WO2021097921A1 - 皮米显微镜 - Google Patents

皮米显微镜 Download PDF

Info

Publication number
WO2021097921A1
WO2021097921A1 PCT/CN2019/122872 CN2019122872W WO2021097921A1 WO 2021097921 A1 WO2021097921 A1 WO 2021097921A1 CN 2019122872 W CN2019122872 W CN 2019122872W WO 2021097921 A1 WO2021097921 A1 WO 2021097921A1
Authority
WO
WIPO (PCT)
Prior art keywords
picometer
light
scale
light field
different
Prior art date
Application number
PCT/CN2019/122872
Other languages
English (en)
French (fr)
Inventor
周常河
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2021097921A1 publication Critical patent/WO2021097921A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems

Definitions

  • the invention relates to a microscope, particularly a pico-meter microscope, which is a device for measuring the pico-meter scale distribution of an object, and is used in pico-lithography, pico-scale light-substance interaction, pico-physics and other fields.
  • the pico-scale microscopic measurement is a difficult problem that science and technology urgently hope to overcome.
  • the pico-microscopic measurement has surpassed the limit of the current optical super-resolution technology.
  • the resolution of the lens is determined by the Abbe formula, which is proportional to the wavelength of the illumination used and inversely proportional to the numerical aperture of the lens.
  • the picometer comb invented in Prior Art 4 does provide picometer-scale modulation of the grating opening, but does not provide the function of picometer microscopic measurement.
  • the purpose of the present invention is to provide a picometer microscope, the core of which is to construct a reliable and controllable picometer modulated light field, which combines the modulation frequency or angle scan and wavelength scan of the beam to achieve a rich picometer structure light field.
  • the scanned or illuminated object is imaged on the detector by the microscope objective lens to obtain the light field distribution, thereby reconstructing the information of the picometer scale of the object, and realizing the function of the picometer microscope.
  • a picometer microscope which is characterized in that it includes a picometer illumination light field generating mechanism, the picometer-scale light probe output by the picometer illumination light field generating mechanism illuminates the object to be measured, and a transpicometer microscopic imaging lens, a picometer The microscopic detector obtains the picometer scale information of the object to be measured.
  • the picometer illumination light field generating mechanism is a multi-beam interference structure that forms a picometer-scale illumination light field, and includes:
  • Picometer-scale one-dimensional light field generated by the interference of three beams, including the interference of one left beam and two right beams with a slight angle, and there is a larger gap between one left beam and two right beams. The included angle. This larger angle determines the period of the grating field formed. There is a smaller included angle between the two right beams. The size of this included angle determines the period between the two grating field periods. The difference is the size of the beat frequency period between the different periods of the picometer comb light field.
  • Picometer-scale two-dimensional light field orthogonally generated by the aforementioned one-dimensional picometer comb light field, six orthogonal beams, of which three beams are in a plane XZ, producing a one-dimensional fringe field on the XZ plane , The other three beams of light in another orthogonal plane YZ produce fringe interference field in the YZ plane, and work together to produce a two-dimensional picometer modulated light field;
  • Angle-coded picometer structure light field generated by the interference of multiple light beams, one of which is formed by the interference of the left beam and multiple right beams with a slight included angle. By controlling the angle, a controllable picometer light field is realized;
  • Wavelength-encoded picometer light field produced by the interference of light of different wavelengths, interference fields of different wavelengths can produce slightly different picometer-scale modulated grating fields, and different picometer light fields can be controlled by choosing different wavelengths;
  • Angle conversion coding, wavelength coding, and modulation frequency pulse coding light fields through orthogonal interference respectively, orthogonal interference fields with different angles, different wavelengths, or different time domain pulse modulation are realized, and different angles and different wavelengths are selected. Control the two-dimensional picometer light field; or use different time domain pulses to control the two-dimensional picometer light field with different modulation frequencies;
  • the picometer light field is generated by femtosecond laser pulses or attosecond laser pulses to realize the microscopic measurement function of picometer scale under ultra-fast time scale, and observe the interaction of picometer scale light and matter under the modulation of femtosecond and attosecond laser pulses.
  • the picometer light field structure uses the focused light spot of the lens to form a picometer-scale optical probe through the intersection of the bifocals or the common part interacting with the picometer comb light field, using single focus and multi focus , Wavelength coding, time domain coding, femtosecond or attosecond laser coding, and various structured light coding technologies, etc., illuminate the object to be measured, obtain the picometer scale information of the object to be measured, and realize the microscopic measurement function of the picometer scale.
  • the value range of the slight included angle is from nanoradians to microradians.
  • the structured light field illumination of the present invention provides a signal with a high signal-to-noise ratio and a rich structured light field.
  • a measurement device for the interaction of light and matter under a variety of structured light fields has been developed to observe the process of interaction between light and matter at the picometer scale when multiple structured light fields are applied. , Which allows us to enter the optical world at the picometer scale, discover new optical phenomena and principles, and develop and promote its wide-ranging applications.
  • the invention can develop picometer lithography, picometer measurement, picometer scale nonlinear optical technology, open up the research direction of picometer femtosecond optics, picometer attosecond optics and other emerging disciplines, and is widely used in semiconductor lithography, picometer Physics, light and matter interact on the picometer scale and other fields.
  • Fig. 1 is a schematic diagram of Example 1 of a picometer microscope of the present invention.
  • Fig. 2 is a schematic diagram of Example 2 of the picometer microscope of the present invention.
  • Figure 3 is a partial schematic diagram of Example 3 of the picometer microscope of the present invention
  • Figure 4 is a schematic diagram of Example 4 of the picometer microscope of the present invention
  • Fig. 5 is the frequency modulation working mode of embodiment 5 of the picometer microscope of the present invention.
  • Figure 6 is a partial schematic diagram of Example 6 of the picometer microscope of the present invention
  • Figure 7(a) is a schematic diagram of using multi-angle beams to generate a two-dimensional picometer comb field.
  • Fig. 7(b) is a schematic diagram of using the multi-angle beam device of Fig. 7(a) to generate a two-dimensional orthogonal picometer optical comb field.
  • Figure 8(a) is a schematic diagram of using multi-wavelength beams to generate a two-dimensional picometer comb field.
  • Fig. 8(b) is a schematic diagram of using the multi-wavelength beam device of Fig. 8(a) to generate a two-dimensional orthogonal picometer optical comb field.
  • Fig. 9 is Example 7 of the present invention-picometer microscope with auxiliary illumination light.
  • Fig. 10 is a picometer microscope under the illumination of femtosecond laser in Example 8 of the present invention.
  • Figure 11 is Example 9 of the present invention-a picometer microscope under the action of multiple wavelengths.
  • Figure 12 is a picometer microscope under the action of multiple femtosecond or attosecond lasers in Example 10 of the present invention.
