WO2021097887A1 - 一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法 - Google Patents

一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法 Download PDF

Info

Publication number
WO2021097887A1
WO2021097887A1 PCT/CN2019/121559 CN2019121559W WO2021097887A1 WO 2021097887 A1 WO2021097887 A1 WO 2021097887A1 CN 2019121559 W CN2019121559 W CN 2019121559W WO 2021097887 A1 WO2021097887 A1 WO 2021097887A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage
valve
sub
area
dma
Prior art date
Application number
PCT/CN2019/121559
Other languages
English (en)
French (fr)
Inventor
郑飞飞
黄源
张清周
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021097887A1 publication Critical patent/WO2021097887A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/02Reservations, e.g. for tickets, services or events
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • E03B7/071Arrangement of safety devices in domestic pipe systems, e.g. devices for automatic shut-off
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/02Public or like main pipe systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Definitions

  • the invention relates to the field of municipal engineering and urban water supply pipe networks, and in particular to an efficient positioning method for water supply pipe network leakage based on valve operation and online water metering.
  • Leakage is one of the common problems in the operation of urban water supply pipe network in our country. According to the survey statistics of the "Urban Water Supply Statistical Yearbook (2017)", the amount of water leakage in my country's major provinces and cities roughly accounts for 8%-50% of the water supply, and the leakage in some areas is quite serious.
  • the leakage of the pipe network not only seriously wastes water resources and energy, but also causes hidden dangers in drinking water safety. Therefore, the detection and positioning of the leakage of the water supply network has always been one of the important tasks of the water supply enterprise, which is of great significance for saving water resources and ensuring the safety of water supply. Water supply companies usually use professional leak detection equipment to find leaks, such as listening sticks, leaking noise correlator, ground penetrating radar, etc.
  • this type of equipment and methods generally have the problems of high cost, large workload, and low efficiency, and they are only suitable for accurate positioning of small-scale leakage.
  • a cost-effective implementation strategy for missing positioning is to first narrow the missing area through other missing positioning methods, and then use the equipment detection method to accurately locate the missing area within the determined missing area.
  • the smart water meter can collect, store and transmit the water volume data of the terminal user in real time, realizing the online accurate measurement of the user's water consumption in the pipe network.
  • This online water metering method based on smart water meters can realize online water balance analysis, which provides new opportunities for the development of efficient leakage positioning methods. Based on this, the design and development of an efficient and accurate leakage positioning method to minimize the area of leakage to be detected can make up for the deficiencies of the existing leakage positioning methods, effectively improve the leakage positioning efficiency, and reduce the leakage of the water supply pipe network.
  • the International Water Association recommends the use of regional independent metering (DMA) methods for leakage monitoring and positioning, that is, by dividing the complex water supply network into relatively small multiple DMAs, and independently measuring the flow changes of each DMA to determine whether it exists Missing.
  • DMA regional independent metering
  • the minimum night-time flow of a DMA is obviously abnormal (for example, the value exceeds the set threshold), it indicates that a new leakage has occurred in the DMA.
  • this method can only identify the missing range to the DMA level (usually including a range of tens of kilometers), but cannot accurately determine the missing location in the DMA.
  • the present invention proposes an efficient positioning method for water supply pipe network leakage based on valve operation and online water metering, which can accurately and efficiently determine the leakage area in the DMA , And easy to implement.
  • the present invention adopts the following technical solutions:
  • An efficient positioning method for water supply pipe network leakage based on valve operation and online water metering By optimizing the valve closing strategy of existing valves in DMA, it is divided into two sub-areas, and based on the online water balance analysis of smart water meters to determine where the leakage is located In the sub-area, the leakage area is thus reduced; the strategy of combining valve operation and water balance analysis is repeated (that is, continuous multiple stages), and the identified leakage area is continuously reduced until there is no valve operation to further reduce the leakage. Area.
  • the positioning method specifically includes the following steps:
  • N is the total number of existing operable valves in the DMA
  • S is the total number of valve-closing strategies obtained
  • v n ⁇ 0,1 ⁇ represents the state of valve n
  • 0 represents closed and 1 represents open
  • the valve-closing strategy V s will
  • G G 1 (V s ) ⁇ G 2 (V s ), where G is the DMA pipe network diagram, and the endpoints in the figure represent node-like elements in the pipe network (such as user nodes, pipe segment connections) Point, fire hydrant, etc.), the edge represents the line segment element in the pipe network (such as pipe section, valve, water pump, etc.), and G 1 and G 2 represent the two sub-regions decomposed by the closed valve.
  • L m represents the length of the pipe section m;
  • V k represents the difference in the length of the suspected leakage pipeline in the two sub-regions decomposed by the valve-closing strategy V k, Indicates the total length of the pipe section in the DMA;
