WO2021098144A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2021098144A1
WO2021098144A1 PCT/CN2020/086712 CN2020086712W WO2021098144A1 WO 2021098144 A1 WO2021098144 A1 WO 2021098144A1 CN 2020086712 W CN2020086712 W CN 2020086712W WO 2021098144 A1 WO2021098144 A1 WO 2021098144A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
optical module
signal
circuit board
Prior art date
Application number
PCT/CN2020/086712
Other languages
English (en)
French (fr)
Inventor
戴华清
韩琦
王德令
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911128906.0A external-priority patent/CN112817098A/zh
Priority claimed from CN201911128067.2A external-priority patent/CN110989099B/zh
Priority claimed from CN201921989998.7U external-priority patent/CN210775929U/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021098144A1 publication Critical patent/WO2021098144A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical module.
  • Optical modules are widely used in communication networks and optical transmission equipment in communication networks. Optical modules can be used as optical ports of routers. Optical modules are connected to system-side equipment in routers through electrical connectors. Optical modules can also be installed in metropolitan area networks. Or in the line side board of the transmission equipment in the backbone network, long-distance optical signal transmission is carried out.
  • the optical module has a light emitting function and a light receiving function.
  • the optical emission function converts electrical signals into optical signals. Specifically, the electrical signal input with a certain code rate is processed by the internal drive chip and then drives the semiconductor laser (LD) or light emitting diode (LED) to emit the modulated light signal at the corresponding rate. It has an internal optical power automatic control circuit to keep the output optical signal power stable; the optical receiving function converts the optical signal into an electrical signal, specifically the optical signal with a certain code rate is input into the module and then converted into an electrical signal by a light detection diode , After the pre-amplifier, the electrical signal of the corresponding code rate is output.
  • LD semiconductor laser
  • LED light emitting diode
  • an optical module including:
  • Circuit board including power supply circuit and signal circuit
  • the light source device is arranged on the surface of the circuit board, is connected to the power supply circuit, and is used for emitting light that does not carry information;
  • a first optical fiber one end is connected to the light source device, and the other end is connected to a coherent modem, and is used to transmit the emitted light to the coherent modem;
  • the coherent modem is electrically connected to the signal circuit; it is used for phase modulation or phase demodulation of the received light;
  • the light source device includes:
  • the light source circuit board is electrically connected to the pins on the side wall of the hollow housing for supplying power to the pins; an electrical connector is arranged between the light source circuit board and the circuit board and is used for Establish the circuit connection between the circuit board and the light source circuit board;
  • the laser output end is arranged on the outer wall of the hollow housing and is used for connecting the first optical fiber.
  • optical module including:
  • Circuit board including power supply circuit and signal circuit
  • the light source device is arranged on the surface of the circuit board, is connected to the power supply circuit, and is used for emitting light that does not carry information;
  • a first optical fiber one end is connected to the light source device, and the other end is connected to a coherent modem, and is used to transmit the emitted light to the coherent modem;
  • the coherent modem is electrically connected to the signal circuit; the outgoing light is split, and one of the lights is phase-modulated according to the electrical signal to generate an optical signal carrying information, and the other light is used for Form light interference for phase demodulation;
  • Transmitting optical fiber adapter used to transmit the optical signal carrying information to the outside of the optical module
  • the receiving optical fiber adapter is used to transmit the optical signal from the outside of the optical module to the coherent modem to form optical interference with the other beam of light.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of optical network terminal components
  • FIG. 3 is a schematic diagram of an optical module component provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of exploded components of an optical module provided by an embodiment of the application.
  • FIG. 5 is a partial enlarged view of the disassembled parts of the optical module provided by the embodiment of the application.
  • FIG. 6 is a schematic diagram of the overall position of the optical module light source device provided by the embodiment of the application.
  • FIG. 7 is a schematic diagram of exploded components of an optical module light source device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of components of an optical module electrical connector provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of disassembled components of the optical module light source device patch provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the relative positions of the light source circuit board and the circuit board according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of coherent modulation of an optical module provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another optical module coherent demodulation provided by an embodiment of this application.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C communication, data communication and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry, and the definition of the pins on the golden fingers have formed a variety of industry protocols/standards.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 inserted is completed.
  • the optical port of the optical module 200 is connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101; the electrical port of the optical module 200 is connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100; Internally realize the mutual conversion of optical signals and electrical signals, so as to realize the establishment of information connection between the optical fiber and the optical network terminal; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input to the optical network terminal 100. The electrical signal of the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103.
  • Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal serves as the optical The upper computer of the module monitors the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG. 2 is a schematic diagram of optical network terminal components.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers; A heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board, and an electrical connector is arranged inside the cage; when the optical module 200 is inserted into the cage 106, the optical module 200 is fixed by the cage 106, and the heat generated by the optical module 200 is conducted to the cage 106, and then passes through the radiator on the cage 106 107 diffusion.
  • FIG. 3 is a schematic diagram of an optical module component provided by an embodiment of the application
  • FIG. 4 is a partial enlarged schematic diagram of an optical module decomposition component provided in an embodiment of the application
  • FIG. 5 is a partial decomposition component of an optical module provided by an embodiment of the application Enlarge the schematic diagram.
  • the optical module 200 provided by the embodiment of the present application includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300, a light source device 500, a coherent modem 600, and a gain amplifier 700.
  • the upper shell 201 is covered on the lower shell 202 to form a shell with two openings and a hollow inside; the outer contour of the hollow shell is generally a square.
  • the lower shell includes a main board and a main board located on the main board. On both sides, there are two side plates arranged perpendicular to the main board; the upper shell includes a cover plate, and the cover plate covers the two side plates of the upper shell to form an inner hollow shell; the upper shell may also include The two side walls of the cover plate are perpendicular to the two side walls of the cover plate, and the two side walls of the upper casing are attached to the two side plates of the lower casing to realize the upper casing covering the lower casing.
  • the two openings can be two openings at the same end of the housing, or two openings in different directions; one of the openings is the electrical port 204, and the golden finger of the circuit board 300 extends from the electrical port 204 to insert the optical network In the upper computer such as the terminal; the other opening is the optical port 205, which is used for external optical fiber access to connect the receiving optical fiber adapter 801; the circuit board 300, the light source device 500, the coherent modem 600, the gain amplifier 700, the receiving optical fiber adapter 801, the transmitting optical fiber Optoelectronic devices such as the adapter 802 and the digital signal processing chip 900 are located in a hollow housing.
  • the assembly method of the upper shell and the lower shell is used to facilitate the installation of the circuit board 300, the light source device 500, the coherent modem 600, the gain amplifier 700, the receiving optical fiber adapter 801, the transmitting optical fiber adapter 802, the digital signal processing chip 900, etc.
  • the upper casing and the lower casing form the outermost packaging protective casing of the optical module; the upper casing and the lower casing are generally made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the unlocking component 203 is located on the outer wall of the hollow housing/lower housing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking component 203 has an engaging component that matches the cage of the host computer; pulling the end of the unlocking component can make the unlocking component move relatively on the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging component of the unlocking component Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed, so as to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
  • the circuit board 300 is provided with circuit wiring, electronic components (such as capacitors, resistors, transistors, MOS tubes) and chips (such as MCUs, laser drivers, limiting amplification chips, clock data recovery CDR, power management chips, data processing chips DSP )Wait.
  • electronic components such as capacitors, resistors, transistors, MOS tubes
  • chips such as MCUs, laser drivers, limiting amplification chips, clock data recovery CDR, power management chips, data processing chips DSP )Wait.
  • the circuit board is provided with a power supply circuit and a signal circuit, and the circuit board connects the electrical components in the optical module according to the circuit design through circuit wiring to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. Specifically, a gold finger is formed on one end surface of the rigid circuit board for connection with the electrical connector.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver devices.
  • the optical transceiver includes two parts: a light emitting part and a light receiving part, which are respectively used to realize the transmission of optical signals and the reception of optical signals.
  • the light emitting part and the light receiving part can be combined together or independent of each other.
  • FIG. 5 is a partial enlarged schematic diagram of the disassembled components of an optical module provided by an embodiment of the application.
  • the optical module further includes a light source device 500, a coherent modem 600, a gain amplifier 700, a receiving optical fiber adapter 801, a transmitting optical fiber adapter 802, and a digital signal.
  • Processing chip 900 is a part of the optical module provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the overall position of an optical module light source device 500 provided by an embodiment of the application.
  • the light source device 500 is arranged on the edge side of the circuit board 300 near one end of the optical port 205, and the light source device is also called ITLA (Integrable Tunable Laser Assembly). As shown in FIG. 7, the light source device 500 includes a hollow housing 501, a light source circuit board 502, an electrical connector 503, a laser output terminal 506, a patch and a emitting laser chip.
  • ITLA Intelligent Tunable Laser Assembly
  • FIG. 7 is a schematic diagram of exploded components of an optical module light source device 500 provided by an embodiment of the application.
  • the light source circuit board 502 is fixedly connected to the upper surface of the circuit board 300 of the optical module. Specifically, 4 through holes are provided on the four corners of the light source circuit board 300, and then the light source circuit board 502 is connected to the bottom by bolts.
  • the circuit board 300 is fixedly connected. There is a space gap between the light source circuit board 502 and the circuit board 300.
  • the light source circuit board 300 is connected to the hollow housing 501 of the light source device 500 on the one hand for supplying power to the emitting laser chip (not shown in the figure) inside the hollow housing 501, on the other hand, the light source circuit board 502 also establishes a circuit connection with the power supply circuit of the circuit board 300 through the electrical connector 503, so that the circuit board 300 provides current to the light source circuit board 502 through the electrical connector 503.
  • the hollow housing 501 is a rectangular parallelepiped member, and a cavity for loading the laser emitting chip is formed inside. Specifically, the lower surface of the hollow housing 501 is fixedly connected to the upper surface of the circuit board 300 through the lower patch 505, for example, a bolt fixing or a snap-fitting method can be used for the fixed connection, as shown in FIG. 7.