  • Fig. 13 is a picometer microscope under the action of multiple structured light fields in Example 11 of the present invention.
  • FIG. 1 is a schematic diagram of Embodiment 1 of a picometer microscope of the present invention.
  • 101 is the left beam of the picometer microscope
  • 201, 202 are the right beam of the picometer microscope
  • the angle between 101 and 201, 202 determines the distance d between the picometer light field 301 and 302; between the 201 and 202 beams
  • There is a small included angle ⁇ which determines the size and distribution characteristics of the width difference ⁇ d between the picometer light fields 301, 302, and 303.
  • the 301, 302, and 303 picometer light fields are used to illuminate or scan the object 40, and through the imaging lens 50, the picometer light field distribution can be obtained on the detector 60 to realize the function of a picometer microscope.
  • the picometer light field is condensed by the imaging lens 50 to realize picometer microscopic imaging on the imaging surface 60 thereof.
  • Fig. 2 is a schematic diagram of Example 2 of the picometer microscope of the present invention.
  • 102 is the left beam of the picometer microscope
  • 203, 204, and 205 are the right beam of the picometer microscope.
  • the angles between 203 and 204, 204 and 205 are ⁇ 1 , ⁇ 2 , and the left beam 102 and the right beams 203, 204, and 205 produce a light field with a picometer scale.
  • light field structures of 304, 305, and 306 can be generated, light field structure 304 and light field structure 305, and light field structure 305 and light field structure 305.
  • the distances between the light field structures 306 are X 1 and X 2 respectively .
  • the object 40 to be measured is illuminated with this structure, and after being collected by the imaging lens 50, it can be measured by the detector 60 to realize the function of a picometer microscope.
  • Fig. 3 is a partial schematic diagram of Example 3 of the picometer microscope of the present invention.
  • 103 is the left beam of the picometer microscope
  • 206, 207, 208 are the right beam of the picometer microscope
  • the effect produces more picometer-scale light fields, such as picometer-scale light fields shown in 307,...,309. If any one of the N beams of 206,..., 208 is closed or opened, this will cause a part of the picometer structure light field in the picometer light field, such as the 308,..., 309 picometer light field to appear or close.
  • Beams of 206, 207, and 208 with different angles ⁇ lead to picometer light fields 307,..., 309 equidistant as X 1 , X 2 , X N , where X can be calibrated to obtain a linear relationship 81, and the measurement points may be distributed in Both sides of 81 indicate that the linear relationship of 81 is obtained by fitting the measured data.
  • the position of the picometer light field moves from 308 to 309, which realizes the function of picometer scanning microscopic imaging.
  • FIG 4 is an embodiment of the present invention Mingpi Mi microscope 4.104,105 different wavelengths ( ⁇ 1 or ⁇ 2) left beams 209, 210 of different wavelengths ( ⁇ 1 or ⁇ 2) beams right, 104 and 105 209 and 210 function to generate picometer light fields with wavelength modulation, as shown in 310, 311, and 312, where the spatial distances between picometer light fields 310, 311, and 312 are X 3 , X 4 , respectively.
  • the light of different wavelength ⁇ causes the picometer light field 310, 311, 312 to move in the picometer scale by a distance X, where X can be scaled to obtain a linear relationship 82. If beams of different wavelengths such as 209, 210 are turned off or turned on, a part of the picometer structure light field in the picometer light field will appear or be turned off, so that the function of a picometer microscope can be realized.
  • Fig. 5 is the frequency modulation working mode of embodiment 5 of the picometer microscope.
  • the left beams 106, 107 and the right beams 211, 212 are turned on or off at different time frequencies.
  • Such picometer structured light fields 313, 314, 315 will also change at different frequencies, forming a unique scanning mode , Can scan and measure the object on the picometer scale.
  • Input light of different frequencies will cause the picometer light field to be modulated at different frequencies.
  • the phase lock 601 technology lock-in is used on the detection surface to lock the frequencies f 1 , f 2 , and the included angle.
  • feedback control input light 106, 107, and 211, 212, the calibrated frequency modulation picometer light field can realize the function of picometer microscope.
  • Fig. 6 is a partial schematic diagram of embodiment 6 of the picometer microscope-femtosecond laser/attosecond laser working mode.
  • the left beam 108 and the right beam 213, 214 are femtosecond pulses or attosecond pulses, and 108 and 213, 214 work together to generate picometer light fields 316, 317, 318.
  • this delay can be set to several hundred picoseconds to observe the thermal effect or ablation damage of the material under the action of the femtosecond laser.
  • Figure 7(a) is a schematic diagram of using multi-angle beams to generate a two-dimensional picometer comb field.
  • Red solid line on the right represents a plurality of light beams, the angle between them is ⁇ XZ1, ⁇ XZ2, ⁇ XZN (where N represents a plurality of light), the red solid lines left and right multi-red beam of the solid line
  • the beams of light are all in the XZ plane, and the angle between them is ⁇ XZ . They interfere to produce fringes in the X direction.
  • the width of the interference fringes can be expressed as ⁇ d x .
  • the upper black dotted line represents multiple beams, the angles between them are ⁇ YZ1 , ⁇ YZ2 , ⁇ YZN , the lower black dotted line and the upper black dotted line are both in the YZ plane, and the angle between them is ⁇ YZ , which interferes
  • the stripes in the Y direction are generated, and the width of the stripes can be expressed as ⁇ d y .
  • Fig. 7(b) is a schematic diagram of using the multi-angle beam device of Fig. 7(a) to generate a two-dimensional orthogonal picometer optical comb field.
  • the width in the X direction represents light field at X 1 Is ⁇ d x .
  • the picometer light fields distributed at distances Y 1 and Y 2 are generated by light beams with angles ⁇ YZ1 and ⁇ YZ2 respectively, and the width of the light field at Y 1 in the X direction is expressed as ⁇ d Y.
  • Figure 8(a) is a schematic diagram of using multi-wavelength beams to generate a two-dimensional picometer comb field.
  • Red solid line on the right indicates a plurality of wavelength beam, a wavelength between them is ⁇ XZ1, ⁇ XZ2, ⁇ XZN (where N represents a plurality of wavelengths), the left side of the red light beam of the solid line and the right solid line red They are all in the XZ plane, the angle between them is ⁇ XZ , they interfere to produce fringes in the X direction, and the width of the interference fringes can be expressed as ⁇ d x .
  • the upper black dotted line represents multi-wavelength light beams, the wavelengths between them are ⁇ YZ1 , ⁇ YZ2 , ⁇ YZN , the lower black dotted line and the upper black dotted line are both in the YZ plane, and the angle between them is ⁇ YZ , and they interfere to produce Y-direction fringes, interference between them produces Y-direction fringes, and the fringe width can be expressed as ⁇ d y .
  • Fig. 8(b) is a schematic diagram of using the multi-wavelength beam device of Fig. 8(a) to generate a two-dimensional orthogonal picometer optical comb field.
  • the distance X 1, X 2, Pico optical field X N distributions are represented by wavelength ⁇ XZ1, ⁇ XZ2, beams ⁇ XZN generated in the light field at X 1 in the width in the X direction is represented as ⁇ d x .
  • the picometer light fields distributed at distances Y 1 and Y 2 are generated by light beams with wavelengths ⁇ YZ1 and ⁇ YZ2 respectively, and the width of the light field at Y 1 in the X direction is expressed as ⁇ d Y.
  • Fig. 9 is Example 7 of the present invention-picometer microscope with auxiliary illumination light.
  • the left beam 109 and the right beams 215, 216 are coherent lights with a wavelength of ⁇ 4 , resulting in a picometer structure of 325, 326.
  • the incident light 901 with a wavelength of ⁇ 3 passes through the focusing lens 90, and at the focal point of the lens 90, a focal point 902 with a wavelength of ⁇ 3 is formed.
