WO2021098181A1 - 变压器及变压器加工工艺 - Google Patents

变压器及变压器加工工艺 Download PDF

Info

Publication number
WO2021098181A1
WO2021098181A1 PCT/CN2020/093090 CN2020093090W WO2021098181A1 WO 2021098181 A1 WO2021098181 A1 WO 2021098181A1 CN 2020093090 W CN2020093090 W CN 2020093090W WO 2021098181 A1 WO2021098181 A1 WO 2021098181A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
layer
transformer
inner coil
insulating layer
Prior art date
Application number
PCT/CN2020/093090
Other languages
English (en)
French (fr)
Inventor
庄加才
徐君
刘威
苏金国
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to US17/601,920 priority Critical patent/US20220148797A1/en
Priority to JP2021559672A priority patent/JP7263549B2/ja
Priority to EP20890627.1A priority patent/EP3951813A4/en
Publication of WO2021098181A1 publication Critical patent/WO2021098181A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/125Other insulating structures; Insulating between coil and core, between different winding sections, around the coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • H01F2027/328Dry-type transformer with encapsulated foil winding, e.g. windings coaxially arranged on core legs with spacers for cooling and with three phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F2027/329Insulation with semiconducting layer, e.g. to reduce corona effect

Definitions

  • the invention relates to the technical field of electrical appliances processing, in particular to an epoxy cast transformer.
  • the invention also relates to a transformer processing technology.
  • iron cores, windings, insulating pads, etc. need to be built into the casting material. Due to the large difference in thermal expansion coefficients of various materials, the casting material may crack due to thermal shock during the application process, which may lead to insulation failure. Moreover, the iron core is generally a steel structure, which is difficult to solidify reliably with the casting material, and it may also cause the casting material to crack in the application.
  • the field strength in the air must be less than its breakdown voltage, which results in a larger distance between the primary and secondary sides, which affects the power density of the system to a certain extent. Excessive spacing will cause too much magnetic leakage, which will increase the loss, and the irregular coil structure will cause the local field strength to be too high, resulting in lower safety in the use of the transformer.
  • the purpose of the present invention is to provide a transformer, and the use safety of the transformer provided in the present application is improved.
  • Another object of the present invention is to provide a transformer processing technology.
  • the present invention provides a transformer transformer, which includes two coil units arranged side by side, the coil unit includes an inner coil and an outer coil sheathed outside the inner coil, and the outer coil is wrapped with an outer coil.
  • the coil semiconducting layer, the inner coil is wrapped with an inner coil semiconducting layer, and the coil unit is integrally cast with an insulating layer.
  • an outer surface semiconducting layer is applied to the outside of the insulating layer, the end of the outer surface semiconducting layer is pre-buried into the inside of the insulating layer, and the end of the outer surface semiconducting layer is provided with an equipotential
  • the equipotential body is located inside the insulating layer.
  • the equipotential body is a bell mouth structure or a circular curvature structure.
  • it further comprises an iron core, and an air flow channel is formed between the inner coil semi-conductive layer and the iron core.
  • it further comprises an equipotential cavity fixedly connected to the insulating layer, and the equipotential cavity is provided with an inner surface semiconducting layer.
  • the equipotential cavity, the equipotential cavity and the insulating layer are integrally formed.
  • the transformer is a solid-state transformer.
  • the insulating layer includes a first insulating layer cast inside the outer surface semiconducting layer, a second insulating layer cast inside the outer surface semiconducting layer, and cast outside the outer surface semiconducting layer A third insulating layer on the outer surface of the surface and the outer surface of the semiconductive layer.
  • the insulating layer is an integrally molded cast structure.
  • a transformer processing technology including the steps:
  • A1 Wrap the semi-conductive layer of the inner coil on the outside of the inner coil
  • A2 Wrap the semi-conductive layer of the outer coil on the outside of the outer coil, and the outer coil is sleeved on the outside of the semi-conductive layer of the inner coil to form a coil unit;
  • A3 Set up two coil units arranged side by side, and cast an insulating medium on the coil units to form an insulating layer;
  • A4 Install the iron core on the coil unit, and the iron core and the inner coil semiconducting layer are spaced to form an air flow channel.
  • the step A3 includes:
  • A31 Pouring a first insulating medium at the position of the inner coil wrapped with the semiconductive layer of the inner coil; pouring a second insulating medium at the position of the outer coil wrapped with the semiconductive layer of the outer coil;
  • A32 Pouring a third insulating medium on the outer surface of the inner coil semiconducting layer and the outer surface of the outer coil semiconducting layer, the first insulating medium, the second insulating medium and the third insulating medium ⁇ Insulation layer.
  • the transformer provided by the present invention includes two coil units arranged side by side.
  • the coil unit includes an inner coil and an outer coil sheathed outside the inner coil.
  • the outer coil is wrapped with a semiconductive layer of the outer coil, and the inner coil
  • the outer side is wrapped with an inner coil semi-conductive layer, and the coil unit is integrally cast with an insulating layer.
  • the present application provides the outer coil semiconducting layer and the inner coil semiconducting layer, the problem of excessive local field strength caused by the irregular coil structure can be effectively improved. Therefore, the present application provides The safety of the transformer is improved.
  • FIG. 1 is a schematic structural diagram of a transformer provided by an embodiment of the present invention
  • Figure 2 is a front view of the transformer of Figure 1;
