设备的计量数据与生成第一加密数据时所依据的计量数据相同,从而可以表明接收到的该计量设备的计量数据是真实的,最后可以将计量数据、识别标识、第一加密数据发送至服务器,从而提高数据传输的安全性。
另一些实施例中,当所述终端设备接收到的信息包括计量数据、第一加密数据以及识别标识中的设备编号时,所述终端设备可以在预先存储的信息中查找与所述设备编号对应的设备,并获取该设备的唯一标识,通过加密方法对计量数据、设备的唯一标识以及接收到所述信标信息时对应的第三时间戳进行加密,获得第三加密信息,然后终端设备将第三加密数据与第一加密数据进行比较,在比较结果不符合记录要求时,表明接收到的该计量设备的计量数据与生成第一加密数据时所依据的计量数据不相同,从而可以表明接收到的该计量设备的计量数据是不真实的,此时可以将不真实情况反馈至相关技术人员,以加强数据传输过程安全性。
在另一些实施例中,当所述终端设备接收到的信息包括计量数据、第一加密数据以及识别标识中的设备编号时,所述终端设备可以在预先存储的信息中查找与所述设备编号对应的设备,并获取该设备的唯一标识,通过加密方法对计量数据、设备的唯一标识以及接收到所述信标信息时对应的第三时间戳进行加密,获得第三加密信息,然后将计量数据、识别标识、第一加密数据以及第三加密数据发送至服务器,以便服务器进行进一步的验证,从而提高数据传输的安全性。
需要说明的是,一些实施例中,第三时间戳可以为终端设备接收到信标信息时对应的时间。第三时间戳与生成第一加密数据时所用的第一时间戳可以在同一时间窗口或者预设的时间窗口期。例如,预先设置的时间窗口为60秒,生成第一加密数据时所用的时间为16时12分24秒,则第三时间戳可以在16时12分24秒到16时13分24秒之间。
需要说明的是,上述加密方法可以与计量设备采用的加密方法相同,也可以是与计量设备所采用的加密方法不同的方法,本说明书对此不作限定。
S30:所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据。
一些实施例中,所述第二时间戳与所述第一时间戳可以在同一时间窗口或预设的时间窗口内。
本说明书一个实施例中,所述服务器可以预先存储各个计量设备的识别标识。所述识别标识可以包括设备唯一标识、设备编号等。其中,设备编号与设备唯一标识可以预先相互关联。第二时间戳可以包括服务器接收到信标信息时对应的时间。时间窗口可以表示一个预设时间段。所述第二时间戳与所述第一时间戳在同一时间窗口可以理解为:以第一时间戳为起始时间,起始时间与预设时间段之和为终止时间,第二时间戳可以在起始时间与终止时间之间。一些实施例中,所述第二时间戳与所述第一时间戳在同一时间窗口,可以防止数据被篡改。
本说明书一个实施例中,由于在信息广播和数据传输过程中,可能会存在计量数据被恶意虚构或篡改的情况,所以,服务器在接收到信标信息之后,可以通过加密算法对计量数据、识别标识中的设备唯一标识以及对应时间进行加密,获得加密数据。
一些实施例中,由于所述服务器接收到的识别标识中包括设备编号,所以为了保证数据的安全,可以获得与设备编号对应的设备唯一标识。例如一些实施场景中,所述服 务器可以预先存储各个计量设备的识别标识,且识别标识中包括的设备编号与设备唯一标识相互关联,服务器接收到的识别标识中包括设备编号时,可以根据所述信标信息中包括的设备编号在服务器中查找对应的设备唯一标识,然后通过加密算法对计量数据、查找到的设备唯一标识以及对应时间进行加密,获得第二加密数据。
另一些实施例中,为了保证数据的安全,服务器在接收到所述信标信息之后,可以先根据所述识别标识中的设备编号在服务器中查找对应的设备唯一标识,然后将查找到的设备唯一标识与接收到的信标信息中包括的设备唯一标识进行比较,若二者相同,再通过加密算法对计量数据、识别标识中的设备唯一标识以及对应时间进行加密,获得第二加密数据。一些实施例中,若查找到的设备唯一标识与接收到的信标信息中包括的设备唯一标识不相同,则可以反馈至相关技术人员,以加强数据传输过程安全性。
需要说明的是,所述加密方法可以是计量设备采用的加密方法,也可以是与计量设备所采用的加密方法不同的方法,本说明书对此不作限定。
S32:所述服务器比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
一些实施例中,所述服务器在生成第二加密数据后,会将其与之前接收到的加密数据进行比较,以确定所接收到的计量数据是否被篡改,从而提高数据传输的安全性。其中,符合记录要求可以包括比较结果在预设误差范围内,或者比较结果相同,或者其它要求等。
本说明书一个实施例中,当服务器接收到信标信息并基于相关信息生成第二加密数据后,可以将所述第二加密数据与接收到的信标信息中包括的第一加密数据进行比较。若比较结果符合记录要求,表明接收到的该计量设备的计量数据与生成第一加密数据时所依据的计量数据相同,从而可以表明接收到的该计量设备的计量数据是真实的,服务器可以记录该计量设备的计量数据。否则,表明接收到的计量设备的计量数据与生成第一加密数据时所依据的计量数据并不相同,从而可以表明接收到的该计量设备的计量数据可能在前期的数据传输过程中被恶意虚构或篡改了,是不真实的。
一些实施例中,当服务器接收到计量数据、识别标识、第一加密数据以及第三加密数据时,可以将所述第二加密数据与接收到的第一加密数据、第三加密数据进行比较。当第二加密数据、第一加密数据、第三加密数据的比较结果符合记录要求时,表明接收到的该计量设备的计量数据与生成第一加密数据时所依据的计量数据相同,从而可以表 明接收到的该计量设备的计量数据是真实的,服务器可以记录该计量设备的计量数据。
需要说明的是,当出现接收到的该计量设备的计量数据可能在前期的数据传输过程中被恶意虚构或篡改的情况时,服务器可以将该不真实的情况反馈至相关技术人员,以加强数据传输过程安全性。这样,无需抄表人员肉眼观测,便可以获取各个计量设备的计量数据,还可以保证服务器记录的数据的真实性。