  • 326 is a picometer structure with a wavelength of ⁇ 4 , and the common intersection of 902 and 326 can form
  • the interaction area 904 of the two wavelengths has a width of X 9 and is imaged by the imaging lens 50 to form a light field of 905, which realizes the picometer microscopy function of the resolution of the dual wavelength interaction.
  • the selected material must react to the combined action of two wavelengths ⁇ 3 and ⁇ 4 , for example, the synergy of ⁇ 3 and ⁇ 4 pumps the electron energy level of the substance from a low energy level to a high energy level , Or produce a discoloration reaction, or the threshold effect of laser intensity. Regardless of the nonlinear optical effect, a change must be observed at the imaging point 905 of the image plane of the imaging lens 50.
  • Fig. 10 is a picometer microscope under the illumination of femtosecond laser in Example 8 of the present invention.
  • the left beam 110 and the right beams 217 and 218 are both continuous light (CW), resulting in a picometer structure of 327, 328 continuous light (CW).
  • the femtosecond incident light 906 passes through the focusing lens 90 and forms a femtosecond laser focus of 907 at its focal point.
  • the femtosecond laser 907 can interact with the substance to form a transmittance opening effect.
  • the common action area of 328 and 907 forms an area 908 where the femtosecond laser and continuous light act together. Its width can be expressed by X 10 , passing
  • the imaging lens 50 forms an image to form a light field distribution of 909 to realize the function of a picomicroscope under the action of a femtosecond laser or an attosecond laser.
  • 906 can be a femtosecond laser, for example, a femtosecond laser with a center wavelength of 800 nm, and 110, 217, and 218 are continuous lasers. They interact with each other to produce an imaging spot 909 on the image surface of the lens 50. In this way, it can be observed that the femtosecond laser and the continuous laser work together to realize the microscopic imaging function.
  • FIG 11 is Example 9 of the present invention-a picometer microscope under the action of multiple wavelengths.
  • the left beam 111 and the right beams 219, 220 are light fields with a wavelength of ⁇ 5 , which produce picometer structure light fields of 329, 330, and 331.
  • the other two wavelengths of incident light, the wavelength of the incident light 910 is ⁇ 6
  • the wavelength of the incident light 911 is ⁇ 7.
  • two focal points 912 and 913 are formed at the focal point, where 912 is the wavelength focus ⁇ 6, and the wavelength [lambda] 913 focus 7, two focal areas of common cross-hatched area indicates that the common intersection of the common area (hatched area) and a light field 330, a common effect of three wavelengths
  • the area 914 whose width is denoted by X 11 , is imaged by the imaging lens 50 to form a light field distribution of 915, which realizes the function of picometer microscopic resolution under the combined action of the three wavelengths.
  • two lasers with different wavelengths ⁇ 6 and ⁇ 7 interact with another picometer comb light field with a wavelength of ⁇ 5 to form 915 imaging points on the image plane of the imaging lens 50.
  • ⁇ 5 405 nm
  • ⁇ 6 800 nm
  • ⁇ 7 632.8 nm
  • Figure 12 is a picometer microscope under the action of multiple femtosecond or attosecond lasers in Example 10 of the present invention.
  • the left light beam 112 and the right light beams 221, 222 are light fields of continuous wavelengths, resulting in continuous light picometer structures of 331, 332, and 333.
  • the other two femtosecond laser (or attosecond laser) incident lights 916, 917 after being condensed by the focusing lens 90, form two focal points 918 and 919 at their focal points, of which 918 is the femtosecond laser 1 (fs 1 )
  • the focal point, 919 is the focal point of femtosecond laser 2 (fs 2 ).
  • the common intersection area of the two femtosecond laser focal points is indicated by a diagonal line.
  • the common area of these two femtosecond lasers (the diagonal line) and the picosecond laser structure 332 The crossing part forms 920 with a width of X 12 , which forms an area 920 where three laser beams (two femtosecond beams and one continuous beam) work together.
  • a light field distribution of 921 is formed on the imaging surface to achieve The function of picometer microscope under the combined action of femtosecond laser and continuous laser.
  • the interaction of two different femtosecond lasers (fs 1 , fs 2 ) and another continuous laser (CW) forms a spot 921 on the image surface of the imaging lens 50 to observe the femtosecond Microscopic imaging process under the interaction of laser and continuous laser.
  • Fig. 13 is a picometer microscope under the action of multiple structured light fields in Example 11 of the present invention.
  • the left beam 113 interferes with the right beams 223 and 224 to form picometer structured light fields 333 and 334.
  • the incident structured light 922, 923 can be in a variety of structured light forms.
  • two focal points 924 and 925 are formed at its focal point.
  • the common area of the two focal points is represented by a diagonal area, of which 926 is
  • the common intersecting area (diagonal area) of the two focal points (924, 925) and the joint action range of the picometer structure light field 333 have a width of X 14 .
  • the focused light spots 924, 925 and the interaction area 926 are imaged by the imaging lens 50 to form two imaging points 927 and 928, and the distribution of the common intersection area 929, the width of which is X′ 14 .
  • This common resolution area 929 realizes the picometer microscopy function under the action of multiple structured lights.
  • the multiple structured lights here can be left-handed polarized light 930, radially polarized light 931, 934, or light of different vortex angular momentum 932, 933, or right-handed polarized light 935.
  • These different types of structured lights, such as 936, 937, 938, 939 can be loaded on different incident lights 922, 923.
  • the radially polarized light 931, 934 produces the structured light 940, 943 with zero electric field component at the focal point and the largest axial magnetic field component, so that the structured light (940, 943) of the two axial magnetic field components can be in contact with the object.
  • Meter-scale interactions observe the effects of these specific structured lights interacting with objects on the pico-meter scale.
  • the polarized light fields 932, 933 may also have different angles along the optical axis, such as 941, 942, which are used to observe the interaction of structured light with different polarization angles and objects.
  • the common intersection of these structured light fields can form a rich picometer-scale optical probe whose width is represented by X 14 to realize a rich picometer microscope with structured light resolution.
  • illuminating light with different structures forms a common image point on the imaging surface of the imaging lens 50 929.
  • a rich picometer structured light field can be obtained, and their interaction behavior at the picometer scale can be observed.
  • the structured light field illumination of the present invention provides a signal with a high signal-to-noise ratio and a rich structured light field.
  • a measurement device for the interaction of light and matter under a variety of structured light fields has been developed to observe the process of interaction between light and matter at the picometer scale when multiple structured light fields are applied. , Which allows us to enter the optical world at the picometer scale, discover new optical phenomena and principles, and develop and promote its wide-ranging applications.
  • the invention can develop picometer lithography, picometer measurement, picometer scale nonlinear optical technology, open up the research direction of picometer femtosecond optics, picometer attosecond optics and other emerging disciplines, and is widely used in semiconductor lithography, picometer Physics, light and matter interact on the picometer scale and other fields.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种皮米显微镜,包括皮米照明光场产生机构,其输出的皮米尺度的光探针照明待测物体(40),经皮米显微成像透镜(50)、皮米显微探测器(60)得到待测物体的皮米尺度信息;从而可以开发出皮米光刻、皮米测量、皮米尺度非线性光学技术,开辟皮米飞秒光学、皮米阿秒光学等新兴学科研究方向,广泛地应用于半导体光刻、皮米物理、光与物质在皮米尺度相互作用等多个领域。

