WO2021097979A1 - 无人机控制方法、装置及存储介质 - Google Patents

无人机控制方法、装置及存储介质 Download PDF

Info

Publication number
WO2021097979A1
WO2021097979A1 PCT/CN2019/126132 CN2019126132W WO2021097979A1 WO 2021097979 A1 WO2021097979 A1 WO 2021097979A1 CN 2019126132 W CN2019126132 W CN 2019126132W WO 2021097979 A1 WO2021097979 A1 WO 2021097979A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
sender
beacon frame
connection
establish
Prior art date
Application number
PCT/CN2019/126132
Other languages
English (en)
French (fr)
Inventor
虞龙杰
Original Assignee
捷开通讯(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷开通讯(深圳)有限公司 filed Critical 捷开通讯(深圳)有限公司
Priority to US17/617,587 priority Critical patent/US20220248181A1/en
Publication of WO2021097979A1 publication Critical patent/WO2021097979A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communications, in particular to a drone control method, device and storage medium.
  • drones have been favored by users because they can reach areas that users cannot reach.
  • people In the express delivery industry, people have begun to use drones for automatic delivery. It can save labor costs; in daily life, people use drones to take pictures or record videos at high altitudes to record beautiful scenery from an aerial perspective.
  • the UAV's communication scheme is based on base stations and wireless networks (Wi-Fi). If it is based on base stations, as long as there is an area covered by the base station, the UAV’s communication range is not restricted by region; if it is Based on Wi-Fi, the communication range of the drone is within 200 meters of the ground Wi-Fi master control device. Therefore, if people use the drone in an area without base station signal coverage, the communication range of the drone can only be within a radius of 200 meters from the ground Wi-Fi master control device. Greatly restricted.
  • Wi-Fi wireless network
  • the embodiment of the present application provides a drone control method, which can increase the control range of the drone by the ground master control device.
  • an embodiment of the present application provides a drone control method, including:
  • the first access request is fed back to the sender according to the first beacon frame to establish a connection with the sender, and the sender is the ground master device Or other relay drones;
  • the confirmation information is fed back according to the second beacon frame, so that the first drone and the sender establish connection;
  • the action instruction After receiving the action instruction sent by the sender, the action instruction is sent to the first drone, so that the first drone executes the action corresponding to the action instruction.
  • the method after feeding back a first access request to the sender according to the first beacon frame to establish a connection with the sender, the method further includes:
  • the second drone is controlled to acquire the current spatial position information of the second drone according to a preset time period, and the acquired The spatial position information of the second drone is sent to the relay drone.
  • the method after feeding back confirmation information according to the second beacon frame, the method further includes:
  • the method further includes:
  • the first drone and the second drone are controlled to move toward each other.
  • the method further includes:
  • the method further includes:
  • the geographic location information of the first drone is sent to the sender.
  • the method before detecting whether there is a second drone to establish a connection with the sender, the method further includes:
  • an embodiment of the present application also provides a drone control device, including:
  • the first feedback unit is configured to feed back a first access request to the sender according to the first beacon frame when the first beacon frame sent by the sender is scanned, so as to establish a connection with the sender, the
  • the sender is the ground master control device or other relay drones;
  • the first detection unit is configured to send a second beacon frame to detect whether there is a first drone that feeds back a second access request according to the second beacon frame, and the first drone is not communicating with the The drone that the sender establishes the connection;
  • the second feedback unit is configured to feed back confirmation information according to the second beacon frame if there is a first drone that feeds back the second access request according to the second beacon frame, so that the first drone
  • the man-machine establishes a connection with the sender
  • the sending unit is configured to send the action instruction to the first drone after receiving the action instruction sent by the sender, so that the first drone executes the action corresponding to the action instruction .
  • the drone control device further includes:
  • the second detection unit is used to detect whether there is a second UAV to establish a connection with the sender
  • the control unit is configured to, if it is detected that a second drone establishes a connection with the sender, control the second drone to obtain the current spatial position information of the second drone according to a preset time period, And send the acquired spatial position information of the second drone to the relay drone.
  • the embodiments of the present application also provide a storage medium in which a computer program is stored.
  • the computer program runs on a computer, the computer is caused to execute the drone control method.
  • Control methods include:
  • the first access request is fed back to the sender according to the first beacon frame to establish a connection with the sender, and the sender is a ground master device or other medium Following the drone
  • the confirmation information is fed back according to the second beacon frame, so that the first drone and the sender establish connection;
  • the action instruction After receiving the action instruction sent by the sender, the action instruction is sent to the first drone, so that the first drone executes the action corresponding to the action instruction.
  • the method further includes:
  • the second drone is controlled to acquire the current spatial position information of the second drone according to a preset time period, and the acquired The spatial position information of the second drone is sent to the relay drone.
  • the method further includes:
  • the method further includes:
  • the first drone and the second drone are controlled to move toward each other.
  • the method further includes:
  • the method further includes:
  • the geographic location information of the first drone is sent to the sender.
  • the method before detecting whether there is a second drone to establish a connection with the sender, the method further includes:
  • the drone control method provided by the embodiment of the present application includes: when the first beacon frame sent by the sender is scanned, feeding back a first access request to the sender according to the first beacon frame to communicate with the sender.
  • the sender establishes a connection, and the sender is the ground master control device or other relay drones; sends a second beacon frame, and detects whether there is a first non-reporting request for the second access request according to the second beacon frame.
  • the first drone is a drone that has not established a connection with the sender; if there is a first drone that feeds back a second access request according to the second beacon frame, then The second beacon frame feeds back confirmation information so that the first drone establishes a connection with the sender; after receiving the action instruction sent by the sender, the action instruction is sent to the first drone.
  • An unmanned aerial vehicle so that the first unmanned aerial vehicle executes the action corresponding to the action instruction. It can increase the control range of the UAV by the ground master control equipment.
  • FIG. 1 is a schematic diagram of a scene of an unmanned aerial vehicle control system provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the first flow of a drone control method provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the second flow of the drone control method provided by an embodiment of the application.
  • Figure 4 is a schematic structural diagram of a drone control device provided by an embodiment of the application.
  • Fig. 5 is a specific structural block diagram of a terminal provided by an embodiment of the application.
  • an embodiment of the present application provides an unmanned aerial vehicle control system, including: a ground master control device 10, a first relay drone 20, and a ground master control device 10, a first relay drone
  • the ground master control device 10 can be a mobile phone, a tablet computer, a notebook computer, etc.
  • FIG. 1 is an example of the ground master control device 10 being a laptop computer.
  • the ground master control device 10 can be installed with various user requirements. Applications, such as applications with entertainment functions (such as video applications, audio playback applications, game applications, reading software), and applications with service functions (such as map navigation applications, catering applications, etc.).
  • FIG. 2 is a schematic diagram of the first flow of the drone control method provided by the embodiment of the application. The method includes the following steps:
  • Step 101 When the first beacon frame sent by the sender is scanned, the first access request is fed back to the sender according to the first beacon frame, so as to establish a connection with the sender.
  • the ground master control device will release the first beacon frame to find whether there is an unmanned person within the preset control range. Therefore, the first beacon frame is also the discovery beacon frame, which is used to discover the drone within the preset control range.
  • the first beacon frame sent by the sender After receiving the first beacon frame sent by the sender, it can be detected in advance whether to establish a connection with other senders. Therefore, when the first beacon frame sent by the sender is scanned, it can also include:
  • the first beacon frame is ignored.
  • the first access request is fed back to the sender according to the first beacon frame, and when the sender receives the first access request Then, after the request is passed, a connection can be established with the sender.
  • the sender is not limited to the ground master control equipment, but can also be other relay drones.
  • the sender is the ground master control device, the first group 30 in Fig. 1 is established, and when the sender is other relay drones, the second group 60 or the second group in Fig. 1 is established.
  • the third group 70 is established.
  • the sender After establishing a connection with the sender, it can detect in advance whether there is a working drone and establish a connection with the sender. If it exists, it can control the second drone to obtain its current spatial position information according to a preset time period and receive it. The spatial position information of the second drone. In order to prevent the presence of multiple second drones, or when there are multiple second drones, when the distance between multiple second drones is detected to be close or far, the second drone can be controlled to perform corresponding actions. Anti-collision or anti-lost means. Therefore, after feeding back the first access request to the sender according to the first beacon frame to establish a connection with the sender, it may further include:
  • the second drone is controlled to acquire the current spatial position information of the second drone according to a preset time period, and the acquired The spatial position information of the second drone is sent to the relay drone.
  • the method Before detecting whether there is a second drone to establish a connection with the sender, the method further includes:
  • Step 102 Send a second beacon frame, and detect whether there is a first drone that feeds back the second access request according to the second beacon frame.
  • a second beacon frame is automatically sent to find out whether there is a working drone that has not established a connection with the sender within the preset control range.
  • the detection method can be to send a second beacon Frame to detect whether there is a working drone that feeds back the access request according to the second beacon frame.
  • the second beacon frame is of the same type as the first beacon frame, and both are discovery beacon frames, which are used to discover unmanned aerial vehicles within a preset control range that have not established a connection with the sender.
