WO2021098208A1 - 690MPa级高强度低屈强比中锰钢中厚钢及制造方法 - Google Patents

690MPa级高强度低屈强比中锰钢中厚钢及制造方法 Download PDF

Info

Publication number
WO2021098208A1
WO2021098208A1 PCT/CN2020/097643 CN2020097643W WO2021098208A1 WO 2021098208 A1 WO2021098208 A1 WO 2021098208A1 CN 2020097643 W CN2020097643 W CN 2020097643W WO 2021098208 A1 WO2021098208 A1 WO 2021098208A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
medium
temperature
yield ratio
rolling
Prior art date
Application number
PCT/CN2020/097643
Other languages
English (en)
French (fr)
Inventor
段东明
孙超
陈颜堂
周玉伟
王从道
李明
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17/756,192 priority Critical patent/US20220411907A1/en
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020227017190A priority patent/KR20220092903A/ko
Publication of WO2021098208A1 publication Critical patent/WO2021098208A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0408Moulds for casting thin slabs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the invention relates to the technical field of iron and steel smelting, in particular to a 690MPa-level high-strength low-yield ratio medium-thickness steel and a manufacturing method.
  • 690MPa grade high-strength steel for construction machinery is widely used in construction machinery, coal mine hydraulic supports, military pontoon bridges, crane booms and other important areas of the national economy.
  • the composition system of this grade of high-strength steel is mostly added with high content of Ni, Cr, and Mo elements.
  • There is a problem of high cost, and thick specifications of products have poor hardenability, uneven structure in the thickness direction, low toughness of the steel core, and too high yield ratio (generally above 0.94). Too high yield ratio will Cause local large deformation and cause overload instability.
  • the present invention provides a 690MPa grade high strength low yield ratio medium manganese steel medium thickness steel, the chemical composition and mass percentage are as follows: C: 0.05% to 0.10%, Mn: 4.1% to 4.7%, Si: 0.15% ⁇ 0.4%, P ⁇ 0.010%, S ⁇ 0.003%, Ti: 0.01% ⁇ 0.05%, Ni+Cr+Mo ⁇ 0.6%, the balance is Fe and unavoidable impurities.
  • the present invention uses the addition of medium manganese to reduce the content of alloying elements such as Ni and Cr in the steel.
  • Medium manganese alloying can effectively control the structure of high-strength steel, and has the advantage of significantly reducing the yield ratio of steel. Reduced costs.
  • the produced steel plates have excellent comprehensive properties, which can solve the problems of poor low-temperature toughness and excessively high yield ratio of high-strength structural steels of various construction machinery, and can meet the requirements of complex environments for the safety performance and construction cost of ultra-high-strength steel.
  • the aforementioned 690MPa grade high-strength low-yield ratio medium-thickness steel is less than 80mm, and the yield ratio is below 0.86.
  • the aforementioned 690MPa grade high-strength low-yield medium-manganese steel medium-thick steel, its chemical composition and mass percentage are as follows: C: 0.09% ⁇ 0.10%, Mn: 4.65% ⁇ 4.7%, Si: 0.18% ⁇ 0.22% , P ⁇ 0.010%, S ⁇ 0.003%, Ti: 0.022% ⁇ 0.028%, Ni+Cr+Mo ⁇ 0.6%, the balance is Fe and unavoidable impurities.
  • the aforementioned 690MPa-grade high-strength low-yield medium-manganese steel medium-thick steel, its chemical composition and mass percentage are as follows: C: 0.05% ⁇ 0.06%, Mn: 4.23% ⁇ 4.47%, Si: 0.20% ⁇ 0.26% , P ⁇ 0.010%, S ⁇ 0.003%, Ti: 0.018% ⁇ 0.026%, Ni+Cr+Mo ⁇ 0.6%, the balance is Fe and unavoidable impurities.
  • the chemical composition and mass percentage of the aforementioned 690MPa-grade high-strength low-yield medium-thickness steel medium-thick steel are as follows: C: 0.05% ⁇ 0.07%, Mn: 4.1% ⁇ 4.28%, Si: 0.15% ⁇ 0.21% , P ⁇ 0.010%, S ⁇ 0.003%, Ti: 0.033% ⁇ 0.045%, Ni+Cr+Mo ⁇ 0.6%, the balance is Fe and unavoidable impurities.
  • Another object of the present invention is to provide a 690MPa grade high-strength low-yield ratio medium-manganese steel and medium-thick steel manufacturing method
  • Hot metal desulfurization treatment and converter smelting reduce the content of S and P in molten steel to P ⁇ 0.010%, S ⁇ 0.003%;
  • LF refining complete the alloying of the required mass fractions of C, Mn, Si, Ti, Ni, Cr, and Mo elements;
  • Casting billet the drawing speed of continuous casting billet is less than or equal to 1.0m/min, and the surface defects are cleaned up;
  • the first-stage opening temperature is ⁇ 1020°C
  • the final rolling temperature is ⁇ 920°C
