WO2021098018A1 - 一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件 - Google Patents

一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件 Download PDF

Info

Publication number
WO2021098018A1
WO2021098018A1 PCT/CN2019/129771 CN2019129771W WO2021098018A1 WO 2021098018 A1 WO2021098018 A1 WO 2021098018A1 CN 2019129771 W CN2019129771 W CN 2019129771W WO 2021098018 A1 WO2021098018 A1 WO 2021098018A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide layer
passivation contact
tunneling oxide
cell body
contact structure
Prior art date
Application number
PCT/CN2019/129771
Other languages
English (en)
French (fr)
Inventor
杨洁
孙海杰
王钊
徐孟雷
郑霈霆
张昕宇
金浩
Original Assignee
浙江晶科能源有限公司
晶科能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201922019213.XU external-priority patent/CN210866196U/zh
Priority claimed from CN201911142103.0A external-priority patent/CN110752261A/zh
Application filed by 浙江晶科能源有限公司, 晶科能源有限公司 filed Critical 浙江晶科能源有限公司
Priority to EP19953507.1A priority Critical patent/EP4064367A4/en
Priority to US17/778,423 priority patent/US20230006086A1/en
Priority to AU2019475453A priority patent/AU2019475453B2/en
Publication of WO2021098018A1 publication Critical patent/WO2021098018A1/zh
Priority to AU2023219984A priority patent/AU2023219984A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells

Definitions

  • the invention relates to the technical field of photovoltaic cells, in particular to a photovoltaic cell partial tunneling oxide layer passivation contact structure and photovoltaic components.
  • the tunnel oxide passivation contact technology can recombine the metal contact area, but the silicon-based film in this structure has a strong absorption of sunlight, which limits the use of the tunnel oxide passivation contact technology on the front of crystalline silicon solar cells. , Which hinders the further improvement of the conversion efficiency of crystalline silicon solar cells.
  • the purpose of the present invention is to provide a partial tunneling oxide layer passivation contact structure for photovoltaic cells and photovoltaic modules, which are compatible with the mass production process of existing mass-produced crystalline silicon cells, can be put into mass production quickly, and can quickly improve efficiency and reduce efficiency. The role of this.
  • the embodiment of the present invention provides a partial tunnel oxide layer passivation contact structure of a photovoltaic cell, which includes a cell body, a first tunnel oxide layer disposed on the surface of the cell body, and The first polysilicon thin film layer on the surface of the tunnel oxide layer, the surface of the cell body includes a passivation contact area and a light absorption area, the first tunnel oxide layer is disposed in the passivation contact area, so The projection of the first polysilicon film layer on the surface of the cell body is in the passivation contact area.
  • it also includes a second tunnel oxide layer and a second polysilicon thin film layer disposed between the first tunnel oxide layer and the cell body, the second tunnel oxide layer, the first The projection of the two polysilicon thin film layers on the cell body simultaneously covers the passivation contact area and the light absorption area.
  • the thickness of the first tunnel oxide layer and the second tunnel oxide layer is 0.5 nm to 5 nm.
  • the thickness of the first polysilicon thin film layer is 20 nm to 300 nm.
  • the thickness of the second polysilicon thin film layer is 5 nm-50 nm.
  • the thickness of the first tunnel oxide layer is similar to the thickness of the second tunnel oxide layer.
  • the cell body is a single-sided cell body or a double-sided cell body.
  • the embodiment of the present invention also provides a photovoltaic module, which includes a cell body and the above-mentioned photovoltaic cell partial tunneling oxide layer passivation contact structure provided on the cell body.
  • the photovoltaic cell partial tunneling oxide layer passivation contact structure and photovoltaic module provided by the embodiments of the present invention have the following advantages:
  • the partial tunneling oxide layer passivation contact structure of the photovoltaic cell and the photovoltaic module provided by the embodiments of the present invention only cover the passivation contact area by the first tunneling oxide layer and the first polysilicon thin film layer, which improves the passivation of the area.
  • the first tunnel oxide layer and the first polysilicon thin film layer are not in the light-absorbing area, that is, the non-metal contact area, which reduces the sun’s shielding and improves the light absorption efficiency.
  • the mass production of crystalline silicon cells is compatible with mass production processes, and can be put into mass production quickly, which can quickly improve efficiency and reduce costs.
  • FIG. 1 is a schematic structural diagram of an embodiment of a photovoltaic cell partial tunneling oxide layer passivation contact structure provided by the present invention
  • FIG. 2 is a schematic structural diagram of another embodiment of a partial tunnel oxide passivation contact structure of a photovoltaic cell provided by the present invention.
  • Figure 1 is a schematic structural diagram of an embodiment of a photovoltaic cell partial tunnel oxide passivation contact structure provided by the present invention
  • Figure 2 is a photovoltaic cell partial tunnel oxide passivation contact structure provided by the present invention
  • the partial tunneling oxide layer passivation contact structure of the photovoltaic cell includes a cell body 10, a first tunneling oxide layer 20 disposed on the surface of the cell body 10, and The first polysilicon thin film layer 30 on the surface of the tunnel oxide layer, the surface of the cell body 10 includes a passivation contact area and a light absorption area, and the first tunnel oxide layer 20 is disposed in the passivation contact area The projection of the first polysilicon thin film layer 30 on the surface of the cell body 10 is in the passivation contact area.
  • the first tunnel oxide layer 20 and the first polysilicon thin film layer 30 only cover the passivation contact area, which improves the passivation level of this area and reduces the recombination of the battery surface.
