WO2021098146A1 - 基于时频空域综合调制的微波分区加热方法、系统和装置 - Google Patents

基于时频空域综合调制的微波分区加热方法、系统和装置 Download PDF

Info

Publication number
WO2021098146A1
WO2021098146A1 PCT/CN2020/087012 CN2020087012W WO2021098146A1 WO 2021098146 A1 WO2021098146 A1 WO 2021098146A1 CN 2020087012 W CN2020087012 W CN 2020087012W WO 2021098146 A1 WO2021098146 A1 WO 2021098146A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
heating
frequency
time
division
Prior art date
Application number
PCT/CN2020/087012
Other languages
English (en)
French (fr)
Inventor
林先其
李晨楠
文章
刘东屹
樊勇
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Publication of WO2021098146A1 publication Critical patent/WO2021098146A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Definitions

  • the invention belongs to the application field of microwave heating, and specifically relates to a microwave heating method, system and device.
  • Microwave heating technology is a modern new type of heating technology. Its efficient energy utilization and low energy consumption make it a bright spot in terms of energy conservation, emission reduction and environmental protection energy development.
  • microwave heating also has some shortcomings. Uneven heating is the most common one. Uneven heating can cause local overheating and hot spots, and may even cause combustion and explosion. There are two main reasons for the uneven microwave heating: electromagnetic waves are repeatedly reflected in the cavity to form a standing wave; the electromagnetic parameters in the cavity are discontinuous, resulting in rapid attenuation of electromagnetic waves. In order to improve the uniformity of microwave heating, it is proposed to finely control the temperature distribution of each sub-region, and finally achieve the uniform effect of the entire region. Improving the uniformity of microwave heating is currently a hot issue in the application of microwave heating technology in various fields.
  • Sang-Hyeon Bae et al. disclosed a microwave heating method (Sang-Hyeon Bae) that realizes uniform heating by sequentially controlling the input power of multiple microwave sources.
  • the technical problem to be solved by the present invention is to provide a microwave zone heating method, system and device based on time-frequency-space comprehensive modulation based on the deficiencies of the prior art, and achieve microwave power through frequency-division modulation, time-division modulation and spatial selection.
  • Different time allocation of the matching antennas to each area to be heated; finally, the matching antennas of each area to be heated apply microwave power to each object to be heated to achieve the effect of district heating on demand.
  • a microwave zone heating method based on comprehensive modulation of time, frequency and space. First, determine the microwave power and heating duration ratio required by each area to be heated through automatic image comparison and analysis of the object to be heated or manual input of heating requirements; , Through frequency division modulation, time division modulation, and space selection, the microwave power is distributed to the antennas of each area to be heated for different durations; finally, the antennas for each area to be heated will apply the microwave power to each object to be heated to realize the partition according to The effect of heating.
  • the frequency division modulation method is to realize the output frequency change of the microwave power source by changing the applied DC bias value of the microwave power source; the output power value of the microwave power source is always at the optimum corresponding to the optimum efficiency Within the power output range.
  • the time division modulation method is to realize the duration of different output frequencies of the microwave power source by matching the duration of the microwave power source with different applied DC bias values.
  • the airspace selection method is to integrate multiple antennas working at different frequencies into one power input port through a multiplexer, and then perform selective operation of different antennas through different frequencies of input microwave power sources, thereby achieving Choice of heating area.
  • the heating effect of the object to be heated in each area is monitored in real time by the method of automatic image comparison and analysis, and the time-frequency-space comprehensive modulation parameters are optimized through the monitoring results, and finally the most required zone heating effect is achieved.
  • a microwave zone heating system based on comprehensive modulation in time, frequency and space including:
  • the heating demand input module is used to obtain the heating range and heating effect required by the user
  • the heating effect acquisition module is used to determine the real-time heating effect of the object to be tested
  • Frequency control module used to control the output frequency value of the microwave power source
  • Time control module used to control the duration of different output frequency values of the microwave power source
  • the system parameter calculation module is used to analyze and process the collected information of the object to be heated and the required effect information obtained from the input, and accurately control the different output frequency values of the microwave power source and the duration of different frequencies;
  • Microwave radiation module used to radiate microwave power source to heated objects in various areas
  • the power management module is used to provide different voltage and current ratios for other modules of the microwave zone heating system.