  • Formula (2) represents the decision variable of the objective function, that is, the operating state of each valve at stage k
  • Equation (3) indicates that the valve-closing strategy should decompose DMA into two sub-regions.
  • the valve-closing strategy set V obtained in step 1 is a feasible solution set that satisfies the constraints of equation (3).
  • Equation (4) expresses the pressure constraint of the user nodes in the pipe network that cannot interrupt the water supply, that is, the pressure H u (V k ) at these nodes after the valve is operated will not be lower than the required minimum pressure To ensure the water demand of these users.
  • Equation (4) it is necessary to use the water supply pipe network hydraulic model for simulation calculation to determine whether the pressure constraint is satisfied.
  • Formula (1) indicates that the optimization goal is to minimize the number of valve operations generated by the valve-closing strategy and the difference in length of suspected missing pipelines in the two sub-regions.
  • the physical meaning of the objective function is to decompose the DMA pipe network with the least number of valve operations in the current stage, and to divide the length of the suspected missing pipe segment as much as possible. Reducing the number of valve operations can reduce the workload of missing positioning; evenly dividing the length of suspected missing pipe sections (that is, the traditional dichotomy) can reduce the number of implementation stages required for missing positioning and improve the efficiency of missing positioning.
  • valve-closing strategy set V obtained in step 1 to evaluate the defined optimization objective function value (formula 1), and select the valve-closing strategy that satisfies the constraints (formula 4) and has the smallest objective function value as the optimal value of the current stage k Valve operation strategy.
  • one sub-region should contain at least one DMA inlet (that is, the sub-region can operate normally), and the other sub-region may operate normally or may be closed by a shutoff valve (that is, the water supply is interrupted). Since the method of the present invention is required to be implemented during the nighttime water use period, a short interruption of the water supply will not have a significant impact.
  • a sub-area of normal operation to perform online water balance analysis to determine whether the leakage is located in the sub-area. If it is determined that the dropout is not located in this sub-area, it is located in another sub-area.
  • the online water balance analysis is realized by the boundary flow meter of DMA and the intelligent water meter on the user side. The difference between the flow rate entering the selected sub-area (the online reading of the flow meter at the inlet minus the online reading of the flow meter at the outlet) and the user's water consumption (the sum of the online readings of the smart water meter) in the selected sub-area, that is, the non-profit water amount ( NRW), it can indicate whether there is leakage in the selected stator area. If the NRW of the selected sub-area is similar to the NRW value of the DMA before the missing positioning, it means that there is a leakage in the selected stator area; otherwise, the missing is located in another sub-area.
  • the minimum missing area located by the present invention is the pipe section marked as 1 in the DMA and its connected components after the missing positioning method is stopped.
  • step 1 specifically includes the following steps:
  • the Contraction algorithm in the Karger algorithm is used to determine the cut set of the replacement graph G V : randomly select an edge in the graph to remove it, and merge the two end points of the edge, Keep the other connecting edges of the endpoints; repeat the process until there are only two endpoints left in the graph, at this time the connecting edge of the two remaining endpoints is a cut set of the graph. Repeated execution of the Contraction algorithm to t 4 logt times to obtain a sufficient number of cut sets (t is the total number of endpoints in the graph G V).
  • the invention can obviously reduce the missing area under the condition of ensuring the accuracy of the missing positioning, and improve the efficiency of the missing positioning.
  • the leakage location method of the present invention requires implementation during the night water use period, such as 02:00-05:00, so as to reduce the interference to the user's water use in the DMA area.
  • This method can use the least number of valve operations to determine the smallest leakage area (the smallest area that can be closed by closing the valve, usually less than 5.0km), and the positioning efficiency is high. Compared with the traditional artificial hearing loss method, the method of the present invention can increase the leakage location efficiency by 15-20 times.
  • this method gradually narrows the missing area by optimizing valve operation and online water balance analysis to ensure the accuracy of missing positioning.
  • the method only needs to operate valves and perform water balance analysis (ordinary technicians can master), without relying on hydraulic models or complex data analysis, and is easy to implement in actual pipe networks.
  • Figure 1 is a road map of the implementation of the method of the present invention.
  • Figure 2 is a schematic diagram of the graph theory method used in the present invention.
  • Fig. 3 is a schematic diagram of the multi-stage leakage positioning process of the present invention.
  • Fig. 4 is a diagram of the topological structure of the pipe network of the DMA in the embodiment.
  • Fig. 5 is a diagram of valve operation at various stages in the process of missing positioning in the embodiment.
  • Fig. 6 is a diagram showing the results of water balance analysis in the process of locating the leakage in the embodiment.
  • Figure 2(a) shows a simple DMA pipe network, including 2 inlets, 1 outlet, 5 valves (V1, V2, V3, V4 and V5) and several pipe sections and nodes.
  • the present invention adopts the following specific implementation steps to locate the leakage, see FIG. 1.