  • the second-stage opening temperature is ⁇ 890°C
  • the final rolling temperature is ⁇ 800°C
  • Cooling control after rolling cooling rate ⁇ 5°C/s, redness temperature of steel plate surface after cooling is ⁇ 350°C;
  • Heat treatment after rolling send to heat treatment furnace for tempering within 48 hours after rolling, tempering temperature is 600 ⁇ 650°C, soaking time is 40 ⁇ 70min, after tempering, the steel plate is air-cooled to room temperature.
  • C can significantly increase the strength of the structure through interstitial solid solution strengthening. It is an important strengthening element and also an important austenite stabilizing element. However, in order to ensure low-temperature impact toughness and weldability, it is necessary to control its addition amount At a lower level
  • Mn can increase the strength of the structure through substitution and solid solution strengthening, and it can also significantly improve the stability of austenite. Increasing Mn can improve the hardenability of the steel plate so that the steel plate can obtain a martensite structure in a wide cooling rate range. Part of the reverse-transformed austenite structure is formed during phase zone annealing, tempered martensite increases the strength of the steel plate, and the reverse-transformed austenite structure improves the toughness and plasticity of the steel plate;
  • Si is a deoxidizing element in the steelmaking process.
  • a proper amount of Si can inhibit the segregation of Mn and P and improve toughness.
  • Si inhibits the formation of cementite, but too high a content will significantly reduce toughness.
  • the present invention controls Si to 0.15% ⁇ 0.4%;
  • Ti can hinder the migration of grain boundaries at high temperature through the fine and dispersed second phase precipitation form, thereby refining the grains and improving the mechanical properties, and the addition amount is controlled within the range of 0.01% to 0.05%;
  • Ni can stabilize the austenite phase, increase the hardenability, reduce the ductile-brittle transition temperature, and help improve weldability; Cr can produce obvious solid solution strengthening effect, which is beneficial to increase the strength; Mo can increase the return of martensite The strength after fire can also weaken the grain boundary segregation of Mn within a certain content range to improve the toughness; the present invention controls the content of Ni+Cr+Mo within 0.6%, exerting their effects while not significantly increasing the cost;
  • the thickness of the steel plate produced by the present invention is less than 80mm, and the comprehensive mechanical properties meet the technical requirements of Q690M steel in GB/T1591-2018 low-alloy high-strength structural steel, while meeting the yield ratio of not more than 0.86;
  • the steel plate obtained in the present invention adopts tempered martensite + reverse transformed austenite in the microstructure, tempered martensite ensures the strength of the steel plate, and reverse transformed austenite makes the steel plate have good plasticity and toughness. Because the high-strength steel designed with this composition has good hardenability, the entire thickness direction is tempered martensite + reverse transformed austenite;
  • the chemical composition of the present invention uses manganese as the main alloying element, and no or less precious alloying elements are added.
  • the cost per ton of steel is reduced by more than 1,000 yuan compared with the traditional high-strength structural steel of the same level, which has a huge cost advantage;
  • the steel plate of the present invention has excellent core mechanical properties and can meet the requirements of the construction machinery field for the safety performance and construction cost of ultra-high-strength steel under complex environments.
  • Figure 1 is a metallographic structure diagram of a steel sheet in Example 1 of the present invention after heat treatment.
  • This embodiment provides a 690MPa-grade high-strength low-yield ratio medium-thickness steel of manganese steel with a thickness of 70mm. Its chemical composition and mass percentage are as follows: C: 0.09%, Mn: 4.65%, Si: 0.22%, P: 0.008%, S: 0.001%, Ti: 0.028%, Ni+Cr+Mo: 0.58%, the balance is Fe and unavoidable impurities.
  • the manufacturing method of the above-mentioned steel plate is as follows:
  • converter smelting is carried out to reduce the content of S and P in molten steel; after LF refining is completed, the required mass fraction of C, Mn, Si, Ti, Ni, Cr, and Mo elements are alloyed; continuous casting method is adopted, continuous casting billet