  • a microwave zone heating device based on comprehensive modulation of time, frequency and space, comprising a closed metal heating cavity, a microwave energy radiation structure, a zone multi-frequency feed network, and a time division frequency control system.
  • the microwave energy radiation structure is fixed on The inner side wall of the metal heating cavity; the partitioned multi-frequency feed network is directly connected with the microwave energy radiation structure; the time-division frequency control system is connected with the partitioned multi-frequency feed network to realize different frequencies of microwave energy from an external microwave source
  • the low reflection is input into the microwave energy radiating structure, and thus radiated into the metal heating cavity.
  • the microwave energy radiation structure is composed of N narrow-band working radiator structure units, where N is a natural number greater than or equal to 2, wherein the specific number and arrangement positions of the radiator structure units are determined by the required heating position and heating shape. Decide; the length, width and height of the radiator structural unit should ensure that its operating frequency is within the ISM standard frequency range, and the operating frequencies are different from each other.
  • the partitioned multi-frequency feed network is composed of multiple sections of tree-shaped transmission lines with different lengths and widths and microwave energy feed ports, wherein the number of branches of the tree-shaped transmission line is determined by the specific number of radiator structure units; the number of tree-shaped transmission lines The branch width and length are determined by the impedance matching of each radiator structural unit, so that when one of the branches works, the other branches are equivalent to an open circuit state at this frequency; when the external microwave source outputs high power, the microwave energy feed port adopts N When the external microwave source outputs low power, the microwave energy feed port is connected with an SMA connector.
  • the specific feed point position is determined by the required heating position and heating effect.
  • the time-division frequency control system is composed of a single-chip microcomputer, a camera, and a single-chip microcomputer module.
  • the camera is connected to the single-chip microcomputer, and the heating demand input module is used to collect demand information;
  • the system parameter calculation module is connected to the frequency control module and time The control module is connected.
  • One end of the frequency control module and the time control module is connected to the partitioned multi-frequency feed network;
  • the heating effect acquisition module is connected to the microwave heating cavity, and is used to feed back the information in the microwave heating cavity to the single chip microcomputer to maintain the microwave heating cavity
  • the temperature is within a range.
  • the present invention has the following advantages and beneficial effects:
  • the time and frequency division control system used in the present invention can accurately control the heating range, and can perform refined heating such as uniform heating of the microwave heating range and designated area heating, which fully meets the demand for heating on demand.
  • the present invention adopts a feedback optimization system and judges its own heating environment through its own module to continuously adjust the heating effect and improve the stability of the heating temperature.
  • the microwave heating device adopted by the present invention has a simple overall structure, high space utilization rate, and a lower cost than products of the same level at the present stage, which is favorable for widespread popularization.
  • Fig. 1 is a system block diagram of a microwave zone heating method based on time-frequency-space comprehensive modulation used in the present invention.
  • Figure 2 is a system block diagram of the overall structure of the present invention.
  • Fig. 3 is an expanded view of the microwave energy radiation structure and frequency division feed network used in the present invention.
  • a microwave zone heating method based on time-frequency-space comprehensive modulation As shown in a system block diagram of a microwave zone heating method based on time-frequency-space comprehensive modulation in FIG. 1, a microwave zone heating method based on time-frequency-space comprehensive modulation.
  • the camera 120 performs automatic image comparison of the object to be heated Analyze, through automatic image comparison analysis of the object to be heated or manual input of heating demand, through the system parameter calculation module 112, determine the microwave power and heating time ratio required by each area to be heated; secondly, through the frequency control module 113, The time control module 114 and the partitioned multi-frequency feed network 200 realize the different time distribution of microwave power to different areas of the microwave energy radiating structure 320; finally, the microwave energy radiating structure 320 applies the microwave power to each object to be heated to achieve The effect of district heating on demand.
  • the frequency division modulation method is to realize the output frequency change of the microwave power source by changing the applied DC bias value of the microwave power source of the time division frequency control system 100; the output power value of the microwave power source is always at The optimal efficiency corresponds to the optimal power output range.