  • Step 1 Regard the DMA pipe network as a pipe network graph G (pipe segments and valves are edges, and nodes are endpoints), remove the valve edges in graph G, and identify all connected subgraphs in the graph.
  • G pipe network graph
  • S1, S2, S3, S4, and S5 five connected subgraphs are identified, denoted by S1, S2, S3, S4, and S5, as shown in Figure 2(b).
  • Each connected subgraph represents a collection of pipe network components that can be divided by closing the valve.
  • Step 2 Convert the pipe network graph G to a substitute graph G V (valves are edges and connected subgraphs are endpoints).
  • G V substitute graph
  • the generated alternative graph is shown in Figure 2(c).
  • Step 3 Run the Contraction algorithm t 4 logt times to determine the cut set of the alternative graph G V (t is the total number of endpoints of the graph), and form the valve-closing strategy set V.
  • Figure 2(df) shows the result of running the Contraction algorithm once. First randomly select an edge to remove (V5 in Figure 2d); then merge the two end nodes S4 and S5 of the selected edge to generate a new endpoint S 45 ( Figure 2e); again randomly select edges for removal and endpoint merging operations , Until there are two endpoints left, a cut set of the replacement graph G V can be obtained (the cut set shown in Fig. 2f is ⁇ V3, V4 ⁇ ). After running the algorithm 1005 times repeatedly, the repeated values in the cut set are deleted, and the cut set set of the graph G V can be obtained. Convert the edges in the cut-set set to closed valves, and get the set of valve-closing strategies V.
  • Figure 3(a) shows the initialization result.
  • the red pipe section in the figure is a suspected missing pipe section.
  • Step 5 Determine the optimal valve operation strategy at the current stage.
  • Step 6 Execute the optimal valve operation strategy and divide the DMA pipe network into two sub-areas. As shown in Figure 3(b), turning off V3 and V4 decomposes the sample DMA into two sub-regions, one of which contains S1, S2, and S3, and the other contains S4 and S5.
  • Step 7 Choose one of the sub-regions containing the DMA entrance to perform online water balance analysis to determine which sub-region the leakage is located in.
  • choose one of them to perform water balance analysis that is, to measure the flow entering the selected sub-region and the user's water consumption in the selected sub-region through the DMA inlet and outlet flow meters and the user-side smart water meter. Calculate its non-revenue water NRW. If the NRW of the selected sub-area is similar to the NRW of the DMA, it means that the dropout is located in the selected sub-area; otherwise, the dropout is located in another sub-area. In order to continue the process of locating the leakage, it is assumed that the water balance analysis result determines that the leakage is located in the sub-regions containing S4 and S5.
  • Step 10 According to the missing location result, dispatch the staff to the location of the missing area and use equipment methods such as manual hearing method to accurately find the location of the missing point, and repair the missing point found.
  • Figure 4 shows a DMA area in a city's water supply pipe network, including 2 inlets, 1 outlet, 51 operable valves and a pipeline with a total length of 58.7km.
  • remote flowmeters are installed to monitor the flow into and out of the DMA.
  • smart water meters are installed at each user to record the user's water consumption online.
  • there is an important industrial user in this DMA area requiring uninterrupted water supply (nodal pressure cannot be less than 15.0m).
  • the local water company conducts leakage management through continuous monitoring and analysis of the DMA's night-time flow. When the minimum night-time flow of DMA increases significantly, it indicates that a new leakage has occurred in the area. Taking an observed leakage event (the minimum night flow increased from 76.5 L/s to 85.2 L/s) as an example, the method of the present invention is applied to locate it.
  • the leakage generated in the example DMA is located, and the specific optimized valve operation and water balance analysis results are shown in Figs. 5 and 6 respectively.
  • the graph theory method is used to determine the valve-closing strategy set that can decompose the DMA into two sub-regions (steps 1 to 3).
  • the DMA pipe network graph can be divided into 40 connected subgraphs by valves, and the contraction algorithm can be run 9,400,000 times to 4940 pipe network graph cut sets, thereby forming a set with 4940 valve closing strategies for subsequent optimization objective function solving.
  • Applying steps 4 to 9 can gradually reduce the leakage area until the smallest leakage area is obtained (the red pipe section in Figure 5d, with a total length of 4.3km).
  • stage 1 time t 0 ⁇ t 1
  • the DMA pipe network is divided into two sub-regions ( Figure 5a) through 3 valve operations (closed 3 valves), and online water balance analysis is performed on the sub-region containing the outlet.
  • the results show that its non-profit water NRW is about 8.5L/s ( Figure 6).
  • the NRW of the DMA before the loss location is about 9.0L/s, which indicates that the loss is located in the sub-region that contains the outlet, so the pipe section in the other sub-region is marked as a non-leakage pipe section.
  • Similar steps are applied to the subsequent stages 2 to 4 (time t 1 to t 4 ), and the water balance analysis is carried out in the sub-region containing the outlet.
  • the present invention can reduce the leakage area from 58.7km to 4.3km by applying a total of 14 optimized valve operations in 4 stages and corresponding water balance analysis, and the leakage positioning efficiency can be increased by about 13 times.
  • the water company dispatched leaking staff to the vicinity of the area to accurately locate the leakage and confirm that the leakage is within the determined area (as shown in Figure 5d). Therefore, the example application shows that the method provided by the present invention significantly improves the efficiency of the missing positioning and guarantees the accuracy of the missing positioning.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)