  • the drawing speed is 0.5m/min, the surface defects are cleaned up, and a slab with a thickness of 320mm is obtained; the slab is heated to 1130°C, and the soaking time is 70min; the heated slab is rolled in two stages, and the first-stage rolling temperature is 1010 °C, the final rolling temperature is 965°C, the second-stage rolling temperature is 885°C, and the final rolling temperature is 832°C; the rolled steel plate is water-cooled at a cooling rate of 6.1°C/s, and the redness temperature of the steel plate surface after cooling is lower than 200°C; Immediately after tempering heat treatment, the tempering temperature is 640°C, the soaking time is 82min, and the
  • This embodiment provides a 690MPa grade high strength low yield ratio medium manganese steel medium thickness steel with a thickness of 50 mm. Its chemical composition and mass percentage are as follows: C: 0.06%, Mn: 4.47%, Si: 0.26%, P: 0.009%, S: 0.001%, Ti: 0.026%, Ni+Cr+Mo: 0.46%, the balance is Fe and unavoidable impurities.
  • the manufacturing method of the above-mentioned steel plate is as follows:
  • converter smelting is carried out to reduce the content of S and P in molten steel; after LF refining is completed, the required mass fraction of C, Mn, Si, Ti, Ni, Cr, and Mo elements are alloyed; continuous casting method is adopted, continuous casting billet
  • the drawing speed is 0.6m/min, the surface defects are cleaned up, and a slab with a thickness of 320mm is obtained; the slab is heated to 1130°C, and the soaking time is 70min; the heated slab is rolled in two stages, and the first-stage rolling temperature is 1005 °C, the final rolling temperature is 945°C, the second-stage rolling temperature is 865°C, and the final rolling temperature is 823°C; the rolled steel plate is water-cooled at a cooling rate of 7.3°C/s, and the redness temperature of the steel plate surface after cooling is lower than 200°C; Immediately after tempering heat treatment, the tempering temperature is 630°C, the soaking time is 71min, and the
  • This embodiment provides a 690MPa grade high strength low yield ratio medium manganese steel medium thick steel with a thickness of 30mm. Its chemical composition and mass percentage are as follows: C: 0.05%, Mn: 4.28%, Si: 0.21%, P: 0.008%, S: 0.001%, Ti: 0.033%, Ni+Cr+Mo: 0.39%, the balance is Fe and unavoidable impurities.
  • the manufacturing method of the above-mentioned steel plate is as follows:
  • converter smelting is carried out to reduce the content of S and P in molten steel; after LF refining is completed, the required mass fraction of C, Mn, Si, Ti, Ni, Cr, and Mo elements are alloyed; continuous casting method is adopted, continuous casting billet The drawing speed is 0.6m/min, the surface defects are cleaned up, and a slab with a thickness of 260mm is obtained; the slab is heated to 1110°C, and the soaking time is 59min; the heated slab is rolled in two stages, and the first-stage rolling temperature is 1005 °C, the final rolling temperature is 935°C, the second-stage opening temperature is 870°C, and the final rolling temperature is 812°C; the rolled steel plate is water-cooled at a cooling rate of 12.1°C/s, and the redness temperature of the steel plate surface after cooling is less than 200°C; Immediately after tempering heat treatment, the tempering temperature is 610°C, the soaking time is 55min, and the
  • Table 2 shows the comprehensive mechanical performance requirements of 690MPa grade steel Q690M in the GB/T 1591-2018 standard.
  • the present invention uses manganese as the main alloying element and uses cheap Mn element to replace the expensive Ni-Mo alloy.
  • the Mn element improves the hardenability of the steel plate so that the steel plate obtains a martensite structure within a wide cooling rate range, and then forms a partial reverse transformation austenite structure during the annealing process in the two-phase zone.
  • the tempered martensite increases the strength of the steel plate .
  • the reverse transformation austenite structure improves the toughness and plasticity of the steel plate, so that the steel plate has high strength, low yield ratio, excellent core mechanical properties, and can meet the safety performance and construction of ultra-high strength steel in the complex environment in the field of engineering machinery. Cost requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种690MPa级高强度低屈强比中锰钢中厚钢及制造方法,其化学成分及质量百分比如下:C:0.05%~0.10%,Mn:4.1%~4.7%,Si:0.15%~0.4%,P≤0.010%,S≤0.003%,Ti:0.01%~0.05%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质,能够满足工程机械领域在复杂环境下对超高强钢安全性能和建造成本需求。