  • the time-division modulation method is to realize the duration of different output frequencies of the microwave power source by matching the duration of different external DC bias values of the microwave power source of the time-division frequency division control system 100.
  • the airspace selection method is to integrate multiple antennas working at different frequencies into one power input port through the multiplexer of the partitioned multi-frequency feed network 200, and then perform microwave operation through different frequencies of input microwave power sources.
  • the selective operation of the energy radiation structure 320 further realizes the selection of the heating area.
  • the heating effect of the object to be heated in each area is monitored in real time by the method of automatic image comparison and analysis, and the information received from the heating effect collection module 115 is fed back to the system parameter calculation module 112 to optimize the comprehensive modulation parameters in the time, frequency and space domain, and finally To achieve the most needed zone heating effect.
  • a microwave zone heating system based on time-frequency-space comprehensive modulation includes:
  • the heating demand input module 111 is used to obtain the heating range and heating effect required by the user;
  • the heating effect acquisition module 115 is used to determine the real-time heating effect of the heated object to be tested;
  • the frequency control module 113 is used to control the output frequency value of the microwave power source
  • the time control module 114 is used to control the duration of different output frequency values of the microwave power source
  • the system parameter calculation module 112 is used to analyze and process the collected information of the object to be heated and the required effect information obtained from the input, and accurately control the different output frequency values of the microwave power source and the duration of the different frequencies;
  • the microwave radiation module 320 is used to radiate the microwave power source to the heated objects in each area;
  • the power management module is used to provide different voltage and current ratios for other modules of the microwave zone heating system.
  • a microwave zone heating device based on comprehensive modulation of time, frequency and space, includes a closed metal heating cavity 310, a microwave energy radiation structure 320, a zone multi-frequency feed network 200, and a time division frequency division.
  • the microwave energy radiating structure 320 is fixed on the inner side wall of a 340mm*338mm*145mm metal heating cavity 310;
  • the zoned multi-frequency feed network 200 is directly connected to the microwave energy radiating structure 320;
  • the frequency division control system 100 is connected to the zone multi-frequency feed network 200 to realize low reflection input of microwave energy of different frequencies from an external microwave source of 1-200W into the microwave energy radiation structure 320, and thereby radiate into the metal heating cavity 310.
  • the microwave energy radiating structure 320 is composed of N narrow-band working radiator structure units 321, where N is a natural number greater than or equal to 2, wherein the specific number and arrangement position of the radiator structure unit 321 are determined by the required heating position It is determined by the heating shape; the length, width and height of the radiator structure unit 321 must ensure that its operating frequency is within the ISM standard frequency range, and the operating frequencies are different from each other.
  • the partitioned multi-frequency feed network 200 is composed of multiple sections of tree-shaped transmission lines with different lengths and widths and microwave energy feed ports, wherein the number of branches of the tree-shaped transmission line is determined by the specific number of radiator structural units; tree-shaped transmission lines The branch width and length are determined by the impedance matching of each radiator structural unit, so that when one of the branches works, the other branches are equivalent to an open circuit state at this frequency; when the external microwave source outputs high power, the microwave energy feed port adopts The N-type head is connected. When the external microwave source outputs low power, the microwave energy feeding port is connected with an SMA connector. The specific feeding point position is determined by the required heating position and heating effect.
  • the time division frequency division control system 100 is composed of a single-chip microcomputer 110, a camera 120 and a single-chip microcomputer module.
  • the camera 120 is connected to the single-chip 110, and the heating demand input module 111 is used to collect demand information; the system parameter calculation module 112 They are connected to the frequency control module 113 and the time control module 114 respectively.
  • One end of the frequency control module 113 and the time control module 114 is jointly connected to the zone multi-frequency feed network 200; the heating effect acquisition module 115 is connected to the microwave heating cavity 300 to heat the microwave The information in the cavity 300 is fed back to the single chip microcomputer 110 to maintain the temperature in the microwave heating cavity 300 within a range.