Abstract

一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法,实现供水管网DMA中漏失的高效准确定位。该方法分多阶段实施以逐步缩小漏失区域,在每个实施阶段首先利用优化的阀门操作策略将DMA管网分为两个子区域,然后通过基于智能水表的在线水平衡分析识别包含漏失的子区域,据此缩小漏失区域。该方法通过建立最小化目标函数并结合图论方法确定优化的阀门操作策略,以最少的阀门操作次数确定最小的漏失区域。相对于传统的人工听漏等方法,该方法可显著提高漏失定位效率,确保漏失定位准确性,且易于实施。

Description

一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法 技术领域
本发明涉及市政工程和城市供水管网领域,具体涉及一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法。
背景技术
漏失是我国城镇供水管网运行中普遍存在的问题之一。根据《城市供水统计年鉴(2017)》的调查统计,我国主要省市的漏失水量大致占供水量的8%-50%,部分地区的漏失情况相当严重。管网漏失不仅严重浪费了水资源和能源,同时也会引起饮用水安全隐患。因此,供水管网的漏失检测定位一直是供水企业的重要任务之一,对于节约水资源和保障供水安全具有重要意义。供水企业通常采用专业探漏设备来查找漏失,如听漏棒、漏失噪声相关仪、探地雷达等。但是这类设备方法普遍存在成本高、工作量大、效率低的问题,只适用于小范围的漏失精确定位。考虑设备探漏方法的这种特点,一种经济有效的漏失定位实施策略是先通过其他漏失定位方法缩小漏失区域,然后采用设备检测的方法在所确定的漏失区域内进行漏失精确定位。
近年来,随着智能管网技术的快速发展,智能设备已在供水管网中广泛应用,比如智能水表、远控阀门等。其中,智能水表可以实时采集、存储和传输终端用户的水量数据,实现了对管网中用户用水量的在线准确计量。这种基于智能水表的在线用水计量方式可以实现在线水平衡分析,为开发高效漏失定位方法提供了新的机遇。基于此,设计开发高效准确的漏失定位方法以尽量缩小需探测的漏失区域,可以弥补现有漏失定位方法的不足,有效提高漏失定位效率,从而减少供水管网漏失。
国际水协(IWA)推荐采用区域独立计量(DMA)方法进行漏失监测定位,即通过将复杂供水管网划分为相对较小的多个DMA,并独立计量各DMA的流量变化以判断其是否存在漏失。一般来说,当一个DMA的最小夜间流量出现明显异常时(如数值超过设定阈值),说明该DMA中产生了新的漏失。然而,该方法只能识别漏失范围至DMA水平(通常包含几十公里范围),而不能准确确定DMA中漏失位置。为进一步缩小漏失区域以便于应用设备方法进行精确定位,供水领域的学者和工程师们开发了 水力模拟、优化求解、数据分析等多种方法。这类方法在理论上可以有效缩小漏失区域,然而在实际应用中尚存在一些明显问题。一方面,这类方法通常需要建立高精度的水力模型或获取大量准确的实测数据,并且需要专业技术人员进行应用,对供水企业要求过高,因而实用性较差。另一方面,这类方法一般只能定位到可疑的漏失区域(范围相对较大且分散),准确度难以保证。因此,仍需进一步开发实用高效准确的漏失定位方法。
发明内容
针对上述所提出的漏失定位方法实用性和准确度不足的问题,本发明提出一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法,该方法能够准确高效地确定DMA中的漏失区域,且易于实施。
为解决上述技术问题,本发明采用如下技术方案:
一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法,通过优化DMA中现存阀门的关阀策略将其划分为两个子区域,并基于智能水表的在线水平衡分析来判别漏失位于哪个子区域内,由此缩小漏失区域;重复实施这种阀门操作和水平衡分析相结合的策略(即持续进行多个阶段),不断缩小所识别到的漏失区域,直至没有阀门操作可以进一步缩小漏失区域为止。
上述技术方案中,进一步地,所述的定位方法具体包括以下步骤:
1.利用图论方法确定可将DMA分解为两个子区域的关阀策略V s={v 1,v 2,...,v N},形成关阀策略集合V={V 1,V 2,...,V S}。其中,N为DMA中现存可操作的阀门总数,S为得到的关阀策略总数;v n∈{0,1}表示阀门n的状态,0代表关闭,1代表打开;关阀策略V s将DMA分解为两个子区域可表示为G=G 1(V s)∪G 2(V s),其中G为DMA管网图,图中端点代表管网中节点类元素(如用户节点、管段连接点、消火栓等),边代表管网中线段类元素(如管段、阀门、水泵等),G 1和G 2表示被关闭阀门所分解的两个子区域。
2.初始化漏失定位,将DMA中所有管道标记为可疑漏失管道,同时设置漏失定位的当前阶段k=1。本发明以管段表示漏失定位的对象,x m=1表示可疑漏失管段,x m=0表示无漏失管段,m=1,2,...M,M表示DMA中管段总数。与管段相连的其他组件处(如节点、消火栓等)的漏失与管段等同考虑。
3.确定当前阶段k的最优阀门操作策略。建立如下的优化目标函数以确定阶段k 时的最优阀门操作,
最小化
Figure PCTCN2019121559-appb-000001
约束条件:
关阀策略:
Figure PCTCN2019121559-appb-000002
将DMA分解为两个子区域:G=G 1(V k)∪G 2(V k)    (3)
不可断水用户的压力约束:
Figure PCTCN2019121559-appb-000003
其中,
Figure PCTCN2019121559-appb-000004
