WO2021097960A1 - 一种竖向测力球型支座 - Google Patents

一种竖向测力球型支座 Download PDF

Info

Publication number
WO2021097960A1
WO2021097960A1 PCT/CN2019/124052 CN2019124052W WO2021097960A1 WO 2021097960 A1 WO2021097960 A1 WO 2021097960A1 CN 2019124052 W CN2019124052 W CN 2019124052W WO 2021097960 A1 WO2021097960 A1 WO 2021097960A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner cone
vertical force
cone sensor
groove
pendulum
Prior art date
Application number
PCT/CN2019/124052
Other languages
English (en)
French (fr)
Inventor
黄茂忠
李志伟
张松琦
张远庆
陈肖越
吴永健
Original Assignee
北京铁科首钢轨道技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京铁科首钢轨道技术股份有限公司 filed Critical 北京铁科首钢轨道技术股份有限公司
Publication of WO2021097960A1 publication Critical patent/WO2021097960A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Definitions

  • This application relates to the field of bridges, and mainly relates to a vertical force-measuring ball bearing.
  • the existing force measuring bearings are affected by the lateral force of the bridge when the train passes by or in windy weather, and cannot be tested well.
  • One of the technical problems solved by the present application is to avoid the influence of the lateral force of the support when the vertical force is measured.
  • the present application provides a vertical force-measuring ball bearing, including: an upper swing, a lower swing, an inner cone sensor, a strain gauge, and a bottom plate;
  • the lower pendulum is located between the upper pendulum and the bottom plate, the lower surface of the upper pendulum is a convex spherical surface, the upper surface of the lower pendulum is a concave spherical surface, and the upper pendulum is in contact with the spherical surface of the lower pendulum;
  • the inner cone sensor is located between the hem and the bottom plate, the strain gauge is arranged on the side of the inner cone sensor, and the strain gauge can be connected to a data collector;
  • the lower surface of the hem is provided with a boss
  • the upper surface of the bottom plate is provided with a groove
  • the boss and the inner surface of the groove are in contact with each other, and the boss is not in contact with the bottom of the groove.
  • the upper surface of the inner cone sensor is an inclined surface, and the inclined surface is in contact with the lower surface of the bottom pendulum.
  • the inclined surface is provided with an anti-friction layer.
  • the lower surface of the inner cone sensor is an annular plane.
  • the annular plane is provided with an anti-friction layer.
  • an anti-friction layer is provided between the concave spherical surface and the convex spherical surface.
  • the outer side surface of the inner cone sensor is provided with a groove
  • the side surface of the groove is an inclined surface
  • the strain gauge is located at the bottom of the groove.
  • the boss is cylindrical.
  • the groove is cylindrical.
  • the inner surface of the boss and the groove is an interference fit.
  • the beneficial effect of the present application is that by arranging bosses and grooves on the bottom plate, the lateral force of the support can be completely transferred to the support, so as to prevent the inner cone sensor from being affected by the lateral force of the support when measuring the force and obtaining errors.
  • the spherical upper pendulum can be rotated on the lower pendulum to prevent the relative rotation of the structure on the upper pendulum and the upper pendulum from affecting the measurement of the inner cone sensor. It satisfies the function of the support and can also achieve test automation and remote
  • the monitoring function has simple structure and high precision.
  • Fig. 1 is a schematic diagram of a half-section of a vertical force-measuring ball bearing of this application.
  • the terms “connected”, “fixed”, etc. should be understood in a broad sense.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two components or an interaction relationship between two components, unless specifically defined otherwise.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two components or an interaction relationship between two components, unless specifically defined otherwise.
  • the present application provides a vertical force-measuring ball bearing, which includes: an upper pendulum 1, a lower pendulum 2, an inner cone sensor 4, a strain gauge 3, and a bottom plate 5.
  • the lower pendulum 2 is located between the upper pendulum 1 and the bottom plate 5
  • the lower surface of the upper pendulum 1 is a convex spherical surface
  • the upper surface of the lower pendulum 2 is a concave spherical surface
  • the upper pendulum 1 and the lower pendulum 2 are in spherical contact.
  • the upper surface of the upper pendulum 1 is a flat surface, which can be square, circular, etc., and the convex spherical surface of the upper pendulum 1 is in contact with the concave spherical surface, so that the upper pendulum 1 can be in the convex spherical surface of the lower pendulum 2.
  • the rotation realizes the rotation function of the support, and also separates the rotation structure of the support from the force of the inner cone sensor 4.
  • the inner cone sensor 4 ensures the measurement accuracy of the inner cone sensor 4.