  • Step 103 If there is a first drone that feeds back the second access request according to the second beacon frame, feed back confirmation information according to the second beacon frame, so that the first drone establishes a connection with the sender.
  • the connection with the sender can be established after the request is passed.
  • the first drone After the first drone establishes a connection with the sender, the first drone can be controlled to obtain its current spatial position information according to a preset time period, and receive the spatial position information of the first drone. In order to prevent the presence of multiple first drones or multiple first drones, when the distance between the multiple first drones is detected to be close or far, the first drone can be controlled to perform corresponding actions. Anti-collision or anti-lost means. Therefore, after the confirmation information is fed back according to the second beacon frame, the method further includes:
  • the geographic location information of the first drone can be sent to the sender to inform the user which drone has a fault and where the fault landed.
  • the relay drone After the first drone establishes a connection with the sender, the relay drone is in the overlapping area of the two groups, so it can control the drones of the two groups (the first drone and the second drone) ), therefore, after acquiring the current spatial position information of the first drone and the current spatial position information of the second drone at the same time, the drones in the two groups can be monitored in real time.
  • the first drone is detected When the distance between the man-machine and the second UAV is relatively long, and it is easy to lose the connection, the first UAV and the second UAV that are farther away can be controlled to move towards each other. Therefore, the After the spatial position information of the first drone is sent to the relay drone, it further includes:
  • the first drone and the second drone are controlled to move toward each other.
  • the method further includes:
  • the first drone and the second drone are controlled to move toward each other.
  • the spatial location information may specifically include the current longitude, latitude, and altitude of the first drone and the second drone. Longitude, latitude, and height form a three-dimensional space. If it is in a four-dimensional or five-dimensional space, other information may be included, which is not limited here.
  • the altitude can be measured by the air pressure sensor on the drone.
  • Table 1 is the discovery beacon frame carried by the embodiment of this application. Information.
  • Table 2 shows the attribute types.
  • Table 1 and Table 2 can also be simplified into the form of Table 3.
  • the message ID can include 0x01, used for drones to send their own location information; 0x02, used for relay drones to broadcast the location information list of all drones; 0x03, used for ground master control equipment to send unmanned 0x04, used for working drones to send feedback content to the ground master control equipment; 0x05, used for sending emergency help messages after the drone fails.
  • the interface address of the drone can uniquely represent a specific drone, thus realizing the real-time sharing of location information of all drones.
  • Step 104 After receiving the action instruction sent by the sender, send the action instruction to the first drone, so that the first drone executes the action corresponding to the action instruction.
  • the action command After the ground master control device sends the action command, the action command will be passed down level by level. Take the drone group as shown in Figure 1 as an example. After the ground master control device sends the action command, the first group The working drone 40 and the relay drone 20 in 30 execute the action corresponding to the action instruction, and the relay drone 20 will send the action instruction to all drones in the second group 60, and relay After the drone 50 receives the action command, it will be sent to all drones in the third group 70, so as to expand the control range of the ground master control device.
  • the drone control method provided by the embodiment of the present application includes: when the first beacon frame sent by the sender is scanned, feeding back a first access request to the sender according to the first beacon frame to communicate with the sender.
  • the sender establishes a connection, and the sender is the ground master control device or other relay drones; sends a second beacon frame, and detects whether there is a first non-reporting request for the second access request according to the second beacon frame.
  • the first drone is a drone that has not established a connection with the sender; if there is a first drone that feeds back a second access request according to the second beacon frame, then The second beacon frame feeds back confirmation information so that the first drone establishes a connection with the sender; after receiving the action instruction sent by the sender, the action instruction is sent to the first drone.
  • a drone so that the first drone executes the action corresponding to the action instruction. It can increase the control range of the UAV by the ground master control equipment.
  • FIG. 3 is a schematic diagram of the second flow of the drone control method provided by an embodiment of the application.
  • the method includes the following steps:
  • Step 201 When the first beacon frame sent by the sender is scanned, the first access request is fed back to the sender according to the first beacon frame, so as to establish a connection with the sender.
  • the ground master control device will release the first beacon frame to find whether there is an unmanned person within the preset control range. Therefore, the first beacon frame is also the discovery beacon frame, which is used to discover the drone within the preset control range.
  • the first beacon frame sent by the sender After receiving the first beacon frame sent by the sender, it can be detected in advance whether to establish a connection with other senders. Therefore, when the first beacon frame sent by the sender is scanned, it can also include:
  • the first beacon frame is ignored.
  • the first access request is fed back to the sender according to the first beacon frame, and when the sender receives the first access request Then, after the request is passed, a connection can be established with the sender.
  • Step 202 Receive a synchronization beacon frame sent by the sender to synchronize with the clock of the sender.
  • the sender may send a synchronization beacon frame
  • the relay drone or working drone may receive the synchronization beacon frame sent by the sender to synchronize with the clock of the sender. In turn, the power consumption of the group is reduced.
  • Step 203 Detect whether there is a second drone to establish a connection with the sender.
  • the sender after establishing a connection with the sender, it can detect in advance whether there is a working drone and establish a connection with the sender. If it exists, it can control the second drone to obtain its current spatial location information according to a preset time period. , And receive the spatial position information of the second UAV. In order to prevent the presence of multiple second drones, or when there are multiple second drones, when the distance between multiple second drones is detected to be close or far, the second drone can be controlled to perform corresponding actions. Anti-collision or anti-lost means.
  • Step 204 If it is detected that there is a second drone to establish a connection with the sender, the second drone is controlled to obtain the current spatial position information of the second drone according to a preset time period, and the acquired second drone is The spatial position information of the man-machine is sent to the relay drone.
  • Step 205 Send a second beacon frame to detect whether there is a first drone that feeds back the second access request according to the second beacon frame.
  • a second beacon frame is automatically sent to find out whether there is a working drone that has not established a connection with the sender within the preset control range.
  • the detection method can be to send a second beacon Frame to detect whether there is a working drone that feeds back the access request according to the second beacon frame.
  • the second beacon frame is of the same type as the first beacon frame, and both are discovery beacon frames, which are used to discover unmanned aerial vehicles within a preset control range that have not established a connection with the sender.
  • Step 206 If there is a first drone that feeds back the second access request according to the second beacon frame, feed back confirmation information according to the second beacon frame.
  • the connection with the sender can be established after the request is passed.
  • Step 207 Control the first drone to acquire the current spatial position information of the first drone according to a preset time period, and send the acquired spatial position information of the first drone to the relay drone.
  • the first drone can be controlled to obtain its current spatial position information according to a preset time period, and receive the spatial position information of the first drone.
  • the first drone can be controlled to perform corresponding actions. Anti-collision or anti-lost means.
  • Step 208 If the first drone is abnormal, send the geographic location information of the first drone to the sender.
  • the geographic location information of the first drone can be sent to the sender to inform the user which drone has a fault and where the fault landing location is.
  • Step 209 If it is detected that the distance between the first drone and the second drone reaches the first preset distance, control the first drone and the second drone to move toward each other.
  • the relay drone After the first drone establishes a connection with the sender, the relay drone is in the overlapping area of the two groups, so it can control the drones of the two groups (the first drone and the second drone) ), therefore, after acquiring the current spatial position information of the first drone and the current spatial position information of the second drone at the same time, the drones in the two groups can be monitored in real time.
  • the first drone is detected When the distance between the man-machine and the second UAV is relatively long, and it is easy to lose the connection, the first UAV and the second UAV that are far away can be controlled to move towards each other.
  • Step 210 If the distance that the first drone and the second drone move toward each other reaches a second preset distance, control the first drone and the second drone to move toward each other.
  • the drone control method provided by the embodiment of the present application includes: when the first beacon frame sent by the sender is scanned, feeding back a first access request to the sender according to the first beacon frame to communicate with the sender.
  • the sender establishes a connection, and the sender is the ground master control device or other relay drones; sends a second beacon frame, and detects whether there is a first non-reporting request for the second access request according to the second beacon frame.
  • the first drone is a drone that has not established a connection with the sender; if there is a first drone that feeds back a second access request according to the second beacon frame, then The second beacon frame feeds back confirmation information so that the first drone establishes a connection with the sender; after receiving the action instruction sent by the sender, the action instruction is sent to the first drone.
  • An unmanned aerial vehicle so that the first unmanned aerial vehicle executes the action corresponding to the action instruction. It can increase the control range of the UAV by the ground master control equipment.
  • FIG. 4 is a schematic structural diagram of a drone control device provided by an embodiment of the application.
  • the drone control device includes: a first feedback unit 31, a first detection unit 32, a second feedback unit 33, and a sending unit 34.
  • the first feedback unit 31 is configured to feed back the first access request to the sender according to the first beacon frame when the first beacon frame sent by the sender is scanned, so as to establish a connection with the sender ,
  • the sender is the ground master control device or other relay drones.
  • the ground master control device will release the first beacon frame to find whether there is an unmanned person within the preset control range. Therefore, the first beacon frame is also the discovery beacon frame, which is used to discover the drone within the preset control range.