Abstract

一种基于时频空域综合调制的微波分区加热方法、系统和装置,通过频分调制、时分调制以及空域选择的方式实现微波功率到各待加热区域配套天线的不同时长分配,各待加热区域配套天线将微波功率作用到各待加热物体上,实现分区按需加热的效果。其中微波分区加热装置包括:封闭式金属加热腔体(310)、微波能量辐射结构(320)、分区多频馈电网络(200)、分时分频控制系统(100)。分时分频控制系统(100)可以对加热范围精准控制,可以对微波加热范围进行均匀加热、指定区域加热等精细化加热,充分满足了按需加热的需求。

Description

基于时频空域综合调制的微波分区加热方法、系统和装置 技术领域
本发明属于微波加热应用领域,具体涉及一种微波加热方法、系统和装置。
背景技术
微波加热技术是现代新型的加热技术,高效的能量利用率和低能量损耗使其在节能减排和环保能源发展方面成为一大亮点。然而微波加热也有一些缺点,不均匀加热是其中最常见的一种,加热不均匀会引起局部过热和出现热点等问题,甚至可能会发生燃烧和爆炸。微波加热不均匀主要原因有两点:电磁波在腔体中反复反射,形成驻波;腔体中电磁参数不连续,导致电磁波快速衰减。为提高微波加热均匀性,提出将每个分区域的温度分布进行细化控制,最终达到整个区域均匀化的效果。提高微波加热均匀性是目前微波加热技术在各个领域应用的热点问题。
为提高微波加热均匀性,Sang-Hyeon Bae 等人公开了一种通过对多微波源输入功率的顺序控制实现均匀加热的微波加热方法(Sang-Hyeon Bae, Min-Gyo Jeong,Ji-Hong Kim,and Wang-Sang Lee, “A Continuous Power-Controlled Microwave Belt Drier Improving Heating Uniformity,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 27, NO. 5, MAY 2017.),使得多个场模式不停变化,大大减少了谐振腔内部温度场的热点和冷点,从而实现了微波均匀加热,但是其加热结构笨重复杂,不利于广泛使用,并且也增加了使用成本。四川大学朱铧丞,杨阳和黄卡玛公开了一种微波选频加热的装置(四川大学,一种微波选频加热的装置,中国发明专利,申请号201620669502 .8, 申请日2016 .06 .28),通过改变微波频率来提高对被加热物体的加热效果,但是,该方式不能实现所需区域的局部加热和按需加热。
技术问题
本发明所要解决的技术问题在于,针对现有技术的不足,提供一种基于时频空域综合调制的微波分区加热方法、系统和装置,通过频分调制、时分调制以及空域选择的方式实现微波功率到各待加热区域配套天线的不同时长分配;最终各待加热区域配套天线将微波功率作用到各待加热物体上,实现分区按需加热的效果。
技术解决方案
本发明解决其技术问题所采用的技术方案是:
一种基于时频空域综合调制的微波分区加热方法,首先,通过待加热物体的自动图像比对分析或者加热需求手动输入方式,确定各待加热区域所需的微波功率以及加热时长配比;其次,通过频分调制、时分调制以及空域选择的方式实现微波功率到各待加热区域配套天线的不同时长分配;最终,各待加热区域配套天线将微波功率作用到各待加热物体上,实现分区按需加热的效果。
进一步地,所述的频分调制方式是通过改变微波功率源的外加直流偏压值,来实现微波功率源的输出频率变化;微波功率源的输出功率值始终处于最优效率所对应的最优功率输出范围内。
进一步地,所述的时分调制方式是通过配比微波功率源不同外加直流偏压值的持续时长,来实现微波功率源不同输出频率的持续时长。
进一步地,所述的空域选择方式是通过多工器将工作在不同频率的多个天线集成到一个功率输入口上,再通过输入微波功率源的频率不同来进行不同天线的选择性工作,进而实现加热区域的选择。