  • Figure 3 is a top view of the transformer described in Figure 2;
  • Figure 4 is a side view of the transformer shown in Figure 2;
  • FIG. 5 is a schematic structural diagram of another transformer provided by an embodiment of the present invention.
  • Figure 6 is a front view of the transformer described in Figure 5;
  • Fig. 7 is a top view of the transformer of Fig. 6;
  • Figure 8 is a side view of the transformer shown in Figure 6;
  • FIG. 9 is a schematic structural diagram of yet another transformer provided by an embodiment of the present invention.
  • Figure 10 is a front view of the transformer shown in Figure 9;
  • Figure 11 is an enlarged view of part A shown in Figure 10;
  • FIG. 12 is a diagram of the installation position of the equipotential body provided by the embodiment of the present invention.
  • FIG. 13 is a diagram of the installation position of another equipotential body provided by an embodiment of the present invention.
  • Figure 1-13 1- Outer surface semi-conductive layer, 2- Insulating layer, 3- Outer coil semi-conductive layer, 4- Outer coil, 5- Inner coil semi-conductive layer, 6-Inner coil, 7- Air flow channel , 8-iron core, 9-inner surface semi-conductive layer, 10-equipotential cavity, 11-equipotential body.
  • the core of the present invention is to provide a transformer, and the use safety of the transformer provided in the present application is improved.
  • Another core of the present invention is to provide a transformer processing technology.
  • the transformer provided by the specific embodiment of the present invention includes an iron core 8 and two coil units arranged side by side.
  • the coil unit includes an inner coil 6 and an outer coil 4 sheathed outside the inner coil 6.
  • the coil 4 is wrapped with an outer coil semiconducting layer 3.
  • the inner coil 6 is wrapped with an inner coil semiconducting layer 5.
  • the semi-conductive layer 5 of the inner coil can effectively improve the problem of excessive local field strength caused by the irregular structure of the inner coil 6.
  • one side of the outer semiconducting layer 3 is tangent to the outer surface of the insulating layer 2 to facilitate positioning and fixing of the part during the overall casting process.
  • the coil unit is cast with an insulating layer 2 as a whole.
  • the high electric field strength of the transformer is bound in the cast insulating layer 2.
  • the insulating layer 2 is an integral molding and casting structure, that is, the inner coil, the outer coil, the outer coil semiconducting layer 3 and the inner coil semiconducting layer 5 are simultaneously insulated and poured.
  • the insulating layer 2 includes a first insulating layer poured inside the semiconductive layer 1 on the outer surface, a second insulating layer poured inside the semiconductive layer 1 on the outer surface, and a semiconductive layer poured on the outer surface of the outer surface and the outer surface semiconductive layer. 1
  • the third insulating layer on the outer surface. That is, the wire package of the inner coil, the wire package of the outer coil and the external insulation structure are respectively poured.
  • the first insulating layer, the second insulating layer and the third insulating layer are made of the same material.
  • the field strength can be concentrated in the insulating layer 2.
  • the breakdown field strength of the general casting material is greater than 20kV/mm, which can be effectively reduced. The distance between the original secondary side and the secondary side improves the power density and reduces the magnetic flux leakage.
  • the transformer provided in the present application may specifically be a solid-state transformer.
  • the outer coil 4 may be sleeved outside the inner coil 6.
  • the inner coil 6 and the outer coil 4 can be up and down structures, and the inner coil 6 and the outer coil 4 of the upper and lower structures can be cast integrally or separately. This embodiment is shown as Schematic of pouring separately.
  • two outer coil semi-conductive layers 3 are arranged side by side, as shown in FIG. 3, to facilitate positioning and fixing of the part during the overall casting process.
  • the side of the inner coil semiconductive layer 5 close to the outer coil 4 and the upper and lower ends of the inner coil semiconductive layer 5 are both cast with insulating layers 2.
  • an outer surface semiconducting layer 1 is coated on the outside of the insulating layer 2.
  • the inner coil 6, the inner coil semiconducting layer 5, the outer coil 4 and the outer coil semiconducting layer 3 are integrally formed by integral casting.
  • the integral casting material fills the periphery of these materials, and the integral casting insulating layer 2 can be formed by one or more castings. ;
  • the inner coil semi-conductive layer 5 and the outer surface semi-conductive layer 1 can be reliably connected with the integrally cast coil by means of spraying, dipping, pre-embedded integral casting and other means.
  • the iron core 8 is installed after the inner coil 6 and the outer coil 4 are completed.
  • the winding units are made of relatively soft materials.
  • the inner coil semiconducting layer 5 and the outer coil semiconducting layer 3 can be semiconducting tape polymer materials, and the inner coil 6 and the outer coil 4 can be copper wires, etc. And it has good wettability with the casting material, and will not cause excessive mechanical stress concentration due to thermal expansion and contraction during the heating process, which will lead to product cracking, which can better solve the problem of excessive mechanical stress caused by the application of traditional direct casting products. The problem of cracking.
  • the coil and the semiconducting material are integrally cast, and the iron core 8 is installed on the insulating layer 2, which solves the situation that the steel material heats up in the cast body and causes the wire package to crack. .
  • the winding is cast integrally, the mechanical stress is small, and the anti-cracking performance is greatly improved. Therefore, the safety of the transformer provided by the present application is improved.
  • the end of the outer surface semiconducting layer 1 is embedded in the insulating layer 2, and the end of the outer surface semiconducting layer 1 is provided with an equipotential body 11, and the equipotential body 11 is located in the insulating layer 2. internal.
