WO2021097905A1 - 一种焦炉上升管荒煤气高温显热回收利用装置 - Google Patents

一种焦炉上升管荒煤气高温显热回收利用装置 Download PDF

Info

Publication number
WO2021097905A1
WO2021097905A1 PCT/CN2019/122442 CN2019122442W WO2021097905A1 WO 2021097905 A1 WO2021097905 A1 WO 2021097905A1 CN 2019122442 W CN2019122442 W CN 2019122442W WO 2021097905 A1 WO2021097905 A1 WO 2021097905A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
riser
heat exchange
steam
oil
Prior art date
Application number
PCT/CN2019/122442
Other languages
English (en)
French (fr)
Inventor
陆建宁
唐文俊
朱华萍
杨桂兰
Original Assignee
南京华电节能环保设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京华电节能环保设备有限公司 filed Critical 南京华电节能环保设备有限公司
Priority to KR1020207026744A priority Critical patent/KR20210064102A/ko
Publication of WO2021097905A1 publication Critical patent/WO2021097905A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B27/00Arrangements for withdrawal of the distillation gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B3/00Coke ovens with vertical chambers
    • C10B3/02Coke ovens with vertical chambers with heat-exchange devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B5/00Coke ovens with horizontal chambers
    • C10B5/10Coke ovens with horizontal chambers with heat-exchange devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1884Hot gas heating tube boilers with one or more heating tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • F22B33/185Combinations of steam boilers with other apparatus in combination with a steam accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the technical field of boiler equipment, and particularly relates to a high-temperature sensible heat recovery and utilization device of the raw gas of a coke oven riser.
  • the coke oven can perform high-temperature dry distillation treatment on coal and efficiently convert it into coke, coke oven gas, coal tar, crude benzene and other products. It is an efficient energy conversion kiln.
  • the heat taken from 650°C-700°C raw gas accounts for about 36%, which has extremely high recycling value.
  • the raw gas produced it contains benzene, tar and other substances.
  • a series of treatment steps must be carried out before industrial application, one of which is benzene removal.
  • the common process is: After the raw gas is finally cooled to about 25°C, it first enters the bottom of the first benzene washing tower, is led out from the top of the tower, and then passes through each benzene washing tower in turn.
  • the benzene content of the gas from the top of the last benzene washing tower is required to be less than 2g/Nm 3 .
  • the lean oil from the lean oil tank is sprayed down from the top of the last benzene washing tower, and it comes into close contact with the gas in the opposite direction and absorbs the benzene in the gas.
  • the rich oil with a benzene content of about 2.5% is led out from the bottom of the first benzene washing tower, and is pumped to the debenzene process by a rich oil pump, and the lean oil after debenzene is sent back to the lean oil tank for recycling.
  • each benzene washing tower is a washing oil receiving tank, which is separated from the gas by steel plates.
  • the wash oil from the top of the tower flows into the tank through the U-shaped pipe, and the oil level in the tank should remain stable.
  • the mist-catching layer above the last nozzle of the benzene washing tower can trap the oil droplets entrained by the gas, reduce the loss of washing oil, and prevent the washing oil from entering the gas.
  • a tube furnace is often used to burn coke oven gas.
  • the exhaust gas temperature is as high as 350°C, but the thermal efficiency is low. Around 60%.
  • the riser tube heat exchanger is used to recover the heat of the high-temperature raw gas, which is used to heat rich oil, lean oil, ammonia distilling water, and generate superheated steam, etc., instead of tube furnaces, the thermal efficiency is increased by more than 35%, and the exhaust gas of the tube furnace is reduced. Discharge point. Therefore, the economic and environmental benefits of coking are greatly improved.
  • this application provides a high-temperature sensible heat recovery and utilization device of the raw gas of a coke oven riser.
  • the present invention provides a high-temperature sensible heat recovery and utilization device of the raw gas of a coke oven riser, which is characterized in that it includes first riser exchanges independently arranged on the top of the coke oven.
  • the heat exchanger also includes a heat exchange device and a circulating pump. The first riser heat exchanger, the heat exchange device, and the circulating pump are connected into a ring to form a heat exchange cycle.
  • the heat exchange cycle uses water, heat transfer oil or other heat medium As a heat exchange medium;
  • the first riser heat exchanger is used to recover the heat of the high-temperature raw gas in the riser, the water becomes saturated steam or the low-temperature heat medium becomes the high-temperature heat medium, and the heat exchange device is used to transfer the recovered heat To the rich oil, lean oil, or ammonia water used in the coal chemical production process;
  • the heat exchange medium is driven by the circulating pump through the first riser heat exchanger to absorb heat and becomes a steam-water mixture or high-temperature heat medium, and then passes through the heat exchange After the device is cooled down, it enters the circulating pump again to complete a cycle.
  • the heat exchange device is at least one of a steam drum, a water heater for steaming ammonia, a rich oil heater, a heat transfer oil evaporator, and a lean oil heater.
  • it also includes a second riser heat exchanger independently arranged on the top of the coke oven; steam is introduced into the second riser heat exchanger, and the steam absorbs heat change in the second riser heat exchanger. The superheated steam is sent to the coal chemical production process.
  • the first riser heat exchanger is the riser evaporator.
  • the outlet end of the heat exchange medium of the riser evaporator is connected to an inlet end of the steam drum, an outlet end of the steam drum is connected to the inlet end of the circulating pump, and the outlet end of the circulating pump is connected to the inlet end of the ammonia water heater ,
  • the outlet end of the water heater for distilling ammonia is connected to the inlet end of the heat exchange medium of the riser evaporator to complete a cycle.
  • the outlet end of the heat exchange medium of the riser evaporator is connected to an inlet end of the steam drum, an outlet end of the steam drum is connected to the inlet end of the circulating pump, and the outlet end of the circulating pump is connected to the inlet end of the rich oil heater.
  • the outlet end of the heater is connected with the inlet end of the water heater for distilling ammonia, and the outlet end of the water heater for distilling ammonia is connected with the inlet end of the heat exchange medium of the riser evaporator (1) to complete a cycle.