  • the first detection unit 32 is configured to send a second beacon frame to detect whether there is a first drone that feeds back a second access request according to the second beacon frame, and the first drone is not connected to the The UAV that the sender establishes a connection.
  • a second beacon frame is automatically sent to find out whether there is a working drone that has not established a connection with the sender within the preset control range.
  • the detection method can be to send a second beacon Frame to detect whether there is a working drone that feeds back the access request according to the second beacon frame.
  • the second beacon frame is of the same type as the first beacon frame, and both are discovery beacon frames, which are used to discover drones within the preset control range that have not established a connection with the sender.
  • the second feedback unit 33 is configured to feed back confirmation information according to the second beacon frame if there is a first drone that feeds back the second access request according to the second beacon frame, so that the first drone The drone establishes a connection with the sender.
  • the connection with the sender can be established after the request is passed.
  • the sending unit 34 is configured to, after receiving the action instruction sent by the sender, send the action instruction to the first drone, so that the first drone executes the action corresponding to the action instruction action.
  • the action command After the ground master control device sends the action command, the action command will be passed down level by level. Take the drone group as shown in Figure 1 as an example. After the ground master control device sends the action command, the first group The working drone 40 and the relay drone 20 in 30 execute the action corresponding to the action instruction, and the relay drone 20 will send the action instruction to all drones in the second group 60, and relay After the drone 50 receives the action command, it will be sent to all drones in the third group 70, so as to expand the control range of the ground master control device.
  • the drone control device may further include:
  • the second detection unit is used to detect whether there is a second UAV to establish a connection with the sender
  • the control subunit is used to control the second drone to obtain the current spatial position information of the second drone according to a preset time period if it is detected that there is a second drone to establish a connection with the sender , And send the acquired spatial position information of the second drone to the relay drone.
  • the drone control device may further include:
  • a spatial position information sending unit configured to control the first drone to obtain the current spatial position information of the first drone according to a preset time period, and to combine the acquired spatial position of the first drone The information is sent to the relay drone.
  • the drone control device may further include:
  • the first detection control unit is configured to control the first drone and the second drone if it is detected that the distance between the first drone and the second drone reaches a first preset distance. Human and machine move towards each other.
  • the drone control device may further include:
  • the second detection control unit is configured to control the first drone and the second drone if the distance between the first drone and the second drone moves toward each other reaches a second preset distance Man and machine move against each other.
  • the embodiment of the present application also provides a storage medium in which a computer program is stored, and when the computer program runs on a computer, the computer is caused to execute a drone control method, the drone control method including:
  • the first access request is fed back to the sender according to the first beacon frame to establish a connection with the sender, and the sender is a ground master device or other medium Following the drone
  • the confirmation information is fed back according to the second beacon frame, so that the first drone and the sender establish connection;
  • the action instruction After receiving the action instruction sent by the sender, the action instruction is sent to the first drone, so that the first drone executes the action corresponding to the action instruction.
  • the method further includes:
  • the second drone is controlled to acquire the current spatial position information of the second drone according to a preset time period, and the acquired The spatial position information of the second drone is sent to the relay drone.
  • the method further includes:
  • the method further includes:
  • the first drone and the second drone are controlled to move toward each other.
  • the method further includes:
  • the method further includes:
  • the geographic location information of the first drone is sent to the sender.
  • the method before detecting whether there is a second drone to establish a connection with the sender, the method further includes:
  • the present invention also provides a storage medium on which a plurality of instructions are stored, wherein the instructions are suitable for being loaded by a processor and executing the above-mentioned drone control method.
  • the program can be stored in a computer-readable storage medium, and the storage medium can include: Read only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • FIG. 5 shows a specific structural block diagram of a terminal provided in an embodiment of the present invention.
  • the terminal can be used to implement the drone control method, storage medium, and terminal provided in the above-mentioned embodiments.
  • the terminal 100 may include an RF (Radio Frequency) circuit 310, a memory 320 including one or more (only one is shown in the figure) computer-readable storage medium, a sensor 350, an audio circuit 360,
  • the transmission module 370 includes a processor 380 with one or more processing cores (only one is shown in the figure), a power supply 390 and other components.
  • RF Radio Frequency
  • the transmission module 370 includes a processor 380 with one or more processing cores (only one is shown in the figure), a power supply 390 and other components.
  • FIG. 4 does not constitute a limitation on the terminal 100, and may include more or fewer components than shown in the figure, or combine certain components, or arrange different components. among them:
  • the RF circuit 310 may include various existing circuit elements for performing these functions, for example, an antenna, a radio frequency transceiver, a digital signal processor, an encryption/decryption chip, a memory, and so on.
  • the RF circuit 310 can communicate with various networks such as the Internet, an intranet, and a wireless network, or communicate with a second device through a wireless network.
  • the aforementioned wireless network may include a cellular telephone network, a wireless local area network, or a metropolitan area network.
  • the memory 320 can be used to store software programs and modules, such as the program instructions/modules corresponding to the drone control method, device, storage medium, and terminal in the above embodiments.
  • the processor 380 runs the software programs and modules stored in the memory 320, In order to perform various functional applications and data processing, that is, to realize the function of mutual recognition of the chips.
  • the memory 320 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or a second non-volatile solid-state memory. In some examples, the memory 320 may be a storage medium as described above.
  • the terminal 100 may further include at least one sensor 350, such as a light sensor, a motion sensor, and a second sensor.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 341 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 341 and the display panel 341 when the terminal 100 is moved to the ear. / Or backlight.
  • the second sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc., that can be configured in the terminal 100, it will not be repeated here.
  • the audio circuit 360, the speaker 361, and the microphone 162 can provide an audio interface between the user and the terminal 100.
  • the audio circuit 360 can transmit the electric signal converted from the received audio data to the speaker 361, and the speaker 361 converts it into a sound signal for output; on the other hand, the microphone 162 converts the collected sound signal into an electric signal, and the audio circuit 360 converts the collected sound signal into an electric signal. After being received, it is converted into audio data, and then processed by the audio data output processor 380, and sent to, for example, another terminal via the RF circuit 310, or the audio data is output to the memory 320 for further processing.
  • the audio circuit 360 may also include an earplug jack to provide communication between a peripheral earphone and the terminal 100.
  • the terminal 100 can help users send and receive emails, browse webpages, access streaming media, etc. through the transmission module 370, and it provides users with wireless broadband Internet access.
  • the processor 380 is the control center of the terminal 100. It uses various interfaces and lines to connect the various parts of the entire drone, runs or executes software programs and/or modules stored in the memory 320, and calls Data, perform various functions of the terminal 100 and process data, so as to monitor the UAV as a whole.
  • the processor 380 may include one or more processing cores; in some embodiments, the processor 380 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and For application programs, the modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 380.
  • the processor 380 includes: an arithmetic logic unit (ALU), an application processor, a global positioning system (Global Positioning System, GPS), and a control and status bus (Bus) (not shown in the figure) .
  • ALU arithmetic logic unit
  • GPS Global Positioning System
  • Bus control and status bus
  • the terminal 100 also includes a power source 390 (such as a battery) for supplying power to various components.
  • the power source may be logically connected to the processor 380 through a power management system, so as to manage power supply, discharge, and power consumption management through the power management system. And other functions.
  • the power supply 390 may also include any components such as one or more DC or AC power supplies, a re-power supply system, a power failure detection circuit, a power converter or inverter, and a power status indicator.
  • the terminal 100 may also include a camera (such as a front camera, a rear camera), a Bluetooth module, etc., which will not be repeated here.
  • a camera such as a front camera, a rear camera
  • a Bluetooth module etc., which will not be repeated here.
  • the terminal 100 further includes a memory 320 and one or more programs.
  • One or more programs are stored in the memory 320 and configured to be executed by one or more processors 380. More than one program contains instructions for the following operations:
  • the first access request is fed back to the sender according to the first beacon frame to establish a connection with the sender, and the sender is the ground master device Or other relay drones;
  • the confirmation information is fed back according to the second beacon frame, so that the first drone and the sender establish connection;
  • the action instruction After receiving the action instruction sent by the sender, the action instruction is sent to the first drone, so that the first drone executes the action corresponding to the action instruction.
  • the processor 380 may further execute the following instructions:
  • the second drone is controlled to acquire the current spatial position information of the second drone according to a preset time period, and the acquired The spatial position information of the second drone is sent to the relay drone.
  • the processor 380 may further execute instructions of the following operations:
  • the processor 380 may further execute instructions of the following operations:
  • the first drone and the second drone are controlled to move toward each other.
  • the processor 380 may further execute instructions of the following operations:
  • the processor 380 may also execute instructions for the following operations:
  • the geographic location information of the first drone is sent to the sender.
  • the processor 380 may further execute the following instructions:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