  • the semi-conductive end structure is embedded to improve the electric field intensity distribution at the end.
  • the equipotential body 11 is a bell mouth structure or a round curvature structure to avoid local field strength concentration.
  • an air flow channel 7 is formed between the inner coil semiconductive layer 5 and the iron core 8 at intervals.
  • the air flow channel 7 around the iron core 8 just passes through the inside of the transformer, which can better heat the coil unit and the iron core 8 as a whole.
  • this part of the air flow channel 7 does not withstand high field strength .
  • the transformer further includes an equipotential cavity 10 fixedly connected to the insulating layer 2.
  • the equipotential cavity 10 and the insulating layer 2 are an integral structure, and the two are integrally molded.
  • the structure of the equipotential cavity 10 is integrally formed; the equipotential cavity 10 is provided with an inner surface semiconducting layer 9.
  • the equipotential cavity 10 By providing the equipotential cavity 10, the space utilization rate is effectively improved, and the power density is improved.
  • the equipotential cavity 10 By setting the equipotential cavity 10, the traditional transformer adopts high-voltage lead-out terminals to achieve the insulation distance requirement. No other items are allowed in this space.
  • the equipotential cavity 10 can be placed on the same side. Related electronic components, so as not to cause the insulation failure of the device due to excessive field strength.
  • the iron core 8, the gap 7, the inner coil 6, the inner coil semiconducting layer 5, and the outer surface semiconducting layer 1 are on the side of the insulating layer 2; and the outer coil 4, the outer coil semiconducting layer 3 , The inner surface semiconducting layer 9 and the equipotential cavity 10 are on the other side of the insulating layer 2.
  • a transformer processing technology provided by this application includes the steps:
  • A1 Wrap the inner coil semi-conductive layer 5 outside the inner coil 6.
  • A2 Wrap the semi-conductive layer 3 of the outer coil on the outer side of the outer coil 4, and the outer coil 4 is sleeved on the outer side of the semi-conductive layer 5 of the inner coil to form a coil unit.
  • A3 Set up two coil units arranged side by side, and cast an insulating medium on the coil units to form an insulating layer 2.
  • the inner coil 6, the outer coil 4, the outer coil semiconducting layer 3 and the inner coil semiconducting layer 5 are uniformly cast with insulating medium.
  • step A3 includes:
  • A31 Pouring the first insulating medium at the position of the inner coil 6 wrapped with the semiconductive layer 5 of the inner coil; pouring the second insulating medium at the position of the outer coil 4 wrapped with the semiconductive layer 3 of the outer coil, namely the inner coil 6 and the outer coil 4 Pour separately.
  • a third insulating medium is cast on the outer surface of the inner coil semiconductive layer 5 and the outer surface of the outer coil semiconductive layer 3, and the first insulating medium, the second insulating medium and the third insulating medium form an insulating layer.
  • the first insulating medium, the second insulating medium and the third insulating medium are the same insulating medium.
  • one side of the outer semiconducting layer 3 is tangent to the outer surface of the insulating layer 2 to facilitate positioning and fixing of the part during the overall casting process.
  • A4 Install the iron core 8 on the coil unit, and the iron core 8 and the inner coil semiconducting layer 5 are spaced to form an air flow channel 7.
  • the air flow channel 7 around the iron core 8 just passes through the inside of the transformer, which can better heat the coil unit and the iron core 8 as a whole.
  • this part of the air flow channel 7 does not withstand high field strength .
  • an outer surface semiconducting layer 1 is coated on the outside of the insulating layer 2.
  • the end of the outer surface semiconducting layer 1 is embedded in the insulating layer 2, and the end of the outer surface semiconducting layer 1 is provided with an equipotential body 11, and the equipotential body 11 is located in the insulating layer 2. internal.
  • the semi-conductive end structure is embedded to improve the electric field intensity distribution at the end.
  • the equipotential body 11 is a bell mouth structure or a round curvature structure to avoid local field strength concentration.
  • the transformer further includes an equipotential cavity 10 fixedly connected to the insulating layer 2.
  • the equipotential cavity 10 and the insulating layer 2 are an integral structure, and the two are integrally cast.
  • the structure of the equipotential cavity 10 is integrally formed; the equipotential cavity 10 is provided with an inner surface semiconducting layer 9.
  • the equipotential cavity 10 By providing the equipotential cavity 10, the space utilization rate is effectively improved, and the power density is improved.
  • the equipotential cavity 10 By setting the equipotential cavity 10, the traditional transformer adopts high-voltage lead-out terminals to achieve the insulation distance requirement. No other items are allowed in this space.
  • the equipotential cavity 10 can be placed on the same side. Related electronic components, so as not to cause the insulation failure of the device due to excessive field strength.
  • the iron core 8, the gap 7, the inner coil 6, the inner coil semiconducting layer 5, and the outer surface semiconducting layer 1 are on the side of the insulating layer 2; and the outer coil 4, the outer coil semiconducting layer 3 , The inner surface semiconducting layer 9 and the equipotential cavity 10 are on the other side of the insulating layer 2.
  • the winding units are made of relatively soft materials.
  • the inner coil semiconducting layer 5 and the outer coil semiconducting layer 3 can be semiconducting tape polymer materials, and the inner coil 6 and the outer coil 4 can be copper wires, etc. And it has good wettability with the casting material, and will not cause excessive mechanical stress concentration due to thermal expansion and contraction during the heating process, which will lead to product cracking, which can better solve the problem of excessive mechanical stress caused by the application of traditional direct casting products. The problem of cracking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)