  • the inner cone sensor 4 means that the cross-section of the sensor is a trapezoidal structure, the shorter end of which is close to the center of the concave spherical surface, and the whole is conically mounted between the hem and the base.
  • the inner cone sensor 4 is located between the hem 2 and the bottom plate 5.
  • the strain gauge 3 is arranged on the side of the inner cone sensor 4.
  • the strain gauge 3 can be connected with the data collector.
  • the lower surface of the hem 2 is provided with a boss
  • the upper surface of the bottom plate 5 is provided with a groove.
  • the boss and the inner side of the groove are in contact with each other, and the boss and the bottom of the groove are not in contact, in order to prevent the inner cone sensor 4 from being laterally loaded
  • all will be transmitted from the boss to the bottom plate 5, thereby avoiding the lateral load from being transmitted to the inner cone sensor 4 and affecting the measurement accuracy of the inner cone sensor 4.
  • the direction that is the same as the direction of gravity is downward, and the direction opposite to the direction of gravity is upward.
  • the upper surface of the inner cone sensor 4 is an inclined surface, and the inclined surface is in contact with the lower surface of the lower pendulum 2.
  • the inclined surface of the inner cone sensor 4 matches the lower pendulum 2, and can effectively transfer all the lateral loads to the lower pendulum 2 when subjected to a load.
  • the provided boss further ensures that only vertical load is applied to the inner cone sensor 4, which ensures the measurement accuracy.
  • the inclined surface is provided with an anti-friction layer
  • the anti-friction layer can be made of anti-friction materials with low friction coefficient and good wear resistance.
  • the anti-friction materials have good wear resistance, anti-adhesion and running-in properties, and have good Compliance and fit, sufficient strength, good thermal conductivity, low thermal expansion coefficient, good corrosion resistance, etc., can be used with anti-friction materials such as PTFE, ultra-high molecular weight polyethylene, and modified PTFE ,
  • the anti-friction layer can well reduce the friction force between the inner cone sensor 4 and the bottom pendulum 2, and avoid the influence of the friction force on the measurement result under load.
  • the lower surface of the inner cone sensor 4 may be an annular plane. Since the annular plane does not have edges and corners, when it is subjected to a vertical load, the inner cone sensor 4 can receive uniform force as a whole, thereby ensuring the force received by the strain gauge 3 It is more uniform and ensures the accuracy of the measurement result. If there is a need for bridge support, the lower surface of the inner cone sensor 4 can also match the bottom plate 5 to be a different plane, such as a square, an ellipse, etc.
  • annular plane is also provided with an anti-friction layer, which can reduce the friction force between the inner cone sensor 4 and the bottom plate 5, and avoid the influence of the friction force on the measurement result under load.
  • an anti-friction layer is provided between the concave spherical surface and the convex spherical surface, and the inter-friction layer can well reduce the friction between the concave spherical surface and the convex spherical surface, thereby making the upper pendulum 1 more smooth when rotating.
  • the outer side surface of the inner cone sensor 4 is provided with a groove, the side surface of the groove is an inclined surface, and the strain gauge 3 is located at the bottom of the groove.
  • the side surface of the groove is an inclined surface
  • the strain gauge 3 is located at the bottom of the groove.
  • the boss is cylindrical, and when the cylindrical boss receives a lateral load, the cylindrical boss can evenly transmit the received lateral load to the bottom plate 5.
  • the groove is cylindrical, wherein the shape of the boss and the groove is not limited to a cylindrical shape, and can be changed to a square or a cone according to the actual use of the support, but the cylindrical groove can match the cylindrical convex
  • the platform better transmits the lateral load to the bottom plate 5, and because the force is uniform, the boss will not be broken or damaged due to long-term load.
  • the inner surface of the boss and the groove is an interference fit, and the boss and the groove are tightly matched.
  • the hem 2 When subjected to a lateral load, the hem 2 will not be displaced with the bottom plate 5, and the lateral load can be better transmitted to the bottom plate. At the same time, it also ensures that the inner cone sensor 4 will not be affected by the lateral load.
  • the present application has the effect of simple structure and high accuracy, and is applied to the scene of bridge force measurement, so it has industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种竖向测力球型支座,其包括上摆(1)、下摆(2)、内锥形传感器(4)、底板(5)和应变片(3)。下摆(2)位于上摆(1)与底板(5)之间,上摆(1)的下表面为凸球面,下摆(2)上表面为凹球面,上摆(1)和下摆(2)球面接触;内锥形传感器(4)位于下摆(2)和底板(5)之间,应变片(3)设置在内锥形传感器(4)的侧面并可与数据采集器相连;下摆(2)的下表面设置有凸台,底板(5)上表面设置有与之相应的凹槽,凸台与凹槽的内侧面相互接触,凸台与凹槽底部不接触。该竖向测力球型支座将支座的横向力转移到支座上,避免内锥形传感器(4)测力时被支座横向力影响,同时防止上摆(1)之上的构造物与上摆(1)的相对转动影响内锥形传感器(4)的测量。