  • a polysilicon thin film layer 30 is not in the light absorption area, that is, the non-metal contact area, which reduces the shielding of sunlight, improves the light absorption efficiency, and is compatible with the mass production process of existing mass-produced crystalline silicon cells, and can be put into mass production quickly. Play a rapid role in improving efficiency and reducing costs.
  • the metal electrode needs to be sintered on the surface of the first tunnel oxide layer 20 at the end, and the thickness of the first tunnel oxide layer 20 and the first polysilicon thin film layer 30 is extremely small, it is very difficult to set the metal electrode. It is easy to burn through the first crystalline silicon thin film layer to reach the cell body 10 to form damage. In order to avoid this, the recombination of the metal contact area is further reduced and the performance of the cell is improved.
  • the The partial tunneling oxide layer passivation contact structure of the photovoltaic cell also includes a second tunneling oxide layer 40 and a second polysilicon film layer 50 disposed between the first tunneling oxide layer 20 and the cell body 10
  • the projections of the second tunnel oxide layer 40 and the second polysilicon film layer 50 on the cell body 10 simultaneously cover the passivation contact area and the light absorption area.
  • the doping concentration of the first polysilicon thin film layer 30 is greater than the doping concentration of the second polysilicon thin film layer 50, forming a high-low junction structure, and using passivation to contact the “high-low junction” structure solves the problem of passivation.
  • the incompatibility between comprehensive passivation of the chemical contact structure and light absorption and metal electrode penetration damage improves the conversion efficiency of the battery.
  • the thickness and formation method of the tunnel oxide layer are not limited in the present invention. Generally, the thickness of the first tunnel oxide layer 20 and the second tunnel oxide layer 40 are 0.5 nm to 5 nm.
  • the thickness of the crystalline silicon thin film layer and the deposition method are not limited in the present invention. Generally, the thickness of the first polycrystalline silicon thin film layer 30 and the second polycrystalline silicon thin film layer 50 is 20 nm to 300 nm.
  • the thickness of the first tunnel oxide layer 20 is equal to the thickness of the second tunnel oxide layer 40.
  • the thickness of the first polysilicon thin film layer 30 is equal to the thickness of the second polysilicon thin film layer 50.
  • the cell body 10 in the present invention may be a single-sided cell body 10 or a double-sided cell body 10.
  • the above-mentioned partial tunneling oxide passivation contact structure process of the photovoltaic cell is as follows:
  • a first tunnel oxide layer 20 is formed on the surface of the silicon wafer.
  • the silicon wafer can be a single crystal or polycrystalline silicon wafer, the surface doping type of the silicon wafer can be P-type or N-type, the surface of the silicon wafer can be a silicon wafer after de-damage, polishing or texturing, and the first tunnel oxide layer 20 can be deposited by thermal oxidation, thermal HNO3 oxidation or CVD method, and the thickness is between 0.5-5nm.
  • a first polysilicon film is prepared on the first tunnel oxide layer 20.
  • the polysilicon film may be a doped or intrinsic polysilicon film, and the preparation method may be one of CVD deposition, PVD deposition, and chemical spin coating, and may or may not include a subsequent annealing process.
  • the thickness of the first polysilicon film Between 20nm-300nm.
  • a local anti-corrosion protection layer on the surface of the first polysilicon film, and protect the passivation contact area by retaining the tunnel oxide layer.
  • it can be organic or inorganic, and partial patterning can be achieved by inkjet printing or screen printing.
  • the first chemical liquid may be an alkali or an alkali mixed liquid, which can etch the first polysilicon thin film layer 30, but does not corrode the first tunnel oxide layer 20, and the etching can be controlled to stay in the first polysilicon film layer 30. Tunnel through the surface of the oxide layer 20 to protect the surface morphology of the cell body 10;
  • the second chemical liquid to remove the anti-corrosion protection layer.
  • it can be a mixed liquid of acid or alkali.
  • the etching environment of this liquid can remove the anti-corrosion protection layer, but will not damage the surface of the cell body 10;
  • the third chemical liquid is an HF solution, and the corrosion rate can be controlled by controlling the reaction time and solution concentration.
  • the above-mentioned partial tunneling oxide passivation contact structure process of the photovoltaic cell is as follows:
  • a second tunnel oxide layer 40 is formed on the surface of the silicon wafer.
  • the silicon wafer can be a single crystal or polycrystalline silicon wafer, the surface doping type of the silicon wafer can be P-type or N-type, and the surface of the silicon wafer can be after de-damage, polishing or texturing.