  • one side of the light source circuit board 502 is provided with a notch adapted to the hollow housing 501 for further clamping the hollow housing 501 into the notch to limit the position, as shown in FIG. 7 As shown, the hollow housing 501 is firmly fixed between the circuit board and the light source circuit board to avoid positional movement inside the optical module.
  • the vertical side wall where one long side of the hollow housing 501 is located and the vertical side wall where the short side adjacent to it is located are respectively provided with a row of pins.
  • One end establishes a circuit connection with the power supply port of the emitting laser chip inside the hollow housing 501, and the other end is welded to the surface of the light source circuit board 502 by means of a butterfly package, as shown in Figure 7, so as to realize a hollow housing
  • the emitting laser chip provided inside the 501 is connected to the circuit of the light source circuit board 502 and the circuit board 300 to realize the power supply of the light source device 500.
  • the notches of the light source circuit board are respectively provided with metal pads on the long sides and the short sides adjacent to the long sides, and the metal pads are welded to the pins on the side wall of the hollow housing to provide current for the emitting laser chip .
  • the pins on the outer wall of the hollow housing 501 are arranged in the gap between the light source circuit board 502 and the circuit board 300, that is, the upper housing 201 of the optical module cannot be directly observed after opening the upper housing 201 of the optical module.
  • the pin as shown in FIG. 10, has the beneficial effect of avoiding the collision of other parts inside the optical module to the pin, and protecting the gap between the hollow housing 501 of the light source device 500 and the light source circuit board 502 The stability of the circuit connection.
  • FIG. 8 is a schematic diagram of components of an optical module electrical connector 503 provided by an embodiment of the application.
  • the outer contour of the electrical connector 503 is generally a rectangular parallelepiped, and is disposed between the light source circuit board 502 and the circuit board 300.
  • the upper end is provided with a double row of metal pins to be welded to the upper surface of the light source circuit board 502, and the lower end is provided with a double row of metal pins to be welded to the upper surface of the circuit board 300, thereby realizing the connection between the circuit board 300 and the light source circuit board 502
  • the circuit board 300 can provide working current for the light source circuit board 502 through the power supply circuit.
  • the electrical connector 503 plays a role of establishing a circuit connection between the light source circuit board 502 and the circuit board 300 on the one hand, and plays a role of physical support for the light source circuit board 502 on the other hand.
  • the laser output terminal 506 is arranged on one side of the outer wall of the hollow housing 501, usually facing the side of the coherent modem 600, and is used to realize the external connection of the light source device 500.
  • the laser output end 506 is a cylindrical body with an internal cavity.
  • One end of the optical fiber connected to the laser is a narrowing set for docking with the first optical fiber inside the optical module; a section of the laser output terminal 506 fixedly connected to the outer wall of the hollow housing 501 can be clamped It is fixedly connected to the outer wall of the hollow housing 501 in a manner of, or integrally formed.
  • the end of the laser output end 506 is connected to the first optical fiber of the coherent modem 600, which is used to provide input outgoing light to the coherent modem. It can be seen that the laser output end 506 can realize the connection to the external optical fiber of the light source device 500 and the light source device 500. The internal emission of laser light emitted by the laser chip.
  • the emitting laser chip is integrated in the internal cavity of the housing 501 with a hollow interior.
  • the outgoing light emitted by the emitting laser chip is transmitted to the coherent modem 600 connected to the light source device 500 through the laser output terminal 506 and the first optical fiber connected to it for modulation or demodulation of the coherent light.
  • the light source device 500 encapsulates the emitting laser chip through a packaging component.
  • the packaging component may include a coaxial package TO-CAN, a silicon optical package, a chip-on-board lens assembly package COB-LENS, and a micro-optics XMD package. .
  • Packaging is also divided into airtight packaging and non-airtight packaging.
  • the packaging provides a stable and reliable working environment for the emitting laser chip, and on the other hand forms an external electrical connection and optical output.
  • the optical module will adopt different packages to make the light source device; the emitting laser chip has vertical cavity surface to emit light, and there is also edge emitting.
  • the different light emitting direction of the emitting laser chip will also affect the choice of package form; various packages There are obvious technical differences between them. Both components and processes are different technical directions. Those skilled in the art know that although the goals achieved by different packages have certain similarities, different packages belong to different technical routes. There will be no mutual technical enlightenment between packaging technologies.
  • lasers have become the preferred light source for optical modules and even optical fiber transmission due to their better single-wavelength characteristics and better wavelength tuning characteristics.
  • Other types of light such as LED light are generally not used in common optical communication systems. Even if this kind of light source is used in a special optical communication system, the characteristics of the light source and chip components are quite different from the laser, which makes the optical module using laser and the optical module using other light sources have a large technical difference. Technicians generally do not think that these two types of optical modules can provide technical enlightenment to each other.
  • the light emitted by the emitting laser chip is an outgoing light that does not carry any signal.
  • the emitting laser chip can also be configured to emit outgoing light that does not carry information and its power does not change, that is, the outgoing light emitted by the emitting laser chip or the light source device is a kind of outgoing light that does not contain any signal and has a constant power.
  • the emitted light that does not contain any signal and has a constant power may also be a single wavelength light.
  • the patch includes an upper patch 504 and a lower patch 505.
  • FIG. 9 is a schematic diagram of disassembled components of a patch in an optical module light source device 500 provided by an embodiment of the application.
  • the lower surface of the upper patch 504 is covered and mounted on the upper surface of the hollow housing 501, and the upper surface of the upper patch 504 is closely connected to the inner wall of the upper housing 201 of the optical module.
  • the upper patch 504 can be made of metal Thin sheets made of materials, or other materials that also have the function of heat conduction and signal shielding.
  • the lower surface of the lower patch 505 is mounted and fixed on the inner wall surface of the lower housing 202 of the optical module.
  • the upper surface of the lower patch and the lower surface of the hollow housing 501 are closely mounted together.
  • the lower patch 505 It can be made of a sheet made of metal material, or other materials that also have the function of heat conduction and signal shielding.
  • the heat generated by the laser chip in the hollow housing of the light source device 500 during laser emission is transferred to the surface of the hollow housing 501, and then the heat is transferred to the upper housing of the optical module through the upper patch 504 and the lower patch 505
  • the body 201 and the lower shell 202 thereby achieving the effect of heat dissipation.
  • the upper housing 201 and the lower housing 202 of the optical module are made of metal materials, which have good heat conduction and signal shielding effects. By setting the patch again to further conduct the heat generated by the light source device 500, the light source device can be guaranteed 500 output stable laser.
  • the upper patch 504 and the lower patch 505 are generally configured as rectangular devices that are compatible with the hollow housing 501 of the light source device 500, and four corners of the rectangular device may be provided with through holes for Fix with bolts, as shown in Figure 9.
  • the middle positions of the rectangular long sides of the upper patch 504 and the lower patch 505 are respectively provided with notches, and the notches are provided with folds that are turned outwards, and the folds can be used for folding and engaging. Fix the outer wall of the hollow housing 501 inside the light source device, so that the hollow housing inside the light source device can be fixed between the upper patch and the lower patch, as shown in FIG. 9.
  • the gain amplifier 700 is disposed on the upper surface of the circuit board 300, and the gain amplifier includes a hollow shell inside, and the outline of the outer wall of the shell is generally a cuboid.
  • the hollow housing of the gain amplifier 700 is provided with an erbium-doped amplifier system, and the outer wall of the housing also includes an optical input port and an optical output port.
  • the optical input port is connected to the optical signal output port of the coherent modem 600 through an optical fiber; the optical output port of the gain amplifier 700 is connected to the transmitting fiber adapter 802 through an optical fiber, as shown in FIG. 5.
  • the optical fiber between the optical output port of the gain amplifier 700 and the transmitting fiber adapter 802 can be spliced in single mode, and the radius of curvature inside the optical module should be greater than or equal to 10 mm.
  • the optical input port of the gain amplifier 700 receives the optical signal sent from the optical signal output port of the coherent modem 600, gains amplification through its internal erbium-doped amplifier system, and outputs it from the optical output port, and finally transmits it to the transmitting fiber adapter 802 through the optical fiber. Then output to the optical fiber outside the optical module.
  • the bait-doped amplifier system provided in the hollow housing of the gain amplifier 700 includes a fiber coupler, an isolator, a pump laser that provides pump light to the bait-doped amplifier, an erbium-doped fiber, and a wavelength division multiplexer. WDM.
  • the gain amplifier 700 can amplify the input optical signal, so that the optical module can output an optical signal with stable optical power and meeting gain requirements.
  • the bait-doped amplifier system inside the hollow housing of the gain amplifier 700 is specifically set as a bipolar amplifier.
  • the components constitute the first-stage amplifying system, and further include and The second-stage amplifying system in which the components of the first-stage amplifying system are connected in series. It should be noted that the length of the erb-doped fiber of the second-stage amplifying system is greater than the length of the erb-doped fiber of the first-stage amplifying system.
  • the noise figure of the two-stage cascaded low-noise erbium-doped fiber amplifier optical system is reduced, the failure rate of the pump laser for long-term operation is reduced, and the output of the optical module is increased. Stability of power.
  • the receiving optical fiber adapter 801 and the transmitting optical fiber adapter 802 are fixedly arranged at one end of the circuit board 300, and include the receiving optical fiber adapter 801 and the transmitting optical fiber adapter 802.
  • the receiving optical fiber adapter 801 and the transmitting optical fiber adapter 802 can be fixed on the surface of the circuit board 300 by means of bolts.
  • the receiving optical fiber adapter 801 and the transmitting optical fiber adapter 802 are internally used to connect the internal optical fiber of the optical module, and externally used to connect the external optical fiber from the optical port 205.
  • the port inside the optical port of the receiving optical fiber adapter 801 is connected to the optical signal input port of the coherent modem 600 through a second optical fiber;
  • the internal port of the transmitting optical fiber adapter 802 is connected to the EDFA optical output port of the gain amplifier 700 through an optical fiber.