Description

690MPa级高强度低屈强比中锰钢中厚钢及制造方法 技术领域
本发明涉及钢铁冶炼技术领域,特别是涉及一种690MPa级高强度低屈强比中锰钢中厚钢及制造方法。
背景技术
690MPa级高强度工程机械用钢广泛应用于工程机械、煤矿液压支架、军用舟桥、起重机吊臂等国民经济重要领域,此级别高强钢的成分体系多添加高含量的Ni、Cr、Mo元素,存在成本高的问题,而且厚规格的产品淬透性较差,厚度方向组织不均匀,钢心部韧性较低,屈强比过高(一般达到0.94以上),过高的屈强比则会导致局部大变形而造成超载失稳。
发明内容
为了解决以上技术问题,本发明提供一种690MPa级高强度低屈强比中锰钢中厚钢,其化学成分及质量百分比如下:C:0.05%~0.10%,Mn:4.1%~4.7%,Si:0.15%~0.4%,P≤0.010%,S≤0.003%,Ti:0.01%~0.05%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质。
技术效果:本发明采用中锰的成分添加,降低钢中Ni、Cr等合金元素的含量,中锰合金化能够有效调控高强钢的组织结构,具有明显降低钢材屈强比的优势,极大的降低的成本。通过合理的成分设计以及组织性能控制,实现钢中残余奥氏体含量、大小、分布的精确控制,从而有效提高钢材的止裂性能。生产的钢板具有优异的综合性能,可解决各类工程机械高强结构钢的低温韧性差、屈强比过高等问题,能够满足复杂环境对超高强钢安全性能和建造成本需求。
本发明进一步限定的技术方案是:
前所述的690MPa级高强度低屈强比中锰钢中厚钢,钢板的厚度小于80mm,屈强比在0.86以下。
前所述的690MPa级高强度低屈强比中锰钢中厚钢,其化学成分及质量百分 比如下:C:0.09%~0.10%,Mn:4.65%~4.7%,Si:0.18%~0.22%,P≤0.010%,S≤0.003%,Ti:0.022%~0.028%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质。
前所述的690MPa级高强度低屈强比中锰钢中厚钢,其化学成分及质量百分比如下:C:0.05%~0.06%,Mn:4.23%~4.47%,Si:0.20%~0.26%,P≤0.010%,S≤0.003%,Ti:0.018%~0.026%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质。
前所述的690MPa级高强度低屈强比中锰钢中厚钢,其化学成分及质量百分比如下:C:0.05%~0.07%,Mn:4.1%~4.28%,Si:0.15%~0.21%,P≤0.010%,S≤0.003%,Ti:0.033%~0.045%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质。
本发明的另一目的在于提供一种690MPa级高强度低屈强比中锰钢中厚钢的制造方法,
铁水脱硫处理及转炉冶炼:降低钢水中S、P含量至P≤0.010%、S≤0.003%;
LF精炼:完成C、Mn、Si、Ti、Ni、Cr、Mo元素所需质量分数的合金化;
铸坯:连铸坯拉速≤1.0m/min,表面缺陷清理干净;
板坯加热控制:温度1060~1140℃,均热时间40~90min;
板坯轧制控制,两阶段轧制,一阶段开轧温度≤1020℃,终轧温度≥920℃,二阶段开轧温度≤890℃,终轧温度≥800℃;
轧后冷却控制:冷却速率≥5℃/s,终止冷却后钢板表面返红温度≤350℃;
轧后热处理:轧后48小时内送往热处理炉进行回火,回火温度600~650℃,均热时间40~70min,回火后钢板空冷至常温。
本发明的有益效果是:
(1)本发明中C能够通过间隙固溶强化显著提高组织强度,是重要的强化元素,同时也是重要的奥氏体稳定化元素,但为了保证低温冲击韧性及焊接性,需要控制其添加量在较低水平;
Mn能够通过置换固溶强化提高组织强度,同时也能够显著提高奥氏体稳定性,增加Mn能提高钢板淬透性从而使得钢板在较宽的冷却速率范围内获得马氏体组织,进而在两相区退火过程中形成部分逆转变奥氏体组织,回火马氏体增加钢板的强度,逆转变奥氏体组织提高钢板的韧塑性能;
Si在炼钢过程中为脱氧元素,适量的Si能够抑制Mn和P的偏聚并改善韧性,Si抑制渗碳体的形成,但含量过高会明显降低韧性,本发明将Si控制在0.15%~0.4%;
严格控制P与S的含量,在本发明已添加中等含量Mn元素的情况下,S易与Mn形成MnS并降低塑性,P容易在晶界偏聚,降低晶界抗裂纹扩展能力,从而降低韧性,本发明要求P≤0.010%、S≤0.003%;