进一步地,各区域待加热物体的加热效果采用自动图像比对分析的方法进行实时监控,通过监测结果对时频空域综合调制参数进行优化,最终达到最需要的分区加热效果。
一种基于时频空域综合调制的微波分区加热系统,包括:
加热需求输入模块,用于获取使用者所需要的加热范围及加热效果;
加热效果采集模块,用于确定待测加热物体的实时加热效果;
频率控制模块,用于控制微波功率源的输出频率值;
时间控制模块,用于控制微波功率源不同输出频率值所持续的时长;
系统参数运算模块,用于分析处理采集得到的待加热物体信息和输入得到的所需效果信息,精准控制微波功率源的不同输出频率值、不同频率所持续的时长;
微波辐射模块,用于将微波功率源辐射到各区域的带加热物体上;
电源管理模块,用于为微波分区加热系统的其他模块提供不同电压、电流配比。
一种基于时频空域综合调制的微波分区加热装置,包括封闭式金属加热腔体、微波能量辐射结构、分区多频馈电网络、分时分频控制系统,所述的微波能量辐射结构固定于金属加热腔体的内侧壁;所述的分区多频馈电网络与微波能量辐射结构直接相连;分时分频控制系统与分区多频馈电网络相连,实现不同频率的微波能量从外部微波源低反射输入到微波能量辐射结构中,并且由此辐射至金属加热腔中。
进一步地,所述的微波能量辐射结构由N个窄带工作的辐射体结构单元构成,N为大于等于2的自然数,其中辐射体结构单元的具体数量与排布位置由所需加热位置与加热形状决定;辐射体结构单元的长度、宽度和高度要确保其工作频率位于ISM标准频率范围内,且工作频率相互各异。
进一步地,所述的分区多频馈电网络由多段不同长度宽度的树状传输线以及微波能量馈入端口组成,其中树状传输线的分支数量由辐射体结构单元的具体数量决定;树状传输线的分支宽度和长度由各辐射体结构单元的阻抗匹配决定,以实现其中一个分支工作时,其他分支在此频率下等效为开路状态;当外部微波源大功率输出时微波能量馈入端口采用N型头相连,当外部微波源小功率输出时微波能量馈入端口采用SMA接头相连,具体馈电点位置由所需加热位置与加热效果确定。
进一步地,所述的分时分频控制系统由单片机、摄像头和单片机模块组成,其中摄像头与单片机相连,加热需求输入模块用于对需求的信息采集;系统参数运算模块分别与频率控制模块和时间控制模块相连,频率控制模块和时间控制模块一端共同连接分区多频馈电网络;加热效果采集模块与微波加热腔相连,用于将微波加热腔中的信息进行反馈至单片机,维持微波加热腔中的温度于一个范围之内。
有益效果
本发明与现有技术相比,具有以下优点和有益效果:
(1)本发明所采用的分时分频控制系统可以对加热范围精准控制,可以对微波加热范围进行均匀加热、指定区域加热等精细化加热,充分满足了按需加热的需求。
(2)本发明采用了反馈优化系统,通过自身模块,对自身的加热环境进行判断,来不断调整加热效果,提高了加热温度的稳定性。
(3)本发明采用的微波加热装置,整体结构简单,空间利用率高,成本低于现阶段的同级产品,有利于广泛普及。
附图说明
图1是本发明所采用的基于时频空域综合调制的微波分区加热方法的一种系统框图。
图2是本发明的总体结构的一种系统框图。
图3是本发明所采用的微波能量辐射结构和分频馈电网络的展开图。
本发明的最佳实施方式
实施例1
如图1的基于时频空域综合调制的微波分区加热方法的一种系统框图所示,一种基于时频空域综合调制的微波分区加热方法,首先,摄像头120将待加热物体进行自动图像比对分析,通过待加热物体的自动图像比对分析或者加热需求手动输入方式,通过系统参数运算模块112,确定各待加热区域所需的微波功率以及加热时长配比;其次,通过频率控制模块113、时间控制模块114以及分区多频馈电网络200的方式实现微波功率到微波能量辐射结构320的不同区域的不同时长分配;最终,微波能量辐射结构320将微波功率作用到各待加热物体上,实现分区按需加热的效果。