  • the second tunnel oxide layer 40 can be deposited and formed by thermal oxidation, thermal HNO3 oxidation or CVD method, and the thickness is between 0.5-5 nm.
  • a second polysilicon film is prepared on the second tunnel oxide layer 40.
  • the second polysilicon film may be a doped or intrinsic polysilicon film.
  • the preparation methods include CVD deposition, PVD deposition, chemical spin coating, etc., and may or may not include a subsequent annealing process.
  • the thickness of the second polysilicon film is 5nm- Between 50nm.
  • a first tunnel oxide layer 20 is formed on the surface of the second polysilicon film.
  • the silicon wafer may be a single crystal or polycrystalline silicon wafer, the surface doping type of the silicon wafer may be P-type or N-type, and the surface of the silicon wafer may be after de-damage, polishing or texturing.
  • the tunnel oxide layer can be deposited by thermal oxidation, thermal HNO3 oxidation or CVD method, and the thickness is between 0.5-5 nm.
  • a first polysilicon film is prepared on the first tunnel oxide layer 20.
  • the polysilicon film may be doped or intrinsic polysilicon film.
  • the preparation methods include CVD deposition, PVD deposition, chemical spin coating, etc., and may or may not include subsequent annealing processes.
  • the thickness of the first crystalline silicon film is 20 -300nm.
  • a local anti-corrosion protection layer is formed on the surface of the first polysilicon film, and the passivation contact area needs to be protected by retaining the tunnel oxide layer. It can be organic or inorganic, and local patterning can be achieved by inkjet printing or screen printing.
  • the first chemical liquid is an alkali or an alkali mixed liquid, which can etch the first polysilicon thin film layer 30, but does not corrode the first tunnel oxide layer 20, and the etching is controlled to stay in the first tunnel oxide layer.
  • the surface of the layer 20 protects the first tunnel oxide layer 20;
  • the second chemical liquid may be a mixed liquid of acid or alkali.
  • the etching environment of this liquid can remove the anti-corrosion protection layer, but will not damage the second polysilicon film layer 50 and the first polysilicon film layer 30;
  • a third chemical liquid is used to remove the first tunnel oxide layer in the etched area.
  • the third chemical liquid is generally an HF solution.
  • the process method of partial tunneling oxide layer passivation contact structure does not need to use PECVD mask process, and the process is simple; the process method of partial tunneling oxide layer passivation contact structure does not use laser etching process, which avoids laser
  • the silicon wafer substrate damage caused by the local tunneling oxide layer passivation contact structure process method can control the etching of polysilicon on the surface of the tunnel oxide layer, which can protect the surface morphology of the silicon substrate and avoid the secondary texturing process; local tunneling oxidation Layer passivation contact upgrade structure, using the "high and low junction" structure of passivation contact, solves the incompatibility between passivation contact structure comprehensive passivation and light absorption and metal electrode penetration damage, and improves the conversion efficiency of the battery;
  • the process method of tunneling oxide passivation contact upgrade structure does not need to use PECVD mask process, and the process is simple; the process method of partial tunneling oxide passivation contact structure does not use laser etching process, which avoids the ultra-thin laser Passivate
  • the embodiment of the present invention also provides a photovoltaic module, which includes a cell body and the above-mentioned photovoltaic cell partial tunneling oxide layer passivation contact structure provided on the cell body.
  • the photovoltaic module includes the above-mentioned photovoltaic cell partial tunneling oxide layer passivation contact structure, it has the same beneficial effect, and the present invention will not be repeated here.
  • the partial tunneling oxide layer passivation contact structure of the photovoltaic cell and the photovoltaic module provided by the embodiments of the present invention only cover the passivation contact area with the first tunnel oxide layer and the first polysilicon thin film layer, which improves The passivation level in this area reduces the recombination of the battery surface, and the first tunnel oxide layer and the first polysilicon film layer are not in the light-absorbing area, that is, the non-metal contact area, which reduces the sun's shading and improves the light absorption efficiency , And it is compatible with the existing mass production crystalline silicon battery mass production process, can be put into mass production quickly, and has the effect of quickly improving efficiency and reducing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件,光伏电池局部遂穿氧化层钝化接触结构包括电池片主体、设置在所述电池片主体表面的第一遂穿氧化层、设置在所述遂穿氧化层表面的所述第一多晶硅薄膜层,所述电池片主体表面包括钝化接触区和吸光区,所述第一遂穿氧化层设置在所述钝化接触区,所述第一多晶硅薄膜层在所述电池片主体表面的投影在所述钝化接触区内。通过第一遂穿氧化层、第一多晶硅薄膜层仅仅覆盖钝化接触区,提高了该区域的钝化水平,降低了电池表面的复合,而第一遂穿氧化层、第一多晶硅薄膜层不在吸光区即非金属接触区,减少了对阳光的遮挡,提高了光吸收效率。