  • the ports of the receiving optical fiber adapter 801 and the transmitting optical fiber adapter 802 for connecting external optical fibers in the optical port 205 are usually set as standard ports, for example, can be set to FC, SC, or LC.
  • the optical fiber is a soft material, the external optical fiber and the internal optical fiber cannot be directly connected. If the internal optical coupling is directly connected, the optical coupling efficiency will be low. Therefore, the receiving optical fiber adapter 801 and the transmitting optical fiber adapter 802 are required as The connecting piece is connected.
  • the optical module may not be equipped with the gain amplifier 700, and the transmitting fiber adapter 802 is directly connected to the optical signal receiving port of the coherent modem 600 through an optical fiber.
  • the digital signal processing chip 900 is a cube with a low external profile and is mounted on the surface of the circuit board 300 close to the electrical connector 301.
  • the digital signal processing chip 900 establishes an electrical connection with the signal circuit and the power supply circuit of the circuit board 300, and further establishes a bidirectional circuit connection with the coherent modem 600 through the internal signal circuit and the power supply circuit of the circuit board 300 to perform electrical signals and/or data information. transmission.
  • the digital signal processing chip 900 also establishes a connection with the electrical connector 301 at the end of the circuit board 300 through the circuit inside the circuit board 300.
  • the electrical connector may be specifically configured as a golden finger.
  • the digital signal processing chip 900 can receive and process the electrical signal sent by the host computer system through the golden finger connected to the end of the circuit board 300, and then send the electrical signal to the coherent modem 600 to drive its internal Mach-Zehnder modulation The device realizes coherent modulation.
  • the digital signal processing chip 900 can also send the demodulated electrical signal sent by the coherent modem 600 to the host computer system through a golden finger connected to the end of the circuit board 300.
  • the digital signal processing chip 900 outputs an electrical signal to the coherent modem 600 through the circuit on the circuit board 300, which is used to load the electrical signal on the light emitted by the emitting laser chip through the principle of light interference, thereby transferring the electrical signal.
  • the signal is converted to an optical signal.
  • the digital signal processing chip 900 receives the electrical signal that the coherent modem 600 demodulates the optical signal through the coherence principle through the circuit on the circuit board 300, and sends the electrical signal to the upper position through the golden finger connected to it. ⁇ Machine system.
  • the digital signal processing chip 900 is mainly used to process the signal sent by the host computer and send it to the coherent modem 600, so as to load the electrical signal onto the light.
  • the digital signal processing chip 900 receives the electrical signal parsed by the coherent modem 600 and sends the electrical signal to the host computer system.
  • the digital signal processing chip 900 and the MCU microprocessor inside the optical module are different devices.
  • the MCU microprocessor is used for the monitoring and control functions of the optical module, and reports some status variables of the optical module to the host computer system.
  • the coherent modem 600 is mounted on the surface of the circuit board 300.
  • the coherent modem may be specifically arranged in the middle of the circuit board 300.
  • the exterior of the coherent modem 600 includes a laser receiving port, an optical signal output port, and an optical signal receiving port.
  • the above-mentioned three ports may be arranged on one side of the coherent modem, or may be arranged on different sides of the coherent modem.
  • the laser receiving port is connected to the laser output terminal 506 of the light source device 500 through the first optical fiber, as shown in FIG. 5, for receiving the light that does not contain a signal and has a constant power from the transmitting laser chip, and is used for the coherent modem 600 for coherent modulation.
  • the first optical fiber between the laser receiving port and the laser output end 506 may use reserved welding, and the radius of curvature of the optical fiber inside the optical module should be greater than or equal to 7.5 mm.
  • the optical signal output port is connected to the optical input port of the gain amplifier 700 fixedly installed on the circuit board 300 through an optical fiber.
  • the interference light emitted by the emitting laser chip received by the laser receiving port enters the coherent modem 600 for modulation, and is output from the optical signal output port to the gain amplifier 700, and then performs subsequent gain amplification processing.
  • the optical fiber between the optical signal output port and the optical input port of the gain amplifier can be spliced in single mode, and the radius of curvature of the optical fiber inside the optical module should be greater than or equal to 10 mm.
  • the optical signal receiving port is connected to the receiving optical fiber adapter 801 through the second optical fiber, and is used to receive the optical signal for demodulation transmitted by the external optical fiber of the optical module, that is, the optical signal carrying information.
  • the optical signal external to the optical module is sent to the optical signal receiving port of the coherent modem 600 through the second optical fiber connected inside the receiving optical fiber adapter 801 for the coherent modem 600 to demodulate the optical signal.
  • the optical fiber between the receiving optical fiber adapter 801 and the optical signal receiving port of the coherent modem 600 can be spliced in single mode, and the radius of curvature inside the optical module should be greater than or equal to 5 mm.
  • the optical signal is parsed by the coherent modem 600 to generate an electrical signal, and then transmitted through the two-way circuit connection established between the coherent modem 600 and the circuit board 300, and the electrical signal is passed through the signal inside the circuit board 300.
  • the circuit is sent to the digital signal processing chip 900 for subsequent processing.
  • the coherent modem 600 is mounted on the surface of the circuit board, the details of the connection part are not shown in the figure.
  • the optical module may further include a fiber winding device arranged on the circuit board 300, which may be specifically arranged as a device with a vertical ring-shaped surrounding rib, by providing a wiring groove or guiding winding on its inner wall.
  • the device can be used for winding and limiting the optical fiber inside the optical module.
  • the shape and components of the fiber winding device can be customized according to actual conditions, and are not specifically limited in this application.
  • the coherent modem 600 includes two functions of realizing coherent modulation and coherent demodulation.
  • the coherent modem is specifically implemented in a chip package manner.
  • the principles of the optical signal modulation process and the demodulation process in the optical module are similar to a certain extent, and the modulation and demodulation are implemented in the same chip.
  • the principles of optical signal modulation and demodulation are different, and they are not technically related to each other.
  • the coherent modulator and the coherent demodulator can have two chips respectively to realize their functions, but under the trend of miniaturization of the optical module, one chip can be used to complete the integration of the above functions. Therefore, the modulation and demodulation in the optical module provided in the embodiment of the present application are implemented by the same component in the actual physical structure, that is, the coherent modem 600.
  • the light emitted by the light source device 500 does not contain any signal, and is only a stable light source used for modulation or demodulation with electrical signals.
  • the laser light enters the coherent modem 600 connected to the light source device 500, and then the coherent modem 600 modulates the laser light and outputs an optical signal according to the principle of light interference.
  • the specific device for the light source device 500 to emit laser light is a laser emitting chip provided in the housing 501 with a hollow interior.
  • optical signal modulation is to control the size of the optical power emitted by the laser according to the size of the drive current of the laser to achieve the purpose of modulation.
  • the light emitted by the emitting laser chip is of constant power, that is, the light emitted by the emitting laser chip will not change in power.
  • the optical module constructed by the emitting laser chip will also be set in the chip where the light source is located.
  • the electro-absorption modulator further realizes that the power of the output light emitted by the emitting laser chip can be changed, and further realizes the photoelectric conversion. Therefore, from a physical point of view, the emitting laser chip and the electro-absorption modulator are packaged in the same chip, and the optical module realizes the modulation and demodulation of the optical signal through the change of the optical power.
  • the power of the light emitted by the chip where the emitting laser is located has no change in intensity. It can also be considered that the power of the light emitted by the light source device 500 has no change in intensity, that is, constant power. The light. Therefore, the modulation of the optical signal in the optical module is realized by the coherent modem 600 according to the principle of optical coherence.
  • the coherent modem provided in the embodiment of the present application realizes photoelectric conversion and the traditional method of realizing modulation according to the change of optical power is different.
  • the optical transmitting sub-module and the optical receiving sub-module are generally considered to be not separately provided, but are provided in the same physical module, that is, the aforementioned coherent modem 600.
  • the light source device 500 exists independently.
  • the coherent modem 600 of the optical module has a relatively large volume; and the transmission and reception of optical signals are implemented by the coherent modem 600 according to the coherence principle, and the optical power does not need to be adjusted for strength changes. Therefore, the light source device 500 in the optical module It is set independently.
  • a local oscillator light needs to be provided to the coherent modem 600, and then combined with the received optical signal for demodulation.
  • the local oscillator light is also provided by the light source device 500 in the optical module, that is, the laser light emitted by the emitting laser chip.
  • the coherent modem 600 is provided with a branch of the optical path, receives the emitted light from the first optical fiber, and decomposes the emitted light into a first emitted light and a second emitted light, and the first emitted light is used for performing in the coherent modem 600 Coherently modulates and outputs an optical signal carrying information to the transmitting optical fiber adapter 801, and the second outgoing light is used to coherently demodulate the optical signal carrying information transmitted by the receiving optical fiber adapter 802 to output a received electrical signal.
  • the emitting laser chip provides the light required by the optical module for optical signal modulation, and on the other hand, it also provides the local oscillator light required by the optical module in the process of analyzing the optical signal. Therefore, the emitting laser chip of the optical module provided in the embodiment of the present application is separately arranged, that is, the light source device 500 is also separately arranged.
  • the coherent module if no additional gain is involved, the optical module does not need to provide a light source with varying power.
  • the separate design of the coherent modem 600 and the emitting laser chip can effectively miniaturize the volume of the optical module.
  • the coherent modem 600 modulates the light emitted by the emitting laser chip that does not contain a signal and has a constant power (that is, the first outgoing light), so as to load the electrical signal sent by the digital signal processing chip to the coherent light. Optically, realize the modulation of the optical signal.
  • the coherent modem 600 can also combine the received optical signal transmitted by the external optical fiber, that is, the information-carrying light, with the local oscillator light (that is, the second outgoing light) emitted by the emitting laser chip to the optical signal according to the light. The principle of interference demodulates and obtains the analyzed electrical signal.