进一步地,所述的频分调制方式是通过改变分时分频控制系统100的微波功率源的外加直流偏压值,来实现微波功率源的输出频率变化;微波功率源的输出功率值始终处于最优效率所对应的最优功率输出范围内。
进一步地,所述的时分调制方式是通过配比分时分频控制系统100的微波功率源不同外加直流偏压值的持续时长,来实现微波功率源不同输出频率的持续时长。
进一步地,所述的空域选择方式是通过分区多频馈电网络200的多工器将工作在不同频率的多个天线集成到一个功率输入口上,再通过输入微波功率源的频率不同来进行微波能量辐射结构320的选择性工作,进而实现加热区域的选择。
进一步地,各区域待加热物体的加热效果采用自动图像比对分析的方法进行实时监控,通过加热效果采集模块115的到信息反馈至系统参数运算模块112对时频空域综合调制参数进行优化,最终达到最需要的分区加热效果。
本发明的实施方式
实施例2
如图2所示,一种基于时频空域综合调制的微波分区加热系统包括:
加热需求输入模块111,用于获取使用者所需要的加热范围及加热效果;
加热效果采集模块115,用于确定待测加热物体的实时加热效果;
频率控制模块113,用于控制微波功率源的输出频率值;
时间控制模块114,用于控制微波功率源不同输出频率值所持续的时长;
系统参数运算模块112,用于分析处理采集得到的待加热物体信息和输入得到的所需效果信息,精准控制微波功率源的不同输出频率值、不同频率所持续的时长;
微波辐射模块320,用于将微波功率源辐射到各区域的带加热物体上;
电源管理模块,用于为微波分区加热系统的其他模块提供不同电压、电流配比。
实施例3
如图2、图3所示,一种基于时频空域综合调制的微波分区加热装置,包括封闭式金属加热腔体310、微波能量辐射结构320、分区多频馈电网络200、分时分频控制系统100,所述的微波能量辐射结构320固定于340mm*338mm*145mm的金属加热腔体310的内侧壁;所述的分区多频馈电网络200与微波能量辐射结构320直接相连;分时分频控制系统100与分区多频馈电网络200相连,实现不同频率的微波能量从1-200W外部微波源低反射输入到微波能量辐射结构320中,并且由此辐射至金属加热腔310中。
进一步地,所述的微波能量辐射结构320由N个窄带工作的辐射体结构单元321构成,N为大于等于2的自然数,其中辐射体结构单元321的具体数量与排布位置由所需加热位置与加热形状决定;辐射体结构单元321的长度、宽度和高度要确保其工作频率位于ISM标准频率范围内,且工作频率相互各异。
进一步地,所述的分区多频馈电网络200由多段不同长度宽度的树状传输线以及微波能量馈入端口组成,其中树状传输线的分支数量由辐射体结构单元的具体数量决定;树状传输线的分支宽度和长度由各辐射体结构单元的阻抗匹配决定,以实现其中一个分支工作时,其他分支在此频率下等效为开路状态;当外部微波源大功率输出时微波能量馈入端口采用N型头相连,当外部微波源小功率输出时微波能量馈入端口采用SMA接头相连,具体馈电点位置由所需加热位置与加热效果确定。
进一步地,所述的分时分频控制系统100由单片机110、摄像头120和单片机模块组成,其中摄像头120与单片机110相连,加热需求输入模块111用于对需求的信息采集;系统参数运算模块112分别与频率控制模块113和时间控制模块114相连,频率控制模块113和时间控制模块114一端共同连接分区多频馈电网络200;加热效果采集模块115与微波加热腔300相连,用于将微波加热腔300中的信息进行反馈至单片机110,维持微波加热腔300中的温度于一个范围之内。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (10)