Ti能够通过细小而弥散的第二相析出形式阻碍高温下的晶界迁移,从而细化晶粒并改善力学性能,加入量控制在0.01%~0.05%的范围内;
适量的Ni能够稳定奥氏体相、提高淬透性、降低韧脆转变温度,有利于提高焊接性;Cr能够产生明显的固溶强化作用,有利于提高强度;Mo能够提高马氏体的回火后的强度,在一定含量范围内还能够减弱Mn的晶界偏聚从而改善韧性;本发明将Ni+Cr+Mo含量控制在0.6%以内,在发挥它们的作用同时不显著增加成本;
(2)本发明生产出的钢板厚度小于80mm,综合力学性能达到GB/T1591-2018低合金高强度结构钢中Q690M钢的技术要求,同时满足屈强比不大于0.86;
(3)本发明所得钢板,在微观组织上,采用回火马氏体+逆转变奥氏体,回火马氏体保证钢板的强度,逆转变奥氏体使钢板具有良好的塑性和韧性,由 于这种成分设计的高强钢具有很好的淬透性,整个厚度方向均为回火马氏体+逆转变奥氏体;
(4)本发明中化学成分以锰为主要合金元素,不添加或少添加贵重合金元素,吨钢成本比传统同级别高强度结构钢降低千元以上,具有巨大的成本优势;
(5)本发明钢板具有优良的心部力学性能,能够满足工程机械领域在复杂环境下对超高强钢安全性能和建造成本需求。
附图说明
图1为本发明实施例1钢板热处理后的金相组织图。
具体实施方式
实施例1
本实施例提供的一种690MPa级高强度低屈强比中锰钢中厚钢,厚度70mm,其化学成分及质量百分比如下:C:0.09%,Mn:4.65%,Si:0.22%,P:0.008%,S:0.001%,Ti:0.028%,Ni+Cr+Mo:0.58%,余量为Fe和不可避免的杂质。
上述钢板的制造方法如下:
铁水脱硫处理后进行转炉冶炼,降低钢水中S、P含量;LF精炼完成后C、Mn、Si、Ti、Ni、Cr、Mo元素所需质量分数的合金化;采用连铸方式,连铸坯拉速0.5m/min,表面缺陷清理干净,得到厚度为320mm的板坯;板坯加热到1130℃,均热时间70min;对加热后的板坯进行两阶段轧制,一阶段开轧温度1010℃,终轧温度965℃,二阶段开轧温度885℃,终轧温度832℃;对轧后钢板进行水冷,冷却速率6.1℃/s,终止冷却后钢板表面返红温度低于200℃;轧后立即进行回火热处理,回火温度640℃,均热时间82min,回火后钢板空冷至常温。
实施例2
本实施例提供的一种690MPa级高强度低屈强比中锰钢中厚钢,厚度50mm, 其化学成分及质量百分比如下:C:0.06%,Mn:4.47%,Si:0.26%,P:0.009%,S:0.001%,Ti:0.026%,Ni+Cr+Mo:0.46%,余量为Fe和不可避免的杂质。
上述钢板的制造方法如下:
铁水脱硫处理后进行转炉冶炼,降低钢水中S、P含量;LF精炼完成后C、Mn、Si、Ti、Ni、Cr、Mo元素所需质量分数的合金化;采用连铸方式,连铸坯拉速0.6m/min,表面缺陷清理干净,得到厚度为320mm的板坯;板坯加热到1130℃,均热时间70min;对加热后的板坯进行两阶段轧制,一阶段开轧温度1005℃,终轧温度945℃,二阶段开轧温度865℃,终轧温度823℃;对轧后钢板进行水冷,冷却速率7.3℃/s,终止冷却后钢板表面返红温度低于200℃;轧后立即进行回火热处理,回火温度630℃,均热时间71min,回火后钢板空冷至常温。
实施例3
本实施例提供的一种690MPa级高强度低屈强比中锰钢中厚钢,厚度30mm,其化学成分及质量百分比如下:C:0.05%,Mn:4.28%,Si:0.21%,P:0.008%,S:0.001%,Ti:0.033%,Ni+Cr+Mo:0.39%,余量为Fe和不可避免的杂质。
上述钢板的制造方法如下:
铁水脱硫处理后进行转炉冶炼,降低钢水中S、P含量;LF精炼完成后C、Mn、Si、Ti、Ni、Cr、Mo元素所需质量分数的合金化;采用连铸方式,连铸坯拉速0.6m/min,表面缺陷清理干净,得到厚度为260mm的板坯;板坯加热到1110℃,均热时间59min;对加热后的板坯进行两阶段轧制,一阶段开轧温度1005℃,终轧温度935℃,二阶段开轧温度870℃,终轧温度812℃;对轧后钢板进行水冷,冷却速率12.1℃/s,终止冷却后钢板表面返红温度低于200℃;轧后立即进行回火热处理,回火温度610℃,均热时间55min,回火后钢板空冷至常温。
上述实施例钢板的综合力学性能见表1,
表1 实施例1-3钢板的综合力学性能
Figure PCTCN2020097643-appb-000001
表2 GB/T 1591-2018标准中690MPa级钢Q690M综合力学性能
Figure PCTCN2020097643-appb-000002