  • the outlet end of the heat exchange medium of the riser evaporator is connected to an inlet end of the steam drum, an outlet end of the steam drum is connected to the inlet end of the circulating pump, and the outlet end of the circulating pump is connected to the heat exchange medium of the riser evaporator
  • the inlet end of the system completes a cycle.
  • a rich or poor oil passage is provided inside the steam drum, and the rich or poor oil passage exchanges heat with the steam in the steam drum, and the rich or lean oil in the rich or poor oil passage is heated.
  • the heat exchange device can be arranged above the steam drum, and the heat exchange device and the steam drum are connected by ascending and descending connecting pipes, and the steam enters upwards through the ascending connecting pipe In the heat exchange device, the condensed water enters the steam drum through the descending connecting pipe.
  • the saturated steam outlet in the steam drum is connected with the steam inlet of the second riser heat exchanger, and the steam is continuously heated by the second riser heat exchanger to form superheated steam.
  • the outlet end of the heat exchange medium (heat transfer oil) of the first riser heat exchanger is connected to the inlet end of the rich oil heater, and the outlet end of the rich oil heater is connected to the inlet end of the water heater for ammonia distillation.
  • the outlet end of the ammonia steaming water heater is connected to the inlet end of the heat transfer oil evaporator, the outlet end of the heat transfer oil evaporator is connected to the inlet end of the circulating pump, and the outlet end of the circulating pump is connected to the inlet end of the first riser heat exchanger to complete a cycle.
  • the outlet end of the heat exchange medium (heat transfer oil) of the first riser heat exchanger is connected to the inlet end of the lean oil heater, and the outlet end of the lean oil heater is connected to the inlet end of the heat transfer oil evaporator, and the heat transfer oil evaporates
  • the outlet end of the device is connected to the inlet end of the circulating pump, and the outlet end of the circulating pump is connected to the inlet end of the first rising tube heat exchanger to complete a cycle.
  • the first riser tube heat exchanger includes an inner tube, a heat exchange tube, a natural cooling tube, a tube cap, and a heat conduction layer, wherein the heat exchange tube and the natural cooling tube sink are buried inside the heat conduction layer; the outer wall of the inner tube The upper phase is alternately spirally wound with heat exchange tubes and natural cooling tubes; the natural cooling tube is composed of multiple groups of sections, each of which is provided with a set of inlet and outlet ends that communicate with the outside air, and the pipe cap is fixedly installed at the inlet End.
  • ⁇ H ⁇ gh
  • the density difference between the air inlet and outlet
  • g the acceleration of gravity
  • h the height difference between the inlet and outlet
  • ⁇ P ( ⁇ L/d+ ⁇ ) ⁇ u 2 /2, ⁇ is the drag coefficient along the way, L is the pipe length, d is the inner diameter of the cooling air pipe, and ⁇ is the sum of the local drag coefficients;
  • G is the mass flow of air
  • is the density corresponding to the average temperature of the air
  • t 1 is the inlet temperature
  • t 2 is the outlet temperature
  • the cap when there is a power failure and the water pump or heat medium pump supplied to the first riser heat exchanger is not running, the cap is in an open state; when the power is turned on, the water pump or heat medium supplied to the first riser heat exchanger is supplied When the pump is powered on, the cap is closed.
  • the coke oven riser raw gas high-temperature sensible heat recovery and utilization device provided by the present invention has a variety of industrial applications. According to the heat recovery of the riser heat exchanger and the heating of the rich oil and steam in the coal chemical production process The amount of heat required for ammonia water, lean oil, superheated steam, etc., rationally arrange the number of riser heat exchangers and riser superheaters in the device, replacing the debenzenization tube furnace and ammonia distillation that use coke oven gas combustion in the conventional process
  • the tube furnace eliminates the adverse effects of the two heating methods that bring exhaust gas temperature as high as 350°C, but thermal efficiency is lower than about 60%, specifically including steam heating for rich oil or hot water heating after pumping for rich oil, steam heating Lean oil, hot water heating after the pump, steaming ammonia water, high-temperature heat transfer oil heating rich oil and ammonia steaming water, lean oil and other types.
  • a tube cap is provided at the inlet end of the natural cooling tube, which effectively achieves the heat exchange of the riser tube during dry burning.
  • the purpose of cooling other parts in the device is to protect the riser heat exchanger.
  • the nozzle of the hot air outlet is slope-shaped, which can prevent rainwater from entering the natural cooling pipe.
  • Fig. 1 is a schematic structural diagram of the first embodiment of the heating device of the present invention.
  • Fig. 2 is a schematic structural diagram of the second embodiment of the heating device of the present invention.
  • Fig. 3 is a schematic structural diagram of the third embodiment of the heating device of the present invention.
  • Fig. 4 is a schematic structural diagram of the fourth embodiment of the heating device of the present invention.
  • Fig. 5 is a schematic structural diagram of the fifth embodiment of the heating device of the present invention.
  • Figure 6 is a schematic diagram of the structure of the riser heat exchanger of the present invention.
  • the high-temperature sensible heat recovery and utilization device of the raw gas waste heat of the coke oven riser recovers the sensible heat of the raw gas of the coke oven riser, which is combined with the chemical production process, and the recovered heat is used to heat the chemical production process medium.
  • the high-temperature sensible heat recovery and utilization device of the raw gas of the coke oven riser is different according to the heat medium used to recover the sensible heat of the raw gas: when the forced circulation of water is used to absorb the heat of the raw gas to generate steam, it includes steam heating for rich oil, or The hot water after the pump is heated for rich oil, the hot water after the pump is heated for ammonia and ammonia water; when the forced circulation of heat transfer oil is used to absorb the heat of raw gas and become high temperature heat transfer oil, including high temperature heat transfer oil heating rich oil, or high temperature heat transfer oil heating Lean type equipment.