  • the coherent modulation module used for transmitting light and the coherent demodulation module used for receiving light can be separated. Both functional modules require the transmitting laser chip to provide interference light. Therefore, in physical terms , The coherent modulation module and the coherent demodulation module can be integrated into the same coherent modem 600 to realize its modulation and demodulation function, and the interference light emitted by the emitting laser chip can be combined according to the divergent optical path designed inside the coherent modem 600. The light is decomposed into multiple branched light paths to realize the multi-path interference light required for coherent modulation and demodulation.
  • the coherent modem 600 it can be considered that the coherent modulator and the coherent demodulator are inside the coherent modem, and the light emitted by the emitting laser chip enters the coherent modem 600 and then divides into two branches to enter the coherent modulator and the coherent demodulator respectively. . Since the optical module provided by the embodiment of the present application integrates the coherent modulator and the coherent demodulator in the same coherent modem 600, only one interface with the transmitting laser chip needs to be set. The beneficial effect of this setting is to reduce the system Interface can reduce systemic failures.
  • the coherent modem 600 can modulate the light that does not carry any signal from the light source device 500, load an electrical signal on the light, and then send the generated optical signal, that is, the optical signal that carries information, to the outside.
  • the coherent modem 600 can also parse the optical signal received from the outside of the optical module into an electrical signal and output it to the digital signal processing chip 900 inside the optical module.
  • the coherent modem 600 also includes a driver 610 and an MZ (Mach-Zehnder) silicon-based modulator 620 for coherent modulation.
  • MZ Machine-Zehnder
  • the Mach-Zehnder modulator 620 is used to implement light interference to complete the process of coherent modulation.
  • the modulation of the optical signal will be described in detail below.
  • the Mach-Zehnder modulator 620 applies a modulated electrical signal to the phase modulation area formed on the optical waveguide of the Mach-Zehnder modulator to modulate the emitted light from the emitting laser chip, thereby outputting an optical signal.
  • the coherent modem 600 can modulate the optical signal using various modulation methods, such as phase modulation, amplitude modulation, and polarization modulation, or a combination of various modulation methods.
  • the phase modulation is the area of the electrode formed on the optical waveguide of the Mach-Zehnder modulator 620, and the refractive index of the optical waveguide under the electrode is changed by applying an electrical signal to the electrode. Therefore, the substantial optical path length of the optical waveguide in the phase modulation region can be changed. Therefore, the phase modulation area can change the phase of the optical signal propagating through the optical waveguide, and then modulate the optical signal by providing a phase difference between the optical signals propagating through the two optical waveguides.
  • the modulation process of the Mach-Zehnder modulator 620 will be described below.
  • FIG. 11 is a schematic diagram of coherent modulation of an optical module according to an embodiment of the application.
  • a Mach-Zehnder modulator 620 is packaged inside the coherent modem 600.
  • the coherent modem 600 modulates the laser light emitted from the laser chip in the hollow housing of the light source device 500 as a coherent light source.
  • the Mach-Zehnder modulator includes optical waveguide 1 to optical waveguide 4 and phase modulation regions PM1 and PM2.
  • the first emitted light emitted from the emitting laser chip in the hollow housing of the light source device 500 is input to one end of the optical waveguide 1.
  • the other end of the optical waveguide 1 is connected to one end of the optical waveguide 2 and one end of the optical waveguide 3.
  • the light propagating through the optical waveguide 1 branches toward the optical waveguide 2 and the optical waveguide 3.
  • the other end of the optical waveguide 2 and the other end of the optical waveguide 3 are connected to one end of the optical waveguide 4.
  • a phase modulation area PM1 is provided, which changes the phase of light propagating through the optical waveguide 2.
  • a phase modulation area PM2 is provided, which changes the phase of light propagating through the optical waveguide 2.
  • An optical signal carrying information is output from the other end of the optical waveguide 4.
  • the coherent modem 600 includes a driver 610 that applies the electrical signal input from the electrical connector 301 of the optical module 200 to the phase modulation area of the Mach-Zehnder modulator 620 to modulate the laser light emitted by the light source device 500 into an optical signal carrying information .
  • the driver 610 can control the modulation operation of the Mach-Zehnder modulator 620.
  • the driver can also receive a control signal from the host computer and apply a bias voltage Vbias to one or both of the phase modulation regions PM1 and PM2 to control the bias point of the Mach-Zehnder modulator 620.
  • the driver 610 can also modulate the first emitted light into output carrying information according to an electrical signal by applying an electrical signal to one or both of the phase modulation regions PM1 and PM2.
  • Optical signal or optical signal In this example, the driver 610 applies the modulation signal C1 according to the first modulation signal to the phase modulation area PM1.
  • the driver 610 applies the modulation signal C2 according to the first modulation signal to the phase modulation area PM2, as shown in FIG. 11.
  • the coherent modem 600 further includes a control circuit for stabilizing the phase modulation point of the Mach-Zehnder modulator.
  • the coherent modem 600 also integrates devices such as ICR (Integrated Coherent Receiver) and TIA (Trans-Impedance Amplifier) 650 for coherent demodulation.
  • ICR Integrated Coherent Receiver
  • TIA Trans-Impedance Amplifier
  • the ICR is used to receive and detect optical signals, and includes an optical mixer 630 and a photoelectric detection chip 640.
  • FIG. 12 is a schematic diagram of coherent demodulation of an optical module according to an embodiment of the application.
  • the optical mixer 630 receives the optical signal from the external optical fiber of the optical module and the local oscillator light provided by the light source device 500.
  • the optical mixer is mainly used to realize the combination of the optical signal and the local oscillator light, that is, the second outgoing light.
  • the function of coherent mixing and outputting several signals with a certain phase difference which can be set to a 90° mixer, a 120° mixer, or a 180° mixer.
  • the local oscillation light emitted by the light source device 500 is based on a narrow-line laser, and its introduction can improve the sensitivity of coherent reception.
  • the photodetector chip 640 performs photoelectric photoelectric conversion of several signals with phase difference output by the above-mentioned optical mixer to generate a current signal.
  • the photodetector can be implemented based on a balanced detector or a single photodetector.
  • the transimpedance amplifier 650 amplifies and converts the current signal generated by the photodetection chip 640 into a voltage signal for output, and the voltage signal is generally output in a differential form.
  • the voltage signal is sent to the digital signal processing chip 900 through the bidirectional circuit connection established by the coherent modem 600 and the circuit board 300, and is further sent to the host computer system through the golden finger connected to the digital signal processing chip.
  • the output terminal of the transimpedance amplifier can also be connected to a limiting amplifier.
  • the limiting amplifier is used to amplify and limit the voltage signal output by the transimpedance amplifier, and the output signal is finally output to the optical The host computer system where the module is plugged in.
  • Optical module The beneficial effect of this application is that by providing the light source circuit board, the stability of the power supply of the light source device can be improved; by providing an electrical connector, not only a circuit connection can be established between the optical module circuit board and the light source circuit board, but also The physical support of the light source circuit board can improve the stability of the light source device structure; by setting the laser output end, the difficulty of coupling the light source device and its external optical fiber can be reduced, and the reliability of the light source device as a whole is improved; further through the coherence The modem realizes modulation and demodulation functions.