本说明书还提供另一种场景示例。例如,实际应用过程中,在一个小区的某栋楼里有多户业主,每户业主家分别对应一个计量设备,在该栋楼可以设置一个智能总表。各个计量设备在读取各自的计量数据并生成对应的第一加密数据之后可以通过蓝牙的方式进行广播,智能总表通过扫描并接收该计量设备广播的信息后可以进行汇总,然后通过与服务器建立的通信连接将汇总信息发送至服务器,服务器通过对接收到的信息进行验证,从而可以获得计量设备的真实数据。这样,无需抄表人员肉眼观测或上门观测,便可以获取各个计量设备的计量数据,保证服务器记录的数据的真实性。其中,计量设备以及智能总表可以包括蓝牙模块和/或WiFi模块,计量设备与智能总表之间可以通过蓝牙或者WiFi网络进行连接和数据传输,且计量设备处于从模式用来广播信息。此外,智能总表还可以包括远程通信模块,可以与远程的服务器进行通信连接,实现与服务器的数据传输。
本说明书实施例提供的一种数据读取方法,计量设备可以将自身的计量数据加密后通过蓝牙的方式进行广播,服务器在收到信息后,基于相应的信息进行加密,并将加密数据与接收到的加密数据进行比较。这样,无需抄表人员肉眼观测或上门观测,便可以获取各个计量设备的计量数据,从而可以保证服务器记录的数据的真实性的同时,可以有效解决数据传输过程中被恶意篡改的问题,提高数据读取的安全性。
上述实施例从计量设备/终端设备/服务器交互的角度描述的数据读取方法的实施方案。基于上述实施例描述,本说明书还提供一种可以适用于计量设备/服务器交互的角度描述的数据读取方法。图3是本说明书提供的所述一种数据读取方法另一实施例的流程示意图。具体的,一种实施例中,所述方法可以包括:S40:获取计量设备上的计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;S42:所述计量设备发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识;S50:所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时 间戳生成第二加密数据;S52:所述服务器比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
其中,计量设备可以包括蓝牙模块、WiFi模块,且处于从模式用来广播信息。此外,计量设备还可以包括远程通信模块,可以与远程的服务器进行通信连接,实现与服务器的数据传输。
本说明书一个实施例中,各个计量设备在读取各自的计量数据并生成对应的第一加密数据之后可以通过蓝牙或者WiFi网络的方式进行广播,服务器扫描并接收该计量设备广播的信息后,可以通过对接收到的信息进行验证,从而获得计量设备的真实数据。这样,不仅无需抄表人员肉眼观测或上门观测,而且也无需终端设备进行相应的处理,便可以获取各个计量设备的计量数据,保证服务器记录的数据的真实性,提高数据读取的安全性。
本说明书中上述方法的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。相关之处参见方法实施例的部分说明即可。
上述实施例从计量设备/终端设备/服务器交互的角度描述的数据读取方法的实施方案。基于上述实施例描述,本说明书还提供一种可以适用于计量设备一侧的数据读取方法。图4是本说明书提供的可以用于计量设备一侧方法一种实施例的流程示意图。具体的,一种实施例中,所述方法可以包括:S60:获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;S62:发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
一些实施例中,所述将所述信标信息发送至终端设备可以采用蓝牙或者WiFi网络的方式。
一些实施例中,所述发送信标信息至服务器,可以包括:将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器。另一些实施例中,所述终端设备可以为移动终端,相应的,所述将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器可以包括:所述移动终端在计量设备预设距离范围内和/或基于触 发移动终端上指定应用的匹配指令时,建立所述计量设备与所述移动终端的通信连接;所述计量设备将所述信标信息发送至所述移动终端;所述移动终端在达到预设的发送要求时,将所述信标信息发送至服务器。
对于计量设备一侧,当用户或工作人员触发相应的指令时,计量设备可以基于该指令开始获取相应的计量数据,并基于计量数据、识别标识以及时间戳生成第一加密数据,然后广播相应信息,以便服务器基于接收到的信息生成第二加密数据并进行比较,确定接收到的计量数据是否是所述计量设备获得的真实数据,从而可以防止数据传输过程中被恶意篡改或虚构。
本说明书中上述方法的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。相关之处参见方法实施例的部分说明即可。
上述实施例从计量设备/终端设备/服务器交互的角度描述的数据读取方法的实施方案。基于上述实施例描述,本说明书还提供一种可以适用于服务器一侧的数据读取方法。图5是本说明书提供的可以用于服务器一侧方法一种实施例的流程示意图。具体的,一种实施例中,所述方法可以包括:S70:接收信标信息,所述信标信息包括计量数据、第一加密数据以及识别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;S72:基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;S74:比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
本说明书一个实施例中,所述服务器接收的信标信息可以是计量设备直接发送的,也可以是通过其它终端设备转发的。