Description

一种竖向测力球型支座 技术领域
本申请涉及桥梁领域,主要涉及一种竖向测力球型支座。
背景技术
随着国民经济的快速发展,综合国力的不断增强,横贯我国东西、纵贯我国南北的交通基础设施网络建设取得了令人瞩目的变化和成果。这其中,无论在蜿蜒曲折的万里长江上,还是在星罗棋布的内陆湖泊、大型支流、河流上,一座座如彩虹般的桥梁千姿百态,蔚为壮观,为加速我国经济的更快发展起到如虎添翼的非凡作用。
为确保列车能够在桥梁上安全运行,随时监测并了解每一个桥梁是否处于良好的工作状态是极为重要的,多数桥梁的梁与桥墩和桥台之间采用支座连接,支座起着支撑桥梁上部结构自重和列车载荷的作用,同时协调桥梁由于载荷作用和温度变化产生的结构变形,支座承载的载荷在一定的范围内变化。如果桥梁的墩台发生不正常的变位,必然引起支座的不正常变化,因此,实时监测桥梁支座反力变化情况,便可检测桥梁的工作状态,判断其是否处于正常范围内。
目前,现有的测力支座,在列车经过时,或者大风天气,会受到桥梁横向力的影响,不能很好进行检测。
发明内容
本申请解决的技术问题之一用于避免竖向测力时受支座横向力的影响。
为了达到上述目的,本申请提供一种竖向测力球型支座,包括:上摆、下摆、内锥形传感器、应变片、底板;
所述下摆位于所述上摆与所述底板之间,所述上摆的下表面为凸球面,所述下摆的上表面为凹球面,所述上摆和所述下摆球面接触;
所述内锥形传感器位于所述下摆与所述底板之间,所述应变片设置于所述内锥形传感器的侧面,所述应变片能够与数据采集器相连;
所述下摆的下表面设置有凸台,所述底板的上表面设置有凹槽,所述凸台与所述凹槽的内侧面相互接触,所述凸台与所述凹槽底部不接触。
优选地,所述内锥形传感器的上表面为斜面,所述斜面与所述下摆的下表面接触。
优选地,所述斜面设置有减摩层。
优选地,所述内锥形传感器的下表面为环形平面。
优选地,所述环形平面设置有减摩层。
优选地,所述凹球面与所述凸球面之间设置有减摩层。
优选地,所述内锥形传感器的外侧面设置有凹槽,所述凹槽的侧面为斜面,所述应变片位于所述凹槽的底部。
优选地,所述凸台为圆柱形。
优选地,所述凹槽为圆柱形。
优选地,所述凸台与所述凹槽的内侧面为过盈配合。
本申请的有益效果是,通过在底板上设置凸台与凹槽,可以将支座的横向力完全转移到支座上,从而避免内锥形传感器测力时被支座横向力影响进而得到错误的数据,球形的上摆能在下摆上进行转动,防止上摆之上构造物与上摆的相对转动影响内锥形传感器的测量,在满足了支座功能的同时也能够实现测试自动化和远程监控的功能,结构简单且精度高。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述:
图1为本申请的一种竖向测力球型支座的半剖示意图。
1:上摆;2:下摆;3:应变片;4:内锥形传感器;5:底板。
具体实施方式
为了更好的解释本申请,以便于理解,下面结合附图,通过具体实 施方式,对本申请作详细描述。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请提供一种竖向测力球型支座,其包括:上摆1、下摆2、内锥形传感器4、应变片3、底板5。参见图1,下摆2位于上摆1与底板5之间,上摆1的下表面为凸球面,下摆2的上表面为凹球面,上摆1和下摆2球面接触。在优选的实施方案中,上摆1的上表面为平面,可以为方形,圆形等,上摆1的凸球面与凹球面相接触,便可以使得上摆1能够在下摆2的凸球面内转动,实现了支座转动功能,同时也将支座的转动结构与内锥形传感器4的受力相分离,当上摆1上的物体发生转动时,其转动不会影响到下摆2下方的内锥形传感器4,保证了内锥形传感器4的测量精确度。内锥形传感器4是指该传感器的剖面为梯形结构,其长度较短的一头靠近凹球面的球心,同时其整体呈锥形安装于下摆与底座之间。