  • specific features, components, or characteristics may be combined in any suitable manner. Therefore, without limitation, the specific features, components or characteristics shown or described in conjunction with one embodiment may be combined in whole or in part with the features, components or characteristics of one or more other embodiments. Such modifications and variations are intended to be included within the scope of this application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括:电路板(105)、相干调制解调器(600)、发射光纤适配器(802)、接收光纤适配器(801)、第一光纤,第一光纤一端与光源装置(500)连接,另一端与相干调制解调器(600)连接,用于将出射光传输至相干调制解调器(600)中;光源装置(500),设置在电路板(300)的表面,与供电电路连接以获得供电,用于对相干调制解调器(600)发出不携带信息的出射光,包括:内部中空的壳体(501)、光源电路板(502),固定安装在电路板(300)上表面用于承载内部中空的壳体(501)和供电;电连接器(503),设置于光源电路板(502)和电路板(300)之间,用于电路连接;激光输出端(506),设置于内部中空的壳体(501)外壁,用于光源装置(500)与第一光纤对接;发射激光器芯片,设置于内部中空的壳体(501)内部用于产生出射光。

Description

光模块
本申请要求在2019年11月18日提交中国专利局、申请号为201911128906.0、发明名称为“一种光模块”,要求在2019年11月18日提交中国专利局、申请号为201921989998.7、发明名称为“一种光模块”,要求在2019年11月18日提交中国专利局、申请号为201911128067.2、发明名称为“一种光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着网络系统业务量的增加,通信系统在原有通信设备体积不变的情况下需要提升系统的传输容量,进而实现信号的高密度传输。光模块被广泛应用在通信网络和通信网络的光传输设备中,光模块可以作为路由器的光口,光模块通过电连接器与路由器中的系统侧设备连接,光模块还可以安装在城域网或骨干网络中传输设备的线路侧板卡中,进行长距离光信号传输。
光模块具有光发射功能及光接收功能。光发射功能将电信号转换为光信号,具体的,输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,另其内部带有光功率自动控制电路,使输出的光信号功率保持稳定;光接收功能将光信号转换成电信号,具体的将一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号。
发明内容
本申请的实施例一方面提供一种光模块,包括:
电路板,包括供电电路和信号电路;
光源装置,设置在所述电路板的表面,与所述供电电路连接,用于发出不携带信息的出射光;
第一光纤,一端与所述光源装置连接,另一端与相干调制解调器连接,用于将所述出射光传输至所述相干调制解调器中;
所述相干调制解调器,与所述信号电路电连接;用于对接收到的光进行相位调制或相位解调;
所述光源装置包括:
内部中空的壳体,内部承载发射激光器芯片,侧壁具有与所述发射激光器芯片电连接的引脚;所述发射激光器芯片发出所述不携带信息的出射光;
光源电路板,与所述内部中空的壳体侧壁的引脚电连接,用于向所述引脚供电;电连接器,设置于所述光源电路板和所述电路板之间,用于建立电路板和光源电路板之间的电路连接;
激光输出端,设置于所述内部中空的壳体外壁,用于连接所述第一光纤。
本申请的实施例另一方面提供一种光模块,包括:
电路板,包括供电电路和信号电路;
光源装置,设置在所述电路板的表面,与所述供电电路连接,用于发出不携带信息的出射光;
第一光纤,一端与所述光源装置连接,另一端与相干调制解调器连接,用于将所述出射光传输至所述相干调制解调器中;
所述相干调制解调器,与所述信号电路电连接;将所述出射光分束,根据所述电信号对其中一束光进行相位调制以产生携带信息的光信号,其中的另一束光用于形成光干涉以进行相位解调;
发射光纤适配器,用于将携带信息的光信号传输至所述光模块外部;
接收光纤适配器,用于将来自所述光模块外部的光信号传输至所述相干调制解调器中,以与所述另一束光形成光干涉。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络终端部件示意图;
图3为本申请实施例提供的一种光模块部件示意图;
图4为本申请实施例提供的光模块分解部件示意图;
图5为本申请实施例提供的光模块分解部件局部放大图;
图6为本申请实施例提供的光模块光源装置整体位置示意图;
图7为本申请实施例提供的光模块光源装置的分解部件示意图;
图8为本申请实施例提供的光模块电连接器部件示意图;
图9为本申请实施例提供的光模块光源装置贴片分解部件示意图;
图10为本申请实施例提供的光源电路板与电路板相对位置部件示意图;
图11为本申请实施例提供的光模块相干调制示意图;
图12为本申请实施例提供的另一种光模块相干解调示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在说明书和权利要求书中,在明确声明的含义之外术语可以具有在上下文中暗示的细微差别的含义。同样地,短语“在一个实施例中”或“在一些实施例中”不一定指代相同的实施例,短语“在另一个实施例中”或“在其他实施例中”不一定指代不同的实施例。类似地,短语“在一个示例中”或“在一些示例中”不一定指代相同的示例,短语“在另一个示例中”或“在其他示例中”不一定指代不同的示例。例如,所要求保护的主题旨在全部或部分地包括示例性实施例或示例的组合。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C通信、数据 通信以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由插有光模块200的光网络终端100完成。
光模块200的光口接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,具体地,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常 见的光模块上位机还有光线路终端等。
图2为光网络终端部件示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,笼子内部设置有电连接器;光模块200插入笼子106时,光模块200被笼子106固定,光模块200产生的热量传导给笼子106,然后通过笼子106上的散热器107扩散。
图3为本申请实施例提供的一种光模块部件示意图,图4为本申请实施例提供的光模块分解部件局部放大示意图,图5为本申请实施例提供的一种光模块的分解部件局部放大示意图。如图3、图4、图5所示,本申请实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、光源装置500、相干调制解调器600、增益放大器700、接收光纤适配器801、发射光纤适配器802、数字信号处理芯片900。
上壳体201盖合在下壳体202上,以形成具有两个开口且内部中空的壳体;该内部中空的壳体的外轮廓一般为方形体,具体地,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成内部中空的壳体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,上壳体的两个侧壁与下壳体的两个侧板相贴合,以实现上壳体盖合在下壳体上。
两个开口可以为位于壳体同一端的两个开口,也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板300的金手指从电口204伸出以插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接接收光纤适配器801;电路板300、光源装置500、相干调制解调器600、增益放大器700、接收光纤适配器801、发射光纤适配器802、数字信号处理芯片900等光电器件位于内部中空的壳体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光源装置500、相干调制解调器600、增益放大器700、接收光纤适配器801、发射光纤适配器802、数字信号处理芯片900等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热。
解锁部件203位于内部中空的壳体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动器、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板设置有供电电路和信号电路,所述电路板通过电路走线将光模块中 的电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,具体地,在硬性电路板的一侧末端表面形成金手指,用于与电连接器连接。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
光收发器件包括光发射部件及光接收部件两部分,分别用于实现光信号的发射与光信号的接收。光发射部件及光接收部件可以结合在一起,也可以相互独立。
图5为本申请实施例提供的一种光模块的分解部件局部放大示意图,所述光模块还包括光源装置500,相干调制解调器600,增益放大器700,接收光纤适配器801、发射光纤适配器802、数字信号处理芯片900。
图6为本申请实施例提供的一种光模块光源装置500整体位置示意图。
光源装置500设置在电路板300靠近光口205一端的边缘侧,所述光源装置也称为ITLA(集成可调谐激光器,Integrable Tunable Laser Assemblies)。,如图7所示,光源装置500包括内部中空的壳体501,光源电路板502,电连接器503,激光输出端506,贴片和发射激光器芯片。
图7为本申请实施例提供的一种光模块光源装置500的分解部件示意图。
光源电路板502固定连接至光模块的电路板300的上表面,具体地在所述 光源电路板300的四个角分设置4个通孔,然后使用螺栓连接的方式将光源电路板502与其下方的电路板300进行固定连接。光源电路板502与电路板300之间具有空间缝隙。所述光源电路板300一方面连接至光源装置500的内部中空的壳体501用于给内部中空的壳体501体内部的发射激光器芯片(图中未显示)进行供电,另一方面光源电路板502还通过电连接器503与电路板300的供电电路建立电路连接,从而使得电路板300通过电连接器503给光源电路板502提供电流。
内部中空的壳体501为长方体部件,其内部形成装载发射激光器芯片的空腔。具体地,内部中空的壳体501的下表面通过下贴片505固定连接在电路板300的上表面,例如可以使用螺栓固定或者卡合部件的方式进行固定连接,如图7所示。
在一些实施例中,光源电路板502的一边开设有与内部中空的壳体501相适应的豁口,用于进一步将内部中空的壳体501卡入所述豁口进行位置的限位,如图7所示,从而将内部中空的壳体501牢固的固定在电路板和光源电路板之间,避免在光模块内部产生位置的移动。
在一些实施例中,内部中空的壳体501的一侧长边所在的竖直侧壁和与其相邻的一侧短边所在的竖直侧壁分别设置有一排引脚,所述引脚的一端与内部中空的壳体501内部发射激光器芯片的供电端口建立电路连接,其另一端采用蝶形封装的方式焊接至光源电路板502的表面,如图7所示,从而实现内部中空的壳体501内部设置的发射激光器芯片和光源电路板502、电路板300的电路连接,实现光源装置500的供电。