本说明书实施例提供的一种数据读取方法,计量设备将自身的计量数据加密后通过蓝牙的方式进行广播,服务器在收到信息后,基于相应的信息进行加密,并将加密数据与接收到的加密数据进行比较。这样,无需抄表人员肉眼观测或上门观测,便可以获取各个计量设备的计量数据,从而可以保证服务器记录的数据的真实性的同时,可以有效解决数据传输过程中被恶意篡改的问题,提高数据读取的安全性。
本申请实施例所提供的方法实施例可以在移动终端、计算机终端、服务器或者类似的运算装置中执行。以运行在服务器上为例,图6是本说明书实施例中一种数据读取的 服务器的硬件结构框图。如图6所示,服务器10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输模块106。本领域普通技术人员可以理解,图6所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,服务器10还可包括比图6中所示更多或者更少的组件,例如还可以包括其他的处理硬件,如GPU(Graphics Processing Unit,图像处理器),或者具有与图6所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本发明实施例中的数据读取方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述数据读取方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至服务器10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输模块106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括服务器10的通信供应商提供的无线网络。在一个实例中,传输模块106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输模块106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
基于上述所述的数据读取方法,本说明书还提供一种数据读取装置。所述的装置可以包括使用了本说明书实施例所述方法的系统(包括分布式系统)、软件(应用)、模块、组件、服务器、计量设备等并结合必要的实施硬件的设备装置。基于同一创新构思,本说明书提供的一种实施例中的处理装置如下面的实施例所述。由于装置解决问题的实现方案与方法相似,因此本说明书实施例具体的处理装置的实施可以参见前述方法的实施,重复之处不再赘述。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。具体的,如图7所示,图7是本说明书提供的可以用于服务器一侧的一种数据读取装置实施例的模块结构示意图,具体的可以包括:接收模块120,可以用于接收信标信息,所述信标信息包括计量数据、第一加密数据以及识别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;第一生成模 块122,可以用于基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;比较模块124,可以用于比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
上述实施例所述的装置具体的实施可以参照相关方法实施例的描述,在此不做赘述。
基于上述所述的数据读取方法,本说明书还提供一种可以用于计量设备一侧的数据读取装置。图8是本说明书提供的可以用于计量设备一侧的一种数据读取装置实施例的模块结构示意图,具体的可以包括:第二生成模块210,用于获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;发送模块212,可以用于发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
所述装置的另一个实施例中,所述发送模块212,可以包括:第一发送单元,可以用于将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器。
所述装置的另一个实施例中,所述终端设备为移动终端,相应的,所述将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器包括:建立连接单元,用于所述移动终端在计量设备预设距离范围内和/或基于触发移动终端上指定应用的匹配指令时,建立所述计量设备与所述移动终端的通信连接;第二发送单元,用于所述计量设备将所述信标信息发送至所述移动终端;第三发送单元,用于所述移动终端在达到预设的发送要求时,将所述信标信息发送至服务器。
上述实施例所述的装置具体的实施可以参照相关方法实施例的描述,在此不做赘述。
本说明书实施例提供的数据读取方法可以在计算机中由处理器执行相应的程序指令来实现,如使用windows操作系统的c++语言在PC端实现,或其他例如Linux、android、iOS系统相对应的应用设计语言集合必要的硬件实现,或者基于量子计算机的处理逻辑实现等。具体的,本说明书提供的一种服务器实现上述方法的实施例中,所述服务器可以包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现:接收信标信息,所述信标信息包括计量数据、第一加密数据以及识别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计 量设备获取所述计量数据时所对应的时间;基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
相应的,本说明书提供的一种计量设备实现上述方法的实施例,所述计量设备可以处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现:获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