内锥形传感器4位于下摆2与底板5之间,应变片3设置于内锥形 传感器4的侧面,应变片3能够与数据采集器相连,当竖向测力球形支座受到竖向载荷的时候,竖向载荷依次经过上摆1、下摆2、内锥形传感器4、底板5,最后传到支座下方的物体,而内锥形传感器4在竖向载荷的作用下产生形变,进而使得安装在内锥形传感器4侧面的应变片3产生形变,进而导致应变片3的电阻发生变化,此变化量经过数据采集器采集之后,还原出作用在支座上收到竖直载荷的大小。
下摆2的下表面设置有凸台,底板5的上表面设置有凹槽,凸台与凹槽的内侧面相互接触,凸台与凹槽底部不接触,为了防止内锥形传感器4受横向载荷的影响,当支座受到横向载荷的时候,经过下摆2之后,会全部由凸台传到底板5上,进而避免横向载荷传到内锥形传感器4上,影响内锥形传感器4的测量精度。需要说明的是,在本申请中,与重力方向相同的方向为下,与重力方向相反的方向为上。
其中,内锥形传感器4的上表面为斜面,斜面与下摆2的下表面接触,内锥形传感器4的斜面配合下摆2,在受到载荷时,能够很有效的将横向载荷全部转移到下摆2设置的凸台上,进而保证内锥形传感器4上只受到竖直载荷,确保了测量精度。
进一步地,斜面设置有减摩层,减摩层可采用具有摩擦系数低及耐磨性好的减磨材料,该减摩材料具有较好的耐磨性、抗粘着性和磨合性、良好的顺应性和嵌合性、足够的强度、导热性好、热膨胀系数小、抗腐蚀好等特点,可采用聚四氟材料、超高分子量聚乙烯材料、改性聚四氟乙烯材料等减磨材料,减摩层能够很好的减少内锥形传感器4与下摆2的摩擦力,避免在受到载荷时,摩擦力对测量结果的影响。
其中,内锥形传感器4的下表面可以为环形平面,环形平面由于不存在棱角,所以当受到竖向载荷的时候,内锥形传感器4整体能够均匀受力,进而保证应变片3受到的力更加均匀,保证了测量结果的准确性,如存在桥梁支撑的需要,内锥形传感器4下表面也能够配合底板5为不同的平面,如方形,椭圆形等。
进一步地,环形平面还设置有减摩层,该减摩层能够很好的减少内 锥形传感器4与底板5的摩擦力,避免在受到载荷时,摩擦力对测量结果的影响。
其中,凹球面与凸球面之间设置有减摩层,该间摩层能够很好的减少凹球面与凸球面之间的摩擦力,进而使得上摆1在转动的时候更加顺滑。
进一步地,内锥形传感器4的外侧面设置有凹槽,凹槽的侧面为斜面,应变片3位于凹槽的底部,当内锥形传感器4收到竖向载荷而形变时,其侧面的形变量均匀分布于整个侧面,而不是集中在应变片3所在的位置,而开设凹槽之后,内锥形传感器4受到的应力就集中在凹槽内部,应变片3位于凹槽底部就能够更好的测量内锥形传感器4收到的应力,保证数据的准确性。
其中,凸台为圆柱形,圆柱形的凸台在受到横向载荷的时候,圆柱形的凸台能够均匀的把收到的横向载荷传到底板5之上。
进一步地,凹槽为圆柱形,其中凸台与凹槽的形状不局限于圆柱形,可以根据支座的实际使用情况改为方形或者锥形,但圆柱形的凹槽能够配合圆柱形的凸台更好的将横向载荷传到底板5上,由于受力均匀,不会因为长时间受到载荷导致凸台断裂或者破损。
其中,凸台与凹槽的内侧面为过盈配合,凸台与凹槽相互紧配合,在受到横向载荷时,下摆2不会与底板5产生位移,能够更好的将横向载荷传到底板5上,同时也保证了内锥形传感器4不会受到横向载荷的影响。
上述仅为本申请的实施方式而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理的内所作的任何修改、等同替换、改进等,均应包括在本申请的权利要求范围之内。
工业实用性
本申请具有结构简单且精度高的效果,应用在桥梁测力场景,因此具有工业实用性。