Description

一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件
本申请要求于2019年11月20日提交中国专利局、申请号为201911142103.0、发明名称为“一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件”以及2019年11月20日提交中国专利局、申请号为201922019213.X、申请名称为“一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光伏电池技术领域,特别是涉及一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件。
背景技术
随着太阳能光伏市场的发展,人们对高效的晶体硅电池的需求越来越急迫。而由于光伏技术的不断发展,光伏电池的制造技术成本在不断下降,市场竞争更加激烈,高质量低成本的光伏电池是提高竞争力的主要因素。
对于晶硅太阳能而言,表面钝化技术日益成熟,钝化水平趋于饱和。限制晶硅晶硅太阳能电池开路电压和转换效率进一步提升的主要因素是金属电极与晶硅表面接触区域复合电流过大,高出非金属接触区域复合电流2个数量级。
遂穿氧化层钝化接触技术可以将金属接触区域的复合,然而该结构中的硅基薄膜对太阳光的强吸收性,限制了遂穿氧化层钝化接触技术在晶硅太阳能电池正面的使用,导致晶硅太阳电池转换效率进一步提升受到阻碍。
发明内容
本发明的目的是提供了一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件,与现有量产晶硅电池量产工艺兼容,能快速地投入量产,起到快速提效降本的作用。
为解决上述技术问题,本发明实施例提供了一种光伏电池局部遂穿氧化层钝化接触结构,包括电池片主体、设置在所述电池片主体表面的第一遂穿氧化层、设置在所述遂穿氧化层表面的所述第一多晶硅薄膜层,所述电池片主体表面包括钝化接触区和吸光区,所述第一遂穿氧化层设置在所述钝化接触区,所述第一多晶硅薄膜层在所述电池片主体表面的投影在所述钝化接触区内。
其中,还包括设置在所述第一遂穿氧化层与所述电池片主体之间的第二遂穿氧化层、第二多晶硅薄膜层,所述第二遂穿氧化层、所述第二多晶硅薄膜层在所述电池片主体的投影同时覆盖所述钝化接触区、所述吸光区。
其中,所述第一遂穿氧化层、第二遂穿氧化层的厚度为0.5nm~5nm。
其中,所述第一多晶硅薄膜层的厚度为20nm~300nm。
其中,所述第二多晶硅薄膜层的厚度为5nm~50nm。
其中,所述第一遂穿氧化层的厚度与所述第二遂穿氧化层的厚度相近。
其中,所述电池片主体为单面电池片主体或双面电池片主体。
除此之外,本发明实施例还提供了一种光伏组件,包括电池片主体以及设置在所述电池片主体的如上所述光伏电池局部遂穿氧化层钝化接触结构。
本发明实施例所提供的光伏电池局部遂穿氧化层钝化接触结构及光伏组件,与现有技术相比,具有以下优点:
本发明实施例提供的光伏电池局部遂穿氧化层钝化接触结构及光伏组件,通过第一遂穿氧化层、第一多晶硅薄膜层仅仅覆盖钝化接触区,提高了该区域的钝化水平,降低了电池表面的复合,而第一遂穿氧化层、第一多晶硅薄膜层不在吸光区即非金属接触区,减少了对阳光的遮挡,提高了光吸收效率,且与现有量产晶硅电池量产工艺兼容,能快速地投入量产,起到快速提效降本的作用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的光伏电池局部遂穿氧化层钝化接触结构的一种实施例的结构示意图;
图2为本发明提供的光伏电池局部遂穿氧化层钝化接触结构的另一种实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1~图2,图1为本发明提供的光伏电池局部遂穿氧化层钝化接触结构的一种实施例的结构示意图;图2为本发明提供的光伏电池局部遂穿氧化层钝化接触结构的另一种实施例的结构示意图。
在一种具体实施方式中,所述光伏电池局部遂穿氧化层钝化接触结构,包括电池片主体10、设置在所述电池片主体10表面的第一遂穿氧化层20、设置在所述遂穿氧化层表面的所述第一多晶硅薄膜层30,所述电池片主体10表面包括钝化接触区和吸光区,所述第一遂穿氧化层20设置在所述钝化接触区,所述第一多晶硅薄膜层30在所述电池片主体10表面的投影在所述钝化接触区内。
通过第一遂穿氧化层20、第一多晶硅薄膜层30仅仅覆盖钝化接触区,提高了该区域的钝化水平,降低了电池表面的复合,而第一遂穿氧化层20、第一多晶硅薄膜层30不在吸光区即非金属接触区,减少了对阳光的遮挡,提高了光吸收效率,且与现有量产晶硅电池量产工艺兼容,能快速地投入量产,起到快速提效降本的作用。
由于现有钝化接触区为正面覆盖,而在本发明中仅仅在金属接触区进行覆盖,通过这种方式实现了电池效率的提升。
由于在最后需要在第一遂穿氧化层20表面进行金属电极的烧结,而第一遂穿氧化层20以及第一多晶硅薄膜层30的厚度极小,在金属电极的设置过程中,很容易将第一晶硅薄膜层烧穿到达电池片主体10形成损伤,为了避免这种情况的发生,进一步降低金属接触区的复合,提升电池的性能,在本发明的一个实施例中,所述光伏电池局部遂穿氧化层钝化接触结构还包括设置在所述第一遂穿氧化层20与所述电池片主体10之间的第二遂穿氧化层40、第二多晶硅薄膜层50,所述第二遂穿氧化层40、所述第二多晶硅薄膜层50在所述电池片主体10的投影同时覆盖所述钝化接触区、所述吸光区。
在这种结构中,第一多晶硅薄膜层30的掺杂浓度大于第二多晶硅薄膜层50的掺杂浓度,形成高低结结构,利用钝化接触“高低结”结构,解决了钝化接触结构全面钝化与光吸收以及金属电极穿透损伤之间的不兼容问题,提升了电池的转换效率。