表示当前阶段k的阀门操作数(相对于上一阶段k-1的阀门状态),包括阀门开启和关闭操作;
Figure PCTCN2019121559-appb-000005
表示阀门操作数值归一化。L m表示管段m的长度;
Figure PCTCN2019121559-appb-000006
表示由关阀策略V k所分解的两个子区域中可疑漏失管道长度的差异,
Figure PCTCN2019121559-appb-000007
表示DMA中管段总长度;
Figure PCTCN2019121559-appb-000008
表示可疑漏失管道长度差异数值的归一化。w 1和w 2表示阀门操作数和可疑漏失管段长度差异这两项的权重,本发明采用w 1=w 2=0.5以等效考虑这两项的权重。
公式(2)表示目标函数的决策变量,即各阀门在阶段k时的操作状态
Figure PCTCN2019121559-appb-000009
公式(3)表示关阀策略应将DMA分解为两个子区域,在步骤1所得到的关阀策略集V即是满足公式(3)约束的可行解集。公式(4)表示管网中不可中断供水的用户节点的压力约束,即阀门操作后这些节点处的压力H u(V k)不会低于所需最小压力
Figure PCTCN2019121559-appb-000010
以保证这些用户的用水需求。应用公式(4)时需使用供水管网水力模型进行模拟计算,以判断压力约束是否满足。
公式(1)表示优化目标为最小化关阀策略所产生的阀门操作数和两个子区域中可疑漏失管道长度差异。该目标函数的物理意义是在当前阶段采用最少的阀门操作数分解DMA管网,同时尽可能均分可疑漏失管段长度。减少阀门操作数可以降低漏失定位工作量;均分可疑漏失管段长度(即传统二分法)可以减少漏失定位所需的实施阶段数量,提高漏失定位效率。采用第1步所得到的关阀策略集V来评价所定义的优化目标函数值(公式1),选择满足约束条件(公式4)且目标函数值最小的关阀策略为 当前阶段k的最优阀门操作策略。
4.根据最优阀门操作策略关闭和打开相应阀门,将DMA分解为两个子区域。在这两个子区域中,有一个子区域应包含至少一个DMA入口(即该子区域可正常运行),而另一个子区域可能正常运行,也可能被关阀所封闭(即中断供水)。由于本发明方法要求在夜间用水时段实施,短暂中断供水并不会产生明显影响。
5.任选一个正常运行的子区域实施在线水平衡分析,以判断漏失是否位于该子区域内。若判定漏失不位于该子区域,则其位于另一个子区域。在线水平衡分析是通过DMA的边界流量计和用户端的智能水表实现。进入选定子区域内的流量(入口处流量计在线读数减去出口处流量计在线读数)与选定子区域内用户用水量(智能水表在线读数之和)的差值,即非收益水量(NRW),可表示所选定子区域内是否存在漏失。如果选定子区域的NRW与漏失定位前DMA的NRW数值相近,则说明所选定子区域内存在漏失;否则,漏失位于另一个子区域内。
6.更新当前阶段k的管段标记,将判定不存在漏失的子区域内管段标记为无漏失管段(即x k=0),以缩小漏失区域。
7.判断DMA中是否有阀门操作可以进一步缩小漏失区域。若有,则回到第3步进行下一阶段的漏失定位(即k=k+1);否则说明已找到最小漏失区域,则停止漏失定位过程。本发明所定位的最小漏失区域为漏失定位方法停止后DMA中标记为1的管段及其相连组件。
8.根据漏失定位结果,派遣工作人员至所定位的漏失区域内采用人工听漏法等设备方法精确查找漏点位置,并修复所查找到的漏点。
更进一步地,所述的步骤1具体包括如下步骤:
(1)移除管网图G中所有代表阀门的边,识别所产生新图中的所有连通子图。这些连通子图代表管网中通过关闭阀门可封闭的最小区域(包括节点、管段、消火栓等),也是本发明方法所能定位到的最小漏失区域。
(2)将管网图G转换为新的替代图G V。以管网中阀门为边,上一步中所识别到的所有连通子图为端点,根据阀门与连通子图之间的拓扑连接关系构建新的替代图G V
(3)确定替代图G V的割集,每个割集表示一种关阀策略V s,割集中的边代表关阀策略中需关闭的阀门(即v n=0);将每个割集转换为关阀策略即可形成关阀策略集V。
更进一步地,所述的步骤(3)中,采用Karger算法中的Contraction算法来确定替代图G V的割集:随机选择图中的一条边将其移除,合并该边的两个端点,保留端点的其他连接边;重复执行该过程直至图中只剩下两个端点,此时这两个剩余端点的连接边即是图的一个割集。重复执行Contraction算法至t 4logt次可得到足够数量的割集(t为图G V中端点总数)。
本发明可在保证漏失定位准确度的情况下明显缩小漏失区域,提高漏失定位的效率。另外,本发明的漏失定位方法要求在夜间用水时段实施,比如02:00~05:00,以减少对DMA区域内用户用水的干扰。
本发明所具有的有益效果在于:
1.该方法可采用最少的阀门操作数确定最小的漏失区域(关闭阀门可封闭的最小区域,通常小于5.0km),定位效率高。相对于传统人工听漏方法,本发明方法可提高漏失定位效率达15-20倍。
2.相对于很多漏失定位方法的准确度不足的问题,该方法通过优化阀门操作和在线水平衡分析逐步缩小漏失区域,可确保漏失定位的准确性。
3.该方法只需操作阀门和进行水平衡分析(普通技术人员即可掌握),而无需依赖水力模型或复杂数据分析,易于在实际管网中实施。
附图说明
图1为本发明方法的实施路线图。
图2为本发明所采用图论方法的示意图。
图3为本发明的多阶段漏失定位过程示意图。
图4为实施例DMA的管网拓扑结构图。
图5为实施例中漏失定位过程中各阶段阀门操作图。
图6为实施例中漏失定位过程中水平衡分析结果图。
具体实施方式