Claims (10)

  1. 一种竖向测力球型支座,其中,所述竖向测力球型支座包括:上摆、下摆、内锥形传感器、应变片、底板;
    所述下摆位于所述上摆与所述底板之间,所述上摆的下表面为凸球面,所述下摆的上表面为凹球面,所述上摆和所述下摆球面接触;
    所述内锥形传感器位于所述下摆与所述底板之间,所述应变片设置于所述内锥形传感器的侧面,所述应变片能够与数据采集器相连;
    所述下摆的下表面设置有凸台,所述底板的上表面设置有凹槽,所述凸台与所述凹槽的内侧面相互接触,所述凸台与所述凹槽底部不接触。
  2. 如权利要求1中所述的竖向测力球型支座,其中,所述内锥形传感器的上表面为斜面,所述斜面与所述下摆的下表面接触。
  3. 如权利要求2中所述的竖向测力球型支座,其中,所述斜面设置有减摩层。
  4. 如权利要求1中所述的竖向测力球型支座,其中,所述内锥形传感器的下表面为环形平面。
  5. 如权利要求4中所述的竖向测力球型支座,其中,所述环形平面设置有减摩层。
  6. 如权利要求1-5中任意一项所述的竖向测力球型支座,其中,所述凹球面与所述凸球面之间设置有减摩层。
  7. 如权利要求1-5中任意一项所述的竖向测力球型支座,其中,所述内锥形传感器的外侧面设置有凹槽,所述凹槽的侧面为斜面,所述应变片位于所述凹槽的底部。
  8. 如权利要求1-5中任意一项所述的竖向测力球型支座,其中,所述凸台为圆柱形。
  9. 如权利要求1-5中任意一项所述的竖向测力球型支座,其中,所述凹槽为圆柱形。
  10. 如权利要求1-5中任意一项所述的竖向测力球型支座,其中, 所述凸台与所述凹槽的内侧面为过盈配合。
PCT/CN2019/124052 2019-11-20 2019-12-09 一种竖向测力球型支座 WO2021097960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922008059.6 2019-11-20
CN201922008059.6U CN211395333U (zh) 2019-11-20 2019-11-20 一种竖向测力球型支座

Publications (1)

Publication Number Publication Date
WO2021097960A1 true WO2021097960A1 (zh) 2021-05-27

Family

ID=72215948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124052 WO2021097960A1 (zh) 2019-11-20 2019-12-09 一种竖向测力球型支座

Country Status (2)

Country Link
CN (1) CN211395333U (zh)
WO (1) WO2021097960A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206648A4 (en) * 2020-10-23 2024-03-27 Sichuan Sunlight Inspection and Testing Co., Ltd. METHOD FOR CALIBRATING FORCE MEASUREMENT OF BRIDGE BEARING SUPPORT IN SERVICE BASED ON PRECISE DETERMINATION OF FRICTION COEFFICIENT