Abstract

本发明公开了一种变压器及变压器加工工艺,其中包括两个并列布置的线圈单元,线圈单元包括内线圈及套设在内线圈外侧的外线圈,外线圈外侧包裹有外线圈半导电层,内线圈外侧包裹有内线圈半导电层,线圈单元整体浇注有绝缘层。在本申请提供的变压器中,通过设置外线圈半导电层和内线圈半导电层,可以有效地改善因为线圈结构不规则引起的局部场强过高问题,解决钢性材料在浇筑体内发热导致线包开裂的情况,因此,本申请提供的变压器的安全性提高。

Description

变压器及变压器加工工艺
本申请要求于2019年11月21日提交中国专利局、申请号为201911149325.5、发明名称为“变压器及变压器加工工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电器加工技术领域,特别涉及一种环氧浇注变压器。本发明还涉及一种变压器加工工艺。
背景技术
在现有的配电网络中,高压电通过配电变压器降压后提供给各负载使用。配电变压器是其中的一个非常重要的部件。传统的配电变压器存在很多缺陷,例如体积大,重量重,空载损耗大,对故障不能自动隔离,输出易受电网的干扰,等等。
在变压器加工过程中,需要将铁芯,绕组,绝缘垫块等均内置于浇注材料中。由于多种材料热膨胀系数差异较大,在应用过程中可能会因为冷热冲击而导致浇注材料开裂,进而导致绝缘失效。而且一般铁芯为钢性结构,与浇注材料较难可靠固化,在应用中同样可能会导致浇注材料开裂。
同时变压器中,为保证原副边能够承受高电压,则必须要求空气中场强小于其击穿电压,进而导致原副边间距较大,在一定程度中影响系统的功率密度,同时原副边间距过大会引起漏磁过大,而造成损耗加剧,线圈结构不规则引起局部场强过高,导致变压器的使用安全性较低。
因此,如何提高变压器的使用安全性,是本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的是提供一种变压器,本申请提供的变压器的使用安全性提高。本发明的另一目的是提供一种变压器加工工艺。
为实现上述目的,本发明提供一种变压器变压器,包括两个并列布置的线圈单元,所述线圈单元包括内线圈及套设在所述内线圈外侧的外线圈,所述外 线圈外侧包裹有外线圈半导电层,所述内线圈外侧包裹有内线圈半导电层,所述线圈单元整体浇注有绝缘层。
优选地,所述绝缘层外侧敷设有外表面半导电层,所述外表面半导电层的端部预埋至所述绝缘层内部,且所述外表面半导电层的端部设有等电位体,所述等电位体位于所述绝缘层内部。
优选地,所述等电位体为喇叭口结构或圆曲率结构。
优选地,还包括铁芯,所述内线圈半导电层与所述铁芯之间间隔形成气流通道。
优选地,还包括与所述绝缘层固定连接的等电位腔体,所述等电位腔体内设有内表面半导电层。
优选地,所述等电位腔体,所述等电位腔体与所述绝缘层为一体成型结构。
优选地,所述变压器为固态变压器。
优选地,所述绝缘层包括浇注于所述外表面半导电层内部的第一绝缘层、浇注于所述外表面半导电层内部的第二绝缘层及浇注于所述外表面半导电层外表面和所述外表面半导电层外表面的第三绝缘层。
优选地,所述绝缘层为一体成型浇注结构。
一种变压器加工工艺,包括步骤:
A1:在内线圈外侧包裹内线圈半导电层;
A2:在外线圈外侧包裹外线圈半导电层,外线圈套设于所述内线圈半导电层外侧,形成线圈单元;
A3:设置两个并列布置的线圈单元,在线圈单元上浇注绝缘介质形成绝缘层;
A4:将铁芯安装在所述线圈单元上,且所述铁芯与所述内线圈半导电层间隔形成气流通道。
优选地,所述步骤A3包括:
A31:在包裹有所述内线圈半导电层的所述内线圈位置浇注第一绝缘介质;在包裹有所述外线圈半导电层的所述外线圈位置浇注第二绝缘介质;
A32:在所述内线圈半导电层外表面和所述外线圈半导电层外表面浇注第三绝缘介质,所述第一绝缘介质、所述第二绝缘介质和所述第三绝缘介质形成 所述绝缘层。
在上述技术方案中,本发明提供的变压器,包括两个并列布置的线圈单元,线圈单元包括内线圈及套设在内线圈外侧的外线圈,外线圈外侧包裹有外线圈半导电层,内线圈外侧包裹有内线圈半导电层,线圈单元整体浇注有绝缘层。