  • a part of the riser pipe of the coke oven adopts the above two methods to recover the heat of the raw gas, and the other part passes the saturated steam into the riser heat exchanger.
  • the saturated steam absorbs the heat of the raw gas and turns into high-temperature superheated steam.
  • the steam is sent to the chemical production process, replacing the conventional tube furnace.
  • the high-temperature sensible heat recovery and utilization device of the raw gas of the coke oven riser.
  • the specific structure of the implementation is shown in the process in Figure 1-5:
  • the first implementation is:
  • riser superheater 5 is connected to riser evaporator 1, the outlet end of riser evaporator 1
  • the inlet end of the steam drum 2 is connected to the inlet end of the circulating pump 3
  • the outlet end of the circulating pump 3 is connected to the inlet end of the ammonia steaming water heater 4
  • the outlet end of the ammonia steaming water heater 4 is connected
  • the inlet end of the riser evaporator 1; the inside of the steam drum 2 is provided with a rich oil passage, and the steam drum 2 is provided with a rich oil inlet port and a rich oil outlet port.
  • the rich oil passage is used for heat exchange and heating treatment of the rich oil inside ;
  • the inside of the circulating pump 3 can be set as a water medium. This method can replace the tube furnace for rich oil debenzene.
  • the second implementation mode is:
  • the steam drum 2 is provided with a rich oil passage, which exchanges heat with the steam in the steam drum, and heats the rich oil in the rich oil passage.
  • the heat exchange surface It can be set above the steam drum, the heat exchange surface and the steam drum are connected by ascending and descending connecting pipes, the steam enters the heat exchange surface upward through the ascending connecting pipe, and the condensed water enters the steam drum through the descending connecting pipe.
  • the saturated steam outlet in the steam drum 2 may not be connected to the steam inlet of the riser superheater 5, or may be connected to the steam inlet of the riser superheater 5, and the steam is continuously heated by the riser superheater 5 to form superheated steam.
  • the third implementation mode is:
  • It includes a riser evaporator 1, a steam drum 2, and a circulating pump 3; the outlet end of the riser evaporator 1 is connected to an inlet end of the steam drum 2, an outlet end of the steam drum 2 is connected to the inlet end of the circulating pump 3, and the outlet end of the circulating pump 3 The end is connected to the inlet end of the riser evaporator 1; the inside of the steam drum 2 and the inside of the circulating pump 3 can be set as a water medium.
  • a lean oil passage is provided inside the steam drum 2.
  • the lean oil passage exchanges heat with the steam in the steam drum, and the lean oil in the lean oil passage is heated.
  • the heat exchange surface It can be set above the steam drum, the heat exchange surface and the steam drum are connected by ascending and descending connecting pipes, the steam enters the heat exchange surface upward through the ascending connecting pipe, and the condensed water enters the steam drum through the descending connecting pipe.
  • This method can replace the tube furnace for lean oil debenzene.
  • the fifth implementation mode is:
  • the first embodiment uses steam to heat the rich oil and the hot water after the pump to heat the ammonia water to replace the rich oil tube furnace; the second embodiment uses the hot water after the pump to heat the rich oil and heat the ammonia water to replace the conventional oil rich tube furnace.
  • the third embodiment uses steam to heat the lean oil, replacing the conventional lean oil tube furnace.
  • the fourth embodiment uses high-temperature heat transfer oil to heat the rich oil and heat the ammonia water, replacing the conventional rich oil tube furnace.
  • the fifth embodiment uses high-temperature heat transfer oil to heat the lean oil, replacing the conventional lean oil tube furnace.
  • the riser tube heat exchanger 7 in the present invention includes an inner tube 71, a heat exchange tube 72, a natural cooling tube 73, a tube cap 74, and a heat conduction layer 75.
  • the heat exchange tube 72 and the natural cooling tube 73 are buried in the heat conduction layer 75.
  • the natural cooling tube 73 is composed of multiple groups of sections, and each group of sections is provided with a set of inlets communicating with the outside air
  • the pipe cap 74 is fixedly installed at the inlet end.
  • a thermal insulation layer 76 is provided on the outer layer of the thermal conductive layer 75 to perform thermal insulation and reduce heat dissipation. It also includes an outer cylinder 77, which is arranged on the outer side of the thermal insulation layer 76 for fixing the thermal insulation layer 76 and the internal structure.
  • the number of sections of the natural cooling pipe 73 can be calculated based on physical mechanics to ensure that the buoyancy of the air in each section of the pipe is sufficient to overcome the flow resistance to determine how many groups of natural cooling pipes should be installed.
  • ⁇ H ⁇ gh
  • the density difference between the air inlet and outlet
  • g the acceleration of gravity
  • h the height difference between the inlet and outlet
  • ⁇ P ( ⁇ L/d+ ⁇ ) ⁇ u 2 /2, ⁇ is the drag coefficient along the way, L is the pipe length, d is the inner diameter of the cooling air pipe, and ⁇ is the sum of the local drag coefficients;
  • G is the mass flow of air
  • is the density corresponding to the average temperature of the air
  • t 1 is the inlet temperature
  • t 2 is the outlet temperature
  • the cap 74 at the inlet of the natural cooling pipe 73 is closed and does not open when the riser heat exchanger is working normally.
  • the cap 74 is in an open state.
  • the pump that drives the water or heat medium stops running, and the water or heat medium flowing through the heat exchange tube will be cut off, causing the riser heat exchanger to be in a dry burning state.
  • the cap 74 at the inlet of the natural cooling pipe can be quickly unscrewed. Since the outlet of the natural cooling pipe is relatively above, the cold air from the outside enters the natural cooling pipe and absorbs the heat accumulated by the components in the riser heat exchanger. It becomes hot air.
  • the hot air will flow upwards spirally in the natural cooling tube under the buoyancy generated by this density difference, and then discharge into the atmosphere at the outlet to achieve dryness.
  • the purpose of cooling down other parts in the riser heat exchanger during burning is to protect the riser heat exchanger.
  • the pipe opening at the hot air outlet in the present invention is slope-shaped, which can prevent rainwater from entering the natural cooling pipe.