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047105A (ko) * 2004-11-15 2006-05-18 주식회사 브이테크 계측용 광섬유센서가 일체로 내장결합된 교량받침
CN102032959A (zh) * 2010-11-23 2011-04-27 北京铁科首钢轨道技术有限公司 一种竖向智能测力支座
CN102095539A (zh) * 2010-11-23 2011-06-15 北京铁科首钢轨道技术有限公司 一种自调高多向智能测力支座
WO2014164689A2 (en) * 2013-03-12 2014-10-09 The Timken Company Load sensing bearing assembly
CN104294756A (zh) * 2014-10-28 2015-01-21 中铁二院工程集团有限责任公司 一种多向测力球型钢支座
CN106120547A (zh) * 2016-08-24 2016-11-16 洛阳双瑞特种装备有限公司 一种竖向测力型双曲面球型减隔震支座
CN106320166A (zh) * 2016-08-31 2017-01-11 李连秀 一种可测荷载的环状转体支座
CN208039046U (zh) * 2018-04-08 2018-11-02 衡水铭科新材料科技有限公司 一种桥梁健康的智能多向测力拉索支座
CN110106782A (zh) * 2019-04-26 2019-08-09 洛阳双瑞特种装备有限公司 一种竖向测力型桥梁支座以及测力方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047105A (ko) * 2004-11-15 2006-05-18 주식회사 브이테크 계측용 광섬유센서가 일체로 내장결합된 교량받침
CN102032959A (zh) * 2010-11-23 2011-04-27 北京铁科首钢轨道技术有限公司 一种竖向智能测力支座
CN102095539A (zh) * 2010-11-23 2011-06-15 北京铁科首钢轨道技术有限公司 一种自调高多向智能测力支座
WO2014164689A2 (en) * 2013-03-12 2014-10-09 The Timken Company Load sensing bearing assembly
CN104294756A (zh) * 2014-10-28 2015-01-21 中铁二院工程集团有限责任公司 一种多向测力球型钢支座
CN106120547A (zh) * 2016-08-24 2016-11-16 洛阳双瑞特种装备有限公司 一种竖向测力型双曲面球型减隔震支座
CN106320166A (zh) * 2016-08-31 2017-01-11 李连秀 一种可测荷载的环状转体支座
CN208039046U (zh) * 2018-04-08 2018-11-02 衡水铭科新材料科技有限公司 一种桥梁健康的智能多向测力拉索支座
CN110106782A (zh) * 2019-04-26 2019-08-09 洛阳双瑞特种装备有限公司 一种竖向测力型桥梁支座以及测力方法

Also Published As

Publication number Publication date
CN211395333U (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
Li et al. Development and application of a relative displacement sensor for structural health monitoring of composite bridges
CN102277884B (zh) 竖向静载荷试验桩头处理装置的施工方法
CN109469125B (zh) 一种光纤光栅传感检测的桩基荷载试验装置及其检测方法
CN102426085A (zh) 球面-回转面结合面接触刚度测试装置及方法
WO2021097960A1 (zh) 一种竖向测力球型支座
CN104294756A (zh) 一种多向测力球型钢支座
CN108342978A (zh) 一种带检测监测系统的测力球型支座
CN105547586B (zh) 弯矩传感器标定装置
CN110470593A (zh) 用于快速测定结构面模型材料摩擦系数的试验装置及方法
CN107841941A (zh) 分布式智能球型测力支座
Cai et al. Bridge deck load testing using sensors and optical survey equipment
CN113186839B (zh) 不等跨转体斜拉桥称配重方法
CN102912722B (zh) 一种球型多向测力支座
CN207714118U (zh) 分布式智能球型测力支座
Agusta et al. Structural monitoring and inspection modeling for structural system updating
CN112146803B (zh) 一种高精度竖向测力横向活动或固定球型支座的测力方法
CN102865953A (zh) 一种钢轨残余应力的超声在线检测精密夹持装置
CN103063382A (zh) 一种挠度自动测量装置及其测量方法
CN110725699A (zh) 盾构隧道管片圆端形凹凸榫剪力测量方法
CN204530446U (zh) 桥梁测力摩擦摆支座
CN204359468U (zh) 用于多向测力球型钢支座的测力环
CN111487002A (zh) 桥梁球型支座的测力方法
CN210166057U (zh) 智能测力摩擦摆支座
CN203310500U (zh) 大型结构物称重新型大位移柔性垫墩结构
CN212103650U (zh) 桥梁球型支座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953480

Country of ref document: EP

Kind code of ref document: A1