通过上述描述可知,在本申请提供的变压器中,通过设置外线圈半导电层和内线圈半导电层,可以有效地改善因为线圈结构不规则引起的局部场强过高问题,因此,本申请提供的变压器的安全性提高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例所提供的变压器的结构示意图;
图2为图1所述变压器的主视图;
图3为图2所述变压器的俯视图;
图4为图2所示变压器的侧视图;
图5为本发明实施例所提供的另一种变压器的结构示意图;
图6为图5所述变压器的主视图;
图7为图6所述变压器的俯视图;
图8为图6所示变压器的侧视图;
图9为本发明实施例所提供的又一种变压器的结构示意图;
图10为图9所示变压器的主视图;
图11为图10所示A部放大图;
图12为本发明实施例所提供的等电位体的安装位置图;
图13为本发明实施例所提供的另一种等电位体的安装位置图。
其中图1-13中:1-外表面半导电层、2-绝缘层、3-外线圈半导电层、4-外线圈、5-内线圈半导电层、6-内线圈、7-气流通道、8-铁芯、9-内表面半导电层、10-等电位腔体、11-等电位体。
具体实施方式
本发明的核心是提供一种变压器,本申请提供的变压器的使用安全性提高。本发明的另一核心是提供一种变压器加工工艺。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和实施方式对本发明作进一步的详细说明。
请参考图1至图13。
在一种具体实施方式中,本发明具体实施例提供的变压器,包括铁芯8、两个并列布置的线圈单元,线圈单元包括内线圈6及套设在内线圈6外侧的外线圈4,外线圈4外侧包裹有外线圈半导电层3。内线圈6外侧包裹有内线圈半导电层5。内线圈半导电层5则可以有效地改善因为内线圈6结构不规则引起的局部场强过高问题。优选,外半导电层3一侧与绝缘层2外表面相切,以便于整体浇注过程中制件定位及固定。
线圈单元整体浇注有绝缘层2。其中变压器高电场强度束缚于浇注绝缘层2内。具体的,绝缘层2为一体成型浇注结构,即内线圈、外线圈、外线圈半导电层3和内线圈半导电层5同时绝缘浇注。
绝缘层2包括浇注于外表面半导电层1内部的第一绝缘层、浇注于外表面半导电层1内部的第二绝缘层及浇注于外表面半导电层1外表面和外表面半导电层1外表面的第三绝缘层。即内线圈的线包、外线圈的线包及外界绝缘结构分别浇注。优选,第一绝缘层、第二绝缘层和第三绝缘层材质相同。
因为半导电材料与绝缘层的绝缘性性浇注材料有良好的浸润性,可以将场强集中于绝缘层2中,而一般浇注材料的击穿场强均大于20kV/mm,可有效地减小原副边间距,提升功率密度,减少漏磁。
具体的,本申请提供的变压器具体可以为固态变压器。
具体的,如图3和图4所示,外线圈4可以套设于内线圈6外侧。另一种方式,如图5至图8所示,内线圈6和外线圈4可以为上下结构,上下结构的内线圈6和外线圈4可以一体浇注亦可以单独浇注,本实施例图示为单独浇注示意。
在一种具体实施方式中,两个外线圈半导电层3并列设置,如图3所示, 以便于整体浇注过程中制件定位及固定。
具体的,如图2所示,内线圈半导电层5靠近外线圈4一侧及内线圈半导电层5上下两端均浇注有绝缘层2。在一种具体实施方式中,绝缘层2外侧敷设有外表面半导电层1。
内线圈6,内线圈半导电层5,外线圈4和外线圈半导电层3通过整体浇注形成整体,整体浇注材料填充了这些材料周边,其中整体浇注绝缘层2可以为一次或多次浇注形成;而内线圈半导电层5及外表面半导电层1可以通过喷镀,浸渍,预埋整体浇注等手段与整体浇注线圈形成可靠连接。
具体的,铁芯8在内线圈6和外线圈4制作完成后再安装。
优选,绕组单元均采用质地较为柔软的材料,具体的,内线圈半导电层5和外线圈半导电层3可以为半导电带高分子材料,内线圈6和外线圈4可以为铜丝等,且与浇注材料浸润性较好,在发热过程中不会因为热胀冷缩而引起过大的机械应力集中,进而导致产品开裂,较好地解决传统直接浇注产品应用过程中机械应力过高引起的开裂问题。
通过上述描述可知,在本申请具体实施例所提供的变压器中,线圈与半导电材料整体浇注,而铁芯8安装于绝缘层2上,解决钢性材料在浇筑体内发热导致线包开裂的情况。绕组一体浇注,机械应力较小,防开裂性能大幅度提升,因此,本申请提供的变压器的安全性提高。