上述的指令可以存储在多种计算机可读存储介质中。所述计算机可读存储介质可以包括用于存储信息的物理装置,可以将信息数字化后再以利用电、磁或者光学等方式的媒体加以存储。本实施例所述的计算机可读存储介质有可以包括:利用电能方式存储信息的装置如,各式存储器,如RAM、ROM等;利用磁能方式存储信息的装置如,硬盘、软盘、磁带、磁芯存储器、磁泡存储器、U盘;利用光学方式存储信息的装置如,CD或DVD。当然,还有其他方式的可读存储介质,例如量子存储器、石墨烯存储器等等。下述所述的装置或服务器或计量设备或系统中的指令同上描述。
基于前述描述,本说明书还提供一种数据读取系统,所述系统的一个实施例中,可以包括计量设备和服务器,所述计量设备获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,发送信标信息至服务器,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识;所述服务器接收所述信标信息,并基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
需要说明的是,本说明书实施例上述所述的装置、计量设备、服务器、系统,根据相关方法实施例的描述还可以包括其他的实施方式。具体的实现方式可以参照方法实施例的描述,在此不作一一赘述。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分 互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于硬件+程序类实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本说明书实施例提供的一种数据读取的计量设备或服务器,计量设备可以将自身的计量数据加密后通过蓝牙的方式进行广播,服务器在收到信息后,基于相应的信息进行加密,并将加密数据与接收到的加密数据进行比较。这样,无需抄表人员肉眼观测或上门观测,便可以获取各个计量设备的计量数据,从而可以保证服务器记录的数据的真实性的同时,可以有效解决数据传输过程中被恶意篡改的问题,提高数据读取的安全性。
当然,上述实施例的实施方案还可以用于其它需要获取自身数据的应用场景中。
虽然本申请提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或计量设备产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。
尽管本说明书实施例内容中提到计量设备/终端设备/服务器的交互方式、计量设备/服务器的交互方式、加密算法、信息广播等之类的数据获取、交互、处理、比较等操作和数据描述,但是,本说明书实施例并不局限于必须是符合行业通信标准、标准图像数据处理协议、通信协议和标准数据模型/模板或本说明书实施例所描述的情况。某些行业标准或者使用自定义方式或实施例描述的实施基础上略加修改后的实施方案也可以实现上述实施例相同、等同或相近、或变形后可预料的实施效果。应用这些修改或变形后的数据获取、存储、判断、处理方式等获取的实施例,仍然可以属于本说明书的可选实施方案范围之内。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的 改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实 现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、车载人机交互设备、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
虽然本说明书实施例提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的手段可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或终端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境,甚至为分布式数据处理环境)。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、产品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、产品或者设备所固有的要素。在没有更多限制的情况下,并不排除在包括所述要素的过程、方法、产品或者设备中还存在另外的相同或等同要素。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本说明书实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现,也可以将实现同一功能的模块由多个子模块或子单元的组合实现等。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内部包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中 的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
本领域技术人员应明白,本说明书的实施例可提供为方法、系统或计算机程序产品。因此,本说明书实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬 件方面的实施例的形式。而且,本说明书实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本说明书实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本说明书实施例的实施例而已,并不用于限制本说明书实施例。对于本领域技术人员来说,本说明书实施例可以有各种更改和变化。凡在本说明书实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书实施例的权利要求范围之内。