光源电路板的豁口在其长边与长边相邻的短边分别设置有金属焊盘,金属 焊盘焊接至内部中空的壳体侧壁的引脚,用于为所述发射激光器芯片提供电流。
在一些实施例中,内部中空的壳体501外壁的引脚设置在光源电路板502和电路板300之间的空间缝隙中,即在打开光模块的上壳体201后无法直接观察到所述引脚,如图10所示,这样设置的有益效果在于可以避免光模块内部的其他零部件对所述引脚的碰撞,保护光源装置500的内部中空的壳体501和光源电路板502之间的电路连接的稳定性。
图8为本申请实施例提供的一种光模块电连接器503部件示意图。
电连接器503的外轮廓一般呈长方体,设置于光源电路板502和电路板300之间。其上端设置有双排的金属引脚焊接至光源电路板502的上表面,下端设置有双排的金属引脚焊接至电路板300的上表面,从而实现电路板300和光源电路板502之间的电连接,所述电路板300通过供电电路可以为光源电路板502提供工作电流。电连接器503一方面起到了在光源电路板502和电路板300之间建立电路连接的作用,另一方面对光源电路板502起到了物理支撑的作用。
参考图5和图7所示,激光输出端506设置于内部中空的壳体501外壁的一侧,通常朝向于相干调制解调器600的一侧,用于实现光源装置500的对外连接。激光输出端506为具有内部空腔的圆柱体,其连接光纤的一端为收口设置,用于对接光模块内部的第一光纤;其固定连接至内部中空的壳体501外壁的一段可以通过卡合的方式,或者一体成型的方式固定连接至内部中空的壳体501的外壁。激光输出端506的末端连接有至相干调制解调器600的第一光纤,用于对所述相干调制解调器提供输入的出射光,由此可见,激光输出端506可以实现对光源装置500外部光纤和光源装置500内部发射激光器芯片发射的激光。
发射激光器芯片集成于内部中空的壳体501的内部空腔内。发射激光器芯片发射的出射光通过激光输出端506和与之连接的第一光纤传送至与光源装置500连接的相干调制解调器600用于相干光的调制或者解调。
在一些实施例中,光源装置500通过封装部件将发射激光芯器片封装起来,封装部件可以包括同轴封装TO-CAN、硅光封装、板上芯片透镜组件封装COB-LENS、微光学XMD封装。封装还分为气密性封装及非气密性封装,封装一方面为发射激光器芯片提供稳定、可靠的工作环境,另一方面形成对外的电连接及光输出。根据产品设计及工艺,光模块会采用不同的封装以制作光源装置;发射激光器芯片有垂直腔面出光,也有边发光,发射激光器芯片出光方向的不同也会影响对封装形态的选择;各种封装之间具有明显的技术区别,不论从部件还是从工艺都是不同的技术方向,本领域技术人员知晓,虽然不同封装实现的目的具有一定的相同点,但是不同封装属于不同的技术路线,不同的封装技术之间不会相互给与技术启示。
需要说明的是,激光因较好的单波长特性及较佳的波长调谐特性成为光模块乃至光纤传输的首选光源,而其他类型的光如LED光等,常见的光通信系统一般不会采用,即使特殊的光通信系统中采用了这种光源,其光源的特性及芯片部件与激光存在较大的差别,使得采用激光的光模块与采用其他光源的光模块存在较大的技术差别,本领域技术人员一般不会认为这两种类型的光模块可以相互给与以技术启示。
需要说明的是,在本实施例中发射激光器芯片发出的光是一种不携带任何信号的出射光。在一些实施例中,发射激光器芯片还可以被配置为发出不携带信息的出射光并且其功率不会发生变化,即发射激光器芯片或光源装置发出的 出射光是一种不包含任何信号且功率恒定的光。在一些实施例中,所述不包含任何信号且功率恒定的出射光还可以是一种单一波长的光。
继续参考图7,所述贴片包括上贴片504和下贴片505。
图9为本申请实施例提供的一种光模块光源装置500中贴片分解部件示意图。
上贴片504的下表面覆盖贴装在内部中空的壳体501的上表面,并且上贴片504的上表面紧贴连接至光模块上壳体201的内壁上,上贴片504可以采用金属材料制成的薄片,或其他同样具备导热和屏蔽信号功能的材料制成。
下贴片505的下表面贴装固定在光模块的下壳体202的内壁表面,所述下贴片的上表面与内部中空的壳体501的下表面紧密贴装在一起,下贴片505可以采用金属材料制成的薄片,或其他同样具备导热和屏蔽信号功能的材料制成。光源装置500内部中空的壳体内发射激光器芯片在发射激光过程中产生的热量会传递至内部中空的壳体501表面,然后通过上贴片504和下贴片505将热量传递至光模块的上壳体201和下壳体202,从而达到散热的作用。并且光模块的上壳体201和下壳体202都是金属材料制成,具有良好的导热和信号屏蔽效果,通过再次设置所述贴片进一步对光源装置500产生的热能进行传导可以保证光源装置500输出稳定的激光。
在一些实施例中,上贴片504和下贴片505通常设置为与光源装置500的内部中空的壳体501相适应的矩形装置,所述矩形装置的四个角可以分别设置通孔用于螺栓固定,如图9所示。
在一些实施例中,上贴片504和下贴片505的矩形长边的中部位置分别设置有豁口,所述豁口位置设置有外翻的折边,所述折边可以用于翻折卡合固定 光源装置的内部中空的壳体501的外壁,从而是的光源装置内部中空的壳体可以固定在上贴片和下贴片之间,如图9所示。
继续参考图5,增益放大器700设置于电路板300的上表面,所述增益放大器包括内部中空的壳体,该壳体的外壁轮廓一般呈长方体。增益放大器700的中空的壳体内部设置有掺铒放大器系统,壳体外壁还包括一个光输入端口和一个光输出端口。
所述光输入端口通过光纤连接至相干调制解调器600的光信号输出端口;增益放大器700的光输出端口通过光纤连接至发射光纤适配器802,如图5所示。需要说明的是,增益放大器700的光输出端口与发射光纤适配器802之间的光纤可以使用单模熔接,在光模块内部其曲率半径的设置应大于等于10mm。
增益放大器700的光输入端口接收从相干调制解调器600的光信号输出端口发送的光信号,并通过其内部的掺铒放大器系统进行增益放大后从光输出端口输出,最终通过光纤传送至发射光纤适配器802再输出至所述光模块外部的光纤中。
在一些实施例中,增益放大器700内部中空的壳体内设置的掺饵放大器系统包括光纤耦合器、隔离器、对掺饵放大器提供泵浦光的浦激光器、掺铒光纤、和波分复用器WDM。增益放大器700可以实现对输入光信号的放大,使得光模块能够输出光功率稳定且满足增益要求的光信号。
在一些实施例中,增益放大器700内部中空的壳体内部的掺饵放大器系统具体设为双极联放大器,在上述实施例中所述元器件构成第一级放大系统的基础上,还包括与第一级放大系统元器件串联的第二级放大系统。需要说明的是,所述第二级放大系统的掺饵光纤长度大于第一级放大系统的掺饵光纤长度。通 过多级放大系统的级联以及多个隔离器的设置,降低了双级级联低噪声掺铒光纤放大器光学系统的噪声系数,降低了泵浦激光器长期工作的失效率,提高了光模块输出功率的稳定性。
继续参考图5,接收光纤适配器801、发射光纤适配器802固定设置于电路板300的一端,包括接收光纤适配器801和发射光纤适配器802。
在本实施例中,接收光纤适配器801、发射光纤适配器802可以采用螺栓固定的方式固定在电路板300的表面。
接收光纤适配器801、发射光纤适配器802对内用于连接光模块内部的光纤,对外用于连接来自光口205外部的光纤。具体地,接收光纤适配器801在光口内部的端口通过第二光纤连接至相干调制解调器600的光信号输入端口;发射光纤适配器802内部的端口通过光纤连接至增益放大器700的EDFA光输出端口。所述接收光纤适配器801、发射光纤适配器802在光口205中用于对接外部光纤的端口通常设置为标准端口,例如可以设置为FC,SC或LC等。需要说明的是,因为光纤为软体材质,因此外部光纤和内部光纤直接不能够直接的进行对接,如果直接对接其内部的光耦合效率会较低,因此需要接收光纤适配器801、发射光纤适配器802作为连接件进行连接。
需要说明的是,在一些实施例中,所述光模块可以不配置增益放大器700,上述发射光纤适配器802直接通过光纤连接至相干调制解调器600的光信号接收端口。
继续参考图5,数字信号处理芯片900为外部轮廓呈高度较低的正方体贴装在电路板300靠近电连接器301的电路板表面。
数字信号处理芯片900与电路板300的信号电路和供电电路建立电连接, 进一步通过电路板300内部的信号电路、供电电路与相干调制解调器600建立双向的电路连接从而对电信号和/或数据信息进行传输。
另一方面,数字信号处理芯片900还通过电路板300内部的电路与电路板300末端的电连接器301建立连接。在本实施例中,所述电连接器具体可以设置为金手指。
数字信号处理芯片900可以通过连接至所述电路板300末端的金手指接收上位机系统发送的电信号并进行处理,然后将所述电信号发送给相干调制解调器600驱动其内部的马赫-曾德尔调制器实现相干调制。
数字信号处理芯片900还可以通过连接至电路板300末端的金手指将相干调制解调器600发出的解调后的电信号发送至上位机系统。
在光发射的过程中,数字信号处理芯片900通过电路板300上的电路输出电信号至相干调制解调器600,用于将电信号通过光的干涉原理加载到发射激光器芯片发射的光上,从而将电信号转换为光信号。
在光接收过程中,数字信号处理芯片900通过电路板300上的电路接收相干调制解调器600通过相干原理将光信号解调的电信号,并经所述电信号通过与之连接的金手指发送到上位机系统。
由此可见,数字信号处理芯片900主要用于将上位机发送的信号经过处理发送给相干调制解调器600,实现将电信号加载到光上。另一方面,数字信号处理芯片900接收相干调制解调器600解析的电信号并将所述电信号发送给上位机系统。
需要说明的是,数字信号处理芯片900与光模块内部的MCU微处理器为不同的装置,MCU微处理器用于光模块的监控与控制功能,并上报光模块的一些 状态量给上位机系统。
继续参考图5,相干调制解调器600贴装在电路板300的表面,在本实施例中,所述相干调制解调器具体可以设置在电路板300中部的位置。
相干调制解调器600的外部包括激光接收端口、光信号输出端口和光信号接收端口。上述三个端口可以设置在所述相干调制解调器的一侧,也可以设置于所述相干调制解调器的不同侧。
激光接收端口通过第一光纤连接至光源装置500的激光输出端506,如图5所示,用于接收发射激光器芯片发出的不包含信号且功率恒定的光,用于相干调制解调器600进行相干调制使用。需要说明的是,所述激光接收端口与激光输出端506之间的第一光纤可以使用保留熔接,在光模块内部所述光纤其曲率半径的设置应大于等于7.5mm。
光信号输出端口通过光纤连接至电路板300上固定安装的增益放大器700的光输入端口。上述激光接收端口接收到的发射激光器芯片发射的干涉光进入相干调制解调器600进行调制后从光信号输出端口输出到增益放大器700,然后进行后续的增益放大处理。需要说明的是,所述光信号输出端口与增益放大器的光输入端口之间的光纤可以使用单模熔接,在光模块内部所述光纤其曲率半径的设置应大于等于10mm。
光信号接收端口通过第二光纤连接至接收光纤适配器801,用于接收光模块外部光纤传送的用于解调的光信号,既携带信息的光信号。光模块外部的光信号通过接收光纤适配器801内部连接的第二光纤将光信号发送至相干调制解调器600的光信号接收端口,用于相干调制解调器600对所述光信号进行解调。需要说明的是,接收光纤适配器801与相干调制解调器600的光信号接收端口 之间的光纤可以使用单模熔接,在光模块内部其曲率半径的设置应大于等于5mm。
在光信号的接收过程中,光信号经过相干调制解调器600的解析生成电信号,然后通过相干调制解调器600与电路板300之间建立的双向电路连接的传输,将上述电信号通过电路板300内部的信号电路发送至数字信号处理芯片900进行后续处理。在本实施例中,由于相干调制解调器600贴装在电路板的表面,因此连接部位的细节在图中没有显示。
在一些实施例中,光模块还可以包括设置在电路板300上的绕纤装置,其具体可以设置为具有竖直环形围挡边的装置,通过在其内壁设置走线凹槽或引导绕线装置,可以用于光模块内部的光纤的缠绕和限位。所述绕纤装置的形状及部件可根据实际情况进行定制,在本申请中不做具体的限定。
从功能实现的角度出发,相干调制解调器600包括实现相干调制和相干解调2个功能。在实际的光模块制造工艺中,所述相干调制解调器具体以芯片封装的方式实现。光模块中的光信号调制过程与解调过程的原理在一定程度上虽然类似,并且调制和解调在同一个芯片中实现。但是在光模块中光信号实现调制和解调的原理是不同的,其在技术上是没有相互关联的。
虽然在实际的制作工艺中,相干调制器和相干解调器可以分别有两个芯片来是实现其功能,但是在光模块小型化的趋势下,完全可以使用1个芯片完成上述功能的集成。所以本申请实施例提供的光模块中的调制和解调在实际的物理构造中由同一个元件实现,即相干调制解调器600。