Abstract

本发明提供了一种焦炉上升管荒煤气高温显热回收利用装置,包括分别独立地设置于焦炉炉顶的第一上升管换热器,还包括换热装置、循环泵,所述第一上升管换热器、换热装置、循环泵连接成环形成一个换热循环,换热循环中采用水、导热油或其他热媒作为换热介质;换热介质在循环泵的驱动下通过第一上升管换热器吸热后成为汽水混合物或高温热媒,再通过换热装置后降温,再次进入循环泵,完成一个循环。该装置代替常规化产工艺中燃烧焦炉煤气的脱苯管式炉和蒸氨管式炉,提高焦炉生产工艺系统的热效率,同时减少了废气污染排放点。

Description

一种焦炉上升管荒煤气高温显热回收利用装置 技术领域
本发明属于锅炉设备技术领域,特别涉及一种采焦炉上升管荒煤气高温显热回收利用装置。
背景技术
焦炉能对煤炭做高温干馏处理,将其高效地转换为焦炭、焦炉煤气、煤焦油、粗苯等产物,是高效的能量转换窑炉。在焦炉支出热中,650℃-700℃荒煤气的带出热约占36%,具有极高的回收利用价值。对于产生的荒煤气,内部含有苯、焦油等物质,降温以后要进行一系列处理环节才能工业应用,其中一个环节就是脱苯。常见的过程为:荒煤气经最终冷却至25℃左右后,首先进入第一台洗苯塔的底部,从塔顶导出,再依次经过各台洗苯塔。从最后一台洗苯塔顶出来的煤气含苯量要求低于2g/Nm 3。从贫油槽来的贫油则从最后一台洗苯塔顶喷淋而下,与煤气逆向而行密切接触,吸收煤气中的苯。含苯为2.5%左右的富油从第一台洗苯塔的底部导出,用富油泵抽送至脱苯工序,脱苯后的贫油送回贫油槽循环使用。贫油吸收苯后变成富油。
各洗苯塔底部为洗油接受槽,用钢板与煤气隔开。从塔顶下来的洗油经U型管流入该槽,槽内油位应保持稳定。最后一台洗苯塔喷头上面捕雾层,以捕集煤气夹带的油滴,减少洗油损失,也避免洗油进入煤气。利用回收来的上升管内荒煤气热量进行加热贫油、富油时,但是在这一传统的化产工艺中,常采用管式炉进行燃烧焦炉煤气,其中排烟温度高达350℃,热效率却在60%左右。因此,如何更可能地减少化产工艺过程中的废气污染排放,且提高热效率一直是这一行业的关注重心。采用上升管换热器回收高温荒煤气的热量,用以加热富油、贫油、蒸氨用水、产生过热蒸汽等,替代管式炉,热效率提高35%以上,还减少了管式炉的废气排放点。因此,极大提高了焦化的经济和环保效益。
另外,对于生产中的焦炉,一般全年是不停产的,但是安装了上升管换热器后,如遇到紧急情况或者自然断电、停电、电机故障等突发事件时,驱动水或热媒的泵停止运转,上升管换热器内流经的水或热媒就会断流,产生上升管换热器内部的干烧状态,这一状态下对上升管换热器内的部件损伤大,大大地降低了上升管换热器的使用寿命。
发明内容
技术问题:为了解决现有技术的以上缺陷,本申请提供了一种焦炉上升管荒煤气高温 显热回收利用装置。
技术方案:为了解决现有技术的缺陷,本发明提供了一种焦炉上升管荒煤气高温显热回收利用装置,其特征在于:包括分别独立地设置于焦炉炉顶的第一上升管换热器,还包括换热装置、循环泵,所述第一上升管换热器、换热装置、循环泵连接成环形成一个换热循环,换热循环中采用水、导热油或其他热媒作为换热介质;第一上升管换热器用于将上升管中的高温荒煤气的热量回收,水变成饱和蒸汽或者低温热媒变成高温热媒,换热装置用于将回收的热量传递至煤化工生产工艺上的富油、贫油、或蒸氨用水;换热介质在循环泵的驱动下通过第一上升管换热器吸热后成为汽水混合物或高温热媒,再通过换热装置后降温,再次进入循环泵,完成一个循环。
作为改进,所述换热装置为汽包、蒸氨用水加热器、富油加热器、导热油蒸发器、贫油加热器中的至少一种。
作为另一种改进,还包括独立地设置于焦炉炉顶的第二上升管换热器;第二上升管换热器中通入蒸汽,蒸汽在第二上升管换热器中吸收热量变成过热蒸汽外送至煤化工生产工艺。
作为另一种改进,当以水为换热介质时,第一上升管换热器即为上升管蒸发器。
作为进一步改进,上升管蒸发器的换热介质的出口端连接汽包的一进口端,汽包的一出口端连通循环泵的入口端,循环泵的出口端连通蒸氨用水加热器的进口端,蒸氨用水加热器的出口端连通上升管蒸发器的换热介质的进口端,完成一个循环。
作为进一步改进,上升管蒸发器的换热介质的出口端连接汽包的一进口端,汽包的一出口端连通循环泵入口端,循环泵出口端连通富油加热器的进口端,富油加热器的出口端连通蒸氨用水加热器的进口端,蒸氨用水加热器的出口端连通上升管蒸发器(1)的换热介质的进口端,完成一个循环。
作为进一步改进,上升管蒸发器的换热介质的出口端连接汽包的一进口端,汽包的一出口端连通循环泵的入口端,循环泵的出口端连通上升管蒸发器的换热介质的进口端,完成一个循环。
作为更进一步改进,汽包内部设置有富油或贫油通道,富油或贫油通道与汽包内的蒸汽换热,对富油或贫油通道内的富油或贫油进行加热处理,当蒸汽加热富油或贫油的换热面积较大时,换热装置可设置于汽包的上方,换热装置与汽包之间由上升、下降连通管连通,蒸汽通过上升连通管向上进入换热装置,冷凝水通过下降连通管进入汽包内。
作为更进一步改进,所述汽包内的饱和蒸汽出口与第二上升管换热器的蒸汽进口连接,蒸汽经过第二上升管换热器继续加热后形成过热蒸汽。