表2为GB/T 1591-2018标准中690MPa级钢Q690M综合力学性能要求,同时参考图1,可知,本发明将锰作为主要合金元素,利用廉价的Mn元素替代昂贵的Ni-Mo合金,通过Mn元素提高钢板淬透性从而使得钢板在较宽的冷却速率范围内获得马氏体组织,进而在两相区退火过程中形成部分逆转变奥氏体组织,回火马氏体增加钢板的强度,逆转变奥氏体组织提高钢板的韧塑性能,使制得的钢板具有高强度低屈强比、优异心部力学性能,能够满足工程机械领域在复 杂环境下对超高强钢安全性能和建造成本需求。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种690MPa级高强度低屈强比中锰钢中厚钢,其特征在于,其化学成分及质量百分比如下:C:0.05%~0.10%,Mn:4.1%~4.7%,Si:0.15%~0.4%,P≤0.010%,S≤0.003%,Ti:0.01%~0.05%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质。
  2. 根据权利要求1所述的690MPa级高强度低屈强比中锰钢中厚钢,其特征在于:钢板的厚度小于80mm,屈强比在0.86以下。
  3. 根据权利要求1所述的690MPa级高强度低屈强比中锰钢中厚钢,其特征在于,其化学成分及质量百分比如下:C:0.09%~0.10%,Mn:4.65%~4.7%,Si:0.18%~0.22%,P≤0.010%,S≤0.003%,Ti:0.022%~0.028%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质。
  4. 根据权利要求1所述的690MPa级高强度低屈强比中锰钢中厚钢及制造方法,其特征在于,其化学成分及质量百分比如下:C:0.05%~0.06%,Mn:4.23%~4.47%,Si:0.20%~0.26%,P≤0.010%,S≤0.003%,Ti:0.018%~0.026%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质。
  5. 根据权利要求1所述的690MPa级高强度低屈强比中锰钢中厚钢及制造方法,其特征在于,其化学成分及质量百分比如下:C:0.05%~0.07%,Mn:4.1%~4.28%,Si:0.15%~0.21%,P≤0.010%,S≤0.003%,Ti:0.033%~0.045%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质。
  6. 应用于如权利要求2所述的690MPa级高强度低屈强比中锰钢中厚钢的制造方法,其特征在于:
    铁水脱硫处理及转炉冶炼:降低钢水中S、P含量至P≤0.010%、S≤0.003%;
    LF精炼:完成C、Mn、Si、Ti、Ni、Cr、Mo元素所需质量分数的合金化;
    铸坯:连铸坯拉速≤1.0m/min,表面缺陷清理干净;
    板坯加热控制:温度1060~1140℃,均热时间40~90min;
    板坯轧制控制,两阶段轧制,一阶段开轧温度≤1020℃,终轧温度≥920℃,二阶段开轧温度≤890℃,终轧温度≥800℃;
    轧后冷却控制:冷却速率≥5℃/s,终止冷却后钢板表面返红温度≤350℃;
    轧后热处理:轧后48小时内送往热处理炉进行回火,回火温度600~650℃,均热时间40~70min,回火后钢板空冷至常温。
PCT/CN2020/097643 2019-11-20 2020-06-23 690MPa级高强度低屈强比中锰钢中厚钢及制造方法 WO2021098208A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/756,192 US20220411907A1 (en) 2019-11-20 2020-03-23 690 mpa-grade medium manganese steel medium thick steel with high strength and low yield ratio and manufacturing method therefor
KR1020227017190A KR20220092903A (ko) 2019-11-20 2020-06-23 690MPa급 고강도 저항복비 중망간강 중후강 및 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911138357.5 2019-11-20
CN201911138357.5A CN110846577A (zh) 2019-11-20 2019-11-20 690MPa级高强度低屈强比中锰钢中厚钢及制造方法