Description

皮米显微镜 技术领域
本发明涉及显微镜,特别是一种皮米显微镜,是测量物体皮米尺度分布的装置,应用于皮米光刻、皮米尺度光与物质相互作用,皮米物理等多个领域。
背景技术
皮米尺度的显微测量是科学技术迫切希望攻克的难题,皮米显微测量超越了目前光学超分辨技术的极限。我们知道,利用透镜可以实现显微测量,透镜的分辨率由阿贝公式所决定,也就是和所用的照明波长成正比,与透镜的数值孔径成反比。
实现超过衍射极限的成像技术一直是迫切追求的目标,这个技术叫做超分辨技术。目前有两类超分辨技术最为突出。一类是由Stephen Hall发明的“激发发射损耗(STED)”显微成像技术,这个技术和结构光照明超分辨技术获得了2014年诺贝尔化学奖。另一类技术是表面等离子体基元技术(Surface Plasmon),它是通过激发表面的等离子体基元实现超分辨。但是这两类技术目前都局限在纳米以上量级,无法突破进入到皮米量级。
我们知道,在大尺寸光栅的研制过程中,采用激光直写技术的光栅测量精度达到了皮米量级。美国麻省理工学院发明了纳米光刻技术(Nanoruler),其中光栅干涉场的周期测量达到了皮米量级。(在先技术1:Chen C G.Beam alignment and image metrology for scanning beam interference lithography:fabricating gratings with nanometer phase accuracy,美国麻省理工学院博士论文,2003)。上海光机所对干涉光栅场周期精度测量也达到了皮米量级(在先技术2:Applied Optics 57,4777-4784(2018));特别是上海光机所发明的扫描参考光栅技术,对全息干涉场测量得到了皮米精度的实验结果(在先技术3,Applied Optics 58,2929-2935(2019)).
采用在先技术1,2,3,都可以得到干涉场的皮米测量精度。但是,他们都不能直接应用于物体的皮米尺度测量。基于利用不同光栅周期皮米尺度差值实现皮米器件的思想,周常河发明了皮米光梳技术(在先技术4,皮米光梳、皮米光梳的制造装置和制造方法,发明专利申请号:201910368137.9),也就是利用两个皮米尺 度光栅的差值,使每个光栅周期内的开口都以皮米或纳米尺度增加或减少,这为皮米尺度的显微测量提供了有力的工具。
在先技术4发明的皮米光梳确实提供了光栅开口的皮米尺度调制,但不提供皮米显微测量的功能。目前阶段,我们无法保证做出皮米尺度调制的真实物体,特别是连续皮米尺度变化的物体,例如,连续变化光栅开口比的光栅,因为目前没有皮米尺度调制的光刻胶以及相应的显影与定影技术,因此,直接采用在先技术4,很难保证实现皮米显微测量功能。
发明内容
本发明的目的在于提供一种皮米显微镜,其核心是构建出可靠、可控的皮米调制光场,结合光束的调制频率或角度扫描、波长扫描,实现丰富的皮米结构光场,以此扫描或照明物体,经显微物镜成像在探测器上,得到光场分布,以此重建物体皮米尺度的信息,实现皮米显微镜的功能。
本发明的技术解决方案如下:
一种皮米显微镜,其特点在于包括皮米照明光场产生机构,该皮米照明光场产生机构输出的皮米尺度的光探针照明待测物体,经皮米显微成像透镜、皮米显微探测器得到待测物体的皮米尺度信息。
所述的皮米照明光场产生机构是形成皮米尺度照明光场的多光束干涉结构,包括:
1)皮米尺度的一维光场:由三束光干涉产生,包括一束左光束与两束有轻微夹角右光束干涉形成,一束左光束与两束右光束之间有较大的夹角,这个较大的夹角决定了所形成光栅场的周期,所述的两束右光束之间有一个较小的夹角,这个夹角的大小决定了两个光栅场周期之间的差值,也就是皮米光梳光场的不同周期之间拍频周期大小,通过调节这两束光之间的夹角,可以选择皮米光梳光场的不同皮米尺度的间距用于照明物体,通过控制这两束物光之间的位相,可以选择不同的皮米结构光场照明物体;
2)皮米尺度的二维光场:由前述的一维皮米光梳光场正交产生,正交的六束光,其中三束光在一个平面XZ内,产生XZ平面的一维条纹场,另三束光在另一个正交平面YZ内,产生YZ平面内的条纹干涉场,共同作用产生二维的皮米调制光场;
3)角度编码的皮米结构光场:由多束光干涉产生,其中一束作为左光束与多束有轻微夹角的右光束干涉而形成,通过控制角度,实现可控制的皮米光场;
4)波长编码的皮米光场:由不同波长光干涉产生,不同波长的干涉场可以产生略微不同的皮米尺度调制光栅场,选择不同波长就可以控制不同的皮米光场;
5)角度变换编码、波长编码、调制频率脉冲编码的光场:分别通过正交干涉的方式,实现不同角度、不同波长、或不同时域脉冲调制的正交干涉场,选择不同角度、不同波长控制二维皮米光场;或采用不同时域脉冲,控制不同调制频率的二维皮米光场;
6)角度变换、波长编码、或时域脉冲编码光场同时或混合使用,实现不同角度、不同波长、不同频率调制的一维、二维干涉场;
7)皮米光场由飞秒激光脉冲或者阿秒激光脉冲产生,实现超快时间尺度下皮米尺度的显微测量功能,观察飞秒、阿秒激光脉冲调制下皮米尺度光与物质相互作用行为;采用时域编码技术和频率锁定技术,实现不同脉冲调制下的皮米显微成像,观察时域脉冲调制下物质在皮米尺度相互作用行为;采用飞秒激光脉冲或者阿秒激光脉冲,通过控制飞秒激光脉冲之间的延迟,以及飞秒脉冲或阿秒脉冲之间皮米调制距离,实现飞秒或阿秒激光调制下的皮米显微成像,观察飞秒、阿秒激光脉冲调制下的皮米尺度相互作用行为。
所述的皮米光场结构是利用透镜的聚焦光点,通过双焦点的交叉部分,或与皮米光梳光场相互作用的公共部分,形成皮米尺度的光探针,采用单焦点、多焦点、波长编码、时域编码、飞秒或阿秒激光编码,以及各种结构光编码技术等,照明待测物体,得到待测物体的皮米尺度信息,实现皮米尺度的显微测量功能。
所述的轻微夹角的取值范围为从纳弧度到微弧度。
本发明的技术效果如下:
本发明结构光场照明提供了高信噪比的信号和丰富的结构光场。通过这些结构光场相互之间的作用,开发出多种结构光场下光与物质相互作用的测量装置,用于观察多种结构光场作用时,皮米尺度下光与物质相互作用的过程,使得我们可以进入皮米尺度下的光学世界,发现新的光学现象、原理,并开发推广其广泛应用。
本发明可以开发出皮米光刻、皮米测量、皮米尺度非线性光学技术,开辟皮米飞秒光学、皮米阿秒光学等新兴学科研究方向,广泛地应用于半导体光刻、皮米物理、光与物质在皮米尺度相互作用等多个领域。
附图说明
图1是本发明皮米显微镜实施例1的示意图。
图2是本发明皮米显微镜实施例2的示意图。
图3是本发明皮米显微镜实施例3的部分示意图
图4是本发明皮米显微镜实施例4的示意图
图5是本发明皮米显微镜实施例5的频率调制工作模式。
图6是本发明皮米显微镜实施例6的部分示意图
图7(a)是利用多角度光束产生二维皮米光梳场的示意图。
图7(b)是利用图7(a)多角度光束装置产生二维正交皮米光梳场的示意图。
图8(a)是利用多波长光束产生二维皮米光梳场的示意图。
图8(b)是利用图8(a)多波长光束装置产生二维正交皮米光梳场的示意图。
图9是本发明实施例7--有辅助照明光下的皮米显微镜。