在一种具体实施方式中,外表面半导电层1的端部预埋至绝缘层2内部,且外表面半导电层1的端部设有等电位体11,等电位体11位于绝缘层2内部。预埋半导电端部结构,改善端部电场强分布。带有端部接地截止点结构的整体浇注线包及变压器结构,具体的,等电位体11为喇叭口结构或圆曲率结构,避免局部场强集中。
在一种具体实施方式中,内线圈半导电层5与铁芯8之间间隔形成气流通道7。铁芯8周边气流通道7刚好穿过变压器内部,可以较好地对线圈单元及铁芯8进行整体散热,同时因为内线圈半导电层5的存在,该部分气流通道7并不承受高场强。
在上述各方案的基础上,优选,该变压器还包括与绝缘层2固定连接的等电位腔体10,优选,等电位腔体10与绝缘层2为一体成型结构,两者一体浇 铸成型。一体成型等电位腔体10结构;等电位腔体10内设有内表面半导电层9。通过设置等电位腔体10,有效提升空间利用率,提升功率密度。通过设置等电位腔体10,改变传统变压器采用高压引出端子的方式来实现绝缘间距的要求,在此空间内不允许放置其他物品,而采用本方案则可以在等电位腔体10内放置同一侧的相关电子元件,而不至于因为场强过大而引起器件绝缘失效。
在一种具体实施方式中,铁芯8,空隙7,内线圈6,内线圈半导电层5及外表面半导电层1处于绝缘层2一侧;而外线圈4,外线圈半导电层3,内表面半导电层9以及等电位腔体10处于绝缘层2另一侧。
本申请提供的一种变压器加工工艺,包括步骤:
A1:在内线圈6外侧包裹内线圈半导电层5。
A2:在外线圈4外侧包裹外线圈半导电层3,外线圈4套设于内线圈半导电层5外侧,形成线圈单元。
通过设置外线圈半导电层3和内线圈半导电层5,可以有效地改善因为线圈结构不规则引起的局部场强过高问题,解决钢性材料在浇筑体内发热导致线包开裂的情况,变压器的安全性提高。
A3:设置两个并列布置的线圈单元,在线圈单元上浇注绝缘介质形成绝缘层2。其中内线圈6、外线圈4、外线圈半导电层3和内线圈半导电层5统一浇注绝缘介质。
具体的,步骤A3包括:
A31:在包裹有内线圈半导电层5的内线圈6位置浇注第一绝缘介质;在包裹有外线圈半导电层3的外线圈4位置浇注第二绝缘介质,即内线圈6和外线圈4单独浇注。
A32:在内线圈半导电层5外表面和外线圈半导电层3外表面浇注第三绝缘介质,第一绝缘介质、第二绝缘介质和第三绝缘介质形成绝缘层。优选,第一绝缘介质、第二绝缘介质和第三绝缘介质为相同绝缘介质。
优选,外半导电层3一侧与绝缘层2外表面相切,以便于整体浇注过程中制件定位及固定。
A4:将铁芯8安装在线圈单元上,且铁芯8与内线圈半导电层5间隔形 成气流通道7。铁芯8周边气流通道7刚好穿过变压器内部,可以较好地对线圈单元及铁芯8进行整体散热,同时因为内线圈半导电层5的存在,该部分气流通道7并不承受高场强。
在一种具体实施方式中,绝缘层2外侧敷设有外表面半导电层1。在一种具体实施方式中,外表面半导电层1的端部预埋至绝缘层2内部,且外表面半导电层1的端部设有等电位体11,等电位体11位于绝缘层2内部。预埋半导电端部结构,改善端部电场强分布。带有端部接地截止点结构的整体浇注线包及变压器结构,具体的,等电位体11为喇叭口结构或圆曲率结构,避免局部场强集中。
在上述各方案的基础上,优选,该变压器还包括与绝缘层2固定连接的等电位腔体10,优选,等电位腔体10与绝缘层2为一体成型结构,两者一体浇铸成型。一体成型等电位腔体10结构;等电位腔体10内设有内表面半导电层9。通过设置等电位腔体10,有效提升空间利用率,提升功率密度。通过设置等电位腔体10,改变传统变压器采用高压引出端子的方式来实现绝缘间距的要求,在此空间内不允许放置其他物品,而采用本方案则可以在等电位腔体10内放置同一侧的相关电子元件,而不至于因为场强过大而引起器件绝缘失效。
在一种具体实施方式中,铁芯8,空隙7,内线圈6,内线圈半导电层5及外表面半导电层1处于绝缘层2一侧;而外线圈4,外线圈半导电层3,内表面半导电层9以及等电位腔体10处于绝缘层2另一侧。