Claims (16)

  1. 一种数据读取方法,所述方法包括:
    获取计量设备上的计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;
    所述计量设备发送信标信息至终端设备,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识;
    所述终端设备将所述信标信息发送至服务器;
    所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;
    所述服务器比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
  2. 一种数据读取方法,所述方法包括:
    接收信标信息,所述信标信息包括计量数据、第一加密数据以及识别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;
    基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;
    比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
  3. 一种数据读取方法,所述方法包括:
    获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;
    发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
  4. 如权利要求3所述的方法,所述发送信标信息至服务器,包括:
    将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器。
  5. 如权利要求4所述的方法,所述将所述信标信息发送至终端设备包括采用下述中的至少一种通信方式实现:
    蓝牙;
    WiFi网络。
  6. 如权利要求4所述的方法,所述终端设备为移动终端,相应的,所述将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器包括:
    所述移动终端在计量设备预设距离范围内和/或基于触发移动终端上指定应用的匹配指令时,建立所述计量设备与所述移动终端的通信连接;
    所述计量设备将所述信标信息发送至所述移动终端;
    所述移动终端在达到预设的发送要求时,将所述信标信息发送至服务器。
  7. 一种数据读取装置,所述装置包括:
    接收模块,用于接收信标信息,所述信标信息包括计量数据、第一加密数据以及识别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;
    第一生成模块,用于基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;
    比较模块,用于比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
  8. 一种数据读取装置,所述装置包括:
    第二生成模块,用于获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;
    发送模块,用于发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
  9. 如权利要求8所述的装置,所述发送模块,包括:
    第一发送单元,用于将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器。
  10. 如权利要求9所述的装置,所述终端设备为移动终端,相应的,所述将所述信标信息发送至终端设备,所述终端设备将所述信标信息发送至服务器包括:
    建立连接单元,用于所述移动终端在计量设备预设距离范围内和/或基于触发移动终端上指定应用的匹配指令时,建立所述计量设备与所述移动终端的通信连接;
    第二发送单元,用于所述计量设备将所述信标信息发送至所述移动终端;
    第三发送单元,用于所述移动终端在达到预设的发送要求时,将所述信标信息发送至服务器。
  11. 如权利要求7或8所述的装置,其中,所述第一时间戳与第二时间戳在预设的时间窗口内。
  12. 一种服务器,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现:
    接收信标信息,所述信标信息包括计量数据、第一加密数据以及识别标识,所述第一加密数据基于所述计量数据、识别标识以及第一时间戳生成,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;
    基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;
    比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
  13. 一种计量设备,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现:
    获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;
    发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识,以使所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,并在确定所述第二加密数据与所述第一加密数据的比较结果符合记录要求时记录所述计量数据。