图10是本发明实施例8--飞秒激光照明下的皮米显微镜。
图11是本发明实施例9--多波长作用下的一种皮米显微镜。
图12是本发明实施例10--多束飞秒或阿秒激光作用下的一种皮米显微镜。
图13是本发明实施例11--多种结构光场作用下的一种皮米显微镜。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,但不应以此限制本发明的保护范围。
先请参阅图1,图1是本发明皮米显微镜实施例1的示意图。101为皮米显微镜的左光束,201,202为皮米显微镜的右光束,101与201、202之间的夹角决定了皮米光场301与302之间的距离d;201与202光束之间有一个微小的夹角Δθ,这个夹角决定了皮米光场301,302,303之间宽度差值Δd的大小与分布特性。利用301,302,303皮米光场照射或扫描物体40,通过成像透镜50,就可以在探测器60上得到皮米光场的分布,实现皮米显微镜的功能。
对于光栅周期d=1000nm的光栅,两个光栅之间的差值可以设置为Δd=100pm,则皮米光场301的宽度为Δd=100pm,其邻域皮米光场302的宽度为2Δd=200pm,皮米光场303的宽度为3Δd=300pm等。这样,皮米光场被成像透镜50所收聚、在其成像面60实现皮米显微成像。
图2是本发明皮米显微镜实施例2的示意图。如图2所示,102为皮米显微镜的左光束,203,204,205为皮米显微镜的右光束,203与204、204与205之间的 夹角分别为Δθ 1、Δθ 2,左光束102与右光束203、204、205的共同作用产生具有皮米尺度的光场,例如:可以产生304,305,306的光场结构,光场结构304与光场结构305、光场结构305与光场结构306之间的距离分别为X 1,X 2。以此结构照明待测物体40,经成像透镜50收集后,可以由探测器60测量得到,实现皮米显微镜的功能。
通过控制右光束203,204,205之间的夹角,使得X 1、X 2连续可调,例如,X 1=150pm,X 2=150pm等,从而通过成像透镜实现皮米显微成像。
图3是本发明皮米显微镜实施例3的部分示意图。103为皮米显微镜的左光束,206,207,208为皮米显微镜的右光束,206、…、208之间有N束不同夹角的光束,103光束与206、…、208的N束光束作用产生更多具有皮米尺度光场,如307、…、309所示的皮米尺度光场。如果206、…、208的N束光束中任一光束关闭或打开,这样,会导致皮米光场中一部分皮米结构光场,例如308、…、309皮米尺度光场出现或关闭。不同夹角Δθ的206,207,208等光束导致皮米光场307、…、309等距离为X 1,X 2,X N,其中X可以通过定标得到线性关系81,其中测量点可能分布在81的两侧,表明81的线性关系是由测量数据拟合得到。
通过控制右光束206,207,208之间的夹角,可以实现X 1,X 2,X N的连续可调,例如:X N=150pm等。特别是当激光束207,208整体同时以290方向旋转一个角度后,皮米光场位置从308移动到309,实现了皮米扫描显微成像的功能。
图4是本发明皮米显微镜实施例4。104,105为不同波长(λ 1或λ 2)的左光束,209,210为不同波长(λ 1或λ 2)的右光束,104,105与209,210作用产生具有波长调制的皮米光场,如310,311,312所示,其中,皮米光场310,311,与312之间的空间距离分别为X 3,X 4。不同波长λ的光导致皮米光场310,311,312在皮米尺度移动距离为X,其中X可以通过定标得到线性关系82。如果209,210等不同波长光束关闭或打开,会导致皮米光场中一部分皮米结构光场出现或关闭,以此可以实现皮米显微镜的功能。
如图4所示,通过控制入射光的波长λ 1,λ 2,从波长λ 1移动到λ 2,使得皮米光场从311移动到312,这个移动量达到了皮米量级,例如,X 3=150pm,X 4=150pm等。
图5是皮米显微镜实施例5的频率调制工作模式。左光束106,107与右光束211,212以不同的时间频率打开或关闭,这样的皮米结构光场313,314,315也会 以不同的频率而变化,以此形成了独特的扫描工作模式,可以对物体进行皮米尺度的扫描测量。不同频率的输入光会导致皮米光场以不同频率调制,这样的光场经过透镜50收集后,在探测面上通过锁相601技术lock-in,可以锁定频率f 1,f 2,和夹角Δθ,反馈控制输入光106,107,和211,212,标定后的频率调制皮米光场可以实现皮米显微镜的功能。
如图5所示,不同调制频率f 1,f 2的光可以作为皮米光梳光场的入射光,例如,f 1=80MHz,f 2=100MHz等。不同频率的光通过锁相器(lock-in)锁定到特定频率f 1,f 2上,实现了皮米尺度下不同频率光与物质相互作用的功能。
图6是皮米显微镜实施例6的部分示意图--飞秒激光/阿秒激光工作模式。左光束108与右光束213,214是飞秒脉冲或阿秒脉冲,108与213、214共同作用产生皮米光场316,317,318。输入光213,214的飞秒脉冲或阿秒脉冲之间有一个延迟(delay),这样皮米结构光场317,318之间也有一个延迟,例如,3171,3181分别是317,318在时间维度上的表达,它们之间有一个时间延迟(delay),3178是3181在3171在时间维度上共同作用部分,利用这个3171与3181之间交叉部分3178,其宽度如X 8所示,就可以实现阿秒脉冲、或飞秒脉冲时间分辨尺度与物体在皮米尺度分辨距离的作用,实现皮米显微镜的功能。
如图6所示,当入射光213,214之间有一个可控的延迟(delay),就可以通过控制这个延迟来研究脉冲光与物质在皮米尺度下瞬态时间参数。如果采用飞秒脉冲,这个延迟(Delay)可以设置几百皮秒,观察飞秒激光作用下,材料的热作用或烧蚀破坏作用等。
图7(a)是利用多角度光束产生二维皮米光梳场的示意图。右侧红实线表示多个光束,它们之间的夹角为Δθ XZ1、Δθ XZ2、Δθ XZN(其中N表示多个光束),左侧红实线一束光与右侧红实线的多束光均在XZ平面内,它们之间的夹角θ XZ,它们干涉产生X方向的条纹,其干涉条纹的宽度可以表示为Δd x。上部黑虚线表示多个光束,它们之间的夹角为Δθ YZ1、Δθ YZ2、Δθ YZN,下部的黑虚线与上部的黑虚线都在YZ平面内,它们之间的夹角θ YZ,其干涉产生Y方向的条纹,其条纹宽度可以表示为Δd y
图7(b)是利用图7(a)多角度光束装置产生二维正交皮米光梳场的示意图。在X方向上,在距离X 1,X 2,X N分布的皮米光场分别由夹角为θ XZ1、θ XZ2、θ XZN的光束产生,在X 1处的光场在X方向的宽度表示为Δd x。在Y方向上,在距离Y 1,Y 2分布的皮米 光场分别由夹角为θ YZ1、θ YZ2的光束产生,在Y 1处的光场在X方向的宽度表示为Δd Y