作为另一种改进,第一上升管换热器的换热介质(导热油)的出口端连接富油加热器的进口端,富油加热器的出口端连通蒸氨用水加热器的进口端,蒸氨用水加热器的出口端连通导热油蒸发器进口端,导热油蒸发器出口端连接循环泵进口端,循环泵的出口端连通第一上升管换热器进口端,完成一个循环。
作为另一种改进,第一上升管换热器的换热介质(导热油)的出口端连接贫油加热器入口端,贫油加热器的出口端连接导热油蒸发器进口端,导热油蒸发器出口端连接循环泵进口端,循环泵的出口端连通第一上升管换热器的进口端,完成一个循环。
作为进一步改进,所述第一上升管换热器包括内筒、换热管、自然冷却管、管帽、导热层,其中换热管和自然冷却管沉埋在导热层内部;内筒的外壁上相间地交替螺旋地缠绕有换热管和自然冷却管;自然冷却管由多组段组成,每一组段均设置有一组与外界空气相通的进口端、出口端,管帽固定安装在进口端处。
作为更进一步改进,每根自然冷却风管内部的空气动力应满足:
ΔH≥ΔP,其中ΔH为空气流动动力,ΔP为空气流动阻力;
ΔH=Δρgh,Δρ为空气进出口的密度差,g为重力加速度,h为进出口的高度差;
ΔP=(λL/d+Σξ)ρu 2/2,λ为沿程阻力系数,L为管长,d为冷却风管的内径,Σξ为局部阻力系数之和;
工况流速为u=G/(ρπd 2/4);
G为空气的质量流量,ρ为空气的平均温度对应的密度,平均温度为t=(t 1+t 2)/2,t 1为进口温度,t 2为出口温度;
自然冷却风管的换热量为Q,等于空气的吸热量,Q=GCp(t 2-t 1),Cp为空气的平均温度对应的比热。
作为更一步改进,当遇停电,供给第一上升管换热器的水泵或热媒泵不运转时,管帽处于打开状态;当通电后,供给第一上升管换热器的水泵或热媒泵通电运转时,管帽处于闭合关闭状态。
有益效果:本发明提供的焦炉上升管荒煤气高温显热回收利用装置,有多种用途的工业应用,根据上升管换热器的回收热量及加热煤化工化产工艺中的富油、蒸氨用水、贫油、过热蒸汽等所需的热量,合理布置装置中上升管换热器和上升管过热器的数量,替 换了常规工艺中采用焦炉煤气燃烧的脱苯管式炉和蒸氨管式炉,消除了该两种带来的排烟温度高达350℃、热效率却低于60%左右的加热方式的不利影响,具体包括蒸汽加热富油或泵后热水加热富油、蒸汽加热贫油、泵后热水加热蒸氨用水、高温导热油加热富油和蒸氨用水、贫油等类型,这些工业应用及结构的设置,已经能够大大提高了焦炉生产工艺系统的热效率,还减少了废气污染排放点,节能减排,环保意义很大。
同时,本发明中针对上升管换热器在断电时易发生的干烧现象,从物理力学角度,在自然冷却管进口端设置有管帽,有效地达到了干烧时对上升管换热器内的其他部件的降温目的,起到保护上升管换热器的作用。另外热风出口处的管口为坡形,可防止雨水进入自然冷却管。
附图说明
图1为本发明加热装置实施方式一的结构示意图。
图2为本发明加热装置实施方式二的结构示意图。
图3为本发明加热装置实施方式三的结构示意图。
图4为本发明加热装置实施方式四的结构示意图。
图5为本发明加热装置实施方式五的结构示意图。
图6为本发明上升管换热器的结构示意图。
附图中:1、上升管蒸发器;2、汽包;3、循环泵;4、蒸氨用水加热器;5、上升管过热器;6、富油加热器;7、上升管换热器;71、内筒;72、换热管;73、自然冷却管;74、管帽;75、导热层;76、保温层;77、外筒;8、导热油蒸发器;9、贫油加热器。
具体实施方式
下面对本发明附图结合实施例作出进一步说明。
焦炉上升管荒煤气余热高温显热回收加热利用装置,回收焦炉上升管荒煤气热显热,和化产工艺结合,将回收的热量用于加热化产工艺介质。本焦炉上升管荒煤气高温显热回收利用装置根据回收荒煤气显热所采用热媒介质的不同而不同:当利用水的强制循环吸收荒煤气热量产生蒸汽时,包括蒸汽加热富油、或泵后热水加热富油、泵后热水加热蒸氨用水等设备;当利用导热油的强制循环吸收荒煤气热量变成高温导热油时,包括高温导热油加热富油、或高温导热油加热贫油的类型的设备。焦炉的一部分上升管采用上述两种方法回收荒煤气的热量,另一部分则将饱和蒸汽通入上升管换热器中,饱和蒸汽吸收荒煤气的热量变成高温的过热蒸汽,该高温的过热蒸汽则被送到化产工艺中,替换 了常规采用管式炉。焦炉上升管荒煤气高温显热回收利用装置,具体结构的实施方式见图1-5中的工艺:
实施方式一为:
包括有上升管过热器5、上升管蒸发器1、汽包2、第一循环泵3、蒸氨用水加热器4;上升管过热器5连通上升管蒸发器1,上升管蒸发器1出口端连接汽包2的一进口端,汽包2的一出口端连通循环泵3入口端,循环泵3出口端端连通蒸氨用水加热器4的进口端,蒸氨用水加热器4的出口端连通上升管蒸发器1进口端;其中汽包2内部设置有富油通道,汽包2上设置有富油进口端口和富油出口端口,富油通道用于对内部的富油进行换热加热处理;循环泵3内部可以设置为水媒介。本方式可替代富油脱苯的管式炉。
实施方式二为:
包括上升管过热器5、上升管蒸发器1、汽包2、循环泵3、蒸氨用水加热器4、富油加热器6;上升管蒸发器1出口端连接汽包2的一进口端,汽包2的一出口端连通循环泵3入口端,循环泵3出口端端连通富油加热器6的进口端,富油加热器6的出口端连通蒸氨用水加热器4的进口端,蒸氨用水加热器4的出口端连通上升管蒸发器1进口端;其中汽包2内部及循环泵3内部可以设置为水媒介。本方式可替代富油脱苯的管式炉。
汽包2内部设置有富油通道,富油通道与汽包内的蒸汽换热,对富油通道内的富油进行加热处理,当蒸汽加热富油的换热面积较大时,换热面可设置于汽包的上方,换热面与汽包之间由上升、下降连通管联通,蒸汽通过上升连通管向上进入换热面,冷凝水通过下降连通管进入汽包内。
所述汽包2内的饱和蒸汽出口可不与上升管过热器5的蒸汽进口连接,或者也可与上升管过热器5的蒸汽进口连接,蒸汽经过上升管过热器5继续加热后形成过热蒸汽。
实施方式三为:
包括上升管蒸发器1、汽包2、循环泵3;上升管蒸发器1出口端连接汽包2的一进口端,汽包2的一出口端连通循环泵3入口端,循环泵3出口端端连通上升管蒸发器1进口端;其中汽包2内部及循环泵3内部可以设置为水媒介。
汽包2内部设置有贫油通道,贫油通道与汽包内的蒸汽换热,对贫油通道内的贫油进行加热处理,当蒸汽加热贫油的换热面积较大时,换热面可设置于汽包的上方,换热面与汽包之间由上升、下降连通管联通,蒸汽通过上升连通管向上进入换热面,冷凝水 通过下降连通管进入汽包内。本方式可替代贫油脱苯的管式炉。
实施方式四为:
包括上升管过热器5、上升管换热器7、富油加热器6、蒸氨用水加热器4、导热油蒸发器8、循环泵3,其中上升管换热器7出口端连接有富油加热器6的进口端,富油加热器6的出口端连接蒸氨用水加热器4进口端,蒸氨用水加热器4出口端连接导热油蒸发器8进口端,导热油蒸发器8出口端连接循环泵3进口端,循环泵3的出口端连通上升管换热器7的进口端;循环泵3内部设置有导热油媒介。本方式可替代富油脱苯的管式炉。
实施方式五为:
包括上升管换热器7,其中上升管换热器7出口端连接有贫油加热器9入口端,贫油加热器9的出口端连接导热油蒸发器8进口端,导热油蒸发器8出口端连接循环泵3进口端,循环泵3的出口端连通上升管换热器7的进口端;循环泵3内部设置有导热油媒介。本方式可替代贫油脱苯的管式炉。
实施方式一采用蒸汽加热富油、泵后热水加热蒸氨用水,替换富油管式炉;实施方式二采用泵后热水加热富油、加热蒸氨用水,替换了常规的富油管式炉。实施方式三采用蒸汽加热贫油,替换了常规的贫油管式炉。实施方式四采用高温导热油加热富油、加热蒸氨用水,替换了常规的富油管式炉。实施方式五采用高温导热油加热贫油,替换了常规的贫油管式炉。
同时,本发明中上升管换热器7包括内筒71、换热管72、自然冷却管73、管帽74、导热层75,其中换热管72和自然冷却管73沉埋在导热层75内部;内筒71的外壁上相间地交替螺旋地缠绕有换热管72和自然冷却管73;自然冷却管73由多组段组成,每一组段均设置有一组与外界空气相通的进口端、出口端,管帽74固定安装在进口端处。在导热层75外层设置有一层保温层76,用来进行保温,减少散热。还包括有外筒77,外筒77设置在保温层76的外侧面,用于固定保温层76及内部结构。
其中自然冷却管73分段数量,可根据物理力学来计算,以保证每段的管内空气受到的浮力足以克服流动阻力来确定应该设置多少组的自然冷却管。
为了克服流动阻力、保证空气循环速度,每根自然冷却风管内部的空气动力应满足:
ΔH≥ΔP,其中ΔH为流动动力,ΔP为流动阻力;
ΔH=Δρgh,Δρ为空气进出口的密度差,g为重力加速度,h为进出口的高度差;
ΔP=(λL/d+Σξ)ρu 2/2,λ为沿程阻力系数,L为管长,d为冷却风管的内径,Σξ为局部阻力系数之和;
工况流速为u=G/(ρπd 2/4);
G为空气的质量流量,ρ为空气的平均温度对应的密度,平均温度为t=(t 1+t 2)/2,t 1为进口温度,t 2为出口温度;
自然冷却风管的换热量为Q,等于空气的吸热量,Q=GCp(t 2-t 1),Cp为空气的平均温度对应的比热。
自然冷却管73进口的管帽74在上升管换热器正常工作时是闭合的不打开,当上升管换热器7的停电泵不运转时,管帽74才处于打开状态。当停电时,驱动水或热媒的泵停止运转,换热管内流经的水或热媒就会断流,造成上升管换热器处于干烧状态。此时,可迅速旋下自然冷却管的进口处的管帽74,由于自然冷却管的出口位于相对上方,外界的环境冷空气进入自然冷却管,吸收上升管换热器内各部件积蓄的热量变成热空气,由于热空气的密度比冷空气的密度小,热空气在此密度差产生的浮力作用下会沿自然冷却管内螺旋线地向上流动,至出口处排放到大气中,达到了干烧时对上升管换热器内的其他部件的降温目的,起到保护上升管换热器的作用。同时本发明中设置热风出口处的管口为坡形,可防止雨水进入自然冷却管。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种焦炉上升管荒煤气高温显热回收利用装置,其特征在于:包括分别独立地设置于焦炉炉顶的第一上升管换热器(7),还包括换热装置、循环泵(3),所述第一上升管换热器(7)、换热装置、循环泵(3)连接成环形成一个换热循环,换热循环中采用水、导热油或其他热媒作为换热介质;第一上升管换热器(7)用于将上升管中的高温荒煤气的热量回收,水变成饱和蒸汽或者低温热媒变成高温热媒,换热装置用于将回收的热量传递至煤化工生产工艺上的富油、贫油、或蒸氨用水;换热介质在循环泵的驱动下通过第一上升管换热器(7)吸热后成为汽水混合物或高温热媒,再通过换热装置后降温,再次进入循环泵,完成一个循环。