  14. 一种数据读取系统,包括计量设备和服务器,
    所述计量设备获取计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,发送信标信息至服务器,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识;
    所述服务器接收所述信标信息,并基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据,比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
  15. 一种数据读取方法,所述方法包括:
    获取计量设备上的计量数据,基于所述计量数据、识别标识以及第一时间戳生成第一加密数据,所述第一时间戳包括计量设备获取所述计量数据时所对应的时间;
    所述计量设备发送信标信息至服务器,所述信标信息包括所述计量数据、所述第一加密数据以及所述识别标识;
    所述服务器基于所述识别标识、所述计量数据以及接收到所述信标信息时对应的第二时间戳生成第二加密数据;
    所述服务器比较所述第二加密数据与所述第一加密数据,在比较结果符合记录要求时记录所述计量数据。
  16. 如权利要求1、2、3、15任意一项所述的方法,其中,所述第一时间戳与第二时间戳在预设的时间窗口内。
PCT/CN2020/105094 2019-11-20 2020-07-28 一种数据读取方法、装置、计量设备和服务器 WO2021098272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911139709.9 2019-11-20
CN201911139709.9A CN111131156A (zh) 2019-11-20 2019-11-20 一种数据读取方法、装置、计量设备和服务器

Publications (1)

Publication Number Publication Date
WO2021098272A1 true WO2021098272A1 (zh) 2021-05-27

Family

ID=70495936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105094 WO2021098272A1 (zh) 2019-11-20 2020-07-28 一种数据读取方法、装置、计量设备和服务器

Country Status (3)

Country Link
CN (1) CN111131156A (zh)
TW (1) TWI764146B (zh)
WO (1) WO2021098272A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422551A (zh) * 2022-01-24 2022-04-29 成都秦川物联网科技股份有限公司 具有内置网关的集中运算式能量计量装置及物联网系统
CN117577283A (zh) * 2024-01-16 2024-02-20 四川互慧软件有限公司 一种基于互联网的上门护理管理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131156A (zh) * 2019-11-20 2020-05-08 支付宝(杭州)信息技术有限公司 一种数据读取方法、装置、计量设备和服务器
CN112134696A (zh) * 2020-08-21 2020-12-25 杭州海兴电力科技股份有限公司 一种电能表动态密码生成、通讯方法及其通讯系统
CN114257385A (zh) * 2020-09-10 2022-03-29 西交利物浦大学 一种安全通信方法、装置、电子设备和存储介质
CN114417416A (zh) * 2022-01-24 2022-04-29 成都秦川物联网科技股份有限公司 嵌入信息安全模块的同步式能量计量装置及物联网系统
CN117294535B (zh) * 2023-11-24 2024-04-02 北京邮电大学 一种数据包显式信息表述指令安全验证方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932865A (zh) * 2006-10-10 2007-03-21 潘铁军 一种预付费计量表的付费方法
CN101738516A (zh) * 2008-11-25 2010-06-16 深圳市宝利达实业有限公司 一种电子式电能表数据安全传输的方法及电能表装置
CN102624740A (zh) * 2012-03-30 2012-08-01 奇智软件(北京)有限公司 一种数据交互方法及客户端、服务器
US20140258718A1 (en) * 2013-03-07 2014-09-11 Asymptote Security Llc Method and system for secure transmission of biometric data
CN107231353A (zh) * 2017-06-01 2017-10-03 成都信息工程大学 一种智能电网中基于二叉树的批认证方法
CN111131156A (zh) * 2019-11-20 2020-05-08 支付宝(杭州)信息技术有限公司 一种数据读取方法、装置、计量设备和服务器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100589385C (zh) * 2007-08-28 2010-02-10 浙江大学 基于数字签名的计量值认证方法
CN102571984A (zh) * 2012-02-23 2012-07-11 山东大学 热力计量数据远程传输及管理系统