  1. 一种基于时频空域综合调制的微波分区加热方法,其特征在于: 首先,通过待加热物体的自动图像比对分析或者加热需求手动输入方式,确定各待加热区域所需的微波功率以及加热时长配比;其次,通过频分调制、时分调制以及空域选择的方式实现微波功率到各待加热区域配套天线的不同时长分配;最终,各待加热区域配套天线将微波功率作用到各待加热物体上,实现分区按需加热的效果。
  2. 根据权利要求1所述的一种基于时频空域综合调制的微波分区加热方法,其特征在于:所述的频分调制方式是通过改变微波功率源的外加直流偏压值,来实现微波功率源的输出频率变化;微波功率源的输出功率值始终处于最优效率所对应的最优功率输出范围内。
  3. 根据权利要求1所述的一种基于时频空域综合调制的微波分区加热方法,其特征在于:所述的时分调制方式是通过配比微波功率源不同外加直流偏压值的持续时长,来实现微波功率源不同输出频率的持续时长。
  4. 根据权利要求1所述的一种基于时频空域综合调制的微波分区加热方法,其特征在于:所述的空域选择方式是通过多工器将工作在不同频率的多个天线集成到一个功率输入口上,再通过输入微波功率源的频率不同来进行不同天线的选择性工作,进而实现加热区域的选择。
  5. 根据权利要求1所述的一种基于时频空域综合调制的微波分区加热方法,其特征在于:各区域待加热物体的加热效果采用自动图像比对分析的方法进行实时监控,通过监测结果对时频空域综合调制参数进行优化,最终达到最需要的分区加热效果。
  6. 一种基于时频空域综合调制的微波分区加热系统,其特征在于包括:
    加热需求输入模块,用于获取使用者所需要的加热范围及加热效果;
    加热效果采集模块,用于确定待测加热物体的实时加热效果;
    频率控制模块,用于控制微波功率源的输出频率值;
    时间控制模块,用于控制微波功率源不同输出频率值所持续的时长;
    系统参数运算模块,用于分析处理采集得到的待加热物体信息和输入得到的所需效果信息,精准控制微波功率源的不同输出频率值、不同频率所持续的时长;
    微波辐射模块,用于将微波功率源辐射到各区域的带加热物体上;
    电源管理模块,用于为微波分区加热系统的其他模块提供不同电压、电流配比。
  7. 一种基于时频空域综合调制的微波分区加热装置,包括封闭式金属加热腔体、微波能量辐射结构、分区多频馈电网络、分时分频控制系统,其特征在于:所述的微波能量辐射结构固定于金属加热腔体的内侧壁;所述的分区多频馈电网络与微波能量辐射结构直接相连;分时分频控制系统与分区多频馈电网络相连,实现不同频率的微波能量从外部微波源低反射输入到微波能量辐射结构中,并且由此辐射至金属加热腔中。
  8. 根据权利要求7所述的一种基于时频空域综合调制的微波分区加热装置,其特征在于:所述的微波能量辐射结构由N个窄带工作的辐射体结构单元构成,N为大于等于2的自然数,其中辐射体结构单元的具体数量与排布位置由所需加热位置与加热形状决定;辐射体结构单元的长度、宽度和高度要确保其工作频率位于ISM标准频率范围内,且工作频率相互各异。
  9. 根据权利要求8所述的一种基于时频空域综合调制的微波分区加热装置,其特征在于:所述的分区多频馈电网络由多段不同长度宽度的树状传输线以及微波能量馈入端口组成,其中树状传输线的分支数量由辐射体结构单元的具体数量决定;树状传输线的分支宽度和长度由各辐射体结构单元的阻抗匹配决定,以实现其中一个分支工作时,其他分支在此频率下等效为开路状态;当外部微波源大功率输出时微波能量馈入端口采用N型头相连,当外部微波源小功率输出时微波能量馈入端口采用SMA接头相连,具体馈电点位置由所需加热位置与加热效果确定。
  10. 根据权利要求8所述的分时分频分区的微波加热装置,其特征在于:所述的分时分频控制系统由单片机、摄像头和单片机模块组成,其中摄像头与单片机相连,加热需求输入模块用于对需求的信息采集;系统参数运算模块分别与频率控制模块和时间控制模块相连,频率控制模块和时间控制模块一端共同连接分区多频馈电网络;加热效果采集模块与微波加热腔相连,用于将微波加热腔中的信息进行反馈至单片机,维持微波加热腔中的温度于一个范围之内。
PCT/CN2020/087012 2019-11-19 2020-04-26 基于时频空域综合调制的微波分区加热方法、系统和装置 WO2021098146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911136974.1 2019-11-19
CN201911136974.1A CN111031621B (zh) 2019-11-19 2019-11-19 一种基于时频空域综合调制的微波分区加热方法、系统和装置