  2. 根据权利要求1所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:所述换热装置为汽包(2)、蒸氨用水加热器(4)、富油加热器(6)、导热油蒸发器(8)、贫油加热器(9)中的至少一种。
  3. 根据权利要求1所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:还包括独立地设置于焦炉炉顶的第二上升管换热器(5);第二上升管换热器(5)中通入蒸汽,蒸汽在第二上升管换热器(5)中吸收热量变成过热蒸汽外送至煤化工生产工艺。
  4. 根据权利要求3所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:上升管蒸发器(1)的换热介质的出口端连接汽包(2)的一进口端,汽包(2)的一出口端连通循环泵(3)的入口端,循环泵(3)的出口端连通蒸氨用水加热器(4)的进口端,蒸氨用水加热器(4)的出口端连通上升管蒸发器(1)的换热介质的进口端,完成一个循环。
  5. 根据权利要求3所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:上升管蒸发器(1)的换热介质的出口端连接汽包(2)的一进口端,汽包(2)的一出口端连通循环泵(3)入口端,循环泵(3)出口端连通富油加热器(6)的进口端,富油加热器(6)的出口端连通蒸氨用水加热器(4)的进口端,蒸氨用水加热器(4)的出口端连通上升管蒸发器(1)的换热介质的进口端,完成一个循环。
  6. 根据权利要求3所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:上升管蒸发器(1)的换热介质的出口端连接汽包(2)的一进口端,汽包(2)的一出口端连通循环泵(3)的入口端,循环泵(3)的出口端连通上升管蒸发器(1)的换热介质的进口端,完成一个循环。
  7. 根据权利要求4所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:汽 包(2)内部设置有富油或贫油通道,富油或贫油通道与汽包内的蒸汽换热,对富油或贫油通道内的富油或贫油进行加热处理,当蒸汽加热富油或贫油的换热面积较大时,换热装置可设置于汽包(2)的上方,换热装置与汽包(2)之间由上升、下降连通管连通,蒸汽通过上升连通管向上进入换热装置,冷凝水通过下降连通管进入汽包内。
  8. 根据权利要求7所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:所述汽包(2)内的饱和蒸汽出口与第二上升管换热器(5)的蒸汽进口连接,蒸汽经过第二上升管换热器(5)继续加热后形成过热蒸汽。
  9. 根据权利要求1所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:第一上升管换热器(7)的换热介质(导热油)的出口端连接富油加热器(6)的进口端,富油加热器(6)的出口端连通蒸氨用水加热器(4)的进口端,蒸氨用水加热器(4)的出口端连通导热油蒸发器(8)进口端,导热油蒸发器(8)出口端连接循环泵(3)进口端,循环泵(3)的出口端连通第一上升管换热器(7)进口端,完成一个循环。
  10. 根据权利要求1所述的焦炉上升管荒煤气高温显热回收利用装置,其特征在于:第一上升管换热器(7)的换热介质(导热油)的出口端连接贫油加热器(9)入口端,贫油加热器(9)的出口端连接导热油蒸发器(8)进口端,导热油蒸发器(8)出口端连接循环泵(3)进口端,循环泵(3)的出口端连通第一上升管换热器(7)的进口端,完成一个循环。
PCT/CN2019/122442 2019-11-19 2019-12-02 一种焦炉上升管荒煤气高温显热回收利用装置 WO2021097905A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207026744A KR20210064102A (ko) 2019-11-19 2019-12-02 코크스로 상승관 배가스의 고온 현열 재활용 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911133419.3A CN110849173A (zh) 2019-11-19 2019-11-19 一种焦炉上升管荒煤气高温显热回收利用装置
CN201911133419.3 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021097905A1 true WO2021097905A1 (zh) 2021-05-27