无人机控制方法、装置及存储介质,方法包括:当扫描到发送方发送的第一信标帧时,反馈第一接入请求至发送方;发送第二信标帧,检测是否存在根据第二信标帧反馈第二接入请求的第一无人机;若存在第一无人机,则根据第二信标帧反馈确认信息;在接收到发送方发送的动作指令后,将动作指令发送至第一无人机。

Description

无人机控制方法、装置及存储介质
本申请要求于2019年11月18日提交中国专利局、申请号为201911127922.8、发明名称为“无人机控制方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体涉及一种无人机控制方法、装置及存储介质。
背景技术
近年来,随着科技发展以及人们工作需求的提高,无人机因其可到达用户所无法到达的区域被用户所青睐,在快递行业中,人们已经开始使用无人机来自动送货,从而可以节省人力成本;在日常生活中,人们利用无人机在高空拍照或录制视频,从空中的角度来记录美丽的风景。
相关技术中,无人机的通信方案是基于基站和无线网络(Wi-Fi),如果是基于基站,则只要有基站覆盖的区域,无人机的通信范围就不受地域的限制;如果是基于Wi-Fi,则无人机的通信范围在地面Wi-Fi主控设备的200米范围内。因此,如果人们在没有基站的信号覆盖的区域内使用无人机时,无人机的通信范围只能是以地面Wi-Fi主控设备为圆心,以200米为半径的范围内,通信范围大大地受到了限制。
技术问题
本申请实施例提供一种无人机控制方法,可以提高地面主控设备对无人机的操控范围。
技术解决方案
第一方面,本申请实施例提供一种无人机控制方法,包括:
当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;
发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的 第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;
若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;
在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
在所述的无人机控制方法中,所述在根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接之后,还包括:
检测是否存在第二无人机与所述发送方建立连接;
若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
在所述的无人机控制方法中,所述在根据所述第二信标帧反馈确认信息之后,还包括:
控制所述第一无人机按照预设时间段获取所述第一无人机当前的空间位置信息,并将获取到的所述第一无人机的空间位置信息发送至所述中继无人机。
在所述的无人机控制方法中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
若检测到所述第一无人机及所述第二无人机的距离达到第一预设距离,则控制所述第一无人机及所述第二无人机相向运动。
在所述的无人机控制方法中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
若所述第一无人机及所述第二无人机相向运动的距离达到第二预设距离,则控制所述第一无人机及所述第二无人机相背运动。
在所述的无人机控制方法中,所述方法还包括:
若所述第一无人机发生异常,则将所述第一无人机的地理位置信息发送至所述发送方。
在所述的无人机控制方法中,所述在检测是否存在第二无人机与所述发送方建立连接之前,还包括:
接收所述发送方发送的同步信标帧,以与所述发送方的时钟同步。
第二方面,本申请实施例还提供一种无人机控制装置,包括:
第一反馈单元,用于当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;
第一检测单元,用于发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;
第二反馈单元,用于若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;
发送单元,用于在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
在所述的无人机控制装置中,所述无人机控制装置还包括:
第二检测单元,用于检测是否存在第二无人机与所述发送方建立连接;
控制单元,用于若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
第三方面,本申请实施例还提供一种存储介质,存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行无人机控制方法,所述无人机控制方法包括:
当扫描到发送方发送的第一信标帧时,检测是否与其他发送方建立连接;
若已与其他发送方建立连接,则忽略所述第一信标帧;
若检测到未与其他发送方建立连接,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;
发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;
若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述 第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;
在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
在所述的存储介质中,所述在根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接之后,还包括:
检测是否存在第二无人机与所述发送方建立连接;
若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
在所述的存储介质中,所述在根据所述第二信标帧反馈确认信息之后,还包括:
控制所述第一无人机按照预设时间段获取所述第一无人机当前的空间位置信息,并将获取到的所述第一无人机的空间位置信息发送至所述中继无人机。
在所述的存储介质中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
若检测到所述第一无人机及所述第二无人机的距离达到第一预设距离,则控制所述第一无人机及所述第二无人机相向运动。
在所述的存储介质中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
若所述第一无人机及所述第二无人机相向运动的距离达到第二预设距离,则控制所述第一无人机及所述第二无人机相背运动。
在所述的存储介质中,所述方法还包括:
若所述第一无人机发生异常,则将所述第一无人机的地理位置信息发送至所述发送方。
在所述的存储介质中,所述在检测是否存在第二无人机与所述发送方建立连接之前,还包括:
接收所述发送方发送的同步信标帧,以与所述发送方的时钟同步。
有益效果
本申请实施例提供的无人机控制方法,包括:当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。可以提高地面主控设备对无人机的操控范围。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的无人机控制系统的场景示意图。
图2为本申请实施例提供的无人机控制方法的第一种流程示意图。
图3为本申请实施例提供的无人机控制方法的第二种流程示意图。
图4为本申请实施例提供的无人机控制装置的结构示意图。
图5为本申请实施例提供的终端的具体结构框图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,本申请实施例提供了一种无人机控制系统,包括:地面主控设备10、第一中继无人机20,由地面主控设备10、第一中继无人机20所组建的第一群组30,在第一群组30中可以存在多个工作无人机40;由第一中继无人机20及第二中继无人机50形成的第二组群60,以及由第二中继无人机50单独形成 的第三组群70,在第二组群60以及第三组群70中同样可以存在多个工作无人机40。其中,地面主控设备10可以是手机、平板电脑、笔记本电脑等设备,图1是以地面主控设备10为笔记本电脑为例,该地面主控设备10中可以安装有各种用户所需的应用,比如具备娱乐功能的应用(如视频应用,音频播放应用,游戏应用,阅读软件),又如具备服务功能的应用(如地图导航应用、餐饮应用等)。
基于上述图1所示的系统,本申请实施例提供一种无人机控制方法,用于组建上述的无人机控制系统,其中,该方法应用于中继无人机中,具体请参阅图2,图2为本申请实施例提供的无人机控制方法的第一种流程示意图。所述方法包括如下步骤:
步骤101、当扫描到发送方发送的第一信标帧时,根据第一信标帧反馈第一接入请求至发送方,以与发送方建立连接。
具体的,在建立组群的阶段中,以发送方为地面主控设备为例,地面主控设备会释放第一信标帧,去寻找在预设控制范围内是否存在可被操控的无人机,因此,第一信标帧也即发现信标帧,用来发现预设控制范围内的无人机。
当接收到发送方发送的第一信标帧后,可以事先检测是否与其他发送方建立连接,因此,在当扫描到发送方发送的第一信标帧后,还可以包括:
检测是否与其他发送方建立连接;
若已与其他发送方建立连接,则忽略所述第一信标帧。
若检测到未与其他发送方建立连接,即表明可以与发送方连接,因此,根据所述第一信标帧反馈第一接入请求至发送方,当发送方接收到该第一接入请求后,请求通过后即可与所述发送方建立连接。
其中,发送方不仅限于地面主控设备,也可以是其他中继无人机。当发送方为地面主控设备时,建立的即为图1中的第一群组30,当发送方为其他中继无人机时,建立的即为图1中的第二群组60或第三群组70。
在与发送方建立连接之后,可以事先检测是否存在工作无人机也与发送方建立连接,若存在,则可以控制第二无人机按预设时间段获取其当前的空间位置信息,并接收第二无人机的空间位置信息。以防止与第二无人机,或者第二无人机存在多个时,当检测到多个第二无人机之间的距离较近或较远时,可以 控制第二无人机执行相应的防碰撞或防失联手段。因此,在根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接之后,还可以包括:
检测是否存在第二无人机与所述发送方建立连接;
若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
在检测是否存在第二无人机与所述发送方建立连接之前,还包括:
接收所述发送方发送的同步信标帧,以与所述发送方的时钟同步。进而降低群组的功耗。
步骤102、发送第二信标帧,检测是否存在根据第二信标帧反馈第二接入请求的第一无人机。
具体的,在与发送方建立连接之后,会自动发送第二信标帧去查找预设控制范围内是否存在未与发送方建立连接的工作无人机,检测的方式可以为发送第二信标帧,检测是否有根据该第二信标帧反馈接入请求的工作无人机。
其中,第二信标帧与第一信标帧类型相同,均为发现信标帧,用于发现预设控制范围内的未与发送方建立连接的无人机。
步骤103、若存在根据第二信标帧反馈第二接入请求的第一无人机,则根据第二信标帧反馈确认信息,以使第一无人机与发送方建立连接。
当接收到该第二接入请求后,请求通过后即可与所述发送方建立连接。
在第一无人机与发送方建立连接之后,可以控制第一无人机按预设时间段获取其当前的空间位置信息,并接收第一无人机的空间位置信息。以防止与第一无人机,或者第一无人机存在多个时,当检测到多个第一无人机之间的距离较近或较远时,可以控制第一无人机执行相应的防碰撞或防失联手段。因此,在根据所述第二信标帧反馈确认信息之后,还包括:
控制所述第一无人机按照预设时间段获取所述第一无人机当前的空间位置信息,并将获取到的所述第一无人机的空间位置信息发送至所述中继无人机。
当第一无人机发生异常时,可以将第一无人机的地理位置信息发送至发送方,以告知用户哪一无人机出现故障,故障降落位置在哪里。
在第一无人机与发送方建立连接后,中继无人机处于两个群组的重叠区域,因此可以控制两个群组的无人机(第一无人机及第二无人机),因此,在同时获取到第一无人机的当前空间位置信息及第二无人机的当前空间位置信息后,可以实时监控两个群组内的无人机,当检测到第一无人机与第二无人机的距离较远,易发生失联状况时,可以控制距离较远的第一无人机及第二无人机做相向运动,因此,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
若检测到所述第一无人机及所述第二无人机的距离达到第一预设距离,则控制所述第一无人机及所述第二无人机相向运动。
同理,当检测到第一无人机与第二无人机的距离较近,易发生碰撞状况时,可以控制距离较近的第一无人机及第二无人机做相背运动,因此,在所述将获取到的所述第一无人机的地理位置信息及高度信息发送至所述中继无人机之后,还包括:
所述第一无人机及所述第二无人机相向运动的距离达到第二预设距离,则控制所述第一无人机及所述第二无人机相背运动。
空间位置信息具体可以包括第一无人机及第二无人机当前所处经度、纬度以及高度。经度、纬度以及高度形成三维空间,若在四维,五维空间中,还可以包括其他信息,此处不做限定。高度可以由无人机上自带的气压传感器进行测量。
其中,如何确定是哪一无人机发生状况,可以根据承载在发现信标帧上的信息确定,如表1及表2所示,表1为本申请实施例提供的发现信标帧所承载的信息。表2为属性类型。
表1
Figure PCTCN2019126132-appb-000001
Figure PCTCN2019126132-appb-000002
表2
Figure PCTCN2019126132-appb-000003
其中,Category是指该帧的类型为公共行动帧(Public Action Frame);Action Field是指与指定制造商有关的公共行动帧;OUI是指组织唯一编号(Organizationally Unique Identifier);OUI Type是指OUI的类型;Attributes是指属性,包括服务描述属性和制造商特定属性。在制造商特定属性中,Attribute ID是指制造商特定属性的编号;Length是指OUI和Body的字节长度和;OUI是指制造商的编号;Body是指制造商的特定信息。
在一些实施例中,也可以将表1及表2简化成表3的形式。
表3
Figure PCTCN2019126132-appb-000004
其中,消息ID可以包括0x01,用于无人机发送自己的位置信息;0x02,用于中继无人机广播所有无人机的位置信息列表;0x03,用于地面主控设备向工作无人机发送指令;0x04,用于工作无人机向地面主控设备发送反馈内容;0x05,用于无人机发生故障后发送紧急求助消息。
以消息内容为无人机的空间位置信息为例,请参阅表4。
表4
Figure PCTCN2019126132-appb-000005
无人机的接口地址可以唯一地代表某个特定的无人机,因此实现了所有无人机的位置信息实时共享。
步骤104、在接收到发送方发送的动作指令后,将动作指令发送至第一无人机,以使第一无人机执行动作指令对应的动作。
在地面主控设备发送动作指令后,该动作指令会一级一级向下传递,以图1所组建的无人机群组为例,当地面主控设备发送动作指令后,第一群组30内的工作无人机40及中继无人机20执行动作指令对应的动作,并且中继无人机20会将该动作指令发送至第二群组60内的所有无人机,中继无人机50接收到动作指令后,会发送至第三群组70内的所有无人机,以此实现扩展地面主控设备的控制范围。
本申请实施例提供的无人机控制方法,包括:当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;若存在根据所述第二信标帧反馈 第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。可以提高地面主控设备对无人机的操控范围。
请参阅图3,图3为本申请实施例提供的无人机控制方法的第二种流程示意图。所述方法包括如下步骤:
步骤201,当扫描到发送方发送的第一信标帧时,根据第一信标帧反馈第一接入请求至发送方,以与发送方建立连接。
具体的,在建立组群的阶段中,以发送方为地面主控设备为例,地面主控设备会释放第一信标帧,去寻找在预设控制范围内是否存在可被操控的无人机,因此,第一信标帧也即发现信标帧,用来发现预设控制范围内的无人机。
当接收到发送方发送的第一信标帧后,可以事先检测是否与其他发送方建立连接,因此,在当扫描到发送方发送的第一信标帧后,还可以包括:
检测是否与其他发送方建立连接;
若已与其他发送方建立连接,则忽略所述第一信标帧。
若检测到未与其他发送方建立连接,即表明可以与发送方连接,因此,根据所述第一信标帧反馈第一接入请求至发送方,当发送方接收到该第一接入请求后,请求通过后即可与所述发送方建立连接。
步骤202,接收发送方发送的同步信标帧,以与发送方的时钟同步。
具体的,发送方可以发送一同步信标帧,中继无人机或工作无人机可接收所述发送方发送的同步信标帧,以与所述发送方的时钟同步。进而降低群组的功耗。
步骤203,检测是否存在第二无人机与发送方建立连接。
具体的,在与发送方建立连接之后,可以事先检测是否存在工作无人机也与发送方建立连接,若存在,则可以控制第二无人机按预设时间段获取其当前的空间位置信息,并接收第二无人机的空间位置信息。以防止与第二无人机,或者第二无人机存在多个时,当检测到多个第二无人机之间的距离较近或较远时,可以控制第二无人机执行相应的防碰撞或防失联手段。
步骤204,若检测到存在第二无人机与发送方建立连接,则控制第二无人 机按照预设时间段获取第二无人机当前的空间位置信息,并将获取到的第二无人机的空间位置信息发送至中继无人机。
步骤205,发送第二信标帧,检测是否存在根据第二信标帧反馈第二接入请求的第一无人机。
具体的,在与发送方建立连接之后,会自动发送第二信标帧去查找预设控制范围内是否存在未与发送方建立连接的工作无人机,检测的方式可以为发送第二信标帧,检测是否有根据该第二信标帧反馈接入请求的工作无人机。
其中,第二信标帧与第一信标帧类型相同,均为发现信标帧,用于发现预设控制范围内的未与发送方建立连接的无人机。
步骤206,若存在根据第二信标帧反馈第二接入请求的第一无人机,则根据第二信标帧反馈确认信息。
当接收到该第二接入请求后,请求通过后即可与所述发送方建立连接。
步骤207,控制第一无人机按照预设时间段获取第一无人机当前的空间位置信息,并将获取到的第一无人机的空间位置信息发送至中继无人机。
具体的,在第一无人机与发送方建立连接之后,可以控制第一无人机按预设时间段获取其当前的空间位置信息,并接收第一无人机的空间位置信息。以防止与第一无人机,或者第一无人机存在多个时,当检测到多个第一无人机之间的距离较近或较远时,可以控制第一无人机执行相应的防碰撞或防失联手段。
步骤208,若第一无人机发生异常,则将第一无人机的地理位置信息发送至发送方。
具体的,当第一无人机发生异常时,可以将第一无人机的地理位置信息发送至发送方,以告知用户哪一无人机出现故障,故障降落位置在哪里。
步骤209、若检测到第一无人机及第二无人机的距离达到第一预设距离,则控制第一无人机及第二无人机相向运动。
在第一无人机与发送方建立连接后,中继无人机处于两个群组的重叠区域,因此可以控制两个群组的无人机(第一无人机及第二无人机),因此,在同时获取到第一无人机的当前空间位置信息及第二无人机的当前空间位置信息后,可以实时监控两个群组内的无人机,当检测到第一无人机与第二无人机 的距离较远,易发生失联状况时,可以控制距离较远的第一无人机及第二无人机做相向运动。
步骤210、若第一无人机及第二无人机相向运动的距离达到第二预设距离,则控制第一无人机及所述第二无人机相背运动。
本申请实施例提供的无人机控制方法,包括:当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。可以提高地面主控设备对无人机的操控范围。
请参阅图4,图4为本申请实施例提供的无人机控制装置的结构示意图。所述无人机控制装置包括:第一反馈单元31、第一检测单元32、第二反馈单元33及发送单元34。
其中,第一反馈单元31,用于当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机。
具体的,在建立组群的阶段中,以发送方为地面主控设备为例,地面主控设备会释放第一信标帧,去寻找在预设控制范围内是否存在可被操控的无人机,因此,第一信标帧也即发现信标帧,用来发现预设控制范围内的无人机。
第一检测单元32,用于发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机。
具体的,在与发送方建立连接之后,会自动发送第二信标帧去查找预设控制范围内是否存在未与发送方建立连接的工作无人机,检测的方式可以为发送第二信标帧,检测是否有根据该第二信标帧反馈接入请求的工作无人机。
其中,第二信标帧与第一信标帧类型相同,均为发现信标帧,用于发现预 设控制范围内的未与发送方建立连接的无人机。
第二反馈单元33,用于若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接。
当接收到该第二接入请求后,请求通过后即可与所述发送方建立连接。