在本申请实施例中提供的光模块中光源装置500发出的光不包含任何信号,仅仅是用来与电信号进行调制或者解调的稳定光源。所述光源装置发出稳定激 光后,所述激光进入与光源装置500连接的相干调制解调器600,然后所述相干调制解调器600根据光的干涉原理对所述激光进行调制并输出光信号。在本实施例中,光源装置500用于发出激光的具体装置为内部中空的壳体501内部设置的发射激光器芯片。
在一些传统的光模块制造工艺中光信号调制是根据激光器的驱动电流的大小来控制激光器发出的光功率的大小来达到调制目的。还有一些传统实现方式中,发射激光器芯片发出的光是恒定功率,即发射激光器芯片发出的光在功率上不会产生变化,这种发射激光器芯片构造的光模块还会在光源所在芯片内设置电吸收调制器,从而进一步实现发射激光器芯片发射输出光的功率可变化,进一步实现了光电转换。因此,在物理层面观察,发射激光器芯片和电吸收调制器是封装在同一个芯片的,光模块通过光功率的变化来实现光信号的调制和解调。
而在本申请实施例提供的光模块,发射激光器所在的芯片发出的光的功率是没有强弱变化的,也可以认为光源装置500发出的光的功率是没有强弱变化的,即为恒定功率的光。因此在光模块中光信号的调制是根据光的相干原理通过相干调制解调器600来实现的。
由此可见,本申请实施例提供的相干调制解调器实现光电转换与传统的根据光功率强弱变化实现调制的方法是不同的。
需要说明的是,在光模块中,根据光的干涉原理最少需要2个相干光源进行干涉过程,从而实现相干光之间的相位差,进一步可以实现相干调制或解调。因此,在本申请实施例提供的光模块中,通常认为的光发射次模块和光接收次模块并没有分别设置,而是设置在同一个物理模块中,既上述相干调制解调器 600。
在本申请实施例中,光源装置500是独立的存在。光模块的相干调制解调器600的体积较大;并且光信号的发射以及接收都是由相干调制解调器600依据相干原理来实现的,光功率不需要进行强弱变化的调整,因此在光模块中光源装置500是独立设置的。
在光信号的接收过程中,需要对相干调制解调器600提供一个本振光,然后结合接收到的光信号进行解调。所述本振光也是由光模块中的光源装置500来提供的,即由发射激光器芯片发出的激光。相干调制解调器600内部设置有光路分歧,接受来自第一光纤的出射光,并将所述出射光分解为第一出射光和第二出射光,所述第一出射光用于在相干调制解调器600中进行相干调制并输出携带信息的光信号至发射光纤适配器801,所述第二出射光用于和接收光纤适配器802传送的携带信息的光相干解调输出接收电信号。
在光模块中,发射激光器芯片一方面提供光模块进行光信号调制需要的光,另一方面也提供了光模块在解析光信号过程中需要的本振光。因此,在本申请实施例提供的光模块的发射激光器芯片是单独设置的,即光源装置500也是单独设置的。在相干模块中,如果不涉及额外增益情况下,光模块不需要提供一种功率变化的光源,相干调制解调器600和发射激光器芯片分离设计的构造能够有效的小型化光模块的体积。
在光模块中,相干调制解调器600将发射激光器芯片发射的不包含信号、并且功率不变的光(既第一出射光)进行调制,从而将数字信号处理芯片发送的电信号加载到所述的相干光上,实现光信号的调制。另一方面,相干调制解调器600还可以将接收到的外部光纤传送的光信号,即携带信息的光,结合发 射激光器芯片发出的本振光(既第二出射光)对所述光信号根据光的干涉原理进行解调得到解析后的电信号。
需要说明的是,从功能和原理角度来说发射光使用的相干调制模块和接收光使用的相干解调模块可以是分开的,两个功能模块都需要发射激光器芯片提供干涉光,因此在物理角度,可以将所述的相干调制模块和相干解调模块集成在同一个相干调制解调器600中实现其调制解调功能,而发射激光器芯片发出的干涉光可以根据相干调制解调器600内部设计的分歧光路将所述光分解为多个分支光路从而实现相干调制和解调所需的多路干涉光。
相干调制解调器600中,可以认为相干调制器和相干解调器在所述相干调制解调器内部,发射激光器芯片发出的光在进入相干调制解调器600后分成两个支路分别进入相干调制器和相干解调器中。由于本申请实施例提供的光模块把相干调制器和相干解调器集成在同一相干调制解调器600中,因此与发射激光器芯片之间的接口只需要设置1个,这样设置的有益效果在于减少了系统接口,可以降低系统性故障。
综上所述,相干调制解调器600可以将来自光源装置500的不携带任何信号的光进行调制,将电信号加载到所述光上,然后将生成的光信号,即携带信息的光信号对外部发送。相干调制解调器600还可以将接收来自光模块外部的光信号解析为电信号并输出给光模块内部的数字信号处理芯片900。
相干调制解调器600的内部还包括有驱动器610、MZ(Mach-Zehnder:马赫-曾德尔调制器)硅基调制器620等器件用于相干调制。
所述马赫-曾德尔调制器620用于实现光的干涉从而完成相干调制的过程,下面将对光信号的调制进行详细的阐述。马赫-曾德尔调制器620将调制电信号 施加到所述马赫-曾德尔调制器的光波导上形成的相位调制区域来调制发射激光器芯片发出的出射光,从而输出光信号。相干调制解调器600可以利用各种调制方法来调制光信号,例如相位调制、幅度调制和偏振调制或各种调制方法的组合。
相位调制是在马赫-曾德尔调制器620光波导上形成的电极的区域,通过向电极施加电信号改变电极下方的光波导的折射率。因而可以改变相位调制区域中的光波导的实质光路长。因此,相位调制区域可以改变传播通过光波导的光信号的相位,再通过在传播通过两个光波导的光信号之间提供相位差来调制光信号。下面将就马赫-曾德尔调制器620的调制过程进行阐述。
图11为本申请实施例提供的一种光模块相干调制示意图。
相干调制解调器600内部封装有马赫-曾德尔调制器620。相干调制解调器600调制从光源装置500内部中空的壳体内发射激光器芯片发出的激光作为相干光源。所述马赫-曾德尔调制器包括光波导1至光波导4以及相位调制区域PM1和PM2。从光源装置500内部中空的壳体内发射激光器芯片发出的的第一出射光被输入到光波导1的一端。光波导1的另一端与光波导2的一端和光波导3的一端连接。传播通过光波导1的光朝向光波导2和光波导3分支。光波导2的另一端和光波导3的另一端与光波导4的一端连接。在光波导2上,设置相位调制区域PM1,该相位调制区域PM1改变传播通过光波导2的光的相位。在光波导3上,设置相位调制区域PM2,该相位调制区域PM2改变传播通过光波导2的光的相位。从光波导4的另一端输出携带信息的光信号。
相干调制解调器600包括驱动器610,所述驱动器将光模块200的电连接器301输入的电信号施加至马赫-曾德尔调制器620的相位调制区域将光源装置500 发出的激光调制成携带信息的光信号。驱动器610可以控制马赫-曾德尔调制器620的调制操作。所述驱动器还可以接收上位机的控制信号向相位调制区域PM1和PM2中的一个或两个施加偏置电压Vbias来控制马赫-曾德尔调制器620的偏置点。假设驱动器610向相位调制区域PM1和PM2施加偏置电压,驱动器610还可以通过向相位调制区域PM1和PM2中的一个或两个施加根据电信号将所述第一出射光调制成输出的携带信息的光信号或光信号。在这个实例中,驱动器610向相位调制区域PM1施加根据第一调制信号的调制信号C1。驱动器610向相位调制区域PM2施加根据第一调制信号的调制信号C2,如图11所示。
在一些实施例中,相干调制解调器600还包括控制电路,所述控制电路用于稳定所述马赫-曾德尔调制器的相位调制点。
相干调制解调器600的内部还集成了ICR(Integrated Coherent Receiver:集成相干接收机)和TIA(Trans-Impedance Amplifier:跨阻放大器)650等器件用于相干解调。
ICR用于接收光信号并进行检测,包括光混频器630、光电探测芯片640。
图12为本申请实施例提供的一种光模块相干解调示意图。
光混频器630接收来自光模块外部光纤的光信号和光源装置500提供的本振光,所述光混频器主要用来实现将光信号与所述本振光,既第二出射光进行相干混频并输出具有一定相位差的几路信号的功能,其具体可选择设置为90°混频器,也可选择设置为120°混频器,或者选择设置为180°混频器。
需要说明的是,其中光源装置500发出的本振光基于窄线激光器,它的引入可提高相干接收的灵敏度。
光电探测芯片640将上述光混频器输出的具有相位差的几路信号进行光电 光电转换生成电流信号,所述光电探测器可基于平衡探测器,也可基于单个光电探测器来实现。
所述跨阻放大器650将光电探测芯片640生成的电流信号进行放大并转换为电压信号输出,所述电压信号一般以差分形态输出。所述电压信号通过相干调制解调器600和电路板300建立的双向电路连接发送至数字信号处理芯片900,进一步通过与所述数字信号处理芯片连接的金手指发送至上位机系统。
在一些实施例中,所述跨阻放大器的输出端还可以连接限幅放大器,所述限幅放大器用于将跨阻放大器输出的电压信号进行放大并限幅输出,输出的信号最终输出至光模块插接的上位机系统。
光模块本申请的有益效果在于,通过设置光源电路板,可以提高光源装置供电的稳定性;通过设置电连接器,不仅可以在光模块电路板和光源电路板之间建立起电路连接,还可以对光源电路板起到物理支撑的作用,可以提高光源装置结构的稳定性;通过设置激光输出端可以降低光源装置和其外部光纤耦合的难度,整体上提高了光源装置的可靠性;进一步通过相干调制解调器实现调制和解调功能,通过其内部的分歧光路设置只需单独设置1个独立光源装置用于为调制和解调提供相干光,有效的降低了光模块的体积和减少了光模块内部重要元器件的数量;由于光源装置输出激光为恒定功率,可以降低光源装置的故障率,提高光模块光电转换的可靠性。
本说明书通篇提及的“多个实施例”、“一些实施例”、“一个实施例”或“实施例”等,意味着结合该实施例描述的具体特征、部件或特性包括在至少一个实施例中。因此,本说明书通篇出现的短语“在多个实施例中”、“在一些实施例中”、“在至少另一个实施例中”或“在实施例中”等并不一定都指相同的实 施例。此外,在一个或多个实施例中,具体特征、部件或特性可以任何合适的方式进行组合。因此,在无限制的情形下,结合一个实施例示出或描述的具体特征、部件或特性可全部或部分地与一个或多个其他实施例的特征、部件或特性进行组合。这种修改和变型旨在包括在本申请的范围之内。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“终端”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (18)

  1. 一种光模块,其特征在于,包括:
    电路板,包括供电电路和信号电路;
    光源装置,设置在所述电路板的表面,与所述供电电路连接,用于发出不携带信息的出射光;
    第一光纤,一端与所述光源装置连接,另一端与相干调制解调器连接,用于将所述出射光传输至所述相干调制解调器中;
    所述相干调制解调器,与所述信号电路电连接;用于对接收到的光进行相位调制或相位解调;
    所述光源装置包括:
    内部中空的壳体,内部承载发射激光器芯片,侧壁具有与所述发射激光器芯片电连接的引脚;所述发射激光器芯片发出所述不携带信息的出射光;
    光源电路板,与所述内部中空的壳体侧壁的引脚电连接,用于向所述引脚供电;电连接器,设置于所述光源电路板和所述电路板之间,用于建立电路板和光源电路板之间的电路连接;
    激光输出端,设置于所述内部中空的壳体外壁,用于连接所述第一光纤。
  2. 根据权利要求1所述的光模块,其特征在于,所述光源电路板的一边开设有与所述内部中空的壳体相适应的豁口,用于固定所述内部中空的壳体。
  3. 根据权利要求2所述的光模块,其特征在于,所述豁口的长边与其相邻的短边分别设置有金属焊盘,所述金属焊盘焊接至所述内部中空的壳体侧壁的引脚,用于为所述发射激光器芯片提供电流。
  4. 根据权利要求2所述的光模块,其特征在于,所述金属焊盘设置在所述光源 电路板和所述电路板之间。
  5. 根据权利要求1所述的光模块,其特征在于,所述发射激光器芯片用于发出不携带信号的激光,所述不携带信号的激光用于相位调制和相位解调。
  6. 根据权利要求1所述的光模块,其特征在于,
    所述电连接器上端设置有双排的金属引脚焊接至所述光源电路板的下表面;
    所述电连接器下端设置有双排的金属引脚焊接至所述电路板的上表面。
  7. 根据权利要求1所述的光模块,其特征在于,所述光源装置还包括贴装在所述内部中空的壳体表面的贴片,所述贴片用于散热.