Family

ID=69602200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122442 WO2021097905A1 (zh) 2019-11-19 2019-12-02 一种焦炉上升管荒煤气高温显热回收利用装置

Country Status (3)

Country Link
KR (1) KR20210064102A (zh)
CN (1) CN110849173A (zh)
WO (1) WO2021097905A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933912A (zh) * 2022-06-24 2022-08-23 山东天景工程设计有限公司 一种减小焦炉荒煤气余热利用换热器内偏流的装置
CN115074160A (zh) * 2022-07-07 2022-09-20 广东韶钢松山股份有限公司 洗苯系统
CN117029276A (zh) * 2023-10-09 2023-11-10 上海焱晶燃烧设备检测有限公司 一种立式真空相变加热炉

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557441B (zh) * 2020-11-30 2022-04-15 西南石油大学 输气管道喷射火对邻近液烃管安全性影响实验平台及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047518B2 (ja) * 1980-08-13 1985-10-22 三菱重工業株式会社 コ−クス炉発生粗ガスの熱回収方法
CN104132321A (zh) * 2014-08-20 2014-11-05 杨承诣 一种焦炉荒煤气余热回收并利用的方法
CN206930181U (zh) * 2017-03-14 2018-01-26 中冶华天工程技术有限公司 荒煤气余热高低温综合回收系统
CN208292922U (zh) * 2018-05-29 2018-12-28 常州凌天环境科技有限公司 一种焦炉荒煤气余热加热富油装置
CN110240949A (zh) * 2019-07-02 2019-09-17 武汉方特工业设备技术有限公司 一种荒煤气余热回收利用系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047518B2 (ja) * 1980-08-13 1985-10-22 三菱重工業株式会社 コ−クス炉発生粗ガスの熱回収方法
CN104132321A (zh) * 2014-08-20 2014-11-05 杨承诣 一种焦炉荒煤气余热回收并利用的方法
CN206930181U (zh) * 2017-03-14 2018-01-26 中冶华天工程技术有限公司 荒煤气余热高低温综合回收系统
CN208292922U (zh) * 2018-05-29 2018-12-28 常州凌天环境科技有限公司 一种焦炉荒煤气余热加热富油装置
CN110240949A (zh) * 2019-07-02 2019-09-17 武汉方特工业设备技术有限公司 一种荒煤气余热回收利用系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933912A (zh) * 2022-06-24 2022-08-23 山东天景工程设计有限公司 一种减小焦炉荒煤气余热利用换热器内偏流的装置
CN115074160A (zh) * 2022-07-07 2022-09-20 广东韶钢松山股份有限公司 洗苯系统
CN115074160B (zh) * 2022-07-07 2023-08-01 广东韶钢松山股份有限公司 洗苯系统
CN117029276A (zh) * 2023-10-09 2023-11-10 上海焱晶燃烧设备检测有限公司 一种立式真空相变加热炉

Also Published As

Publication number Publication date
KR20210064102A (ko) 2021-06-02
CN110849173A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2021097905A1 (zh) 一种焦炉上升管荒煤气高温显热回收利用装置
CN105889897B (zh) 一种火力发电厂余热综合回收利用系统及方法
CN107267163B (zh) 一种一体化脱硫脱硝的焦炉烟道废气余热回收装置
TW201245055A (en) System for drying sludge by steam extracted from boiler set with thermal compensation
CN107267180A (zh) 粉煤低温快速热解系统及工艺
CN201764469U (zh) 焦炉烟气余热回收设备
CN205825498U (zh) 一种多级回收燃气烟气余热的系统
CN102519285B (zh) 荒煤气余热回收与导热油替代一体化工艺方法及专用设备
CN211311372U (zh) 一种利用焦炉荒煤气余热做功装置
CN101929670A (zh) 一种油田注汽锅炉
CN107128993A (zh) 具有烟气再加热功能的电厂烟气余热直接蒸发式淡化系统
CN111336487A (zh) 焦炉荒煤气及废气余热回收再利用系统
CN106016835A (zh) 一种多级回收燃气烟气余热的系统
CN203639490U (zh) 高温烟气余热回收装置
CN107400522B (zh) 一种防结焦高效率焦炉烟道废气余热回收装置
CN202660525U (zh) 一种复合相变换热系统
CN107504823B (zh) 一种基于降膜蒸发器的有机朗肯循环余热发电系统
CN205372496U (zh) 一种高效余热回收综合利用系统
CN102942967A (zh) 高炉煤气预处理方法及装置
CN111595167A (zh) 一种工业尾气余热回收系统及方法
CN112097287B (zh) 一种锅炉节能与烟气脱白系统、工艺、应用
CN108088265A (zh) 一种除尘器自带排气筒的炼铜炉烟气余热利用方法
CN211925709U (zh) 一种焦炉荒煤气初冷火管锅炉
CN202254897U (zh) 矿热炉烟气多级有机朗肯循环余热发电专用设备
CN212457970U (zh) 一种工业尾气余热回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953450

Country of ref document: EP

Kind code of ref document: A1