Publications (1)

Publication Number Publication Date
WO2021098146A1 true WO2021098146A1 (zh) 2021-05-27

Family

ID=70205927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087012 WO2021098146A1 (zh) 2019-11-19 2020-04-26 基于时频空域综合调制的微波分区加热方法、系统和装置

Country Status (2)

Country Link
CN (1) CN111031621B (zh)
WO (1) WO2021098146A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851822A (zh) * 2021-08-24 2021-12-28 电子科技大学 一种大功率频分空间选择性天线
CN113891512A (zh) * 2021-08-26 2022-01-04 电子科技大学长三角研究院(湖州) 一种基于选频技术的射频加热方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111031621B (zh) * 2019-11-19 2022-03-01 电子科技大学 一种基于时频空域综合调制的微波分区加热方法、系统和装置
CN113456216B (zh) * 2021-08-13 2023-12-01 电子科技大学长三角研究院(湖州) 一种基于微波加热的快速止血方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150271877A1 (en) * 2014-03-21 2015-09-24 Whirlpool Corporation Solid-state microwave device
CN105142253A (zh) * 2015-07-24 2015-12-09 石铁峰 一种微波发生装置、微波加热装置以及加热方法
CN108518710A (zh) * 2018-02-12 2018-09-11 四川大学 基于相控阵的微波炉及其空间分区加热方法
CN109413788A (zh) * 2018-10-29 2019-03-01 广东美的厨房电器制造有限公司 烹饪设备、烹饪设备的控制方法及计算机可读存储介质
CN109496005A (zh) * 2018-11-23 2019-03-19 电子科技大学 一种基于多频多模天线加载的微波加热装置
CN109511191A (zh) * 2018-12-17 2019-03-22 四川大学 一种基于温度反馈和相控阵的实现微波均匀加热的方法及设备
CN111031621A (zh) * 2019-11-19 2020-04-17 电子科技大学 一种基于时频空域综合调制的微波分区加热方法、系统和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120097665A1 (en) * 2008-11-10 2012-04-26 Alexander Bilchinsky Device and method for controlling energy
KR20160028655A (ko) * 2014-09-04 2016-03-14 알에프에이치아이씨 주식회사 영상처리를 이용한 화합물 반도체 전자레인지
CN104654381B (zh) * 2015-02-12 2017-08-04 广东美的厨房电器制造有限公司 半导体微波炉及用于微波炉的半导体功率源
US11013073B2 (en) * 2016-04-20 2021-05-18 Vorwerk & Co. Interholding Gmbh System for preparing and method for operating a system for preparing at least one food
CN110056913B (zh) * 2019-02-02 2024-03-19 四川大学 一种可视化操作的智能微波炉及其加热方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150271877A1 (en) * 2014-03-21 2015-09-24 Whirlpool Corporation Solid-state microwave device
CN105142253A (zh) * 2015-07-24 2015-12-09 石铁峰 一种微波发生装置、微波加热装置以及加热方法
CN108518710A (zh) * 2018-02-12 2018-09-11 四川大学 基于相控阵的微波炉及其空间分区加热方法
CN109413788A (zh) * 2018-10-29 2019-03-01 广东美的厨房电器制造有限公司 烹饪设备、烹饪设备的控制方法及计算机可读存储介质
CN109496005A (zh) * 2018-11-23 2019-03-19 电子科技大学 一种基于多频多模天线加载的微波加热装置
CN109511191A (zh) * 2018-12-17 2019-03-22 四川大学 一种基于温度反馈和相控阵的实现微波均匀加热的方法及设备
CN111031621A (zh) * 2019-11-19 2020-04-17 电子科技大学 一种基于时频空域综合调制的微波分区加热方法、系统和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851822A (zh) * 2021-08-24 2021-12-28 电子科技大学 一种大功率频分空间选择性天线
CN113891512A (zh) * 2021-08-26 2022-01-04 电子科技大学长三角研究院(湖州) 一种基于选频技术的射频加热方法

Also Published As

Publication number Publication date
CN111031621A (zh) 2020-04-17
CN111031621B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2021098146A1 (zh) 基于时频空域综合调制的微波分区加热方法、系统和装置
CN105142253B (zh) 一种微波发生装置、微波加热装置以及加热方法
CN205017622U (zh) 一种微波发生装置以及微波加热装置
CN105163465B (zh) 一种大功率led路灯电源电路系统及照明功率智能调节方法
CN108337758A (zh) 微波烹饪设备、微波加热控制方法和存储介质
CN109496005A (zh) 一种基于多频多模天线加载的微波加热装置
CN114448270A (zh) 一种两级式直流变换电路、5g基站电源ac-dc变换器及其效率优化方法
CN105577202A (zh) 一种915MHz功率可调的大功率射频发射器
CN203467105U (zh) 一种医用加速器用智能型循环冷却水系统
CN109827268B (zh) 一种间接蒸发冷冷源泵喷淋控制方法及控制装置
CN109757902A (zh) 一种能源系统及其床体温度调节的控制方法
CN110944422A (zh) 一种利用单固态源调频实现均匀加热的方法及设备
CN208489698U (zh) 一种功率自适应控制的无线充电收发装置
JP7055822B2 (ja) マイクロ波調理装置、制御方法及び記憶媒体
CN109729612A (zh) 一种高均匀性的双端口微波解冻腔体
CN110139344A (zh) 一种基于时间准同步的分布式网络功率控制方法
CN108337757A (zh) 微波加热装置和控制方法
CN113133574B (zh) 一种温度可控制的多层便携式饭盒
CN110260507B (zh) 一种高功率准谐振电磁感应热水结构及其控制方法
CN2417397Y (zh) 循环风式微波烧烤炉
CN209517727U (zh) 多通道超低功耗多功能采集系统
CN210345613U (zh) 一种变频取暖器
CN203467106U (zh) 一种医用加速器用恒温水冷系统
CN2506917Y (zh) 一种用微波加热的热水器
CN206182992U (zh) 自发电锅具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890130

Country of ref document: EP

Kind code of ref document: A1