优选,绕组单元均采用质地较为柔软的材料,具体的,内线圈半导电层5和外线圈半导电层3可以为半导电带高分子材料,内线圈6和外线圈4可以为铜丝等,且与浇注材料浸润性较好,在发热过程中不会因为热胀冷缩而引起过大的机械应力集中,进而导致产品开裂,较好地解决传统直接浇注产品应用过程中机械应力过高引起的开裂问题。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种变压器,其特征在于,包括两个并列布置的线圈单元,所述线圈单元包括内线圈(6)及套设在所述内线圈(6)外侧的外线圈(4),所述外线圈(4)外侧包裹有外线圈半导电层(3),所述内线圈(6)外侧包裹有内线圈半导电层(5),所述线圈单元整体浇注有绝缘层(2)。
  2. 根据权利要求1所述的变压器,其特征在于,所述绝缘层(2)外侧敷设有外表面半导电层(1),所述外表面半导电层(1)的端部预埋至所述绝缘层(2)内部,且所述外表面半导电层(1)的端部设有等电位体(11),所述等电位体(11)位于所述绝缘层(2)内部。
  3. 根据权利要求2所述的变压器,其特征在于,所述等电位体(11)为喇叭口结构或圆曲率结构。
  4. 根据权利要求1所述的变压器,其特征在于,还包括铁芯(8),所述内线圈半导电层(5)与所述铁芯(8)之间间隔形成气流通道(7)。
  5. 根据权利要求1所述的变压器,其特征在于,还包括与所述绝缘层(2)固定连接的等电位腔体(10),所述等电位腔体(10)内设有内表面半导电层(9)。
  6. 根据权利要求5所述的变压器,其特征在于,所述等电位腔体(10),所述等电位腔体(10)与所述绝缘层(2)为一体成型结构。
  7. 根据权利要求1所述的变压器,其特征在于,所述变压器为固态变压器。
  8. 根据权利要求2或3所述的变压器,其特征在于,所述绝缘层(2)包括浇注于所述外表面半导电层(1)内部的第一绝缘层、浇注于所述外表面半导电层(1)内部的第二绝缘层及浇注于所述外表面半导电层(1)外表面和所述外表面半导电层(1)外表面的第三绝缘层。
  9. 根据权利要求1-7中任一项所述的变压器,其特征在于,所述绝缘层(2)为一体成型浇注结构。
  10. 一种变压器加工工艺,其特征在于,包括步骤:
    A1:在内线圈(6)外侧包裹内线圈半导电层(5);
    A2:在外线圈(4)外侧包裹外线圈半导电层(3),所述外线圈(4)套设于所述内线圈半导电层(5)外侧,形成线圈单元;
    A3:设置两个并列布置的线圈单元,在线圈单元上浇注绝缘介质形成绝缘层(2);
    A4:将铁芯(8)安装在所述线圈单元上,且所述铁芯(8)与所述内线圈半导电层(5)间隔形成气流通道(7)。
  11. 根据权利要求10所述的变压器加工工艺,其特征在于,所述步骤A3包括:
    A31:在包裹有所述内线圈半导电层的所述内线圈位置浇注第一绝缘介质;在包裹有所述外线圈半导电层的所述外线圈位置浇注第二绝缘介质;
    A32:在所述内线圈半导电层外表面和所述外线圈半导电层外表面浇注第三绝缘介质,所述第一绝缘介质、所述第二绝缘介质和所述第三绝缘介质形成所述绝缘层。
PCT/CN2020/093090 2019-11-21 2020-05-29 变压器及变压器加工工艺 WO2021098181A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/601,920 US20220148797A1 (en) 2019-11-21 2020-05-29 Transformer and transformer machining process
JP2021559672A JP7263549B2 (ja) 2019-11-21 2020-05-29 変圧器及び変圧器の加工プロセス
EP20890627.1A EP3951813A4 (en) 2019-11-21 2020-05-29 TRANSFORMER AND TRANSFORMER MACHINING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911149325.5 2019-11-21
CN201911149325.5A CN110853898A (zh) 2019-11-21 2019-11-21 变压器及变压器加工工艺