  8. 根据权利要求7所述的光模块,其特征在于,所述贴片包括上贴片和下贴片;
    所述上贴片的下表面贴装在所述内部中空的壳体的上表面;
    所述下贴片的上表面贴装在所述内部中空的壳体的下表面。
  9. 根据权利要求1所述的光模块,其特征在于,所述相干调制解调器用于将所述出射光分束,根据所述电信号对其中一束光进行相位调制以产生携带信息的光信号,其中的另一束光用于形成光干涉以进行相位解调。
  10. 根据权利要求1所述的光模块,其特征在于,所述光模块还包括:
    发射光纤适配器,用于将携带信息的光信号传输至所述光模块外部;
    接收光纤适配器,用于将来自所述光模块外部的光信号传输至所述相干调制解调器中,以与所述另一束光形成光干涉。
  11. 一种光模块,其特征在于,包括:
    电路板,包括供电电路和信号电路;
    光源装置,设置在所述电路板的表面,与所述供电电路连接,用于发出不携带信息的出射光;
    第一光纤,一端与所述光源装置连接,另一端与相干调制解调器连接,用于将所述出射光传输至所述相干调制解调器中;
    所述相干调制解调器,与所述信号电路电连接;将所述出射光分束,根据所述电信号对其中一束光进行相位调制以产生携带信息的光信号,其中的另一束光用于形成光干涉以进行相位解调;
    发射光纤适配器,用于将携带信息的光信号传输至所述光模块外部;
    接收光纤适配器,用于将来自所述光模块外部的光信号传输至所述相干调制解调器中,以与所述另一束光形成光干涉。
  12. 根据权利要求11所述的光模块,其特征在于,所述相干调制解调器包括:马赫-曾德尔调制器,包括光波导和相位调制区域,通过所述光波导将光传递至所述相位调制区域;用于将所述出射光相位调制为携带信息的光信号,或将所述来自光模块外部的光信号相位解调为电信号;
    驱动器,用于将所述电信号施加至马赫-曾德尔调制器的相位调制区域;
    集成相干接收机,用于接收来自所述光模块外部的光信号转变为接收电流信号;跨阻放大器,用于将所述接收电流信号进行放大并转换为电压信号输出。
  13. 根据权利要求12所述的光模块,所述相干调制解调器还包括控制电路,用于稳定所述马赫-曾德尔调制器的相位调制点。;
  14. 根据权利要求1所述的光模块,所述光源装置发出的出射光可以与所述相干调制解调器接收的携带信息的光信号形成相干光。
  15. 根据权利要求11所述的光模块,其特征在于,
    所述光模块还包括增益放大器,其光输入端通过光纤连接至所述相干调制解调器,其光输出端通过光纤连接至所述发射光纤适配器;
    所述增益放大器用于将所述相干调制解调器输出的携带信息的光信号放大输出至所述发射光纤适配器。
  16. 根据权利要求15所述的光模块,所述增益放大器为掺铒放大器。
  17. 根据权利要求11所述的光模块,其特征在于,所述光模块还包括:
    数字信号处理芯片,固定安装在所述电路板表面与所述信号电路建立电连接,用于将上位机发送的电信号经过处理发送给所述相干调制解调器,或将所述相干调制解调器解析的电信号发送给上位机系统。
  18. 根据权利要求11所述的光模块,其特征在于,
    所述相干调制解调器包括激光接收端口、光信号输出端口和光信号接收端口;
    所述激光接收端口通过第一光纤连接至所述光源装置的激光输出端,用于接收所述出射光用于相干调制,或接收所述出射光用做相干光源之一以进行相干解调;
    所述光信号输出端口通过光纤连接至所述发射光纤适配器,用于输出携带信息的光信号;
    所述光信号接收端口通过光纤连接至所述接收光纤适配器,用于接收来自所述光模块外部的光信号。
PCT/CN2020/086712 2019-11-18 2020-06-24 光模块 WO2021098144A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911128906.0A CN112817098A (zh) 2019-11-18 2019-11-18 一种光模块
CN201911128067.2A CN110989099B (zh) 2019-11-18 2019-11-18 一种光模块
CN201921989998.7U CN210775929U (zh) 2019-11-18 2019-11-18 一种光模块
CN201911128067.2 2019-11-18
CN201921989998.7 2019-11-18
CN201911128906.0 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021098144A1 true WO2021098144A1 (zh) 2021-05-27

Family

ID=75980988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086712 WO2021098144A1 (zh) 2019-11-18 2020-06-24 光模块

Country Status (1)

Country Link
WO (1) WO2021098144A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110164883A1 (en) * 2007-07-11 2011-07-07 Emcore Corporation Reconfiguration and Protocol Adaptation of Optoelectronic Modules and Network Components
CN106772832A (zh) * 2016-11-30 2017-05-31 武汉联特科技有限公司 一种光收发一体模块
CN107861199A (zh) * 2017-11-24 2018-03-30 青岛海信宽带多媒体技术有限公司 一种光模块
CN207851359U (zh) * 2017-12-27 2018-09-11 华为技术有限公司 光模块、光模块笼子、光模块组件及光模块系统
CN110989099A (zh) * 2019-11-18 2020-04-10 青岛海信宽带多媒体技术有限公司 一种光模块
CN210775929U (zh) * 2019-11-18 2020-06-16 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110164883A1 (en) * 2007-07-11 2011-07-07 Emcore Corporation Reconfiguration and Protocol Adaptation of Optoelectronic Modules and Network Components
CN106772832A (zh) * 2016-11-30 2017-05-31 武汉联特科技有限公司 一种光收发一体模块
CN107861199A (zh) * 2017-11-24 2018-03-30 青岛海信宽带多媒体技术有限公司 一种光模块
CN207851359U (zh) * 2017-12-27 2018-09-11 华为技术有限公司 光模块、光模块笼子、光模块组件及光模块系统
CN110989099A (zh) * 2019-11-18 2020-04-10 青岛海信宽带多媒体技术有限公司 一种光模块
CN210775929U (zh) * 2019-11-18 2020-06-16 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN110989099B (zh) 一种光模块
CN213122371U (zh) 一种光模块
CN210775929U (zh) 一种光模块
US20230204881A1 (en) Light Source Module and Optical Communication Device
CN112965190A (zh) 一种光模块
WO2011035696A1 (zh) 一种光模块
CN112817098A (zh) 一种光模块
CN217879744U (zh) 一种光模块
CN215895036U (zh) 一种光模块
CN218037458U (zh) 一种光模块
US12074642B2 (en) Optical module
CN113885143B (zh) 一种光模块
US20230418006A1 (en) Optical module
CN114675383B (zh) 一种光模块
CN215678864U (zh) 一种光模块
CN215895040U (zh) 一种光模块
WO2020108294A1 (zh) 光模块
WO2024103570A1 (zh) 光模块
WO2021098144A1 (zh) 光模块
US11750293B1 (en) Butterfly-type packaged optical transceiver with multiple transmission and reception channels
CN113866910B (zh) 一种光模块
CN215895042U (zh) 一种光模块
US20220236506A1 (en) Optical transceiver module for optical transceiver and optical transceiver
CN113917624B (zh) 一种光模块
CN113364522B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891025

Country of ref document: EP

Kind code of ref document: A1