本发明中对遂穿氧化层的厚度以及形成方式不做限定,一般所述第一遂穿氧化层20、第二遂穿氧化层40的厚度为0.5nm~5nm。
本发明中对于晶硅薄膜层的厚度以及沉积方式不做限定,一般所述第一多晶硅薄膜层30、所述第二多晶硅薄膜层50的厚度为20nm~300nm。
优选的,所述第一遂穿氧化层20的厚度与所述第二遂穿氧化层40的厚度相等。
优选的,所述第一多晶硅薄膜层30的厚度与所述第二多晶硅薄膜层50厚度相等。
本发明中的所述电池片主体10可以为单面电池片主体10,也可以为双面电池片主体10。
在一个实施方式中,上述的光伏电池局部遂穿氧化层钝化接触结构工艺如下:
(1)、在硅片表面形成第一遂穿氧化层20。该硅片可以为单晶或者多晶硅片,硅片表面掺杂类型可以为P型或者N型,硅片表面可以为去损伤、抛光或者制绒之后的硅片,而其中第一遂穿氧化层20可以采用热氧化、热HNO3氧化或者CVD方法沉积形成,厚度在0.5-5nm之间。
(2)、在第一遂穿氧化层20上面制备第一多晶硅薄膜。具体的,多晶硅薄膜可以为掺杂或者本征多晶硅薄膜,制备方法可以为CVD沉积、PVD沉积以及化学旋涂中的一种,可以包含或者不包含后续退火工艺,第一多晶硅薄膜的厚度在20nm-300nm之间。
(3)、在第一多晶硅薄膜表面沉积局部抗腐蚀保护层,保护需保留遂穿氧化层钝化接触区域。具体的,可以是有机物或者无机物,局部图形化可以采用喷墨打印或者丝网印刷的方式实现。
(4)、利用第一化学液体刻蚀非保护区域的多晶硅薄膜。具体的,第一化学液可以为碱或者碱混合液体,该液体可以刻蚀第一多晶硅薄膜层30,但不腐蚀第一遂穿氧化层20,可以将刻蚀控制到停留在第一遂穿氧化层20表面,保护电池片主体10表面形貌;
(5)、利用第二化学液体去除抗腐蚀保护层。具体的,可以为酸或者碱的混合液体,该液体刻蚀环境,可以去除抗腐蚀保护层,但不会损伤电池片主体10表面;
(6)、利用第三化学液体,去除刻蚀区域的第一遂穿氧化层20。具体的,第三化学液体为HF溶液,通过控制反应时间以及溶液浓度可以控制腐蚀速度。
在另一个实施方式中,上述的光伏电池局部遂穿氧化层钝化接触结构工艺如下:
(1)、在硅片表面形成第二遂穿氧化层40。硅片可以为单晶或者多晶硅片,硅片表面掺杂类型可以为P型或者N型,硅片表面可以为去损伤、抛光或者制绒之后。第二遂穿氧化层40可以采用热氧化、热HNO3氧化或者CVD方法沉积形成,厚度在0.5-5nm之间。
(2)、在第二遂穿氧化层40上面制备第二多晶硅薄膜。第二多晶硅薄膜可以为掺杂或者本征多晶硅薄膜,制备方法包括CVD沉积、PVD沉积以及化学旋涂等,可以包含或者不包含后续退火工艺,第二多晶硅薄膜的厚度在5nm-50nm之间。
(3)、在第二多晶硅薄膜表面形成第一遂穿氧化层20。在具体实施案例中硅片可以为单晶或者多晶硅片,硅片表面掺杂类型可以为P型或者N 型,硅片表面可以为去损伤、抛光或者制绒之后。遂穿氧化层可以采用热氧化、热HNO3氧化或者CVD方法沉积形成,厚度在0.5-5nm之间。
(4)、在第一遂穿氧化层20上面制备第一层多晶硅薄膜。在具体实施案例中,多晶硅薄膜可以为掺杂或者本征多晶硅薄膜,制备方法包括CVD沉积、PVD沉积以及化学旋涂等,可以包含或者不包含后续退火工艺,第一晶硅薄膜的厚度在20-300nm之间。
(5)、在第一多晶硅薄膜表面形成局部抗腐蚀保护层,保护需保留遂穿氧化层钝化接触区域。可以是有机物或者无机物,局部图形化可以采用喷墨打印或者丝网印刷的方式实现。
(6)、采用第一化学液体刻蚀非保护区域的第一多晶硅薄膜层30。第一刻蚀化学液为碱或者碱混合液体,该液体可以刻蚀第一多晶硅薄膜层30,但不腐蚀第一遂穿氧化层20,将刻蚀控制到停留在第一遂穿氧化层20表面,保护第一遂穿氧化层20;
(7)、利用第二化学液体去除抗腐蚀保护层。第二化学液体可以为酸或者碱的混合液体,该液体刻蚀环境,可以去除抗腐蚀保护层,但不会损伤第二多晶硅薄膜层50、第一多晶硅薄膜层30;
(8)、利用第三化学液体,去除刻蚀区域的第一层遂穿氧化层,第三化学液体一般为HF溶液。
采用上述工艺,局部遂穿氧化层钝化接触结构工艺方法不需要用到PECVD掩膜工艺,工艺简单;局部遂穿氧化层钝化接触结构工艺方法不会用到激光刻蚀工艺,避免了激光造成的硅片基底损伤;局部遂穿氧化层钝化接触结构工艺方法可以将多晶硅刻蚀控制在遂穿氧化层表面,可以保护硅基底表面形貌,避免二次制绒工艺;局部遂穿氧化层钝化接触升级结构,利用钝化接触“高低结”结构,解决了钝化接触结构全面钝化与光吸收以及金属电极穿透损伤之间的不兼容问题,提升了电池的转换效率;局部遂穿氧化层钝化接触升级结构工艺方法,不需要用到PECVD掩膜工艺,工艺简单;局部遂穿氧化层钝化接触结构工艺方法不会用到激光刻蚀工艺,避免了激光对超薄钝化接触结构和硅基底的损伤;局部遂穿氧化层钝化接触结构工艺方法可以将多晶硅刻蚀控制在遂穿氧化层表面,可以在非金属 接触区域保留超薄钝化接触结构。
除此之外,本发明实施例还提供了一种光伏组件,包括电池片主体以及设置在所述电池片主体的如上所述光伏电池局部遂穿氧化层钝化接触结构。
由于所述光伏组件包括如上所述光伏电池局部遂穿氧化层钝化接触结构,具有相同的有益效果,本发明在此不再赘述。
综上所述,本发明实施例提供的光伏电池局部遂穿氧化层钝化接触结构及光伏组件,通过第一遂穿氧化层、第一多晶硅薄膜层仅仅覆盖钝化接触区,提高了该区域的钝化水平,降低了电池表面的复合,而第一遂穿氧化层、第一多晶硅薄膜层不在吸光区即非金属接触区,减少了对阳光的遮挡,提高了光吸收效率,且与现有量产晶硅电池量产工艺兼容,能快速地投入量产,起到快速提效降本的作用。
以上对本发明所提供的光伏电池局部遂穿氧化层钝化接触结构及光伏组件进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (8)