发送单元34,用于在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
在地面主控设备发送动作指令后,该动作指令会一级一级向下传递,以图1所组建的无人机群组为例,当地面主控设备发送动作指令后,第一群组30内的工作无人机40及中继无人机20执行动作指令对应的动作,并且中继无人机20会将该动作指令发送至第二群组60内的所有无人机,中继无人机50接收到动作指令后,会发送至第三群组70内的所有无人机,以此实现扩展地面主控设备的控制范围。
在一些实施例中,无人机控制装置还可以包括:
第二检测单元,用于检测是否存在第二无人机与所述发送方建立连接;
控制子单元,用于若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
在一些实施例中,无人机控制装置还可以包括:
空间位置信息发送单元,用于控制所述第一无人机按照预设时间段获取所述第一无人机当前的空间位置信息,并将获取到的所述第一无人机的空间位置信息发送至所述中继无人机。
在一些实施例中,无人机控制装置还可以包括:
第一检测控制单元,用于若检测到所述第一无人机及所述第二无人机的距离达到第一预设距离,则控制所述第一无人机及所述第二无人机相向运动。
在一些实施例中,无人机控制装置还可以包括:
第二检测控制单元,用于若所述第一无人机及所述第二无人机相向运动的距离达到第二预设距离,则控制所述第一无人机及所述第二无人机相背运动。
本申请实施例还提供一种存储介质,存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行无人机控制方法,所述无人机控制方法包括:
当扫描到发送方发送的第一信标帧时,检测是否与其他发送方建立连接;
若已与其他发送方建立连接,则忽略所述第一信标帧;
若检测到未与其他发送方建立连接,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;
发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;
若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;
在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
其中,所述在根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接之后,还包括:
检测是否存在第二无人机与所述发送方建立连接;
若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
其中,所述在根据所述第二信标帧反馈确认信息之后,还包括:
控制所述第一无人机按照预设时间段获取所述第一无人机当前的空间位置信息,并将获取到的所述第一无人机的空间位置信息发送至所述中继无人机。
其中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
若检测到所述第一无人机及所述第二无人机的距离达到第一预设距离,则控制所述第一无人机及所述第二无人机相向运动。
其中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继 无人机之后,还包括:
若所述第一无人机及所述第二无人机相向运动的距离达到第二预设距离,则控制所述第一无人机及所述第二无人机相背运动。
其中,所述方法还包括:
若所述第一无人机发生异常,则将所述第一无人机的地理位置信息发送至所述发送方。
其中,所述在检测是否存在第二无人机与所述发送方建立连接之前,还包括:
接收所述发送方发送的同步信标帧,以与所述发送方的时钟同步。
基于上述方法,本发明还提供了一种存储介质,其上存储有多条指令,其中,所述指令适合由处理器加载并执行如上所述的无人机控制方法。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
图5示出了本发明实施例提供的终端的具体结构框图,该终端可以用于实施上述实施例中提供的无人机控制方法、存储介质及终端。
如图5所示,终端100可以包括RF(Radio Frequency,射频)电路310、包括有一个或一个以上(图中仅示出一个)计算机可读存储介质的存储器320、传感器350、音频电路360、传输模块370、包括有一个或者一个以上(图中仅示出一个)处理核心的处理器380以及电源390等部件。本领域技术人员可以理解,图4中示出的终端100结构并不构成对终端100的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
RF电路310可包括各种现有的用于执行这些功能的电路元件,例如,天线、射频收发器、数字信号处理器、加密/解密芯片、存储器等等。RF电路310可与各种网络如互联网、企业内部网、无线网络进行通讯或者通过无线网络与第二设备进行通讯。上述的无线网络可包括蜂窝式电话网、无线局域网或者城域网。
存储器320可用于存储软件程序以及模块,如上述实施例中无人机控制方法、装置、存储介质及终端对应的程序指令/模块,处理器380通过运行存储在 存储器320内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现芯片相互识别的功能。存储器320可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者第二非易失性固态存储器。在一些实例中,存储器320可以为如上所述的存储介质。
终端100还可包括至少一种传感器350,比如光传感器、运动传感器以及第二传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板341的亮度,接近传感器可在终端100移动到耳边时,关闭显示面板341和/或背光。至于终端100还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等第二传感器,在此不再赘述。
音频电路360、扬声器361,传声器162可提供用户与终端100之间的音频接口。音频电路360可将接收到的音频数据转换后的电信号,传输到扬声器361,由扬声器361转换为声音信号输出;另一方面,传声器162将收集的声音信号转换为电信号,由音频电路360接收后转换为音频数据,再将音频数据输出处理器380处理后,经RF电路310以发送给比如另一终端,或者将音频数据输出至存储器320以便进一步处理。音频电路360还可能包括耳塞插孔,以提供外设耳机与终端100的通信。
终端100通过传输模块370可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。
处理器380是终端100的控制中心,利用各种接口和线路连接整个无人机的各个部分,通过运行或执行存储在存储器320内的软件程序和/或模块,以及调用存储在存储器320内的数据,执行终端100的各种功能和处理数据,从而对无人机进行整体监控。可选的,处理器380可包括一个或多个处理核心;在一些实施例中,处理器380可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器380中。
具体的,处理器380包括有:算术逻辑运算单元(Arithmetic Logic Unit,ALU)、应用处理器、全球定位系统(Global Positioning System,GPS)与控制及状态总线(Bus)(图中未示出)。
终端100还包括给各个部件供电的电源390(比如电池),在一些实施例中,电源可以通过电源管理系统与处理器380逻辑相连,从而通过电源管理系统实现管理供电、放电、以及功耗管理等功能。电源390还可以包括一个或一个以上的直流或交流电源、再供电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
尽管未示出,终端100还可以包括摄像头(如前置摄像头、后置摄像头)、蓝牙模块等,在此不再赘述。
具体在本实施例中,终端100还包括有存储器320,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器320中,且经配置以由一个或者一个以上处理器380执行一个或者一个以上程序包含用于进行以下操作的指令:
当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;
发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;
若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;
在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
在一些实施例中,在所述在根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接之后,处理器380还可以执行以下操作的指令:
检测是否存在第二无人机与所述发送方建立连接;
若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
在一些实施例中,在所述在根据所述第二信标帧反馈确认信息之后,处理器380还可以执行以下操作的指令:
控制所述第一无人机按照预设时间段获取所述第一无人机当前的空间位 置信息,并将获取到的所述第一无人机的空间位置信息发送至所述中继无人机。
在一些实施例中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,处理器380还可以执行以下操作的指令:
若检测到所述第一无人机及所述第二无人机的距离达到第一预设距离,则控制所述第一无人机及所述第二无人机相向运动。
在一些实施例中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,处理器380还可以执行以下操作的指令:
若所述第一无人机及所述第二无人机相向运动的距离达到第二预设距离,则控制所述第一无人机及所述第二无人机相背运动。
在一些实施例中,处理器380还可以执行以下操作的指令:
若所述第一无人机发生异常,则将所述第一无人机的地理位置信息发送至所述发送方。
在一些实施例中,所述在检测是否存在第二无人机与所述发送方建立连接之前,处理器380还可以执行以下操作的指令:
接收所述发送方发送的同步信标帧,以与所述发送方的时钟同步。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种无人机控制方法、装置、存储介质及终端进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (16)