图8(a)是利用多波长光束产生二维皮米光梳场的示意图。右侧红实线表示多个波长光束,它们之间的波长为λ XZ1、λ XZ2、λ XZN(其中N表示多个波长),左侧红实线一束光与右侧红实线的光均在XZ平面内,它们之间的夹角θ XZ,它们干涉产生X方向的条纹,其干涉条纹的宽度可以表示为Δd x。上部黑虚线表示多波长光束,它们之间的波长为λ YZ1、λ YZ2、λ YZN,下部的黑虚线与上部的黑虚线都在YZ平面内,它们之间的夹角θ YZ,它们干涉产生Y方向的条纹,其它们之间的干涉产生Y方向的条纹,其条纹宽度可以表示为Δd y
图8(b)是利用图8(a)多波长光束装置产生二维正交皮米光梳场的示意图。在X方向上,在距离X 1,X 2,X N分布的皮米光场分别由波长为λ XZ1、λ XZ2、λ XZN的光束产生,在X 1处的光场在X方向的宽度表示为Δd x。在Y方向上,在距离Y 1,Y 2分布的皮米光场分别由波长为λ YZ1、λ YZ2的光束产生,在Y 1处的光场在X方向的宽度表示为Δd Y
如图7,8所示,控制不同光束之间的夹角,使得X 1,X 2,X N连续可调,例如,X 1=150pm,X 2=150pm,X N=150pm等;同时,Y方向之间的距离也可以调节,例如,Y 1=1000nm,Y 2=1000nm等。
图9是本发明实施例7--有辅助照明光下的皮米显微镜。左光束109与右光束215,216为波长λ 4的相干光,产生了325,326的皮米结构。波长为λ 3的入射光901,经过聚焦透镜90,在透镜90的焦点处,形成波长为λ 3的焦点902。326为波长λ 4的皮米结构,902与326的公共交叉处,可以形成两个波长的共同作用区域904,其宽度为X 9,经过成像透镜50成像,形成905的光场,实现了双波长共同作用分辨的皮米显微功能。
如图9所示,所选材料必须对两个波长λ 3,λ 4的共同作用产生反应,例如,λ 3,λ 4的协同作用,将物质的电子能级从低能级泵浦到高能级,或者产生变色反应,或者激光强度的阈值作用。不论何种非线性光学作用,都要在成像透镜50的像面成像点905观察到变化。
图10是本发明实施例8--飞秒激光照明下的皮米显微镜。左光束110与右光束217,218均为连续光(CW),产生了327,328的连续光(CW)的皮米结构。飞秒入射光906,经过聚焦透镜90,在其焦点处,形成907的飞秒激光焦点。飞秒激光907可以和物质相互作用,形成透过率开口效应,此时,328与907的公共作用区域, 形成飞秒激光与连续光共同作用的区域908,其宽度可以用X 10表示,经过成像透镜50成像,形成909的光场分布,实现飞秒激光或阿秒激光作用下皮米显微镜的功能。
如图10所示,906可以为飞秒激光,例如中心波长在800nm的飞秒激光,110,217,218为连续激光,它们的相互共同作用,在透镜50的像面上产生成像光斑909,以此可以观察到飞秒激光与连续激光共同作用,实现显微成像功能。
图11是本发明实施例9--多波长作用下的一种皮米显微镜。左光束111与右光束219,220为波长λ 5的光场,产生了329,330,331的皮米结构光场。另外两个波长的入射光,入射光910的波长为λ 6,入射光911的波长为λ 7,经过聚焦透镜90会聚后,在其焦点处,形成912,913两个焦点,其中912为波长λ 6的焦点,913为波长λ 7的焦点,这两个焦点公共交叉区域为斜线区表示,这个公共区域(斜线区)和330光场的共同交叉部分,形成三个波长共同作用的区域914,其宽度用X 11表示,经过成像透镜50成像,形成915的光场分布,实现三个波长共同作用下的皮米显微分辨的功能。
如图11所示,两个不同波长λ 6,λ 7的激光,和另一束波长为λ 5的皮米光梳光场相互作用,在成像透镜50的像面上,形成了915成像点,以此观察三束激光在皮米尺度下的相互作用,例如,λ 5=405nm,λ 6=800nm,λ 7=632.8nm等。
图12是本发明实施例10--多束飞秒或阿秒激光作用下的一种皮米显微镜。左光束112与右光束221,222为连续波长的光场,产生了331,332,333的连续光皮米结构。另外两束飞秒激光(或阿秒激光)入射光916,917,经过聚焦透镜90会聚后,在其焦点处,形成918,919两个焦点,其中918为飞秒激光1(fs 1)的焦点,919为飞秒激光2(fs 2)的焦点,这两个飞秒激光焦点公共交叉区域用斜线区表示,这两个飞秒激光公共区域(斜线区)与皮米光结构332的交叉部分,形成920,其宽度为X 12,形成三束激光(两束飞秒光,一束连续光)共同作用的区域920,经过成像透镜50,在成像面形成921的光场分布,实现飞秒激光与连续激光共同作用下的皮米显微镜的功能。
如图12所示,两束不同飞秒激光(fs 1,fs 2)与另外一束连续激光(CW)的相互作用,在成像透镜50的像面上,形成光斑921,以此观察飞秒激光与连续激光相互作用下的显微成像过程。
图13是本发明实施例11--多种结构光场作用下的一种皮米显微镜。左光束113 与右光束223,224干涉形成皮米结构光场333,334。入射结构光922,923可以为多种结构光形式,经过聚焦透镜90会聚后,在其焦点处,形成924,925两个焦点,这两个焦点的公共区域用斜线区表示,其中926为这两个焦点(924,925)的公共交叉区域(斜线区)与皮米结构光场333的共同作用范围,其宽度为X 14。聚焦光点924,925及共同作用区域926经过成像透镜50成像,形成927,928两个成像点,以及公共交叉区域929的分布,其宽度为X′ 14。这个共同作用分辨区域929,就实现了多种结构光作用下的皮米显微功能。这里多种结构光可以是左旋偏振光930,径向偏振光931,934,也可以是不同涡旋角动量光932,933,也可以右旋偏振光935。这些不同种类结构光,例如936,937,938,939可以加载到不同入射光922,923上。其中径向偏振光931,934在焦点处产生电场分量为零,轴向磁场分量为最大的结构光940,943,这样两个轴向磁场分量的结构光(940,943)可以和物体在皮米尺度相互作用,观察这些特定的结构光与物体在皮米尺度相互作用的效应。偏振光场932,933也可能沿光轴方向有不同角度,例如941,942,用于观察不同偏振角度的结构光和物体的相互作用。这些结构光场的公共交叉部分,可以形成丰富的皮米尺度的光探针,其宽度如X 14表示,实现丰富的结构光分辨的皮米显微镜。
如图13所示,采用不同结构的照明光,包括不同偏振、径向、切向偏振光,或不同涡旋角动量的结构光,它们在成像透镜50的成像面上,形成共同作用像点929。控制这些结构光的参数,可以得到丰富的皮米结构光场,观察它们在皮米尺度下的相互作用的行为。
实验表明,本发明结构光场照明提供了高信噪比的信号和丰富的结构光场。通过这些结构光场相互之间的作用,开发出多种结构光场下光与物质相互作用的测量装置,用于观察多种结构光场作用时,皮米尺度下光与物质相互作用的过程,使得我们可以进入皮米尺度下的光学世界,发现新的光学现象、原理,并开发推广其广泛应用。
本发明可以开发出皮米光刻、皮米测量、皮米尺度非线性光学技术,开辟皮米飞秒光学、皮米阿秒光学等新兴学科研究方向,广泛地应用于半导体光刻、皮米物理、光与物质在皮米尺度相互作用等多个领域。