  1. 一种光伏电池局部遂穿氧化层钝化接触结构,其特征在于,包括电池片主体、设置在所述电池片主体表面的第一遂穿氧化层、设置在所述遂穿氧化层表面的所述第一多晶硅薄膜层,所述电池片主体表面包括钝化接触区和吸光区,所述第一遂穿氧化层设置在所述钝化接触区,所述第一多晶硅薄膜层在所述电池片主体表面的投影在所述钝化接触区内。
  2. 如权利要求1所述光伏电池局部遂穿氧化层钝化接触结构,其特征在于,还包括设置在所述第一遂穿氧化层与所述电池片主体之间的第二遂穿氧化层、第二多晶硅薄膜层,所述第二遂穿氧化层、所述第二多晶硅薄膜层在所述电池片主体的投影同时覆盖所述钝化接触区、所述吸光区。
  3. 如权利要求2所述光伏电池局部遂穿氧化层钝化接触结构,其特征在于,所述第一遂穿氧化层、第二遂穿氧化层的厚度为5nm~50nm。
  4. 如权利要求3所述光伏电池局部遂穿氧化层钝化接触结构,其特征在于,所述第一多晶硅薄膜层的厚度为20nm~300nm。
  5. 如权利要求3所述光伏电池局部遂穿氧化层钝化接触结构,其特征在于,所述第二多晶硅薄膜层的厚度为5nm~50nm。
  6. 如权利要求5所述光伏电池局部遂穿氧化层钝化接触结构,其特征在于,所述第一遂穿氧化层的厚度与所述第二遂穿氧化层的厚度相等
  7. 如权利要求6所述光伏电池局部遂穿氧化层钝化接触结构,其特征在于,所述电池片主体为单面电池片主体或双面电池片主体。
  8. 一种光伏组件,其特征在于,包括电池片主体以及设置在所述电池片主体的如权利要求1-7任意一项所述光伏电池局部遂穿氧化层钝化接触结构。
PCT/CN2019/129771 2019-11-20 2019-12-30 一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件 WO2021098018A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19953507.1A EP4064367A4 (en) 2019-11-20 2019-12-30 PARTIAL TUNNELING OF AN OXIDE LAYER PASSIVATION CONTACT STRUCTURE OF A PHOTOVOLTAIC CELL AND PHOTOVOLTAIC MODULE
US17/778,423 US20230006086A1 (en) 2019-11-20 2019-12-30 Partial tunneling oxide layer passivation contact structure of photovoltaic cell and photovoltaic module
AU2019475453A AU2019475453B2 (en) 2019-11-20 2019-12-30 Partial tunneling oxide layer passivation contact structure of photovoltaic cell and photovoltaic module
AU2023219984A AU2023219984A1 (en) 2019-11-20 2023-08-25 Partial tunneling oxide layer passivation contact structure of photovoltaic cell and photovoltaic module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201922019213.XU CN210866196U (zh) 2019-11-20 2019-11-20 一种光伏电池局部隧穿氧化层钝化接触结构及光伏组件
CN201911142103.0A CN110752261A (zh) 2019-11-20 2019-11-20 一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件
CN201911142103.0 2019-11-20
CN201922019213.X 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021098018A1 true WO2021098018A1 (zh) 2021-05-27