为使本发明所提漏失定位方法易于明白,以下结合附图和具体实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图2(a)表示一个简单的DMA管网,包含2个入口、1个出口、5个阀门(V1,V2,V3,V4和V5)及若干管段和节点。本发明采用如下具体实施步骤对其进行漏失定位,参见图1。
步骤1:将DMA管网视为管网图G(管段和阀门为边,节点为端点),移除图G中的阀门边,识别图中的所有连通子图。对于图2(a)的示例,识别到5个连通子图,分别以S1、S2、S3、S4和S5表示,如图2(b)所示。每个连通子图代表关阀可分割的管网组件集合。
步骤2:将管网图G转换为替代图G V(阀门为边,连通子图为端点)。对于图2(a)的示例,生成的替代图如图2(c)所示。
步骤3:运行Contraction算法t 4logt次以确定替代图G V的割集(t为图的端点总数),形成关阀策略集V。对于图2(c)所示替代图,图2(d-f)表示运行Contraction算法一次的结果。首先随机选择一条边移除(图2d中的V5);然后合并所选边的两端节点S4和S5,生成新的端点S 45(图2e);再次随机选择边进行移除和端点合并操作,直至剩下两个端点,即可得到替代图G V的一个割集(图2f所示割集为{V3,V4})。重复运行该算法1005次后,删除割集中的重复值,可得到图G V的割集集合。将割集集合中边转换为关闭的阀门,得到关阀策略集合V。
步骤4:初始化漏失定位程序,设置当前阶段k=1,并将所有管段设置为可疑漏失管段(即x k=1)。图3(a)表示初始化结果,图中标红管段为可疑漏失管段。
步骤5:确定当前阶段的最优阀门操作策略。利用步骤1~3所确定的关阀策略集V评价优化目标函数F k(公式1),选择满足约束条件(公式4)且目标函数值F k最小的关阀策略为最优解。结合当前系统中阀门状态,确定当前阶段的最优阀门操作策略。如图3(b)所示,当前阶段k=1的最优阀门操作策略为关闭V3和V4。
步骤6:执行最优阀门操作策略,将DMA管网分为两个子区域。如图3(b)所示,关闭V3和V4将示例DMA分解为两个子区域,其中一个包含S1、S2和S3,另一个包含S4和S5。
步骤7:任选一个包含DMA入口的子区域实施在线水平衡分析以判断漏失位于哪个子区域内。对于图3(b)中两个子区域,任选其一进行水平衡分析,即通过DMA入口和出口流量计和用户端智能水表分别计量进入所选子区域的流量和所选子区域内用户用水量,计算其非收益水量NRW。若所选子区域的NRW与DMA的NRW相近,则说明漏失位于所选子区域内;否则,漏失位于另一个子区域内。为使漏失定位程序 继续进行,假定水平衡分析结果判断出漏失位于包含S4和S5的子区域内。
步骤8:将判定不存在漏失的子区域内管道标记为无漏失(即x k=0)。如图3(b)所示,S1、S2和S3内管段被标记为无漏失管段。
步骤9:判断DMA中是否有阀门操作可以进一步缩小漏失区域。若有,则回到步骤5继续进行下一阶段的漏失定位(即k=k+1);否则说明已找到最小漏失区域,则停止漏失定位程序。对于图3(b)所示情况,可以进一步缩小所示区域,回到步骤5继续进行阶段k=2的漏失定位过程(最优阀门操作为打开V4,关闭V5),直至找到最小漏失区域(即图3c中的S4)。
步骤10:根据漏失定位结果,派遣工作人员至所定位的漏失区域内采用人工听漏法等设备方法精确查找漏点位置,并修复所查找到的漏点。
下面结合实际应用场景来说明本发明的实施步骤和应用效果。以下应用场景仅用于说明本发明在具体实践中如何运用,但不用来限制本发明的范围。
图4为某城市供水管网中的一个DMA区域,包含2个入口、1个出口、51个可操作阀门和总长为58.7km的管线。在该DMA区域的入口和出口处均安装有远传流量计在线监测进入和流出DMA的流量,同时各用户处也安装了智能水表以在线记录用户用水量。另外,在该DMA区域内存在一个重要工业用户,要求不可中断供水(节点压力不能小于15.0m)。当地水务公司通过对该DMA的夜间流量的持续监测分析进行漏失管理。当DMA的最小夜间流量明显增加时,说明该区域内产生了新的漏失。下面以一个观测到的漏失事件(最小夜间流量由76.5L/s增加至85.2L/s)为例,应用本发明方法对其进行定位。
按照上述具体实施方式对实例DMA中所产生的漏失进行定位,其具体的优化阀门操作和水平衡分析结果分别如图5和图6所示。首先,应用图论方法确定可将DMA分解为两个子区域的关阀策略集(步骤1~3)。该DMA管网图可由阀门分割为40个连通子图,运行Contraction算法9,400,000次可到4940个管网图割集,从而形成具有4940个关阀策略的集合用于后续的优化目标函数求解。应用步骤4~9可逐步缩小漏失区域直至得到最小的漏失区域(图5d中红色管段,总长4.3km)。比如,在阶段1(时间t 0~t 1),通过3次阀门操作(关闭3个阀门)将DMA管网分为两个子区域(图5a),对包含出口的子区域进行在线水平衡分析,结果显示其非收益水量NRW为8.5L/s左右(图6)。漏失定位前该DMA的NRW约为9.0L/s,这说明漏失位于包含出口的子区域内,由此标记另一个子区域的管段为无漏失管段。类似步骤应用于后续阶段2~4 (时间t 1~t 4),水平衡分析均是在包含出口的子区域内进行。
最终,本发明通过应用4个阶段共计14次优化的阀门操作和相应水平衡分析可将漏失区域由58.7km缩小至4.3km,漏失定位效率提升约13倍。在确定最小漏失区域后,水务公司派遣听漏工作人员至该区域附近进行精确漏失定位,确认漏失位于所确定的区域内(如图5d所示)。因此,实例应用说明本发明所提方法显著提升了漏失定位的效率,并保证了漏失定位的准确性。
以上实施例只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (4)