Publications (1)

Publication Number Publication Date
WO2021098208A1 true WO2021098208A1 (zh) 2021-05-27

Family

ID=69602494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097643 WO2021098208A1 (zh) 2019-11-20 2020-06-23 690MPa级高强度低屈强比中锰钢中厚钢及制造方法

Country Status (4)

Country Link
US (1) US20220411907A1 (zh)
KR (1) KR20220092903A (zh)
CN (1) CN110846577A (zh)
WO (1) WO2021098208A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480808A (zh) * 2022-02-14 2022-05-13 河北工程大学 一种复合梯度结构中锰钢及其制备方法
CN114480811A (zh) * 2022-02-14 2022-05-13 河北工程大学 一种具有梯度结构的高强塑积中锰钢及其制备方法
CN115341141A (zh) * 2022-07-22 2022-11-15 南京钢铁股份有限公司 一种低屈强比耐候桥梁钢及制备方法
CN116695023A (zh) * 2023-05-30 2023-09-05 鞍钢股份有限公司 超高强韧低屈强比纵向变厚度耐候桥梁用钢及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846577A (zh) * 2019-11-20 2020-02-28 南京钢铁股份有限公司 690MPa级高强度低屈强比中锰钢中厚钢及制造方法
CN111778450A (zh) * 2020-06-24 2020-10-16 南京钢铁股份有限公司 一种800MPa工程机械用中锰中厚钢及其制造方法
CN113025797B (zh) * 2021-02-03 2023-01-20 首钢集团有限公司 一种用于低温环境的高强度中锰钢板及其制备方法
CN113025790B (zh) * 2021-02-07 2023-03-24 首钢集团有限公司 一种中锰钢板的热处理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586937A (ja) * 1981-07-06 1983-01-14 Sumitomo Metal Ind Ltd 加工用熱延高張力鋼板の製造法
US20160002746A1 (en) * 2012-12-21 2016-01-07 Voestalpine Stahl Gmbh Method for heat-treating a manganese steel product and manganese steel product
CN105648314A (zh) * 2016-01-22 2016-06-08 东北大学 -80℃Akv值大于100J的中锰钢板及其制备方法
CN106086648A (zh) * 2016-07-22 2016-11-09 大连理工大学 一种实现具有trip效应的中锰钢件性能梯度分布的方法
WO2018083028A1 (de) * 2016-11-02 2018-05-11 Salzgitter Flachstahl Gmbh Nahtloses rohr aus einem mittelmanganhaltigen stahl und verfahren zu seiner herstellung
CN108385037A (zh) * 2018-03-23 2018-08-10 东北大学 一种海洋平台用Ti微合金化中锰钢中厚板及其制备方法
CN108998726A (zh) * 2018-07-26 2018-12-14 南京钢铁股份有限公司 厚规格的420MPa级低屈强比低温桥梁钢及生产方法
CN109778070A (zh) * 2019-04-02 2019-05-21 南阳汉冶特钢有限公司 一种钢板及其生产方法
CN110846577A (zh) * 2019-11-20 2020-02-28 南京钢铁股份有限公司 690MPa级高强度低屈强比中锰钢中厚钢及制造方法
CN110983158A (zh) * 2019-12-16 2020-04-10 南京钢铁股份有限公司 一种550MPa级中锰钢板及制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556048B (zh) * 2013-10-24 2015-04-29 钢铁研究总院 一种低屈强比、高强度汽车用双相钢板的生产方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586937A (ja) * 1981-07-06 1983-01-14 Sumitomo Metal Ind Ltd 加工用熱延高張力鋼板の製造法
US20160002746A1 (en) * 2012-12-21 2016-01-07 Voestalpine Stahl Gmbh Method for heat-treating a manganese steel product and manganese steel product
CN105648314A (zh) * 2016-01-22 2016-06-08 东北大学 -80℃Akv值大于100J的中锰钢板及其制备方法
CN106086648A (zh) * 2016-07-22 2016-11-09 大连理工大学 一种实现具有trip效应的中锰钢件性能梯度分布的方法
WO2018083028A1 (de) * 2016-11-02 2018-05-11 Salzgitter Flachstahl Gmbh Nahtloses rohr aus einem mittelmanganhaltigen stahl und verfahren zu seiner herstellung
CN108385037A (zh) * 2018-03-23 2018-08-10 东北大学 一种海洋平台用Ti微合金化中锰钢中厚板及其制备方法
CN108998726A (zh) * 2018-07-26 2018-12-14 南京钢铁股份有限公司 厚规格的420MPa级低屈强比低温桥梁钢及生产方法
CN109778070A (zh) * 2019-04-02 2019-05-21 南阳汉冶特钢有限公司 一种钢板及其生产方法
CN110846577A (zh) * 2019-11-20 2020-02-28 南京钢铁股份有限公司 690MPa级高强度低屈强比中锰钢中厚钢及制造方法
CN110983158A (zh) * 2019-12-16 2020-04-10 南京钢铁股份有限公司 一种550MPa级中锰钢板及制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG YING , DU LIN-XIU ,HU JUN ,QI XIANG-YU ,ZHANG BIN ,HAN DONG-XIU: "Study on Strength-Toughness Mechanism of Ti Microallyed Medium Manganese Steel", JOURNAL OF IRON AND STEEL RESEARCH, vol. 31, no. 2, 28 February 2019 (2019-02-28), pages 190 - 195, XP055813375, ISSN: 1001-0963, DOI: 10.13228/j.boyuan.issn1001-0963.20180340 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480808A (zh) * 2022-02-14 2022-05-13 河北工程大学 一种复合梯度结构中锰钢及其制备方法
CN114480811A (zh) * 2022-02-14 2022-05-13 河北工程大学 一种具有梯度结构的高强塑积中锰钢及其制备方法
CN114480811B (zh) * 2022-02-14 2023-09-15 河北工程大学 一种具有梯度结构的高强塑积中锰钢及其制备方法
CN114480808B (zh) * 2022-02-14 2023-09-22 河北工程大学 一种复合梯度结构中锰钢及其制备方法
CN115341141A (zh) * 2022-07-22 2022-11-15 南京钢铁股份有限公司 一种低屈强比耐候桥梁钢及制备方法
CN116695023A (zh) * 2023-05-30 2023-09-05 鞍钢股份有限公司 超高强韧低屈强比纵向变厚度耐候桥梁用钢及其制造方法