Claims (4)

  1. 一种皮米显微镜,其特征在于包括皮米照明光场产生机构,该皮米照明光场产生机构输出的皮米尺度的光探针照明待测物体,经皮米显微成像透镜(50)、皮米显微探测器(60)得到待测物体的皮米尺度信息。
  2. 根据权利要求1所述的皮米显微镜,其特征在于,所述的皮米照明光场产生机构是形成皮米尺度照明光场的多光束干涉结构,包括:
    1)皮米尺度的一维光场:由三束光干涉产生,包括一束左光束与两束有轻微夹角右光束干涉形成,一束左光束与两束右光束之间有较大的夹角,这个较大的夹角决定了所形成光栅场的周期,所述的两束右光束之间有一个较小的夹角,这个夹角的大小决定了两个光栅场周期之间的差值,也就是皮米光梳光场的不同周期之间拍频周期大小,通过调节这两束光之间的夹角,可以选择皮米光梳光场的不同皮米尺度的间距用于照明物体,通过控制这两束物光之间的位相,可以选择不同的皮米结构光场照明物体;
    2)皮米尺度的二维光场:由前述的一维皮米光梳光场正交产生,正交的六束光,其中三束光在一个平面XZ内,产生XZ平面的一维条纹场,另三束光在另一个正交平面YZ内,产生YZ平面内的条纹干涉场,共同作用产生二维的皮米调制光场;
    3)角度编码的皮米结构光场:由多束光干涉产生,其中一束作为左光束与多束有轻微夹角的右光束干涉而形成,通过控制角度,实现可控制的皮米光场;
    4)波长编码的皮米光场:由不同波长光干涉产生,不同波长的干涉场可以产生略微不同的皮米尺度调制光栅场,选择不同波长就可以控制不同的皮米光场;
    5)角度变换编码、波长编码、调制频率脉冲编码的光场:分别通过正交干涉的方式,实现不同角度、不同波长、或不同时域脉冲调制的正交干涉场,选择不同角度、不同波长控制二维皮米光场;或采用不同时域脉冲,控制不同调制频率的二维皮米光场;
    6)角度变换、波长编码、或时域脉冲编码光场同时或混合使用,实现不同角度、不同波长、不同频率调制的一维、二维干涉场;
    7)皮米光场由飞秒激光脉冲或者阿秒激光脉冲产生,实现超快时间尺度下皮米尺度的显微测量功能,观察飞秒、阿秒激光脉冲调制下皮米尺度光与物质相互作用行为;采用时域编码技术和频率锁定技术,实现不同脉冲调制下的皮米显微成像,观察时域脉冲调制下物质在皮米尺度相互作用行为;采用飞秒激光脉冲或者阿秒激光脉冲,通过控制飞秒激光脉冲之间的延迟,以及飞秒脉冲或阿秒脉冲之间皮米调制距离,实现飞秒或阿秒激光调制下的皮米显微成像,观察飞秒、阿秒激光脉冲调 制下的皮米尺度相互作用行为。
  3. 根据权利要求1所述的皮米显微镜,其特征在于,所述的皮米光场结构是利用透镜的聚焦光点,通过双焦点的交叉部分,或与皮米光梳光场相互作用的公共部分,形成皮米尺度的光探针,采用单焦点、多焦点、波长编码、时域编码、飞秒或阿秒激光编码,以及各种结构光编码技术等,照明待测物体,得到待测物体的皮米尺度信息,实现皮米尺度的显微测量功能。
  4. 根据权利要求2或3所述的皮米显微镜,其特征在于,所述的轻微夹角的取值范围为从纳弧度到微弧度。
PCT/CN2019/122872 2019-11-18 2019-12-04 皮米显微镜 WO2021097921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911127409.9A CN110986761B (zh) 2019-11-18 2019-11-18 皮米显微镜
CN201911127409.9 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021097921A1 true WO2021097921A1 (zh) 2021-05-27