  1. 一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法,其特征在于,通过优化DMA中现存阀门的关阀策略将其划分为两个子区域,并基于智能水表的在线水平衡分析来判别漏失位于哪个子区域内,由此缩小漏失区域;重复实施这种阀门操作和水平衡分析相结合的策略,不断缩小所识别到的漏失区域,直至没有阀门操作可以进一步缩小漏失区域为止。
  2. 根据权利要求1所述的一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法,其特征在于,所述的定位方法具体包括以下步骤:
    1)利用图论方法将DMA分解为两个子区域的关阀策略V s={v 1,v 2,...,v N},形成关阀策略集合V={V 1,V 2,...,V S};其中,N为DMA中现存可操作的阀门总数,S为得到的关阀策略总数;v n∈{0,1}表示阀门n的状态,0代表关闭,1代表打开;关阀策略V s将DMA分解为两个子区域可表示为G=G 1(V s)∪G 2(V s),其中G为DMA管网图,图中端点代表管网中节点类元素,边代表管网中线段类元素,G 1和G 2表示被关闭阀门所分解的两个子区域;
    2)初始化漏失定位,将DMA中所有管道标记为可疑漏失管道,同时设置漏失定位的当前阶段k=1,以管段表示漏失定位的对象,x m=1表示可疑漏失管段,x m=0表示无漏失管段,m=1,2,...M,M表示DMA中管段总数,与管段相连的其他组件处的漏失与管段等同考虑;
    3)确定当前阶段k的最优阀门操作策略,建立如下的优化目标函数以确定阶段k时的最优阀门操作,
    最小化
    Figure PCTCN2019121559-appb-100001
    约束条件:
    关阀策略:
    Figure PCTCN2019121559-appb-100002
    将DMA分解为两个子区域:G=G 1(V k)∪G 2(V k)(3)
    不可断水用户的压力约束:
    Figure PCTCN2019121559-appb-100003
    式中,
    Figure PCTCN2019121559-appb-100004
    表示当前阶段k的阀门操作数(相对于上一阶段k-1的阀门 状态),包括阀门开启和关闭操作;
    Figure PCTCN2019121559-appb-100005
    表示阀门操作数值归一化;L m表示管段m的长度;
    Figure PCTCN2019121559-appb-100006
    表示由关阀策略V k所分解的两个子区域中可疑漏失管道长度的差异,
    Figure PCTCN2019121559-appb-100007
    表示DMA中管段总长度;
    Figure PCTCN2019121559-appb-100008
    表示可疑漏失管道长度差异数值的归一化;w 1和w 2表示阀门操作数和可疑漏失管段长度差异这两项的权重;
    4)根据最优阀门操作策略关闭和打开相应阀门,将DMA分解为两个子区域:在这两个子区域中,有一个子区域应包含至少一个DMA入口,即该子区域可正常运行;而另一个子区域可能正常运行,也可能被关阀所封闭,即中断供水;
    5)任选一个正常运行的子区域实施在线水平衡分析,以判断漏失是否位于该子区域内,若判定漏失不位于该子区域,则其位于另一个子区域;在线水平衡分析是通过DMA的边界流量计和用户端的智能水表实现,进入选定子区域内的流量与选定子区域内用户用水量的差值,即非收益水量NRW,可表示所选定子区域内是否存在漏失;如果选定子区域的NRW与漏失定位前DMA的NRW数值相近,则说明所选定子区域内存在漏失;否则,漏失位于另一个子区域内;
    6)更新当前阶段k的管段标记,将判定不存在漏失的子区域内管段标记为无漏失管段,即x k=0,以缩小漏失区域;
    7)判断DMA中是否有阀门操作可以进一步缩小漏失区域,若有,则回到步骤3)进行下一阶段的漏失定位,即k=k+1;否则说明已找到最小漏失区域,则停止漏失定位过程;
    8)根据漏失定位结果,派遣工作人员至所定位的漏失区域内精确查找漏点位置,并修复所查找到的漏点。
  3. 根据权利要求2所述的一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法,其特征在于,所述的步骤1)具体包括如下步骤:
    (1)移除管网图G中所有代表阀门的边,识别所产生新图中的所有连通子图,这些连通子图代表管网中通过关闭阀门可封闭的最小区域;
    (2)将管网图G转换为新的替代图G V,以管网中阀门为边,步骤(1)中所识别到的所有连通子图为端点,根据阀门与连通子图之间的拓扑连接关系构建新的替代 图G V
    (3)确定替代图G V的割集,每个割集表示一种关阀策略V s,割集中的边代表关阀策略中需关闭的阀门,即v n=0;将每个割集转换为关阀策略即可形成关阀策略集合V。
  4. 根据权利要求3所述的一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法,其特征在于,所述的步骤(3)中,采用Karger算法中的Contraction算法来确定替代图G V的割集,具体为:随机选择图中的一条边将其移除,合并该边的两个端点,保留端点的其他连接边;重复执行该过程直至图中只剩下两个端点,此时这两个剩余端点的连接边即是图的一个割集;重复执行Contraction算法至t 4logt次可得到足够数量的割集,其中t为图G V中端点总数。
PCT/CN2019/121559 2019-11-19 2019-11-28 一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法 WO2021097887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911134761.5A CN111027730B (zh) 2019-11-19 2019-11-19 一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法
CN201911134761.5 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021097887A1 true WO2021097887A1 (zh) 2021-05-27