  1. 一种无人机控制方法,应用于中继无人机中,其包括:
    当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;
    发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;
    若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;
    在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
  2. 根据权利要求1所述的无人机控制方法,其中,所述在根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接之后,还包括:
    检测是否存在第二无人机与所述发送方建立连接;
    若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
  3. 根据权利要求2所述的无人机控制方法,其中,所述在根据所述第二信标帧反馈确认信息之后,还包括:
    控制所述第一无人机按照预设时间段获取所述第一无人机当前的空间位置信息,并将获取到的所述第一无人机的空间位置信息发送至所述中继无人机。
  4. 根据权利要求3所述的无人机控制方法,其中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
    若检测到所述第一无人机及所述第二无人机的距离达到第一预设距离,则控制所述第一无人机及所述第二无人机相向运动。
  5. 根据权利要求4所述的无人机控制方法,其中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
    若所述第一无人机及所述第二无人机相向运动的距离达到第二预设距离, 则控制所述第一无人机及所述第二无人机相背运动。
  6. 根据权利要求3所述的无人机控制方法,其中,所述方法还包括:
    若所述第一无人机发生异常,则将所述第一无人机的地理位置信息发送至所述发送方。
  7. 根据权利要求2所述的无人机控制方法,其中,所述在检测是否存在第二无人机与所述发送方建立连接之前,还包括:
    接收所述发送方发送的同步信标帧,以与所述发送方的时钟同步。
  8. 一种无人机控制装置,其包括:
    第一反馈单元,用于当扫描到发送方发送的第一信标帧时,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;
    第一检测单元,用于发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;
    第二反馈单元,用于若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;
    发送单元,用于在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
  9. 根据权利要求8所述的无人机控制装置,其中,所述无人机控制装置还包括:
    第二检测单元,用于检测是否存在第二无人机与所述发送方建立连接;
    控制单元,用于若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
  10. 一种存储介质,其特征在于,所述存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行无人机控制方法,所述无人机控制方法包括:
    当扫描到发送方发送的第一信标帧时,检测是否与其他发送方建立连接;
    若已与其他发送方建立连接,则忽略所述第一信标帧;
    若检测到未与其他发送方建立连接,根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接,所述发送方为地面主控设备或其他中继无人机;
    发送第二信标帧,检测是否存在根据所述第二信标帧反馈第二接入请求的第一无人机,所述第一无人机为未与所述发送方建立连接的无人机;
    若存在根据所述第二信标帧反馈第二接入请求的第一无人机,则根据所述第二信标帧反馈确认信息,以使所述第一无人机与所述发送方建立连接;
    在接收到所述发送方发送的动作指令后,将所述动作指令发送至所述第一无人机,以使所述第一无人机执行所述动作指令对应的动作。
  11. 根据权利要求10所述的存储介质,其中,所述在根据所述第一信标帧反馈第一接入请求至发送方,以与所述发送方建立连接之后,还包括:
    检测是否存在第二无人机与所述发送方建立连接;
    若检测到存在第二无人机与所述发送方建立连接,则控制所述第二无人机按照预设时间段获取所述第二无人机当前的空间位置信息,并将获取到的所述第二无人机的空间位置信息发送至所述中继无人机。
  12. 根据权利要求11所述的存储介质,其中,所述在根据所述第二信标帧反馈确认信息之后,还包括:
    控制所述第一无人机按照预设时间段获取所述第一无人机当前的空间位置信息,并将获取到的所述第一无人机的空间位置信息发送至所述中继无人机。
  13. 根据权利要求12所述的存储介质,其中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
    若检测到所述第一无人机及所述第二无人机的距离达到第一预设距离,则控制所述第一无人机及所述第二无人机相向运动。
  14. 根据权利要求13所述的存储介质,其中,在所述将获取到的所述第一无人机的空间位置信息发送至所述中继无人机之后,还包括:
    若所述第一无人机及所述第二无人机相向运动的距离达到第二预设距离,则控制所述第一无人机及所述第二无人机相背运动。
  15. 根据权利要求12所述的存储介质,其中,所述方法还包括:
    若所述第一无人机发生异常,则将所述第一无人机的地理位置信息发送至所述发送方。
  16. 根据权利要求11所述的存储介质,其中,所述在检测是否存在第二无人机与所述发送方建立连接之前,还包括:
    接收所述发送方发送的同步信标帧,以与所述发送方的时钟同步。
PCT/CN2019/126132 2019-11-18 2019-12-18 无人机控制方法、装置及存储介质 WO2021097979A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/617,587 US20220248181A1 (en) 2019-11-18 2019-12-18 Unmanned aerial vehicle control method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911127922.8 2019-11-18
CN201911127922.8A CN110865652A (zh) 2019-11-18 2019-11-18 无人机控制方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021097979A1 true WO2021097979A1 (zh) 2021-05-27