Family

ID=70084786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122872 WO2021097921A1 (zh) 2019-11-18 2019-12-04 皮米显微镜

Country Status (2)

Country Link
CN (1) CN110986761B (zh)
WO (1) WO2021097921A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229318A (zh) * 2020-09-14 2021-01-15 中国科学院上海光学精密机械研究所 皮米尺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375069A (zh) * 1999-07-09 2002-10-16 康宁股份有限公司 修整光纤部件光程的方法和装置
JP2007248168A (ja) * 2006-03-15 2007-09-27 Canon Inc 原子間力顕微鏡
CN107543500A (zh) * 2017-08-22 2018-01-05 苏州大学 一种基于微透镜莫尔成像的精密微位移检测装置及方法
CN109374259A (zh) * 2018-11-07 2019-02-22 暨南大学 全息光栅周期高精度在线测量与调节装置
CN110187424A (zh) * 2019-05-05 2019-08-30 中国科学院上海光学精密机械研究所 皮米光梳、皮米光梳的制造装置和制造方法
CN110360924A (zh) * 2019-07-22 2019-10-22 中国科学院大学 一种双波长叠层显微成像方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1182411C (zh) * 2002-09-19 2004-12-29 北京大学 利用超短激光脉冲制备光栅器件和实现全息存储的方法
CN201335894Y (zh) * 2009-01-14 2009-10-28 厦门大学 全息光栅型1×2分波器
US9953802B2 (en) * 2014-01-21 2018-04-24 Ramot At Tel-Aviv University Ltd. Method and device for manipulating particle beam
CN106940389B (zh) * 2017-02-06 2018-06-19 华中科技大学 一种超分辨可溯源的白光干涉原子力探针标定装置及标定方法
CN107678151B (zh) * 2017-04-21 2020-04-10 中国科学院苏州生物医学工程技术研究所 基于干涉阵列光场的共聚焦并行显微成像仪
EP3528032A3 (en) * 2018-01-23 2019-11-13 Facebook Technologies, LLC Slanted surface relief grating for rainbow reduction in waveguide display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375069A (zh) * 1999-07-09 2002-10-16 康宁股份有限公司 修整光纤部件光程的方法和装置
JP2007248168A (ja) * 2006-03-15 2007-09-27 Canon Inc 原子間力顕微鏡
CN107543500A (zh) * 2017-08-22 2018-01-05 苏州大学 一种基于微透镜莫尔成像的精密微位移检测装置及方法
CN109374259A (zh) * 2018-11-07 2019-02-22 暨南大学 全息光栅周期高精度在线测量与调节装置
CN110187424A (zh) * 2019-05-05 2019-08-30 中国科学院上海光学精密机械研究所 皮米光梳、皮米光梳的制造装置和制造方法
CN110360924A (zh) * 2019-07-22 2019-10-22 中国科学院大学 一种双波长叠层显微成像方法及系统

Also Published As

Publication number Publication date
CN110986761B (zh) 2021-07-06
CN110986761A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
KR102074279B1 (ko) 구조광 조명을 연속적으로 조절 가능한 초고해상도 현미경 이미징 방법 및 시스템
US20120069344A1 (en) High resolution structured illumination microscopy
US20050195480A1 (en) System and method converting the polarization state of an optical beam into an inhomogeneously polarized state
Bai et al. Focusing error detection based on astigmatic method with a double cylindrical lens group
KR20160055967A (ko) 계측 시스템의 조명 서브시스템들, 계측 시스템들 및 계측 측정들을 위한 표본을 조명하기 위한 방법들
US7957250B2 (en) Optical head
He et al. Single-color peripheral photoinhibition lithography of nanophotonic structures
Wen et al. Optical nanolithography with λ/15 resolution using bowtie aperture array
Zhu et al. Parallel laser writing system with scanning Dammann lithography
Yao et al. High-efficiency fabrication of computer-generated holograms in silica glass using a femtosecond Bessel beam
WO2021097921A1 (zh) 皮米显微镜
KR100212948B1 (ko) 회절격자 간격의 절대측정방법 및 그 장치
CN116295038B (zh) 基于超表面光栅的纳米级二维位移测量装置及方法
CN106842823B (zh) 表面等离子体多次干涉曝光的亚波长结构制备方法
Xie et al. Traceable and long-range grating pitch measurement with picometer resolution
US8625075B2 (en) System and methods related to generating electromagnetic radiation interference patterns
Orlov et al. Light Engineering and Silicon Diffractive Optics Assisted Nonparaxial Terahertz Imaging
Livingstone et al. Development of micro/nano structure pattern generation using direct-beam interferometry
WO2022052197A1 (zh) 皮米尺
Wu et al. Wafer-scale grating mapping system for rapid pitch and diffraction efficiency measurement
CN106483584A (zh) 基于多光束干涉法制造可变周期光子晶体的装置
KR101192466B1 (ko) 능동 근접장 간극제어가 가능한 고속 마스크리스 나노리소그래피 방법, 이에 사용되는 나노 개구 기반 광학렌즈 및 광학헤드
Kim et al. Photonic Nanojet engineering: Focal point shaping with scattering phenomena of dielectric microspheres
CN117289563B (zh) 一种振幅型计算全息图实现装置及方法
CN114918532B (zh) 一种快速扫描式纳米级三维激光加工装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952966

Country of ref document: EP

Kind code of ref document: A1