Family

ID=70200695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121559 WO2021097887A1 (zh) 2019-11-19 2019-11-28 一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法

Country Status (3)

Country Link
US (1) US11326977B2 (zh)
CN (1) CN111027730B (zh)
WO (1) WO2021097887A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113111471B (zh) * 2021-04-14 2022-02-22 湖南华埔信息产业有限公司 基于人工智能和物联网的城市智慧水务数字化管理系统
CN114251605A (zh) * 2021-12-29 2022-03-29 东本电气科技(苏州)有限公司 一种燃气地下管网的检漏方法及应急装置
CN114963015B (zh) * 2022-07-13 2022-11-08 武汉杰威信息技术有限公司 一种水管网智慧管理方法、装置、电子设备及存储介质
CN115370973B (zh) * 2022-10-25 2023-02-28 山东辰智电子科技有限公司 供水漏损监测方法、装置、存储介质及电子设备
CN116857572B (zh) * 2023-07-14 2024-01-02 湖南理工学院 一种基于大数据的智慧水务管理方法及系统
CN117252485A (zh) * 2023-11-14 2023-12-19 北京埃睿迪硬科技有限公司 一种水务管网爆管关阀策略的确定方法及装置
CN117469604B (zh) * 2023-12-25 2024-03-26 奥德集团有限公司 一种用于城市输配送管网的风险监测控制系统
CN117910780A (zh) * 2024-03-18 2024-04-19 山东华立供水设备有限公司 一种基于多目标粒子群算法的供水优化调度方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369663A (zh) * 2001-02-15 2002-09-18 齐克先 真空复合绝热管道及泄漏监测方法
CN102072407A (zh) * 2009-11-23 2011-05-25 中国科学院生态环境研究中心 结合漏失记录仪的独立计量分区漏失检测方法
CN105927863A (zh) * 2016-05-07 2016-09-07 大连理工大学 Dma分区管网泄漏在线检测定位系统及其检测定位方法
US9470601B1 (en) * 2016-01-28 2016-10-18 International Business Machines Corporation Leak localization in pipeline network
CN106959608A (zh) * 2017-02-27 2017-07-18 同济大学 一种基于聚类粒子群算法的供水管网渗漏优化控制方法
CN107230021A (zh) * 2017-06-08 2017-10-03 桂林理工大学 高效筛选供水管网泄漏区域的方法
CN109827080A (zh) * 2019-04-10 2019-05-31 中国石油大学(华东) 一种终端管网漏点分段式粗定位装置和定位方法
CN109869638A (zh) * 2019-03-25 2019-06-11 杭州电子科技大学 一种供水管网爆管漏失初定位的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030074855A (ko) * 2002-03-14 2003-09-22 (주)와콘 누수탐지용 액체관 및 설치방법
US20090299660A1 (en) * 2008-05-29 2009-12-03 Dan Winter Method and System to Identify Utility Leaks
US10242414B2 (en) * 2012-06-12 2019-03-26 TaKaDu Ltd. Method for locating a leak in a fluid network
CN103955872B (zh) * 2014-05-21 2017-03-15 广东粤海控股有限公司 一种结合蚁群算法和压力相似性分析的管网压力分区方法
EP3274619A1 (en) * 2015-03-27 2018-01-31 Advanced Engineering Solutions Ltd. Apparatus and method for the detection and monitoring of the condition of pipeline components
CN104866899A (zh) * 2015-06-17 2015-08-26 山东省环境保护科学研究设计院 一种基于城市供水管网水力模型校核的漏失检测方法
CN106886156B (zh) * 2017-05-03 2019-09-24 杭州电子科技大学 基于二进制多目标粒子群算法的供水管网关阀方法
CN109902846B (zh) * 2017-12-11 2023-06-02 北京亿阳信通科技有限公司 一种供水管网简化方法及系统
CN108876016B (zh) * 2018-05-30 2021-10-01 燕山大学 一种多阶段多目标给水管网优化分区方法
CN109948886B (zh) * 2019-01-22 2022-09-06 大连理工大学 一种供水管网关键阀门辨识方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369663A (zh) * 2001-02-15 2002-09-18 齐克先 真空复合绝热管道及泄漏监测方法
CN102072407A (zh) * 2009-11-23 2011-05-25 中国科学院生态环境研究中心 结合漏失记录仪的独立计量分区漏失检测方法
US9470601B1 (en) * 2016-01-28 2016-10-18 International Business Machines Corporation Leak localization in pipeline network
CN105927863A (zh) * 2016-05-07 2016-09-07 大连理工大学 Dma分区管网泄漏在线检测定位系统及其检测定位方法
CN106959608A (zh) * 2017-02-27 2017-07-18 同济大学 一种基于聚类粒子群算法的供水管网渗漏优化控制方法
CN107230021A (zh) * 2017-06-08 2017-10-03 桂林理工大学 高效筛选供水管网泄漏区域的方法
CN109869638A (zh) * 2019-03-25 2019-06-11 杭州电子科技大学 一种供水管网爆管漏失初定位的方法
CN109827080A (zh) * 2019-04-10 2019-05-31 中国石油大学(华东) 一种终端管网漏点分段式粗定位装置和定位方法

Also Published As

Publication number Publication date
CN111027730B (zh) 2023-05-09
CN111027730A (zh) 2020-04-17
US11326977B2 (en) 2022-05-10
US20210148782A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
WO2021097887A1 (zh) 一种基于阀门操作和在线用水计量的供水管网漏失高效定位方法
KR101875885B1 (ko) 관망해석을 통한 상수관망 운영관리시스템
Karadirek et al. Implementation of hydraulic modelling for water-loss reduction through pressure management
CA3031517C (en) Method and apparatus for model-based control of a water distribution system
Christodoulou et al. A study on the effects of intermittent water supply on the vulnerability of urban water distribution networks
KR101105192B1 (ko) 관망해석에 의한 상수도 누수혐의구간 선정방법 및 그 기능을 탑재한 상수도 통합관리운영시스템
Gomes et al. Decision support system to divide a large network into suitable District Metered Areas
CN115127037B (zh) 一种供水管网漏损定位方法及系统
Karathanasi et al. Development of a leakage control system at the water supply network of the city of Patras
CN110425427B (zh) 一种给水管网漏失的控制方法
MacDonald et al. DMA design and implementation, a North American context
Mubvaruri et al. Investigating trends and components of non-revenue water for Glendale, Zimbabwe
CN101261654A (zh) 排水管网递归优化算法
Ganorkar et al. Water audit-A tool for assessment of water losses
Asli et al. Minimum night flow (MNF) and corrosion control in compliance with internet of things (IoT) for water systems
Charalambous Use of district metered areas coupled with pressure optimisation to reduce leakage
Mambretti et al. Genetic algorithms for leak detection in water supply networks
Wu Innovative optimization model for water distribution leakage detection
Hingmire et al. Probing to Reduce Operational Losses in NRW by using IoT
Aburawe et al. Water loss control and real-time leakage detection using GIS technology
Paneria et al. Modernization in water distribution system
Getnet et al. Performance Evaluation of Water Supply Distribution System the Case of Gudo Bahir, Bahir Dar, Ethiopia
Sharma et al. A water audit analysis tool for urban water utility.
Sonaje Continuous 24* 7 Water Supply System: A Review of Literature Nitin P. Sonaje, Mukund M. Pawar, and Nitin D. More
Ertugay et al. Assessing Water Losses in Drinking Water Distribution Systems Using the SCADA System: The Erzincan Case

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953387

Country of ref document: EP

Kind code of ref document: A1