Family

ID=69654880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126132 WO2021097979A1 (zh) 2019-11-18 2019-12-18 无人机控制方法、装置及存储介质

Country Status (3)

Country Link
US (1) US20220248181A1 (zh)
CN (1) CN110865652A (zh)
WO (1) WO2021097979A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112286222B (zh) * 2020-10-15 2023-01-24 珠海格力电器股份有限公司 无人机控制方法、装置及设备
CN113630741B (zh) * 2021-08-02 2022-09-13 北京远度互联科技有限公司 中继无人机切换方法、中继无人机、控制器及系统
CN114035425B (zh) * 2021-11-05 2022-07-26 广东工业大学 一种无人机数字孪生系统的虚实状态同步方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656300A (zh) * 2016-12-21 2017-05-10 中国航天时代电子公司 一种采用自组网数据链的无人机集群作战系统
CN108073182A (zh) * 2016-11-16 2018-05-25 浙江天马行空创新科技有限公司 基于双向通讯模块的无人机集群控制系统
US20180348748A1 (en) * 2016-02-19 2018-12-06 At&T Intellectual Property I, Lp. Management of deployed drones
CN109104235A (zh) * 2018-07-10 2018-12-28 东南大学 一种基于自适应的无人机群长距离通信方法
CN109151951A (zh) * 2018-08-09 2019-01-04 中软电科智能技术有限公司 一种多频集中式网络组网的数据交互方法
CN109819495A (zh) * 2019-03-15 2019-05-28 北京科技大学 一种集群无人机自组网分簇方法
CN110234571A (zh) * 2017-05-05 2019-09-13 田瑜 中继无人机方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9226323B2 (en) * 2011-01-14 2015-12-29 Electronics And Telecommunications Research Institute Method and apparatus for transmitting relay frame in wireless communication system
US8897770B1 (en) * 2014-08-18 2014-11-25 Sunlight Photonics Inc. Apparatus for distributed airborne wireless communications
CN104750103A (zh) * 2015-03-09 2015-07-01 深圳市道通智能航空技术有限公司 无线数据传输方法和装置及飞行器控制方法和装置
AU2016297892B2 (en) * 2015-07-27 2020-04-02 Genghiscomm Holdings, LLC Airborne relays in cooperative-MIMO systems
CN205017328U (zh) * 2015-08-27 2016-02-03 杨珊珊 一种智能中继系统及其无人机
CN105245846A (zh) * 2015-10-12 2016-01-13 西安斯凯智能科技有限公司 一种多无人机协同跟踪的拍摄系统及拍摄方法
CN105357220B (zh) * 2015-12-04 2019-04-26 深圳一电航空技术有限公司 无人机管控方法及系统
WO2019061224A1 (zh) * 2017-09-29 2019-04-04 深圳市大疆创新科技有限公司 一种控制终端的控制方法及控制终端
CN107831783B (zh) * 2017-11-10 2019-10-08 南昌航空大学 一种支持多无人机自主飞行的地面站控制系统
CN109257745B (zh) * 2018-09-14 2021-11-19 天航星云国际防务技术研究院(北京)有限公司 一种自组网无人机集群系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180348748A1 (en) * 2016-02-19 2018-12-06 At&T Intellectual Property I, Lp. Management of deployed drones
CN108073182A (zh) * 2016-11-16 2018-05-25 浙江天马行空创新科技有限公司 基于双向通讯模块的无人机集群控制系统
CN106656300A (zh) * 2016-12-21 2017-05-10 中国航天时代电子公司 一种采用自组网数据链的无人机集群作战系统
CN110234571A (zh) * 2017-05-05 2019-09-13 田瑜 中继无人机方法
CN109104235A (zh) * 2018-07-10 2018-12-28 东南大学 一种基于自适应的无人机群长距离通信方法
CN109151951A (zh) * 2018-08-09 2019-01-04 中软电科智能技术有限公司 一种多频集中式网络组网的数据交互方法
CN109819495A (zh) * 2019-03-15 2019-05-28 北京科技大学 一种集群无人机自组网分簇方法

Also Published As

Publication number Publication date
US20220248181A1 (en) 2022-08-04
CN110865652A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2021097979A1 (zh) 无人机控制方法、装置及存储介质
US11523447B2 (en) System and method of connecting devices via Wi-Fi network
CN110622123B (zh) 一种显示方法及装置
US20170208424A1 (en) Interconnection method and system of networking of piconet based on bluetooth low energy and conventional bluetooth
WO2020103592A1 (zh) 一种连接建立方法及装置、设备、存储介质
EP3163924A1 (en) Method, device and system for establishing wireless network connection
US11974278B2 (en) Information reporting method, resource assigning method, first terminal and second terminal
WO2019218325A1 (zh) 控制无人机接入网络的方法和装置
WO2020151385A1 (zh) 一种控制智能家居设备连网的方法及设备
WO2021104114A1 (zh) 一种提供无线保真WiFi网络接入服务的方法及电子设备
US20200302799A1 (en) Unmanned aerial vehicle control method and device, and unmanned aerial vehicle operating method and device
KR20210050353A (ko) 근접 통신 서비스를 지원하는 전자 장치 및 이를 이용한 근거리 통신 장치의 정보 획득 방법
EP4311282A1 (en) Method for establishing connection between multiple devices, and device
EP4007361A1 (en) Method for network switching and terminal
US11805562B2 (en) User device pairing method and apparatus
CN111091333A (zh) 快递投放方法、装置及存储介质
WO2020042053A1 (zh) 飞行路径的配置方法及装置、飞行方法及装置和基站
EP3836422A1 (en) Flight path configuration method and device
CN111818667A (zh) 设备连接方法、设备及可读存储介质
US20220174560A1 (en) Method for reporting assistance information, method for configuring reporting of assistance information, terminal, and network side device
KR20210097544A (ko) 근거리 무선 통신 방법 및 장치
CN112584307B (zh) 一种地质灾害现场的通信方法、系统及移动终端
US20220053585A1 (en) Method for pc5 link establishment, device, and system
EP4258701A1 (en) Method, apparatus and system for determining device position
CN113518344B (zh) 用户设备及其节能方法、介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953628

Country of ref document: EP

Kind code of ref document: A1