Publications (1)

Publication Number Publication Date
WO2021098181A1 true WO2021098181A1 (zh) 2021-05-27

Family

ID=69603422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093090 WO2021098181A1 (zh) 2019-11-21 2020-05-29 变压器及变压器加工工艺

Country Status (5)

Country Link
US (1) US20220148797A1 (zh)
EP (1) EP3951813A4 (zh)
JP (1) JP7263549B2 (zh)
CN (1) CN110853898A (zh)
WO (1) WO2021098181A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853898A (zh) * 2019-11-21 2020-02-28 阳光电源股份有限公司 变压器及变压器加工工艺
CN111986883B (zh) * 2020-06-19 2022-11-15 阳光电源股份有限公司 固态变压器及其制备方法
CN112652470B (zh) * 2020-12-07 2022-11-15 阳光电源股份有限公司 一种变压器
EP4345854A1 (en) * 2022-09-30 2024-04-03 ABB Schweiz AG Transformer coil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203886A (zh) * 2008-09-01 2011-09-28 帝龙产业株式会社 地埋式固体绝缘变压器的制造方法
EP3364430A1 (en) * 2017-02-17 2018-08-22 ABB Schweiz AG Medium-frequency transformer with dry core
CN109524220A (zh) * 2018-12-27 2019-03-26 阳光电源股份有限公司 变压器及变压器加工方法
CN110853898A (zh) * 2019-11-21 2020-02-28 阳光电源股份有限公司 变压器及变压器加工工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268918A (en) * 1975-12-05 1977-06-08 Hitachi Ltd Insulated transformer
JPH06314626A (ja) * 1993-04-30 1994-11-08 Hirai Denkeiki Kk 巻線形変流器
JP3533252B2 (ja) * 1995-02-09 2004-05-31 株式会社東芝 変圧器
KR20000016040A (ko) * 1996-05-29 2000-03-25 에이비비 에이비 고전압 권선용 절연 전도체 및 상기 전도체의 제조 방법
SE512060C2 (sv) * 1997-02-03 2000-01-17 Abb Ab Lindning, förfarande för framställning av en sådan samt krafttransformator eller reaktor
SE9704423D0 (sv) * 1997-02-03 1997-11-28 Asea Brown Boveri Roterande elektrisk maskin med spolstöd
JP3969492B2 (ja) * 2003-07-08 2007-09-05 株式会社アイキューフォー 高耐圧トランスとその高耐圧トランス用の導電コーティングシングルモールドコイル
DE102007006005B3 (de) * 2007-02-07 2008-07-31 Volker Werner Hanser Transformator
KR101028054B1 (ko) * 2009-04-10 2011-04-08 제룡산업 주식회사 완전고체절연 몰드 변압기 및 이의 제조 방법
CN108831721B (zh) * 2018-06-27 2020-03-24 阳光电源股份有限公司 变压器绝缘组件及变压器
CN211376390U (zh) * 2019-11-21 2020-08-28 阳光电源股份有限公司 变压器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203886A (zh) * 2008-09-01 2011-09-28 帝龙产业株式会社 地埋式固体绝缘变压器的制造方法
EP3364430A1 (en) * 2017-02-17 2018-08-22 ABB Schweiz AG Medium-frequency transformer with dry core
CN109524220A (zh) * 2018-12-27 2019-03-26 阳光电源股份有限公司 变压器及变压器加工方法
CN110853898A (zh) * 2019-11-21 2020-02-28 阳光电源股份有限公司 变压器及变压器加工工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951813A4

Also Published As

Publication number Publication date
JP7263549B2 (ja) 2023-04-24
CN110853898A (zh) 2020-02-28
EP3951813A1 (en) 2022-02-09
US20220148797A1 (en) 2022-05-12
EP3951813A4 (en) 2023-01-18
JP2022527119A (ja) 2022-05-30

Similar Documents

Publication Publication Date Title
WO2021098181A1 (zh) 变压器及变压器加工工艺
CN211376390U (zh) 变压器
US11228215B2 (en) System of a conductor disposed within an insulator
KR101659559B1 (ko) 오픈식 입체권철심 건식변압기의 코일구조
EP3109873B1 (en) Inductor coil and electromagnetic component
CN106783038A (zh) 一种外侧循环冷却环氧浇注干式变压器
CN211699815U (zh) 一种散热的电线电缆
CN105070476A (zh) 一种直流换流阀的阳极饱和电抗器
CN104485219B (zh) 生产浇注式组合互感器的浇注模具以及生产工艺
CN103474228A (zh) 线绕低压引线制作工艺
CN109524220B (zh) 变压器及变压器加工方法
CN114724822B (zh) 绕组组件、干式变压器以及绕组组件的制造方法
CN206711732U (zh) 空心电抗器
WO2000036616A1 (fr) Reacteur a noyau d'air de type sec et a blindage magnetique
CN220672369U (zh) 一种高压绕组及干式变压器
CN211237897U (zh) 一种换流阀用新型阳极饱和电抗器
CN114974878B (zh) 一种防止线圈炸裂的空心电抗器制作方法
CN111525753B (zh) 线性涡流制动装置用制动磁极的制造工艺
CN212750560U (zh) 一种节能的干式变压器
CN216649359U (zh) 定子线棒、定子及发电机
CN216719709U (zh) 一种环氧树脂绝缘体
JP6722790B2 (ja) コイル部品
US20220392692A1 (en) Dry-type transformer and winding method thereof
CN209607578U (zh) 一种尼龙绝缘的电压互感器
CN106531419A (zh) 网格35kv级环氧树脂浇注干式变压器高压线圈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021559672

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020890627

Country of ref document: EP

Effective date: 20211103

NENP Non-entry into the national phase

Ref country code: DE