Also Published As

Publication number Publication date
CN110846577A (zh) 2020-02-28
KR20220092903A (ko) 2022-07-04
US20220411907A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2021098208A1 (zh) 690MPa级高强度低屈强比中锰钢中厚钢及制造方法
AU2020103572A4 (en) Ultra-fine grained high-strength steel plate with 1100 mpa-grade yield strength and production method thereof
CN110241357B (zh) 一种800MPa级强韧耐候厚钢板及其制备方法
CN101451212B (zh) 一种高强度钢板及其制备方法
CN109023119B (zh) 一种具有优异塑韧性的耐磨钢及其制造方法
JP2760713B2 (ja) 耐火性及び靱性の優れた制御圧延形鋼の製造方法
CN110184532B (zh) 一种具有优良-60℃超低温冲击韧性的耐磨钢板及其生产方法
WO2016095721A1 (zh) 一种屈服强度900~1000MPa级调质高强钢及制造方法
CN108728743B (zh) 低温断裂韧性良好的海洋工程用钢及其制造方法
CN102796967B (zh) 一种800MPa经济型耐腐蚀高强度钢板
CN111996441B (zh) 一种高韧性折弯性能良好的TiC增强型马氏体耐磨钢板及其制造方法
CN102400043B (zh) 一种大厚度海洋工程用钢板
WO2019119725A1 (zh) 一种布氏硬度大于550hb的高级别低合金耐磨钢板及制造方法
CN103397272B (zh) 具有低裂纹敏感指数和高强度的耐磨钢板及其制备方法
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
CN110499474A (zh) 耐高温400hb耐磨钢板及其生产方法
CN101768698A (zh) 一种低成本屈服强度700mpa级非调质处理高强钢板及其制造方法
CN106811696B (zh) 一种大厚度海洋工程用390MPa级钢板及其制造方法
CN105543669A (zh) 一种厚规格和窄硬度区间耐磨钢板及其制备方法
EP4414473A1 (en) High-strength steel with good weather resistance and manufacturing method therefor
CN112267073A (zh) 具有优异低温韧性和焊接性能的耐腐蚀磨损钢板及其制备方法
JP2661845B2 (ja) 含オキサイド系耐火用形鋼の制御圧延による製造方法
CN114381658B (zh) 一种800MPa级低焊接裂纹敏感性钢板及其制造方法
CN111187977A (zh) 一种690MPa级抗震耐蚀耐火中厚板钢及其制造方法
CN108728728A (zh) 一种具有极低屈强比的高锰钢及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227017190

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891132

Country of ref document: EP

Kind code of ref document: A1