TWI571086B (zh) * 2012-12-11 2017-02-11 財團法人資訊工業策進會 智慧型電表基礎建設網路系統及其訊息廣播方法
CN105336145A (zh) * 2013-12-17 2016-02-17 江苏省电力公司电力科学研究院 一种无线智能表抄表系统
CN105978972A (zh) * 2016-05-13 2016-09-28 新智数字科技有限公司 一种数据采集及处理方法、装置、系统及相关设备
CN107809434B (zh) * 2017-11-08 2020-09-15 济南大陆机电股份有限公司 一种计量数据有效性验证系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932865A (zh) * 2006-10-10 2007-03-21 潘铁军 一种预付费计量表的付费方法
CN101738516A (zh) * 2008-11-25 2010-06-16 深圳市宝利达实业有限公司 一种电子式电能表数据安全传输的方法及电能表装置
CN102624740A (zh) * 2012-03-30 2012-08-01 奇智软件(北京)有限公司 一种数据交互方法及客户端、服务器
US20140258718A1 (en) * 2013-03-07 2014-09-11 Asymptote Security Llc Method and system for secure transmission of biometric data
CN107231353A (zh) * 2017-06-01 2017-10-03 成都信息工程大学 一种智能电网中基于二叉树的批认证方法
CN111131156A (zh) * 2019-11-20 2020-05-08 支付宝(杭州)信息技术有限公司 一种数据读取方法、装置、计量设备和服务器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422551A (zh) * 2022-01-24 2022-04-29 成都秦川物联网科技股份有限公司 具有内置网关的集中运算式能量计量装置及物联网系统
CN114422551B (zh) * 2022-01-24 2023-06-20 成都秦川物联网科技股份有限公司 具有内置网关的集中运算式能量计量装置及物联网系统
CN117577283A (zh) * 2024-01-16 2024-02-20 四川互慧软件有限公司 一种基于互联网的上门护理管理方法
CN117577283B (zh) * 2024-01-16 2024-03-19 四川互慧软件有限公司 一种基于互联网的上门护理管理方法

Also Published As

Publication number Publication date
CN111131156A (zh) 2020-05-08
TW202121186A (zh) 2021-06-01
TWI764146B (zh) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2021098272A1 (zh) 一种数据读取方法、装置、计量设备和服务器
US11646886B2 (en) Data offload and time synchronization for ubiquitous visual computing witness
TWI688281B (zh) 支付輔助方法、裝置以及設備
TWI719312B (zh) 關於物聯網設備的資訊交互方法、裝置及設備
TWI692990B (zh) 智能設備的綁定方法、裝置和系統、通訊系統
TWI695634B (zh) 信標資料傳輸、基於信標提供服務的方法及裝置
US9053518B1 (en) Constructing social networks
US20140355519A1 (en) Sharing wireless traffic
WO2021114949A1 (zh) 基于区块链的服务提供方法、装置、设备及系统
WO2020119265A1 (zh) 基于区块链的取证方法及装置
CN104159294A (zh) 一种基于蓝牙4.0技术的云定位平台
WO2019165875A1 (zh) 一种交易处理方法、服务器、客户端及系统
WO2022174790A1 (zh) 测试帧的生成
CN105704837A (zh) 一种用于建立无线连接的方法及设备
CN104185141A (zh) 基于蓝牙信标设备的用户区域停留时间的检测系统和方法
WO2020052133A1 (zh) 网关通信方法、网关和能源系统
WO2020108145A1 (zh) 一种报警方法、装置及系统
CN110267248A (zh) Ble通信方法、装置、设备及存储介质
US20230180007A1 (en) Electronic device and method for electronic device to provide ranging-based service
CN109246605A (zh) 终端中应用获取地理位置信息的方法、电子设备及介质
TW201941578A (zh) 一種圖片傳輸方法、系統、伺服器、客戶端及使用者設備
JP7499696B2 (ja) 検針システム、および携帯端末
US20120101829A1 (en) Wholesale device registration system, method, and program product
CN114499828B (zh) 通信方法、物联网终端、网关设备及物联网系统
CN109255596B (zh) 一种口令红包的领取方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889711

Country of ref document: EP

Kind code of ref document: A1