Family

ID=75980220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129771 WO2021098018A1 (zh) 2019-11-20 2019-12-30 一种光伏电池局部遂穿氧化层钝化接触结构及光伏组件

Country Status (4)

Country Link
US (1) US20230006086A1 (zh)
EP (1) EP4064367A4 (zh)
AU (2) AU2019475453B2 (zh)
WO (1) WO2021098018A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137274A (zh) * 2019-05-24 2019-08-16 通威太阳能(安徽)有限公司 一种双面钝化接触的p型高效电池及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162706A1 (en) * 2010-01-04 2011-07-07 Applied Materials, Inc. Passivated polysilicon emitter solar cell and method for manufacturing the same
US9054255B2 (en) * 2012-03-23 2015-06-09 Sunpower Corporation Solar cell having an emitter region with wide bandgap semiconductor material
EP4092757A1 (en) * 2013-04-03 2022-11-23 Lg Electronics Inc. Method for fabricating a solar cell
NL2017872B1 (en) * 2016-11-25 2018-06-08 Stichting Energieonderzoek Centrum Nederland Photovoltaic cell with passivating contact
CN107195699B (zh) * 2017-07-12 2023-04-14 泰州中来光电科技有限公司 一种钝化接触太阳能电池及制备方法
CN108666393B (zh) * 2018-07-16 2024-02-09 英利能源(中国)有限公司 太阳能电池的制备方法及太阳能电池
CN109524480B (zh) * 2018-11-26 2021-03-23 东方日升(常州)新能源有限公司 一种局域接触钝化的p型晶硅太阳电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137274A (zh) * 2019-05-24 2019-08-16 通威太阳能(安徽)有限公司 一种双面钝化接触的p型高效电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064367A4

Also Published As

Publication number Publication date
EP4064367A1 (en) 2022-09-28
AU2019475453A1 (en) 2022-06-09
AU2023219984A1 (en) 2023-09-14
US20230006086A1 (en) 2023-01-05
AU2019475453B2 (en) 2023-08-10
EP4064367A4 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
EP4027395A1 (en) Efficient back passivation crystalline silicon solar cell and manufacturing method therefor
CN101777603B (zh) 背接触太阳能电池的制造方法
WO2023178918A1 (zh) 一种低成本接触钝化全背电极太阳能电池及其制备方法
TWI463682B (zh) 異質接面太陽能電池
CN110581198A (zh) 一种局域接触钝化太阳电池及其制备方法
CN105070792B (zh) 一种基于溶液法的多晶太阳电池的制备方法
CN110931604A (zh) Topcon结构太阳能电池的制备方法
CN102386249B (zh) 一种下一代结构高效率晶体硅电池及制作方法
TWI536597B (zh) A low cost, suitable for mass production of back contact with the battery production methods
CN101976710A (zh) 基于氢化微晶硅薄膜的晶体硅异质结太阳电池的制备方法
CN209561421U (zh) 一种p型隧穿氧化物钝化接触太阳能电池
CN109285897A (zh) 一种高效钝化接触晶体硅太阳电池及其制备方法
CN110190137B (zh) 一种用于正面接触钝化的双层钝化膜及其制备方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN105355707A (zh) 一种高效晶硅太阳能电池及其制备方法
CN210866196U (zh) 一种光伏电池局部隧穿氧化层钝化接触结构及光伏组件
CN102751371A (zh) 一种太阳能薄膜电池及其制造方法
CN111477720A (zh) 一种钝化接触的n型背结太阳能电池及其制备方法
CN202307914U (zh) 一种下一代结构高效率晶体硅电池
WO2022156101A1 (zh) 一种太阳能电池叠层钝化结构及其制备方法
CN102130213A (zh) 具有背面钝化的选择性发射结硅太阳能电池的制备方法
CN207489888U (zh) 一种p型晶体硅太阳能电池
CN110391319B (zh) 一种抗pid效应的高效黑硅电池片的制备方法
CN209434195U (zh) 一种具有三层钝化层结构的太阳电池
CN205104495U (zh) 一种高效晶硅太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019475453

Country of ref document: AU

Date of ref document: 20191230

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019953507

Country of ref document: EP

Effective date: 20220620